
Institut für Softwaretechnologie

 Abteilung Software Engineering

Universität Stuttgart

Universitätstraße 38

D-70569 Stuttgart

Leveraging Continuous Integration in Space

Avionics - A Design using Declarative

Build Automation Paradigm

 Ganesh Ayalur Ramakrishnan

Course of Study: Master of Science INFOTECH

Examiner: Prof. Dr. rer. nat. Stefan Wagner

Supervisor: Dipl.-Inf. Johannes Lieder (Airbus DS GmbH)

Commenced: October 1, 2016

Completed: March 31, 2017

CR-Classification: D.2.8, D.2.9

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Erklärung
Ich versichere, diese Arbeit selbständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder
sinngemäß aus anderen Werken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Unterschrift:

Declaration
I hereby declare that the work presented in this thesis is entirely my own.
I did not use any other sources and references other than the listed ones. I have marked
all direct or indirect statements from other sources contained therein as quotations.
Neither this work nor significant parts of it were part of another examination procedure.
I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

Signature:

Ganesh Ramakrishnan 3

Master Thesis: Institut für Softwaretechnologie - Software Engineering

ACKNOWLEDGEMENT

I would first like to thank my thesis advisor Prof.Dr.rer.nat. Stefan Wagner of the
Institut für Softwaretechnologie at Universität Stuttgart. His support was very valuable
for the entire duration of my work. I was given the freedom to express my thoughts,
opinions and ideas. His suggestions and teachings were a guiding light for me in the
right direction.
I would also like to thank my supervisor Dip.Inform. Johannes Lieder of Airbus DS
GmbH, Friedrichshafen for his support in this study. This work would not have been
possible without his expertise and periodic interactions with him always added value
to my work. I would also like to thank the complete On-Board Software Development
team at Airbus led by Dipl.Informatiker(FH) Harald Selegrad for their inputs,
passionate participation and review of my work.
Finally, I must express my very profound gratitude to my parents and brothers for
providing me with unfailing support and continuous encouragement throughout my years
of study. I would forever be indebted to my friends without whose help and support,
this study would not have been possible. Thank You.

Ganesh Ramakrishnan
Friedrichshafen, Germany

Ganesh Ramakrishnan 5

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Abstract
There are several benefits when Continuous Integration (CI) is adopted for a software
development project. This provides for a mechanism to reduce the burden on developers
during the build and test of the developed software, as well as help release the product
on-time. Other benefits include capturing errors quite early in the development cycle,
easier integration at defined intervals over the course of software development, and faster,
comprehensive feedback to developers. However, in an embedded domain, adopting CI
is a challenging activity. If the project size and complexity is high, there will be a
large number of activities which need to be covered in the CI workflow. Not all tools
used in software development provide seamless interfaces to the CI tool. There is a
need to design the interface framework which can quickly grow to be complex and time
consuming.
An effective CI workflow follows a set of best practices. Build automation is one of
them. The existing literature does not provide comprehensive information to address
the effect that the build automation tools have on the design and implementation of a CI
framework in an embedded avionics domain. Tools like GNU Make and Apache Ant are
primarily used for the build and test stages of development. However, these build tools
are imperative in nature. As the build logic increases in complexity, the conciseness of
build scripts reduces. The build run times should also not be large as the feedback cycle
time would be longer.
This study aims to design a CI workflow for a space satellite On-Board Software (OBSW)
development project. The objective is to bring out the limitations and challenges of
using a conventional imperative build approach during the set-up of a CI framework for
the project. The proposal is to adopt a build tool which is based on declarative build
paradigms and provide for mechanisms to easily integrate with CI tools. This study is
carried out as an action research (AR) with study results expressed as quantitative or
qualitative metrics. A prototypical CI chain is implemented with a Jenkins CI server
and Gradle as the primary build tool. Parameters such as performance, maintenance
complexity of build logic, and features such as integration to a CI tool, reproducible
builds are investigated.

Ganesh Ramakrishnan 7

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Thesis Overview . 15

2 Background 17
2.1 Continuous Integration . 17
2.2 Build Systems . 18

3 Research Approach 23
3.1 Action Research . 23
3.2 Qualitative Metrics in Study . 24
3.3 Validity Threats . 25

4 On-Board Software Development (OBSW) - AS400 Central Software
(CSW) 27
4.1 Overview . 27
4.2 Software Development Environment (SDE) 27
4.3 Software Development in OBSW - CSW 29

4.3.1 Terminology . 29
4.3.2 AS400 CSW Architecture . 30

4.4 Software Development Workflow . 30
4.5 Build Automation in AS400 CSW . 32

5 Gradle for AS400 CSW 39
5.1 Terminology . 39
5.2 Build System Design Aspects . 41
5.3 Analysis of Build Logic . 44

6 Continuous Integration in AS400 CSW 47
6.1 Terminology . 47
6.2 CI Workflow for AS400 CSW . 48
6.3 Challenges faced during design . 52

7 Evaluation and Results 55
7.1 Performance Comparison . 55
7.2 Complexity of Build Logic . 61
7.3 Feature Comparison . 63
7.4 Summary . 66

8 Conclusion 67
8.1 Summary . 67
8.2 Future Work Items . 67

Ganesh Ramakrishnan 9

Master Thesis: Institut für Softwaretechnologie - Software Engineering

List of Figures

1 Block Diagram to show Overview of CI concept 14
2 Expressiveness vs Conciseness - How the different build tools fit into this

comparison graph? . 19
3 An example of a build.gradle . 22
4 The output of gradle tasks command . 22
5 Action Research (AR) cycle consisting of three distinct stages 23
6 SDE set-up for AS400 Central Software Development 29
7 The AS400 Project top level view. 31
8 An excerpt of the AS400 Production Repository Structure 31
9 Representation of the Gitflow Workflow containing master, feature, de-

velop and release branches . 32
10 Source Tree of one of the Collections containing Constituents and Sub-

Constituents . 34
11 Makefile for ’aocs’ Collection . 35
12 Makefile for ’aocsApFw’ Constituent . 35
13 Representation of the build methodology from Build Author’s View Model 35
14 build.xml for AS400 Validation . 37
15 build.gradle at asw level . 40
16 An excerpt of the AS400 Production Repository Structure containing

build.gradle files . 42
17 build.gradle at as400prod level . 43
18 build.gradle at as400prod level(contd.) . 44
19 Excerpt of build.gradle of a Collection containing Constituents 45
20 Jenkins Master Slave set-up . 48
21 Overview of Stash - Jenkins connection 49
22 Overview of the structure of a Job chain containing phases and jobs . . . 51
23 A detailed Jenkins workflow for the project under study 52
24 Performance comparisons between Gradle and Make for clean task, spe-

cific target and incremental builds . 57
25 Specific builds without custom plugins applied to the project (N) and

enabling configuration on demand (C) 58
26 Gradle profiling results for a specific build 58
27 Gradle profiling results for a specific build with the Gradle daemon running 59
28 Gradle profiling results for a specific build enabling --configure-on-demand 59
29 Gradle profiling results for a specific build enabling --configure-on-demand

and --parallel execution . 60
30 Comparison of full image builds on Make, Gradle without daemon and

with daemon(D), as well as parallel Gradle builds 60
31 Summary of all profile reports . 61
32 Summary of results - Comparison of evaluation blocks 65

Ganesh Ramakrishnan 11

Master Thesis: Institut für Softwaretechnologie - Software Engineering

1 Introduction

Software development teams look to maximize value of the product being developed
throughout the process lifecycle. Hence, they adopt Agile methodologies [1] which fo-
cus on rapid delivery of valuable software through iterative planning and quick feed-
back loops. This provides several advantages such as easy adaptability to changing
requirements, enhanced visibility of the project and on-time release of software. Ex-
treme Programming (XP) [2] has evolved as one of the popular Agile methodologies.
XP propagates Continuous Integration (CI).

1.1 Motivation

Developing software for critical space avionics is a challenging activity. The size, com-
plexity and the cost involved in software development makes it mandatory to have good
software engineering practices followed at each stage of the software life-cycle. It is nec-
essary to reduce the risk associated with the project by allowing a mechanism to track
each change made to the software and help detect errors early in the life-cycle. Software
projects containing modules with a low coupling factor can be developed independently,
possibly in distributed environments. At the time of release, the different features de-
veloped are often integrated to build the final software product. This integration in an
embedded project will be hard to carry out if there does not exist a Continuous Integra-
tion (CI) framework. In projects adopting CI, build automation is a primary activity.
The methodology used by the build tools significantly affect the effectiveness of the CI
workflow for the project. Most teams require the developers to spend less time in trying
execute the builds and tests on the software that is developed. There is a need for a
successful automation of the chain of activities post the commit stage. This need triggers
the study of build automation practices and the influence they bring in CI workflows
associated with the project.
As part of this study, the primary objective is to investigate the set-up of an effective and
efficient Continuous Integration (CI) workflow for an embedded space avionics software
development project using declarative build automation paradigm. The study involves
implementing the set-up in a live project and draw conclusions based on how the frame-
work handles real-life scenarios. The study also attempts to quantify build automation
systems in the space avionics domain by identifying parameters for performance, build
design and complexity analysis.
Continuous Integration (CI) is a practice where developers in a project push to a cen-
tral mainline several times. The software development environment containing the CI
tools and other build tools perform the builds and tests in an automated manner. The
developers then expect to receive status of the builds and tests quickly. The CI tool
consists of an open source automation server such as Jenkins [3]. The Figure 1 shows a
global view of the CI concept. Every project has multiple developers working on their
respective features. It is important to track the validity of the individual contributions

Ganesh Ramakrishnan 13

Master Thesis: Institut für Softwaretechnologie - Software Engineering

continuously during the development life-cycle. A continuous integration server such as
Jenkins runs on a remote machine. Commits made into the central repository triggers
the activities on the CI server. The status of the activities are then communicated back
to the developers.

Developer pushes commit into a particular branch in Stash

Notifications fired from Stash to Jenkins

Jenkins starts the build process

Any jobs within
a phase fails?

Mark build as success and notify
Stash

Mark build as failure. Notify Stash
and send E-mail

Generate binaries, Junit test
reports and other artifacts

Bad News! All is Well!

Yes No

Figure 1: Block Diagram to show Overview of CI concept

The nature of the development project influences the type of CI workflow that the project
adopts. For starters, the terminology used in an embedded software development project
is slightly different from other development projects. For example, the term build in the
embedded domain mostly refers to the compile & link processes only. The unit testing
is handled separately as is verification & validation testing. If Git is the version control
system in use, then the quality standards on the different types of branches are also
quite different. The master could be chosen as the branch which is stable at all points
of time. Hence, quality checks at master could be significantly more strict than in other
branches.
Continuous Integration (CI) advocates having multiple commits into the central mainline
every day. For every single commit, the build is executed from scratch. CI also advocates
a higher integration frequency. However, depending on project specific constraints, the
development team is allowed to fix the integration frequency. In any case, a team
utilizing effective CI model should treat the periodic integration as a non-event [4].
This study attempts to provide a method to quantify build systems. This research is im-

Ganesh Ramakrishnan 14

Master Thesis: Institut für Softwaretechnologie - Software Engineering

plemented as an Action Research (AR). A detailed analysis of the existing build system
is done. A discussion with the developers is performed to identify build activities which
they commonly use and the challenges that they face with these activities. This initial
phase gives rise to a set of observations, opinions and ideas. They are then taken into
consideration to form a hypothesis of a new CI framework. A predominantly bottom-up
approach towards Continuous Integration is done. A CI workflow is created based on
the development Gitflow workflow. And the best practices of CI are then applied to
this framework. A declarative build tool (Gradle) is used to express the build logic. At
the time of design, the developer requirement as well as build design best practices are
taken into consideration. A glue logic free system is one of the objectives of this study.
This objective is achieved by extending Gradle and leveraging inherent CI tool (Jenk-
ins) functionalities. Better performance is targeted. A reduction in the build-run time
can translate to faster feedback and hence on-time release of software. Good software
engineering practices are adopted, optimizations are studied, and continuous iterative
development is carried out to achieve faster and comprehensive builds. The study also
provides a definition for maintenance complexity of build logic when implemented in
Gradle. The embedded nature of the project and inherent design methodology of exist-
ing build logic are two main factors influencing this definition. Opinions and experiences
of the users of the system are taken into account. Additionally, literature covering similar
studies are investigated and the knowledge has been incorporated in this study. Thus,
the results for measuring complexity that are obtained are a mixture of quantitative and
qualitative metrics. Taking the outcomes of these activities, the constructed hypothesis
was verified.

Context of Study
Software development in embedded critical space avionics is large, complex and expen-
sive. Experience suggests that software problems might result in failed missions. This
study is done in collaboration with the department of On-Board Software (OBSW) devel-
opment, Airbus Defence and Space GmbH in Friedrichshafen. The project under study
is the development of central flight software (CSW) which runs on-board a satellite.

1.2 Thesis Overview

This thesis is divided into seven sections. Secton 1 is an introduction to the thesis.
Section 2 deals with the background behind the study. It introduces two important
components - Continuous Integration (CI) and Build Automation tools. Section 3 pro-
vides an overview of the Action Research (AR) methodology on which this study is
based. In addition, it describes the Qualitative methods employed in the study. Since
this study is performed in an industry, Section 4 provides a detailed report on the con-
text of the software development project in the concerned industry. It describes an
overview of the project, the tools used and the workflows adopted. Section 5 explores
the Gradle build system which is designed for the project. It covers the terminology
used and detailed design descriptions. Section 6 defines the Continuous Integration (CI)

Ganesh Ramakrishnan 15

Master Thesis: Institut für Softwaretechnologie - Software Engineering

workflow designed for the project as part of the study, its benefits and the challenges
that were mitigated. Section 7 is an overview of the evaluation done to quantize build
systems and the results obtained. Section 8 provides a Summary of the thesis as well as
proposes future work that can be undertaken as an extension of this study.

Ganesh Ramakrishnan 16

Master Thesis: Institut für Softwaretechnologie - Software Engineering

2 Background

This section provides an overview on two important components of this study, Contin-
uous Integration and Build Automation.

2.1 Continuous Integration

Kent Beck introduced the concept of Continuous Integration (CI) in its modern style
as part of the Extreme Programming (XP) methodology about seventeen years ago [2].
Today, this practice has gained popularity in the field of software development. The
practice encourages developers to share their working copies with a central mainline
several times a day. The contributions of each of the developers needs to be merged to
build up to the final product. The idea is to integrate code often, reduce the workload
on the developers post the commit stage and receive frequent and fast feedback of the
work.
There are a set of key practices which make CI effective for software development teams
[4]. A few of these practices are handled in this study.

1. Automation - Automate the Build
Build automation is when the source code is converted into a binary such as an
executable or a JAR file depending on the type of sources. Several tools are
available to perform this conversion. As part of this study, two tools - GNU Make
and Gradle will be examined in detail.

2. Comprehensiveness - Every Commit on the Mainline should Build
Another best practice is to build and test every single commit which is pushed to
the mainline. This can be achieved by using a continuous integration server such
as Jenkins.

3. Visibility - Make it Easy for Anyone to Get the Latest Executable
Additionally, it should be easy for the users of the system to retrieve the executable
and use it for their respective needs. Care should be taken to ensure that only the
authorized users are capable of getting the executables.

4. Transparency - Everyone can see what is happening
In addition, a good CI design would enable all authorized team members to view
the status of the complete system at any point of time.

5. Timeliness - Keep the Build Fast
One primary objective to invest in CI is to receive fast and comprehensive feedback
on the status of the build. The framework should be designed to achieve this goal.

