
Institute of Software Technology

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit Nr. 3102-004

Aspects of Event-Driven
Cloud-Native Application

Development

Tareq Ahmed Ali Al-Maamari

Course of Study: INFOTECH

Examiner: Prof. Dr. rer. nat. Stefan Wagner

Supervisors: Asim Abdulkhaleq, M.Sc.
Dr. Andreas Nauerz (IBM)

Commenced: April 1, 2016

Completed: September 30, 2016

CR-Classification: C.0 ; C.2.4 ; D.2

Abstract

Managing and configuring servers have been challenging burdens. Therefore, serverless
computing has been introduced to overcome the complexities of managing servers, get
rid of operations and handle different terms such as scalability and high availability.
Codes or binaries in serverless computing are executed upon direct invocation or as a
response to events in a highly scalable manner, which makes it most appropriate for
building event-driven applications.An example of such serverless computing services
provider, is OpenWhisk the open-sourced project by IBM. To receive events and react
to them by invoking or running OpenWhisk actions (codes or Docker containers),
OpenWhisk provides an ecosystem of packages of services to enable, facilitate, ease the
usage of the services and subscribe to their events.

While OpenWhisk provides different powerful means and tools to interact with events, it
lacks a number of important services (event sources) packages within the OpenWhisk
ecosystem which are necessary to ease and facilitate subscribing to receive their events
and using the different functionalities of the services. This thesis enriches the OpenWhisk
ecosystem by integrating and enabling more services. A use-case-based approach is
chosen to select services to be integrated and enabled. The proposed use-case is an Early
Warning System (EWS) used to warn the public for disasters, possible incidents and
helping rescue survivors. In this approach, diversity of the integrated services in terms
of domains and vendors are guaranteed to avoid vendor lock-in and provide flexibility in
the available services. The integrated services were then categorized based on taxonomic
categories using the domain of services to ease out finding and organizing packages.

3

Acknowledgments

To start with, I do owe many thanks and gratitude to the Deutscher Akademischer Aus-
tauschdienst (DAAD) especially my contact person Mrs. Andrea Gerecke, for sponsoring
my master studies at University of Stuttgart. They have been of a great support for
whenever I needed help and encountered several challenges.

I do express my deepest gratitude to Prof. Stefan Wagner and Mr. Asim Abdulkhaleq
for supervising my thesis and for their support and guidance. I am also thankful to
my supervisors in IBM: Dr. Andreas Nauerz and Mr. Simon Moser for giving me the
opportunity to do my master thesis under their supervision and for their guidance,
patience and support.

I cannot forget the help from the proofreaders, their great feedback have made this
thesis as it is now. My warm thanks go especially to Dr. Murad Saeed, Dr. Mustafa
Al-Hajjaji, Mr. Jeremias Wagner and Dr. Manaf Gharaibeh.

4

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Problem Statement . 16
1.3 Research Objectives . 16
1.4 Thesis Structure . 17

2 Background 19
2.1 Cloud Computing . 19

2.1.1 Cloud Service Models . 20
2.1.2 Cloud Deployment Models . 20
2.1.3 Essential Cloud Computing Characteristics 21
2.1.4 Application Workloads . 22
2.1.5 Cloud-Native Application Properties 23

2.2 Microservices Architecture . 25
2.2.1 Characteristics . 26
2.2.2 Challenges and Complexities . 27

2.3 Serverless Computing . 28
2.3.1 Basic Principle . 30
2.3.2 Advantages . 31
2.3.3 Disadvantages . 31

2.4 IBM Bluemix OpenWhisk . 31
2.4.1 High Level Architecture . 32
2.4.2 OpenWhisk Entities . 33
2.4.3 System Design / Architecture . 35
2.4.4 OpenWhisk Services Ecosystem 37
2.4.5 Specifications and Characteristics 38

2.5 Serverless Computing Providers . 40
2.5.1 Amazon Web Services Lambda 40
2.5.2 Google Cloud Functions . 41
2.5.3 Microsoft Azure . 42
2.5.4 Auth0 Webtasks . 43
2.5.5 Overall Comparison . 44

5

3 Related Work 47
3.1 Amazon Web Services Lambda . 47
3.2 Google Cloud Functions . 47
3.3 Microsoft Azure . 48
3.4 Auth0 Webtasks . 48

4 Services Categorization, Integration and Enablement 49
4.1 OpenWhisk Ecosystem . 49

4.1.1 OpenWhisk Packages . 50
4.2 Services Categorization . 50

4.2.1 Types of Categories . 50
4.2.2 Categorization Similarities . 52
4.2.3 OpenWhisk Categorization . 53

4.3 Services Selection . 54
4.3.1 Selection Criteria . 54
4.3.2 Usage-Based Selection . 55
4.3.3 Use-Case-Based Selection . 55

4.3.3.1 Use-Case Selection Criteria 55
4.3.3.2 Scenarios . 56

4.4 Services Integration . 58
4.4.1 Overview . 58
4.4.2 Integration Methods . 59
4.4.3 Package Structure . 62

4.5 Challenges . 65

5 Design and Implementation 67
5.1 Early Warning System Scenario . 67

5.1.1 Sensors and Human Reporting 68
5.1.2 Report Analyzer . 69
5.1.3 Authority Confirmation . 69
5.1.4 Alarm and Red Code Firing . 70
5.1.5 Rescue Operations . 70

5.2 Feed / Trigger Provider . 72
5.3 IBM Watson IoT Platform Package . 74

5.3.1 Actions . 75
5.4 IBM Watson IoT Real-Time Insights Package 79

5.4.1 Actions . 80
5.4.2 Feed Action . 84

5.5 IMAP Package . 85
5.5.1 Feed Actions . 85
5.5.2 Feed . 86

6

5.6 IFTTT Package . 86
5.7 Box Package . 88

5.7.1 Webhooks V1 . 88
5.7.2 Box API V2 . 89

5.7.2.1 Actions . 90
5.7.2.2 Feed Action (Webhook) 90

6 Results and Evaluation 91
6.1 Serverless Computing Providers . 91
6.2 OpenWhisk Categorization . 95
6.3 Services Selection . 96

6.3.1 Usage Statistics Based Selection 96
6.3.2 Use-Case Based Selection . 97

6.3.2.1 Early Warning System 97
6.4 Services Integration . 99

6.4.1 Template Package . 100
6.4.2 Watson IoT Platform & Watson IoT Real-Time Insights Packages . 100
6.4.3 IMAP Package . 100
6.4.4 Box Storage Package . 100
6.4.5 IFTTT OpenWhisk Channel & Package 101

7 Conclusions and Future Work 103

Glossary 105

Acronyms 107

Bibliography 109

7

List of Figures

2.1 Mind map of this section . 19
2.2 Hardware level virtualization . 28
2.3 Operating system level virtualization (containers) 29
2.4 Abstracted overview of serverless computing 30
2.5 High level architecture . 32
2.6 OpenWhisk Action . 33
2.7 OpenWhisk Actions Sequence . 33
2.8 Relationship between triggers, rules and actions 35
2.9 Package Example: Watson Internet of Things (IOT) Platform Package . . 36
2.10 System Architecture . 37

4.1 High level workflow of this chapter . 49
4.2 Scenario votes . 58
4.3 Polling . 59
4.4 Polling using feeds . 60
4.5 Websockets using feeds . 61
4.6 Message queues . 61
4.7 Package template content . 64

5.1 High level architecture of the EWS scenario 68
5.2 Data flow diagram of the report analyzer process 70
5.3 Authorities confirmation process data flow diagram 71
5.4 Rescue operations flow diagram . 72
5.5 High level architecture of feeds . 73
5.6 Feed use case diagram . 73
5.7 Watson IoT platform and OpenWhisk . 75
5.8 Watson IoT Real-Time Insights (RTI) and OpenWhisk 80
5.9 Internet Message Access Protocol (IMAP) package 86
5.10 OpenWhisk channel in If This Then That (IFTTT) 88
5.11 Box mapper feed . 89

6.1 Scenario votes . 98

9

List of Tables

2.1 AWS Lambda limits & properties . 41
2.2 Google Cloud limits & properties . 42
2.3 Microsoft Azure Functions limits & properties 43
2.4 Auth0 webtasks limits & propertpies . 44
2.5 Serverless providers comparison . 45

5.1 Create device type parameters . 76
5.2 Add device parameters . 77
5.3 Delete device type parameters . 77
5.4 Delete device parameters . 78
5.5 Send event parameters . 79
5.6 Add message source action parameters 81
5.7 Delete message source action parameters 81
5.8 Add message schema action parameters 82
5.9 Delete message schema action parameters 83
5.10 Webhook parameters . 84
5.11 IMAP feed action parameters . 85
5.12 Search action parameters . 90
5.13 Box webhooks feed action parameters 90

6.1 Serverless providers comparison . 94

11

List of source codes

1 Example of JavaScript action . 34
2 Activation example . 36

3 An example of multi-hierarchal categorization 53
4 OpenWhisk package template . 63

5 Usage example of device type action . 75
7 Usage example of delete device type action 77
6 Usage example of add device action . 78
8 Usage example of delete device action through OpenWhisk Command-Line

Interface (CLI) . 79
9 Usage example of send event action . 79
10 Usage example of add message source action 81
11 Usage example of delete message source action 82
13 Usage example of add message schema action 82
12 Message schema request example . 83
14 Usage example of delete message schema action 84
15 Usage example of webhook feed action 85
16 Usage example of creating a trigger with IMAP feed 86

13

1 Introduction

1.1 Motivation

Due to the technological changes in recent years, massive amounts of data are getting
generated that require large scale of computing power to process and store. Therefore,
the concept of cloud computing has developed. Cloud computing provides highly
virtualized, distributed, scalable, on-demand and shared pool of resources which provide
the required computing power to deal with such amounts of data. These characteristics
and the benefits such as driving down the costs and allowing organization to focus more
on business logic that make cloud computing involve in one way or another in every
discipline and change the structure and nature of IT world.

In cloud computing, different levels of services are provided through different service
models which range from the underlying hardware or virtual machines (Infrastructure
as a Service (IAAS)) up to offering software as a service (Software as a Service (SAAS)).
Regardless of the service model where an application is deployed, servers are still
needed to run such applications either on a physical machine, virtual machine, Software
Container or even in an application-centric runtime environment. Unfortunately, the
time and effort spent in creating and configuring servers and taking care of the different
cloud-related complexities all present a challenge. Furthermore, as servers are lifelong
running, the overall utilization might be low due to the long idle periods.

The need for having a solution is highly conducive in order to evade the mentioned
problems. A possible solution that 1) abstract all complexities which come with servers,
2) run a cloud-native application only when it is needed either upon a direct invocation
or as a response to events, and 3) can highly scale to cope with the different types of
workloads. All these characteristics lead to serverless computing, the new computing
model where an application is split into small parts (i.e. snippets of code, containers or
even binaries), each is executed only upon a direct request or as a response to events.

Obviously, serverless computing is event-driven in nature, which can be the best ap-
proach that fits event-driven applications well. In serverless computing, applications are
executed and scaled rapidly in response to unpredictable and large demand workloads

15

1 Introduction

which result from emitting events. There are many use cases where cloud-native appli-
cations should react to events, therefore, it should be designed on top of Event Driven
Architecture (EDA) to enable such applications to efficiently react and respond to these
events.

1.2 Problem Statement

Internet of Things is one popular use-case for such EDA applications where non-
computing devices like washing machines and dish-washers are emitting events to
the Internet. Thus, large number of events need to be processed and stored in real-
time manner. In order to receive the emitted events to react and respond to it, event
consumers are required to subscribe to receive the events.

As mentioned above, serverless computing can be the best choice when it comes to
interacting with events. Therefore, there is a big need for serverless computing providers
to provide efficient and convenient mechanisms to allow event consumers to subscribe
and receive events in a way that abstracts the underlying complexities such as taking care
of communications, different implementations and the nature serverless applications
that differs from server-based applications. Nowadays, there are many cloud providers
who provide serverless computing services such as International Business Machines (IBM)
Bluemix OpenWhisk, Amazon Web Services (AWS) Lambda, Microsoft Azure Functions,
and Google Cloud Functions, each has different limitations and characteristics.

1.3 Research Objectives

Within The above highlighted issues, there is a need to carry out analysis and comparison
of the various serverless computing services providers. So as the first focus of this work,
the comparison will be based on aspects such as the different system limitations as well
as how powerful the services ecosystem of a given provider is. The service ecosystem
defines how far a given service provider is integrated with third-party services in order
to minimize the effort to create a serverless function and therefore maximize the value-
added. Obviously, the more services exist inside the ecosystem, the more powerful the
service provider is. Therefore, the second focus of this master thesis is to enrich the
services ecosystem of OpenWhisk the serverless event-driven programming services
provider in order to enable event consumers to register to receive events and react to
it. In addition, the enabled and integrated services should be categorized base on the
characteristics or domains of the services. Specifically, the thesis aims to achieve the
following research objectives:

16

1.4 Thesis Structure

• To compare among various serverless cloud providers.

• To investigate and propose a list of services.

• To propose a categorization system for categorizing OpenWhisk packages.

• To integrate some of the proposed services into the serverless computing provider
IBM Bluemix OpenWhisk.

• To provide useful scenarios where the proposed and integrated services can be
well exploited.

1.4 Thesis Structure

The rest of this thesis is organized and structured as follows:

Chapter 2 – Background: It starts with some fundamentals of the work and provides
the reader with a clear background of the overall research topic, including basics
in cloud computing, microservices architecture, serverless computing , OpenWhisk
as well as introducing and comparing the main different serverless computing
providers.

Chapter 3 – Related Work: In this chapter, the related work to this thesis is described
of how far different serverless computing providers integrate, enable and enrich
their services ecosystem.

Chapter 4 – Services Categorization, Integration and Enablement: In order to pro-
vide more useful scenarios, more services need to be integrated and enabled into
OpenWhisk to enrich the OpenWhisk ecosystem and categorizing them. Therefor,
in this chapter, we discuss the concepts behind them.

Chapter 5 – Design and Implementation: Here, we design and implement the con-
cepts behind integration, and enable the proposed services into OpenWhisk.

Chapter 6 – Results and Evaluation: This chapter shows the results and evaluation of
what have been achieved along this thesis.

Chapter 7 – Conclusions and Future Work: This chapter contains a summary of the
thesis achievements and possible improvements and some recommendations for
future work.

17

2 Background

In this chapter, different topics are described for an overall understanding of the back-
ground of the core work of this thesis.

2.1 Cloud Computing

Since the last decade, sources of data have been exponentially increasing, and they
have generated enormous amounts of data. To process and store these data, a huge
computing power is needed which can be expensive and might be hard to access.
Therefore, different terms have been introduced to solve this issue, such as grid and
cloud computing. Cloud computing which is, in fact, a highly virtualized, distributed,
scalable, on-demand and shared pool of resources provides computing power as a utility
where resources are provisioned and de-provisioned on-demand. In this thesis, we refer
to the provider of cloud computing offerings as a cloud provider, and for the consumer
of cloud computing offerings as a cloud consumer.

Due to the benefits offered by cloud computing, it is involved in many areas and a
wide number of applications have been built on top of it, such as distributed storages,
data analytics, IOT, communication between devices have been built on based on cloud
computing. Figure 2.1 shows a mind map of this section’s content.

Cloud Computing

Service Models Deployment Models
Essential

Characteristics
Cloud-Native

Applications Properties
Workloads

Figure 2.1: Mind map of this section

19

2 Background

2.1.1 Cloud Service Models

In cloud computing, IT resources can be delivered to cloud consumers through different
service models. Each service model has different levels of abstraction ranging from the
very bottom of fundamentals resources such as processing power up to ready Software
as a Service. According to The NIST Definition of Cloud Computing [MG11], there are
three cloud service models which are presented as follows:

• Infrastructure as a Service (IAAS): Cloud providers provide fundamental com-
puting resources to cloud consumers such as processing and storage.

• Platform as a Service (PAAS): Cloud providers provide a cloud platform where
cloud consumers can deploy their applications and use ready-to-use services. The
underlying cloud infrastructure is abstracted. Thus, cloud consumers have no
control and knowledge about it.

• Software as a Service (SAAS): Cloud providers offer to users applications which
are running in the cloud with abstraction to the underling infrastructure with the
possibility of limiting application specification to individual users. A good example
of an SAAS service is the on-line document processing application Office 365.

2.1.2 Cloud Deployment Models

Regardless of the followed cloud service models, IT resources are deployed and available
based on the targeted group of consumers. There are four cloud deployment models
[MG11] which are presented as follows:

• Public Cloud: In this deployment model, cloud offerings are open to the general
public use. The public term here does not necessarily mean that the namespace
of a consumer is publically visible, but it is isolated and can be accessed and
controlled via different means of access control. In this model, cloud resources
may be owned and can be managed by different types of organizations such as
academic institutions or business organizations.

• Private Cloud: This model has almost the same benefits and services that offered
in public clouds, except that the cloud infrastructure in this model is exclusively
used by a single institution and may be managed by the organization itself or
third-party institutions.

• Community Cloud: Cloud infrastructure is shared among a specific community of
different organizations that have shared missions or common restrictions such as

20

2.1 Cloud Computing

specific security configurations. It may be owned and managed by one or multiple
organizations.

• Hybrid Cloud: This model is a result of combining two or more different cloud
infrastructures (private, public or community). In this model, cloud resources of
different cloud providers with different service deployment models can federate
their resources and deliver them as a combined cloud provider [AAA+10].

2.1.3 Essential Cloud Computing Characteristics

As mentioned earlier, cloud computing resources range from fundamental resources such
as servers to a ready-to-use software. Thus, cloud offerings for such resources should be
characterized. According to The NIST Definition of Cloud Computing [MG11], there are
five essential characteristics that each cloud computing provider should provide:

• On-demand self-service: Computing resources are provisioned and de-
provisioned whenever they are required. [MG11].

• Broad network access: Computing resources are available and accessible over a
network in a way that allows a wide range of heterogeneous clients/devices to
connect to cloud resources from a wide range of locations. [MG11].

• Measured service (pay-per-use): Consumption of different resources provided by
the cloud provider such as processing, storage or networking resources should be
measured by providing a metering system. It is responsible for leveraging a suitable
measurement unit for each cloud offering resource in each cloud model such as
storage used or bandwidth consumed. The metering system should also abstract
and show the cloud offering as a black box to the cloud consumer. [FLR+14;
MG11].

• Resource pooling: Computing resources are pooled and shared using multi-tenant
model to serve multiple consumers in an automatic way by provisioning and de-
provisioning resources automatically on-demand. As the resources are shared,
each tenant’s resource must be isolated from others. [MG11]

• Rapid elasticity: Computing resources are provisioned and de-provisioned on-
demand to allow cloud offering consumers to have the exact needed amount of
resources on time.

21

2 Background

2.1.4 Application Workloads

Workloads in cloud computing are defined as the utilization of cloud resources within
a specific period of time. Based on the type of cloud resources, workloads measure-
ments change. For example, in storage cloud offerings, such measurements might
be the amount of data stored. Understanding workloads will help provisioning and
de-provisioning resources elastically [FLR+14]. The following types of workloads that
cloud applications may experience:

• Static Workload: Has fixed utilization over a certain period of time. In this case,
usually, there is no need for provision or even de-provision of cloud resources to
the existing resources. Normally at the provision time, the needed resources can
be provisioned as well as a certain amount of over-provisioning to cope with the
minimal overhead.

• Periodic Workload: Periodic tasks or events such as transferring money in the
banks by the beginning of a month will lead to periodic utilization peaks. So,
during the peaking, more cloud resources are needed and vice versa. In order to
scale; in case of static scaling, resources are statically provisioned as in case of
static workload. However, another way is to elastically scale, and in this case, the
consumed resources are exactly as needed with no over and under provisioning.

