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Abstract

Listing a set of points, such that a point gets a higher rank, if none of its coordinates is
smaller, creates a partial order. It is possible to get a ranking without randomly favoring
certain points, by averaging all valid rankings. However, this brute force algorithm is
too slow for more than ten points. To handle more points, we will give a randomized,
approximative approach to solve this problem and analyze the convergence rates of
different strategies.

Kurzfassung

Beim Auflisten einer Menge von Punkten, sodass ein Punkt höher gerankt wird, falls
keine seiner Koordinaten kleiner ist, entsteht eine partielle Ordnung. Es ist möglich,
ein Ranking zu bekommen, ohne willkürlich Punkte zu bevorzugen, indem man über
alle gültigen Rankings mittelt. Jedoch ist dieser Brute Force Algorithmus zu langsam
für mehr als zehn Punkte. Um mehr Punkte bearbeiten zu können stellen wir einen
randomisierten, approximativen Ansatz vor, um dieses Problem zu lösen und analysieren
die Konvergenzraten verschiedener Strategien.
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1 Introduction

Listing n points in Rd, where a point gets a higher rank, if none of its coordinates is
smaller than those of another one, creates a partial order (PO). This way, many rankings
can be found.
Averaging all possible rankings gives a ranking that doesn’t randomly favor certain points.
An exact average ranking can be computed by checking for all possible permutations, if
they are conform with the given PO. For a PO with n elements, there are n! permutations,
so this brute force algorithm runs in time Θ(n!). This leads to a very fast increase in run
time and make the algorithm unsuitable for POs with more than 10-15 elements. To
handle more elements, we take a randomized, approximative approach.
Existing methods give a uniform sample ranking, by swapping two randomly chosen
neighbors Θ(n3 log n) times. Averaging many of these rankings will result in a ranking,
that has a high probability to be close to the exact average ranking.
We will give an implementation of this method as a POSIX conform C99 library, that
is accessible by an R-package. Using this, we will analyze the convergence rate of this
method. Additionally, we will try to find faster sampling strategies, compare them to our
original method and adapt our implementation accordingly.
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2 Related Work

Karzanov and Khachiyan [KK91] developed a Markov chain Monte Carlo (MCMC)
algorithm that shuffles a linear extension of a PO to generate an approximately uniform
sample of all its linear extensions. This method uses a Markov chain, known as the
Karzanov–Khachiyan Markov chain, that swaps a randomly chosen element and its
successor with probability 1

2 , if the resulting permutation is still a valid linear extension
of the PO. They showed that after 8n5 log |Ω|

ϵ
) ≤ O(n6 log n) transitions, where |Ω| is the

number of linear extensions, the Karzanov–Khachiyan Markov chain converges to its
equilibrium distribution and the resulting linear extension is approximately uniform.

Bubley and Dyer [BD99] gave a tighter bound for a variation of the Karzanov–Khachiyan
Markov chain: Instead of a uniform distribution, they chose a parabolic distribution to
select the element that is to be swapped. They used path coupling to give an upper bound
of O(n3 log n) for their variation and O(n4 log2 n) for the original Karzanov–Khachiyan
Markov chain.

Wilson [Wil04] generalized Bubley and Dyer’s path coupling method by adding weights
and showed that the Karzanov–Khachiyan Markov chain also mixes in O(n3 log n).
Though Wilson’s upper bound of ( 4

π2 + o(1))n3 log n for the Karzanov–Khachiyan Markov
chain is about 22% higher than Bubley and Dyer’s bound of (1

3 + o(1))n3 log n for their
variation, the Karzanov–Khachiyan Markov chain is still a better choice for practical
use, since uniform sampling can be done much more efficiently than sampling from a
parabolic distribution.
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3 Approach

In this chapter we will take a closer look on the methods and algorithms that we’ll use
to compute average rankings.
We’ll take advantage on previous research about uniform sampling of linear extensions
to compute a certain number of random rankings, depending on the desired accuracy
and the size and variance of the PO. Then we’ll use these rankings to compute their
average and give the option to plot the result in a Hasse Diagram.
For the appraisal of this method we will also give two other strategies to compute
random rankings. While the first one is a non-uniform variant of the original algorithm,
the second one picks a random leaf from the topological graph of the PO.