The project under study does not have a notion of continuous deployment. Also, it is not
a requirement that every member of the team should commit into the mainline everyday.
However, every commit that is eventually made should be processed and evaluated.
As part of this study, we would like to coin a term CI run. This is a set of activities

Ganesh Ramakrishnan 17

Master Thesis: Institut für Softwaretechnologie - Software Engineering

covered in the CI set-up such as checkout, build, unit test, validation test, static code
analysis as well as ad-hoc build related activities. Earlier, we termed timeliness as a
CI best practice. Hence, it is important to consider a notion of turnaround time whose
bounds are dependent on the length of a CI run in the software development project.
An effective CI workflow brings about a large number of benefits to the team. There is
a possibility to capture errors very early in the life cycle. This would reduce the cost of
building the software. A main reason to adopt CI for projects is to not end up in what is
termed as an ”integration hell” [5]. This is effectively handled better when integrations
are done more often rather than at the time of a release. CI helps to reduce repetitive
manual processes. It also provides better project visibility. Developers start to notice
trends in the state of their builds and periodically measure quality of the product. There
is also an increase in performance leading to on-time releases. Some of these benefits
have already been studied and documented in various literature surveys [6][7].
On the other hand, adopting Continuous Integration for a software development project
can be a challenging activity. There are several articles, case studies and literature
reviews which bring out the challenges that teams adopting CI face at the time of de-
velopment. The nature of the software being developed could influence the CI workflow,
especially if the project involves a close relation to hardware [8]. If the project size or
complexity is large, CI processes need to be thought out with careful considerations.
These factors might prolong the release cycles for the project thereby resulting in a slow
feedback loop to the team members.
Another important challenge to be considered is the availability of hardware to run the
builds. As discussed earlier, the builds need to be fast. And powerful hardware resources
help to provide quick feedback of the build runs [9]. Software tools provided by the
environment in which the build runs also play a significant role towards an effective CI
workflow [10]. A good CI design would constantly strive towards seamless integration
of software development tools with the CI framework.

2.2 Build Systems

The process of automatically creating a software build for a set of source files is called as
build automation. It includes activities such as compiling, linking, running unit tests and
running quality checks (eg. Static Code Analysis) on the source code. For automating
software builds, a large number of tools are available. This thesis incorporates discussion
of two such tools, GNU Make [11] and Gradle [12], in detail. In the field of software
builds, an execution unit (EU) is defined as an activity which the build tool carries out.
In Make or Ant they are called targets. In Gradle they are termed as tasks. Examples
for EU’s can be compilation of C sources, or cleaning of generated object files for a new
build, creation of an executable and much more. Usually, EU’s depend on other EU’s.
The build tools also offer a large number of ways in which these dependencies can be
configured. A control flow is the path which the build tool traverses in a build script
to execute the build logic. For example, generation of an executable from C sources

Ganesh Ramakrishnan 18

Master Thesis: Institut für Softwaretechnologie - Software Engineering

involves compilation of the sources, then a stage of link followed by packaging into a
binary. Essentially, EU’s along with their dependencies combine to define the control
flow in software builds. The order of execution of the various EU’s may be different
and is based on the build author’s requirement. Hence, a build script usually contains
several targets which in turn means several control flows.
Two important terms that can be associated when discussing build systems are expres-
siveness and conciseness. Expressiveness is the capability of the build tool to describe
complex build behaviour. Conciseness is when the build tool expresses the build logic
in an easy to understand manner. In other words, the control flow of the build logic
should be realized by the users of a team without difficulty. More often than not, these
properties do not scale proportionately. When build logic tends to become complex, the
conciseness of the build script decreases. This trend can be traced back to the build
tool that is used to describe the logic. To express this in the form of a graph, consider
Figure 2. The traditional build tools such as Make or Ant generally fit into quadrants
two or three of the graph. Modern build tools such as Gradle try to be concise at the
same time provides opportunity to represent complex build behaviour. Hence, they are
slotted in at quadrant four.

Expressiveness

C
o
n
ci
se
n
es
s

3 4

1 2

Make Ant

Maven Gradle

Figure 2: Expressiveness vs Conciseness - How the different build tools fit into this com-
parison graph?

A classification of build tools can be done on the basis of how they are used by the
build author. One type is the imperative build system. Examples include GNU Make
or Apache Ant. This means that it is the responsibility of the build author to define
what the build should do and also how the automation tool should do it. In case of a

Ganesh Ramakrishnan 19

Master Thesis: Institut für Softwaretechnologie - Software Engineering

declarative build system, the build author is responsible for stating what the build logic
should do. The build automation tool attempts to figure out how the requirements are
to be met. This build by convention approach provided by declarative build systems
enable to increase the conciseness of the build logic.
Build automation is generally considered as a CI best practice [4]. To interface the build
tool with a CI tool, a framework needs to be designed and implemented. This is called
glue logic. The implementation of this glue logic is done usually using shell scripting.
However, if the build logic is inherently complex, this interface might be difficult to
establish and maintain.
This section attempts to describe in brief about the build systems which are used in the
project under study. A more detailed analysis of the build logic in the Make based and
Gradle based build systems will be discussed later.

Make Make is a popular build automation tool which is responsible for creating an
executable or a library from source code. It manages to do this by parsing a file called
Makefile. Software development of the Make tool started more than 35 years ago [13]
and there are several variants that are currently available. A very popular and widely
used variant is the GNU Make. The format of the Makefiles are similar to one shown
below [11].
target : prerequisites

recipe
target can refer to two things. One is the name of the binary that Make generates.
Generally, for C/C++ sources it is an executable or a library. target can also refer to
an activity which Make carries out like compile, link or clean. prerequisites are inputs
to the Make system for executing the target. They could be source files, or even other
targets. A recipe is a set of commands which Make carries out. The recipe can consist
of several commands. By default, a tab space must be included at the beginning of each
recipe line.
The GNU Make build automation tool provides advanced features to enable build au-
thor’s to describe complex build logic. It provides the concept of implicit rules [11].
These rules reduce the work load on the build author as it forces Make to use cus-
tomary techniques for the desired behaviour. For example, there are built-in implicit
rules which use several Make provided variables in their recipes like CFLAGS. There is
a possibility to use the Recursive Make [14] functionality. This practice is commonly
used when there are separate Makefiles within each subsystem of a larger system. In
this case, Make recurses through each of the subsystems and executes the targets ac-
cordingly. However, the harmful effects of using Recursive Make to software projects is
well researched in [15]. GNU Make also provides a mechanism to generate dependency
information automatically [16].

Ganesh Ramakrishnan 20

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Ant Ant [17] is an open source, software build automation tool similar to Make but
targeted primarily for Java sources. It was developed as part of the Apache Tomcat
project in 2000. It requires a Java platform, and uses an XML to represent the build
logic. The default XML used by Ant is the build.xml.
Each Ant build file consists of a project and at least one target. Targets are further
made up of Ant tasks which can be executed to obtain the desired build behaviour.

• Project
Projects are represented in XML using the <project> tag. Three attributes are
defined by the Project element. name is an optional attribute which denotes the
name of the project. default denotes the default target for the build script. Any
Project may contain multiple number of targets. This attribute defines which
target should be executed by default. An optional attribute basedir which denotes
the root directory for the project.

• Target
Targets are represented using the <target> tag. They are a collection of Ant
tasks. They have a name attribute and a depends attribute. The former defines
the name of the target and the latter describes the targets on which the current
target depends on. The depends attribute defines the order in which the targets are
to be executed [18]. description is an optional attribute in which a short description
for the target can be written. There are also some conditional attributes such as
if and unless.

• Task
Ant tasks are the commands which need to be executed by Ant. Tasks could be
similar to an echo command which prints information on the terminal or a javac
command which does compilation of the defined Java sources and the classpath.

A <project> can contain <property> element which allows to specify properties such as
Ant version, Ant home directory location and much more.

Gradle Gradle [12] is also an open source build automation tool but replaces the Ant
XML build files with a Domain Specific Language (DSL) [19] based on the Groovy
[20]. It is a tool which provides for a declarative modelling of the problem domain
and hence has a build-by-convention approach for software builds. Gradle is already a
popular choice for build automation among many enterprises such as Google, Android,
and Twitter to name a few [21].
Gradle defines tasks which is an activity carried out during the build such as compile,
link or clean. The default name of the build file is build.gradle. Gradle is based on a
graph of task dependencies, where the tasks do the actual work. These tasks could be
custom tasks created by a build author. It also defines some default tasks depending on
the configuration that has been mentioned in the DSL. This can be explained with the
help of an example.
The first line in Figure 3 includes the C plugin into the build file. This line extends the

Ganesh Ramakrishnan 21

Master Thesis: Institut für Softwaretechnologie - Software Engineering

apply plugin: ’c’

model {
components {

main(NativeExecutableSpec) {
sources {

c.lib library: "hello"
}

}
}

}

Figure 3: An example of a build.gradle

Gradle project’s capabilities. It configures the project based on the conventions described
further in the build script. For example, it adds some specific tasks or configures defaults.
The Gradle model is a container for configuring the build logic. Based on the DSL
specified within the model, Gradle recognizes key configurations and creates a control
flow for the build by mapping a set of default tasks which the build author can leverage.
For the above mentioned build file, Gradle creates the tasks shown in Figure 4.

Build tasks
−−−−−−−−−−−
assemble − Assembles the outputs of this project.
build − Assembles and tests this project. [assemble, check]
clean − Deletes the build directory.
installMainExecutable − Installs a development image of executable ’

main:executable’ [mainExecutable]
mainExecutable − Assembles executable ’main:executable’.

linkMainExecutable − Links executable ’main:executable’

Figure 4: The output of gradle tasks command

The declarative nature of the build tool can be visualized using the above mentioned
example. Based on the configuration defined by the build author, Gradle creates the
build, clean, install, and link tasks for generating an executable. A detailed study of
Gradle’s methodology and its fit in an embedded space avionics software development
project is analyzed in subsequent sections.

Ganesh Ramakrishnan 22

Master Thesis: Institut für Softwaretechnologie - Software Engineering

3 Research Approach

The Research Approach used in this study is described. Additionally, a small portion of
the results obtained at the end of this study is qualitative in nature. Hence, the practices
adopted to bring out qualitative metrics is also discussed in brief.

3.1 Action Research

Action Research (AR) is a methodology where researchers aim to solve real-world prob-
lems while simultaneously analyzing the approach employed to solve the problem [22].
Literature shows that the methodology is cyclic [23]. There is an intention or a plan
to initiate an activity. This precedes action and a stage of review follows as shown in
Figure 5. A prerequisite to Action Research is to have a problem owner who is respon-
sible to both identify a problem as well as take steps towards solving it. There are
a large number of key ideas which were developed through an implementation phase
in real-world projects [24]. One major outcome of AR is an in-depth and first-hand
understanding of the subject under study that the researcher obtains [25].

Figure 5: Action Research (AR) cycle consisting of three distinct stages

AR, when considered as a form of study, also presents challenges to be addressed. Since,
AR brings about a notion of change to the project, an alignment with organizational
level objectives need to be maintained. Also, the problem of researcher bias at the time
of research might be a risk in the study. Finally, the cost of carrying out AR is to be
estimated as it could prove to be expensive [22].
As mentioned earlier, the study of an alternative build automation tool in the field of
space avionics to augment to an effective CI workflow is the objective of this study. The
researcher in this study is the build author/CI developer. The researcher collaborates
with the members of the software development team to analyze the existing structure of
the project. The challenges which need to be mitigated are investigated. In this scenario,
the researcher sees this as an opportunity to employ a declarative build paradigm to
study first-hand how it would affect the build in an embedded environment. Observations
and comments are made during and after development. These observations are then used
to either support or refute a hypothesis.

Ganesh Ramakrishnan 23

Master Thesis: Institut für Softwaretechnologie - Software Engineering

3.2 Qualitative Metrics in Study

Quantifying build automation tools is inherently a difficult proposition. This study
employs qualitative methods to derive metrics based on a small subset of results. For
achieving this, a formal methodology to incorporate these methods into the study is fol-
lowed. Literature provides starting points to employ qualitative methods systematically
[26].
Qualitative metrics provide many advantages to the researcher. Results are richer and
informative. Parameters which are hard to be expressed objectively can be explained in
a subjective manner. The comments of the developers working on the project are taken
into consideration and can be analyzed to offer a concise picture of the state of work.
Qualitative methods involve a phase of Data Collection followed by the phase of Data
Analysis. These phases contain different methods for handling data. The methods
adopted as part of this study is outlined.
Data Collection
This study incorporates two different data collection methods. They are Participant
Observation [27] and Interviews. In Participant Observation, the researcher collaborates
with the developer in gaining knowledge of the existing system. The developer is en-
couraged to verbally describe the activities which he carries out so that the researcher
is able to understand the process flow. Additionally, the researcher attends the de-
veloper team meetings and records key ideas expressed during the meeting. As these
meetings are generally organized periodically in a software development team, the re-
searcher is in a position to record data such as terminology used, technical information
exchanged as well as identify roles of the developers within the scope of the project.
The second technique, Interviews [26], is used specifically to collect individual developer
opinions and impressions about the subject under study. The researcher has employed a
semistructured interview pattern in this study. The interview begins by having specific
questions and gradually proceeds towards open-ended questions. The ideas expressed by
the developer were recorded by taking notes. This technique of Interviews also provide
a mechanism for the researcher to capture developer requirements in the study being
carried out.
Data Analysis
Once the data has been collected through the methods described above, an analysis of
the obtained data is conducted by the researcher. This involves two methods - Genera-
tion of Theory and Confirmation of Hypothesis. Based on the text which is generated by
Data Collection, a preliminary processing is done. This processing is called as Coding
[28]. Opinions which are similar or about a particular theme are grouped under a label.
For example, consider the following statements made by different team members.

Developer 1 (D1): I would like to find out if this tool would give better performance
(faster builds) . . .

Ganesh Ramakrishnan 24

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Developer 2(D2): The existing system takes about ten minutes to create the executable.
If this time period can be reduced, it is a good thing . . .

Based on the text above, a label called Performance can be introduced. Similarly,
different themes can be drawn out from the text and a hypothesis can be generated.
The next method under Data Analysis is Confirmation of Hypothesis. Here, a practice
called as Triangulation [26] is employed. A particular parameter under study is analyzed
from various angles. For example, lets consider complexity of build logic as the parameter
under study. Qualitative data obtained from interaction with the developers contained
text such as:
Developer 1 (D1): There are many environment variables in the build logic and I am
not sure where they are set . . .
Developer 2 (D2): There are a large number of Makefiles that are included when I run
make on my sources. I am not really sure what these Makefiles do . . .

From a quantitative perspective, literature surveys can help point out measures for
complexity of code based on source lines of code (SLOC), or occurrences of indirection.
Hence, it provides an opportunity for the researcher to analyze the parameter from
various perspectives. Based on this, it is possible to support or refute the hypothesis
that is set.
Most of these methods if not all have been used in this study. Further details of how
these methods have aided to help drive the research is discussed in subsequent sections.

3.3 Validity Threats

As this study involves the use of qualitative metrics during data analysis and result
formulation, it is necessary to guard against potential threats to the validity of the
research. Triangulation which was discussed earlier is one way to validate the results
obtained.
The number of members involved in the software development project was seven. This
limited sample space is a potential threat in the study. However, the number of in-
terviews conducted with the members were exhaustive in nature. This means further
interviews would lead to a low amount of significant information. This study is per-
formed by only one primary researcher. However, all design level decisions, interview
protocols, findings, and each iteration in development has been peer reviewed and dis-
cussed with two secondary researchers, one internal to the project (supervisor) and one
external researcher(at the university). In this form, the reliability threat to the study is
mitigated.
One important threat in software engineering study is internal validity threat. This
refers to a risk arising as a result of interference in causal relations within the research.