• One-in-a-Life Workload: One time peaking in application’s life can result into
different situations such as having an offer for a specific product in case of e-
commerce applications. In this case, there is a big gap between the needed
resources during the peak and otherwise. One way to solve this or fill up the
gab is to have a static scaling which is inefficient as the needed resources may
under-provisioned. Another alternative way is to have an automated elastic scaling
where only the needed resources will be consumed.

• Unpredictable Workload: Random and unknowable utilization peaks over time
will lead to unpredictable workload. In this case, it is hard to cope with it by using
static scaling as the time of the unpredictable peak is unknown. Therefore, elastic
scaling can be used to provision and de-provision of resources without predicting
the workload.

• Continuously Changing Workload: Continuous increasing and decreasing on
utilization will lead to perpetual changing workload. The rate of changing is
consistent. As a solution, the scaling can be done statically as well as elastically.
In case of static scaling, provisioning and de-provisioning can be performed in a
stepwise way as some resources can be provisioned and de-provisioned in bulks
such as provision additional 100 GB of storage once needed and de-provision 100

22

2.1 Cloud Computing

GB otherwise. In contrast, elastic scaling will be provisioned in a consistent way so
the provisioned resources are almost the same as the consumed ones.

2.1.5 Cloud-Native Application Properties

Obviously, the different workloads have different scaling requirements, and therefore,
they have different requirements related to the application design. One popular approach
is to split an application into several small parts, so that they can be scaled easily and
independently. To take an advantage from cloud environments, it is not enough to split
an application into several small parts, but it has to be designed and built in a way
that ensures some properties derived from cloud computing characteristics. [FH15;
FLR+14]

• Distribution: Cloud resources are scattered over a big distributed pool of resources.
Therefore, cloud-native application should be built in a way that can be distributed
among the distributed resources.

• Elasticity: According to Shouten [Sho12], elasticity is a synonym to scalability
which is the ability to cope with the increased traffic or size with a proper cost
[Bon00]. Scalability should be automated in response to the different workloads.
As a result, the occupied resources match the demand. Thus, cloud-native applica-
tions should be designed to be scaled. In other words, they should be able to run
on independent cloud resources. Scalability can be either horizontal where more
cloud resources nodes are added or vertical where more capabilities are added to
the existing cloud resource node. [FLR+14]

• Isolated State: Comes from the requirements of being stateless. As elasticity will
allow an application to be scaled out and in, which means more instances of the
application should are created, thus, the application should be stateless, where
each instance of the application needs to be operated independently of the other
instances, and whenever a state is required, it must not be in the application (i.e.
stored somewhere else).

• Automated Management: As a result of elasticity, resources are provisioned
and de-provisioned, added and removed automatically, and consequentially, the
load should be monitored to ensure provisioning the needed resources and de-
provisioning the unneeded resources on time.

• Loose Coupled: Distributed applications consist of distributed components that
may depend on each other. Thus, dependencies should be as less as possible in
order to ease scaling and minimizing the impact of failing applications compo-
nents.[FLR+14]

23

2 Background

• The Twelve-Factors: Sometimes, building applications that work as cloud-native
applications and SAAS services sometimes is tricky. This is due to the dynamic
continuous expansion of applications, the dynamic collaboration of the teams
involved and the cost of slow deterioration of software. The Twelve-Factors is
a methodology for building SAAS applications which are 1) a declarative-based
format is used for automation to improve the time and cost, 2) a high portability
between environments, 3) compatible and proper for deploying on different mod-
ern cloud platforms, 4) have divergence between development and production,
which enables a continuous deployment and 5) highly scalable with no or slight
effect on the architecture and tools [Her].

1. Codebase: Different versions of source code are tracked through a version
control system such as Git. A codebase is a repository that is shared among
different deployments (Production, staging, etc.)

2. Dependencies: Twelve-factor applications should use a dependency manager
such as NodeJS Package Manager (NPM) for NodeJS and should explicitly
declare dependencies through dependency declaration manifest, thus, simpli-
fying the setting up of the application.

3. Config: Application’s config is the configurations that differs based on deploys
(production, staging, etc.). Application’s config includes the resources handled
to the database or any backing service, credentials of external services or
specific or even pre-deploy values for different deploys. Config should not be
stored within the application itself and it should not be applied to internal
configuration of applications. However, it should be stored in a way that can
be easily changed between deploys such as environment variables.

4. Backing services: Backing service is any service that is used by the application
to achieve its normal operations such as datastores services (CloudantDB,
dashDB, etc.). A twelve-factor application should not differentiate between
local and external services.

5. Build, release, run: The codebase can be moved into a non-development
deploy through different stages:

a) Build stage: The code is transfered into executables called builds.

b) Release stage: The build produced in the build stage is combined with
the deploy’s specific config. The resulting is the release that contains the
build as well as the config.

c) Run stage: Runs the app’s release in the execution environment.

24

2.2 Microservices Architecture

6. Processes: The app is executed in one or more processes, which imply that
the app is stateless and share-nothing among the different processes.

7. Port binding: The twelve-factor application self-contained does not rely on
runtime injection of webservers into the execution environment to create a
web-facing service. Instead, The application should export Hypertext Transfer
Protocol (HTTP) as a service by binding to a port.

8. Concurrency: The workload is handled by running different processes where
each process presents a type, for each type of work, it is assigned to the
corresponding process to handle it.

9. Disposability: Processes in the twelve-factor applications are disposal, which
means that they are started and stopped at moment’s notice.

10. Dev/prod parity: The different deployment (i.e. development, staging, and
production) should have as small gab as possible between them.

11. Logs: Logs should be treated as events stream.

12. Admin processes: Any administrative and management related work should
be done on an one-off admin processes in an identical environment.

2.2 Microservices Architecture

As technology emergence increases, several factors arise and require software archi-
tectures to evolve in order to cope with these factors. Interactive, dynamic and rich
applications demand scalability and availability in the first place. In other words, this
needs a software architecture that can scale and resist failures such as microservices
architecture [Ric].

Microservices architecture is an architectural style that intends to split an application into
small services. Such services comprise cloud-native application properties as discussed
in the previous section. Microservices gets rid of the problems of monolithic architecture
when the whole application logic is implemented in a single unit. For small applications,
monolithic can fit well and can scale by using a simple load balancer, but as soon as
it gets growing, and becomes bigger and bigger, different problems appears are likely
to emerge, including the hardness to scale, failures to take the whole big singular unit
down rather than only small part of it, challenge to adapt new technologies as well as
understanding the code [BHJ15].

In microservices architecture, an application is divided into small services where each can
be implemented, deployed, scaled, tested and monitored independently. To have deeper

25

2 Background

knowledge about microservices, we will discuss its basic and common characteristics in
the following section:

2.2.1 Characteristics

There are common characteristics of microservices architecture, and it is not necessarily
that a microservice should meet all of them, but it can be a minimum [DVE+16]:

• Business-oriented: Applications are splitted into small parts which serve as ser-
vices. The splitting boundaries should be carefully analyzed to avoid the risks
of resulting in lack of integration which will lead to a fragile system. Thus, mi-
croservices should be designed based on business objectives, but this requires more
efforts and different cross-teams involvement within organization boundaries.

• Design for failures: Isolating failures are inescapable, as application is divided
into small services. Moreover, when designing microservices, designer should
ensure that a failed service does not affect the overall system/application. Auto-
mated testing and real-time monitoring mechanisms necessary to detect failures as
quickly as possible. As a result, a quick restore can be done. [LF14]

• Decentralized Data Management: Distributed transactions over different ser-
vices. In case of microservices (Basically Available, Soft state, Eventual consistency
(BASE)) it is preferred over (Atomicity, Consistency, Isolation, Durability (ACID)).

As the principle behind microservices is to split applications into small services,
hence, each microservice should ideally have its own database. This will intro-
duce polyglot persistence by using different databases such as (DB2 vs Oracle,
CloudantDB vs MongoDB) and different data stores types (SQL, NoSql (document
based, graphs, etc.)). However, in most of the cases, transactions need to be
accessible through multiple microservices, and a centralized database which can
be accessed by multiple microservices. This should be avoided as much as possible
to ensure the loosely-coupled nature of microservices.

• Discoverability: Underlying infrastructure may fail anytime, and therefore, con-
structing microservices should guarantee reconfiguring services to update the
location of other services that they need to connect to. Usually, service discovery
can be achieved by using a service registry where all services explicitly register
with.

• Inter-service communication design: Regardless of the way microservices are
deployed (application-centric runtime environment, Software Container, virtual ma-
chine, or even as a function/action in serverless platform), a question arises: How

26

2.2 Microservices Architecture

do services communicate with each other?. In case of one-way communication,
message queues are considered a good way. In contrast, for two-way communi-
cation, this solution of message queues does not fit well. One way of handling
two-way communication work is by making Representational State Transfer (REST)
calls where each service calls others through a lightweight HTTP requests. This
guarantees loose coupling as well as abstracting implementation details of each
microservice, but there are cases where the caller service (client) requires a chatty
messaging or requires multiple calls to achieve its goals (get, add, update, delete
resources). Another way is to use an additional layer that sits between the clients
and microservices which act as a controller to hide complexities and heterogeneity
of communication.

• Evolutionary Design: It is common that applications requirements are frequently
changed. As a result, new features and capabilities are introduced, and the good
point is that only the changed microservice rather than the whole system needs to
be taken care of.

2.2.2 Challenges and Complexities

Microservices also introduce a few drawbacks and complexities presented as follows
[DVE+16]:

• Testing: As any distributed and complex applications, testing of microservices-
based systems requires additional different testing components, a set of unit and
integration tests, load tests as well as overall system behavior tests.

• Monitoring: Microservices are independently built and deployed. Therefore, it is
hard to monitor them using the traditional monitoring approaches. However, to
cope with this, services should be designed and built in a way that provide health
check information which can be used by the monitoring system in tracking the
overall behavior of microservices-based system.

• Dependencies: Normally, dependencies are frequently updated, which in many
cases, requires changing on the code where it is used. In monolithic applications,
the normal procedure of updating dependency is by updating a single component
where other parts and applications use it as an interface of that dependency.
In contrast, in case of microservices-based applications, different services may
depend on the same dependency, and in such cases, each single rather than a
single component needs to be updated.

27

2 Background

• Development and Operations: Regardless of the advanced monitoring system
needed in microservices-based systems, keeping each microservice up and running
is a challenge which requires more a high-quality DEVOPS skills to deal with it.

2.3 Serverless Computing

Traditionally, applications ran on physical machines. A large number of machines
are expensive, hard to configure, manage, maintain and are frequently underutilized.
Moreover, scalability cannot be achieved easily due to different reasons such as the size
and complexity of modern operating systems [BDGR97]. Under those circumstances,
virtualization (Figure 2.2) provides abstraction on the physical hardware level and
consolidates the hardware, thus, utilizing resources more efficiently, decreasing the cost
and improving maintenance. Above the abstraction level, multiple virtual machines
run simultaneously, and each can be a separate server running on different operating
systems. Hence, multiple servers can be run simultaneously on those virtual machines.

Hardware

Guest OS

Applications

Virtual Machine Monitor

Virtual Machine

Guest OS

Applications

Virtual Machine

Guest OS

Applications

Virtual Machine

Figure 2.2: Hardware level virtualization

28

2.3 Serverless Computing

Hardware

Applications

Host OS

Container

Applications

Container

Applications

Container

Shared Kernel

Binaries / Libraries Binaries / Libraries Binaries / Libraries

Figure 2.3: Operating system level virtualization (containers)

Despite all the pretty good advantages of virtualization, it is not ideal due to the
overhead of having a completely installed operating system on each virtual machine
which makes it hard to scale efficiently. On the other hand, virtualization on the
operating system level such as containers is lighter-weight and gets rid of hardware-
based virtualization problems. In containers, the operating system kernel is shared
among different containers, each of which is a separated package of Unix-style processes
[Mer14a]. With these containers, servers can be configured and managed easier but
managing many tasks, such as concurrency, memory management and database access
still represents a burdens. Moreover, servers configuration in general is hard, complex
and an error-prone process [XLR+04]. In addition, applications are limited by the
servers’ startup time to scale efficiently. Consequentially, serverless computing the new
computing model hides the complexities of managing servers, get rid of operations and
handling different terms such as scalability and high availability. Serverless computing
is a new computing model that exploits containers to execute users’ code rather than a
whole application.

29

2 Background

In serverless computing, the deployable unit is a snippet of code or even a whole
container which is executed only by an explicit request or as a response to an event. It
changes the way of architecting and implementing cloud-native applications in a way
similar to microservices architecture except that in servlerless computing a microservice
is executed only upon a request.

2.3.1 Basic Principle

The basic principle behind serverless computing is similar to traditional servers such as
Apache Tomcat [Fou16]. In Apache Tomcat, there is a pool of threads (The executor).
Whenever there is a new incoming request, an available thread within the pool is used to
handle that request. Similarly, serverless computing providers such as OpenWhisk has a
pool of containers. Whenever there is a new incoming request to execute a specific code
or container that has been provided by the user, an available container executes that
code and returns the result to the caller (requester). As these containers and threads
whenever they finish their work or are interrupted by any signals such as timeout, they
are returned back to the pool and are marked ready to handle new requests. The key
here is that these containers are shared among different users (multi-tenancy) and
are managed by the serverless computing provider. Thus, all complexities of servers
are hidden in such a way that users do not need to involve with any servers. Figure
2.4 shows an example of an abstracted overview of the basic principle of serverless
computing.

Figure 2.4: Abstracted overview of serverless computing

30

2.4 IBM Bluemix OpenWhisk

2.3.2 Advantages

Highly and rapidly scalable applications can be created on top of serverless computing,
where the more requests come in, the more containers are created to handle these
requests. They can be reused for new incoming requests in a very fast manner. All of
these operations of handling and configuring the underlying infrastructure is abstracted
and handled by the provider. Thus, operations such as managing scalability, availability,
maintenance, monitoring and other operations can be discarded, which allows organiza-
tions to focus more in application logic. Furthermore, since containers are reused and
users’ code is only executed whenever it is invoked. Resources are also highly utilized
and terms like over or under provisioning are hidden.

2.3.3 Disadvantages

Although serverless computing has several advantages, unfortunately, many aspects
are abstracted and hidden. Its providers take care of setting up the infrastructure of
fundamental resources such as the type of Central Processing Unit (CPU) that are needed
to execute users’ requests. Thus, users with specific infrastructure requirements cannot
change the underlying resources to meet their requirements. Moreover, containers’ pools
are shared based on the multi-tenancy principle where a container can be reused to
execute a code of different tenants. Therefore, many concerns are rising and security
is one of them such as the concerns of accessing other tenants’ data within a container
that may has been used by other tenants.

2.4 IBM Bluemix OpenWhisk

The Serverless market has been incredibly increasing due to the benefits it brings. Cur-
rently, there are many serverless computing providers who offer different serverless
computing services. This section provides a bird’s-eye view of one of the new server-
less computing services provider (IBM OpenWhisk). OpenWhisk is an open-sources
cloud-based, serverless, distributed and event-driven engine that provides event-driven
programming services which allow you to build powerful and convenient event-driven
applications.

31

2 Background

2.4.1 High Level Architecture

Since OpenWhisk is event-driven, it allows organizations to build efficient and powerful
event-driven systems by providing all tools needed to interact with the events. Event pro-
ducers emit events to OpenWhisk through different means, e.g. direct REST Application
Programming Interface (API) requests. In order to receive such events in OpenWhisk,
event producers need to be configured probably. As result of event emitting, an action
or a sequence of actions are executed with the event payload as parameters. Actions can
be written in JavaScript(Node.js), Swift, Java, Python or even can be a Docker container
and it can be user-defined or even a ready-to-use action within OpenWhisk ecosystem
such as “send an SMS” action in Twilio package or actions that are shared by another
user. Figure 2.5 shows a high level architecture of OpenWhisk [Ope16].

Figure 2.5: High level architecture

32

2.4 IBM Bluemix OpenWhisk

2.4.2 OpenWhisk Entities

OpenWhisk provides different tools and means to interact and respond to events. The
following is a list of OpenWhisk entities:

• Action: A snippet of code or a container that represents the application logic and
it is executed only upon a direct request or as a result of rule activation. In Listing
1, an example of JavaScript action is to calculate the speed of a moving objects
as well as the invocation command and the result as JavaScript Object Notation
(JSON) object.

Figure 2.6: OpenWhisk Action

• Actions Sequence: Pipeline of actions which are chained together by their output,
so that, the output of an action is passed as input to the next action in the chain.
Figure 2.7 shows a high level architecture of actions sequence.

Figure 2.7: OpenWhisk Actions Sequence

• Trigger: A class of event types where each trigger represents a unique type of
events such as a trigger for incoming IMAP emails which is fired whenever there is
an incoming email.

• Rule: Association between triggers and actions, and it is kind of bindings. Each
rule is a 1 to 1 relationship between a trigger and an action or sequence of actions.
A rule is activated as a result of trigger firing. Consequentially, the associated
action or sequence of actions are executed with the payload of the trigger.

33

2 Background

1 /**
2 * An action to calculate speed of a moving object, it recieves time in seconds and

distance in meters and return speed in meters per second↪→

3 */
4 function main(parameters) {
5 console.log("Incoming request with parameters: ",parameters)
6 return new Promise(function(resolve, reject) {
7 if (!parameters.hasOwnProperty(’time’) ||

!parameters.hasOwnProperty(’distance’)) {↪→

8 console.error("time, distance or both parameters are missing")
9 reject("missing required parameters")

10 }
11 if (parameters.time <= 0) {
12 console.error("time should be larger than zero")
13 reject("Time value is invalid")
14 }
15 resolve({"speed": (parameters.distance/parameters.time)})
16 })
17 }

1 #Invoke example action through terminal
2 $ wsk action invoke example -p time 120 -p distance 50

1 //Output of invocation (JSON)
2 {
3 "speed": 0.16666666666666666
4 }

Listing 1: Example of JavaScript action

• Feed Action: A special action that manages feed of events from a specific event
producer (i.e. {create, pause, unpause and delete). Normally, feed actions are
used by triggers to control subscription through the trigger itself (i.e. ‘wsk trigger
create newComment –feed /whisk.system/github/webhook -p‘ and ‘wsk trigger
delete newComment‘ to delete the subscription). It has different life cycle events
such as delete, create, pause and unpause.

• Feed: A separate application or service that produces events, manages subscrip-
tions or does additional procedures to get events from another service in special
cases. In other words, it is stream of events that feed OpenWhisk to fire OpenWhisk
triggers and are subscribed by feed actions.

• Activation: A record that contains information about action invocation, triggers
firing or rules activation. The information includes a unique id, time of start and
end of execution, version number, as well as the logs and the result returned. List-
ing 2 is an example of an activation record. Such information provides important

34

2.4 IBM Bluemix OpenWhisk

Figure 2.8: Relationship between triggers, rules and actions

information which can help in debugging and analyzing systems built on top of
OpenWhisk.

• Package: A group for organizing related actions and feed actions. Packages in
OpenWhisk can have global parameters, so that, whenever an action or a feed
action is invoked, the global parameters of the package are passed as well. Figure
2.9 shows an example of Watson IOT platform package, which contains a feed
action webhook to register receiving events which are sent to the platform, as well
as other actions to interact with the Platform.

• Namespace: Class of all entities; packages, actions, feed actions, triggers, rules
and activations which belong to a namespace.

• Packages and Namespaces: Each namespace N may contain a set of packages,
actions, feed actions, triggers, rules and activations. Each package may contain
actions, feed actions, triggers and rules.

