
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Relevance of the two adjusting
screws in data analytics: data
quality and optimization of

algorithms

Shreyas Bettadapura Raghavendra

Course of Study: Computer Science

Examiner: Prof. Dr. -Ing. habil. Bernhard Mitschang

Supervisor: Alejandro Gabriel Villanueva Zacarias,
M.Sc., Cornelia Kiefer, M.Sc.

Commenced: January 26, 2017

Completed: July 26, 2017

CR-Classification: H.2.8, I.2.6

Abstract

In the context of learning from data, the impact on the performance of a learning algo-
rithm has traditionally been studied through the perspective of data preprocessing and
through that of empirical works. We attempt to provide a middle ground by employing
an approach which enables a systematic analysis considering the interaction between the
quality of the data provided for training, and the configurations applied to the learning
algorithm. This is achieved through the concepts of a Data Quality Profile, which depicts
quality indicators for the dataset and a Classification Configuration Profile, which depicts
the configuration parameters applied to the learning algorithm. Both the profiles have
the common characteristic of being able to distinctly view, and equally represent the vari-
ations in their properties, allowing for a systematic study. We demonstrate this through
a prototypical implementation, considering the data quality indicators of missing values,
label imbalance, and high cardinality, and evaluating it against the CART Decision Tree
algorithm, configurable by its splitting criteria, early stopping criteria, and training data
preprocessing operations. We were able to successfully observe a relationship between
decreasing quality of the training data, and deterioration in the performance of the
algorithm. The flexibility of the approach allows for easy progression to other algorithms,
and implementations of more quality indicators.

3

Contents

1 Introduction 11
1.1 Data Analytics Pipeline . 11
1.2 Research Questions . 13

2 Background 17
2.1 Data Quality . 17
2.2 Machine Learning . 22
2.3 Machine Learning Pipeline . 23
2.4 Classification based Learning . 33
2.5 Decision Trees . 34

3 Related Work 39
3.1 Data Preparation . 39
3.2 Empirical Evaluation . 42
3.3 Discussion . 47

4 Approach 49
4.1 Concept of a Profile . 49
4.2 Data Quality Profile . 50
4.3 Classification Configuration Profile . 53
4.4 Performance Metrics . 54
4.5 Usage . 54
4.6 Concepts for evaluation . 56

5 Implementation 59
5.1 The Dataset . 59
5.2 The Classification Task . 61
5.3 Technology Considerations . 61
5.4 System Architecture . 62
5.5 Execution Procedure . 71
5.6 DQP Computation . 72
5.7 Profile Examples . 72

5

6 Evaluation 75
6.1 Profiles . 75
6.2 Baseline Evaluation . 76
6.3 Observed Results . 77
6.4 Summary . 86
6.5 Conclusion . 86

7 Conclusion and Future Work 89
7.1 Future Work . 90

A Appendix 91
A.1 Execution Results . 91

Bibliography 93

6

List of Figures

1.1 The Analytics Pipeline [SO13] . 11
1.2 Scope of thesis in the analytics pipeline 14
1.3 Interaction aspects considered for research goal 15

2.1 A Machine Learning Pipeline [Pyl99] [KZP06] [SO13] 24
2.2 Example for Dataset Assembly . 24
2.3 Feature Construction Example . 27
2.4 Example for Label Indexing . 28
2.5 Example for One-Hot Encoding . 29
2.6 Model Evaluation using a test dataset [KKP06] 30
2.7 Example predictions of a dummy classifier 33
2.8 Example calculations of performance metrics 33
2.9 Comparison of Gini Index vs Entropy for a binary classification problem

[Tan+06] . 37

4.1 Example profile for the data quality theme 50
4.2 Usage of Profiles . 55
4.3 Example for the approach using the profiles 55
4.4 Approach using profiles for our scope . 56

5.1 System Architecture . 62

6.1 Accuracy results obtained for k most frequent labels in the test dataset . 77
6.2 Combination of Profiles for Evaluation 78
6.3 Effect of missing values on prediction performance 80
6.4 Effect of missing values on depth of constructed tree 81
6.5 Effect of missing values on training time 81
6.6 Prediction performance with depth restriction at 75% 83
6.7 Average Precision and Recall for the most frequent and infrequent test

data labels . 83
6.8 Top 10 most selected features for split with high cardinality feature and

Information Gain split criterion . 84
6.9 Average Precision and Recall for the most frequent and infrequent labels

for the balanced and unbalanced case 85

7

List of Tables

1.1 Evaluation questions for the minimal implementation 16

2.1 Data Quality dimensions and their ideal datasets for comparison [Kie] . 19
2.2 Quality indicators for structured data [Pyl99] 21
2.3 Types of Features [KZP06] . 23
2.4 Objectives of Data Preparation . 25
2.5 Rules for invalid feature values [KKP06] 26
2.6 Performance Metrics [SL09] . 32

4.1 Descriptors of the Data Quality Profile 51
4.2 Classification Task Profile . 53
4.3 Performance Metrics . 53

5.1 Fields of the NHTSA Complaints Dataset used for our work 60
5.2 Configurable elements of the Initialize Data component 64
5.3 SciKit-Learn constraints . 66
5.4 Configurable elements of the DQP Fitter component 68
5.5 Configurable elements of the Train Model component 69
5.6 DecisionTreeClassifier hyperparameters used 69
5.7 DQP Example . 73

6.1 Data Quality Profiles . 75
6.2 Classification Task Profiles . 76
6.3 Descriptor values for the CTPs . 76
6.4 Performance metrics with different splitting criterion, and varying missing

values proportion . 78
6.5 Performance metrics for data with increasing levels of missing values

using Gini Impurity as the splitting criterion 80
6.6 Average Precision and Recall values for the top 80% and the bottom 20%

labels . 81
6.7 Prediction performance with a 75% depth restriction 82
6.8 Performance metrics obtained with balancing applied to the dataset . . . 84
6.9 Performance metrics with 50% sampled data 86
6.10 Evaluation Questions from Table 1.1 and our Findings 86

9

List of Tables

A.1 All Execution Results . 91

10

1 Introduction

The context of this thesis is the analytics of large scale data. As noted by [SGM14],
the advent of social media and the Internet of Things has brought about an explosion
in the amount of data available, leading to a “data deluge”. The primary reason for
this is the availability of data through a large number of sources, leading to data of a
heterogeneous nature. The challenges encountered due to this scale of data are primarily
in the areas of data storage, and in analysis. Storage needs special emphasis due to the
varied levels of quality associated with such heterogeneous data. Analysis of such data
is not possible on conventional single core machines with regular statistical methods. It
needs parallel computing, with technology and inferential techniques which can cope
with this scale and distribution.

1.1 Data Analytics Pipeline

Modern data analytics pipelines are built to handle such challenges, as observed by
[SO13]. Such a pipeline is shown in Figure 1.1. A brief description of the phases of this
pipeline follows [SO13]. A graphical depiction of this pipeline has been attempted in
Figure 1.1, based on the below descriptions.

Figure 1.1: The Analytics Pipeline [SO13]

11

1 Introduction

Data Collection is the process of surveying the data available in the real world, and
using the subset relevant and necessary for the task at hand. In order to be able to
identify such data, it is essential that the problem space and requirements are clearly
defined [Pyl99]. Once these are defined, the subsequent challenge is to procure this data
through an interface made available by the data source providers. The completion of
this step indicates that the data required for the task at hand is now available. This data
now needs to be explored to understand its essential characteristics, and its readiness
for the subsequent analysis stage of the pipeline.

This is achieved through the Data Preparation phase, which deals with processing
and transforming the data to a format best suited for the Learning Algorithm. This
has been called as Data Cleaning [RD00], Exploratory Data Analysis [Pyl99], Data
Wrangling [Kan+11], [Ter+15], and specifically in the area of learning algorithms, as
Data Preprocessing [KKP06]. Irrespective of the terminology, the purpose served is the
same. A common theme indicated in all these works is the necessity of performing
this phase iteratively. That is, every transformation performed highlights some new
characteristics of the data, which have to be learned from to take calculated decisions
such as procuring new data, or obtaining a different perspective on the data.

Data Preparation, thus, can be seen through two distinct perspectives. One, with
the aim of understanding characteristics of the data and taking corrective actions if
necessary, and two, with the aim of transforming the data to a format better suited for
the learning algorithm. The former deals with getting an understanding of the quality
of the dataset at hand. The observations made here can be, for example, finding the
amount of noise, missing values, invalid values and outliers in the data. Such problems
with data quality are dealt with through Data Cleaning, which has the sole purpose of
‘’improving the quality of data” [RD00]. On the other hand, Data Preprocessing suggests
transformation operations such as missing value imputation, discretizing variables which
have a continuous range and normalizing the scale of the variables. Though these
operations might have an indirect effect on the quality of the dataset, their purpose
is purely for the sake of the learning algorithm. The end result of the preparation
phase, hence, is the dataset in a format which is ready for consumption by the learning
algorithm.

The final phase of this pipeline deals with the application of a learning algorithm to
analyse the data and derive insights. The most important decision which needs to be
taken in this phase is the choice of learning algorithm to be used. This depends on the
nature of the learning task, that is, whether the purpose of the learning task is mere

12

1.2 Research Questions

exploration to understand patterns in the data, or learning from the dataset to make real
world predictions. In the latter case, an additional factor is the range of values this target
variable can take, which could either be a continuous range, or a discrete set of values.
Once an estimate on the most suitable algorithm has been made, their configurations
must be tuned in the best way possible for the task at hand. These parameters which can
be configured for an algorithm are referred to in this work as hyperparameters. Tuning
using such hyperparameters constitute optimizing the learning algorithm. Using suitable
testing techniques [KZP06], the quality of the learning model constructed is evaluated,
and further decisions taken. This is an iterative process, and multiple combinations must
be tried to come to a fruitful conclusion.

The appropriately configured learning algorithm is then applied to data in the real
world, and the insights obtained are provided back so that calculated decisions can be
taken. This forms a feedback loop, which in turn generates more data for the use case.

1.2 Research Questions

The task description for this work is based on [VZK16]. Before we get into the
questions we attempt to answer through our work, we first define our area of focus. In
the context of the analytics pipeline described above, we focus on the following two
themes: the quality of the data collected, henceforth referred to as Data Quality, and the
configurations applied to the Learning Algorithm used in the analysis phase. The place
they occupy in the pipeline is shown in Figure 1.2. Data Quality, discussed in Section
2.1 is a measure of the goodness of fit of the data for the eventual consumer of this
data, which in our context, is the Learning Algorithm used during the analysis phase.
The configurations applied to the Learning Algorithm are used to configure the way in
which the model is constructed, and the data transformation steps applied before being
consumed for learning. These are further described in Section 2.5.3.

Given the above focus area, through our work, we wish to understand how the
interaction between the quality of the dataset used to train a learning model, and the
configurations applied to the learning algorithm which generates this model affect
the performance of the learning algorithm. The motivation for undertaking this work
comes originally from [VZK16], and existing work, which deal individually with the
two aspects, and those which study the influence of quality on the performance of the
learning algorithm through empirical evaluations.

13

1 Introduction

Figure 1.2: Scope of thesis in the analytics pipeline

As detailed in Chapter 3, we look at work in two categories. The first kind focus on
the more obvious method of performing empirical evaluations by training a learning
model using data with varying levels of quality, and observing and reasoning on the
results. The most prominent example for this is the work by Quinlan, in which he
formalized the C4.5 decision tree [Qui86], and explicitly argued on the effect of noise
on the way the tree is constructed, and on its performance. The second kind focus on
the preprocessing techniques which can be applied on the data before being supplied
to a learning algorithm, with the aim of improving the latter’s performance. Our work
builds on the knowledge gained through such existing works and attempts to provide
a cohesive perspective of the variations in both these aspects. We claim that obtaining
such a perspective enables us to perform a systematic analysis of the interaction.

The approach we suggest in order to obtain such a perspective is the concept of
a profile, as first described in [VZK16], which we initially define as a collection of
information items which provide descriptive metadata for a concrete theme. We utilize
this concept through the use of a Data Quality Profile, abbreviated as DQP, described in
Section 4.2 and a Classification Configuration Profile, abbreviated as CCP, described in
Section 4.3. A DQP for a dataset is a collection of indicators which describe the quality
of the dataset. We define the following quality indicators for every field of the dataset:
Cardinality, Proportion of Missing Values, Proportion of Invalid Values, and Proportion of
Noisy Tokens for free text fields. A CCP for a particular classification task is a collection
of parameters which detail the configurations applied to the learning algorithm. The
configurations defined are particular to the learning algorithm in question, and for our
focus of the CART Decision Tree algorithm, we define the following parameters: Splitting
Criteria, Early Stopping Criteria, Dataset Balancing, and Dataset Sampling. Every variation
in these two distinct aspects is represented through an instance of these profiles. This

14

1.2 Research Questions

Figure 1.3: Interaction aspects considered for research goal

enables us to perform evaluations concerning the interaction of these two aspects by
considering the interaction between the various instances of the DQPs and the CCPs.