3.1 Partial Order

The first thing we need to do is to extract the corresponding PO from a set S of n points
Pi

S = {P1, P2, ..., Pn}

with Pi ∈ Rd

Pi = (xi,1, xi,2, ..., xi,d)

A point Pa shall be ranked higher than point Pb if none of its coordinates is smaller than
the corresponding coordinate of Pb.

Pa > Pb ⇐⇒ ∀xa,i : xa,i ≥ xb,i

Now we can create a n × n matrix M that represents the PO with

Mi,j =
{

1, if Pi > Pj

0, else

}

This matrix can be used for a fast access to the PO.
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3 Approach

3.2 Uniform Sampling

To get a random ranking we will use an algorithm based on a method developed by
Karzanov and Khachiyan [KK91].
Their approach was to give a Markov chain with an equilibrium distribution equal to the
desired distribution. Running this Markov chain for several times on a starting ranking
creates a MCMC algorithm, that returns a random ranking by shuffling the starting
ranking. In each step of this Markov chain, known as the Karzanov–Khachiyan Markov
chain, a random element of the ranking is selected and and swapped with its successor
with probability 1

2 , if the resulting ranking is still conform with the PO.
Though the result can never be completely independent from the starting ranking,
Wilson [Wil04] showed that Θ(n3 log n) steps are enough to get an approximately
uniform sample of all valid linear extensions.

3.3 Starting Ranking

For the computation of a random ranking, our algorithm needs a starting ranking as
input. We’ll take a deterministic approach to this, since the impact of the starting ranking
is negligible, if we take enough steps of the Markov chain. To reduce this effect even
more, we will use this deterministic ranking only for the first random ranking, each
following computation will take the result of the previous one as input.
For the first starting ranking, we will use the topological graph of the PO and pick in
each step the leaf with the smallest index and remove it from the graph.

3.4 Averaging

Once we have the required number of random rankings, the averaging process is rather
simple: For each element we add the ranks given by the random rankings and divide the
result by the number of rankings. The difficult part is here to decide how many random
rankings we need to get close enough to the exact average ranking. As default values
for the accuracy we will choose for each element the standard deviation s = 0.5 and the
probability p = 90% to keep the error er < s, because this will give us a good trade-off
between run time and accuracy. Nevertheless these parameters can be customizes if
the situation requires a higher focus on accuracy or run time, at the cost of the other.
Since we don’t know the actual distribution for each element of the PO, we can only
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3.5 Other Sampling Strategies

approximate the required number of rankings. An estimation for this can be found with
Chebyshev’s inequality:

Pr[|X − µ| < k] ≥ 1 − σ2

k2

Which leads for our case to

Pr[er < s] ≥ 1 − σ2
n

s2

p ≥ 1 − σ2
n

s2

σ2
n ≥ (1 − p)s2

where σ2
n is the variance of the rank after taking the average of n rankings. For the

computation of σ2
n we need the basic variance σ2

σ2
n = σ2

n

Without the distribution we also don’t know the exact variance, but we can easily get the
range of possible ranks for each elements from the PO. By assuming uniform distribution
within this range we can get an approximation of the exact variance:

σ2 = (b − a + 2)(b − a)
12

with minimum rank a and maximum rank b. It can easily be seen that this will give us
an upper bound of the variance: If element e is incomparable to any other element that
may appear within its range, the distribution will be uniform. For each element in range
that is greater or less than e, it will be less likely for e to get close to the maximum or
minimum, reducing its variance.

n = (b − a + 2)(b − a)
12(1 − p)s2

3.5 Other Sampling Strategies

3.5.1 Non-Uniform Variation

To Reduce the computation time of each random ranking, we simply reduce the steps
of our Markov chain. This will make each individual ranking non-uniform, because it
depends on a higher rate on the starting ranking. But since we have a high amount of
rankings and take the each resulting ranking as starting ranking for the next one, we
expect this to converge eventually, tough we might need more rankings to get a decent
average.
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3 Approach

3.5.2 Picking form the Topological Sorting

Another strategy we try is to pick random leafs from the topological sorting of the PO,
similar to our deterministic algorithm for the starting ranking. For this, we will create
a topological graph to represent the PO and determine for each element if they have
an edge to any other element. If not, they are a possible candidate to be picked as next
element in the ranking. We will use two different methods to pick the next element:
For the first one, it will be selected uniformly from all leafs. The second method will
use a weighted approach, where each possible candidate has a basic weight of 1, plus 1
additional weight for each incoming edge.