Ganesh Ramakrishnan 25

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Assume a parameter under study X is affected by Y. There exists a possibility that
a possibly unrelated factor Z might also affect X. In this study, the researcher aims
to study the challenges in Continuous Integration set-up in an embedded environment
with emphasis on build automation practices. An initial round of discussions with some
stakeholders in the project led to feedback regarding license issues faced in setting up
infrastructure for the Software Development Environment including the CI server. Even
though this is a valid comment, the researcher should be in a position to decouple the
data obtained in the research.
This section described an overview of the research approach used in this study. The
analysis also quoted various literature articles describing about the methods in detail.
The next section explains the nature of the project under study.

Ganesh Ramakrishnan 26

Master Thesis: Institut für Softwaretechnologie - Software Engineering

4 On-Board Software Development (OBSW) -
AS400 Central Software (CSW)

The case organization chosen for this study is the Space Systems satellite On-Board Soft-
ware Development (OBSW) department at Airbus Defence and Space, Friedrichshafen.
This chapter provides an overview of the software development activities for AS400 Cen-
tral Flight Software (CSW) as well as a description of the existing Software Development
Environment (SDE) for the same.

4.1 Overview

The actual software that runs in an On Board Computer (OBC) [29] in a satellite
in operation is the On Board Software (OBSW). The OBSW is treated as isolated
and independent software controlling the various applications such as power systems,
propulsions, sensors and payload on a satellite. The AS400 Avionics development is
an initiative towards a detailed definition and development of a generic, re-usable high
power avionics system to be used on a variety of missions.

4.2 Software Development Environment (SDE)

The term Software Development Environment (SDE) refers to a set of software and asso-
ciated hardware tools which are used by members involved in the software development
project. The environment supports activities such as configuration management, source
code development, and project management [30].
The team for building the AS400 Central Flight Software (CSW) is composed of two
groups. A production team which provides the flight code and a validation team which
performs the validation activities on the provided flight code. The production flight code
is in C and the validation test framework is in Java. The SDE that is used by these
teams is also composed of two parts. A client side SDE used by developers which consists
of development packages in a Windows/Cygwin environment with Eclipse TOPCASED.
And a server side SDE consisting of the Atlassian Tool Suite (JIRA, Stash, Confluence,
FishEye, Crucible). A brief overview of these tools is discussed.
Git: The version control system used is Git [31]. It is a distributed system. Every
developer in the team has a working copy in his/her local machine. They are allowed
to ’push’ their changes to a central mainline to make it accessible for other users of the
system.
JIRA: An Atlassian tool which tracks and manages projects [32]. It uses an Issue
management system. Issues [33] are assigned to developers to manage work on different
software features as well as other development related activities.
Stash: This tool is also a part of the server side SDE. It is responsible for managing the
central mainline located on the server. The authorization of the users who are allowed

Ganesh Ramakrishnan 27

Master Thesis: Institut für Softwaretechnologie - Software Engineering

to use the central mainline is well administrated using this tool. A link to JIRA issue
management is achieved which maps the development activity to the respective branches
in the repositories.
FishEye and Crucible: Atlassian tools in the server side SDE. FishEye is used to
extract information from repositories, such as code version differences. Crucible is used
for requesting, performing and managing code reviews [34].
Eclipse TOPCASED: It is the standard Integrated Development Environment (IDE)
used by the production team. It is a platform which contains many plugins required for
software development. It is a client side SDE tool.
As with many embedded applications, this software system is also developed in a cross
development environment [35]. This means that the machine on which the code is
compiled and linked is different from the actual deployment machine. The former is
called as host system and the latter as target. The existing SDE set-up utilizes GNU
Make [11] as the build automation tool and GNU cross compilation tools for the project
specific target space processors on the host systems.
Figure 6 shows an overview of the SDE used in this project. The blue lines indicate the
links between the various applications. The straight black arrows indicate the interface
between the team members and the SDE. The developers generally use the cygwin based
terminal to push Git commits into Stash. The Issue tracking and Code review activities
are generally performed using a web browser. The authorization for the users of this
server is managed using Atlassian Crowd which provides integration with the corporate
LDAP server.
The dotted arrows and the blocks in red are introduced as part of this research. As
part of this study, the tools which will be integrated to the existing system are Jenkins
and Gradle. Jenkins is an open source automation server which is used for continuous
integration. An instance of Jenkins runs on the same server which also caters to the
Atlassian Tool Suite. This instance is called as the Jenkins Master instance. The actual
build steps are done on so called Slave Machines which are separate Linux based virtual
machines. Jenkins receives a hook from Stash when there is a commit into the branches
which Jenkins is monitoring. At the end of the build, Jenkins updates Stash with the
status. Hence, the developer gets an all-in-one view on the web browser regarding the
status of the commit. Clickable links are also provided which enables the developer to
open and view the results of Jenkins activities. Gradle is the build automation tool
under study which is installed on the Linux based machines as it is here where the build
processes are expected to run.
One objective behind introducing these features to the SDE is to drive development faster
by leveraging the powerful remote virtual machines to automatically build and package
the software. The description and set-up of the slave machines and the installation of
Jenkins instances are beyond the scope of this thesis.

Ganesh Ramakrishnan 28

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Terminal V
er

si
o

n

C
o

n
tr

o
l

Sy
st

em

ssh

Commit Check

JenkinsHook to Jenkins

LDAP
Server

Browser

App Links

Master

Notify Stash

Developers

Stash

Build Slave 1 Build Slave 2
GCC

Tools
GCC

Tools

Jenkins Slaves

Figure 6: SDE set-up for AS400 Central Software Development

4.3 Software Development in OBSW - CSW

This section explains the project specific terminology, structure of the source code, git
workflow and the build automation methodology employed.

4.3.1 Terminology

The source code for the AS400 CSW development is organized as a hierarchy. There are
five levels of elements. The top most level is the production repository. The second level
contains the different aspects of production such as project specific SDE scripts, source
code (’fsw’ folder), and libraries to be used in unit testing. The definition of the levels
below this need to be distinguished using a view model. This study defines two distinct
view models [36] for the hierarchy. They are the Developer’s view model and the Build
Author’s view model.

Ganesh Ramakrishnan 29

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Developer’s View Model
• Applications - they are elements which implement functional processing that are

associated with the satellite. Some examples include Data Management System
(DMS) which implements data handling standards, and Attitude and Orbit Control
Systems (AOCS) which maintains the orientation of the satellite.

• Components - Applications can be composed of smaller entities called Components.
A typical Component is a function controlling an equipment on board the satellite.

Build Author’s View Model
• Collections - The elements which are at the same level within the flight software

(fsw) folder in the hierarchy are called Collections. They represent the various
parts which build up to the Central Flight Software (CSW) executable.

• Constituents - Subordinates of collections which generally contain the source files
are called constituents. They usually combine together to give the notion of an
Application. Some Constituents contain further Sub-Constituents.

It should also be noted that Collections do not necessarily map directly towards Appli-
cations. Also, it is not mandatory for every Collection to contain Constituents or for
every Constituent to contain Sub-Constituents.

4.3.2 AS400 CSW Architecture

As mentioned, the AS400 Project consists of several repositories. Figure 7 shows the
various repositories that are used in this study. There are dedicated repositories for
production (as400prod) and Validation (as400val). There is also a repository which
contains the Make based build logic that is not project specific but shared amongst
various related projects. In addition it contains an interface with the SDE for tools
which perform Static Code Analysis and Unit Testing. The scripts repositories contain
the Glue Logic which creates the interface between the build tools and the CI tools. In
addition it contains some helper scripts which allow for integration with Jenkins server.
The hierarchy of the production repository is similar to the code tree shown in Figure 8.
Some of the Collections within these repositories are git submodules [37]. The folders in
red are git submodules. The folders in blue are Constituents. The sub-directories within
the folder ’fsw’ are Collections. This is only an excerpt of the original structure. The
actual code tree consists of a larger number of Collections and Constituents. Collections
may or may not contain Constituents. The production repository as viewed from the
top level of the AS400 Project is self contained in terms of production code.

4.4 Software Development Workflow

The AS400 CSW team employs a Gitflow Workflow [31] for software development. There
are five different types of branches – master, develop, release, feature and bugfix branches.

Ganesh Ramakrishnan 30

Master Thesis: Institut für Softwaretechnologie - Software Engineering

AS400 Project
as400prod -------- Production Repository
as400val -------- Validation Repository
rtems -------- RTEMS Operating Systems libraries for link
SDE -------- Common Build Logic + SDE Tools
scripts -------- Glue Logic for Jenkins, helper scripts, ...

Figure 7: The AS400 Project top level view.

as400prod
delivery
fsw

aocs -------------Collection Level
aocs
aocsEquipments -------------Constituent Level

cbh -------------Sub-Constituent Level
str

aocsMcl
asw
boot
dms
infra

sde config
usvf
uml

Figure 8: An excerpt of the AS400 Production Repository Structure

master contains the official release history. It represents a stable, fully tested release.
There is always just a single master branch. Integration of the various software features
are done on develop. Generally, there is just a single develop branch. The different
features are merged into develop periodically and the team ensures that the required
validation tests are done on the commits in develop.
The feature and bugfix branches are used primarily by the developers to work on indi-
vidual applications. In the organization under study, JIRA issues are called as Software
Modification Reports (SMR). The feature branches are created when an SMR is issued.
They are usually derived from the master branch. It is then used by a developer (or a
team of developers) to perform the modifications required by the SMR. Commits are
made regularly to the branch during development. Ideally, the developers would like to
receive fast feedback of the status of their commit when working with feature branches.
If the feedback is positive, and if there is a need to merge the contents of the feature
branch with the develop branch, the developers can issue a Pull Request [38]. Just
ahead of a software release, a new branch called release is forked off from develop.Ideally,

Ganesh Ramakrishnan 31

Master Thesis: Institut für Softwaretechnologie - Software Engineering

this branch is used for bug fixes, documentation generation or other release-oriented
activities. When it is ideal for a release, it is merged with the master.

cf11 cf12 cf16 cf17

cm1

cd3cd2cd1

cm4cm3cm2

cf21 cf22

Feature SMR-1

Feature SMR-2

develop

master

release cr1 cr2

Pull
Request

Pull
Request

Developer updates
with changes made

Documentation,
final bug fixes

Tests successful

Figure 9: Representation of the Gitflow Workflow containing master, feature, develop
and release branches

Figure 9 shows an example of how this workflow is used in general by the developers.
The developers derive feature branches from the master branch. So cf11 and cf21 are
the first commits on the feature branches SMR-1 and SMR-2 derived from cm1 and cm2
(first and second commits on the master) respectively. At cf22, the developer is finished
with the work and wishes to integrate with the develop branch. A Pull Request is made
and the merge is carried out. The developer working on feature branch SMR-1 now gets
the content of develop and continues the work until cf17. Another Pull Request is made
and the develop is integrated. At a certain point when the develop is ready for a release,
like at cd3, it is forked off on to a release branch and after final fixes (if required), it is
merged with master.
However, for the organization under study, the release branch is used in a different way.
At times, feature branches are integrated directly into release before a release. This is
done to maintain a record of the different features that were integrated for a particular
release.

4.5 Build Automation in AS400 CSW

This section describes in detail the tools and the methodology behind the builds in
AS400. In the production environment, the builds for this project are done using GNU
Make. In validation, the builds are done within the Eclipse IDE. However, as a headless

Ganesh Ramakrishnan 32

Master Thesis: Institut für Softwaretechnologie - Software Engineering

framework is required for running the builds on remote machines, Apache Ant is used
as the build tool. For compilation and linking, GCC tools (part of GNU software) for
usage with the RTEMS operating system are used. For Java sources, an eclipse java
compiler is used. The build system used in the AS400 Project is an inherited system. It
has been used previously on successful software projects developed on similar platforms.

AS400 Production Build Process
The next part of this section describes the build logic employed to compile and link the
production sources into respective binaries at different points during the build stage.
The sources are compiled using Makefiles which are defined in each of the appropriate
Collection and Constituent directories within the source code tree. There are also several
‘common’ Makefiles which define variables and rules. The build system uses a recursive
Make [39] model. Essentially, the CSW is to be delivered as an executable file. To
achieve this goal, the build system uses the technique of Partial Linking [40]. Partial
Linking generates a relocatable output file which can in turn be used as an input to a
linker. It can be achieved easily by appending the -r option to linker arguments. When
Partial Linking is invoked, the unresolved references remain unresolved, i.e the errors
which a linker raises in normal operation are suppressed. Additionally, this method of
linking eliminates duplicate copies of debug sections and merges the symbol table into
one. The output of this link stage produces a file which is called as Partially Linked
Object (PLO) file.
Assume we are considering the AOCS collection in the source tree. It is represented in
Figure 10.There are Makefiles within each Constituent and Sub-Constituent directories
(in red) as well as within the Collection (in blue). The content of the Makefiles at
Collection level and Constituent levels are shown in the Figures 11 and 12.
As this example deals with invoking Make from the aocs Collection level, the process
recurses through the various Constituents within this level. Some Constituents like
’aocsEquipments’ contain further Sub-Constituents. The invocation also recurses to
those levels. The default target defined in these Makefiles will be executed. In this case,
it is linkpart. Initially, the sources within the Constituent or Sub-Constituent directories
are compiled. For Constituents which contain Sub-Constituents, each Sub-Constituent
will then perform a partial link on the generated objects. Constituents which do not
contain Sub-Constituents also perform a partial link on its generated objects. This
produces a single Partially Linked Object (PLO) file at the respective Constituent or
Sub-Constituent level. For Constituents which contain Sub-Constituents, the Makefile
at the Constituent Level then performs a partial link on all PLOs generated by the
Sub-Constituents. This gives rise to a PLO for that Constituent. Once all Constituents
have generated their PLOs, the process now shifts to the Collection Level. The Makefile
at the Collection level does the next stage of link. Here all the PLOs produced at its
Constituent levels are again partially linked. The build process is so designed that every
PLO that is generated is stored at a level higher than the directory in which the linkpart
target is executed. This is a common behaviour exhibited by all Collections in the

Ganesh Ramakrishnan 33

Master Thesis: Institut für Softwaretechnologie - Software Engineering

aocs
aocs

Makefile
source.c
header.h

aocsApFw
Makefile
source.c
header.h

aocsEquipments
cbh

Makefile
source.c
header.h

gnss
Makefile
source.c
header.h

mag
Makefile
source.c
header.h

mtq
Makefile
source.c
header.h

Makefile
aocsMcl

Makefile
source.c
header.h

aocsMclIf
Makefile
source.c
header.h

Makefile

Figure 10: Source Tree of one of the Collections containing Constituents and Sub-
Constituents

AS400 source tree. As mentioned earlier, as all Collections are located within the ’fsw’
directory, all PLOs of the various Collections are written to a ’lib’ folder also present
within this directory. At the time of generating the complete CSW executable, there

Ganesh Ramakrishnan 34

Master Thesis: Institut für Softwaretechnologie - Software Engineering

DEFAULT MAKE = l i n k p a r t

EXTERNAL LIB : D e f i n i t i o n o f l i b r a r i e s
to use f o r l ink , e i t h e r l o c a l to the

d i r e c t o r y or d i s t a n t
EXTERNAL LIB = l i b / libaocsApFw . o \

l i b / l i b a o c s . o \
l i b / l ibaocsEquipments . o \
l i b / l i b a o c s M c l I f . o \
l i b / l ibaocsMc l . o \

LIBDIR = $ (OBSW PATH) / l i b

EXTERNAL LIB INST : D e f i n i t i o n o f
l i b r a r i e s to use f o r l i n k in
instrumented mode , e i t h e r l o c a l to the

d i r e c t o r y or d i s t a n t
EXTERNAL LIB INST =libaocsApFw . o\

l i b a o c s . o \
l ibaocsEquipments . o \
l i b a o c s M c l I f . o \
l i baocsMc l . o \

INCLUDE OF GLOBAL RULES
#−−−−−−−−−−−−−−−−−−−−−−−−
i n c l u d e $ (CPL REP MAKE) /Make . r u l e s

Figure 11: Makefile for ’aocs’ Collection

DEFAULT MAKE = l i n k p a r t

EXTRA INCLUDE = −I$ (AOCS PATH/
aocsEquipments \

−I$ (AOCS PATH) \
−I$ (DHS PATH) \
−I$ (INFRA PATH) \
−I$ (IO PATH) /busMgr \
−I$ (IO PATH) / busCplr \
−I$ (IO PATH) /pmCplr \
−I$ (IO PATH) /rmapCplr

SRC : D e f i n i t i o n o f s o u r c e s to compi le
SRC = AocsApFw . c \

AocsSync . c \
AocsAsync . c

EXTRA CLEAN = AocsApFwParam . c

INCLUDE OF GLOBAL RULES
#−−−−−−−−−−−−−−−−−−−−−−−−
i n c l u d e $ (CPL REP MAKE) /Make . r u l e s

Figure 12: Makefile for ’aocsApFw’ Con-
stituent

is a final link stage where all the PLOs of the different Collections are linked together
to produce the software executable. Alternatively, depending on the target defined in a
Makefile, the build system also provides for building a static library from the sources.
For certain Collections like ’infra’, these libraries are used at the final link stage to create
the Executable. Hence, it can be observed that three different types of binaries can be
obtained - PLOs, executables and Static Libraries.