The above is demonstrated by implementing a minimal solution by considering data
with variations only in the Proportion of Missing Values, and in Cardinality. This is
shown in Figure 1.3. These various aspects then interact with each other to produce
performance metrics for the classification task, which are then analysed for evaluation.
The arrows in the figure indicate the interactions which we consider for our evaluation.
Thus, the research goals stated above would be justified if we are able to come to
conclusions regarding the performance of the classifier based on the characteristics of
the profiles involved. The specific questions which we answer for our implementation
scope are shown in Table 1.1.

1.2.1 Document Structure

This thesis document is organized as follows. We first begin with descriptions and
details of the concepts which form the basis for the rest of the document in Chapter 2.
These include descriptions of data quality, the DQP, and the CTP, followed by information
on machine learning algorithms and the steps required to run a typical machine learning
pipeline. We then place emphasis on induction based learning using decision trees which

15

1 Introduction

Data Quality As-
pect

Learning Algo-
rithm Aspects

Evaluation Questions

Proportion of
Missing Values

Default Configu-
ration

How do missing values in the training data affect
the prediction performance and quality of tree
generated?

Splitting Criteria How do the two splitting criterion behave with
data of same quality?

Early Stopping
Criteria

How effective are tree growth early stopping
criteria in mitigating the effect of missing values
in the data?

Data Sampling How effective is training data sampling in mit-
igating the effect of missing values in the data,
and how does it compare to the effect of early
stopping criteria?

Data with High
Cardinality Field

Splitting Criteria How does the choice of splitting criteria help
combat against the high cardinality bias?

Data with Label
Imbalance

No Data Balanc-
ing

How does class imbalance affect the prediction
performance?

Data Balancing How does data balancing affect prediction per-
formance, and is it effective in improving predic-
tion performance of low frequency samples?

Table 1.1: Evaluation questions for the minimal implementation

is the scope of our work. In Chapter 3 we look at existing work which look at the effects
of data quality on learning algorithm performance, and optimization of decision tree
algorithms. Chapter 4 deals with the approach taken by us in order to reach a solution.
The implementation specifics for this approach are dealt with in Chapter 5. In Chapter
??, we evaluate our research goals by analysing the results obtained for our sample
analysis task, as defined in Table 1.1. We conclude our work in Chapter 7, and describe
briefly the possibilities for further study.

16

2 Background

This chapter provides the foundations on which our work rests on. For this purpose,
we begin this chapter with a discussion on Data Quality in Section 2.1. This consists
of discussions on the various dimensions of data quality, and techniques to formalize
this for a dataset through profiling. Techniques to better prepare the data for a learning
algorithm, known as data preprocessing, is detailed net. We then move to the concepts
of machine learning in Section 2.2. We discuss the basic concept of learning, followed by
the procedure which needs to be followed to apply learning to a dataset. We conclude
with a discussion on decision tree algorithms, which is the learning technique we use in
our work for evaluation.

2.1 Data Quality

Information systems have always played a very crucial role in society and its operations.
Early works describe the grave consequences of faultily functioning information systems
in the area of law enforcement [Lau86], where the consequences of inaccurate data
in criminal records can be false arrest and acquittals. Hence, there was a desire to
ensure that these systems work as expected with minimal errors. For this to happen, it
is essential that the data these systems process are free of errors, and are an accurate
representation of the real world. This line of thought gave the motivation for further
research in this area, which is termed as the study of data quality. This topic has had vast
research attention since many decades. So much so, that a framework for categorizing
and managing the vast research done in this area has been proposed [WSF95].

The findings of this work on the data quality research framework is that the emphasis
is placed heavily on syntactic and semantic correctness of data. The former enforces
the syntax and style in which the data must be present in order to be considered for
processing, and the latter enforces restrictions on the values based on information
obtained from the domain. The key takeaways here are that there is a need to look at
data quality from a perspective that is beyond correctness, and that there is a need to

17

2 Background

define formally methods to quantize data quality in the form of metrics. Both these
issues are addressed in [WS96] through the following two measures:

1. Quality of data is given a broader perspective by looking at it from the perspective
of suitability for the end consumer of the data

2. The many ways in which quality in the way above can be looked at is categorized
under many dimensions, where each dimension then corresponds to a distinct
aspect of the quality of the dataset

We adopt the consumer first perspective for looking at data quality in our work, and
hence we define data quality as the “fitness for use” of the data by its consumer. We
use this definition due to its versatility, as it has also been adopted for cases like ours,
where the end consumer is a computer program [Kie]. One of the dimensions of data
quality highlighted here is its interpretability, which is a measure of how close the data
is to the ideal representation expected by the consumer. This consumer first viewpoint
for data quality in case of learning algorithm as the end consumers has been studied,
though indirectly, through the perspective of data preprocessing, by [KKP06], which we
discuss later in Section 3.1. Using this view of data quality, we now explore its various
dimensions in the next section.

2.1.1 Data Quality Dimensions

The quality of a dataset is a broad concept. In order to be able to refer to it using finely
grained aspects, it is necessary to structure this concept into cleanly defined categories.
In order to perform such a sub-division, [WS96] takes into account the end consumers of
data itself, and performs a survey to learn which aspects of quality the consumers value
the most. The responses of such an empirical approach clearly point to a conclusion that
data quality is a multidimensional concept, which has to be looked at from perspectives
of both the data custodians and the consumers of data[PLW02].

[Kie] adopts a similar approach, and discusses the quality dimensions of accuracy, rele-
vancy and interpretability specifically for machine consumers, which is most appropriate
for us, and hence we use them as the base for our discussion below. These dimensions
are defined based on their closeness to an ideal dataset, which best represents the
particular dimension. These are shown in Table 2.1. Every dimension in Table 2.1 can
be defined as the distance of the dataset from the ideal dataset corresponding to that
dimension. We also use some concepts from [WS96].

18

2.1 Data Quality

Dimension Ideal Dataset
Accuracy Represents the real world perfectly
Interpretability Is perfectly suited for the consumer
Relevancy Is optimal for the consumer’s task

Table 2.1: Data Quality dimensions and their ideal datasets for comparison [Kie]

Accuracy of a dataset is a measure of how closely it represents the facts of the real
world. In the context of building a learning model using this data, it is extremely
essential that the data represents the behaviour of the real world in the best possible way,
as the patterns of the real world as represented in the data, in terms of the relationships
between the fields, are what is learnt by the learning algorithm. For example, if a real
estate price prediction model is trained on inaccurate data, the prices predicted by the
model will mostly be inaccurate. That is, the model learns the inaccuracies of the data,
and hence in the context of learning algorithms, Accuracy is of prime importance. In
addition, due to the heterogeneous nature of data collection, we have access to a large
number of data sources. Hence, in addition to looking at the correctness of the data, it
is also necessary to consider the trust factor associated with a particular data source in
terms of its reputation and trustworthiness [WS96].

The idea of interpreting data quality as its applicability for the consumer is captured
in the Interpretability dimension. It measures how close the data is to the one expected
by the consumer. This requires the semantics of the data to be easy to understand, and
have consistent representation. In case of learning algorithms, this could be a statistical
requirement. For example, the Multinomial Naive Bayes algorithm expects the data to
have a multinomial distribution [KZP06]. The interpretability of the data with respect to
the expectations of the classifier, as can be represented through the training data must
be high. For example, a stock risk category classifier trained on data from a few decades
ago will not perform well with current data.

The relevancy of data indicates how appropriate the data is for the consumer’s task.
Highly accurate data, if unsuitable is not of much use. Extending the example of the
stock risk classifier from above, despite access to current training data, we might still
have to deal with poor performance if the data does not contain sufficient fields which
can indicate the risk associated with the stock. In this case, even though the data is
accurate, and highly interpretable, it is low on quality due to lack of relevance.

19

2 Background

Given the multidimensional nature of data quality, we need a method to be able to
depict this vast information in a clear and descriptive fashion. This is done by quantizing
aspects of data quality. This is detailed in the next section.

2.1.2 Measuring Data Quality

To be able to derive value from information about the quality of a dataset, it is
necessary to measure and quantize quality information of a dataset [HKK07]. This
provides a tool for measuring improvement or deterioration of the quality of a dataset.
For example, the quality of a dataset can be measured before and after a data cleansing
operation to assess its effectiveness. Such quantized depictions of data quality are
termed as data quality metrics. An important property of such metrics is that their value
must be normalized. This has two implications [HKK07]:

1. Constraint 1: Their value must lie in the range 0 to 1

2. Constraint 2: The interpretation of 0 and 1 must be consistent. That is, 0 must
mean either perfectly good or perfectly bad for all metrics

This immediately leads to the need to define metrics for the quality dimensions defined
above in Section 2.1.1. Here, a distinction must be drawn between quality indicators
for unstructured data such as free text fields, and structured data, which fit into the
conventional relational model, with categorical or continuous values for the fields.

Quality indicators for free text fields have been discussed through a pure quality
perspective as described above, through the perspective of the end consumer [Kie],
and alternately, through a vectorized perspective, where the quality of the free text
field is defined through characteristics of the tokens which comprise the text field.
Consideration of individual tokens arises due to the need to represent the free text field
in a vector format for compatibility with the learning algorithm (see Section 2.3.2.7).
Since our use case deals with the latter, we consider the quality indicators set forth
considering the characteristics of the tokens. These are described under.

Entropy is traditional used a measure of the distribution of data in a collection of
instances, and is used as a measure of purity of the collection [Mit97]. [BRS12] extends
this concept to measure the average amount of information contributed by the document
corpus by associating with each token its entropy. A high entropy indicates that the
distribution of tokens in the corpus is spread out across many tokens, and hence implies

20

2.1 Data Quality

Property Significance
Max Maximum value taken by the field
Min Minimum value taken by the field
Distinct Number of unique values taken by the field
Empty Number of values which are empty
VarType The type of data held by the field, whether numeric or string

Table 2.2: Quality indicators for structured data [Pyl99]

many tokens with small frequencies. A lower value of entropy implies fewer words
with larger frequencies. It is calculated using Equation 2.1 [BRS12], where V is the
vocabulary, p(ti) is the proportion of occurrence of token ti. The interesting aspect to
notice here is that the logarithm is taken to the base of the vocabulary length. This is
necessary to meet the normalized [HKK07] requirement.

H = −
∑
ti∈V

p(ti)log|V |p(ti) (2.1)

[BRS12] also provides indicators which consist of taking ratios with respect with token
frequencies and vocabulary size, etc. Relative vocabulary size is the ratio of the size of
the vocabulary to the number of meaningful tokens. A token is said to be meaningful if
it is not a function word. A smaller value is desired as it indicates simpler language with
fewer tokenization errors. Vocabulary dispersion is the ratio of the number of tokens in
the vocabulary which occur infrequently to the total size of the vocabulary. It is computed
using Equation 2.2, where Vlow is the set of tokens in the vocabulary V , which occur in
less than 10 documents. This is a useful metric as higher values indicate spelling and
tokenization errors, an give justification to applying vocabulary pruning methods, such
as setting a threshold restricting tokens based on the number of documents they occur
in [Seb02].

DV oc = |Vlow|
|V |

(2.2)

For structured data, we choose to focus on the concept of data assay introduced by
[Pyl99], which is a collection of quality specific properties of the dataset, defined for
every field of the dataset. These are described in Table 2.2. The interesting aspect
to notice here is that these indicators do not satisfy the normalized restriction placed
on quality indicators, according to [HKK07]. However, we state them here due to the
multiple aspects focussed on in the assay.

21

2 Background

2.1.3 Dataset Profiling

The data collection phase of the analytics pipeline (Section 1.1) relies on selecting
appropriate datasets which provide the required information, and are most applicable to
the nature of the task at hand [SO13]. This process, of discovering the right data source
serves as the motivation for profiling data. This is because, in order to select the right
dataset, we need a method by which we can compare data sources on certain criteria. The
idea is to represent information about the dataset in a clear and understandable manner
as part of a single artifact [Ell+]. Such an artifact which contains “descriptive metadata"
about the dataset is termed as a “Dataset Profile", and the process of generating such a
profile is termed as data profiling. The purpose of a dataset profile is to aid in the data
discovery process. Hence, the information it provides for the dataset must be descriptive
enough such that the nature of the dataset is captured, and the information it captures
must representative of it, in the sense that it must allow for comparison against other
datasets.