2.4.3 System Design / Architecture

As shown in Figure 2.10 (inspired by [Sut16]), OpenWhisk is a microservice-based sys-
tem where each component is a microservice that is implemented, tested, integrated and
deployed independently. OpenWhisk consists of 1) Edge, 2) Controller and 3) Invokers.
The edge is the component that manages the access to the system, which contains a

35

2 Background

1 {
2 "activationId": "7dbe1c66d54943d9a963a268518aa103",
3 "annotations": [],
4 "end": 1470755469209,
5 "logs": [
6 "2016-08-09T15:11:09.202059151Z stdout: Incoming request with parameters: {

distance: 20, time: 120 }"↪→

7],
8 "name": "actionExample",
9 "namespace": "talmaam@de.ibm.com",

10 "publish": false,
11 "response": {
12 "result": {
13 "speed": 0.16666666666666666
14 },
15 "status": "success",
16 "success": true
17 },
18 "start": 1470755468651,
19 "subject": "talmaam@de.ibm.com",
20 "version": "0.0.12"
21 }

Listing 2: Activation example

Figure 2.9: Package Example: Watson IOT Platform Package

proxy where OpenWhisk CLI and the different OpenWhisk Software Development Kit
(SDK)s can be downloaded from. In addition, it forwards the different requests to the
controller to handle it. The controller receives the request such as package creation.
Before processing the request, the controller checks whether the request is authorized,
and if the request is not an action invocation, the controler then serves it and responds
directly with the result. If the request is an action invocation, the controller assigns it to
an available Invoker to execute the action. Each Invoker has a pool of containers (execu-

36

2.4 IBM Bluemix OpenWhisk

tors) of different runtimes, an Invoker receives the request and assigns it to an available
executor or creates a new executor to execute it and store the result or the invocation
state into an activation record. All entities and entitlements are stored persistently in a
document-based database (Cloudant/CouchDB). To ensure availability and maintain
reliability, all components are monitored by explicit registration and repeatedly update
their states through a monitor agent to the monitoring dashboard.

Figure 2.10: System Architecture

2.4.4 OpenWhisk Services Ecosystem

Powerful applications outsource some of their secondary work, tasks or features to
external services such as storage and database capabilities to get rid of many complexities
like taking care of eventual consistency in databases. They also allow applications to
focus more on business logic and improve the expenses. OpenWhisk provides an
ecosystem of a collection of packages for external services which help applications to use
such services efficiently. This master thesis focuses on enriching this ecosystem. Chapter
4 – Services Categorization, Integration and Enablement provides more information.

37

2 Background

2.4.5 Specifications and Characteristics

To have a better understanding of OpenWhisk, different characteristics and specifications
of OpenWhisk are described as follows:

• Openess: OpenWhisk is open-sourced, and therefore, its code is exposed and
publically accessible, and developers and specialists can see what is under hood,
contribute and get involved. Typically, being open-sourced makes hard-to-measure
technical aspects such as reliability and security more visible. Furthermore, open-
ness provides many business benefits as well, such as the flexibility by licenses and
escaping from vendor lock-in [MF07].

• Extensibility One of the special cases of design for change is extensibility which
is the ability to add new features and capabilities with slight or no effects on
the existing design of a system [Par79]. OpenWhisk allows to add more action
runtimes (action containers) with no changes on the current design of OpenWhisk.
Adding more actions runtimes can be done through action containers API except
light changes on the controller and invoker to add some properties of the new
runtime such as the requirements to execute an action within the new action
container (action runtime) (e.g. “code” for JavaScript action and “image name”
for containers) [Sut16].

• Throughput: OpenWhisk caches the executed actions (actions containers), which
leads to higher throughput of actions execution and improvement of the overall
throughput of systems that are built on top of OpenWhisk.

• Quality: Generally, open-sourced software are known to be of a higher level
of quality due to the open-source community contributions, peer reviews and
suggestions for imporvements.

• Immutability and Versioning: Actions are immutable, and to make changes on
actions, changes are done locally and then they are committed to create a new
version. Versions can be accessed through the different interaction means such as
CLI, REST API and the UI.

• Asynchronous and Synchronous Invocation: Variation of invocation paradigms
provides more options to support different needs and requirements of systems.
Thus, more powerful systems can be built by using both paradigms. OpenWhisk
provides the choice to invoke actions synchronously (blocking) as well as Asyn-
chronously (non-blocking). In the case of blocking invocation, the process of
invoking an action is blocked till the action returns an output, throws an error or
triggers an interrupt signal (e.g. timeout). In case of non-blocking, an activation

38

2.4 IBM Bluemix OpenWhisk

id is returned immediately which may include the output of the execution in case
of success invocation.

• Real-Time Pipeline Processing and Content Enriching: Actions sequence pro-
vide a mean of realtime pipeline processing, where an output of an action is
passed as input of the next action in the chain. Actions sequence can act as a
content-enriching as it enriches the input from the previous action in the chain
and passes it as input to the next action.

• Sharing: Entities such as packages, actions and feed actions can be publically
shared which allows other users to get benefit from it.

• Statelessness: Statelessness is a design paradigm where the state data of an action
is separated and hosted somewhere else. Actions are stateless where statuses are
not available across invocations. Thus, state data should be externalized, and this
can be achieved by using other services.

• Request-Response Pattern: OpenWhisk is accessible through REST where a
requester sends a request such as a request to invoke an action to OpenWhisk.
Based on the execution paradigm specified in the request, OpenWhisk responds by
either an activation Id in the case of non-blocking execution or by the activation
record itself (including the execution output) in the case of success blocking
execution.

• Ordering: Order of Actions invocation or firing triggers is not guaranteed. Open-
Whisk is accessible through REST API which is HTTP/Transmission Control Proto-
col (TCP) based protocol where requests are not ordered. Hence, ordering is not
guaranteed [Ope16].

• Idempotent: Idempotent operation is an operation that can be applied multiple
times with no change on the result. This can be expressed mathematically as
f(x) = f(f(x)). OpenWhisk actions are idempotent, even if OpenWhisk does not
enforce this property [Ope16].

• At-most-once Semantic: When requesting for action invocation, OpenWhisk
records the incoming request and dispatches a new activation for it. OpenWhisk
replies with the activation Id in the case of non-blocking invocation to confirm
receiving the request. OpenWhisk will attempt to to invoke the action once with
one of the following output [Ope16]:

– Success: Invocation is completed with successful action execution.

– Application error: invocation is succeeded, but an error within the action
itself is returned on purpose.

39

2 Background

– Action developer error: Action invoked successfully with abnormal and
uncompleted execution due to some problems with the action implementation
itself such as existing of syntax errors.

– Whisk internal error: OpenWhisk is unable to invoke the action, and the
result is recorded in the status object within the activation record.

2.5 Serverless Computing Providers

Serverless computing is a hot topic in cloud computing due to its significant impact on
software architecture. This section goes through different serverless computing providers
and explores them to provide a clear overview about of the differences between them.
Thus, users can decide which provider to use based on their requirements. Here, we will
briefly analyze the most popular serverless providers from different aspects such as the
different system limitations.

2.5.1 Amazon Web Services Lambda

Besides the most popular service by AWS Elastic Compute Cloud (EC2), AWS Lambda
is also getting more lighter. AWS Lambda is the first serverless computing services
provider (refer to 2.3 for more information about serverless computing). Lambda allows
you to upload your code with its dependencies (called Lambda function) and execute
such functions with AWS infrastructure. Hence, all complexities of the underlying
infrastructure are hidden. Functions can be written in NodeJS(JavaScript) v0.10.36 and
v4.3.2 but not v6.0, Python 2.7 or Java 8. In addition, functions can be executables
as they can be run using spawning child processes [Wag15]. Unfortunately, there is
no support for containers which is a good option, especially when there is a need to
execute binaries and other non-supported runtimes without spawning child processes.
Lambda functions can be invoked through the User Interface (UI), AWS CLI or through
the REST API using AWS API Gateway. Unfortunately, there is no support for direct
invocation through HTTP requests which can be done by separating API manager (AWS
API Gateway). Lambda also supports versioning (Immutable versions) through Lambda
Aliases, which is a pointer for a specific Lambda functions, each version of the same
function has different Alias. As any other serverless computing provider, AWS Lambda
limits the underlying resources as shown in table 2.1 [Ser16]:

40

2.5 Serverless Computing Providers

Scalability automatic & transparent
Max of code entity 250 MB (code/dependencies)
Concurrent execution 100
Max execution time 300 seconds
Max memory 1536 MB
Programming languages JavaScript(NodeJS), Python and Java
Dependencies management Packaging code and dependencies (ZIP or JAR)
Deployments code/zip (Lambda, S3)
Versioning Aliases
HTTP support Only through API Gateway
Logging CloudWatch
Authentication IAM
Openness closed-source and proprietary system
Pipelining No
Sharing No
Scheduling service Yes

Table 2.1: AWS Lambda limits & properties

Besides the above resources limitations, quota plans can be used to limit a specific
consumer with predefined plans, so that, a single consumer is restricted to a specific
number of function executions. Lambda Functions executions are logged using the AWS
CloudWatch service. The logs contain different records such as the memory used, the
maximum memory that is available for the function, execution duration time and the
code size.

2.5.2 Google Cloud Functions

Google Cloud Functions at the moment of writing this thesis is still an alpha. Like any
other serverless provider, Google Cloud Functions provide services for executing codes
in serverless manner in response to events or as a direct invocation through different
means. Until now, JavaScript (NodeJS) is the only supported programming language.
Google Cloud Functions supports NPM to manage NodeJS dependencies. Invocation and
management of functions can be done through Google Cloud CLI as well as a built-in
support of HTTP requests. Google Cloud Functions have two flavored functions, HTTP
and Background functions. HTTP functions are these functions which can be accessible
through HTTP requests, such functions are fully HTTP controlled which can handle all
HTTP operations. The other functions called Background Functions that are executed

41

2 Background

on response to events. The only difference between the two mentioned flavors is the
signature of the function. Any updates on functions are versioned based on the GIT
versioning concept. In addition, logging in Google Cloud Functions is managed by the
Google Cloud Logging service. In addition. logs can be also logged to other services such
as StackDriver using specific SDK which provides more features to store, search, analyze,
monitor, and alert on log data and events from Google Cloud Platform in general.

Scalability automatic & transparent
Max of code entity no limits
Concurrent execution no limits
Max execution time no limits
Max memory 1024 MB
Programming languages JavaScript(NodeJS)
Dependencies management NPM
Deployments ZIP (Cloud Storage
Cloud Source Code Repositories)
Versioning Cloud Repositories Service (branches and tags)
HTTP support full support
Logging Stackdriver Logging
Authentication OAuth 2.0
Openness closed-source and proprietary system
Pipelining No
Sharing No
Scheduling service Yes

Table 2.2: Google Cloud Functions limits & properties

2.5.3 Microsoft Azure

Another main serverless computing services provider is Microsoft Azure Functions. Azure
Functions allows users to execute code or executables as an explicit request or as a
response to events. Currently, the supported runtimes are C, NodeJS, Python, F#, PHP,
Bash, CMD, Java and also executables. Regarding the dependencies, Azure Functions
supports NuGet and NPM. Moreover, they have a full support of HTTP almost the
same as Google Cloud Functions. A specific application folder structure as well as an
additional configuration file are required to deploy a functions application. Hence, more
complexities are introduced when it is compared to other serverless providers. Unlike
the other providers, maximum concurrent functions invocations in Azure Functions are

42

2.5 Serverless Computing Providers

limited by the size of memory assigned and scalability is nontransparent where users
are able to see how many instances of computing power are used.

Scalability automatic & nontransparent
Max of code entity no limits
Concurrent execution based on the memory assigned
Max execution time no limits
Max memory 1536MB
Programming languages C#, Node.js, Python, F#, PHP, Batch, Bash, Java, or executable
Dependencies management NuGet and NPM
Deployments SCM services, FTP and Web deploys
Versioning -
HTTP support full support
Logging embedded
HTTP support full support
Logging Stackdriver Logging
Authentication OAuth 2.0
Openness closed-source and proprietary system
Pipelining No
Sharing No
Scheduling service Yes

Table 2.3: Microsoft Azure Functions limits

2.5.4 Auth0 Webtasks

Webtask is another serverless computing services provider. The main idea behind Auth0
Webtask is to execute NodeJs runtime based code upon a direct invocation. In Webtask,
the only supported programming language is JavaScript (NodeJS runtime), and other
runtimes can be supported through by using Transpilers (Transpilation). It is a source-to-
source compilation where a source code written in programming language is translated
into another programming language. In case of Webtasks, it is translated into NodeJS
using specific NodeJS modules to achieve this. Dependencies in Webtasks are limited to
the most popular 600 modules in NodeJS. The code units in Auth0 are called Webtasks,
and a Webtask is a snippet of code written in JavaScript or another programming
language (that can be traspiled as mentioned before). Webtasks have a full HTTP
support, and it comes with three different function signatures (callback only, context and
callback as well as a signature for the HTTP support function (request, response and

43

2 Background

callback)). Webtasks can be invoked and managed through two means, using REST API
and Webtasks CLI. Authentication in Webtasks is token-based, and tokens are are used
to restrict a specific user or an application from using specific Webtask. Hence, Webtask
can be restricted by different logics, such as restricting a specific Webtask to execute
code from a specific Uniform Resource Locater (URL), or restricting the execution of a
Webtask by a point of time (e.g. executing before or not after a specific point of time).
Moreover, Auth0 Webtasks provides a mean of persistency during Webtasks execution, so
that, states can be stored and accessed during different execution of a Webtask. Above
that, standard output and errors are logged and can be accessed through Webtasks REST
API and Webtasks CLI in a real-time manner.

Scalability automatic & transparent
Max of code entity no limits
Concurrent execution based on the memory assigned
Max execution time no limits
Programming languages JavaScript(Node.JS)
Dependencies management most 600 famous modules in NPM
Deployments code files
Versioning -
HTTP support full support
Logging embedded
Authentication Auth0
Openness closed-source and proprietary system
Pipelining No
Sharing No
Scheduling service Yes

Table 2.4: Auth0 webtasks limits

2.5.5 Overall Comparison

To have an overview of all serverless providers, table 2.5 is a summary of what have been
discussed in this section, the table summarizes the differences between the observed
providers in various aspects.

44

2.5 Serverless Computing Providers

Pr
ov

id
er

IB
M

O
pe

n
W

hi
sk

A
W

S
La

m
bd

a
A

zu
re

Fu
n

ct
io

n
s

G
oo

gl
e

Fu
n

ct
io

n
s

A
u

th
0

W
eb

ta
sk

s

Sc
al

ab
il

it
y

tr
an

sp
ar

en
t

tr
an

sp
ar

en
t

no
nt

ra
ns

pa
re

nt
tr

an
sp

ar
en

t
tr

an
sp

ar
en

t
M

ax
of

co
de

en
ti

ty
48

M
B

25
0

M
B

no
lim

it
s

no
lim

it
s

no
lim

it
s

C
on

cu
rr

en
t

ex
ec

u
ti

on
10

0
pe

r
na

m
es

pa
ce

10
0

pe
r

re
gi

on
ba

se
d

on
th

e
m

em
or

y
no

lim
it

s
no

lim
it

s
M

ax
ex

ec
u

ti
on

ti
m

e
30

0
s

30
0

s
no

lim
it

s
no

lim
it

s
no

lim
it

s
M

ax
m

em
or

y
51

2
M

B
15

36
M

B
15

36
M

B
10

24
M

B
-

D
ep

en
de

n
ci

es
fe

w
N

PM
m

od
ul

es
ZI

P
or

JA
R

N
uG

et
an

d
N

P
M

N
PM

60
0

N
PM

m
od

ul
es

D
ep

lo
ym

en
ts

co
de

fil
es

/J
A

R
s

co
de

/z
ip

(L
am

bd
a,

S3
)

SC
M

se
rv

ic
es

,F
TP

an
d

W
eb

de
pl

oy
s

ZI
P

(C
lo

ud
St

or
ag

e
&

C
lo

ud
So

ur
ce

C
od

e
R

ep
os

it
or

ie
s)

co
de

fil
es

Ve
rs

io
n

in
g

em
be

dd
ed

A
lia

se
s

em
be

dd
ed

C
lo

ud
R

ep
os

it
or

ie
s

Se
rv

ic
e

(b
ra

nc
he

s
an

d
ta

gs
)

-

H
TT

P
su

pp
or

t
em

be
dd

ed
an

d
lim

it
ed

A
P

I
G

at
ew

ay
fu

ll
su

pp
or

t
fu

ll
su

pp
or

t
fu

ll
su

pp
or

t
Lo

gg
in

g
em

be
dd

ed
C

lo
ud

W
at

ch
em

be
dd

ed
St

ac
kd

ri
ve

r
Lo

gg
in

g
em

be
dd

ed
A

u
th

en
ti

ca
ti

on
B

as
ic

A
ut

he
nt

ic
at

io
n

IA
M

O
Au

th
2.

0
O

Au
th

2.
0

A
ut

h0
O

pe
n

n
es

s
Ye

s
N

o
N

o
N

o
N

o
Pi

pe
li

n
in

g
Se

qu
en

ce
A

ct
io

n
N

o
N

o
N

o
N

o
Sh

ar
in

g
Ye

s
N

o
N

o
N

o
N

o

Ta
bl

e
2.

5:
Se

rv
er

le
ss

pr
ov

id
er

s
co

m
pa

ri
so

n

45

3 Related Work

This chapter intends to provide an overview of the related work of the core work of this
thesis, in this chapter we explore how the main serverless computing services providers
integrate and enable event sources as well as what are the different means to interact
with events.

3.1 Amazon Web Services Lambda

AWS Lambda provides only what is called lambda functions, but there are no additional
tools to support real-time pipelining or rule management. Event sources in AWS Lambda
are limited to a few of AWS services which are API Gateway, AWS IOT, Alexa Skills
Kit, Alexa Smart Home, CloudWatch Events - Schedule, CloudWatch Logs, Cognito Sync
Trigger, DynamoDB, Kinesis, S3 and SNS. As Lambda is a closed-source and propriety
system, it is hard to have a deeper look at the current used mechanisms to subscribe
and receive events from events sources. According to Lambda, both models (poll and
push) are used to get events from the services mentioned above. Moreover, the absence
of additional tools such as a tool to provide the ability to easily enable and disable
single event sources from executing specific function introduces another deficiency of
Lambda. In addition, event sources are not categorized, which provides a lower quality
user experience [Ser16].

3.2 Google Cloud Functions

Event sources in Google Cloud Functions are limited to only two services Google Cloud
Pub/Sub and Google Cloud Storage. Further different event sources might emit their
events through Google Cloud Pub/Sub. Google Cloud Pub/Sub supports both models to
receive events, push using what is called Webhooks and poll models. Google Cloud
Functions is also closed-source. Therefore, it is hard to have a deeper look at the
mechanisms used to integrate with the event sources. Like AWS Lambda Functions,

47

3 Related Work

event sources are not categorized. Anyway, Google Cloud Functions is still in Alpha, and
therefore, it is early to consider it in the list as a mature player in the market [Goo16].

3.3 Microsoft Azure

Azure functions provide triggers and bindings, and they are, tools to interact to events.
Unlike OpenWhisk, azure does not provide a mean to managing rules. Some of the
Azure services as well as third-party services are integrated and can emit events to
execute Azure Functions in response to it. They are, Azure DocumentDB, Azure Event
Hubs, Azure Mobile Apps (tables), Azure Notification Hubs, Azure Service Bus (queues
and topics), Azure Storage (blob, queues, and tables) and GitHub (webhooks). As Azure
Functions is based on Microsoft WebJobs SDK, the open source SDK [Azu16a] provides
tools to ease coding background-processing Functions. The registration for receiving
events from event sources is done through WebJobs Bindings. The previous mentioned
integrated services with Azure Functions are baked into the core WebJobs SDK, while
other event sources and services can be integrated with Azure Functions by building
WebJobs extensions Bindings [Azu]. Furthermore, a binding is an entity that is used
to configure the source of an event to execute an Azure function as response (Trigger
Bindings) and Non-Trigger Binding to allow using other services from Azure Functions
such as sending a SendGrid email from Azure Functions. Trigger Bindings in the SDK
provides Listener interfaces that can be used by the host (service producer) that will be
used whenever there is a new event (either by poll or push models) to trigger an Azure
Function to be executed. Moreover, there is no categorization for event sources, which
also lowers the quality of users’ experience [Azu16b].