Sub-Constituents

Constituents

Collections

Final CSW

Object Files

Partially Linked Objects
(PLOs)

Executables (exe)

Figure 13: Representation of the build methodology from Build Author’s View Model

Ganesh Ramakrishnan 35

Master Thesis: Institut für Softwaretechnologie - Software Engineering

The triangle graph in figure 13 shows the nature of the binary generated at the various
levels in the source code hierarchy. It can be seen that the final Central Software (CSW)
is actually built upwards from the sources contained at various levels. The dotted lines
in the diagram signify that the Constituents and Sub-Constituents for a Collection are
not mandatory. In these cases, a PLO is generated directly from the sources.
The build system also provides for building two different variants of the image. The
variants differ primarily in the way the sources are compiled. The project defines two
distinct database exports which contain several #define directives [41] for many iden-
tifiers used within the source codes. As these variants represent different configuration
settings, the requirements to have two different image variants arises. These image vari-
ants are called the SYSDB (system database) and SWDB (software database). The
build system allows for generation of these variants based on a command line property
DATABASE DIR.
The project also defines two other variants based on the platform for which the sources
are compiled. They are the SCOC3 [42] and native PC. It should be noted that not all
sources in the tree can be compiled for PC. A good example is the ’startup’ Collection
which contains assembler sources. Hence, the notion of a complete CSW executable
for a PC does not exist. However, in the realm of Unit Testing, the compilation for
PC platform is important for capturing bugs. For producing variants depending on the
platform, different tool chains are used. For SCOC3, the GNU sparc-rtems compiler and
linker are used while for PC the native GNU compiler and linker packages are used. The
existing build systems allows for generation of these variants also based on a command
line property CPU.
In addition to compilation, partial link and link, the build system provides targets for
several other activities such as Static Code Analysis, Clean, Linecounter, and Code In-
strumentation. The scope of this study does not cover all these targets comprehensively.
However, some of these targets are handled and documented wherever applicable.
Now, let us analyze the Makefiles in Figures 11 and 12 . Each of these Makefiles in-
cludes the ‘common’ Makefile which is called Make.rules. It is like a root Makefile
which defines and describes the targets used in these Makefiles. As shown in the fig-
ure linkpart is the default target in both these Makefiles. The activity carried out in
these Makefiles is partial linking. In the Constituent’s Makefile, the variable SRC de-
termines the sources that need to be built. The EXTRA INCLUDE variable adds a
set of paths which the compiler traverses through to find the include headers for the
sources. In the Makefile at Collections level, the EXTERNAL LIB variable defines
various partially linked objects which need to be sources to the linker. The LIBDIR
variable defines the directory to which the output of the link process would be written to.

AS400 Validation
The validation activities on AS400 CSW is discussed next. OBSW development requires
careful and comprehensive validation activities to ensure that the correct software is de-

Ganesh Ramakrishnan 36

Master Thesis: Institut für Softwaretechnologie - Software Engineering

livered. For Validation activities, the AS400 team uses a Software Validation Facility
(SVF) [43]. It is a software test bench which provides a simulated model of the envi-
ronment where the software is expected to run. It is considered as an hardware-in-loop
emulation system as it contains a copy of the target space processor. For the project
under study, the SVF is offered by an external team as a package which can used at
the time of compilation of test sequences. Several versions of the SVF are released at
various points in the software development and the validation team incorporates these
changes appropriately.
All the sources required for validation are contained within the repository ’as400val’.
The validation framework for this project is in Java. An Eclipse based IDE is used
by the validation team members to build and run their tests on the generated CSW
Executable. The validation tests contain several Collections based on the Applications
to be tested. These Collections contain test sequences in Java. These validation test
sequences require test classes developed by the team as well as the SVF packages in the
classpath during compile time. Hence, a JAR file containing all these required classes is
prepared. For the purpose of a headless build of this JAR, an Ant build XML is created.
This is similar to the one shown in Figure 14.

<?xml v e r s i o n=” 1 .0 ” encoding=” utf−8”?>
<p r o j e c t>

<property environment=”env”/>

<property name=” bu i ld . compi l e r ” va lue=” org . e c l i p s e . j d t . core . JDTCompilerAdapter”/>

<t a r g e t name=” c l ean ”>
<d e l e t e d i r=” bu i ld ”/>

</ t a r g e t>

<t a r g e t name=”make”>
<mkdir d i r=” c o n t a i n e r ”/>
<javac s r c d i r=”${ env . CPL REP BASE}/ simopsenv / s r c /obswTest ; ${ env . CPL REP BASE}/

t e s t / benchConfig ” d e s t d i r=” c o n t a i n e r ”
source=” 1 .8 ” t a r g e t=” 1 .8 ” encoding=”Cp1252” nowarn=” true ”>

<c l a s s p a t h>
< f i l e s e t d i r=”/ data / products / l i b s /”>

<i n c l u d e name=” ∗∗/∗ . j a r ”/>
</ f i l e s e t>

</ c l a s s p a t h>

<compi l e rarg compi le r=” org . e c l i p s e . j d t . core . JDTCompilerAdapter”/>
</ javac>

< j a r d e s t f i l e=” nsv f . j a r ”
b a s e d i r=” c o n t a i n e r ”
i n c l u d e s=”∗∗/∗ ” />

<copy f i l e=” nsv f . j a r ” t o d i r=”${ env . NSVF DIR}/ s v f J a r f i l e s /” />
</ t a r g e t>

</ p r o j e c t>

Figure 14: build.xml for AS400 Validation

After the JAR file is generated, the required test sequence is compiled and executed using
shell scripts provided by the SDE. These scripts are capable of running tests individually

Ganesh Ramakrishnan 37

Master Thesis: Institut für Softwaretechnologie - Software Engineering

or in batch mode. Alternatively, the IDE provides a tool called TMA to run the tests
and generate test reports. Hence, the JAR file lies in the classpath of the test sequence
execution command. It should be noted that the developer test classes which are a part
of the JAR may be modified differently by the different members of the validation team.
One developer should not break another developer’s tests. Hence, the framework is so
designed to compile all test sequences after the JAR has been created. This detects if
any of the test sequences would be broken as a result of changes induced on the sources
in the JAR.
Automating the validation build framework on remote machines is a challenging activity.
The simulator for the test is an executable which has the constraint that at any point
of time, only a single test instance can run reliably in a machine. Hence, it should be
ensured that there are no parallel running processes at the time of a test invocation.
Since, the compilation of JAR file is natively done by an IDE, it effectively encapsulates
the process from a developer’s point of view. Hence, a headless design of this JAR
generation is hard to set-up.

Ganesh Ramakrishnan 38

Master Thesis: Institut für Softwaretechnologie - Software Engineering

5 Gradle for AS400 CSW

This section aims to define the Gradle model which is developed for the software devel-
opment project under study.
The build logic implementation in this study uses the Gradle Native build methodology.
As mentioned earlier, Gradle follows a build by convention approach. This means that
Gradle comes with a pre-conceived notion of commonly used build functions. For ex-
ample, if there is a requirement to create an executable from a set of C sources, Gradle
fixes default directories to search for these sources and associated headers, and defines a
control flow such as a compilation task followed by a link task, check, and install tasks.
It also decides the location of placing the generated objects and executables. It is also
possible to alter these defaults if required.
Gradle achieves this using a Rule based model configuration. This enables build authors
to describe what they would like to do rather than how they would like to get it done.

5.1 Terminology

This section describes some common Gradle terminologies that are used and how they
map to the project specific terminologies described in Section 4.

• Component: Gradle component represents a logical piece of software in build
logic. It is an abstraction for a unit of code which can depend on other code
units. For example, it can represent a library or an executable being created.
Components are characterized by a specific name. In this study, the component
names may map to the name of the Collection/Constituent being built.

• Source Set: This represents the set of source files which are grouped according
to the language in which they are written. Gradle components generally use these
source sets in the build. In this study, three types of source sets are used - C
Source Set, Java Source Set and Assembler Source Set.

• Tool Chain: This represents the tool chain that is to be used for building the
software. In embedded software development, there is cross development which is
achieved by using different tool chains. In this study, there are two different tool
chains which are used to produce different variants of the image - sparc-rtems-gcc
tools for cross-compilation on a target processor and the native PC gcc/g++ tool
chain.

• Platform: Platform has two attributes - architecture and operating system on
which the build is to be done. Each platform is also associated with a corresponding
tool chain.

• Binaries: Binaries are the output of build logic. Gradle components representing
appropriate source sets are compiled and linked accordingly to create binaries. In
this study, three different types of binaries are generated by Gradle - Executables,

Ganesh Ramakrishnan 39

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Libraries and Partially Linked Objects (PLOs). Linker and compiler arguments
can be provided as attributes when defining binaries in the Gradle software model.

The terminologies which are explained can be illustrated with the help of an example
in figure 15. Consider the build.gradle at the ’asw’ Collection level. There are two
components being described. Each of these is characterized by a C source set. The
build file also defines the target platform on which the builds are to be executed. In
addition, as C sources are involved, there is a need to mention the possible locations
of header files which are referenced by the sources. This is done by using what are
called as Gradle’s Prebuilt Libraries. Since the header files are spread across multiple
directories, it is possible to create groups with each group containing a set of relative
path to headers. These groups are then added appropriately to the build files and a
linkage is achieved for compile time operations.

1 // build.gradle for asw
2
3 apply plugin: ’c’
4 project.ext.SRC=["Asw.c"]
5 model {
6 components {
7 libasw (NativeExecutableSpec){ //define the type of component to be built
8 targetPlatform "SCOC3" //choose the tool chains defining the SCOC3

platform
9 sources { //define the source set used

10 c {
11 source {
12 srcDirs "."
13 include SRC
14 }
15 //define the location of header files required for compilation of sources
16 lib library: ’as400prodHeaders’, linkage: ’api’
17 }
18 }
19 }
20 asw (NativeLibrarySpec){
21 targetPlatform "SCOC3"
22 sources {
23 c {
24 source {
25 srcDirs "."
26 include SRC
27 }
28 lib library: ’as400prodHeaders’, linkage: ’api’
29 }
30 }
31 }
32 }
33 }

Figure 15: build.gradle at asw level

It should be noted here that in build files at collection level, not every information
required for the build is defined explicitly. As most of the collections have a common
behaviour, this is factored out and included in a separate build file at a higher level in
the hierarchy. The next subsection describes about this adopted methodology in detail.

Ganesh Ramakrishnan 40

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Gradle tool runs on a Java Virtual Machine (JVM) and the start-up time can be signifi-
cantly long as it requires several supporting libraries. Gradle uses a daemon to perform
these activities. It is a long-living background process which helps to increase the speed
of the builds being executed. As a result of this, every build need not undergo a long
bootstrap process. The daemon can be enabled or disabled through the build logic.

5.2 Build System Design Aspects

The figure 15 was at collections level. As mentioned, the build logic within a collec-
tion level is not comprehensive. These build files usually inherit from a common build
file at the root level of the project. In Gradle, this is called as a Multi-Project Build [12].

Multi-Project Builds in Gradle
Section 4 provided a detailed overview of the organization of the source code hierarchy
in the project. The software executable that is generated in the build process is build
up from Constituents and Collections. There is a build file in each of the Collection,
Constituent and Sub-Constituent levels. In Gradle’s terminologies, these build files are
called sub-projects. The sub-projects which share common behaviour are grouped in a
separate build file. This file is called a root project. There exists also a settings.gradle
file at the same level as the root project’s build file. This file defines the sub-projects
which should inherit the root project’s functionality.
A good build system should have a global, fine-grained view of dependencies across
all Collections and Constituents [15]. The Multi-Project build methodology that is
adopted provides this feature. It is expressed in tree form in the figure 16. There is a
root project build file (in red) and sub-project build files (in blue) within each Collection
and Constituent.
The build.gradle depicted in figure 15 is a gradle sub-project. Some of the features used
are expressed in the root project’s build file. Excerpts of the build logic in the root
project are shown in figures 17 and 18.
This configuration is for sub-projects which need to produce a partially linked object
(PLO). A custom plugin called PartiallyLinkedObjectRules plugin is created. By default,
Gradle provides support to build executables and static libraries by default. Since, the
PLO generation need to be distinguished, a separate custom plugin is created. Two
distinct platforms are defined and the tool chains are distinguished based on these plat-
forms. In the sub-projects, the platform on which the build is carried out is mentioned.
Every new sub-project becomes a part of the Gradle build when the name of the project
is included in the settings.gradle file under the root level directory. In this study, the
root project can be divided into three distinct sections.

1. Configurations for a set of sub-projects at Collection/Constituent/Sub-Constituent
level which creates PLOs or Static Libraries.

Ganesh Ramakrishnan 41

Master Thesis: Institut für Softwaretechnologie - Software Engineering

as400prod
build.gradle ----------- Root Project
delivery
fsw

aocs
build.gradle -------- Sub-project
aocs

build.gradle
aocsEquipments

cbh
build.gradle

str
build.gradle

build.gradle
aocsMcl

build.gradle
asw

build.gradle
boot
dms

dms
build.gradle

build.gradle
settings.gradle
usvf
uml

Figure 16: An excerpt of the AS400 Production Repository Structure containing
build.gradle files

2. Configurations for handling unit tests.
3. And the third part which contains configuration for building the complete CSW

and related custom tasks.
The two sets of sub-projects are filtered based on the names of the projects. They contain
behaviour common for the sub-projects. Generally, the custom plugins which are created
are applied specifically for these sub-projects. The design also incorporates custom Gra-
dle tasks for performing various functions. There is a custom task for creating a Global
Artifact version marker. The marker is of the form $PROJECT-$VERSION-GIT HASH.
The $PROJECT and $VERSION variables are set in a file called gradle.properties also
present at the same level as the root project. The developer version controls this before
the build, usually before a release image. The GIT HASH variable is set by running Git
commands to get the HEAD commit id as well as dirty information if present. There are

Ganesh Ramakrishnan 42

Master Thesis: Institut für Softwaretechnologie - Software Engineering

1 // build.gradle for as400prod − root project
2 //the following configuration is common for all sub−projects where there is a need to create

either a partially linked object file or a Static library.
3 //filter based on name of project.
4 configure (subprojects.findAll {!it.name.contains(’SVDD’)}) {
5 //apply custom plugin because PLO generation not inherently defined by Gradle
6 apply plugin: PartiallyLinkedObjectRules
7
8 apply plugin: ’c’
9

10 model {
11
12 //define the tool chain used for cross compilation. Take care when providing the arguments if

order of arguments matter
13 toolChains {
14 gcc(Gcc) {
15 path "/opt/rtems/4.6 20130612/bin"
16 target("SCOC3"){
17 assembler.executable = "sparc−rtems−gcc"
18 cCompiler.executable = "sparc−rtems−gcc"
19 linker.executable = "sparc−rtems−ld"
20 staticLibArchiver.executable = "sparc−rtems−ar"
21 assembler.withArguments { args −>
22 Collections.replaceAll(args,"assembler","

assembler−with−cpp")
23 }
24 cCompiler.withArguments { args −>
25 }
26 linker.withArguments { args −>
27 }
28 staticLibArchiver.withArguments {
29 remove ’−rcs’
30 add 0, ’crs’
31 }
32 }

Figure 17: build.gradle at as400prod level

custom check tasks which perform checks on the generated executable. Alias tasks have
been set for creating the different variants of the image. A separate CI task is created
for interface with the CI server. It contains all the tasks which need to be executed on
the remote machine when initiated. The ordering of the tasks is also carefully defined
using Gradle constructs such as mustRunAfter and shouldRunAfter.
Prior to the start of the design with Gradle, interviews were done with the developers
of the system. The interview was primarily semi-structured. Features which were used
often during the builds were recorded. The challenges faced by developers during build
time was also recorded. The notes prepared contained text such as:
Developer 1(D1): When I want to run Make on my developed source code, I need to use
a large number of low level command line arguments. . .
Developer 2(D2): I feel there is a lot of boiler plate code in the build logic. Often, I am
forced to touch the same environmental variable in multiple build files.