2.2 Machine Learning

Machine Learning is a collection of algorithmic techniques which aim at making
computers intelligent by allowing them to learn from data, and from past experiences
[Alp10]. This is achieved by feeding these algorithms with learning experience E, with
respect to a class of tasks T, with the aim of optimizing a performance measure P.
The knowledge to be learned using E is termed as the target function V [Mit97]. We
now consider a sample example for the task of learning chess. Consider the problem
of teaching a computer the task T of playing a game of chess. Its performance P is
measured by the number of games won against a human opponent. In order to provide
it with experience E, it could be provided with data of other games of chess, with every
move tagged with a label indicating whether it led to a win or a loss. In this case, V
becomes the problem of choosing the next best move.

The experience E provided to the learning algorithms consists of a collection of
instances, where each instance is associated with a set of features which describe the
properties of this instance. Every instance in such datasets consists of the same set of
features. In the above example, each instance could be a move. The nature of the
target function V depends on the style of the learning undertaken by the algorithm. If
the training dataset maps every instance to a target label, then the problem is that of
supervised learning in which V is the problem of mapping each instance in the unseen
data to a target label. On the other hand, if no such target label exists, the problem

22

2.3 Machine Learning Pipeline

Type Meaning Example
Continuous These can take a continuous range of values Speed
Categorical These can take one among a discrete set of values City
Unstructured These cannot be organized into a predefined model Free text

Table 2.3: Types of Features [KZP06]

is that of unsupervised learning wherein the goal is to find patterns and irregularities
in the dataset [KZP06]. The features which describe the instances can be continuous,
categorical or unstructured [KZP06]. See Table 2.3.

2.3 Machine Learning Pipeline

We now make the analytics pipeline described in Section 1.1 concrete by describing
it for the machine learning case. The process followed to apply machine learning is
shown in Figure 2.1. Note that we have categorized the figure according the steps of the
analytics pipeline, which was originally shown in Figure 1.1. Figure 2.1 is constructed
through the concepts described in the below questions. Specifically, the sections of Data
Collection and Data Preparation are derived from [Pyl99], and the Data Analysis section
from [KZP06], and [SO13].

2.3.1 Data Collection

This step involves collecting appropriate data from various sources, and preparing it for
analysis. The task of Data Discovery follows from the description given in Section 2.1.3.
Suitable data sources are identified, and data is obtained from them using the interface
exposed. Because of the heterogeneous nature of the sources, the data collected can
be in different formats, and in different representations. For example, an e-commerce
retailer could use geo-location data collected through user cell phones to find user travel
patterns, and Twitter stream data to analyse user sentiment. Such varied data then
has to be assembled into a common representation [SO13], and stored in a suitable
Raw Data repository for further processing. Consider the sample example illustrated in
Figure 2.2, which has been derived from experiences of everyday activities. The Twitter
stream is made available in a JSON format. This has to be parsed appropriately, and
the interesting fields have to be extracted. This can be combined with the latitude and
longitude from the cellphone geographical location data to obtain a unified relational
representation. Such raw data is then passed through stages of preparation for analysis.

23

2 Background

Figure 2.1: A Machine Learning Pipeline [Pyl99] [KZP06] [SO13]

Figure 2.2: Example for Dataset Assembly

24

2.3 Machine Learning Pipeline

Objective Achieved Using
Tackle quality issues Instance Selection, Missing Value Imputa-

tion, Binning, Feature Construction, Bal-
ancing

Compliance with analysis environment Data Projection, Text Vectorization

Table 2.4: Objectives of Data Preparation

2.3.2 Data Preparation

Data in its original form is not immediately suitable for analysis. It is passed through
stages of processing, which transform the data to a suitable representation. The pro-
cessing stages applied depend on the nature of the learning task, and the quality and
semantics of the data. This transformation which is performed is termed as Data Prepa-
ration [Pyl99], and also referred to as Data Preprocessing in machine learning oriented
literature [KKP06]. The quality of data supplied to the learning algorithm plays a promi-
nent role in its performance. We detail literature related to this claim in Chapter 3, but
here we summarize with the colloquial phrase, "garbage in, garbage out" [Pyl99], which
best signifies this issue. We now detail the various preprocessing stages used in the
context of application to learning algorithms. Note that the need for preprocessing arises
due to two main criteria: 1) to improve the quality of the data which is supplied to the
algorithm, and 2) to ensure the data is compatible with the environment in which the
implementation of the learning algorithm is going to executed. The preprocessing steps
which are associated with each of these motivations are given in Table 2.4. Sections
2.3.2.1 to 2.3.2.5 have been derived in their entirety from [KKP06], Section 2.3.2.6 from
[CLS06], and Section 2.3.2.7 from [Seb02], unless indicated otherwise.

2.3.2.1 Instance Selection

One approach to improve the quality of the dataset is to target and remove instances
in the dataset which contribute to the bad quality. This approach of selectively retaining
only the acceptable instances is known as instance selection. This can be done by
filtering out instances based on criteria set for feature values. If any of the feature
values of an instance are qualified as invalid, then that instance is ignored for further
processing. Table 2.5 shows possible rules for identification of invalid values according
to feature type. This approach, however, adds the disadvantage of data loss. This could
be disadvantageous because of the fact that the valid features in the instances eliminated
could have useful information associated with them. Hence, an alternative approach
is to replace, or impute the invalid values with a valid value. However, the trade off

25

2 Background

Feature Type Invalid Value Rule Example
Categorical Value outside valid set Value of ’Y’ for Gen-

der with valid set
{M, F}

Continuous Value outside permissible range Value of -1 for
Hour, with permis-
sible range 0 to 23

Free Text Noisy tokens (abbreviations, unknown words,
spelling mistakes, special symbols, etc) [Kie]

FPGA, autamble,
!$#%%

Table 2.5: Rules for invalid feature values [KKP06]

here is between the value gained by not eliminating the instances, and the value lost by
imputing values which are not obtained from the real world.

2.3.2.2 Missing Value Imputation

A missing value for a feature indicates an empty value, or a null value. There are
many strategies available to deal with missing values. One is to deal with instances
with missing values as invalid, and filter them out as described above. However, this
approach suffers with the problem of data loss as in the above. Alternatives to this
include to impute the missing value with an alternate value. One possibility here is
to impute the missing values with the mean of all the values of the feature. However,
this suffers with the problem of biasing the distribution of the feature values towards
the mean. Alternative approaches are imputation with the median, or the mode of the
feature values. These have been shown to be the simplest approaches with the least side
effects [Zha16].

2.3.2.3 Binning

It can be advantageous to reduce the cardinality of features. Features with high
cardinality have been known to be overestimated by inductive learning algorithms,
adding a false bias. But this added bias affects the performance of the algorithm poorly
due to the high variance associated with such features. Such high cardinality normally
occurs with continuous features. One method to discretize such features is to bin
them into a fixed number of categories, through a process called binning. It is a static
partitioning method which does not consider the relationship between features, thereby
performing individual partitioning of a feature into a fixed number of buckets. For
binning with n buckets, the continuous range of values of the feature to be binned are

26

2.3 Machine Learning Pipeline

divided into n equal interval buckets, and the values within each bucket are thereafter
referred to using only an identifier for the bucket. This reduces the cardinality of the
feature to n.

2.3.2.4 Feature Construction

Sometimes, it can also be necessary to construct new features using existing features.
This can be necessary if the information conveyed by a feature is of coarse granularity,
and can be divided to obtain more concentrated information, giving rise to more
accurate learning models. An example is shown in Figure 2.3. The coarse grained
feature Timestamp is divided by constructing individual features for date, month and the
year.

Figure 2.3: Feature Construction Example

2.3.2.5 Balancing

This preprocessing step becomes necessary for datasets supplied to supervised learning
problems, where every instance of the dataset has an associated target label. A dataset
is said to be imbalanced when the number of instances associated with each target label
varies by large margins. This can lead to learning models which are biased towards
the more frequently occurring target labels. This preprocessing step combats this by
adjusting the number of instances associated per target label. This ensures the learning
model is uniformly exposed to all target labels. To perform this, the following two
approaches are suggested [JS02]:

1. Instances of the less frequently occurring labels can be oversampled by duplicating
instances in the training dataset

2. Instances with higher frequencies are undersampled by eliminating instances of
the higher frequency samples randomly thereby reducing the sample size

27

2 Background

Figure 2.4: Example for Label Indexing

2.3.2.6 Data Projection

Data projection techniques are undertaken to change the representation to either
better suit the learning algorithm, or ensure compatibility with the learning algorithm,
and its technological implementation. We discuss two types.

Value Transformation becomes necessary when there is a need to map the values of
features from their original representation to an alternate compatible representation. A
technology specific variant of this is known as Label Indexing [Ped+11], which is neces-
sary when textual content in feature values is not accepted by the analysis environment.
It is applicable to categorical features with string content. The approach followed is
to map every unique value of a categorical feature to a numeric index. An example is
shown in Figure 2.4, where label indexing is applied to Country.

The example shown in Figure 2.4 indicates the inherent disadvantage associated with
the label indexing approach. It gives a false sense of continuousness to discrete features.
In the example, a induction learning algorithm can generate a rule if Country >= 1.0. In
such cases, numerical mapping for the categorical attributes becomes necessary, in order
to preserve the integrity of categorical attributes. A technology specific terminology for
this approach is known as One-Hot Encoding [Ped+11]. Here, a n cardinality categorical
feature is transformed into n binary features, one for each of the categories, with a
1 indicating the presence of that category for that particular instance. For the same
example as above, a One-Hot Encoded feature would look like as shown in Figure 2.5,
where Country is transformed into 3 further features. This has the disadvantage of
increasing the dimensionality of the problem, and hence technological implementations
which enforce the application of such a transformation, must also provide methods for
effective memory management for a large amount of features. One approach for this is
the use of a sparse matrix [Ped+11], which stores only the indices of the 1s in memory,
and not the entire data.

28

2.3 Machine Learning Pipeline

Figure 2.5: Example for One-Hot Encoding

2.3.2.7 Text Vectorization

Features which contain free text fields as their values cannot be directly supplied to
a learning algorithm. Thus, we need an indexing mechanism for the free text fields
which transforms them into a suitable format. This is done by constructing a vector
representation consisting of weights assigned to every unique term which occurs in the
document corpus [Seb02]. Such a vector can be represented as d⃗ =< w1, ..., w|T | >,
where wi is the weight assigned term i in a document corpus with set of terms T . In
this notation, a term corresponds to a word, and the weight can be assigned using the
following three methods:

1. A binary weight indicating the presence of the term in the document for an instance

2. A weight indicating the number of times this term occurs in this document, known
as the term frequency (tf)

3. term frequency - inverse document frequency (tf-idf) is an enhanced version of the
above, which additionally offsets each term frequency weight by the number of
documents the term occurs in, the document frequency. Equation 2.4 shows its
computation, with tf(t, d) being the term frequency for term t in a document
d, and idf(t, D) is the inverse document frequency for the same term in the
document corpus D. The inverse document frequency is computed using Equation
2.3, where df(t, D) is the document frequency. This metric is used to quantize the
following two intuitions: 1) The terms which occur across many documents are
less representative of any correlation between the target label and the document,
and 2) The terms which occur many times in a document are more representative
of it

idf(t, D) = log
|D|

df(t, D) (2.3)

tfidf(t, d, D) = tf(t, d).idf(t, D) (2.4)

29

2 Background

Figure 2.6: Model Evaluation using a test dataset [KKP06]

2.3.3 Data Analysis

In this stage of the pipeline, we apply a learning algorithm on the data prepared
in the previous stage. This begins with selecting an appropriate learning algorithm
for the given task, and thereafter evaluating the effectiveness of this model on the
data available for the particular learning. Section 2.3.3.1 discusses possible evaluation
methods, followed by a discussion on the metrics used to decide the effectiveness of the
model, and choose the best one.