3.6 Brute Force

For small POs with up to 10 elements we will use a brute force algorithm to compute
an exact average ranking. In spite of its high computation time of Θ(n!) it is still fast
enough to solve small POs almost instantly.
Our brute force algorithm checks for each possible permutation, if they are a valid
linear extension of the PO. For each element, we add their positions in all valid linear
extensions and compute its average.

18



4 Appraisal

In this chapter we will evaluate the accuracy of each method and compare their conver-
gence rate. We will take a look at different test cases and give a plot of the convergence
rate regarding the computation time, the number of random rankings and the amount
of random numbers.
The exact ranking will usually be unknown, so we can’t use the error of the result for
the convergence rate. Therefore, we will use the average difference between the rank
of the same element in two rankings as a measure for the convergence rate. For better
comparison of each method, we won’t take the difference after each additional ranking,
but compare the current average rankings after a certain time step. The reason we do
this is that we have a huge difference of computation time for random rankings between
different methods. Since the impact of a single ranking is highly influenced by the
number of already created rankings, methods with a low computation time of random
rankings would appear to converge much faster.
All test cases have been calculated on an Intel Core i5-4690 processor and may vary,
depending on the CPU.

We will compare the following methods:

• The original Karzanov–Khachiyan Markov chain, that gives uniform rankings by
swapping Θ(n3 log n) elements

– [nˆ3log(n)]

• Three non-uniform variations of the Karzanov–Khachiyan Markov chain with log n,
n and n2 swaps

– [log(n)]

– [n]

– [nˆ2]

• Randomly picking leafs from the topological graph, with and without weights

– [Top] (non-weighted)

– [TopW] (weighted)

19



4 Appraisal
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Figure 4.1: Total Order

The first case we will look at is a total order. As expected, all methods need only one
step to give the exact average, since there is only one possible random ranking that each
of them can produce. For the plotting of the convergence rate, the numbers of iterations
have been artificially raised to 10, because we don’t have any convergence for a single
ranking. There it can easily be seen that each line is stuck to zero, because there is
absolutely no change within their rankings.
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Figure 4.2: Small Variance PO

Our second test case is a PO with a rather small variance. Each method converges quite
fast to zero. While our original Karzanov–Khachiyan Markov chain needs some time to
converge, the other methods have already produced enough random rankings after the
first measure point to get very close to zero. This suggests that our original algorithm is
overall slower than the other approaches.
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4 Appraisal
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Figure 4.3: Medium Variance PO

Our next case seems like a rather simple PO, but nevertheless, it has a much higher
variance and needs much more random rankings to get an accurate average than the
previous cases. Therefore, this will give us a more distinctive view on the different
methods. As before, the uniform Karzanov–Khachiyan Markov chain needs the least
number of random rankings to give a good approximation, but because each uniform
sample needs a lot of computation time and random numbers, this method is overall
slower than the others and requires more random numbers.
The non-uniform Karzanov–Khachiyan Markov chains are all a bit faster and require less
random numbers. While there isn’t much variation between the different non-uniform
Markov chains, the method with a logarithmic number of swaps needs fewer random
than the others, while the one with a square number is a bit faster. Reducing the number
of swaps decreases the quality of each single random ranking and requires to compute
more of them, but each ranking needs less computation time and random numbers.
The topological approaches appear to require about the same number of random rankings
as the Karzanov–Khachiyan Markov chain with a square number of swaps, but are able to
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compute each ranking much faster and show the best convergence rates. The weighted
variant converges slightly faster than the non-weighted approach.
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0 1000 2000 3000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