Ganesh Ramakrishnan 43

Master Thesis: Institut für Softwaretechnologie - Software Engineering

33 path "/home/a27495454/test build/scripts/bin"
34 target("PC"){
35 cCompiler.executable = "gcc"
36 cppCompiler.executable = "gcc"
37 linker.executable = "g++"
38 cCompiler.withArguments { args −>
39 }
40 cppCompiler.withArguments { args −>
41 }
42 linker.withArguments { args −>
43 List origArgs = new ArrayList(args)
44 def map name = new File(System.getProperty("

user.dir")).name
45 List preArgs = ["−Wl,−Map,${map name}.exe.

map,−−cref","−Wall"]
46 args.clear()
47 args.addAll(preArgs)
48 args.addAll(origArgs)
49 }
50 }
51 }
52 }
53 //define the applicable platforms
54 platforms {
55 SCOC3{
56 architecture "sparc"
57 }
58 PC{
59 //default OS and architecture detected by Gradle
60 }
61 }

Figure 18: build.gradle at as400prod level(contd.)

5.3 Analysis of Build Logic

This section describes how Gradle handles the build and unit test process. As mentioned
earlier, Gradle performs the build by executing tasks. They form a Directed Acyclic
Graph (DAG)[44]. Every Gradle build has three distinct build phases - Initialization,
Configuration and Execution.
In the Initialization phase, Gradle determines the different sub-projects and the root
project which would be participating in the build. During the Configuration phase,
Gradle configures the build logic in all the projects. In the Execution phase, Gradle
executes the actions described in selected tasks which are required for the invoked build.
The doFirst and doLast closures in a task are always executed at this stage in the build
life-cycle.
In this study, it is possible to build the complete software as well as small portions of the
source code. Both these scenarios are explained with the help of examples. Consider the
case where the Collection ’asw’ needs to be built. From figure 15, it can be deduced that
two different types of binaries will be handled in the build file - PLO and Static Library.
The platform for which the compilation needs to be done is SCOC3. The tool chains
which would be doing the compilation and linking are obtained by processing the root
project. The different sources that need to be compiled are defined using the variable

Ganesh Ramakrishnan 44

Master Thesis: Institut für Softwaretechnologie - Software Engineering

reference $SRC. The required header files at compile time are gathered by passing the
entries under the set ’as400prodHeaders’ to the compiler. For the PLO generation,
Gradle by default describes tasks such as compile, link, check and clean. For Static
Library generation, Gradle defines the CreateStaticLibrary task. The default locations
into which the PLO and .a files would be written to is inside the Gradle build directory
which can be referenced using $buildDir. For PLOs, the custom plugin then ensures
that the PLO is copied to an appropriate location within a folder at a level above the
Collection. This folder contains two sub-folders which stores PLOs generated for the
two image variants SYSDB and SWDB. For Collections which contain Constituents and
Sub-Constituents, the process is more elaborate. The core build logic inside a Collection
which contain Constituents is shown in figure 19.

t a s k s . withType (LinkExecutable) {
i f (name == ” l inkL ibaoc sExecutab l e ”) {

dependsOn << ” : fsw / aocs / aocs : l i b a o c s E x e c u t a b l e ”
dependsOn << ” : fsw / aocs / aocsEquipments : l ibaocsEquipmentsExecutable ”
dependsOn << ” : fsw / aocs /aocsApFw : libaocsApFwExecutable ”
dependsOn << ” : fsw / aocs / aocsMcl : l ibaocsMclExecutab le ”
dependsOn << ” : fsw / aocs / aocsMc l I f : l i b a o c s M c l I f E x e c u t a b l e ”
source = f i l e T r e e (d i r : ’ o b j s e x e / sysdb ’) . f i l e s

}
e l s e i f (name == ” l inkLibaocs swdbExecutab le ”) {

dependsOn << ” : fsw / aocs / aocs : l ibaocs swdbExecutab le ”
dependsOn << ” : fsw / aocs / aocsEquipments : l ibaocsEquipments swdbExecutable ”
dependsOn << ” : fsw / aocs /aocsApFw : libaocsApFw swdbExecutable ”
dependsOn << ” : fsw / aocs / aocsMcl : l ibaocsMcl swdbExecutable ”
dependsOn << ” : fsw / aocs / aocsMc l I f : l ibaocsMc l I f swdbExecutab le ”
source = f i l e T r e e (d i r : ’ o b j s e x e /swdb ’) . f i l e s

}
}

Figure 19: Excerpt of build.gradle of a Collection containing Constituents

The default task which does the link in Gradle is called the LinkExecutable task. This
default is for linking objects for creating an executable or a Shared Library. For a PLO,
there is a need to hook into this task. To express dependencies before the partial linking
stage, dependsOn construct is used. Conditional statements are used to distinguish the
SYSDB image and the SWDB image. An attribute called source is provided which
defines the object files which need to be provided as an input to the link stage. As
mentioned, each Constituent writes its PLO to a folder at a higher level. This folder
will be at the same level as the Collection. Hence the source attribute references all files
in this folder through the relative path. Similar logic is replicated across all Collections
and Constituents in the project tree.
The build process produces two executables of the Central Software (CSW) which are
called SYSDB and SWDB images. These executables are created through linking the
PLOs of the various Collections. The root project contains the logic to create these
binary variants. Two dedicated Gradle components, CSW and CSWswdb, are created.
For this build, no sources are defined. The tool chain, linker and compiler arguments
are appropriately set. The LinkExecutable task of these components contain dependen-

Ganesh Ramakrishnan 45

Master Thesis: Institut für Softwaretechnologie - Software Engineering

cies instructing the construction of PLOs of the participating Collections in the build.
Sources which were modified would be re-built, and the new PLOs would be copied to
the appropriate folders. The files within these folders are then provided as an input to
the linker for the final link stage. Custom check tasks as defined in the project execute
after the binaries have been generated.
The execution of unit tests are slightly different from building the executable. The
existing system defined a set of unit tests for selected Constituents and Sub-Constituents.
Each of these unit tests is transformed into an executable and the test is run in a
simulator. For each Constituent/Sub-Constituent, the cumulative results of multiple
tests convey the status. Shell scripts are used to execute a list of tests in batch mode. A
fundamentally different approach towards unit testing was then proposed. A unit testing
framework using CppUTest [45] is created. Gradle build system is designed to support
this unit testing framework. In this methodology, it is intended to have one executable
per Constituent/Sub-Constituent and run a suite of tests against this executable in the
simulator.
The CppUTest framework uses a unit test harness written in C++. A harness is a
piece of software which describes how the production code is expected to behave during
unit testing. The source code for CppUTest is version controlled in the production
repository. The binaries for the respective operating systems are also version controlled.
A build.gradle file of a Constituent consists of two types of sources - production C sources
as well as test harness and test related C++ sources. An executable is generated based
on the target platform and the defined tool chain. By default, executables are built for
both SCOC3 and PC platforms. A custom task is provided to run the Unit Test. This
involves invoking Gradle to perform the build followed by a shell script to launch the
simulator. The custom tasks are present in the root project and is common for all unit
tests across the project.

Ganesh Ramakrishnan 46

Master Thesis: Institut für Softwaretechnologie - Software Engineering

6 Continuous Integration in AS400 CSW

Best practices that help create an effective CI workflow was discussed in Section 4.
During the design of a CI workflow for this project, these best practices were taken into
consideration. The benefits of having a CI set-up for a software development project
were also discussed. This section will provide a detailed description of the Jenkins CI
workflow designed for the AS400 CSW development project.

6.1 Terminology

This section describes terminologies used in the CI workflow design. Jenkins is the open
source automation server in use. The terms described in this section are purely within
scope of the project under study.

• Job: A Jenkins job is user-configured definition of work which Jenkins should
execute. Examples are checking out a Git repository or building a piece of software.
The term job is synonymous with the term Jenkins project.

• Phase: A set of Jenkins jobs which perform similar functions are grouped to obtain
a Phase. For example, jobs checking out selected repositories onto a workspace in
the server can be grouped and called as Checkout phase.

• Job Chain: A job which groups job phases to carry out a Jenkins build. It defines
the control flow through the different phases. A mapping of activities from the
production domain to the CI domain can be achieved by defining these activities
as part of a job chain.

• Node: A machine on which Jenkins jobs execute. In this study, there are three
nodes. One master node where the Jenkins instance runs. The master provides
the user interface to communicate with Jenkins. It also provides configuration for
the slaves as well as security settings. Two slave nodes on which the build, test and
static code analysis runs. The generated artifacts are copied back to the master
node where they are archived. Slaves nodes are also referred to as build nodes.

• Executor: Slots in which Jenkins jobs are executed. A node can contain zero
or more executors. In this study, each of the slave nodes are equipped with four
executors. At any point of time, a maximum of one job can run per executor.

• Check Window: A condition which is checked at the end of a phase. It helps
determine the control flow of a job chain.

Figure 20 shows an overview of the Jenkins set-up that is used in this project. The
Jenkins master instance allocates jobs to the executors on the slave nodes. Jenkins
contains default algorithms to map the jobs to the executors. In this study, both the
slave nodes run linux operating system. Project specific restrictions on this allocation
are discussed in the next section.

Ganesh Ramakrishnan 47

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Jenkins Master

Executor 1 Executor 2

Executor 3 Executor 4

Build Slave 1

Executor 1 Executor 2

Executor 3 Executor 4

Build Slave 1

Allocate Jenkins jobs to available executors Allocate Jenkins jobs to available executors

Archive binaries, reports

Provide UI, handle slaves, Jenkins configuration &
security handling

Figure 20: Jenkins Master Slave set-up

6.2 CI Workflow for AS400 CSW

This section explains the design of the CI workflow in Jenkins. The design is explained
considering the fact that the Jenkins master and slave nodes were already set-up with
the required plugins, configurations and security restrictions of the project. Further
discussion of these parameters are beyond the scope of this thesis.
The flow chart in figure 21 provides an overview of how Jenkins integrates with the
Atlassian tools used in software development. There is a possibility to set up a web
hook to Jenkins from Stash. When a commit is pushed to a branch being tracked by
Jenkins by any of the developers, a hook is sent to Jenkins CI server to initiate the
build. After Jenkins finishes the build, the status of the jobs are notified back to Stash.
Hence, the framework uses Stash as the central user interface for repository management
as well as to view status of Jenkins jobs. A web-link to Jenkins GUI is also provided
for each job for each commit in Stash. Using this link, it is possible for developers to
navigate to Jenkins environment and view finer details of the build. The artifacts are
stored automatically on the master node and is visible to all members of the project.
Jenkins jobs are configured in two ways. Either through the Jenkins GUI or using XML.
The XMLs describe the configuration of the jobs. There exists Jenkins Command Line
Interface (CLI) scripts which are invoked to push these XMLs into the server. They
can then be viewed on the Jenkins consoles and modified if necessary. There are three
different types of Jenkins jobs which can be set-up.

1. Free-style job: A flexible configuration which is used to perform a defined task.
They have the limitation that they can run on one of the slave machines.

2. Matrix Job: A job which is capable of executing in few or all of the defined
build slaves concurrently. For example, it is necessary to clone the repositories on
Jenkins workspaces in all the build slaves. This can be achieved by defining the
job as a matrix job.

Ganesh Ramakrishnan 48

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Developer pushes commit into a particular branch in Stash

Notifications fired from Stash to Jenkins

Jenkins starts the build process

Any jobs within
a phase fails?

Mark build as success and notify
Stash

Mark build as failure. Notify Stash
and send E-mail

Generate binaries, Junit test
reports and other artifacts

Bad News! All is Well!

Yes No

Figure 21: Overview of Stash - Jenkins connection

3. Multi-configuration Job: A job which can be used to define a CI workflow by
defining the phases and the jobs within these phases as well as the check windows.
A classical example is the job chains which is discussed next.

The CI workflow is derived from the Gitflow workflow. The Gitflow workflow was dis-
cussed in detail in Section 4. There are seven Jenkins job chains which were defined for
the project. They are:

1. Master Job Chain
This job chain defines the control flow for the CI run when a commit is made into
the master branch in the production repository.

2. Develop Job Chain
This job chain defines the control flow for the CI run when a commit is made into
the develop or release branch of the production repository.

3. Feature Job Chain
This job chain defines the control flow for the CI run when a commit is made into
the feature or bugfix branch of the production repository.

4. On-Demand Job Chain
This is a special job chain which is created to handle Ad-Hoc requests. It provides

Ganesh Ramakrishnan 49

Master Thesis: Institut für Softwaretechnologie - Software Engineering

the developers with a flexibility to configure the branch which needs to be tracked
by Jenkins. A manual trigger of this job chain is also possible from the Jenkins
GUI.

5. Check Master Job Chain
This job chain handles the static code analysis when a commit is made into the
master branch in the production repository.

6. Check Develop Job Chain
This job chain handles the static code analysis when a commit is made into the
develop or release branch in the production repository.

7. Check Feature Job Chain
This job chain handles the static code analysis when a commit is made into the
feature or bugfix branch in the production repository.

This classification was necessary because the branches are handled differently in the
production domain. master branch is expected to be stable at all points of time and
meet high quality levels. The develop branch is also expected to clear high levels of
quality standards and a build error of a commit on this branch is to handled quickly.
The feature branches have relatively low quality standards set and hence their control
flow is less strict as compared to develop or master. Each of these job chains have a
dedicated workspace on all the slave nodes. The path of this workspace is propagated
to all the jobs defined within the chain through a Jenkins global environmental variable
called $WORKSPACE.
The figure 22 shows an overview of the structure of a job chain containing phases and
each phase containing a set of jobs. To summarize the overall structure, a job chain can
consist of one or more phases. Each phase can contain one or more jobs. By default, the
jobs within a phase execute concurrently on the same machine. Matrix jobs can execute
concurrently on the defined slave nodes concurrently. Concurrent job execution within
a phase can limited by using build throttling. Jenkins global environmental variables
are passed from the job chain to child jobs.
A detailed flow diagram of the Jenkins CI workflow is portrayed in figure 23. It takes
into consideration three job chains (Master, Develop and Feature). Generally, every job
chain has a common set of phases.