2.3.3.1 Model Evaluation

[SO13] describes the need for model evaluation as the following. Once a model has
been trained using the available data, and before it is used over unseen data in the real
world, it first needs to be evaluated on its effectiveness. This is done by maintaining
separate evaluation datasets. The performance of the model is measured by applying
these evaluation datasets on the trained model. The performance metrics obtained then
help us decide if changes are required to obtain better results, if necessary. Such changes,
known as tuning, can be performed across two levels [KKP06]:

1. On the training dataset: Either by changing the preprocessing steps applied or by
obtaining data from a different source

2. On the learning algorithm: By tuning the configuration parameters (hyperparame-
ters) of the learning algorithm

We now discuss the possible methods to obtain such evaluation datasets according to
[KKP06]:

1. One approach is to maintain a separate test dataset obtained from the original
dataset. This necessitates the partitioning of the initial dataset into two parts,
one of which will be used to train the model, and other to test it. During the
training phase, the test dataset is never brought in contact with the model, thus

30

2.3 Machine Learning Pipeline

ensuring that the performance of the model on the test data accurately represents
its performance when applied on unseen data in the real world. Using this
description, a depiction of this process is shown in Figure 2.6. The performance of
the trained model is measured by applying the test data on the trained model. The
partitioning of the dataset is done by first sampling a certain fraction of the data
for the training dataset, and the remaining data then becomes the test dataset.
Such a sampling can be done in two ways:

a) Random Sampling: The required fraction of the instances from the dataset
are randomly sampled

b) Stratified Sampling: Sampling is done respecting the distribution of the
instances across the target labels. That is, the required fraction is sampled per
target label, thereby maintaining the nature of the distribution of instances in
both the training and the test datasets. Maintaining similarity in the nature of
training and test datasets is essential for good learning performance [Qui86]

A disadvantage with this approach is that the tuning performed is only aimed at
improving the performance of the model against the generated test dataset. This
can lead to the model to be optimized only with respect to this test dataset, leading
to the model being overfit to the test dataset

2. An alternative to combat the above issue is k-fold cross validation. In this approach,
the dataset is divided into k equal partitions. In every iteration, the model is
constructed using k -1 data partitions, and the left out partition acts as the val-
idation dataset against which the performance is measured. This procedure is
repeated k times, each time leaving out a different partition for validation. The
final performance is the average of the metrics obtained in each iteration. After
which, the tuning methods described above can be applied. The advantage with
this approach is that the model considers a larger proportion of the dataset during
construction, and the performance metrics depict the behaviour across the entire
dataset

2.3.3.2 Performance Metrics

As seen above in Section 2.3.3.1, evaluation of the trained model depends on how
good it performs on the evaluation dataset. This is done by measuring the performance
of learning algorithms, and compare performances against different configurations of
the learning algorithm, and different modifications to the training dataset. We restrict
our scope to only metrics for the supervised family of learning algorithms in which every
instance is tagged with a target label.

31

2 Background

Metric Formula
Accuracy tp+tn

tp+fp+tn+fn

Precision tp
tp+fp

Recall tp
tp+fn

Table 2.6: Performance Metrics [SL09]

Accuracy signifies the fraction of instances which have been labelled correctly. However
accuracy does not suffice in cases of label imbalance in the dataset. That is, when the
target labels are unevenly distributed in the dataset [KKP06]. For example, consider a
two class classification problem, where 90% of the instances are labelled with ClassA,
and the other 10% with ClassB. A dummy classifier which only predicts ClassA for every
instance, will still be able to achieve an accuracy of 0.9, which gives a wrong impression
of the performance of the classifier. Hence, metrics are necessary which can take in label
imbalance into account. These are Precision and Recall [SL09].

As a prerequisite to define the above metrics, we first define the following terms
[SL09]. With respect to a target label t in the results of a classification problem, we have
the following. True Positives (tp) are the number of instances correctly classified with t.
True Negatives (tn) are the number of instances correctly classified as not belonging to t.
False Positives (fp) are the number of instances wrongly classified with t. False Negatives
(fn) are the number of instances which actually belong to t, but are wrongly classified
with a label other than t.

With the above basic terminology, the performance metrics are shown in Table 2.6,
and discussed here. For a classification problem with a target label t, Precision is the
fraction of correct classifications out of all the instances labelled with t. Recall is the
fraction of instances classified correctly with t, out of all the instances labelled with
t [SL09]. Continuing the above example, we attempt to find the precision and recall
values. Consider Figure 2.7, which visualizes the predictions made by the dummy
classifier for our example, where the definitions of the terms introduced above hold.
All 90 instances labelled with ClassA, are obviously correctly classified. However, all
instances labelled with ClassB are classified incorrectly as ClassA. In order to better
understand this, we compute the precision and recall metrics in Figure 2.8 using the
formulae provided in Table 2.6. Note that the computations on the top are with respect
to ClassA, and the one on the bottom with respect to ClassB. We then average the results
to obtain the final value. Even though we obtain a high accuracy, the low precision and
recall values hint in the direction of label imbalance and are hence necessary metrics.

32

2.4 Classification based Learning

Figure 2.7: Example predictions of a dummy classifier

Figure 2.8: Example calculations of performance metrics

Note that the Precision and Recall metrics defined above are applicable for the target
class for which they are computed. In case of multi-class classification problems, we need
a method to be able to obtain global Precision and Recall values which take into account
all labels which are part of the classification task [SL09]. Two averaging schemes have
been suggested [SL01], micro and macro averaging. Micro averaging considers the global
tp, fp, and fn values to compute the precision and recall. On the other hand, the macro
average, simply takes the average of the precision and recall values of each individual
token. The implication is that micro average gives equal importance to each instance
in the dataset, whereas the macro average gives equal importance to each label in the
dataset.

2.4 Classification based Learning

As described in Section 1.2, in our work, we focus exclusively on the classification
problem, by using decision trees, which are an inductive learning technique [KZP06].
Wew first briefly describe the concept of a classification problem, and the relevant
ingredients, followed by a more detailed look at decision trees.

Induction in the case of supervised learning to be the construction of a target function
which maps each observation in the dataset to a target label. The hypothesis is that a
target function which approximates well over a significantly large section of the training

33

2 Background

data (Section 2.3.3) will also approximate well over unseen data. This has been referred
to as the trained model in Section 2.3.3. It is said to have learnt a set of rules which are
used to classify future data instances to one of the target labels. An individual case of
applying classification in order to solve a problem is referred to as a classification task
[Mit97].

The training dataset can be viewed as a pair consisting of the data instance and the
associated target class label. Equation 2.5 [Alp10] represents the training dataset X
consisting of N instances, where xt is the tth instance in the training dataset, and rt is
the target label for this instance.

X = {xt, rt}N
t=1 (2.5)

Suppose there are k target classes, each denoted as Ci , i = 1 , ..., K , then the target label
r has K dimensions, and represented by Equation 2.6 [Alp10].

rt
i =

1 if xt ∈ Ci

0 if xt ∈ Cj, j ̸= i
(2.6)

The training dataset as described above, is said to abide by the target concept, which
is the real world mapping between the feature vectors and the labels, and the target
function maps the instances to classes which hold true for a “sufficiently large set of
training examples”. Such a real world outcome of the classification task is said to be
the hypothesis, and a collection of possible hypotheses is known as the hypotheses
space [Mit97]. In more formal terms, learning the target function involves finding
the boundary separating the instances of the various target classes. Thus a K class
classification problem can be viewed as K 2 class classification problems, where each
class Ci represents the set of instances which hold true for the hypothesis hi that the data
instance belongs to class Ci , and does not belong to classes Cj , j ̸= i [Alp10]. Thus for a
K class classification problem, we have K possible hypotheses, as shown by Equation
2.7 [Alp10]:

hi(xt) =

1 if xt ∈ Ci

0 if xt ∈ Cj, j ̸= i
(2.7)

2.5 Decision Trees

Decision trees are non parametric learning methods. That is, they make no as-
sumptions on the distribution of data. A prominent work formalizing the approach to

34

2.5 Decision Trees

constructing decision trees was provided by [Qui86]. The principle followed is that of
top down induction. The induction task here is the generation of the classification rule
which accurately predicts the target label given the features of an instance. These rules
are depicted as decision trees. The leaf nodes of the tree represent the target labels, and
each intermediate node represents a decision taken based on a condition on the value
of one of the features of the input dataset. It has to be ensured that the tree capture
the essential characteristics of the data, but does not end up just learning the training
data.

Many algorithms have been devised for construction of decision tree algorithms.
Irrespective of the algorithm, most of them follow a top-down approach to induction
[Mur98]. Such an approach consists of the following high level steps [Loh11]:

1. All instances of the training set are represented at the root node

2. The split which results in the most optimal value of the splitting criterion (Section
2.5.1) is computed

3. The split is performed and the instances are divided into the child nodes

4. Steps 2 and 3 are repeated for every child node until either:

a) The node becomes pure, that is, all instances belong to the same class. In this
case, the node is made into a leaf node, and is marked with the associated
class

b) Or, an early stopping criterion is reached. Then terminate tree growth at that
node, and mark the node with the majority class (Section 2.5.2)

The goal is to split the instances present at each node into multiple groups of instances
forming child nodes. The split which is chosen is the one which maximizes the homo-
geneity of the child nodes. The decision of which instances are part of which child nodes
is taken based on the result of a test condition, which is evaluated against the values
of the features which are represented at each node. The goal is to reach the situation
where all instances belonging to a node are labelled with the same target class, and each
target class is represented in the final tree. Such a node is the leaf node. This tree is then
used to predict labels for instances of the test dataset by allowing the test dataset to flow
through the constructed tree. Many algorithms have been proposed for construction
of decision trees. They vary in the structure of the tree generated, and in the splitting
criterion used. The ID3 algorithm [Qui86] generates multiway splits at each node, and
uses the Information Gain splitting criterion. The CART (Classification And Regression

35

2 Background

Tree) algorithm [Bre+84] generates binary splits, and originally uses the Gini Impurity
splitting criterion.

2.5.1 Splitting Criteria

The key decision to be taken at each node is the feature on which to split the instances
at that node. This is known as split criterion, and the aim of these split criterion is to
choose the split which minimizes the impurity in the child nodes. That is, the split which
results in more homogeneous child nodes is chosen. The two widely used split criterion
are Information Gain, and Gini Impurity.

The information gain of a split is measured as the reduction in entropy achieved by
performing this split. Entropy is a measure of impurity of a collection of instances. That
is, it measures how homogeneously distributed the instances in this particular collection
are, with respect to the target labels. A collection of instances S, is said to be pure, if
they are all labelled with the same target class. In such a scenario, the entropy is at the
lowest value of 0. Entropy is at its highest value of 1 when there are equal number of
instances for each target class in the S. The entropy is given by Equation 2.8 [Mit97],
where S is the collection of samples, c is the number of target classes, pj is the proportion
of instances in S belonging to target class j. The information gain then associated with a
split is computed using Equation 2.9, where IG(S, A) is the information gain obtained by
splitting the collection of instances S on attribute A, V alues(A) is the set of all possible
values which A can take, and Sv is the instances in S, for which the attribute A has
value v. In effect, Equation 2.9, and hence Information Gain computes the reduction in
entropy obtained by performing the split on attribute A.

Entropy(S) =
c∑

i=1
−pilog2pi (2.8)

IG(S, A) = Entropy(S) −
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv) (2.9)

The gini impurity is a criteria similar to entropy, and measures the reduction in
impurity achieved by a particular split. It is computed using equation 2.10, with symbol
conventions same as above. Then, the gain in purity obtained by splitting on an attribute
A is known as Gini_Split and is computed using equation 2.11.

Gini(S) = 1 −
c∑

i=1
p2

i (2.10)

36

2.5 Decision Trees

Figure 2.9: Comparison of Gini Index vs Entropy for a binary classification problem
[Tan+06]

Gini_Split(S, A) =
∑

v∈V alues(A)

|Sv|
|S|

Gini(Sv) (2.11)

The crucial decision taken at every internal node during construction of a decision
tree is the attribute and its value on which to split the samples at that node. The two
most popularly used criterion, Gini Index and Information Gain have been discussed
in Chapter 2. [RS04] performed a theoretical comparison, and also gives details of
many empirical works performed in order to know the effects of using one among the
two splitting criteria. It was shown that in less than 2% of the cases, the two splitting
criteria disagreed with each other with respect to the attributes chosen for the splits.
This finding has been backed by [Tan+06], by stating that the two splitting criteria are
in fact consistent with each other. This has been illustrated through the example of a
binary classification problem, where p1 and p2 are the proportion of samples which
belong to the two class labels. Both the impurity measures are maximum in the case
where the instances in the collection are uniformly distributed across the two class labels.
This value reduces with increasing balance towards one target label. This behaviour can
be seen in Figure 2.9.