time in ms

av
er

ag
e 

ch
an

ge
 a

fte
r 

5m
s

0.0e+00 5.0e+07 1.0e+08 1.5e+08

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

random numbers

av
er

ag
e 

ch
an

ge
 a

fte
r 

5m
s

1e+00 1e+02 1e+04 1e+06 1e+08

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

rankings

av
er

ag
e 

ch
an

ge
 a

fte
r 

5m
s

Partial Order

1

1011

12

13

14

15

16

1718

19

2

20

21

2223

24

25

26

27

2829

3

30

4

5

6

7

8

9

n^3log(n) log(n) n n^2 Top TopW

Figure 4.4: Fix Random PO

The previous cases were all artificially constructed POs. Now we will see if our algorithms
will still converge, if we take a random PO instead.
The results look quite similar to the previous one. Each method needs more time and
random numbers to converge and the differences between them got a bit wider, but the
characteristic features of each methods are the same as before. This suggests that these
will converge even for POs with high variance and we didn’t just hit a convenient PO.
But since one random PO isn’t enough to give representative feedback, we will take a
look at a higher number of different random POs in the next case.
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Figure 4.5: Average of 100 Random POs

We see here the average convergence rate of 100 different random POs, created from
sets of 30 points with dimensions between 2 and 5 and average dimension of 3.46. On
average, an element of the POs had a variance of 46.84. Again, we get a plot similar
to the previous cases, which supports our assumptions. The topological approach is by
far the fastest, the uniform Markov chain converges rather slow and the non-uniform
variants lie in between.
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Figure 4.6: Exact Deviation

So far, we could see that each method converges, but we don’t know if they actually
converge to correct ranks that an exact method would give. Since Wilson [Wil04]
proofed that the original Karzanov–Khachiyan Markov chain gives uniform samples after
Θ(n3 log n) steps, it’s obvious that averaging many of these rankings will converge to the
correct average, but we don’t know about the other strategies, yet. So this time we will
limit the size of our POs to ten elements. These will be small enough for our brute force
algorithm to compute an exact average. Now we can compare the average ranking in
each step with the exact ranking and use its average deviation for the convergence rate.
This allows us to check if each method converges to the exact average ranking.
The given plot shows the average convergence rate of 100 different POs of size 10,
dimensions 2 and an average variance of 0.98. It can easily be seen that the methods
based on the Karzanov–Khachiyan Markov chain each converges to zero, so they will
eventually give an average ranking that is close to the exact one. The methods based
on the topological graph, however, converge to a value different from zero. While the
weighted approach give considerably better results than the non-weighted one, but

26



both of them are rather unreliable. The improved accuracy of the weighted approach
suggests, that there may be weightings that give an even better accuracy, or that even
hits the exact average for all possible POs, but finding such a weighting would exceed
the bounds of this work.

Results

We have seen in our test cases, that the original Karzanov–Khachiyan Markov chain
is slower and needs more time to converge than the other methods. Picking from the
topological graph showed very fast convergence rates, but didn’t converge to the exact
average, making it unreliable. The non-uniform variants of the Karzanov–Khachiyan
Markov chain each converged faster than the uniform one. While each of them showed
similar convergence rates, the variant with a square number of swaps was a bit faster.
We can use these information to optimize our implementation. We switched to a non-
uniform sampling strategy by reducing the number of swaps to Θ(n2) and increased the
number of random rankings, so we don’t lose accuracy.
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5 Conclusion

We successfully implemented our method to approximate the average ranking of a
partial order. We used an approach by Karzanov and Khachiyan [KK91] for uniform
sampling, that shuffles a ranking, by swapping two random neighbors Θ(n3 log n) times,
until it is approximately uniform. Averaging many of these samples gives a ranking,
that is close to the exact average. Reducing the number of swaps also reduces the
computation time for each sample, but increases the number of required samples to
get a decent result, because the samples are no longer uniform. An even faster way to
sample rankings is to pick random leafs from the topological graph of the PO. Comparing
the convergence of these methods showed, that the topological method is faster than
the others, but gives unreliable result, since it converges to a ranking that differs from
the exact average. Adding weight improved its accuracy, but still didn’t give reliable
results. The non-uniform variants of the Karzanov–Khachiyan Markov chain, however,
converged correctly and faster than the uniform approach. Adapting our implementation
accordingly gave it a considerable improvement of run time, enabling it to handle
even highly variant POs with about 100 element. Each of these methods is highly
parallelizable, since each sample ranking can be computed in a separate thread.
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6 Future Work