• Checkout Phase: This phase comprises of jobs for checking out the correct
version of the different repositories that are needed for the build. The jobs are of
matrix type as they need to be executed in all the build slaves. Jobs within this
phase can execute concurrently to keep the builds fast. The check window at the
end of this phase causes the CI run to quit because Jenkins was unable to correctly
check out the required repositories. Often, this might happen if Jenkins does not
have correct permissions, or if the slave nodes are running out of memory, or if the
commit into git submodules are not checked in correctly.

• Make Extra Libraries Phase: During the build, there is a need to reference

Ganesh Ramakrishnan 50

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Job Chain

Job 1

Job 2

Job 3

Phase

Phase

Job 1

Job 2

Job 3

Check Window

Pass Jenkins env. Variables ($WORKSPACE, $GIT_URL)

à Jobs can execute concurrently within a node
à Same jobs can execute in more than one node

concurrently

à Concurrent job execution on same node can be
controlled by build throttling

Figure 22: Overview of the structure of a Job chain containing phases and jobs

some libraries which can be compiled before hand. The job in this phase carries
out this activity. It is needed only if Make is the build system. In case of Gradle,
this phase is redundant because the build logic treats this within the root project.

• Unit Testing Phase: Unit Testing is carried on several Applications in the
production repository. One job per Application is assigned. The obtained results
are displayed as JUnit test reports. The tests are done only by compilation against
the SCOC3 platform. A separate phase need to be created if the test results need
to be obtained for cross compilation against native PC platform. If Gradle is the
build tool, then the same phase can be used to obtain both sets of results.

• Build Phase: This phase contains two jobs when Make is the build system in
use. One job for creating the SYSDB variant of the image and another for SWDB
variant. When interfaced with Gradle, one job will cover creation of both these
variants.

• Workspace Clean-up: The build directories are cleaned before any build is
invoked. However, to capture and correct sporadic errors due to repeated cloning
in the same workspace, a dedicated job is provided for this handling.

In addition to these phases, jobs for other functionalities are provided. Additional Checks
is a job which runs a set of shell scripts on the generated executables. The check merge
conflicts job detects merge conflicts by attempting to merge the feature branch with
develop. It does not perform the actual merge but a dry run is carried out. The check
windows play an important role in determining how the job chains are handled. The

Ganesh Ramakrishnan 51

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Figure 23: A detailed Jenkins workflow for the project under study

red lines in the workflow lead to stopping the CI run because the quality standards have
not been met and further continuation of the run might result in further similar errors.
The green lines indicate that the workflow has no errors and should be in a position to
continue till the end. The black lines signify that the CI run proceeds irrespective of
errors encountered. This is primarily important for feature job chains where developers
often expect quick and comprehensive feedback.
The existing set-up uses Logiscope Rulechecker tool for carrying out Static Code Anal-
ysis. By default, the code analysis runs on the entire source code in the repository and
takes significantly longer time to execute than the build and tests. Hence, this activity
is set-up as a separate job chain so that it does not act as a blocking parameter in terms
of performance for other activities.

6.3 Challenges faced during design

Developing a CI workflow for an embedded project is a challenging activity. This section
describes some challenges that were faced at the time of design and some actions which
were taken to mitigate them.
Setting up of a CI server and build slaves requires additional powerful hardware. The

Ganesh Ramakrishnan 52

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Jenkins master instance runs on the same server which handles the Atlassian tools.
Hence, through Atlassian Crowd, the access to Jenkins can be managed. In this project,
the slave nodes are linux flavoured virtual machines. The software development activities
on the client SDE is predominantly in windows/cygwin. A shift to a linux operating
system brings about a need to make the build and glue logic compatible. Significant effort
was put into this activity. However, over a period of time, the automation mechanism
in powerful hardware would prove to be more advantageous[7].
Jobs within a phase are able to run concurrently on the same machine. In the scope of
this project, two builds when executing on the same machine might interfere with each
other’s process flow leading to non-deterministic results. This is a common occurrence
when builds are carried out using GNU Make. Hence, the concurrent job execution
within a phase needs to be controlled. This is done by using a build throttling mechanism
in the CI server. Jobs which are not allowed to run concurrently on the same machine
are grouped under a single label. Jenkins master instance is instructed to read this
dependency before allocation of jobs to the executors on the build slaves. In this manner,
concurrent runs of non-compatible jobs on the same machine is avoided. In the realm
of Validation testing, there is a project specific limitation that not more than one test
is allowed to run in a machine at the same time. A label for validation tests is also
generated and the issue is handled in a similar way.
In the space avionics domain, the software development is often large and complex.
Hence, CI workflows designed for a project is expected to be both effective and efficient.
An effective CI workflow is one which is adequate to perform the required operation.
An efficient workflow is one where the task is carried out not just in an effective manner
but with significant speed and less effort. In other words, the workflow should handle
scalability. As mentioned in the earlier section, there are large number of jobs in each
job chain. Managing such large numbers would involve a considerable amount of effort
and time. To mitigate this challenge, a python based tool called Jenkins Job Builder
was investigated. Through the use of this tool, there is a possibility to define the
configurations for the jobs once in the form of YAML. The tool is capable of parsing
the YAML files and converting them to XML format. This can later be pushed to
the Jenkins server. Jobs which share common behaviour, such as jobs belonging to an
arbitrary phase, can be handled in an effective manner through the use of a well defined
template system. The configuration information of the jobs are spread across multiple
YAML files which are then processed by the tool to generate the XML.
Also, in the space avionics embedded software development, there is a large scale re-use
of developed software products. So, a CI workflow designed at the time of development
of one project should be easily adaptable for child projects which are forked from this
one. The job chains for the child can be set-up using the Jenkins Job Builder tool as
mentioned above. However, if the same Jenkins master instance have to be re-used, there
is a need to manage the security configurations in case the parent and child projects have
different access levels. Jenkins provides options for mitigating this problem by providing
a project matrix authorization access to the Jenkins jobs. There are two levels of access

Ganesh Ramakrishnan 53

Master Thesis: Institut für Softwaretechnologie - Software Engineering

control. A global control which manages the access of the entire Jenkins master instance
as a whole. The second is a job level control which manages access of the selected job
to only a subset of users.
The artifacts which are created on the slave nodes are copied back to the master and
archived. Since each job chain consists of a large number of jobs, the number of artifacts
created by each CI run is significantly large. The memory requirements for storage of
these artifacts increases over time. In this project, an upper bound of the number of
artifacts to preserve for the check feature and build feature branches was fixed. This
means that the artifacts for only a fixed number of commits can be accessed through the
Jenkins GUI. CI runs older than the oldest entry in this list are automatically deleted.
The upper bound was determined by considering historical data such as the average
number of active feature branches at any point of time and the frequency of integration
of these branches to develop.
Increasing the number of build slaves will translate to faster build and feedback times.
However, a large number of tools are installed in the build slaves. Examples include the
cross compiler, linker, the GNU Make package, python package for Job Builder tool.
Any changes made to any of these tools need to be applied homogeneously to all the
slave nodes. Considering the number of slave nodes and the magnitude of the change
being made, the effort involved would be significant in terms of time and complexity.

Ganesh Ramakrishnan 54

Master Thesis: Institut für Softwaretechnologie - Software Engineering

7 Evaluation and Results

One objective of this study was to determine the factors influencing the selection of a
build system for the software development project. In this regard, using both qualita-
tive and quantitative data, some factors were formulated and analyzed. This section
presents the evaluation of the build system and the results that were concluded from the
evaluations.
This study outlines three evaluation blocks for analysis. The first is performance. This
means the time required for the build or unit test process to execute. Second is the
maintenance complexity of build logic. As the term complexity can have different con-
textual significances, later sections handle this in detail. Finally, the features offered
by the build systems in the current state are discussed. These evaluation blocks are
not completely mutually exclusive and quite often there are dependencies between these
blocks.
A comprehensive migration of the build system from Make to Gradle has not been
achieved as part of this study. The evaluation is only based on features which are
present in both the build systems. Hence, all the collected data and formulated results
are normalized with respect to this aspect.
The hardware that was used to run these tests were essentially the same. The build
slaves on which Jenkins jobs run were chosen as the evaluation machines. For the tests,
the SDE was maintained in a homogeneous state. The versions of all tools and software
packages in the machines were identical. Each of the evaluation blocks are discussed in
detail.

7.1 Performance Comparison

Performance is an important quality which needs to be analyzed when considering build
systems for a software development project. By performance, we mean the time required
for the build tool to execute a specific Make target or Gradle task. A large number of
use cases in the existing project are studied. The Make targets and Gradle tasks under
analysis are comparable in terms of the functionality it achieves. The commands are
invoked multiple times, the outliers are removed and the average of the obtained values
are taken into consideration.
To compare performance between the build systems, actual real life use cases are used.
In the project under study, there are a large number of build tasks which are done on
a day-to-day basis. A most common task is a full image build. In our context, a full
image build means building the two image variants (SYSDB and SWDB) from scratch.
As mentioned, Gradle runs in a JVM and requires a significantly long time to bootstrap.
This is captured during performance measurement tests and is called as first time build.
More often than not, developers generally work on a particular feature in the project and
hence would require to build a small portion of the project rather than the whole. We

Ganesh Ramakrishnan 55

Master Thesis: Institut für Softwaretechnologie - Software Engineering

call this a specific build. Another type of task taken into consideration is the incremental
build. In incremental builds, a build is generally not started from scratch. After a first
build, the subsequent builds of the same task is called an incremental build. If there are
no changes to factors affecting a build, then it is an up-to-date check.
The figure 24 represents three types of tasks and their results. The Make clean target
runs faster than the Gradle clean task. When comparisons are made for a specific build,
Gradle is faster than Make. The first time build on a machine using Gradle is on an
average 45% slower as compared to Make. This can be explained by taking into the fact
that the bootstrap period for a Gradle daemon brings about this delay. The incremental
build times also showed that Make builds were slightly faster than those of Gradle.
The interpretation of these results can be traced back to the build logic. Gradle has
three phases of operation in the build life-cycle. When profile reports are generated
for Gradle builds, it can be observed that a significant amount of time is spent during
the configuration phase where Gradle attempts to configure all the projects defined in
the build logic. In addition, the custom developed PartiallyLinkedObjectRules plugin
has been applied to the Gradle task in consideration in this analysis. The plugin has a
doFirst and doLast closure which effectively eliminates the implementation of the UP-
TO-DATE feature offered natively by Gradle. These reasons can be attributed to the
spike in the execution times of Gradle builds.
The next set of measurements also compare a specific build for Make and Gradle. How-
ever, in this case, the Gradle task that is chosen does not have any custom plugins
containing activities in the execution phase applied to it. We infer from this set-up that
specific builds in Make are still faster than Gradle. However, the up-to-date checks in
Gradle are better than the use case where custom plugins were applied. This study is
further extended to include Gradle’s --configure-on-demand option of running builds.
This prevents Gradle from configuring all projects which is the default behaviour and it
configures only those relevant for the task to execute. As expected, savings in build times
was recorded as shown in figure 25. The option N represents build of a task containing
only native Gradle configurations and a C represents the build with configuration on
demand enabled.
The results in figure 25 were analyzed further. A profile report for the Gradle build is
obtained. This provides a split-up of the amount of time spent in each of the phases
in a Gradle build. The build times in Gradle are spread across primarily five different
categories.

1. Startup: There is a startup phase where Gradle determines which projects are
going to take part in the build.

2. Settings: The startup is followed by a phase where Gradle reads the settings.gradle
file.

3. Loading Projects: It loads the required projects for the build.
4. Configuring Projects: Gradle then performs activities in the configuration

phase.

Ganesh Ramakrishnan 56

Master Thesis: Institut für Softwaretechnologie - Software Engineering

M
ak

e
C

le
an

Ta
rg

et

G
ra

dl
e

C
le

an
Ta

sk

M
ak

e
Sp

ec
ifi

c
Ta

rg
et

G
ra

dl
e

Sp
ec

ifi
c

Ta
sk

G
ra

dl
e

Fi
rs

t
T

im
e

Bu
ild

In
cr

em
en

ta
lM

ak
e

Bu
ild

In
cr

em
en

ta
lG

ra
dl

e
Bu

ild

0

5

10

15

20

25

T
im

e(
s)

Figure 24: Performance comparisons between Gradle and Make for clean task, specific
target and incremental builds

5. Task Execution: Finally the tasks are executed.
The first profile report in our analysis is that of a Gradle build without the daemon.
This run takes the longest time as there is no optimization applied on the build. The
results of the profile report is shown in figure 26.
The first of the optimizations under study is that of using the Gradle daemon. The result
is shown in figure. The results of the same specific build with the daemon is shown in
figure 27. For a specific build, a reduction of even a few seconds is a good measure.
This is because a large number of specific builds go into making the final software and
reduction in each of these build times contribute to overall reduction in build time.
Builds executed with --configure-on-demand option run faster. An analysis of the profile
report shows that the time spent in configuring projects is lesser. This is because only
those projects which are required for the build to run are executed. The analysis results
are shown in figure 28
The specific builds with parallel execution provided further savings on build times. The
pre-requisite to have reliable parallel builds in Gradle is to ensure that the projects are
decoupled. This means that one project does not inject configuration on another project.
In the scope of this study, efforts were taken to ensure that the projects were decoupled.

Ganesh Ramakrishnan 57

Master Thesis: Institut für Softwaretechnologie - Software Engineering

M
ak

e
Sp

ec
ifi

c
Ta

rg
et

G
ra

dl
e

Sp
ec

ifi
c

Ta
rg

et
(N

)

G
ra

dl
e

Sp
ec

ifi
c

Ta
rg

et
(C

)

M
ak

e
up

-t
o-

da
te

ch
ec

k

G
ra

dl
e

up
-t

o-
da

te
-c

he
ck

G
ra

dl
e

up
-t

o-
da

te
-c

he
ck

(N
)

G
ra

dl
e

up
-t

o-
da

te
-c

he
ck

(N
,C

)

0

2

4

6

T
im

e(
s)

Figure 25: Specific builds without custom plugins applied to the project (N) and enabling
configuration on demand (C)

0 10 20 30 40 50

4

3

2

1

0

Gradle profile report

Startup Settings Loading Projects Configuring Projects Task Execution

Figure 26: Gradle profiling results for a specific build

The root project’s attributes are inherited in the sub-project but the Gradle manual

Ganesh Ramakrishnan 58

Master Thesis: Institut für Softwaretechnologie - Software Engineering

0 10 20 30 40 50

4

3

2

1

0

Gradle profile report

Startup Settings Loading Projects Configuring Projects Task Execution

Figure 27: Gradle profiling results for a specific build with the Gradle daemon running

0 10 20 30 40

4

3

2

1

0

Gradle profile report with --configure-on-demand

Startup Settings Loading Projects Configuring Projects Task Execution

Figure 28: Gradle profiling results for a specific build enabling --configure-on-demand

says that this form of injection does not necessarily lead to coupling. The results of the
parallel execution is shown in figure 29. However, careful analysis of parallel Gradle
builds need to be carried out to ensure reliability.
The final performance tests were done for a full image build. The results are shown in
figure 30. The full image builds with Make had to be done in two steps. The first build
for building the SYSDB variant and then the SWDB variant. For Gradle, the design
methodology allows a single command to build both variants. In Gradle, tests are done
for three different build styles. These consist of builds without the Gradle daemon,
builds with the daemon and parallel build. The Make build was carried out using the
-j 4 command line option. A summary of all the profile reports and Make’s execution
times have been mapped and shown in figure 31.