3.4 Auth0 Webtasks

Unfortunately, there is no event-source or event-driven paradigm support, and executions
of Webtasks are done upon an explicit request through the two Webtasks interaction
means (REST API and Webtasks CLI) [Inc16].

48

4 Services Categorization, Integration
and Enablement

This chapter describes our designed categorization system for OpenWhisk packages. In
addition, various means which can be used to integrate and enable services and event
sources to interact with OpenWhisk and execute codes or run containers in response to
events. The chapter also explores the different criteria and approaches that are going to
be used to propose the services to be integrated. Figure 4.1 shows the flow of work in
this chapter.

Figure 4.1: High level workflow of this chapter

4.1 OpenWhisk Ecosystem

Event processing requires a huge amount of computing power in a realtime manner
which needs highly scalable computing resources to achieve the goal of EDA. Not only
processing events is important, but also reacting to it by consuming or producing data
and resources as response to such events is important. As OpenWhisk is a serverless,
event-driven and distributed programming services provider, event-sources are one of
the main ingredients in OpenWhisk. Without event-sources, OpenWhisk is a poor system.
Thus, OpenWhisk provides an ecosystem of packages of different services that allow
OpenWhisk users to easily subscribe for receiving events and react to them. Interacting
with events in OpenWhisk is done by executing actions in response to it either by using
users provided actions or using actions within the ecosystem such as using the store
action within CloudantDB package.

This chapter intends to propose, implement, test and integrate the proposed services
into OpenWhisk to enrich the ecosystem. The selection of the services and the concepts
behind the integration as well as the challenges that might be faced will be discussed.

49

4 Services Categorization, Integration and Enablement

4.1.1 OpenWhisk Packages

Currently, the OpenWhisk ecosystem has different ready-to-use Packages. As an example,
the following are some of them:

• Github: Contains a feed action (webhook), and it used by triggers to register
for receiving different events from Github such as new commits or pull requests.
Moreover, whenever a new event occurs, the trigger associated and registered by
the webhook is fired. Consequently, actions or sequence of actions may be invoked.

• Slack: Contains an action to post a message to a slack channel.

• Weather: Contains an action to get hourly weather forecast using Weather API
service.

• Watson: Contains different actions to interact with OpenWhisk such as converting
speech to text, text to speech and translating texts.

• Utils: Contains different actions that may be used as utilities such as an action to
split a string into array of strings.

• Samples: Contains various examples in different supported programming lan-
guages such as hello world actions.

4.2 Services Categorization

Categorization is a fundamental problem in cognitive science, and it is significant in
observation, thinking, correspondence and consideration [FGS11]. The term catego-
rization has different meaning from the point of view of the discipline involved [CL05].
According to Cohen and Lefebvre [CL05], categorization is the process of recognizing,
differentiating and understanding objects and ideas and grouping these objects and
ideas based on similarities into classes called categories [FGS11]. The importance of
categorization comes from the need for differentiating between objects. So, without
categorization, objects are incomparable, matchless and inimitable [FGS11]. Moreover,
it is impossible to predict new unknown objects and ideas.

4.2.1 Types of Categories

• Taxonomic: Categories are organized into hierarchies of abstract categories that
share common properties or features. For instance, Personal Computer (PC) and
Mac both are computers that have CPU and memory.

50

4.2 Services Categorization

• Script: Used to categorize entities that have the same role but not complementary
roles in a script. A script is a schema for a routine event. For example, water and
juice both has the same role of what to drink script.

• Thematic: Categorizes or grouping associated entities or entities that have a
complementary relationship and at the same time, they are not similar (e.g. a
computer and a mouse which forms a thematic pair because a mouse is used to
control computer).

In the context of OpenWhisk, categorization is the process of grouping related actions
and feed actions into packages, and grouping packages into categories to illustrate the
relationship between the grouped packages. Consequentially, a few benefits can be
gained:

• Clarity of Knowledge: Clear knowledge about package content and functionalities
is provided where different services share similar content and functionalities. For
instance, considering categorization based on domains, a domain that contains
different IOT services are grouped into one category. It is obvious that this category
shows that all of these services are related to the interaction with events in the
world of IOT.

• Accessibility: Easiness to find, reach out and use services. In the case of large
number of services, it is hard to find specific services easily, but with categorization,
a service can be reached out through the expected category. For example, in
considering the previous mentioned example, the IOT category, to reach out IBM
Watson IOT Platform service, it can be easily predicted that it is located within a
category called “IOT”.

• Common Traits: Shows packages that share specific traits as a category, regardless
of the similarity it is based on, such as a specific domain, feature, property or any
other similarity. It shows that all of the category members share the similarity.
Again, considering the example of IOT category, all of the category members share
the same domain, and therefore, have similar traits.

• Convenience: Categorizing new packages is more convenient as it allows defining
the boundaries and characteristics of the packages to be categorized, new pack-
ages can be categorized, and new packages can be categorized by making few
predictions, and therefore, categorizing new and previously unknown services is
convenient.

The mentioned three kinds of categories are applicable in the context of OpenWhisk,
but not all of them make sense to use. Script and Thematic categories can form
unlimited pairs and scripts contents. For example, possible script of IOT applications in
IBM Bluemix is the Watson IOT platform to transfer events through Message Queuing

51

4 Services Categorization, Integration and Enablement

Telemetry Transport (MQTT) protocol, and a document based database such as Cloudant
and an IOT rule-base real-time insights service such as Watson IOT Real-Time Insights.
This can be applicable to Thematic categories, which leads also to big number of pairs
that may depends on a precise use-case. Thus, Taxonomic categories are the most
appropriate for categorizing OpenWhisk packages as the resulted classes of categories
are more general, which may lead to few drawbacks. However, it can be discarded and
search feature can be added to search within the same category or even through all
categories. Moreover, other categories can be structured from the habits of users of
combining different services that are not similar or have a complementary relationship
to extrapolate scripts and thematic pairs. This may help users with specific use-case or a
problem to get benefit from it. Anyway, that is not the focus of this thesis and it can be
listed in the list of future work in chapter 7.

As mentioned, Taxonomic categories are based on similarities, as the majority of services
are black-box. Thus, scopes of similarities are limited to vendor, openness and domain.
The next subsection shows how such scopes can be used as similarities:

4.2.2 Categorization Similarities

Similarities in general can be scoped within different classes, due to the fact that the
majority of services are black-box. Therefore, the characteristics or properties are limited
to only three. In this thesis, we proposed using three general characters to categorize
OpenWhisk packages, and these characteristics or similarities have been proposed with
consideration of the different knowledge of users.

• Vendor: Different services may share the same vendor, which makes it an applica-
ble similarity to categorize such services into the same category under the same
vendor. For instance, the IBM Bluemix platform has various third-party services,
and a possible categories based on vendor can be, an IBM and non-IBM services.

• Openness: From the source openness perspective, services can be divided into
open-sourced and close-source services. Such classification can also be used to
have two main categories, open-sourced and close-sourced services.

• Domain: Different services rely on a specific domain only. So, each service is
categorized in a specific domain based on its functionalities. This resembles how
IBM Bluemix Cloud Foundry (CF) applications and services are categorized. The
only difference is that, in OpenWhisk there are more services in other domains
that don’t exist in IBM Bluemix, but they be powerfully exploited by OpenWhisk.

52

4.2 Services Categorization

Since categories in Taxonomy categories are organized in hierarchies, the above simi-
larities can be combined into a categorization system. For instance, we can start with
the domain hierarchy with sub-hierarchies using other similarity such as openness and
vendors. Listing 3 shows an example of such multi-hierarchal categorization.

Cognitive Computing

IBM

AlchemyAPI

Visual Recognition

Cognitive Scale

Cognitive Graph

Cognitive Insights

Internet of Things

Watson IoT Platform

Watson IoT Real-Time Insights

Watson IoT Driver Behavior

Flow Things

Listing 3: An example of multi-hierarchal categorization

4.2.3 OpenWhisk Categorization

To categorize packages in OpenWhisk, a categorization system needs to be designed to
provide the benefits we discussed earlier. Therefore, we propose a categorization system
for OpenWhisk based on Taxonomic categories.

In this section, we propose the domains used in categorizing OpenWhisk packages.
Different domains are also grouped into one domain since they have common features.
Domain categorization contains different sub-domains based on the parent domain,
which provides meaning and simplicity of the content and reaching the services. Here is
a list of a proposed categories using domains:

• Cognitive Computing

53

4 Services Categorization, Integration and Enablement

• Internet of Things

• Workflow and Integration

• Data and Analytics

• Storage

• Social and Media Platforms

• APIs

• DEVOPS

• Communication and Security

• Mobile Computing

4.3 Services Selection

After proposing a service categorization for OpenWhisk, we will evaluate which services
that should be considered for integration. Therefore, the proposing process will be based
on a criteria matrix through two main approaches: usage-based and use-case-based
selection.

The list of services that can be integrated and enabled within OpenWhisk is long, and it
may become tricky. Therefore, it might not be useful or will not add-value to OpenWhisk,
and we propose a criteria matrix to help selecting and proposing different services into
OpenWhisk. Moreover, different approaches to proposing the services are discussed
under the two main approaches, use-case based and usage-based selection.

4.3.1 Selection Criteria

Whenever picking up, selecting and proposing services, different questions are raised:
In which domain should be located? How many users that may get benefit if a service is
enabled within the OpenWhisk ecosystem? Does the enabled service lead to a significant
reduction in operations and infrastructure cost?. All of these questions guide us to the
needed criteria. In this thesis, we do not mainly focus on costs, as OpenWhisk is still in
beta, and it does not have a pricing model till the time of writing this thesis. From the
listed questions, we can group all these criteria into two main approaches: usage-based
and use-case based approaches. Moreover, the proposed list should contain various

54

4.3 Services Selection

services in respect to both domain and vendor to avoid vendor lock-in and enable more
services to serve a broader number of target users.

4.3.2 Usage-Based Selection

In this selection approach, usage statistics such as the number of active service instances
and number of users is not ideal to use as a criteria for selecting and proposing services
to be integrated and enabled within the OpenWhisk ecosystem. This is because it may
end up with a list of services with identical domains such as only database services, and
2) new services with lower statistics can be more powerful and its usage might improved
when it is integrated and enabled as an event source or used as an action to respond to
events.

As mentioned, this approach may lead to an inconsistent selection, and therefore, we
need another approach that allows proposing a list based on the criteria above. A
use-case based selection approach is another approach that can be used to propose a list
with the mentioned criteria.

4.3.3 Use-Case-Based Selection

Next, we evaluate services based on a set of pre-defined use-cases rather than the usage
statistics, the evaluation process was carried out in cooperation with a team of architects
and developers in IBM.

A use case or scenario-based selection is an approach that can be used to propose a list
of services to be integrated into OpenWhisk, the proposing process based on pre-defined
scenarios that different technologies and services from different vendors are involved.
To have a well-defined scenario, A criteria matrix is proposed that include the general
and specific services selection criteria for use cases selection.

4.3.3.1 Use-Case Selection Criteria

Picking up the most suitable use case might be tricky, and therefore, we proposed various
criteria for selecting the scenario. An ideal use case, a use case that can generate different
types of workloads, especially peaking workloads. This is to show how much powerful is
serverless computing especially OpenWhisk in such case. Moreover, it should contain
different services which rely on different domains from different vendors, This means
that more options will be available for users and to avoid vendor-lock. In addition, the

55

4 Services Categorization, Integration and Enablement

proposed use case should be distributed,especially in terms of its different components
and its functionalities. It should also be simple and applicable to be used in real life.

4.3.3.2 Scenarios

• EWS: Early Warning System EWS is a system for early warning in catastrophic
and critical security situations. The importance of having EWS increases day by
day. In this scenario, an EWS is proposed to be built on top of OpenWhisk that
involves different services, including third-party services. Implementation of a very
simple scenario can be using different sensors scattered all over the areas intended
to be covered. All of them are connected to an IOT platform as well as a mobile
application used by people to report incidents and possible terrorists attacks. Then,
whenever a change occurs, a trigger is fired or an action or sequence of actions
are invoked in OpenWhisk. Such actions can be firing a public alarm, report to
authorities, etc.

• Serverless Software-Defined Networking (SDN) Controller: As SDN Controller
is event-driven where a specific code is executed based on events such as a new
message is sent. In the SDN world, routers send events (e.g. message arrived,
message sent or node joint). In the other hand, events and actions on the controller
(e.g. change routs or new node joint). The main good thing is that the controller
here is an event-driven and microservices based. This means that there is more
scalability of the parts having more workloads as well as a higher utilization of
resources.

• Accidents Monitoring: In many cases car accidents happen in empty roads (either
because of weather impact, animals on roads, lack in roads maintenance, etc.),
which leads to late accident reporting. Therefore, late health care can cause death,
as a solution, reporting system can be built on top of OpenWhisk. Whenever an
accident occurs, a trigger is fired to invoke an action or sequence of actions which
will report the accident, its location and the number of people inside the vehicle.

• Production Lines in Manufacturing: In manufacturing, there are many of situ-
ations where OpenWhisk can be exploited (e.g. scheduling of Production Line).
This situation is not going to run lifetime, but it is usually based on a specific event.
In car manufacturing, there are groups of robots, and in this case, scheduling their
work is necessary and dynamic scheduling based on the type of product manufac-
tured, especially in multi-line production can be done through OpenWhisk, where
a specific business logic is executed on time for a specific event.

• LEGO Mindstorms Controller: Mindstorms robots can be connected to different
sensors and actuators (e.g. motion, RFIDs, light, etc.), in combination with

56

4.3 Services Selection

OpenWhisk and different services, thus leading to puissant applications. Here,
a scenario to control Mindstorms is proposed by using Mobile by accelerometer
sensors, activate a specific sensor and analyze data in the cloud using Watson, etc..

• Traffic Violations: Breaking a traffic sign is usually detected by a camera. The
car plate photo is uploaded into the cloud, thus, a lifetime running server is used.
OpenWhisk can play an important role in providing event-driven serverless traffic
monitoring system. Breaking the traffic sign (Event) will fire a trigger to invoke
sequence of actions to report the violation to the system or execute an action to
close a street, etc.

• Serverless Bots: Bots markets have been incredibly increasing, and therefore,
there are different awesome bots in different platforms. When it comes to Bots,
there are unlimited ideas where OpenWhisk can be used as a back-end in mix with
different services. The followings are only examples of its use:

– Docs Uploader: Bot to store data through OpenWhisk to a back-end storage
(e.g. Object Storage Service).

– Convert a Markdown file into HTML.

– General Purpose Controller bot.

Based on the use-case selection criteria, we can have a long list of use cases that comply
with the use case selection criteria. To pick up the most suitable scenario, a brainstorming
session was accomplished with a group of developers and architects within IBM. After
some discussions, based on voting (Figure 4.2), we have picked the EWS scenario. This
is because it is the most applicable and useful scenario in real life. It also adds value to
OpenWhisk, and it complies with the selection criteria.

57

4 Services Categorization, Integration and Enablement

Figure 4.2: Scenario votes

4.4 Services Integration

4.4.1 Overview

Enhancing users’ experience and adding value to OpenWhisk are the main goals of
enriching the OpenWhisk ecosystem. Adding and enabling more services into the
ecosystem usually do not represent a straightforward process in which different methods
can be used. In addition, not all of them are always applicable. Not only using a service
from OpenWhisk to create or update a resource or data in a service is needed, but
emitting and receiving events to OpenWhisk is the main parts. However, it should be
noted that a few complexities may be faced during the integration of different services
into OpenWhisk. Even if the integration is accomplished in different ways, a standard
template will be required.

In this section, different methods of integration services into OpenWhisk used in this
study are explained. Moreover, a template which was designed to standardize the
integration packages is discussed.

58

4.4 Services Integration

4.4.2 Integration Methods

Based on what was mentioned in the previous subsection, integrating more services will
obviously enhance users’ experience and therefore, adds value to OpenWhisk. Mainly,
there are two main approaches to enabling receiving events by OpenWhisk: 1) Event
producer (service) which provides means to subscribing for events such as webhooks,
or 2) when an event producer doesn’t support the means in 1, then, another method
should be used such as polling. In this subsection, we discuss the different methods that
can be used to integrating services into OpenWhisk:

• Polling Polling or busy-wait polling is a mechanism for communication, usually,
between Operating System (OS) and I/O devices where synchronous operations
to query for the status of I/O devices are made. Polling has been also used for
communication between clients and servers where a client sends a request to query
for a status or a change in the server, and therefore, the client is blocked until
the server replies. Polling leads to a high consumption of resources due to the
number of connections opened to do the polling (Figure 4.3). To minimize the
high consumption of resources, Long-Polling can be used when there is a longer
blockage. In this case, the server replies whenever an event occurs. Otherwise it is
blocked, and as a result, a small number of long connections are opened. Hence,
an additional management for long-life connections is required such as supporting
and managing multi-threads to provide asynchronous operations to prevent long
blockages [Inc13]. In the context of OpenWhisk, polling can be done either by
periodically invoking an action to do polling, or by using a feed/trigger provider
to poll on behalf of the user (Figure 4.4). For the former, due to the timeout
limitation, it may not be an efficient option.

Figure 4.3: Polling

59

4 Services Categorization, Integration and Enablement

OpenwhiskService
Feed / Trigger

Provider
Fire trigger

No changes

There is change

Figure 4.4: Polling using feeds

• Webhooks In the software development world, there are many cases where de-
velopers need to execute specific code as a response to specific events within an
OS or application. Hooks are used where an application is hooked to specific
components in OS or an application to execute specific code either as an extension
to the component feature or as a response to an event generated by a specific
component. In web world, a webhook refers to a mechanism to define callbacks
over HTTP, usually a HTTP POST request to a URL provided by the user. Thus,
there is almost no overhead in the client’s side [Inc13]. Webhooks are used to
receive notifications or events, and Github webhooks can be a good example where
the user registers for specific events. Whenever an event occurs, Github calls back
the HTTP with the event in payload. Webhooks are easy to implements [Lin07],
because it is a request done by the service/server whenever an event occurs. In
many cases, a large number of events may occur at once, and therefore, peaking
workload may hit the callback host. Hence, the callback host should cope with
such workloads. For OpenWhisk, a feed action is used to configure a webhook on
an external service to fire an OpenWhisk trigger whenever an event occurs.

• Websockets Websocket is a two-way communication protocol over TCP. Web-
sockets stream messages between a server and a client. Unlike HTTP, websocket
communication starts with a handshake, and then, data are streamed between
the client and the server with no additional handshakes. Websockets can be ideal
for real-time communication which makes it a good options for event-streaming.
In the context of OpenWhisk, communication through websockets can be done
through normal actions, but unfortunately, it might not be a good option due to
the limitation of maximum execution time of actions. As a solution, a feed/trigger
provider can be used to open websockets connections on behalf of a user and fire
a trigger whenever an event is streamed (Figure 4.5).