So far, our algorithm can handle partial orders with up to 100 elements. This could be
improved by further optimizing the algorithms, that generate the random rankings, or
by finding tighter bounds for the variances, reducing the number of required rankings.
However, the potential improvement here is limited and its unlikely that the algorithm
will be able to handle much more elements this way, but it can decrease the required
time.

Picking random elements uniformly from the topological sorting proved as an unsuitable
method for the generation of random rankings. Our weighted approach gave better
results, but was still not suited for this task. It could be an interesting challenge to try
and find a weighting that represents the actual distribution and leads to a convergence
to the correct average ranks, but it is unclear if such a weighting even exists, that fits
all possible partial orders. Finding an appropriate weighting would greatly improve the
speed to compute average rankings, since this approach showed a promising run time
and convergence rate.
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A R-Package Documentation

This appendix shows the documentation of our implementation. This R-package accesses
the functions of the C-library to compute average rankings. The actual computations
are executed by the C-library, because they require a lot of time and this can be done
very efficiently by C. R is generally much slower, but it can access the functions much
more conveniently. It also offers good plotting functionalities for the appraisal of our
algorithms.
The C-library can also be accessed outside of R, but it is recommended to use this
package for convenient access.
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Package ‘AverageRankings’
November 10, 2016

Type Package

Title Compute an Approximated Average Ranking of a Partial Order

Version 1.0.0

Author Tim Zeiss

Maintainer Tim Zeiss <timzeiss@hotmail.de>

Description
Computing exact average ranking usually reaches its limit at about 10 elements. With this pack-
age we give an approximative approach to this problem and raise the bound to about 100 elements.

License LGPL

LazyData TRUE

Imports relations

Suggests Rgraphviz

RoxygenNote 5.0.1

R topics documented:

bruteForce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
getAverageRankingOptimized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
getAverageRankingUniform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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2 getAverageRankingOptimized

bruteForce Brute force calculation of an average ranking

Description

Compute the exact average ranking of a partial order by a brute force algorithm

Usage

bruteForce(matrix)

Arguments

matrix The patrial order as a matrix

Details

Gives an exact average ranking by using a very slow brute force algorithm. Therefor, it should only
be used for small partial orders with up to about 10 elements.

Value

the average ranking of the patrial order

Examples

bruteForce(matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,1,1,1,1,1,0), nrow=6))

getAverageRankingOptimized

Compute an average ranking

Description

Compute an average ranking

Usage

getAverageRankingOptimized(points, dim, matrix, s, p, i, threads, startSeed,
plot = FALSE)

Arguments

points A set of points of dimension dim as a single vector

dim The dimenstion of the points

matrix A partial order given as a matrix

s Desired standard deviation

p Desired probability to keep the error within the standard deviation

i Desired number of random rankings to compute the average ranking
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threads The desired number of cuncurrent threads

startSeed Seed to be used by the RNG for the first thread. The following threads will
choose their seed according to the startSeed

plot Gives the option to plot the Hasse Diagram of the partial order

Details

This is the main function of the library. It calls all the necessary subfunctions to compute an average
ranking. It takes as input either a partial order as a matrix or a set of points together with their
dimension. The number of rankings to be averaged can either be chosen by the user or will be
calculated according to the standard deviation and its probability. By default, the standard deviation
is set to 0.5 and the probability to keep within its bound to 90 If needed, the Hasse Diagramm of
the partial order can be plottet, showing the resulting average ranks for each element.

getAverageRankingUniform

Compute an average ranking

Description

Compute an average ranking

Usage

getAverageRankingUniform(points, dim, matrix, s, p, i, seed)

Arguments

points A set of points of dimension dim as a single vector

dim The dimenstion of the points

matrix A partial order given as a matrix

s Desired standard deviation

p Desired probability to keep the error within the standard deviation

i Desired number of random rankings to compute the average ranking

seed Seed to be used by the RNG

Details

LEGACY FUNCTION: It is recommended to use "gerAverageRankingOptimized" instead. This
function computes an average ranking by averaging uniform sample rankings. Siince uniform sam-
pling is rather slow, an optimized version of this function has been created.