Ganesh Ramakrishnan 59

Master Thesis: Institut für Softwaretechnologie - Software Engineering

0 10 20 30 40

4

3

2

1

0

Gradle profile report with --parallel execution and --configure-on-demand

Startup Settings Loading Projects Configuring Projects Task Execution

Figure 29: Gradle profiling results for a specific build enabling --configure-on-demand
and --parallel execution

M
ak

e
C

SW
Im

ag
e

G
ra

dl
e

w
ith

ou
t

D
ae

m
on

G
ra

dl
e

C
SW

Im
ag

e(
D

)

G
ra

dl
e

Pa
ra

lle
lB

ui
ld

(D
)

0

100

200

300

T
im

e(
s)

Figure 30: Comparison of full image builds on Make, Gradle without daemon and with
daemon(D), as well as parallel Gradle builds

Ganesh Ramakrishnan 60

Master Thesis: Institut für Softwaretechnologie - Software Engineering

0 10 20 30 40 50

Make Execution

Gradle without Daemon

Gradle with Daemon

Gradle (C)

Gradle (C),(P)

Time(s)

Comparison of build execution times for specific builds

Make Startup Settings Loading Proj Config Proj Task Execution

Figure 31: Summary of all profile reports

7.2 Complexity of Build Logic

Maintenance complexity of build files is an indicator for quantifying build systems. This
type of complexity is a measure for the overhead that arises with maintenance of build
logic. Software code complexity metrics such as Halstead’s Complexity measures [46]
and McCabe’s Cyclomatic Complexity [47] do not provide a good method for measuring
maintenance complexity of build logic.
For measuring complexity of Makefiles, literature suggests a theory based on calculating
the number of occurrences of indirection in the logic [48]. An indirection requires a
developer or build author working with the build script to trace a reference in the build
logic to another location in the same build script or another build script. The number of
occurrences of indirection are measured and their sum provides a measure of complexity
of the logic. In Make based systems, indirections can arise because of using some of
Make’s features in the build logic. In our study, we consider the following parameters
in the study of complexity.

• Number of build files in the project.
• Lines of code of build logic.
• Variable references in the build logic.
• Number of includes of other Makefiles.
• Employment of conditional statements in the build logic.

These parameters are measured for the AS400 project and the results are summarized
in table 1. As the build system employs a recursive make build, Makefiles are present in
each Collection/Constituent containing sources. However, the build system within the

Ganesh Ramakrishnan 61

Master Thesis: Institut für Softwaretechnologie - Software Engineering

production repository is not self contained. There exists a separate SDE repository as
shown in figure 7. This repository contains a Makefile called Make.rules which defines
the common build logic for the project. This Makefile is included in all the Makefiles in
the production repository. In addition Make.rules includes other Makefiles in its build
logic. The existing system uses a large number of reference variables in the design.
Furthermore, these reference variables are used several times in the build logic. A large
number of conditional statements are encountered in the Make based build system. This
is primarily because the build author has designed the logic to derive control flows from
low-level command line arguments that are provided at the time of invoking Make for the
build. Each of these features contribute to indirection, thereby increasing the complexity
of build logic.

Table 1: Tabular with parameters for complexity measurement in Makefiles
GNU Make

Complexity Parameters
Number of Makefiles 137
Lines of Code of common build logic 1754
Average Lines of Code per Collection/Constituent build script 25
Number of Variable References 61
Includes of other Makefiles 6
Conditionals (ifeq) 35
Conditionals (ifdef) 14

A similar exercise is carried out in the design involving Gradle as the build tool. The
results are summarized in table 2. The number of build files are the same in case
of both the build systems. However, the build logic implemented using Gradle for the
project is self contained within the production repository. From the Gradle Multi-project
structure described earlier, it can be inferred that there are no include statements spread
across all the build files. There is a Gradle settings file which describes the sub-projects
participating in the build. The number of variable references are lower by 83% and
the number of occurrences of these references across the build logic are limited. This
is attributed primarily to the declarative nature of the build system which requires less
effort required from a build author’s point of view to define rudimentary details in the
build.
From the data aggregated in tables 1 and 2, it can also be observed that the average
lines of code in a build script at Collection level is more in Gradle as compared to Make.
This is because each build script at these levels define the different binaries that need to
be created for the corresponding Collection. Hence, there exists boiler plate code within
these build scripts increasing the average lines of code count.

Ganesh Ramakrishnan 62

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Table 2: Tabular with parameters for complexity measurement in build.gradle
Gradle

Complexity Parameters
Number of build.gradle 137
Lines of Code of common build logic 648
Average Lines of Code per Collection/Constituent build script 37
Number of Variable References 10
Conditionals (if..else) 12

7.3 Feature Comparison

This evaluation block compares the features supported by the Make based and Gradle
based build systems in this project. The objective behind this analysis is to determine
the value provided by the build systems for an embedded software development project.
This section aims to distinguish the build systems by the features which are supported
by them within the scope of the project under study.

1. Build by Convention
One of Gradle’s strongest suite is the build by convention approach towards build.
The build tool possesses knowledge of commonly used build operations and helps
the build author in constructing control flows with minimal configuration effort.
At the same time, the defaults defined by Gradle are flexible which makes it a good
candidate for use in embedded software development. In Make based builds, the
build tool is not declarative in nature. The differences in this aspect between the
build tools originate from how the build tools are designed. A declarative build
paradigm leads to expressive but concise build logics with lesser lines of code.

2. Integration with CI tools and other build tools
This feature is important for projects which have adopted CI for their development.
The differences in how the two build systems perform in this analysis can be
explained with the help of a real life example.
The AS400 software development project is aimed at creating a generic product.
This means that at some point in development, other projects will be initiated
whose architecture and source codes are based on AS400. With Make as automa-
tion tool, the interface between the build tool and CI tools was accomplished
primarily by using shell scripts. The logic behind implementation of this interface
is called the glue logic. When CI server needs to be set-up for the new project,
the glue logic needs to me modified accordingly. The effort for this activity de-
pends on the nature of the glue logic that is developed. At the time of design of
glue logic for this project, hard coded absolute paths and environmental variables
were introduced in the system. This caused the logic to fail on the newly created
project. Hence, the workflow suffers from scalability issue.

Ganesh Ramakrishnan 63

Master Thesis: Institut für Softwaretechnologie - Software Engineering

With Gradle, a dedicated CI task is defined. This task is a container for other
tasks which perform the build or test. In the CI realm, different activities such
as build, unit tests and validation tests are mapped to corresponding jobs. In the
build realms, a mapping is achieved through the set-up of different CI tasks. As
Jenkins contains support for running Gradle tasks without any interfacing logic, it
was possible for Jenkins to run the corresponding CI tasks. Hence, the CI workflow
with Gradle proved to be effective.
In the validation environment of this project, Apache Ant is used for build of Java
sources. Gradle integrates with Ant and provides a mechanism to execute Ant
tasks from within Gradle. This has been demonstrated for the project and the
obtained results were validated by comparison with Ant build results.

3. Differences in Design of Build Logic
Developers uses build tools on a daily basis. Qualitative data was obtained from
developers on the different aspects of the build logic which is used, the frequency
of the usage as well as the challenges faced. This data was taken into consideration
during the design with Gradle. The observations were recorded.

• The Make builds had a number of command line arguments which needed to
be used to obtain the correct build results. An example of a build command
is as follows:

$ make −j 4 CPU=SCOC3 DATABASE DIR=swdb a l l L i b s ram
$ make −j 4 CPU=SCOC3 DATABASE DIR= a l l L i b s ram

These low-level command line arguments arise because the build author cre-
ates a logic which defines different control flows to the build based on input
from a developer. In our design with Gradle, this approach was discouraged.
Alternatives such as creating custom Gradle tasks, separate build directories
or Gradle’s native control flow design concepts were used.

• Software projects in C present challenges of including the correct header files
at the time of compilation. The build system needs to track the location
of headers to trigger re-compilations when required. The existing system
using Make defined all possible header file locations through one environment
variable. This was later passed on as an argument to the compiler. This
approach fails if there are header files with the same name at two different
locations. To tackle this in a different way, Gradle’s design methodology
defines distinct sets of header families. Each family contains locations of
header files which will be required for building the various Collections. This
results in a more fine-grained approach of handling headers. It also reduces
boiler plate code as new header file locations need to be included in only one
place in the build logic.

4. Additional Features
To execute Gradle scripts, it is not required to have Gradle installed in the machine.

Ganesh Ramakrishnan 64

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Instead, it is possible to use Gradle wrappers. The build logic defines a wrapper
task which contains the Gradle version to be used for the build. At the time of
execution of the build with the wrapper, it will download the corresponding version
of the Gradle tool in to the machine and executes the build. This is different from
Make where it is required to have the correct version of GNU Make installed in
the machines and the $PATH variable contains the path to the tool.

Lines Of Code Performance

Features

Complexity

Make

Gradle

more
slower

higher

lesser

Figure 32: Summary of results - Comparison of evaluation blocks

Build scans help provide insights into build related problems at the time of de-
velopment. It creates a shareable platform for collaboration between developers
of a project to track the status of builds that happened locally on a developers
machine. This feature is currently not supported by GNU Make.
The existing build system does not version control the specifications of the compiler
and linker that are used to carry out the build. This limitation is handled in Gradle
through the use of tool chain definitions within the build scripts. The build scripts
are version controlled with the source thereby maintaining the specifications of the
SDE tools throughout the life-cycle of the development project.

Ganesh Ramakrishnan 65

Master Thesis: Institut für Softwaretechnologie - Software Engineering

7.4 Summary

This section presented an overview of the results obtained on evaluating the two build
systems under study. Three evaluation blocks were studied. They include performance
of the build logic in real life use cases, maintenance complexity of build logic and a
comparison of the features provided by the build systems. A summary of the results
obtained after evaluation is shown in figure 32. The number of lines of code in Gradle
build logic is 61.1% less than in Make. Similarly in terms of comparison of maintenance
complexity of build logic, taking into account the number of occurrences of indirection,
it can be concluded that the complexity is 51.3% lower in Gradle as compared to Make.
In terms of performance analysis, the nature of results obtained are mixed. In certain
scenarios, Make scores over Gradle and vice-versa in others. A comparison of the features
provided by the build system infers 60% more number of features provided by Gradle
over Make.
The functionality provided by the Make system is more comprehensive than of Gradle.
However, for the formulation of the results in this study, the functionalities considered
in the analysis are present in both the systems. From the obtained results, it can be
concluded that Gradle could potentially be a replacement for Make in the project under
study.

Ganesh Ramakrishnan 66

Master Thesis: Institut für Softwaretechnologie - Software Engineering

8 Conclusion

8.1 Summary

This study set out to investigate the design of an effective CI workflow for an embed-
ded space avionics project. To achieve such a design, it investigated the effect build
automation tools had in the design. A declarative approach towards build automation
was adopted through the use of a tool called Gradle. A part of the existing build logic
was modelled using Gradle. The design approach leveraged the use of Gradle’s native
knowledge about building embedded software such as Multi-project builds and build-
by-convention logic which provided default compile,link and clean task invocations. An
integration with Jenkins CI server was carried out. This integration did not require the
use of a dedicated interface logic.
A framework for setup of CI server was designed. This setup had one instance of a
Jenkins master and multiple build slaves. The framework was inspired from the Git-
flow workflow used in software development. Job chains were created depending on
Git branch types. These job chains had dedicated workspaces where the builds would
execute. A large number of the activities were mapped into the CI server from the
production domain. These activities were then executed in powerful remote machines in
an automated manner. The effort which was needed to be put in by the developer post
the commit stage in the development life-cycle is now exported to the CI server.
This study also performed an evaluation on the build automation tools Make and Gra-
dle. The evaluation was done based on three evaluation blocks. Performance, features
provided by the build tool and the complexity of build logic. In most of these aspects,
Gradle build tool fared better than Make. This study was performed with the require-
ment that the logic and frameworks designed for this project had to be compatible for
similar projects in the avionics domain. For this objective, every aspect of the design
was specifically thought out for a very generic usage.
From this research, I conclude that declarative build paradigm using Gradle for an em-
bedded C project is potentially an improvement in the field of building and testing
software. In terms of performance, Make scores over Gradle in some aspects. However,
the Gradle build tool is incubating to bring out further improvements for building em-
bedded software. For projects adopting CI, Gradle is the modern tool which helps to
form an interface with less cost and effort. Taking into account the discussed factors and
results, I would recommend to enrich the SDE of the project under study with Gradle
and Jenkins.

8.2 Future Work Items

Default plugins were created for some functionalities in the build logic. An example
is for creating of Partially Linked Objects. Gradle does not provide an opportunity to
create PLOs from the C sources. A cleaner approach towards PLO generation required

Ganesh Ramakrishnan 67

Master Thesis: Institut für Softwaretechnologie - Software Engineering

the creation of custom plugins. However, this creation had come at the cost of loosing
out on Gradle’s another benefit, the up-to-date check. The custom plugin was designed
so that it could carry some of its activities in Gradle’s execution phase. This effectively
blocks the up-to-date features on those tasks which use this plugin. A possible solution
is to re-work on the plugin to encapsulate the execution time logic into the configuration
block. This would result in a significant performance enhancement as compared to
existing logic. However, the effort involved in this encapsulation will be significant.
Only a sub-set of activities provided by Make was designed for Gradle. A complete
migration would only be possible if tasks such as static code analysis, documentation
generation, and framework for validation tests were implemented with the Gradle build
tool. For validation testing, Gradle can be used to build Jar files which contain the test
cases to be executed on the production code.
As mentioned, the notion of continuous deployment is not defined in this study. However,
an extension towards user acceptance testing and other stages beyond the validation of
the production code through CI is to be considered.
In the field of embedded software development, there exists a large number of ad-hoc
tasks which need to be automated. A mapping of these tasks into CI server would need
careful design and implementation practices.

Ganesh Ramakrishnan 68

Master Thesis: Institut für Softwaretechnologie - Software Engineering

References

[1] D. Cohen, M. Lindvall, and P. Costa, “Agile software development,” DACS SOAR
Report, vol. 11, 2003.

[2] K. Beck, Extreme programming explained: embrace change. Addison-Wesley pro-
fessional, 2000.

[3] “Jenkins documentation.” URL: https://jenkins.io/doc/, 2012.
[4] M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works http://www.

thoughtworks. com/Continuous Integration. pdf, p. 122, 2006.
[5] P. M. Duvall, Continuous integration. Improving Software Quality and Reducing

Risk. Pearson Education India, 2007.
[6] D. St̊ahl and J. Bosch, “Experienced benefits of continuous integration in industry

software product development: A case study,” in The 12th iasted international
conference on software engineering,(innsbruck, austria, 2013), pp. 736–743, 2013.

[7] A. Miller, “A hundred days of continuous integration,” in Agile, 2008. AGILE’08.
Conference, pp. 289–293, IEEE, 2008.

[8] A. Debbiche, M. Dienér, and R. B. Svensson, “Challenges when adopting contin-
uous integration: A case study,” in International Conference on Product-Focused
Software Process Improvement, pp. 17–32, Springer, 2014.

[9] G. G. Claps, R. B. Svensson, and A. Aurum, “On the journey to continuous de-
ployment: Technical and social challenges along the way,” Information and Software
technology, vol. 57, pp. 21–31, 2015.

[10] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the” stairway to heaven”–
a mulitiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software,” in Software Engineering and Advanced
Applications (SEAA), 2012 38th EUROMICRO Conference on, pp. 392–399, IEEE,
2012.

[11] R. M. Stallman, R. McGrath, and P. D. Smith, “Gnu make manual,” Free Software
Foundation, vol. 3, 2014.

[12] H. Dockter and A. Murdoch, “Gradle user guide,” 2015.
[13] S. I. Feldman, “Make — a program for maintaining computer programs,” Software:

Practice and Experience, vol. 9, no. 4, pp. 255–265, 1979.
[14] “Recursive use of make.” URL: https://www.gnu.org/software/make/manual/

html_node/Recursion.html.
[15] P. Miller, “Recursive make considered harmful,” AUUGN Journal of AUUG Inc,

vol. 19, no. 1, pp. 14–25, 1998.
[16] “Gnu make - auto-dependency generation.” URL: http://make.mad-scientist.

net/papers/advanced-auto-dependency-generation/.