60

4.4 Services Integration

Feed / Trigger Provider

Openwhisk

Event Source

event

Create trigger

event

event

Open connection

Fire trigger

Fire trigger

Fire trigger

Figure 4.5: Websockets using feeds

• Message Queues Message queues have been used for inter-process and inter-
threads communication for a while. The principle behind message queues is to
provide one-way communication through queues, where a publisher publishes
a message to a queue so that a subscribed consumer can pull it from the queue.
In addition to inter-process and threads communication, message queues are
used for asynchronous communication between applications and systems and it is
used as an integration method for heterogeneous and independent components
and applications. Message queues can be used as an event channel where event
producers emit events to the message queue which can be pulled by OpenWhisk.
IBM Message Hub is used by OpenWhisk for this purpose. Till now, this method has
not been activated yet. Figure 4.6 shows an abstracted architecture of messaging
queues.

OpenwhiskService

Figure 4.6: Message queues

61

4 Services Categorization, Integration and Enablement

Message queues introduce a layer between an event producer (a service) and a
consumer (OpenWhisk actions). So that, both the event producer and consumers
are decoupled. Thus, functionalities are separated and self-contained [Cha12;
Joh], which also allows a resilience recovery in failures where the consumer is still
able to get messages after the recovery. Moreover, both the producer and consumer
can be scaled with no effect to each other. Queues persist messages (events) till
the consumer successfully completes processing. Thus, events and message are
kept safe and messages are guaranteed to be delivered and they will be processed
after all. Queues also provide a mean of ordering the events in a way that they
are processed in First In, First Out (FIFO) manner. It also provides asynchronous
communication between event consumers and producers, and therefore, consumers
(OpenWhisk actions) can process the events asynchronously with a different rate
than the production rate. However, polling is still needed by the subscriber to get
the messages from the queue.

4.4.3 Package Structure

As mentioned earlier, OpenWhisk packages contain different actions and feed actions.
When building a package for services that need to have additional treatments and
procedures such as doing polling on behalf of the users, a separate provider service is
needed to achieve that. Packages may get large, and therefore, hard to deploy, test and
integrate into OpenWhisk. Thus, we designed a package template that is assumed to
provide an ideal package structure to organize and standardize the structure of packages
and facilitate the process of integration from OpenWhisk side. Figure 4 shows the
proposed tree structure of packages.

As shown in Listing 4 and Figure 4.7, there are four directories for actions, feed actions,
tests and tools as well as scripts for installation and uninstallation, if necessary, a
directory for a trigger provider. Following is a brief description the different components
and parts that are proposed to include within the package template:

• Actions Actions directory contains all actions in the package which might be im-
plemented in different programming languages that are supported by OpenWhisk.
Naming conventions of actions should comply with camelCase naming pattern and
obey the naming restrictions by OpenWhisk. In addition, unit tests for each action
functionality should be provided and placed in the package test class.

• Feeds Feeds directory contains all feed actions. Naming conventions should be
as the Actions using camelCase as well as complying with OpenWhisk naming
restrictions. feed actions should support the different life cycles of feeds:

62

4.4 Services Integration

1 openwhisk-package-template/
2 CONTRIBUTING.md
3 LICENSE.txt
4 README.md
5 actions
6 hello_world.js
7 feeds
8 feed.js
9 tests

10 credentials.json
11 credentials.json.enc
12 src
13 TemplateTests.scala
14 template_credentials.json
15 tools
16 travis
17 build.sh
18 TriggerProvider
19 src/
20 Dockerfile
21 ...
22 install.sh
23 uninstall.sh

Listing 4: OpenWhisk package template

– Create: Create the subscription and register the trigger to be fired whenever
there is an event.

– update: Update the subscription, which can be achieved by providing the
parameters to be updated.

– Pause: Suspend receiving the events (the binded trigger will not be fired).

– Unpause: Is the opposite to pause, which will reinstate the subscription,
resume receiving the events and fire the binded trigger whenever there is an
event.

Moreover, feed actions should provide a mean of event filtering. The subscription
should specify what are the events to subscribe for rather than subscribing for all
events.

• Tests Unit tests should be provided to test and verify functionality of each individ-
ual action and feed action. Tests may need credentials, and therefore, it can be
placed within a pre-configured credential file to be used by OpenWhisk during the
test phase. In the case of continuous integration (i.e. TravisCI), credentials should
be encrypted first to avoid secrets leaking. Moreover, sequential execution of tests

63

4 Services Categorization, Integration and Enablement

Figure 4.7: Package template content

units should be maintained in case of dependent test units. Otherwise, parallel
unit tests are more efficient.

• Continuous Integration This Package structure template assumes that Travis is
used for continuous integration. Hence, a configuration file for Travis is provided to
automate the the processes of configuring the environment, installing and testing
the package. As mentioned in the previous sub-section, credentials should be
encrypted, which is achieved by either Travis CLI or using any encryption tool
such as OpenSSL.

• Feed Trigger Provider or feed is an application that stands between OpenWhisk and
an event producer to poll or coordinate the process of subscription and receiving
events on behalf of OpenWhisk and fire the registered trigger. As OpenWhisk is
a microservice based system where each microservice is a container, it is a good
practice to containerize the trigger provider. Thus, the processes of integration,
deployment and testing process will be easier and more efficient. Furthermore,
Trigger provider should provide a mean to monitoring. In the context of Open-
Whisk, different components have a monitoring agent (as mentioned in 2.4.3),
and therefore, Trigger Provider should provide a monitoring agent. Sometimes,
we refer to the feed as a trigger provider since it is a source for firing triggers.

• Installation Installing a package is, in fact, a two-steps process that involves
creating a new OpenWhisk package and then creating actions and feed actions
inside the package. While creating the package, a well-written description and the

64

4.5 Challenges

bindings parameters should be defined. Actions in their turn, should be described
as well. Parameters are defined, sample input and output are provided. For feed
actions, same as normal actions except that there is no output. Installation script
should support installing the package to OpenWhisk regardless the environment
used (e.g. local or Bluemix deployment). However, uninstallation script functions
the opposite as it will delete the actions and feed actions and then the package
itself. Moreover, if necessary, installation and unstallation should include a support
for the feed so that it can deploy and undeploy the feed whenever the package is
installed and uninstalled, respectively.

4.5 Challenges

Enabling services and integrating them into OpenWhisk is not a straightforward process.
There are few challenges and issues we faced during the implementing, testing and
integration phases. These challenges are presented as follows:

• Communication: As we mentioned, websockets are proffered over other protocols
in real time streaming. Unfortunately, not all services support websockets. In
addition, webhooks are more suitable for serverless since it does not require any
life-long connections, also unfortunately, not all services support it. Thus, In many
cases such as IMAP package implementation, it requires long-life connections
(IMAP IDLE) to do polling. Therefore, an external web application (feed) is
introduced between OpenWhisk and IMAP service which is not efficient.

• Denial of Service (DOS) Attacks: In case of feeds/trigger providers, a feed is
shared among different users in multi-tenancy-based, and therefore, in case of
polling as an example, the feed does polling to the same service for different users,
such polling requests may be large (all comes from the same feed which has the
same address), hence, the service that the feed polling it, may consider this as a
DOS attack and block it.

• Multi-tenancy: In multi-tenancy architecture, resources are shared, in case of
feeds, feeds are shared also. Therefore, it introduces different complexities such as
managing multi-threading and handling events to fire a trigger in OpenWhisk. In
addition, multi-threading makes the recovery process longer on failures.

• Heterogeneity of Data Types: OpenWhisk supports JSON representation of
messages through HTTP REST. Unfortunately, not all services or event sources
support JSON, and therefore, another layer is introduced between OpenWhisk
and the event producer to map the data-type to JSON. For this purpose, an API
manager such as IBM API Connect can be used.

65

5 Design and Implementation

The previous chapter presented the two main approaches are proposed in this study
to use them in selecting services to be integrated into OpenWhisk. Moreover, a cate-
gorization system for OpenWhisk packages was designed. This chapter applies what
has been discussed so far by 1) introducing the use-case that will be used to propose
services to implement and integrate into OpenWhisk, 2) implementing and integrating
the proposed services by 1, and 3) categorizing the integrated services in 2 based on the
proposed categorization system.

5.1 Early Warning System Scenario

In the previous chapter, two approaches were discussed to propose a list of services to
be integrated, and because the first approach (usage statistics based) is not efficient,
the second approach (scenario-based) was proposed to overcome the issues of the first
approach. The second approach is based on a pre-defined scenario that complies with
the criteria matrix discussed in the previous chapter. A list of scenarios was proposed
and the EWS scenario was selected based on voting.

The use of warning systems can help in reducing damage and increasing the number of
survivors from disasters and accidents such as volcanoes, floods and possible terrorist
attacks. We used the EWS use case in proposing different services to integrate and
enable in OpenWhisk. Figure 5.1 provides an overall overview of EWS scenario.

67

5 Design and Implementation

Figure 5.1: High level architecture of the EWS scenario

As shown in figure 5.1, it consists of different components, different technologies and
services from different domains and vendors and it is applicable in real life. Since
the scenario consists of relatively large components, we will discuss each component
separately:

5.1.1 Sensors and Human Reporting

Disasters such as earthquakes, volcanic eruptions and tsunamis almost occur because of
Earth movements. They are impossible to stop and predict, but, it is possible to limit
the damage and increase the number of survivors [Eva11]. Usually, such disasters start
with light vibrations under the ground, and therefore, it might be possible to predict
the pattern within seconds or minutes before the disaster hits. Currently, there are
many institutions scatter specialized sensors all over the areas that are sensible to Earth
movements. Then, measurements were analyzed and actions were taken based on the
results. In this scenario, the EWS was built on the top of OpenWhisk. A group of
sensors were also scattered and connected to an IOT platform though MQTT protocol,

68

5.1 Early Warning System Scenario

for that, IBM Watson IOT platform was used, which provided a flexible environment
and tools to manage and monitor devices and events. In combination with IBM Watson
IOT Real-Time insights, an OpenWhisk trigger can be fired through webhooks callback
whenever an event is filtered through an Watson IOT Real-Time insights Rule. Reports
in EWS can be either from a person or a sensor as follows:

• Humans can report incidents and possible terrorist attacks through a mobile appli-
cation built for this particular purpose. Users can attach files, write descriptions
and provide the exact location of the incident. The report then will fire an Open-
Whisk trigger through IBM API Connect to secure access to OpenWhisk, decouple
OpenWhisk API and provide analytics capabilities. As soon as the trigger is fired,
the report analyzer action starts analyzing the report.

• There are events from sensors and different kinds of sensors such as temperature
and humidity were involved. When a change occurs, it sends an event through
MQTT to IBM Watson IOT Platform which is connected to IBM Watson IOT Real-
Time insights to send the events to OpenWhisk using Webhooks. The Webhook
will fire a trigger as a callback, and then the trigger then will invoke the report
analyzer action.

5.1.2 Report Analyzer

Not every report is critical, and every report should go through a filter to filter out spam
reports by humans or reports with invalid sensor values or values that rely within the
predefined limits (safe threshold). Such predefined values are defined by professionals.
The valid reports then go through authority confirmation process. Figure 5.2 shows a
data flow diagram for the report analyzer process.

5.1.3 Authority Confirmation

A web or mobile application is used by specialized authorities in each area to check
reports and confirm it. Whenever a report is confirmed, an authorizer specifies the target
of the alarm and code red, inform the hospitals and other first responders in the area
and defines the targeted area. Moreover, if the report is by a human rather than sensors,
a reporter may attach media files, which is retrieved from a back end. The Box storage
service is used for this purpose. A data flow diagram for the process is shown in figure
5.3.

69

5 Design and Implementation

Is the report from a
human or a sensor ?

Start

End

Flag it as
lower priority

Is user in the
blacklist

Send to
authorities

human Yes

Is sensor value
valid and critical ?

Yes

sensor No

No

Figure 5.2: Data flow diagram of the report analyzer process

5.1.4 Alarm and Red Code Firing

In confirming any reports, authorities decide the actions to be done as a consequence to
the report. Such actions may be firing a public or red code alarms, and this includes,
sending Short Message Service (SMS) to the citizens in the targeted area to inform and
guide them.

5.1.5 Rescue Operations

Besides the rescue teams, drones are involved to help them identify survivors’ locations
and provide urgent medical supplementaries Drones are distributed over the targeted
area after dividing it into small squares, and each square is covered by a drone or group
of drones. Drones help locating survivors by taking photos of the covered areas and send
it through OpenWhisk to analyze the taken photos by IBM Watson Cognitive services.

70

5.1 Early Warning System Scenario

Is the report from a human
or a sensor ?

Start

End

Check attachment
Does the report has

attachments?

Confirm and inform
rescue teams and
first responders

human Yes

sensor

No

Is Spam ?No

Yes

Decide actions (e.g.
public alarm, code

red)

Figure 5.3: Authorities confirmation process data flow diagram

Not every drone can be used in rescue operations, it should be picked up based on some
specifications, such as being able to flight for a long time, being programmable, being
able to fly autonomously and able to carry essential medical supplementaries. The flow
diagram of rescue operations using drones is illustrated in figure 5.4.

71

5 Design and Implementation

Is drones
operation
enabled?

Start

End

Divide area Fly dronesYes

No

Is there any
survivors ?

Take Photos

Analyze

Send
Location and

inform
rescue teams

Yes

Still squares to
cover ?

Yes

No

Figure 5.4: Rescue operations flow diagram

In the previous chapter, different integration methods were discussed, including polling
that requires life-long applications that can do polling on behalf of OpenWhisk users.
Such application is called Feed or Trigger Provider. An example of such services, is a
service for incoming emails through IMAP protocol, since IMAP is a protocol rather than
a service by itself. Obviously, it is not possible to use webhooks in this case, and instead,
polling is the best solution. But, polling requires life-long connections to continue poll
for new emails. OpenWhisk actions are executed only on-demand with limited timeout,
and therefore, actions cannot run all the time. As a possible solution, a workaround
can be done by scheduling an action to do polling within small period of time (e.g. 2
seconds) but this leads to an overhead in the context of managing the schedule. Instead,
a separate service that stands between OpenWhisk and IMAP server to do polling on
behalf of the user is required. Such service is called a feed or trigger provider, which is
discussed in details in the .

5.2 Feed / Trigger Provider

A feed or trigger provider is an application that stands between OpenWhisk and a service
or event source to provide persistent connections such as polling for new events. Feeds
are shared among users in a multi-tenancy manner. Figure 5.5 shows an abstracted
overview of feeds, and the use case diagram of feed is in figure 5.6.

72

5.2 Feed / Trigger Provider

Provider OpenwhiskService

Database

Triggers
and user information

Fire Trigger

Subscribe
/ event

Create,
Delete and

Update
Trigger

Figure 5.5: High level architecture of feeds

create trigger

delete trigger

update trigger

pause trigger

unpause trigger

Feed Action

Feed

Figure 5.6: Feed use case diagram

Feed Features and Characteristics: There are common characteristics and features
that we think every feed should have to provide an efficient role in registering, receiving
events and firing triggers:

• Scalable: Providers should be highly scalable to handle different types of work-
loads that are generated by the events producer, the feed is built as a multi-tenant

73

5 Design and Implementation

service which is shared among different OpenWhisk users. Moreover, states within
the feed should be kept externally such as an external database to ease scaling.

• Persistence: Applications may fall at any time due to any failures that may arise,
such as due to unavailability of the target service. Feed should be built on a way
that can be recovered after a failure. Main substance of recovery, is persistence,
where all important information such as users and triggers information are stored
in an external database.

• Logging: In the software world, everything may fail. In huge systems and appli-
cations, tracing the cause of a failure is not an easy thing, thus, logging helps to
trace the failure’s root to fix it. Feed should log everything for every user, so that,
all the generated transactions by the feed are logged.

• Security: Provider should resist and protect the vulnerabilities assets such as users
credentials. A powerful encryption mechanism with a random salt can be used to
protect the secrets. Furthermore, such encrypted data should be stored in a safe
place.

• HTTP REST Endpoints: Besides the above features and characteristics, feeds
communicate with OpenWhisk through HTTP REST, and therefore, feeds should
provide different endpoints to create, pause, unpause and delete triggers. Moreover,
the content-type should be application/JSON.

5.3 IBM Watson IoT Platform Package

From the proposed scenario, the first proposed service to integrate is Watson IOT
platform. The platform is used to manage devices and transfer the events through
MQTT protocol. IBM Watson IOT platform provides a toolkit to build scalable IOT
applications, the toolkit includes gateway devices and devices management, and also it
allows users to process events in realtime. [Tea16a]

Events are sent to the platform through the MQTT messaging protocol, to receive such
events in OpenWhisk, there are two ways, either by using an MQTT Feed [Tho16]
or through another service Watson IOT Real-Time Insights which is connectable to the
platform, and therefore, this package does not contain any feed actions to manage event
subscription. Figure 5.7 shows an overview of the relationship between OpenWhisk and
Watson IOT platform.

74

5.3 IBM Watson IoT Platform Package

IoT Platform

Openwhisk

Register
Device

Add Device
Type

Delete
Device

Delete
Device Type

Send Event

Figure 5.7: Watson IoT platform and OpenWhisk

5.3.1 Actions

• Create Device Type: Create a new device type, a device type is a group of devices
that share common characteristics such as name and description. All parameters
are supported and can be specified to provide highly configurable action and a
better user experience (table 5.1). In the context of the scenario, the devices with
the same type form a device type.

As any other entity within OpenWhisk, this action can be used through OpenWhisk
CLI or through OpenWhisk REST API. Listing 5 shows an example of creating a
new device type using /whisk.system/iot/createDeviceType action.

1 #Invoke create device type action through terminal
2 $ wsk action invoke /whisk.system/iot/createDeviceType -p orgId ’xxxxx’

-p apiKey ’yyyyyy’ -p apiToken ’zzzzzzzz’ -p typeId ’RaspberryPi’ --blocking↪→

1 //Simple Output
2 {
3 "classId": "Device",
4 "createdDateTime": "2016-06-16T10:27:43+00:00",
5 "deviceInfo": {
6

7 },
8 "id": "RaspberryPi",
9 "updatedDateTime": "2016-06-16T10:27:43+00:00"

10 }

Listing 5: Usage example of device type action

75

5 Design and Implementation

Parameter Type Required Description Options Default Example

apiKey string yes Watson IOT platform API
key

- - "XXXXX"

apiToken string yes Watson IoT platform API au-
thentication token

- - "YYYYYYYYY"

orgId string yes Watson IoT platform orga-
nization ID

- - "xvfrw1"

typeId string yes Device Type ID - - "sampleType"
serialNumber string no The serial number of the de-

vice
- - "10211002XYZ"

manufacturer string no The manufacturer of the de-
vice

- - "Texas Instruments"

model string no The model of the device - - "HGI500"
deviceClass string no The class of the device false,true false false
description string no The descriptive name of the

device
- - -

fwVersion string no The firmware version cur-
rently known to be on the
device

- - "1.0"

hwVersion string no The hardware version of the
device

- - "1.0"

descriptiveLocation string no A descriptive location, such
as a room or building num-
ber, or a geographical re-
gion

- - "Office 220, building 16"

metadata object no Metadata of the device - - ""customField1": "custom-
Value1","customField2":
"customValue2""

Table 5.1: Create device type parameters

• Add Device: In order to add a device (sensors in the scenario) into the platform
(Watson IOT platform), it should be associated to a device type. A device in
the platform should be connected to the internet and able to send data to the
cloud. Same as the previous action, all parameters are supported to enhance user
experience (table 5.2).

Usage of this action is not different from others, it can be done through OpenWhisk
CLI as well as OpenWhisk REST API. Listing 6 shows an example of adding a
device into the platform.

• Delete Device Type: Whenever a device type is no longer needed, it can be
deleted, for such purpose another action is implemented within this package to
delete a device type. Table 5.3 shows the parameters of the action and in listing 7
an example of using it.