37

2 Background

2.5.2 Tree Construction Early Stopping Criteria

An issue encountered with tree construction is that of overfitting to the training dataset.
This occurs when the training dataset does not accurately represent real world patterns,
due to data quality issues [Mur98]. The consequence of overfitting is that the tree ends
up learning the training dataset, but is unable to generalize well over the test data. The
method to avoid this is restricting the depth to which the tree can grow to [Mur98].
Two approaches are possible:

1. Restrictions on tree growth applied using early stopping criteria [Mur98]. These
can be:

a) Maximum depth to which the tree can grow to

b) Minimum number of nodes that must be present at a node for it to be
considered for a split. If less than this number are present, it is marked as a
leaf node, and the majority target class of the instances at that node is marked
as the predicted class for that leaf node

2. Reducing the amount of data consumed by sampling beforehand [Seb+00]

An alternate approach to limiting the size of the tree is to reduce the amount of data
used to train the model, through sampling [Seb+00]. It is shown that the relationship
between the training data size and the depth of the tree can be proven empirically. And
also, it is shown that sampling is a more effective way of limiting the effect of data
quality issues.

2.5.3 Configurable aspects of a Decision Tree

Deriving from the discussion above, we now briefly focus on the properties of the tree
which can be configured to alter the way in which the tree is constructed. Deriving from
our discussion on the splitting criteria in Section 2.5.1, one aspect of modification can
be the choice between multiple splitting criteria, even though the original algorithm was
defined as using only one criterion. For example, a CART Decision Tree implementation
[Ped+11] provides the choice between Gini Impurity and Information Gain, even though
the original version of the CART algorithm [Bre+84] was defined only with the Gini
Impurity. The early stopping criteria discussed above explicitly influence the structure
of the tree [Mur98], and hence are candidates for configuration. And lastly, due to the
prominence of sampling as discussed above, the data transformations applied before
being used to train the model can also be a part of the configurations applied to the tree
construction [Seb+00] [KKP06].

38

3 Related Work

The purpose of this chapter is to investigate existing literature which deal with the
interaction between data quality, and the performance of the learning algorithm to
which it is supplied. Individually exploring each of the two broad themes is beyond
the scope of this work, and hence we stick to only those works which consider their
interaction. Such literature can be broadly classified into:

1. those which deal with data preprocessing as a way of improving quality, with the
eventual aim of improving the performance of the learning algorithm

2. those which deal with empirical evaluations on the effects of data quality on the
performance of the learning algorithm

In the following sections, we discuss each of these individually.

3.1 Data Preparation

In Section 2.3.2, data preparation steps for the purpose of supplying to a learning
algorithm were detailed. Here, we revisit the preprocessing operations, focussing on the
specific quality issues which are tackled, and their expected influence on the learning
algorithm. As seen in Section 2.3.2, works which deal with preprocessing either focus
on quality improvement [KKP06], or compatibility [CLS06]. We now look at the specific
issue in quality handled by the preprocessing steps. Note that phrases in bold indicate the
quality aspect which the corresponding preprocessing operation, in italics, is intended to
mitigate.

Instance Selection is used to filter out instances which contain invalid values in some
of its features. The consequences of this are [KKP06]:

1. Elimination of irrelevant and noisy data

2. Reduction in the scale of data

39

3 Related Work

Since the learning model is trained on the data supplied to it, elimination of noisy
instances leads to the construction of better trained models [KKP06]. Specifically for
decision trees, it has been experimentally proven that a reduction in noisy instances in
the dataset lead to an improvement in the prediction performance [Qui86]. Elimination
of such irrelevant instances also leads to a reduction in the scale of data. This is
advantageous, as a smaller sample of the data allows the model to generalize better, and
provide better results. In fact, the rate of improvement in prediction performance reaches
a plateau with increase in data size [KKP06], thus showing that smaller datasets can
provide a performance similar to that of larger datasets. An additional advantage is the
increase in computational efficiency, that is, the time taken to train the model [CLS06].
Thus, due to both the above consequences of instance selection, an improvement in
algorithm performance can occur.

A missing value indicates an absence of a feature value for an instance. This implies
a lack of information for the learning algorithm. Decision tree algorithms have the capa-
bility to deal with missing values, by not considering such instances at the computation
of each node. [KKP06] discusses various approaches to deal with the problem of missing
values. However, no specific study is done on the specific impact of missing values on
learning model construction. Another point of investigation is a comparison between
instance elimination method and imputation methods.

Binning is the process of transforming continuous features into discrete features by
reducing their cardinality. The approach of binning reduces the effect of noisy data,
and that of outliers [CLS06]. This is a direct consequence of constructing representative
bins to represent the continuous values. The number of bins, and the strategy used to
find the split points to assign data to the bins play a direct role in how much advantage
binning can provide. This is because, the amount of details of the original data captured
depend on the granularity of the bins chosen. That is, the more the number of bins, and
the more sensitive to the original data distribution the split selection strategy is, the
more representative the discrete feature is of the original continuous feature. Here, a
trade off needs to be made between the improvement achieved due to the reduced effect
of noise, and the reduction in the representation of the patterns in the original data.

Balancing ensures that every instance of the dataset is seen equally during the model
construction process, thus avoiding bias for the high frequency target labels. Such
a bias occurs due to the nature of inductive learners to minimize errors over the
training dataset [KKP06]. This allows the model to ignore low frequency labels because
the penalty for such an action are low. Another cause for this is the model being

40

3.1 Data Preparation

overfit to the imbalanced dataset. This will lead to the model generalizing well over
only the instances with the high frequency labels, and ignoring the under-represented
instances.

3.1.1 Data Wrangling

As already described, preprocessing is an integral part of an analysis pipeline. However,
it also needs to be emphasized that it can also be performed iteratively, wherein, the
results of application of a certain number of preprocessing steps are studied, and
depending on the results, further preprocessing, or changes to the existing pipeline
may be done. Such a style of data preparation has been referred to as Data Wrangling
[Kan+11]. Wrangling is catch-all term used for the collective processes performed above
to get the dataset ready for analysis in the best possible representation. We mention it
here because wrangling is a way of looking at improving data quality with the aim of
obtaining better algorithm performance.

[Kan+11] notes that upto 80% of the time in analysis are spent on tasks related to
wrangling. Because of this significant portion of time taken in this process, wrangling
activities now occupy a first class activity status, and hence, are now viewed as an integral
part of the activities leading up to analysis. The way wrangling occupies first class status
is by using the feedback obtained from the performance of the analysis algorithm to
redo some parts of the wrangling. Thus, wrangling here becomes an iterative task
with constant feedback. The emphasis is placed on making the data by the analysis
algorithm which agrees with the view of data quality taken by us. Visual analytics is
suggested to be the ideal tool to combine iterative wrangling and the eventual analysis.
This is so because deriving insights from visual means is a lot faster and intuitive than
other methods. In a similar fashion, [Ter+15] recommends maintaining a data lake on
which curated data is placed. By curated, they mean data which has gone through the
wrangling process, and is hence immediately usable by the following analysis stage. This
is a difference to traditional thought processes in which the persistent store is the source
of truth. An encouragement to maintain a store for wrangled data is a true indication
that it is being considered as a first class activity.

3.1.2 Discussion

There is a clear agreement that preprocessing is essential to obtain a good quality
dataset, and that it has an impact on the performance of the learning algorithm to which
it is supplied to. However, the works in this area are heavily focussed on the techniques

41

3 Related Work

and the procedures of applying these preprocessing techniques, but do not explicitly
study the effects of these preprocessing steps on the construction of learning models.

3.2 Empirical Evaluation

The theme of interaction between data quality and learning algorithm performance
has also been viewed in research through empirical evaluations. That is, evaluations
of varying data quality against learning algorithms. Across all these works, a common
theme is that of generation of datasets of varying quality. This is then supplied to various
learning algorithms, and the results compared. The analysis of results forms the study
of the how quality affected the learning algorithm. The central theme of having datasets
of varying quality to supply to algorithms is adapted by us in our approach. However, as
will we see below, we bring more structure to such an analysis.

Performing such an empirical analysis is a classic way of analysis, as it has been used
in the very early work which formalized decision trees itself [Qui86]. Here, it is used as
a way of validating the resiliency of the decision tree approach to issues in data quality.
The following data quality issues are dealt with: noise, fields with unknown values, and
fields with a large number of unique values. Noise is seen here as an irregularity in the
data, which does not describe data as in the real world, and is a spurious pattern in
the dataset. That is, they do not represent the reality of the world, and hence lead to
incorrect information being supplied to the model during construction. Noise is said
to interact with the tree construction directly by increasing the complexity of the tree
generated. Complex means a tree with greater depth and size. This is due to the fields of
the dataset becoming inadequate to be able to perform classifications. This work then
goes on to suggest approaches which could be used to deal with noise in the data. These
approaches suggested are specific to the way in which the algorithm for tree construction
can be modified, and thresholds which can be applied to the values of the impurity
measures used to calculate the splits (Section 2.5). The empirical evaluation is then
performed to evaluate the resilience of this approach against noise in the datasets. For
this purpose, the approach followed is to generate datasets with varying levels of noise,
by artificially injecting increasing proportions of the data with noisy data. A noisy data
value for a field is one among the other value of the field. Thus, different datasets are
generated each with a noise level in between 5% and 100%, in increments of 5% in each
case. Each such dataset is then used as the training set to train a decision tree model.
The same set of objects, in their original form, were then corrupted again to the same
extent as the training set, and used as the test dataset, and the error rate of the classifier
was determined. It is observed that with increasing amounts of noise in the data, the

42

3.2 Empirical Evaluation

classification error increases linearly and reaches a peak, and beyond 80% corruption, a
slight decrease in the error rate, by about 1% to 2% is observed. Explanations for both
these observations are given as under:

1. The increase in error rate with increasing noise is attributed to the decision tree
model essentially being constructed using increasingly random choices. That is,
due to the fields becoming inadequate, the split choices during tree construction
now reflect an attempt to learn the noise in the data. This leads to the decision
rules to become complex, and hence leads to more complex trees

2. The slight decrease in error rate at very high noise levels is attributed to the fact
that predictions will now be biased towards objects of the majority class due to
very high levels of random split choices, and hence this behaviour will be more
pronounced in case of classification problems with high label imbalance

The other data quality issue dealt with is unknown values present in the data. A study
similar to the one above has been performed, where the proportion of missing values in
the dataset is gradually increased, and the prediction performance assessed. Objects in
the dataset are injected with missing values by replacing each value of an attribute with
an ’unknown’ token with m% probability. This then forms a dataset with m% ignorance.
It is observed that classification error increases gradually with increasing ignorance.