Ganesh Ramakrishnan 69

https://jenkins.io/doc/
https://www.gnu.org/software/make/manual/html_node/Recursion.html
https://www.gnu.org/software/make/manual/html_node/Recursion.html
http://make.mad-scientist.net/papers/advanced-auto-dependency-generation/
http://make.mad-scientist.net/papers/advanced-auto-dependency-generation/

Master Thesis: Institut für Softwaretechnologie - Software Engineering

[17] A. Ant, “Apache software foundation.” URL: http://ant.apache.org/manual/
index.html, 2004.

[18] A. Williamson, J. Gibson, A. Wu, and K. Pepperdine, Ant Developer’s Handbook.
Sams Publishing, 2002.

[19] A. Van Deursen and P. Klint, “Domain-specific language design requires feature
descriptions,” CIT. Journal of computing and information technology, vol. 10, no. 1,
pp. 1–17, 2002.

[20] D. Koenig, A. Glover, and D. König, Groovy in action, vol. 1. Manning, 2007.
[21] “About gradle inc..” URL: https://gradle.com/about, 2017.
[22] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical meth-

ods for software engineering research,” in Guide to advanced empirical software
engineering, pp. 285–311, Springer, 2008.

[23] B. Dick, Action research theses. PhD thesis, Thesis resource paper. You want to do
an action research thesis, 2010.

[24] D. J. Greenwood and M. Levin, Introduction to action research: Social research for
social change. SAGE publications, 2006.

[25] D. I. Sjoberg, T. Dyba, and M. Jorgensen, “The future of empirical methods in
software engineering research,” in Future of Software Engineering, 2007. FOSE’07,
pp. 358–378, IEEE, 2007.

[26] C. Seaman, “Using qualitative methods in empirical studies of software engineer-
ing,” in Short course. In: VI Experimental Software Engineering Latin American
Workshop (ESELAW 2009), São Carlos, Brazil, November, 2009.

[27] S. J. Taylor and R. Bogdan, “Introduction to qualitative research methods: The
search for meaning,” 1984.

[28] S. Wagner and D. M. Fernández, “Analysing text in software projects,” arXiv
preprint arXiv:1612.00164, 2016.

[29] A. E. Cooper and W. T. Chow, “Development of on-board space computer systems,”
IBM Journal of Research and Development, vol. 20, no. 1, pp. 5–19, 1976.

[30] S. A. Dart, R. J. Ellison, P. H. Feiler, and A. N. Habermann, “Overview of software
development environments,” 1992.

[31] “Gitflow workflow.” URL: https://www.atlassian.com/git/tutorials/
comparing-workflows#gitflow-workflow.

[32] J. Fisher, D. Koning, and A. Ludwigsen, “Utilizing atlassian jira for large-scale soft-
ware development management,” in 14th International Conference on Accelerator
& Large Experimental Physics Control Systems (ICALEPCS), 2013.

[33] “Atlassian documentation - what is an issue.” URL: https://confluence.
atlassian.com/jira064/what-is-an-issue-720416138.html.

Ganesh Ramakrishnan 70

http://ant.apache.org/manual/index.html
http://ant.apache.org/manual/index.html
https://gradle.com/about
https://www.atlassian.com/git/tutorials/comparing-workflows#gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows#gitflow-workflow
https://confluence.atlassian.com/jira064/what-is-an-issue-720416138.html
https://confluence.atlassian.com/jira064/what-is-an-issue-720416138.html

Master Thesis: Institut für Softwaretechnologie - Software Engineering

[34] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code
review,” in Proceedings of the 2013 international conference on software engineering,
pp. 712–721, IEEE Press, 2013.

[35] “Getting started with rtems,” tech. rep., 2008.
[36] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke, “View-

points: A framework for integrating multiple perspectives in system development,”
International Journal of Software Engineering and Knowledge Engineering, vol. 2,
no. 01, pp. 31–57, 1992.

[37] S. Chacon, “Git documentation,” 2011.
[38] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github: trans-

parency and collaboration in an open software repository,” in Proceedings of the
ACM 2012 conference on Computer Supported Cooperative Work, pp. 1277–1286,
ACM, 2012.

[39] R. M. Stallman and R. McGrath, “Gnu make-a program for directing recompila-
tion,” 1991.

[40] “Arm compiler toolchain,” tech. rep., 2012.
[41] R. M. Stallman and Z. Weinberg, “The c preprocessor,” Free Software Foundation,

1987.
[42] F. Koebel and J.-F. Coldefy, “Scoc3: a space computer on a chip: an example of

successful development of a highly integrated innovative asic,” in Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 1345–1348, European
Design and Automation Association, 2010.

[43] K. Hjortnaes, S. Mejnertsen, S. Ekholm, P. Hougaard, and J. van der Wateren,
“Software validation facilities,” in Data Systems in Aerospace-DASIA 97, vol. 409,
p. 375, 1997.

[44] K. Thulasiraman and M. N. Swamy, Graphs: theory and algorithms. John Wiley &
Sons, 2011.

[45] “Cpputest manual.” URL: https://cpputest.github.io/manual.html, 2014.
[46] M. H. Halstead, Elements of software science, vol. 7. Elsevier New York, 1977.
[47] T. J. McCabe, “A complexity measure,” IEEE Transactions on software Engineer-

ing, no. 4, pp. 308–320, 1976.
[48] D. H. Martin and J. R. Cordy, “On the maintenance complexity of makefiles,” in

Emerging Trends in Software Metrics (WETSoM), 2016 IEEE/ACM 7th Interna-
tional Workshop on, pp. 50–56, IEEE, 2016.

Ganesh Ramakrishnan 71

https://cpputest.github.io/manual.html

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Appendix A: Jenkins Job Builder

This section presents some YAML files which were created for efficiently setting-up and
managing Jenkins jobs on the remote CI server. There are four different types of YAML
files which interact with each other to generate Jenkins job XMLs.

Listing 1: project.yml for configuring the types of Jenkins jobs
1 ###
2 ############################ Main Job Chains ###############################
3 ###
4 − project:
5 name: main job for master
6 chain name: MASTER BRANCH
7 jobs:
8 − ’AS400PROD BUILD MASTER BRANCH’
9

10 − project:
11 name: main job for develop
12 chain name: DEVELOP BRANCH
13 jobs:
14 − ’AS400PROD BUILD DEVELOP BRANCH’
15
16 − project:
17 name: main job for feature
18 chain name: FEATURE BRANCH
19 jobs:
20 − ’AS400PROD BUILD FEATURE BRANCH’
21
22 − project:
23 name: main job for on−demand build
24 chain name: ON−DEMAND BUILD
25 jobs:
26 − ’AS400PROD ON−DEMAND BUILD’
27
28 − project:
29 name: rulechecker job for master
30 chain name: CHECK MASTER
31 jobs:
32 − ’AS400PROD CHECK MASTER BRANCH’
33
34 − project:
35 name: rulechecker job for develop
36 chain name: CHECK DEVELOP
37 jobs:
38 − ’AS400PROD CHECK DEVELOP BRANCH’
39
40 − project:
41 name: rulechecker job for feature branch
42 chain name: CHECK FEATURE
43 jobs:
44 − ’AS400PROD CHECK FEATURE BRANCH’
45
46 − project:
47 name: workspace cleaner
48 jobs:
49 − ’workspace cleaner’
50
51 ###
52 ############################ Checkout Job #################################
53 ###
54
55 − project:
56 name: checkout jobs
57 chain name:
58 # − MASTER BRANCH
59 − DEVELOP BRANCH
60 # − FEATURE BRANCH
61 # − ON−DEMAND BUILD
62 # − CHECK MASTER
63 # − CHECK DEVELOP
64 # − CHECK FEATURE
65 repo:
66 − scripts:
67 branch name: master
68 url name: ssh://git@as400.de.astrium.corp:2222/sdeng/scripts.git
69 − as400prod:
70 branch name: "∗∗"
71 url name: ssh://git@as400.de.astrium.corp:2222/as400 smr/as400prod.git
72 # − as400val:
73 # branch name: develop
74 # url name: ssh://git@as400.de.astrium.corp:2222/as400 smr/as400val.git
75 − rtems:
76 branch name: master

Ganesh Ramakrishnan 72

Master Thesis: Institut für Softwaretechnologie - Software Engineering

77 url name: ssh://git@as400.de.astrium.corp:2222/rtems/rtems.git
78 − sde:
79 branch name: master
80 url name: ssh://git@as400.de.astrium.corp:2222/sde/sde.git
81 # − delivery:
82 # branch name: develop
83 # url name: ssh://git@as400.de.astrium.corp:2222/as400 smr/delivery.git
84 jobs:
85 − ’ AS400PROD {chain name} checkout {repo}’
86
87 ###
88 ############################ Make Extra Libs − SCOC3 #######################
89 ###
90
91 − project:
92 name: make extra libs for scoc3 job
93 chain name:
94 # − MASTER BRANCH
95 − DEVELOP BRANCH
96 # − FEATURE BRANCH
97 # − ON−DEMAND BUILD
98 # − CHECK MASTER
99 # − CHECK DEVELOP

100 # − CHECK FEATURE
101 jobs:
102 − ’ AS400PROD {chain name} make extra libs’
103
104
105 ###
106 ############################ Unit Test Job − SCOC3 ########################
107 ###
108
109 − project:
110 name: unit test jobs scoc3
111 chain name:
112 # − MASTER BRANCH
113 − DEVELOP BRANCH
114 # − FEATURE BRANCH
115 # − ON−DEMAND BUILD
116 test subsystem:
117 − dhLib
118 − dhs
119 − dms
120 − infra
121 − io
122 − aocs
123 − appliCommon
124 − platform
125 jobs:
126 − ’ AS400PROD {chain name} unit fsw {test subsystem}’
127
128 ###
129 ############################ Build Job − SCOC3 ############################
130 ###
131
132 − project:
133 name: build jobs on scoc3
134 chain name:
135 # − MASTER BRANCH
136 # − DEVELOP BRANCH
137 # − FEATURE BRANCH
138 − ON−DEMAND BUILD
139 build config:
140 − flight sysdb
141 # − flight swdb
142 # − nsvf sysdb
143 # − nsvf swdb
144 # − flight custom−sgm
145 # − flight generated swdb
146 # − nsvf generated swdb
147 jobs:
148 − ’ AS400PROD {chain name} build {build config}’

Listing 2: templates.yml for describing job specific settings and calling macros and de-
faults

1 ###
2 ############################ Build Job − SCOC3 #############################
3 ###
4 − job−template:
5 name: ’ AS400PROD {chain name} build {build config}’
6 node: linux
7 concurrent: false
8 description: ’Builds as400prod using the respective {build config} configurations on target SCOC3’
9 disabled: true

10 logrotate:

Ganesh Ramakrishnan 73

Master Thesis: Institut für Softwaretechnologie - Software Engineering

11 artifactDaysToKeep: ’−1’
12 artifactNumToKeep: ’−1’
13 daysToKeep: ’−1’
14 numToKeep: ’20’
15 workspace: ${{CUSTOM WORKSPACE}}/slaves/${{NODE NAME}}
16 project−type: freestyle
17 properties:
18 − throttle:
19 categories:
20 − as400prod build
21 enabled: true
22 max−per−node: ’1’
23 max−total: ’2’
24 option: category
25 defaults: scm build
26 triggers: []
27 wrappers: []
28 builders:
29 − ’build job {chain name} {build config}’
30 − build name setter build job
31 publishers:
32 − ’archiving {build config}’
33 − ’artifact deployer’
34 − ’log parser build job’
35 # − ’editable email notification’
36 # − stash notifier

Listing 3: macros.yml for describing execution commands for each job definition in tem-
plates

1 ###
2 ############################ Builders #####################################
3 ###
4
5 ###############################SCOC3#############################
6
7 ##################### Master Chain ############################
8
9 − builder: # Build custom−sgm job

10 name: build job MASTER BRANCH flight custom−sgm
11
12 builders:
13 − shell: |
14 scripts/build.sh −−clean−delivery −−prepare−environment −−ignore−warnings −−make−archive −−object−dump −−

headless −−custom−sgm −−line−counter
15
16 − builder: # Build sys−db job
17 name: build job MASTER BRANCH flight sysdb
18
19 builders:
20 − shell: |
21 scripts/build.sh −−clean−delivery −−prepare−environment −−ignore−warnings −−make−archive −−object−dump −−

headless −−line−counter
22
23 − builder: # Build swdb job
24 name: build job MASTER BRANCH flight swdb
25
26 builders:
27 − shell: |
28 scripts/build.sh −−clean−delivery −−prepare−environment −−ignore−warnings −−make−archive −−object−dump −−

headless −−with−swdb −−line−counter
29
30 − builder: # Build nsvf sysdb job
31 name: build job MASTER BRANCH nsvf sysdb
32
33 builders:
34 − shell: |
35 scripts/build.sh −−clean−delivery −−prepare−environment −−ignore−warnings −−make−archive −−object−dump −−

headless −−for−nsvf −−line−counter
36
37 − builder: # Build nsvf swdb job
38 name: build job MASTER BRANCH nsvf swdb
39
40 builders:
41 − shell: |
42 scripts/build.sh −−clean−delivery −−prepare−environment −−ignore−warnings −−make−archive −−object−dump −−

headless −−for−nsvf −−with−swdb −−line−counter

Ganesh Ramakrishnan 74

Master Thesis: Institut für Softwaretechnologie - Software Engineering

Appendix B: Interview

As part of this study, interviews were conducted with the developers of the team to
capture their inputs on how the build automation systems and the CI chains affect their
day to day activities. The questions and excerpts of their answers are discussed in this
section. Some notations which are used in the interview include:

• Dx: Denotes the developer in the project.
• CIx: A developer who is also responsible for maintaining CI tool for the project.

Interview Questions Category Excerpts of a few selected Replies
Which division do you work
- Production or Validation?

Background

Are you familiar with con-
cepts of Continuous Integra-
tion?

Background

Have you worked with CI
tools such as Jenkins?

Background

Approximately, how often
do you contribute to the
central mainline?

Background D1: It depends. Sometimes, I like to
have a copy of my ”under-development”
code on the server. Other times, I push
my code only after I have completely
built and tested the code in my local ma-
chine.

Have you worked with the
Gradle build tool or with
Groovy?

Background

How often do you touch the
build logic for the project?

Background D1: The core build logic is completely
transparent to my work. I usually only
touch Makefiles on the applications that
I work on. I would say roughly 20% of
my commits are based on modifications
to my Makefiles. . .
D2: It depends on the feature I am de-
veloping. Sometimes, I need to make
the same changes across many Make-
files in the project. At these times, my
commit content is mostly build file mod-
ifications. . .

Ganesh Ramakrishnan 75

Master Thesis: Institut für Softwaretechnologie - Software Engineering

What challenges do you face
when using GNU Make to
build and unit test your
code?

Data Collection D1: The core build logic is too complex,
difficult to understand. I find it difficult
to bring out some changes to extend the
build feature set. . .
D2: There are a large number of com-
mand line arguments which need to be
supplied to build the correct variant. It
is difficult to keep track of these argu-
ments and their use. . .
D3: There are a large number of activ-
ities to perform post my commit stage.
There is no one single command to ex-
ecute all these steps. . .
D4: The time required to build all the
different image variants and run all
the different tests is too high. A large
amount of my time is spent on these
activities. . .

From the demonstration
and your usage of Gradle,
how do you feel about the
tool?

Post Implemen-
tation Review

D1: I think its radically different. It
seems to provide a clean way of describ-
ing build logic. Seems to be concise. . .
D2: Its good to see there are very
few environmental variables in the de-
sign. . .
D3: It is a bit difficult to adjust to this
DSL. Maybe the documentation needs
to be richer. . .
CI1: I see that Jenkins is capable of
running Gradle tasks directly without
the need for definition of an interface
logic. . .

Ganesh Ramakrishnan 76