76

5.3 IBM Watson IoT Platform Package

Parameter Type Required Description Options Default Example

apiKey string yes IOT platform API key - - "XXXXX"
apiToken string yes IoT platform API auth token - - "YYYYYYYYY"
orgId string yes IoT platform org ID - - "xvfrw1"
typeId string yes Device Type ID - - "newDevice"
deviceAuthToken string no Device auth token - - "anUnhackableToken"
deviceId string yes Device ID - - "sampleType"
serialNumber string no Device serial number - - "10211002XYZ"
manufacturer string no Device manufacturer - - "Texas Instruments"
model string no Device model - - "HGI500"
deviceClass string no Device class false,true false false
description string no Device descriptive name - - -
fwVersion string no Device firmware version - - "1.0"
hwVersion string no Device hardware version - - "1.0"
descriptiveLocation string no A descriptive location - - "Office 220, building 16"
long decimal no Longitude in decimal degrees - - 9.038550
lat decimal no Latitude in decimal degrees - - 48.665390
elev decimal no Elevation in meters - - 507
accuracy decimal no Position accuracy in meters - - 5
measuredDateTime string no Location measurement date

and time
- - "2016-05-19T11:36:42.825Z"

metadata object no Metadata of the device - - -

Table 5.2: Add device parameters

Parameter Type Required Description Options Default Example

apiKey string yes IOT platform API key - - "XXXXX"
apiToken string yes IoT platform API auth token - - "YYYYY"
orgId string yes IoT platform org ID - - "xvfrw1"
typeId string yes Device Type ID - - "newDevice"

Table 5.3: Delete device type parameters

1 #Invoke delete device type action through terminal
2 $ wsk action invoke /whisk.system/iot/deleteDeviceType -p orgId ’xxxxx’

-p apiKey ’yyyyyy’ -p apiToken ’zzzzzzzz’ -p typeId ’RaspberryPi’ --blocking↪→

1 //Simple Output
2 {
3 "success": "device type deleted",
4 }

Listing 7: Usage example of delete device type action

77

5 Design and Implementation

1 #Invoke add device action through terminal
2 $ wsk action invoke /whisk.system/iot/registerDevice -p orgId "xxxxx"

-p apiKey "yyyyyy" -p apiToken "zzzzzzzz" -p typeId "RaspberryPi" -p deviceId
"deviceId" --blocking

↪→

↪→

1 //SimpleOutput{
2 "apiToken": "xxxxxxxxx",
3 "clientId": "d:orgId:RaspberryPi:deviceId",
4 "deviceId": "deviceId",
5 "deviceInfo": {
6

7 },
8 "refs": {
9 "diag": {

10 "errorCodes":
"/api/v0002/device/types/RaspberryPi/devices/deviceId/diag/errorCodes/",↪→

11 "logs": "/api/v0002/device/types/RaspberryPi/devices/deviceId/diag/logs/"
12 },

Listing 6: Usage example of add device action

• Delete Device: A device can be unregistered or deleted from the platform,
/whisk.system/iot/deleteDevice action allow users to achieve that. Table 5.4 shows
the parameters and listing 8 provides a usage example.

Parameter Type Required Description Options Default Example

apiKey string yes IOT platform API key - - "XXXXX"
apiToken string yes IoT platform API auth token - - "YYYYY"
orgId string yes IoT platform org ID - - "xvfrw1"
typeId string yes Device Type ID - - "newDevice"
deviceId string yes Device ID - - "sampleType"

Table 5.4: Delete device parameters

• Send Device Event: There are many cases where an event need to be sent on
behalf of a device such as for testing purposes. Watson IOT platform provides an
HTTP REST endpoint to send an event to the platform on behalf of a device. In
other words, an event from an application. Send event action is another action
within IOT package, it takes different parameters as shown in table 5.5 and can be
used as shown in listing 9.

78

5.4 IBM Watson IoT Real-Time Insights Package

1 #Invoke delete device action through terminal
2 $ wsk action invoke /whisk.system/iot/deleteDevice -p orgId ’xxxxxxxx’

-p apiKey ’yyyyyyyy’ -p apiToken ’zzzzzz’ -p typeId ’RaspberryPi’ -p deviceId
"deviceId" --blocking

↪→

↪→

1 //Simple Output
2 {
3 "success": "device deleted"
4 }

Listing 8: Usage example of delete device action through OpenWhisk CLI

Parameter Type Required Description Options Default Example

apiKey string yes IOT platform API key - - "XXXXX"
apiToken string yes IoT platform API auth token - - "YYYYYY"
orgId string yes IoT platform org ID - - "xvfrw1"
typeId string yes Device Type ID - - "newDevice"
deviceId string yes Device ID - - "sampleType"
eventName string yes Event name - - "temperature"
eventBody object yes Event Data - - "’temp’:’42’"

Table 5.5: Send event parameters

1 #Invoke send device event action through terminal
2 $ wsk action invoke /whisk.system/iot/deleteDevice -p orgId ’xxxxx’ -p

apiKey ’yyyyyyyyy’ -p apiToken ’zzzzzzz’ -p typeId ’sampleiot’ -p deviceId
"TareqDevice44" --blocking

↪→

↪→

1 //Simple Output
2 {
3 "success": "event is sent"
4 }

Listing 9: Usage example of send event action

5.4 IBM Watson IoT Real-Time Insights Package

IBM Watson IOT Real-Time Insights is another service by Watson IOT. To analyze events
and data that sent to the platform, Watson IOT Real-Time Insights is used. It provides
different powerful tools to filter and process data and events. As response to incoming
events, different real-time insights actions can be done such as request a webhook to

79

5 Design and Implementation

fire an OpenWhisk trigger as a callback or send an email. The filtering is achieved by
what is called real time insights rules, the filtering is based on the events attributes
such as a value within event payload or context such as its priority. Different real-time
insights actions can be associated to a rule. In other words, the cardinality relationship
between real-time insights rules and real-time insights actions is (one-to-many). Watson
IOT Real-Time Insights package in OpenWhisk contains different actions and a feed
action. Figure 5.8 shows an overall architecture of real-time insights and OpenWhisk
[Tea16b].

In the context of the scenario, IBM Watson IOT Real-Time Insights is used to create a
webhook on the events come from the platform, any event by the sensors are transferred
through MQTT to the platform, IBM Watson IOT Real-Time Insights service then fire an
OpenWhisk trigger to check the values reported by the sensors.

IoT RTI

Openwhisk

Add
message
source

Add
Message
Schema

Delete
Message
Source

Delete
Message
Schema

webhook

Create webhook
/ add or delete

 message source
 or message schema

IoT Platformevents events

Fire Trigger

Figure 5.8: Watson IoT RTI and OpenWhisk

5.4.1 Actions

• Add Message Source: Message source in Watson IOT Real-Time Insights is nothing
but Watson IOT Platform. Currently, the cardinality relationship between the
platform and real-time insights services is one-to-one, where Real-Time Insights
service have only one message source. Add Message Source is an action to facilitate
adding a message source to the real-time insights service. Table 5.6 shows the
needed parameters and in listing 10 an example of using the action through
OpenWhisk CLI.

80

5.4 IBM Watson IoT Real-Time Insights Package

Parameter Type Required Description Options Default Example

iotapiKey string yes IOT platform API key - - XXXXX
iotapiToken string yes IOT platform API auth to-

ken
- - YYYYY

apiKey string yes IOT RTI API key - - XXXXX
authToken string yes IoT platform RTI auth to-

ken
- - YYYYY

orgId string yes IoT platform org Id - - xvfrw1
name string no name of the message source - msgSource +orgId msgSource htpsa
disabled boolean no disable or enable the mes-

sage source
- - sampleType

Table 5.6: Add message source action parameters

1 #Invoke add message source action through terminal
2 $ wsk action invoke /whisk.system/iot-rti/addmessagesource -p orgId

"xxxxx" -p apiKey "yyyyyy" -p authToken "zzzzzzzz" -p typeId "sampleiot" -p
deviceId "deviceId" --blocking

↪→

↪→

1 //Simple Output
2 {
3 "apiKey": "XXXXX",
4 "authToken": "YYYYY",
5 "created": "27 Jun 2016 17:20:35 GMT",
6 "disabled": false,
7 "id": "grNwDDKD",
8 "name": "source1",
9 "orgId": "zxdo1w",

10 "updated": "27 Jun 2016 17:20:35 GMT"
11 }

Listing 10: Usage example of add message source action

• Delete Message Source: In case of the need to delete a message source, this
action can do that. The required parameters as well as a usage example are in
table 5.7 and listing 11 respectively.

Parameter Type Required Description Options Default Example

apiKey string yes RTI API key - - "XXXXX"
apiToken string yes RTI service authentication

token
- - "YYYY"

name string no name of the message source - - "mesgSourceName"

Table 5.7: Delete message source action parameters

81

5 Design and Implementation

1 #Invoke delete message source action through terminal
2 $ wsk action invoke /whisk.system/iot-rti/deletemessagesource -p apiKey

’yyyyyy’ -p authToken ’zzzzzzzz’ -p name ’source1’ --blocking↪→

1 //Simple Output
2 {"success": "message source deleted"}

Listing 11: Usage example of delete message source action

• Add Message Schema; A message schema in Real-Time insights describes events
attributes and it used to parse the incoming events. The required parameters,
sample request and usage are in table 5.8, listing 12 and listing 15 respectively.

Parameter Type Required Description Options Default Example

apiKey string yes RTI API key - - "XXXXX"
authToken string yes RTI service authentication

token
- - "YYYYYYYYY"

name string yes message schema name
(must be unique)

- - "message schema"

items object yes JSON object that describe
the schema

- - "["name": "value", "descrip-
tion": "value", "type": "int",
"subItems": []]"

Table 5.8: Add message schema action parameters

1 #Invoke add message schema action through terminal
2 $ wsk action invoke /whisk.system/iot-rti/addmessageschema -p name

’messageSchemaName’ -p items "$(cat items.json)" -p apiKey ’XXXXXX’ -p
authToken ’YYYYYY’ --blocking

↪→

↪→

1 //Simple Output
2 [{ "name": "value", "description": "value of event", "type": "int",

"subItems": [] }]↪→

Listing 13: Usage example of add message schema action

• Delete Message Schema: Another action within the RTI package is to delete an
existing message schema, the parameters and sample are in table 5.9 and listing
15 respectively.

82

5.4 IBM Watson IoT Real-Time Insights Package

1 //Simple Output
2 {
3 "created": "27 Jun 2016 14:47:03 GMT",
4 "deviceType": null,
5 "format": "JSON",
6 "id": "YPtEVgFY",
7 "items": [
8 {
9 "composite": false,

10 "description": "value",
11 "event": null,
12 "formula": null,
13 "id": 1,
14 "keyIndex": false,
15 "length": null,
16 "metaui": null,
17 "name": "value2",
18 "subItems": [
19

20],
21 "subType": null,
22 "timestamp": false,
23 "type": "int"
24 }
25],
26 "name": "messageSchemaName",
27 "updated": "27 Jun 2016 14:47:03 GMT"
28 }

Listing 12: Message schema request example

Parameter Type Required Description Options Default Example

apiKey string yes RTI API key - - "XXXXX"
authToken string yes RTI service authentication

token
- - "YYYY"

name string yes message schema name
(must be unique)

- - "mesgSchema"

Table 5.9: Delete message schema action parameters

83

5 Design and Implementation

1 #Invoke delete message schema action through terminal
2 $ wsk action invoke /whisk.system/iot-rti/addmessageschema -p name

’messageSchemaName’ -p apiKey ’XXXXXX’ -p authToken ’YYYYYY’ --blocking↪→

1 //Simple Output
2 {
3 "success": "message schema deleted"
4 }

Listing 14: Usage example of delete message schema action

5.4.2 Feed Action

To fire an OpenWhisk trigger as response to events come from the sensors, this feed
action can be used to subscribe for events from Watson IOT Real-Time Insights service
which is connected to Watson IoT Platform.

As we discuessed in section 4.4, Webhooks are preferred over other means, as it has
zero-overhead on the client side (i.e. OpenWhisk action), and in most cases, no need
for feeds. IBM Watson IOT RTI service provides a mean to create a webhook to call
an HTTP endpoint as callback. To create and setup the webhook, a feed action is
implemented. Table 5.10 shows the required parameters and in listing 5.10 a sample
usage.

Parameter Type Required Description Options Default Example

apiKey string yes glsrti API key - - "XXXXX"
authToken string yes RTI service authentication

token
- - "YYYYYYYYY"

schemaName string yes Messages Schema name - - "schema"
condition string yes is a predicate or some con-

ditions joined with binary
logical operators

- - "schema.value>1"

callbackBody string no message body of the trig-
gered event

- " "rule" : "ruleName" , "con-
dition" : "ruleCondition" ,
"message" : "message" "

" "rule" : "ruleName" , "con-
dition" : "ruleCondition" ,
"message" : "message" "

description string no rule description - "A rule created by Open-
Whisk Feed @ current date
and time"

"A rule created by Open-
wshisk feed"

severity integer no severity of the rule, higher
number means lower prior-
ity

1,2,3,4 4 4

Table 5.10: Webhook parameters

84

5.5 IMAP Package

1 # Create OpenWhisk Trigger with webhook feed action
2 $ wsk trigger create rtiFeed --feed /whisk.system/iot-rti/webhook -p

apiKey ’XXXXXXXX’ -p authToken ’YYYYYYYY’ -p schemaName ’schema’ -p condition
’schema.value>1’

↪→

↪→

Listing 15: Usage example of webhook feed action

The webhook creates an RTI rule and an RTI webhook action to fire an OpenWhisk
trigger and associate the created action to the rule, it also supports the different trigger
life cycle event such as create, delete and update. Since pause and unpause are still not
activated within OpenWhisk, we haven’t supported that.

5.5 IMAP Package

Incidents as well can be reported through emails, IMAP is a protocol for incoming
emails, since it is a protocol rather than a service, thus, the integration methods are
limited to polling, and therefore, a feed is needed to stands between OpenWhisk and
IMAP server and do polling to fire an OpenWhisk trigger whenever an email is arrived.
This package contains a feed action to manage the subscription through the feed. Figure
5.9 shows an overall architecture of OpenWhisk IMAP Feed.

5.5.1 Feed Actions

As shown in figure 5.11, the feed action is used by a trigger to subscribe for incoming
emails, the subscription is done through the feed by providing different endpoints to
create, update and delete triggers. Table 5.11 shows the needed parameters for IMAP
feed action.

Parameter Type Required Description Options Default Example

host string yes IMAP server endpoint - - "imap.gmail.com"
username string yes IMAP username - - "YYYYYYY"
password string yes IMAP password - - "XXXXXXX"
mailbox string yes IMAP mailbox - - "INBOX"

Table 5.11: IMAP feed action parameters

85

5 Design and Implementation

1 # Create a trigger with IMAP feed action
2 $ wsk trigger create imapTrigger -p user ’almaamaritest@gmail.com’ -p

pass ’XXXX’ -p host ’imap.gmail.com’ -p mailbox ’INBOX’ --feed
/whisk.system/imap/imapFeed

↪→

↪→

Listing 16: Usage example of creating a trigger with IMAP feed

5.5.2 Feed

As discussed IMAP feed is required to do polling on behalf the user, manage and secure
credentials. Data is encrypted to a avoid sercrets leaking. We have implelented this feed
as a NodeJS web application, and it is deployed to Bluemix [Tea15]. Since polling is not
efficent, IMAP IDLE command allow to have long connection opened to receive new
email, for that purpose, a NodeJS module implementation for IMAP is used to provide a
convinent way to use IMAP IDLE.

The feed contains different endpoints to create, update and delete triggers. It encrypts
users data with a random salt to avoid secrets leaking. Moreover, the feed can recover
and continue working, and therefore, there is no loss in term of functionalities and
data.

Figure 5.9: IMAP package

5.6 IFTTT Package

IFTTT is a business-centric event-driven services provider, it allows users to perform
different IFTTT actions in response to changes on a service. It is different from Open-
Whisk, as IFTTT is business-centric rather than application-centric. In IFTTT, users

86

5.6 IFTTT Package

are not able to execute code as a response to changes on services that are integrated to
IFTTT.

In the context of the proposed use-case (EWS), IFTTT can play various roles such as
alerting users through their mobiles or posting alarms to the different social networks.
Currently, there are around 353 channels (services) that are integrated and can be used.
Therefore, integrating IFTTT with OpenWhisk allows OpenWhisk users to use these
different 353 services that are integrated with IFTTT.

The integration between OpenWhisk and IFTTT is done by implement an IFTTT channel
for OpenWhisk. In IFTTT, there are triggers and actions, same as OpenWhisk, triggers
are events that occurred and generated by a service, triggers are the if part, in the other
hand, IFTTT actions are the that part such as sending an email through Gmail or post a
tweet in Twitter.

The channel contains two IFTTT triggers and actions as follow:

• [Trigger] Triggers Fired from OpenWhisk: Triggers from OpenWhisk can be
used as triggers in IFTTT, the channel allows users to list all OpenWhisk triggers
within user’s namespace and select the wanted trigger. Unfortunately, this trigger
doesn’t provide realtime processing. Instead, another trigger is proposed.

• [Trigger] Notify Action is invoked: To overcome with the burden in the previous
trigger, we introduce an additional action to fire IFTTT trigger, the action is located
within ifttt package. Whenever the action is invoked, different parameters can
be passed, the only required parameter which is the eventName which is used
to differentiate between the different invokactions of the same action. Three
additional parameters can be spcified to provide more flexibility. The notify action
can be associated to an OpenWhisk trigger through an OpenWhisk rule to fire
IFTTT trigger whenever the OpenWhisk trigger is fired.

• [Action] Invoke OpenWhisk Action: Through the channel, list of all actions
within the user’s namespace can be seen, the user then is able to to spcify which
action to invoke whenever IFTTT is fired. Additional parameters can be specified
to pass it to OpenWhisk action.

• [Action] Fire OpenWhisk Trigger: Similar to the previous action, except that,
instead of invoking actions, it allows users to fire OpenWhisk triggers. Also,
additional parameters can be specified to pass it as OpenWhisk trigger payload.

87

5 Design and Implementation

Oauth
Server

IFTTT-Openwhisk
Service

Openwhisk

User

IFTTT

Invoke action
Fire trigger
Pull triggers

Notify for triggers

Trigger firing / action invokation

authenticateauthenticate

Openwhisk IFTTT Channel

Figure 5.10: OpenWhisk channel in IFTTT

5.7 Box Package

Back again to the scenario, reports by humans may contain media files as attachments,
therefore, a storage service is needed to store the attachments and inform the confirmor
about the attachmants.

Box is an online storage service, it provides different services to store and share files. Box
provides a powerful API to interact with the different Box entities. As we mentioned,
we mainly focus on enabling more event sources. For such purpose, we will focus on
this package to provide a mean for sbscribing for events and firing triggers as response
to the events.

Box developers have built two versions of Box API for webhooks, so, two versions of
this package has been implemented:

5.7.1 Webhooks V1

However Box doesn’t provide any API to interact with Box webhooks, Box UI is the only
mean that can be used to interact to Box Webhooks V1. Box webhooks v1 allow users to
subscribe for different events such as file creations and uploads. Through UI, users are
able to to specify the callback endpoint URL as well as the payload format. Webhooks

88

5.7 Box Package

v1 supports 2 main content types for the payload application/x-www-form-urlencoded,
and application/xml but not application/json. The limitation on available content-types
introduces an issue, as OpenWhisk doesn’t accept requests Content-Type rather than
application/json, and therefore, an additional layer between OpenWhisk and Box to map
the content type into application/json is required, this can be done either by using an
API manager such as IBM API Connect or a feed. We have experimented both, using
IBM API Connect as well as implementing a feed.