Another observation made by [Qui86], is the effect of fields with a high number of
unique values on split selection. The information gain criterion described above is biased
towards selecting fields with a large number of unique values. A consequence of this
is described through the example of an arbitrary random field with an extremely high
cardinality, such that no two objects in the dataset have the same value for this field. It
is shown that such an attribute would have maximum information gain, leading it to be
selected as the root of the tree. Since this field contributes no information with respect
to patterns for the target label, this is a poor choice. Two remedies have been proposed
to combat this bias [Qui86]. The first, is the concept of Gain Ratio, which penalizes high
cardinality features by dividing the Information Gain obtained for this feature by the
Entropy of that feature. An additional method suggested to combat this bias, is that
of constructing trees purely through performing binary splits. Since, for performing
binary splits, individual values of features are tested for impurity rather than entire
features, this effectively compensates the high cardinality bias. Our approach heavily
rests on corrupting datasets incrementally, and observing variations in the performance
associated with each varying level of quality issues. Also, we test the effect of high
cardinality fields by introducing fields with high cardinality for classification. Our
approach is however, different on the following grounds:

43

3 Related Work

1. Our approach in considering the quality of the dataset extends beyond considering
a single metric, which in this case is Noise. That is, we provide an approach which
allows to consider further such metrics, and perform comparisons of this nature

2. We also consider further metrics in assessing the performance of the algorithm
beyond the error rate

3. Most importantly, the perspective taken here is limited to considering the effects
of varying one aspect of the data quality. We wish to provide a more complete
approach, which allows for comparisons not only through the perspectives of data
quality, but also through the perspective of the configurations of the learning
algorithm

[PK04] looks at such an empirical study by explicitly defining a cost model which
accounts for the costs associated with a data mining initiative in terms of the quality of
the dataset, and also in terms of the effort spent in preprocessing the dataset before the
mining operation (Section 2.3.2). They consider the following aspects in accounting for
the cost of a data mining initiative:

1. Proportion of missing data, m

2. Proportion of noisy data, n

3. Proportion of inconsistent data, i

4. Amount of data preprocessing necessary, dp

Given the above terminology, the cost associated is then given by Equation 3.1, where
cost is the cost computed for the data mining initiative, and functions f1 to f4 are
functions which can quantize the aspects they are associated with, and normalize the
obtained scores to a uniform scale.

cost = f1(m) + f2(n) + f3(i) + f4(dp) (3.1)

The authors acknowledge that vast liberties have been taken in order to realize the cost
function consisting of the entities above. These liberties include:

1. The assumption that the noisy and inconsistent data are disjoint. Though in reality,
strong overlaps can be present between the two

2. The existence of functions f1 to f4

44

3.2 Empirical Evaluation

For the purpose of evaluations, the scope of the work is limited to considering a cost
function using only the quality aspect of missing data. Also, no explicit cost is calcuated.
Instead, the percentage of correctly classified instances by the classifier is considered.
The empirical analysis proceeds in a way similar to [Qui86], wherein data with varying
levels of corruptness are supplied to different classifier families, and the percentage of
correctly classified instances is studied. For the purpose of evaluation, there datasets
are considered. One is used to construct the classifier model, and other two are used
to test the performance of the classifiers. The following four classifiers are evaluated
against: Neural Networks, Logistic Regression, C5.0 ad the Apriori Algorithm. Datasets
with proportions of missing data ranging from 0% to 40%, in increments of 5% are
prepared, and are used for the classifier construction and testing purpose. Such datasets
are generated by randomly selecting the required proportion of instances in the dataset,
and for each such instance, randomly omitting the value of one of its fields. The
correct classification percentages obtained using the two test datasets is then analysed.
The results obtained are inconclusive as the classification percentages do not indicate
any pattern of deterioration with increasing missingness in the data. Though for the
C5.0 algorithm, an enhanced decision tree algorithm, an actual improvement in the
classification accuracy is observed with increasing missingness in the data. A thorough
justification for this is not provided, but the following are given as possible reasons:

1. The supplied levels of missing data are insufficient to observe a deterioration in
performance

2. Omitting values could very well be removing the noisy instances, leading to the
improved classification performance

The analysis performed in this work is closer to what we wish to achieve. Specifically
the following:

1. The interaction between data quality and algorithm performance is seen in a
more systematic way than in [Qui86] by explicitly defining the cost function. The
implication of this approach is that variations in the quality of the dataset can be
viewed through different instances of this cost function and the computed cost can
be used as a tool to perform a comparison and analyse the relative effects of the
variations in the quality of the dataset

2. The flexibility of the cost function approach allows for extension with other metrics
of data quality

3. Similarly, the flexibility in the definition of the associated cost again allows us
to define it in terms of different metrics of algorithm performance, or perhaps a
combination of them

45

3 Related Work

Our approach adapts the advantages described above. However, we provide a simpler,
and more intuitive approach to systematically view this interaction. Functions which
can normalize and scale quantities for abstract concepts like the preprocessing effort are
hard to achieve, and out of scope of our work. And again, in this work, the ability to be
able to specify configuration parameters for the learning algorithm is lacking, which our
approach provides.

[SV06] use the setup described above to study the effects of data of varying levels
of quality on the PC algorithm, which is an algorithm named after its founders, which
allows the learning of Bayesian networks from data. Their primary motivation is to
show that data quality is an important consideration for learning algorithms, and that
learning algorithms should be designed keeping in mind such quality issues in mind.
The issue the authors choose to deal with is accuracy. Inaccurate data is defined as the
data which is not reflective of the real world situation it represents. Accuracy is the
chosen metric due to its ease in being manipulated in the data, and the its high relevance
in research.Modifying the accuracy in the data results in datasets of varying quality.
The PC algorithm is then evaluated against these datasets. The performance of the
algorithm is studied based on the network learnt by the algorithm when supplied with
corrupted data, as compared to the network constructed when supplied with completely
accurate data. That is, the edges of the network constructed using accurate data are
said to be the correct edges. The observation is that initially, with rising inaccuracy in
the data, the number of incorrect edges in the constructed network increases. However,
with worse quality data, the number of incorrect edges surprisingly drop. This is said
to occur because of the fact that with increasing inaccuracy in the data, the network
learns not just the correct edges, but also incorrect edges which are present due to the
inaccuracy in the data. This leads to double the number of edges, and hence higher
count of inaccurate edges. At the lowest and highest levels of inaccuracy however, the
network learns, either, only from the correct set, or the incorrect set, leading to a drop
in the number of incorrect edges at the extremes. Their work goes one step further
by trying to understand why the PC algorithm is so sensitive to inaccurate data. This
is achieved by performing an analysis on the worst case time complexity of the PC
algorithm, which increases by a magnitude when inaccurate data is introduced into
the system. This occurs due to the graph being complete, as the noisy instances form
additional connections. The work done by [SV06] closely reflects what we wish to
achieve with our work. An evaluation was performed with datasets of varying quality,
and the results analyzed. However, the concepts considered for evaluation are limited
to the effects of inaccurate data, and the variations in performance of the algorithms
are not studied by giving specific emphasis to the aspects of the data, and the learning
algorithm which caused the changes.

46

3.3 Discussion

3.3 Discussion

Both categories of the works described above give a clear description of the importance
of data quality to learning algorithms with the aim of improving the performance of
the latter. The unquestionable opinion is that lesser the quality of data, lesser the
performance of the learning algorithm, stated more colloquially as “garbage in garbage
out” [Pyl99]. However, what is missing is an evaluation of

1. The specific characteristics of the data quality which led to the improvement, or
lack thereof, in the performance of the learning algorithm

2. How changes to the configurations of the learning algorithm can impact perfor-
mance

3. And, how an interaction of the above impacts the performance

In order to enable the above, we need to devise a procedure to systematically track the
various changes to quality done with the aim of improvement in algorithm performance,
and the changes done to the algorithm configurations. Thus, our approach retains the
spirit of the works detailed above by systematically applying quality varying transfor-
mations and maintaining information regarding their sequence. We go one step ahead
and associate with each of these variations a concrete classification task along with its
classification performance. The variations in these two distinct aspects lets us study the
interaction amongst the two.

47

4 Approach

In this chapter we discuss the approach taken by us in order to achieve the goals
discussed in Section 1.2. Our approach to a solution is based on the concept of profiles
first introduced in [VZK16]. The major ingredients in our work are the DQP and
the CCP. We begin this chapter with a description of each of these, followed by a
description of their usage. The line of arguments which this approach allows us to take
is detailed thereafter. How we view the information obtained from the profiles in order
to accommodate the discriminators for decision trees closes off this chapter.

4.1 Concept of a Profile

The requirement for our work is to be able to systematically view the interaction
between the two disparate concepts of data quality, and learning algorithm configura-
tions, and the impact of this interaction on the algorithm’s performance. When viewed
individually, they are distinct, and belong to distinct areas of study. However, when
viewed as part of the data analytics pipeline described in Section 1.1, understanding the
impact of their interaction becomes essential since one follows the other. In order to
understand this interaction, we need to be able to systematically look at the variations
in these two aspects, and for each combination, be able to reason on the performance
obtained.

In order to achieve this, we use the concept of a Profile [VZK16]. Every Profile deals
with a single theme. For example, in the case of data analytics, possible themes can be
data source description, data quality, learning algorithms, and data preprocessing. In
its most basic form, a Profile is a collection of descriptors, identified by a name. Every
descriptor for a Profile indicates a distinct aspect associated with that theme. That is,
these descriptors indicate the aspects of the themes which we wish to study, and whose
variations in values we are interested to track. Every such Profile can have any number

49

4 Approach

Figure 4.1: Example profile for the data quality theme

of instances, where each instance has a value associated with each descriptor. The
descriptors remain fixed, but the values associated with them can change in accordance
to the variations. An instance of a Profile has all the values for each descriptor filled.
The granularity of these descriptors decide the specificity to which we can carry out
our analysis. An example for this approach using the data quality theme is given in
Figure 4.1. The name of the profile shown is the SimpleDataQualityProfile, which has
the descriptors Number of rows, Number of empty values and Number of noisy values. In
each of its 3 instances, the value of only a single descriptor changes.

For our work, we define profiles for the quality of the dataset, and the configurations
applied to the learning algorithm used for classification. We will refer to them as the Data
Quality Profile (DQP), and the Classification Configuration Profile, (CCP), respectively.
The DQP indicates the quality characteristics of the dataset. The CCP indicates the
parameters and their values used to configure the learning algorithm for a particular
classification task. These are detailed in the following sections.

4.2 Data Quality Profile

As detailed in Section 2.1.3, a dataset profile captures descriptive metadata about the
dataset. We extend this idea here for data quality through the use of a Data Quality
Profile, which uses such descriptive metadata for the quality of a dataset as its descriptors.
These descriptors are defined by using the data quality indicators described in Section
2.1.2. We define data quality indicators considering the Interpretability dimension

50

4.2 Data Quality Profile

Descriptor Significance Value Space
Missing Values Proportion of values having a missing

or empty value (Section 2.1.1)
Real numbers between 0
and 1, 0 indicating no miss-
ing values

Invalid Values Proportion of values which are con-
sidered invalid according to the field
syntax or the domain semantics (Sec-
tion 2.1.1)

Real numbers between 0
and 1, 0 indicating no in-
valid values

Entropy Indicator of the balance of values in
the field (Section 2.3.2.5)

Real numbers between 0
and 1, 0 indicating equal
distribution of values of the
field

Vocabulary Dis-
persion

For free text fields only. Proportion
of tokens with low frequency (occur-
rence <= 10) (Section 2.1.2)

Real numbers between 0
and 1, 0 indicating no to-
kens with low frequency

Cardinality Number of unique values Set of all Whole Numbers

Table 4.1: Descriptors of the Data Quality Profile

described in Section 2.1.1. We cannot consider the Accuracy dimension, due to the fact
that we have no way of verifying if the data represented in the dataset is indeed a true,
accurate representation of the real world. To consider the Relevancy dimension, we
would have to define quality indicators as optimized for our classification task, which is
out of scope of this work.

As described in Section 2.1.1, interpretability deals with the view of data quality from
the perspective of what is ideally suited for the end consumer. In our work, we deal
with a learning algorithm as the end consumer. This specific case is discussed in Section
3.1 where the following quality issues were identified: missing values in data, invalid
values in data, fields with high cardinality, and data with label imbalance. Looking
at the interpretability dimension, the metrics we use to quantize this dimension must
hence depict how well suited the data is for the learning algorithm. Hence, we define
quality metrics keeping these quality issues in mind, with the constraint that they can be
quantized into numeric values. These are summarized in Table 4.1, and described below.

For a field, the proportion of missing values, M is computed as shown in Equation 4.1,
where N is the total number of samples available for the field, m is the total number of
values, out of the N values, which are deemed missing. We use the information provided

51

4 Approach

by the dataset providers to classifies values as missing. In addition conventional values
such as ’NA’ and blank are also considered as missing in our work.

M = m

N
(4.1)

The proportion of invalid values is calculated using the ratio similar to the above. We
consider the following two aspects to deem a value for a field as invalid:

1. Knowledge about the type of data which will be stored in the field (Table 2.2) to
place syntactic constraints on

2. Domain specific information about the nature of the value held by the field to
place semantic constraints

Given the above constraints, for a field, if i values are deemed invalid, with N having
the same meaning as before, then the proportion of invalid values for the field will be
given by I in Equation 4.2.

I = i

N
(4.2)

In Section 2.1.2, we saw that Shannon’s Entropy was used described as a possible
metric for free text fields, which measured the distribution of tokens amongst the
documents. To measure label imbalance, we use the same metric here, normalized
the cardinality of the field. We rewrite Equation 2.1 to calculate the Entropy, E of a
field, given by Equation 4.3, using convention we used to discuss Entropy as a splitting
criteria for decision trees in Section 2.5.1. A is the field for which we are calculating the
entropy E, and V alues(A) provides all unique values of A, and p(v) is the proportion of
occurrence of the value v. Note that it is essential to use the cardinality of the field as
the base of the logarithm to meet the normalization requirement set forth for quality
metrics, stated in Section 2.1.2.