4 getConvPlotNew

getConvMarkov Gives the convergence rate for a given partial order (DEBUGGING
FUNCTION)

Description

Gives the convergence rate for a given partial order (DEBUGGING FUNCTION)

Usage

getConvMarkov(points, dim, matrix, s, p, i, seed, timeStep, o)

Arguments

points A set of points of dimension dim as a single vector

dim The dimenstion of the points

matrix A partial order given as a matrix

s Desired standard deviation

p Desired probability to keep the error within the standard deviation

i Desired number of random rankings to compute the average ranking

seed Seed to be used by the RNG for the first thread. The following threads will
choose their seed according to the startSeed

timeStep Time in ms after which a sample for the convergence rate is taken

o The number of swaps that the Markov chain takes. Should be given in relation
to the size of the PO

getConvPlotNew Plots the average convergence rate of a given random partial orders
after several runs (DEBUGGING FUNCTION)

Description

Plots the average convergence rate of a given random partial orders after several runs (DEBUG-
GING FUNCTION)

Usage

getConvPlotNew(points, dim, matrix, s, p, i, seed, timeStep, plotStart, nRuns)
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Arguments

points A set of points of dimension dim as a single vector

dim The dimenstion of the points

matrix A partial order given as a matrix

s Desired standard deviation

p Desired probability to keep the error within the standard deviation

i Desired number of random rankings to compute the average ranking

seed Seed to be used by the RNG for the first thread. The following threads will
choose their seed according to the startSeed

timeStep Time in ms after which a sample for the convergence rate is taken

plotStart Specifies the window for the plots

nRuns The number of runs

getConvPlotRand Plots the average convergence rate for a number of random partial
orders (DEBUGGING FUNCTION)

Description

Plots the average convergence rate for a number of random partial orders (DEBUGGING FUNC-
TION)

Usage

getConvPlotRand(s, p, i, seed, timeStep, plotStart, nRuns)

Arguments

s Desired standard deviation

p Desired probability to keep the error within the standard deviation

i Desired number of random rankings to compute the average ranking

seed Seed to be used by the RNG for the first thread. The following threads will
choose their seed according to the startSeed

timeStep Time in ms after which a sample for the convergence rate is taken

plotStart Specifies the window for the plots

nRuns The number of random partial orders to be plotted



6 getConvTop

getConvPlotRandEx Plots the average deviation from the exact average ranking for a num-
ber of random partial orders (DEBUGGING FUNCTION)

Description

Plots the average deviation from the exact average ranking for a number of random partial orders
(DEBUGGING FUNCTION)

Usage

getConvPlotRandEx(s, p, i, seed, timeStep, plotStart, nRuns)

Arguments

s Desired standard deviation
p Desired probability to keep the error within the standard deviation
i Desired number of random rankings to compute the average ranking
seed Seed to be used by the RNG for the first thread. The following threads will

choose their seed according to the startSeed
timeStep Time in ms after which a sample for the convergence rate is taken
plotStart Specifies the window for the plots
nRuns The number of random partial orders to be plotted

getConvTop Gives the convergence rate for a given partial order (DEBUGGING
FUNCTION)

Description

Gives the convergence rate for a given partial order (DEBUGGING FUNCTION)

Usage

getConvTop(points, dim, matrix, s, p, i, seed, timeStep)

Arguments

points A set of points of dimension dim as a single vector
dim The dimenstion of the points
matrix A partial order given as a matrix
s Desired standard deviation
p Desired probability to keep the error within the standard deviation
i Desired number of random rankings to compute the average ranking
seed Seed to be used by the RNG for the first thread. The following threads will

choose their seed according to the startSeed
timeStep Time in ms after which a sample for the convergence rate is taken
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getConvTopWeight Gives the convergence rate for a given partial order (DEBUGGING
FUNCTION)