Since using IBM API Connect as a content type mapper is not a main focus of this thesis,
in this section, we implement a feed to stands between OpenWhisk and Box, the feed
is responsible to subscribe for events on behalf of the user, map the incoming event
callbacks to application/json as well as firing the associated trigger whenever an event is
occurred. Figure 5.11 an architecture of box mapper feed is shown.

As mentioned, the only mean to interact with the webhooks in V1 is the UI, and therefore,
users need to specify the endpoint URL of the feed explecitly, which provides a bad user
experience.

Figure 5.11: Box mapper feed

5.7.2 Box API V2

Recently, Box has annouced Webhooks V2 within their API V2, where developers can
interact with Box Webhooks through REST API. Moreover, webhooks v2 support applica-
tion/json, and therefore, there is no need for any additional layer to map content type.
A drawback of Box Webhooks v2, is that, developers need to specify the id of the box
entities (file or folder) to subscribe for their events. Ids are hard to find and requires
additional steps, as a workaround, we implemented an additional OpenWhisk action
to get information about folders or files by their names, hence, users can pick up the
id and use the webhook feed action to create a trigger to subscribe for events on that

89

5 Design and Implementation

entity. Box webhooks V2 authentication is based on Open Authentication (OAUTH) 2.0,
but unfortunately, users need to update the authentication token regulary.

5.7.2.1 Actions

• Search: As mentioned, Box Webhooks V2 require the exact id of the Box entity
to receive events on it, and therefore, since it is not possible to find the id within
the UI, users can use this action to search for Box entities by name. This action
requires two parameters as shown in table 5.12.

Parameter Type Required Description Options Default Example

query string yes Query body of the search - - "video.mp4"
bearer string yes Box OAuth 2.0 bearer token - - "YYY"

Table 5.12: Search action parameters

5.7.2.2 Feed Action (Webhook)

As mentioned earlier, Box API V2, provides endpoints to create and manage webhooks.
Webhooks V2 allow users to specify the events type to register for, so that, if any of such
events occurred, the registered callback endpoint will be called, in this case, it is an
OpenWhisk trigger. Table 5.13 contains the parameters required by the feed action.

Parameter Type Required Description Options Default Example

targetId string yes Query body of the search - - "video.mp4"
bearer string yes Box OAUTH 2.0 bearer token - - "YYY"

Table 5.13: Box webhooks feed action parameters

90

6 Results and Evaluation

This chapter presents the results and evaluates what we have achieved in this thesis.
The first section (??) shows the results of comparison of the main serverless computing
providers by listing the strengths and weaknesses of each one in different aspects. In the
second section (6.2), the importance of categorizing OpenWhisk packages is highlighted.
Then, the benefits gained from proposed services selection approach and how that
affected the selection process and observed benefits from the proposed scenario are
discussed in section (6.3). Finally, in section (6.4), we go through the integration and
enabling process of the proposed services and observe the benefits and temptations of
integrating them.

6.1 Serverless Computing Providers

?? The first research objective of this thesis, is to analyze and compare the different
main serverless computing services providers. The comparison helps specialized users to
have a look at the different features and characteristics of the main serverless providers
to choose or select the most suitable provider that can meet certain requirements.
Throughout chapter 3, a comparison of different aspects has been conducted. The results
obtained from this comparison are presented and discussed as follows:

• Programming Languages & Runtimes: We found that all of the observed server-
less computing providers support JavaScript programming language through
NodeJS runtime, it is obvious since JavaScript is the most popular used pro-
gramming language. In addition, containers are not supported as a serverless
entity by almost all of the observed providers except OpneWhisk. In conclusion,
the more programming languages and other execution means such as containers
make the serverless provider more powerful, as it provides flexibility about the
runtimes and technologies to use.

• Scalability: Almost all of the observed providers provide automatic and transpar-
ent scalability except Microsoft Azure Functions which provides automatic and
nontransparent scalability where users are able to see the amount and instances of
the resources being used.

91

6 Results and Evaluation

• Concurrent Execution: Another aspect is the maximum concurrent entities (func-
tions or containers) execution. The results show that OpenWhisk and AWS Lambda
limit the maximum concurrent execution to a specific threshold. In contrast, maxi-
mum concurrent execution in Microsoft Azure Functions is limited by the size of
the assigned memory. For Google Cloud Functions and Auth0 Webtasks, they have
no limitations on the maximum concurrent execution.

• Execution Time: One of the most important aspects is the maximum execution
time of serverless codes or containers (called actions in OpenWhisk, functions in
Google Cloud Functions and Microsoft Azure Functions and Webtasks in Auth0
Webtasks). OpenWhisk and AWS Lambda limit the maximum execution time to
300 seconds, the others have no limitations.

• Code Size: OpenWhisk as well as AWS Lambda limit the maximum size of code
entities to 48 MB and 250 MB respectively. On the other hand, Google Cloud
Functions, Microsoft Azure Functions and Auth0 Webtasks have no limits.

• Memory: As one of the main aspects in the comparison, Table table 6.1 shows
that OpenWhisk has the minimum maximum memory size within the observed
serverless computing providers. However, AWS Lambda, Google Cloud Functions
and Microsoft Azure Functions have a maximum size of memory around 1025 MB.

• Dependencies Management: Management of dependencies has been one of
the main features that every provider should offer. Yet, our results indicate
that, all of the providers do not provide an ultimate powerful dependencies
management. OpenWhisk as an example, in JavaScript (NodeJS), supports a
few famous npm modules. Similarly, Auth0 Webtasks supports the most famous
600 NPM modules. Moreover, OpenWhisk also supports packaging dependencies
and codes into a single Java ARchive (JAR). In contrast, Microsoft Azure and
Google Cloud Functions manage dependencies using dependencies descriptors
such as package.json in NPM. AWS Lambda does not support any dependencies
management tools, but it allows developers to upload ZIP packaged of the code
and dependencies.

• Deployments: There are three main approaches to upload code and dependencies
that current serverless computing providers support, 1) either by direct upload
(e.g. CLI), 2) to a storage service or 3) using SCM services. All the observed
providers support 1, AWS Lambda and Google Cloud Functions support 2, but
only Google Cloud Functions as well as Microsoft Azure Functions allow deploying
functions through Source Code Management (SCM) services.

• Versioning: From normal version numbers to branches and tags version controls,
the observed providers versioning techniques vary. Google Cloud Functions and
Microsoft Azure Functions support SCM based version control (branches and

92

6.1 Serverless Computing Providers

tags). However, AWS Lambda provides versioning through what is called Aliases.
OpenWhisk supports simple version numbers.

• Logging: OpenWhisk, Azure Functions and Webtasks provide embedded services
for logging. Unlike the mentioned providers, AWS Lambda and Google Cloud
Functions use external services for logging.

• Openness: Obviously, all of the observed providers except OpenWhisk are closed-
source proprietary systems. As mentioned in section 2.4, OpenWhisk is an open
source project, which benefits from the temptations of the open source community
such as providing a higher quality system due to the pair review and contributions
from the community.

• Pipelining: OpenWhisk is the only provider that provides built-in real-time
pipeline processing through sequence actions. This can help in situations where
different actions need to be executed in sequence as a chain with no change on
the action itself.

• Sharing: Sharing different entities allows users to exchange expertise, speed up
development and increase overall productivity by sharing actions that have been
shared by other users.

Table 6.1 shows a high level comparison over all observed serverless providers. The
table presents the differences between the observed providers in various aspects.

93

6
R

esults
and

E
valuation

Provider IBM OpenWhisk AWS Lambda Azure Functions Google Functions Auth0 Webtasks

Scalability transparent transparent nontransparent transparent transparent
Max of code entity 48 MB 250 MB no limits no limits no limits
Concurrent execution 100 per namespace 100 per region based on the memory no limits no limits
Max execution time 300 s 300 s no limits no limits no limits
Max memory 512 MB 1536 MB 1536 MB 1024 MB -
Dependencies few NPM modules ZIP or JAR NuGet and NPM NPM 600 NPM modules
Deployments code files/JARs code/zip (Lambda, S3) SCM services, FTP and Web

deploys
ZIP (Cloud Storage & Cloud
Source Code Repositories)

code files

Versioning embedded Aliases embedded Cloud Repositories Service
(branches and tags)

-

HTTP support embedded and limited API Gateway full support full support full support
Logging embedded CloudWatch embedded Stackdriver Logging embedded
Authentication Basic Authentication IAM OAuth 2.0 OAuth 2.0 Auth0
Openness Yes No No No No
Pipelining Sequence Action No No No No
Sharing Yes No No No No

Table 6.1: Serverless providers comparison

94

6.2 OpenWhisk Categorization

6.2 OpenWhisk Categorization

Another research objective of this thesis is to design a categorization system for the
existing OpenWhisk packages. Moreover, the designed and proposed OpenWhisk cat-
egorization system should be used to categorize the services integrated in chapter
5.

As mentioned in section 4.2, the designed categorization system is based on Taxonomic
categories rather than Script or Thematic categories since Script and Thematic cate-
gories can form unlimited pairs based on the scripts and themes formed (Section 4.2).
Categorization in general provides the following points of strength:

• Clarity of Knowledge: Clear knowledge about package content and functionalities
is provided where different services share similar content and functionalities. For
instance, consider categorization based on domains, domains containing different
IOT services are grouped into one category. Obviously, this category shows that all
of these services are related to the interaction with events in the world of IOT.

• Accessibility: Easy to find, reach out and use services. In case of a large number
of services, it is hard to find specific services easily, but with categorization, a
service can be reached out through the expected category. For example, consider
the previous mentioned example, the IOT category, to reach out IBM Watson IOT
Platform service, it can be easily predicted that it is located within a category called
“IOT”

• Common Traits: Show packages that share specific traits, a category, regardless
of the similarity it is based on. Example of this are a specific domain, feature,
property or any other similarity. other similarity. This means that all members of
the category members share similar features. Again, consider the example of IOT
category, all of the category members share the same domain, and therefore, have
similar traits.

• Convenience: Categorizing new packages is more convenient, and it allows
defining the boundaries and characteristics of the packages to be categorized. New
packages can be categorized by making few predictions, and therefore, categorizing
new and previously unknown services is convenient.

The proposed categorization system is based on three main similarities that can be
used for taxonomic categories: domain, vendor and openness. The limitation of these
three similarities comes from the fact that most of the services are black-box and
further features are useless and cannot be used properly in categorization. In addition,
multi-hierarchy categorization can be formed based on these three used similarities
(domain, vendor and openness) as explained in section 4.2. The following is the

95

6 Results and Evaluation

resulted categorization of the existing available OpenWhisk packages using the domain
similarity:

• Cognitive Computing: Watson Cognitive Services

• Internet of Things: IBM Watson IOT Platform, IBM Watson IOT Real-Time
Insights

• Workflow and Integration: IFTTT, Rich Site Summary (RSS) Feeds

• Data and Analytics: Weather

• Storage: Box

• Social and Media Platforms: Slack, IMAP, Twilio, SendGrid

• APIs

• DEVOPS: Github

• Communication and Security: IBM Message Hub

• Mobile Computing: IBM Push Notification

6.3 Services Selection

Proposing services to be integrated and enabled within OpenWhisk is one of the main
goals of this thesis, in order to have a well defined list of services to be integrated. So,
users can get maximum benefits from this list. Therefore, we proposed the following
two selection approaches that can be used to propose services to be integrated into
OpenWhisk:

6.3.1 Usage Statistics Based Selection

The first approach is based on the usage statistics of the different services within Bluemix.
However, since the usage statistics of the services within Bluemix are considered as
IBM confidential data, we cannot share it here, and the results of the statistics should
suffice to discuss here. The resulted statistics show that the top used services are within
the same domain, and, they are from the same vendor. Thus, usage based selection
approach cannot be a good option in proposing services with different domains so that
more users can get benefits of it and different vendors to avoid vendor lock-in. In
addition, new services can be more powerful if they are integrated into OpenWhisk to
provide serverless and event-driven services. Therefore, we have decided to propose

96

6.3 Services Selection

another selection approach to overcome the aforementioned issues. It presented as
follows:

6.3.2 Use-Case Based Selection

This approach is proposed to overcome with the issues of the previous approach. It is
based on a pre-defined scenario. To select a good scenario, a criteria matrix was defined
to ensure that the use-case 1) contains different services from different domains and
vendors, 2) can be applicable in real life and 3) can generate different types of workloads
especially peaking workloads. Based on the defined criteria matrix, we proposed a list
of scenarios have been proposed in different areas as follows:

• EWS

• Serverless SDN Controller

• Accidents Monitoring

• Production Lines in Manufacturing

• LEGO Mindstorms Controller

• Traffic Violations

• Serverless Bots

6.3.2.1 Early Warning System

From the proposed scenarios list in section 4.3.3.2, EWS was selected based on voting
(Figure 6.1 shows the voting result) among the different proposed scenarios (Section
4.3.3.2). The voting process was placed after a brainstorming session with a group of
architects and developers within IBM. The scenario is discussed in details in section 5.1.
The following is a list of the proposed services to be integrated:

• Watson IOT Platform Package: To receive events from sensors through MQTT

• Watson IOT Real-Time Insights Package: To fire OpenWhisk triggers whenever
there are event sent to the IOT platform.

• IMAP Package: To execute actions in response to incoming emails.

• Box Storage Package: Reports may include media files which will be stored in Box,
so, authorities can retrieve it whenever it is uploaded.

97

6 Results and Evaluation

• IFTTT OpenWhisk Channel Package: IFTTT allows users to interact with 353
different services in event-driven manner.

Figure 6.1: Scenario votes

The cost of running this scenario was improved by building it to the top of OpenWhisk.
The scenario after all is a bunch of OpenWhisk actions (each represents a microservice)
which are easy to implement, test and integrate. So, effort and time were improved as
well.

The server-based implementation of this scenario can be as a bunch of microservices,
where each component in the scenario is a microservice. In this case, the microservices
will be deployed into Bluemix using boilerplates runtimes. With consideration of
the price model of the runtimes in Bluemix, this scenario assumes that hundreds of
thousands of reports from both sources (human or sensors) can be reported, and
therefore, scalability should be taken care of it. As a minimum requirement, we will
assume that around 5000000 request (report) are created per second with more than
2 instances (i.e. 10 instances) of 512 MB memory each, and this will cost 170 EUR
for each microservice. Since there are two main components in the scenario, they are,
report analyzer and report confirmation. These two components use different services to
receive events, analyze and confirm reports. Thus, a database service, a storage service,
a visual recognition analysis service and IOT services are involved, and prices of these

98

6.4 Services Integration

services are not considered since the prices of using such services are not changed. Since
OpenWhisk does not have a pricing model till now, instead, we will use the average
price from the current main serverless providers (0.173833 EUR per million executions
Gigayte per Second (GBS)). Using the online Serverless Cost Calculator tool [SA]. The
result of the comparison can be summarized as:
Serverless Based: Two Microservices with 10 instances of 512 MB (170 EUR * 2): 340
EUR
Server Based: 4 actions with an estimated execution time 200 milliseconds, memory
512 MB and 1 million requests): 1.28367 EUR

The results show that there is improvement up to 264,86 % in cost and the operations
cost are eliminated at all.

6.4 Services Integration

The main goal of this thesis, is to enrich the services ecosystem of OpenWhisk by integrat-
ing and enabling more services in different domains and from different vendors. Thus, a
list of proposed services to be integrated was made based on the aforementioned ap-
proach. Enriching the ecosystem in general has different advantages and disadvantages
as well, They are summarized as follows:

• Scalability: Integrating services allow events to be handled in OpenWhisk in
a highly scalable manner. Therefore, different factors are improved in case of
converting applications into event-driven nature such as cost and resources con-
sumption.

• Improve Productivity / Flexibility: It allow users to focus more on business logic
instead of managing event producers to subscribe for events or taking care of
different complexities of integrating. Integrated packages simplify the process of
subscription for events either through a Feed or directly from the events producer.
Moreover, different common actions ready to use are provided, which saves users’
time and efforts to build the same common actions.

• Effectiveness: Efficiency depends on the integration method used. In case of
integration methods that require long-life connection, feeds are needed to handle
the connections and manage the different subscriptions. Therefore, more resources
are consumed. But, sharing the feed makes it at the same time more efficient when
comparing it to non-shared feed where each user builds and manages their own
feed.

Following, specific benefits of each integrated services are discussed separately:

99

6 Results and Evaluation

6.4.1 Template Package

After proposing the list of services to be integrated is proposed, integration process
started. Each package represents service integration which contains different entities
(actions, feed actions and if necessary a feed). The integration process may get tricky
due to the different aspects, and therefore, the integrator should take care of it such as
the testing and processes. To organize the integration, testing and processes, a standard
package was designed to provide a mean of standardization and to organize the different
phases. In addition to the mentioned advantages, the template allows integrators to
focus more on the business logic of the integration as an overall rather than taking care
of minor details. It will also eventually lead to a higher level of productivity.

6.4.2 Watson IoT Platform & Watson IoT Real-Time Insights Packages

Watson IOT Platform and Real-Time Insights packages allow users to interact with the
both services and to execute actions in response to events sent through MQTT. Besides
to the overall advantages of enriching the services ecosystem of OpenWhisk, without
this package, users are not able to interact with the both services, and executing code as
response to events in OpenWhisk becomes hard and error prone.

6.4.3 IMAP Package

IMAP package allows users in OpenWhisk to interact with incoming emails through
the IMAP protocol by invoking actions in response to new emails. Besides the general
benefits from integrating and enabling more events in OpenWhisk, IMAP package eases
the process of subscribing for new emails and hides complexities of handling polling and
failures.

6.4.4 Box Storage Package

With Box package, users are able to interact with Box and execute OpenWhisk actions as
a response to events on Box. In this work, we implemented two versions of the package.
The first version is not supported by any Box APIs. Managing Box Webhooks V1 is done
through Box Developers UI, while Webhooks V2 can be managed through Box API V2.
Generally, with this package, firing OpenWhisk triggers as a response to the changes in
Box is doable, and complexities are hidden and parameters are simplified. Unfortunately,
A mapper that stands between OpenWhisk and Box to map data content to JSON was

100

6.4 Services Integration

needed as OpenWhisk only supports application/json and Box Webhooks V1 do not
support application/json, and therefore, more resources are required which introduce
additional overhead to manage. In addition to the mapper, Box Webhooks V1 do not
support setting the callback headers or even do not support any mean of authentication
to the callback handler (in this case OpenWhisk). Box Webhooks V2 (Based on Box
API V2) on the other hand, do not require any additional layers between OpenWhisk
and Box, which eliminate any overhead. Same as Webhooks V1, Webhooks V2 do not
provide any mean to handle authentication to OpenWhisk (callback handler). Moreover,
additional steps are needed to configure Webhooks V2 such as finding the id of the Box
entity (file or folder) to subscribe for events produced by activities on them.

6.4.5 IFTTT OpenWhisk Channel & Package

We have built an IFTTT channel for OpenWhisk. By enabling the channel into IFTTT,
the following multiple benefits could be gained:

• Triggers or actions in OpenWhisk can be fired or invoked as a response to events
from the different +353 services integrated in IFTTT.

• OpenWhisk users are also able to use the +353 different services integrated with
IFTTT. This eliminates the overhead of integrating these 353+ different services
directly into OpenWhisk.

• Cost and resources consumption are significantly improved, as feed might be
required to get events from event producers (services), which obviously eliminates
more resources consumption to handle the feed, and therefore, cost is improved.

101

7 Conclusions and Future Work

Servers have been the base of deployment and running online applications for a while,
but unfortunately, servers are not ideal in many cases due to some disadvantages such
as complexities of managing servers and operations and low utilization. Therefore,
serverless computing is introduced to overcome the complexities and burdens of servers.
Serverless computing allows to execute code, binaries or even containers upon direct
request or as response to events.