E = −
∑

v∈V alues(A)
p(v)log|V alues(A)|p(v) (4.3)

In order to represent a field’s cardinality, we have sacrificed the normalized constraint
described in Section 2.1.2. Normalizing the Cardinality descriptor would lead to very
low values for some fields, and would not accurately depict its meaning. Thus, we
represent Cardinality using its actual value.

52

4.3 Classification Configuration Profile

Parameter Significance Choices
Splitting Criteria The measure used to calcu-

late the purity of a split
Information Gain, Gini Index

Early Stopping Criteria The measures used to con-
trol the size of the tree
growth

Maximum Tree Depth, Mini-
mum samples at each node,
Threshold on impurity values

Label Balancing Measures taken to offset the
imbalanced labels problems

Training data balancing

Training Sample size The amount of training data
considered

A percentage of the training
data sampled through stratifi-
cation

Table 4.2: Classification Task Profile

Metric Significance
Tree Depth Shallower trees which generalize the training set well are

preferred
Training Time Shorter training times are computationally efficient and

hence preferred
Accuracy Accuracy obtained on the test dataset
Precision Macro average of the precision obtained for all labels in the

prediction
Recall Macro average of the recall obtained for all labels in the

prediction

Table 4.3: Performance Metrics

4.3 Classification Configuration Profile

The descriptors of the CCP consist of the parameters used to configure the learning
algorithm used for the classification task. This is centred on the learning algorithm
which is used for the classification. The configurable properties for the decision tree
family were described in Section 2.5.3. These are the measure used to compute the
purity of a split (Section 2.5.1), thresholds for early stopping of tree growth, (Section
2.5.2) and data preprocessing tasks of sampling (Section 2.3.3.1), and offsetting the
imbalanced labels problem through balancing (Section 2.3.2). These parameters and
associated values form our CCP, and these are indicated in Table 4.2

53

4 Approach

4.4 Performance Metrics

We use the metrics for measuring the prediction performance of the algorithm de-
scribed in Section 2.3.3.2. These are shown in Table 4.3. We use the macro average
values of precision and recall as described in Section 2.3.3.2 to be able to capture the
variations caused due to label imbalance. Along with the prediction performance metrics
of accuracy, precision, and recall, we also use the depth of the decision tree generated,
and the time taken to train the model as tree quality metrics. The motivation for this
comes from the descriptions given in Section 2.5.2, about overfitting of the tree to the
data quality issues in the training data. Hence, we use the depth of the tree as a metric
to understand its response to quality issues in the training data. Increasing levels of
noise imply more complex rules which translate to higher training times.

4.5 Usage

We now describe how profiles [VZK16] help us in accomplishing our goal, stated
in Section 1.2. Our purpose of defining the profiles above is to be able to study the
interaction between the various aspect that encompass the two themes of data quality
and learning algorithm configurations. The descriptors of the profiles described above
define the scope of the interactions we wish to observe. The purpose of using profiles is to
be able to capture the variations in these two themes, and give individual representation
to each such variation. This is possible due to the very nature of profiles, described in
Section 4.1, as every variation is represented by its concrete instance. This, in effect,
transforms the study of interaction between two disparate themes to a systematic study
of the interaction between various combinations of well defined profiles. Thus, to
demonstrate the required interaction, we define multiple instances of each profile, and
then perform evaluations using various combinations of the profiles. The performance
of each such evaluation is defined using the performance metrics described in Section
4.4, which are used to compare multiple executions against one another.

This gives us a broad range of observations, and an instant tool for comparison.
This is depicted in Figure 4.2. It shows how the variations in data quality lead to
multiple instances of DQPs, and variations in the algorithm configurations lead to
multiple instances of the CCPs. Every execution using a combination of the profiles
leads to certain values for the performance metrics. Analysis is performed by observing
the metrics obtained, and the information which can be derived by considering the
combination of the two profiles.

54

4.5 Usage

Figure 4.2: Usage of Profiles

Figure 4.3: Example for the approach using the profiles

Figure 4.3 shows an example of our usage of profiles. Various instances of profiles are
defined The names given to the profile instances are self explanatory. Every interaction
between the profiles results in values for the performance metrics. We don’t define any
specific values for the High and Low values. They are provided for indicative purposes.
One possible analysis using the derived information described above is, for example, the
interaction between data containing low proportion of missing values and with sampling,
and that without sampling.

As mentioned in Section 1.2, our work is restricted to considering the quality aspects
of missing values, and cardinality. In order to realize the goals set forth, we define
instances of the DQP which represent variations in the proportion of missing values, and

55

4 Approach

Figure 4.4: Approach using profiles for our scope

in the cardinality. This is shown in Figure 4.4, and directly follows the goals set forth in
Figure 1.3. We now define concepts which we will evaluate through the interaction of
the profiles shown in Figure 4.4.

4.6 Concepts for evaluation

To evaluate our research goals, we employ multiple scenarios with a range of DQPs
and CCPs. To be able to justify the observed variations, or lack thereof, we select the
following concepts based on the theory of decision trees covered in Section 2.5, which
affect their construction. The concepts evaluated through the interaction of the profiles
shown in Figure 4.4 are described below.

4.6.1 Interaction between Missing Values and Splitting Criteria

Here, we study two scenarios. First, we study the differences in behaviour of both the
metrics Information Gain and Gini Impurity. As described in Section 2.5, we expect no
significant differences in the trees constructed using the two splitting criteria. However,
we wish to study this with a large dataset and varying levels of quality. Specifically, we
want to analyse if this claim holds in the face of datasets with a large amount of missing
values, and if one splitting criterion is more or less sensitive to the quality of supplied
data. Also, due to the additional logarithmic computation required for Entropy, we
suspect runs using the Information Gain as split criterion to have slightly longer training
times.

56

4.6 Concepts for evaluation

Next, we choose the splitting criterion which gave the better performance in the
evaluations above, and study the effect of increasing amounts of missing values in the
data on the prediction performance. As seen in Section 2.5, missing values lead to
providing erroneous information during the construction of the tree. This is because
information regarding the correlation between the values of the feature and the target
value are lost, making the information provided by the feature inadequate. Hence, it
has been observed in several empirical studies seen in Section 3.2, that the prediction
accuracy of the trained model drops with increasing levels of noise in the data. The
concept of overfitting described in Section 2.5 is responsible for deterioration in the
accuracy of the model over the test dataset.

4.6.2 Interaction between Missing Values and Data Sampling

As discussed in Section 2.5, one of the techniques to combat performance deterioration
due to overfitting is to sample the training data beforehand. One of the consequences
of sampling the training data is a decrease in the depth of the tree generated. The
purpose of evaluating the impact of a smaller training sample size is to see whether the,
presumably, simpler tree generated provides the any benefit to combat against increasing
amounts of missing values in the data.

4.6.3 Interaction between Cardinality and Splitting Criteria

As described in Section 2.5, the Information Gain splitting criterion is biased towards
features with high cardinality. However, in case of trees with a binary splitting nature,
this tendency becomes reduced. In order to study this, we introduce a feature with
high cardinality, and observe the features selected to perform the splits at the nodes of
the constructed tree. Through this we analyse if the high cardinality feature had any
influence on the split selections made by Information Gain criterion.

4.6.4 Interaction between dataset with Imbalanced Labels and Data
Balancing

The imbalanced labels problem is a classical problem in classification. One way to
combat this is by balancing the dataset so that there are equal number of samples for all
target labels, as discussed in Section 2.3.2.5. This will need undersampling of the rows
with the majority labels and oversampling the rows with the minority labels. In a non
balanced case, we expect the less frequently occurring labels to get under-represented.

57

4 Approach

With balancing, however, we expect both accuracy, precision and recall to improve, as
the minority labels get more emphasis, and hence the model generalizes unseen data
better.

58

5 Implementation

In this chapter, we describe the steps taken by us in order to realize a minimal
implementation of the concepts described so far. We first describe the dataset we use,
and the classification task which we use for demonstration. We then describe the
architecture of the system used to build this pipeline, and follow this up with specifics of
the technology used. Our evaluation approach rests on the usage of profiles. These are
implemented by artificially modifying data, and by configuring the parameters associated
with the algorithm. This is described next. We close the chapter with the approach used
to execute the code for the test runs, and the challenges involved.

5.1 The Dataset

We use the National Highway Transport Safety Administration (NHTSA) Complaints
dataset [DI] for our evaluation. This dataset consists of complaints filed by vehicle
owners regarding their cars after the occurrence of an incident, in an online form. The
dataset is made available as an open dataset in a tab delimited format (.tsv) file. This
dataset consists of 515209 rows, and 50 fields per row. The 50 fields present in the
dataset provide information regarding the vehicle involved in the incident, the owner of
the vehicle, and some specifics about the actual incident itself.

For our work, we restrict ourselves to a subset of the fields available. We filter the
fields based on the following criteria:

1. Fields with an excess of 5% missing values. We carry forward the definition of
missing values used in Section 4.2

2. Fields which act as primary keys

After filtering fields based on the above criteria, we remain with 17 fields out of the
original 50, These are described in Table 5.1.

59

5 Implementation

Field Name Meaning Type Example
MFR_NAME The name of the car manufac-

turer
String ’BMW’

MAKE_MODEL_TXT The make and model of the car
manufacturer

String ’FORD ES-
CAPE’

CRASH Indicates occurrence of a crash Boolean Y
FAILDATE The date of occurrence of the in-

cident
Date ’20120321’

FIRE Indicates occurrence of a fire Boolean Y
COMPDESC Description of the component in-

volved in the incident
String ’AIR BAGS:

FRONT’
CITY The car owner’s city String ’BEAUMONT’
STATE The car owner’s state repre-

sented using the official abbre-
viation

String ’TX’

DATEA The date the incident was added
to the file

Date ’20130107’

LDATE The date the complaint was re-
ceived by NHTSA

Date ’20120214’

CMPL_TYPE Code of the complaint String ’EVOQ’,
’IVOQ’

POLICE_RPT_YN Indicates whether a police com-
plaint was filed

Boolean Y

ORIG_OWNER_YN Indicates whether the owner is
the original owner

Boolean Y

ANTI_BRAKES_YN Indicates whether the anti-break
locking system was on

Boolean Y

CRUISE_CONT_YN Indicates whether the cruise con-
trol system was on

Boolean Y

PROD_TYPE Code of the product type String ’C’, ’E’
YEARTXT The car model year Numeric 1975
CDESCR Description of the complaint as

provided by the car owner
Free Text ’The brakes do

not work!!!’

Table 5.1: Fields of the NHTSA Complaints Dataset used for our work

60

5.2 The Classification Task

Some of the fields of the dataset were available for user entry only in the recent past.
Hence, a large number of the fields contain a significant proportion of missing values.
For the purpose of this work, we have not considered fields which contain in excess of
5% missing values. The reason for such a strict threshold is twofold:

1. We use the data in its original form as the ground truth dataset. Thus, it is ideal to
have a dataset relatively free of noise

2. The technology in use does not support blank values for features. Hence, this
constrains us to impute missing values for numeric features. Excessive imputation
can bias the dataset, which is undesirable

5.2 The Classification Task

The classification task which we will use for evaluation purposes is to predict the
maker and model of the car involved in the incident. This is represented through the field
’MAKE_MODEL_TXT’ in Table 5.1. We use every other field as a feature for prediction.
Also note that the free text field is vectorized, and is appended to the feature vector
generated by the other structured fields.

5.3 Technology Considerations

The following technologies were considered for our work:

1. Apache Spark v 2.1.0, along with its Machine Learning Library (MLLib)

2. Scikit Learn v 0.18.1

The primary reason to consider Apache Spark was the out of the box support provided
for machine learning algorithms, and the efficient in memory handling of large data
sets. However, the issue occurred with usage of the sparse matrices. Our task generates
a feature vector of large scale, due to amalgamation with the textual feature vector, and
hence, using sparse matrices is absolutely essential to be able to perform in memory
computation. This is even more important due to the fact that Spark performs pure
in-memory computations. But during executions of distributed learning algorithms, the
sparse matrices are made dense, and this does not fit into memory, which caused out of
memory exceptions. Scikit-Learn effectively combats this by ensuring sparse matrices
remain sparse during usage for training learning models. Hence, our prototype has been
implemented using Scikit-Learn.

61

5 Implementation

Figure 5.1: System Architecture

Python specific terminology list and dictionary have been used in the descriptions of
these chapter. A Python list is equivalent to a classic array, and is a contiguous list of
objects. A Python dictionary is a map which holds key-value pairs. According to usual
convention, the keys are unique.