Description

Gives the convergence rate for a given partial order (DEBUGGING FUNCTION)

Usage

getConvTopWeight(points, dim, matrix, s, p, i, seed, timeStep)

Arguments

points A set of points of dimension dim as a single vector

dim The dimenstion of the points

matrix A partial order given as a matrix

s Desired standard deviation

p Desired probability to keep the error within the standard deviation

i Desired number of random rankings to compute the average ranking

seed Seed to be used by the RNG for the first thread. The following threads will
choose their seed according to the startSeed

timeStep Time in ms after which a sample for the convergence rate is taken

getIterations Compute the required number of Iterations

Description

Compute the required number of Iterations

Usage

getIterations(matrix, s, p)

Arguments

matrix A partial order as matrix

s Standard deviation

p Probability

Value

The required Iterations to reach the specified s and p

Examples

getIterations(matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,1,1,1,1,1,0), nrow=6), 0.5,



8 getVariances

getTopSort Compute a deterministic ranking of a partial order from its topological
sorting

Description

Compute a deterministic ranking of a partial order from its topological sorting

Usage

getTopSort(matrix)

Arguments

matrix The partial order as a matrix

Details

This function computes a deterministic ranking of a partial order, that is needed as starting ranking
to compute a random ranking

Value

A deterministic ranking of the partial order

Examples

getTopSort(matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,1,1,1,1,1,0)))

getVariances Computes the approximated variance for each element of the partial
order

Description

Computes the approximated variance for each element of the partial order

Usage

getVariances(matrix)

Arguments

matrix The partial order as a matrix

Value

The approximated variance of each element as a vector

Examples

getVariances(matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,1,1,1,1,1,0), nrow=6))
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plotPO Plot a partial order

Description

Plot the Hasse diagram of the partial order. If provided, it also displays the (average) rank of each
element.

Usage

plotPO(matrix, ranks)

Arguments

matrix The partial order as a matrix

ranks The rank of each elemetn as a vector

Examples

plotPO(matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,1,1,1,1,1,0), nrow=6))

pointsToMatrix Convert a Set of points into its partial order as a matrix

Description

Convert a Set of points into its partial order as a matrix

Usage

pointsToMatrix(points, dim)

Arguments

points A set of points of dimension dim as a single vector

dim The dimenstion of the points

Value

The partial order of the points as a matrix

Examples

pointsToMatrix(c(1,6,5,5,3,3,1,4,2,2,0,0), 2)



Index

bruteForce, 2

getAverageRankingOptimized, 2
getAverageRankingUniform, 3
getConvMarkov, 4
getConvPlotNew, 4
getConvPlotRand, 5
getConvPlotRandEx, 6
getConvTop, 6
getConvTopWeight, 7
getIterations, 7
getTopSort, 8
getVariances, 8

plotPO, 9
pointsToMatrix, 9

10





Bibliography

[BD99] R. Bubley, M. Dyer. “Faster random generation of linear extensions.” In:
Discrete mathematics 201.1 (1999), pp. 81–88 (cit. on p. 13).

[KK91] A. Karzanov, L. Khachiyan. “On the conductance of order Markov chains.” In:
Order 8.1 (1991), pp. 7–15 (cit. on pp. 13, 16, 29).

[Wil04] D. B. Wilson. “Mixing times of lozenge tiling and card shuffling Markov chains.”
In: Annals of Applied Probability (2004), pp. 274–325 (cit. on pp. 13, 16, 26).

All links were last followed on March 17, 2008.





Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature


	1 Introduction
	2 Related Work
	3 Approach
	3.1 Partial Order
	3.2 Uniform Sampling
	3.3 Starting Ranking
	3.4 Averaging
	3.5 Other Sampling Strategies
	3.6 Brute Force

	4 Appraisal
	5 Conclusion
	6 Future Work
	A R-Package Documentation
	Bibliography