To consume and process events by events consumers, consumers should subscribe for
receiving events if the events producers support that, otherwise, other means should be
followed which may require lifelong connections, and therefore, more complexities are
introduced and should be taken care of it such as the limitation on maximum execution
time of serverless entities (i.e. actions in OpenWhisk). Therefore, a separate service
(feed or trigger provider) is needed to handle the long connections to get events from
the events producers. OpenWhisk as an example, has services ecosystem that contains
different packages of services, a package contains actions and feed actions to ease and
facilitate using the services and subscribing for receiving events to fire or invoke trigger
or actions in OpenWhisk.

An original goal of this thesis is to enrich OpenWhisk ecosystem by implementing and
integrating more services, so that, users can use the services and subscribe to events
which produced by these services. In this thesis, we implemented and integrated various
services in terms of domain and vendor. The selection of the services to be integrated
was based on two selection approaches, a usage-statistics and use-case based selection,
each approach has cons and pros, the use-case based approach was followed since it
proposes services that are diverse in domains and vendors.

To integrate more services, an analysis of the different methods that can be used to
integrate such services are done, and in order to standardize and organize the implemen-
tation, integration and testing phases, we have designed and implemented a standard
template, so that, developers can save time, effort and focus more in implementing the
business logic of the integration.

The integrated services then are categorized to provide a mean of grouping and facilitate
reaching out services. For that purposes, a categorization system was designed, we

103

7 Conclusions and Future Work

found that a Taxonomic categories is a best-fit category approach for OpenWhisk, thus,
few similarities we found that they are applicable as base of Taxonomic categories, they
are, domain, vendor and openness. We have used the domain aspect as it is more clear
and understandable by users.

A minor goal of this thesis, is to compare the different main serverless computing services
providers, the comparison was based on different aspects such as system limits and
scalability transparency.

As future work, more services to be integrated and enabled can be achieved. More-
over, to ease the implementation process of the integration itself, in the other words,
implementing the feeds. we propose to design and build an integration framework.

104

Glossary

APACHE TOMCAT is an open source software that powers numerous large-scale, mis-
sion critical web applications across a diverse range of industries and organizations
[Fou16] 30

DEVELOPMENT AND OPERATIONS is a practical term of the collaboration of both
operations and development engineers in the whole product/service life cycle
[Mue10] 27

SOFTWARE CONTAINER is the lightweight and nimble cousin of virtual machine,
where a virtualization in the Operating System level rather than in the hardware
level. [Mer14b] 15

VIRTUAL MACHINE a software application that runs an operating system and other
applications, the virtualization here is by virtualizing the hardware. 15

105

Acronyms

ACID Atomicity, Consistency, Isolation, Durability 26

API Application Programming Interface 31

AWS Amazon Web Services 16

BASE Basically Available, Soft state, Eventual consistency 26

CF Cloud Foundry 52

CLI Command-Line Interface 13

CPU Central Processing Unit 31

DAAD Deutscher Akademischer Austauschdienst 4

DEVOPS Development and Operations 27

DOS Denial of Service 65

EC2 Elastic Compute Cloud 40

EDA Event Driven Architecture 15

EWS Early Warning System 3

FIFO First In, First Out 61

FTP File Transfer Protocol 42, 44, 94

GBS Gigayte per Second 98

HTTP Hypertext Transfer Protocol 25

IAAS Infrastructure as a Service 15

IAM Identity and Access Management 44, 94

IBM International Business Machines 3, 16

IFTTT If This Then That 9

IMAP Internet Message Access Protocol 9

107

Acronyms

IOT Internet of Things 9

JAR Java ARchive 40, 44, 92

JSON JavaScript Object Notation 33

MQTT Message Queuing Telemetry Transport 51

NPM NodeJS Package Manager 24

OAUTH Open Authentication 42, 44, 89

OS Operating System 59

PAAS Platform as a Service 20

PC Personal Computer 50

REST Representational State Transfer 26

RSS Rich Site Summary 96

RTI Real-Time Insights 9

S3 Simple Storage Service 40, 44, 94

SAAS Software as a Service 15

SCM Source Code Management 42, 44, 92

SDK Software Development Kit 35

SDN Software-Defined Networking 56

SMS Short Message Service 69

TCP Transmission Control Protocol 39

UI User Interface 40

URL Uniform Resource Locater 43

108

Bibliography

[AAA+10] M. Ahronovitz, D. Amrhein, P. Anderson, A. De, J. Armstrong, E. A. B,
J. Bartlett, R. Bruklis, M. Carlson, R. Cohen, T. M. Crawford, V. Deolaliker,
P. Downing, A. Easton, R. Flores, G. Fourcade, T. Hanan, V. Herrington,
B. Hosseinzadeh, S. Hughes. Cloud Computing Use Cases - A white paper.
2010. URL: http://cloudusecases.org (cit. on p. 21).

[Azu] M. Azure. Azure WebJobs SDK Extentions. URL: https://github.com/Azure/
azure-webjobs-sdk-extensions (cit. on p. 48).

[Azu16a] M. Azure. Azure WebJobs SDK. 2016. URL: https://github.com/Azure/azure-
webjobs-sdk/ (cit. on p. 48).

[Azu16b] M. Azure. Microsoft Azure Functions Documentation. Microsoft Azure. 2016.
URL: https://functions.azure.com (cit. on p. 48).

[BDGR97] E. Bugnion, S. Devine, K. Govil, M. Rosenblum. “Disco: Running Commodity
Operating Systems on Scalable Multiprocessors”. In: ACM Trans. Comput.
Syst. 15.4 (Nov. 1997), pp. 412–447. URL: http://doi.acm.org/10.1145/
265924.265930 (cit. on p. 28).

[BHJ15] A. Balalaie, A. Heydarnoori, P. Jamshidi. “Migrating to Cloud-Native Ar-
chitectures Using Microservices: An Experience Report”. In: ArXiv e-prints
(July 2015). arXiv: 1507.08217 [cs.SE] (cit. on p. 25).

[Bon00] A. B. Bondi. “Characteristics of Scalability and Their Impact on Perfor-
mance”. In: Proceedings of the 2Nd International Workshop on Software and
Performance. WOSP ’00. Ottawa, Ontario, Canada: ACM, 2000, pp. 195–
203. URL: http://doi.acm.org/10.1145/350391.350432 (cit. on p. 23).

[Cha12] Chance. Top 10 Uses For A Message Queue. 2012. URL: https://www.iron.io/
top-10-uses-for-message-queue/ (cit. on p. 62).

[CL05] H. Cohen, C. Lefebvre. Handbook of Categorization in Cognitive Science.
Elsevier Science, 2005. URL: https://books.google.co.uk/books?id=
5WDfl14RgKMC (cit. on p. 50).

109

http://cloudusecases.org
https://github.com/Azure/azure-webjobs-sdk-extensions
https://github.com/Azure/azure-webjobs-sdk-extensions
https://github.com/Azure/azure-webjobs-sdk/
https://github.com/Azure/azure-webjobs-sdk/
https://functions.azure.com
http://doi.acm.org/10.1145/265924.265930
http://doi.acm.org/10.1145/265924.265930
http://arxiv.org/abs/1507.08217
http://doi.acm.org/10.1145/350391.350432
https://www.iron.io/top-10-uses-for-message-queue/
https://www.iron.io/top-10-uses-for-message-queue/
https://books.google.co.uk/books?id=5WDfl14RgKMC
https://books.google.co.uk/books?id=5WDfl14RgKMC

Bibliography

[DVE+16] S. Daya, N. Van Duy, K. Eati, C. Ferreira, D. Glozic, V. Gucer, M. Gupta,
S. Joshi, V. Lampkin, M. Martins, et al. Microservices from Theory to Practice:
Creating Applications in IBM Bluemix Using the Microservices Approach. IBM
Redbooks, 2016 (cit. on pp. 26, 27).

[Eva11] M. Evans. Natural Disasters. 2011. URL: http ://www.earthtimes .org/
encyclopaedia/environmental-issues/natural-disasters/ (cit. on p. 68).

[FGS11] T. Frey, M. Gelhausen, G. Saake. “Categorization of concerns: a categorical
program comprehension model”. In: Proceedings of the 3rd ACM SIGPLAN
workshop on Evaluation and usability of programming languages and tools.
ACM. 2011, pp. 73–82 (cit. on p. 50).

[FH15] A. FELDMAN, C. HENRY. “Best Practices for Developing Cloud-Native
Applications and Microservice Architectures”. In: The Net Stack (2015).
URL: http://thenewstack.io/best-practices-for-developing-cloud-native-
applications-and-microservice-architectures/ (cit. on p. 23).

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer Publishing Company, Incorporated, 2014 (cit. on pp. 21–23).

[Fou16] T. A. S. Foundation. Apache Tomcat. June 2016. URL: https://tomcat.apache.
org (cit. on pp. 30, 105).

[Goo16] Google. Google Cloud Functions. Google Inc. 2016. URL: https://cloud.
google.com/functions (cit. on p. 48).

[Her] Heroku. The twelve-factor app methodology for building robust SaaS. URL:
http://12factor.net/ (cit. on p. 24).

[Inc13] Z. Inc. Rest Hooks Docuemntation. 2013. URL: resthooks.org/docs (cit. on
pp. 59, 60).

[Inc16] A. Inc. Auth0 Webtasks Documentation. 2016. URL: https://webtask.io/
(cit. on p. 48).

[Joh] L. Johansson. What is message queueing? URL: https://www.cloudamqp.
com/blog/2014-12-03-what-is-message-queuing.html (cit. on p. 62).

[LF14] J. Lewis, M. Fowler. Microservices , a definition of this new architectural term.
2014. URL: http://martinfowler.com/articles/microservices.html (cit. on
p. 26).

[Lin07] J. Lindsay. Web hooks to revolutionize the web. 2007. URL: http://progrium.
com/blog/2007/05/03/web-hooks-to-revolutionize-the-web/ (cit. on
p. 60).

110

http://www.earthtimes.org/encyclopaedia/environmental-issues/natural-disasters/
http://www.earthtimes.org/encyclopaedia/environmental-issues/natural-disasters/
http://thenewstack.io/best-practices-for-developing-cloud-native-applications-and-microservice-architectures/
http://thenewstack.io/best-practices-for-developing-cloud-native-applications-and-microservice-architectures/
https://tomcat.apache.org
https://tomcat.apache.org
https://cloud.google.com/functions
https://cloud.google.com/functions
http://12factor.net/
resthooks.org/docs
https://webtask.io/
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
http://martinfowler.com/articles/microservices.html
http://progrium.com/blog/2007/05/03/web-hooks-to-revolutionize-the-web/
http://progrium.com/blog/2007/05/03/web-hooks-to-revolutionize-the-web/

Bibliography

[Mer14a] D. Merkel. Docker: Lightweight Linux Containers for Consistent Develop-
ment and Deployment. May 2014. URL: http://www.linuxjournal.com/
content/docker- lightweight- linux-containers- consistent-development-
and-deployment (cit. on p. 29).

[Mer14b] D. Merkel. “Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment”. In: Linux J. 2014.239 (Mar. 2014). URL: http:
//dl.acm.org/citation.cfm?id=2600239.2600241 (cit. on p. 105).

[MF07] L. Morgan, P. Finnegan. “Benefits and Drawbacks of Open Source Software:
An Exploratory Study of Secondary Software Firms”. In: Open Source Devel-
opment, Adoption and Innovation: IFIP Working Group 2.13 on Open Source
Software, June 11–14, 2007, Limerick, Ireland. Ed. by J. Feller, B. Fitzgerald,
W. Scacchi, A. Sillitti. Boston, MA: Springer US, 2007, pp. 307–312. URL:
http://dx.doi.org/10.1007/978-0-387-72486-7_33 (cit. on p. 38).

[MG11] P. M. Mell, T. Grance. The NIST Definition of Cloud Computing. Tech. rep.
Gaithersburg, MD, United States, 2011 (cit. on pp. 20, 21).

[Mue10] E. Mueller. What Is DevOps? Aug. 2010. URL: https://theagileadmin.com/
what-is-devops/ (cit. on p. 105).

[Ope16] I. OpenWhisk. OpenWhisk. 2016. URL: https : / / developer. ibm . com /
openwhisk/ (cit. on pp. 32, 39).

[Par79] D. L. Parnas. “Designing Software for Ease of Extension and Contraction”.
In: IEEE Trans. Softw. Eng. 5.2 (Mar. 1979), pp. 128–138. URL: http://dx.
doi.org/10.1109/TSE.1979.234169 (cit. on p. 38).

[Ric] C. Richardson. Microservice architecture patterns and best practices. URL:
http://microservices.io (cit. on p. 25).

[SA] P. Sbarski, the A Cloud Guru Team. Serverless Cost Calculator. URL: http:
//serverlesscalc.com/ (cit. on p. 99).

[Ser16] A. W. Services. Amazon Web Services Lambda. Amazon Web Services, Inc.
2016 (cit. on pp. 40, 47).

[Sho12] E. Shouten. “Rapid elasticity and the cloud”. In: (2012). URL: http://www.
thoughtsoncloud.com/2012/09/rapid-elasticity-and-the-cloud/ (cit. on
p. 23).

[Sut16] P. Suter. “OpenWhisk Deep Dive: the action container model”. July 2016.
URL: http://www.slideshare.net/psuter/openwhisk-deep-dive-the-action-
container-model (cit. on pp. 35, 38).

[Tea15] B. Team. Bluemix Runtimes Docuemntation. Internation Business Machines.
2015. URL: https://console.ng.bluemix.net/docs/cfapps/runtimes.html
(cit. on p. 86).

111

http://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
http://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
http://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dx.doi.org/10.1007/978-0-387-72486-7_33
https://theagileadmin.com/what-is-devops/
https://theagileadmin.com/what-is-devops/
https://developer.ibm.com/openwhisk/
https://developer.ibm.com/openwhisk/
http://dx.doi.org/10.1109/TSE.1979.234169
http://dx.doi.org/10.1109/TSE.1979.234169
http://microservices.io
http://serverlesscalc.com/
http://serverlesscalc.com/
http://www.thoughtsoncloud.com/2012/09/rapid-elasticity-and-the-cloud/
http://www.thoughtsoncloud.com/2012/09/rapid-elasticity-and-the-cloud/
http://www.slideshare.net/psuter/openwhisk-deep-dive-the-action-container-model
http://www.slideshare.net/psuter/openwhisk-deep-dive-the-action-container-model
https://console.ng.bluemix.net/docs/cfapps/runtimes.html

[Tea16a] I. W. I. P. Team. IBM® Watson™ IoT Platform HTTP REST API. International
Business Machines. 2016. URL: https://docs.internetofthings.ibmcloud.
com/swagger/v0002.html (cit. on p. 74).

[Tea16b] I. W. I. R.-T. I. Team. IBM® Watson™ IoT Real-Time Insights HTTP REST API.
International Business Machines. 2016. URL: https://iotrti-prod.mam.
ibmserviceengage.com/apidoc/ (cit. on p. 80).

[Tho16] J. Thomas. OpenWhisk MQTT Feed. 2016. URL: https : / / github . com /
jthomas/openwhisk_mqtt_feed (cit. on p. 74).

[Wag15] T. Wagner. “Running Arbitrary Executables in AWS Lambda”. In: AWS
Lambda blog (2015). URL: https://aws.amazon.com/blogs/compute/
running-executables-in-aws-lambda/ (cit. on p. 40).

[XLR+04] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, L. Zhang. “A Smart Hill-climbing
Algorithm for Application Server Configuration”. In: Proceedings of the 13th
International Conference on World Wide Web. WWW ’04. New York, NY,
USA: ACM, 2004, pp. 287–296. URL: http://doi.acm.org/10.1145/988672.
988711 (cit. on p. 29).

https://docs.internetofthings.ibmcloud.com/swagger/v0002.html
https://docs.internetofthings.ibmcloud.com/swagger/v0002.html
https://iotrti-prod.mam.ibmserviceengage.com/apidoc/
https://iotrti-prod.mam.ibmserviceengage.com/apidoc/
https://github.com/jthomas/openwhisk_mqtt_feed
https://github.com/jthomas/openwhisk_mqtt_feed
https://aws.amazon.com/blogs/compute/running-executables-in-aws-lambda/
https://aws.amazon.com/blogs/compute/running-executables-in-aws-lambda/
http://doi.acm.org/10.1145/988672.988711
http://doi.acm.org/10.1145/988672.988711

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Objectives
	1.4 Thesis Structure

	2 Background
	2.1 Cloud Computing
	2.1.1 Cloud Service Models
	2.1.2 Cloud Deployment Models
	2.1.3 Essential Cloud Computing Characteristics
	2.1.4 Application Workloads
	2.1.5 Cloud-Native Application Properties

	2.2 Microservices Architecture
	2.2.1 Characteristics
	2.2.2 Challenges and Complexities

	2.3 Serverless Computing
	2.3.1 Basic Principle
	2.3.2 Advantages
	2.3.3 Disadvantages

	2.4 IBM Bluemix OpenWhisk
	2.4.1 High Level Architecture
	2.4.2 OpenWhisk Entities
	2.4.3 System Design / Architecture
	2.4.4 OpenWhisk Services Ecosystem
	2.4.5 Specifications and Characteristics

	2.5 Serverless Computing Providers
	2.5.1 Amazon Web Services Lambda
	2.5.2 Google Cloud Functions
	2.5.3 Microsoft Azure
	2.5.4 Auth0 Webtasks
	2.5.5 Overall Comparison

	3 Related Work
	3.1 Amazon Web Services Lambda
	3.2 Google Cloud Functions
	3.3 Microsoft Azure
	3.4 Auth0 Webtasks

	4 Services Categorization, Integration and Enablement
	4.1 OpenWhisk Ecosystem
	4.1.1 OpenWhisk Packages

	4.2 Services Categorization
	4.2.1 Types of Categories
	4.2.2 Categorization Similarities
	4.2.3 OpenWhisk Categorization

	4.3 Services Selection
	4.3.1 Selection Criteria
	4.3.2 Usage-Based Selection
	4.3.3 Use-Case-Based Selection
	4.3.3.1 Use-Case Selection Criteria
	4.3.3.2 Scenarios

	4.4 Services Integration
	4.4.1 Overview
	4.4.2 Integration Methods
	4.4.3 Package Structure

	4.5 Challenges

	5 Design and Implementation
	5.1 Early Warning System Scenario
	5.1.1 Sensors and Human Reporting
	5.1.2 Report Analyzer
	5.1.3 Authority Confirmation
	5.1.4 Alarm and Red Code Firing
	5.1.5 Rescue Operations

	5.2 Feed / Trigger Provider
	5.3 IBM Watson IoT Platform Package
	5.3.1 Actions

	5.4 IBM Watson IoT Real-Time Insights Package
	5.4.1 Actions
	5.4.2 Feed Action

	5.5 IMAP Package
	5.5.1 Feed Actions
	5.5.2 Feed

	5.6 IFTTT Package
	5.7 Box Package
	5.7.1 Webhooks V1
	5.7.2 Box API V2
	5.7.2.1 Actions
	5.7.2.2 Feed Action (Webhook)

	6 Results and Evaluation
	6.1 Serverless Computing Providers
	6.2 OpenWhisk Categorization
	6.3 Services Selection
	6.3.1 Usage Statistics Based Selection
	6.3.2 Use-Case Based Selection
	6.3.2.1 Early Warning System

	6.4 Services Integration
	6.4.1 Template Package
	6.4.2 Watson IoT Platform & Watson IoT Real-Time Insights Packages
	6.4.3 IMAP Package
	6.4.4 Box Storage Package
	6.4.5 IFTTT OpenWhisk Channel & Package

	7 Conclusions and Future Work
	Glossary
	Acronyms
	Bibliography