5.4 System Architecture

Our solution is built using the Scikit-Learn library, version 0.18.1. The Scikit-Learn API
has been exposed in Python, and hence, we use Python for all operations. We use Python
version 2.7.6. In addition, as prerequisites, Scikit-Learn v0.18.1 requires Python libraries
NumPy version 1.6.1 and SciPy version 0.9 [JOP+01]. The solution was executed on a
machine running Ubuntu 14.04.5 LTS, having 49 GB RAM, 109 GB hard disk and 16
cores, each with a clock speed of 2.5 GHz.

The system implemented is a Python script named profile_runner.py. And its archi-
tecture is shown in Figure 5.1. Method names close to component objects indicate the
methods which are used in the code to implement corresponding functionality. Note
that the paramter names are omitted due to space constraint. They are elaborated below.
Descriptions of individual components follow.

62

5.4 System Architecture

5.4.1 Configuration File

Various parts of the script are configurable. Hence, the diagram shows the configu-
ration file as being applicable to the entire script. This configuration file is maintained
as an INI file, and is parsed in Python using the ConfigParser library. The configurable
properties for each component are detailed in corresponding sections.

5.4.2 Initialize Data

Here, we assemble the data into an in-memory representation from the flat file format
in which it originally is in. To be able to this, we need the following information:

1. Format of data storage.This means the way in which the entities of the dataset,
and the fields os each entity are separated

2. After obtaining the separate values as above, we need to know the meaning of the
each value based on what position it is in. This is schema information

3. Finally, we need to know how much of the data must be considered

We obtain both the above information through a file provided with the dataset. The
file is in the Tab Separated Values, or tsv format. This implies every line in the file
indicates a different entity. Here, each entity corresponds to a complaint of an incident.
Each field per entity is separated by a tab delimiter (’\t’). Hence, we split the file on
two levels. The first on the new line delimiter (’\n’), and then, for each line generated,
we split using the tab delimiter, to get access to every field of the row. The fields per
row are available as a list. This is advantageous, because this lets us access each field
individually, and consider only the fields we find appropriate, as described in Section 5.1.
Programmatically, this results in a two dimensional array with dimensions [515209][50].
We use this representation to generate a Python dictionary for each entity, with keys
being the names of the field, and the value having the content of that field. Thus, our
final in-memory representation of the data is a list of dictionaries, where the length of
the list is 515209, and the number of keys per dictionary is 18, which correspond to the
17 fields described in Table 5.1, plus the target label field MAKE_MODEL_TXT. Table 5.2
shows the properties which can be configured for this component.

63

5 Implementation

Configuration Significance
Source Path Path of the flat file
Field Separator Delimiter separating fields in each line of the flat file
Schema Comma separated values indicating headers for the data

represented in the flat file
Categorical Indices Comma separated values indicating the positions of the

categorical fields in the flat file
Numerical Indices Comma separated values indicating the positions of the

numerical fields in the flat file
Text indices Comma separated values indicating the positions of the

free text fields in the flat file
Label Index Position of the target label

Table 5.2: Configurable elements of the Initialize Data component

5.4.3 Data Preprocessing

We first preprocess the data to transform it in a way which will be beneficial to
the construction of the learning algorithm. Here, we apply the Feature Construction
operation (Section 2.3.2.4) in the ways described as under.

Fields FAILDATE, DATEA and LDATE consist of a timestamp as a String field in the for-
mat YYYYMMDD. We are interested here only in the year component for two reasons:

1. Date and month are too fine grained units to have an impact in this case on the
target label

2. Transforming to only the year acts as binning into years which also helps reduce
the dimensionality

Thus we construct the numeric year field from the String timestamp field for these
features.

Additionally, we observe that the field COMPDESC contains of hierarchical items.
Consider the following values for the field: AIR BAG: ALLEGED COUNTERFEIT AIR BAG,
AIR BAG,AIR BAGS: ROLL PROTECTION, AIR BAGS:FRONTAL. As observed, all of these
values correspond to the AIR BAG component. Hence, we split these values amd retrieve
only the parent component.

64

5.4 System Architecture

5.4.4 Training Test Split

Here, the task is to perform a stratified split of the dataset to training and test data.
We use 70% of the data for training and 30% for the test data. The purpose of sampling
is to make the scale of the data more manageable to the infrastructure. Here, we use it
as a method to evaluate the effect of dataset size on the construction of the decision tree.
While sampling, it has to be ensured that the nature of the dataset is not altered with.
Hence, a stratified split, as described in Section 2.3 has been performed to preserve the
label distribution characteristics of the dataset. The SciKit Learn library for performing a
stratified split, sklearn.model_selection.train_test_split is unusable for us due to the fact
that many of the target labels have a frequency of 1, and single frequency labels are
supported by this library. Hence, stratified split has been performed manually.

We first construct a dictionary mapping the labels in the dataset to the row indices of
the rows they is labelled to. If the desired sampling quantity is x%, we then randomly
sample x% of these rows per label, using the Python random.sample method. In case there
is only a single sample for a target class, it is selected unconditionally. Using this we
obtain a x% stratified sample from the data, where x is the target sampling ratio. is taken
to first generate the 70% split for the training data. The rows not selected though this
approach form the remaining 30% samples for the test data. This results in a stratified
split without repetition. Note that, however, this results in the single frequency samples
being present in both the training and the test datasets. Currently, no approach has been
tried to combat this, nor have the impacts of this been studied.

5.4.5 Feature Extraction

The purpose of feature extraction is to transform the data into a representation
acceptable by the learning algorithm. The constraints put forth by the technology here
dictate the extent to which feature extraction is necessary. Constraints put forth by
SciKit-Learn are shown in Table 5.3

The Numerical Feature Vectors constraint clearly only affects features which contain a
textual value. One way to deal with this is to performing mapping of these textual values
to numerical indices using sklearn.preprocessing.LabelEncoder. This performs the mapping
of string to numerical indices preprocessing described in Section 2.3.2.6. The issues
already described there can affect a decision tree construction, because the CART decision
tree implementation made available in SciKit-Learn assumes pure numeric variables, and
hence splits are based on inequality comparisons. Such comparisons do not make sense

65

5 Implementation

Constraint
Name

Constraint Description

Numerical Fea-
ture Vectors

Feature vectors (Section 2.3.2) may consist purely of numerical
values only. No other data type is allowed

Categorical Fea-
tures

Categorical features are not explicitly supported [jbl]. That is,
there is no specific data type for dealing with categorical features

Table 5.3: SciKit-Learn constraints

on nominal categorical features. Hence, we do not use this approach. The approach used
by us to perform one-of-K encoding, specifically the OneHot encoding, available through
the sklearn.preprocessing.OneHotEncoder function. This offsets the continuousness bias,
and effectively represents categorical features. Hence, this also solves the Categorical
Features constraint.

Both the above described constraints are dealt with SciKit-Learn through a cleanly
packaged function sklearn.feature_extraction.DictVectorizer, which generates the feature
vector which can be immediately used by the decision tree function. Numerical fea-
tures are not modified, and are added as is to the feature vector. OneHot Encoding
is performed for the categorical features, and then assembled in the feature vector.
Differentiation between numerical and categorical features is done using the data type
of the feature values. The former can have int or double type, and the latter can have
string type. The dictionary representation of the dataset assembled by us, as described
in Section 5.4.2, is immediately compatible with the DictVectorizer function.

The text field, CDESCR, which contains the complaint description has to be
dealt with differently. We use the Tf-Idf vectorizer, available through the
sklearn.feature_extraction.text.TfidfVectorizer function us to generate the feature vector
for the text field. This has to be then assembled with the feature vector generated
as described above using the DictVectorizer. This is done by horizontally stacking the
sparse matrices generated using both these vectorization functions. Horizontal stacking
implies the order of both these matrices must be of the form nXm, and nXk, where
n is the total number of samples, m is the length of the feature vector generated us-
ing the DictVectorizer, and k is the length of the feature vector generated using the
TfidfVectorizer. This results in a sparse matrix of order nX(m + k), which represents the
final feature vector supplied to the decision tree algorithm.

66

5.4 System Architecture

Note from diagram 5.1 that the feature extraction model is generated using the whole
dataset first and then individually applied to the training and test datasets. This is
necessary to ensure consistency in the feature vectors generated for both the datasets,
and also to ensure that unseen values are not encountered in either dataset.

5.4.6 DQP Fitter

We implement a minimal DQP considering only the Mising Values indicator, shown in
Section 4.2.

The dataset obtained in memory is now in its original source format. For the purposes
of our work, we need to artificially generate datasets with varying levels of quality.
Thus, the purpose of this component is, hence, to alter the dataset so that it conforms
to the requirements of an instance of a DQP. As detailed in Section 4.5, we focus the
implementation of DQP to the missing values, and the cardinality indicators.

In order to generate data with varying levels of missing values in it, the approach
followed is to randomly inject values which indicate a missing value into the features.
For the categorical features, we inject the value ’NA’, and for the numerical features,
we inject the value 9999. We choose these values as these are the values defined by
the dataset providers as representing unknown information. Hence, we stick to the
convention, and use these values to inject missing values.

First, we describe how a single row is corrupted with missing values. A row is
corrupted by randomly selecting m% of the features in the row, and replacing the value
at that row with either a ’NA’, or 9999, depending on the type of the feature. These m%
features are randomly selected from among the features which were selected the most
for splits at the intermediate nodes, when the tree was constructed using the original
uncorrupted data. In order to restrict this further, we consider only the top 10% most
used features for the split. In addition, we do not corrupt all 10% of these features per
row. Instead, we further randomly select 50% among these top 10% features and corrupt
these selected features. We select features only among the 10% most split features in
order to ensure that the corruption actually makes an impact during split selection. This
ensures that while calculating a split, a loss of information is injected, hence successfully
simulating the effect of missing values. This additional step of random selection is done
to ensure that no bias is injected into the data by corrupting the same features for every
row. If such random selection is not performed, it is possible that due to the corruption

67

5 Implementation

Configuration Significance
Corruption Percentage Percentage of the rows in the feature vector to corrupt
Corrupt Values Comma separated values indicating the values to cor-

rupt with
Feature Range Range of features to corrupt in each row
Features to select Random percentage of features to corrupt with in the

above range

Table 5.4: Configurable elements of the DQP Fitter component

being performed for the same features in every row, a pattern can be recognized thereby
adding information, which is against what we are trying to achieve.

The number of rows to corrupt using the method described above is decided based
on the requirements of the DQP instance. If n% of the rows have to be corrupted, then
n% rows are randomly selected from the dataset, and the row corruption operation
described above is performed for each of these n selected rows. We use this approach to
corrupt the dataset with 5%, 10% and 15% missing values.

The number of rows to corrupt, and the range of features to corrupt per row are all
configurable through the configuration file. Table 5.4 shows these components. Hence,
using such a configurable approach, it is easily possible to alter the features being
corrupted per row. For example, setting the range as just 1 feature, and selecting 100%
of those values leads to corrupting just one feature per row. Also note that the values to
corrupt with are also configurable, hence allowing operations such as corrupting with
invalid values, and different values for missing values.

It is important to note that we perform all quality modification operations only on the
training dataset. This is done to ensure that the test data remains a depiction of the
patterns of the real world, and all quality altering operations affect only the training
dataset which affects the construction of the model.

5.4.7 Train Model

This component consumes the final training dataset created, and constructs the
decision tree model. In accordance to the profiles we implement, Table 5.5 shows the
configurable properties.

68

5.4 System Architecture

Configuration Significance
Depth Depth to which to restrict the tree growth
Split Criteria Splitting criterion to use
Balance Data Whether to balance the training data
Sample Data Whether to stratify sample the training data

Table 5.5: Configurable elements of the Train Model component

Parameter Name Value Space Description
criterion gini, entropy The splitting criterion to be used at each node
splitter best, random The technique used to find the best split at each

node
max_depth Set of natural

numbers
The maximum depth to grow the tree to

Table 5.6: DecisionTreeClassifier hyperparameters used

We use the CART decision tree algorithm exposed through the sklearn.tree.DecisionTreeClassifier

function. The feature vector generated for the training dataset is supplied to the function
to construct the learning model. The parameters which can be passed to the function
are the hyperparameters which configure the construction of the tree. Our CQP requires
us to use the parameters defined in Table 5.6, and detailed under:

1. The criterion parameter defines whether the Gini impurity (gini), or Information
Gain (entropy) is used as the splitting criterion at each node to find the best split

2. The splitter parameter defines the way the split point is computed for each selected
feature. best selects the best possible feature split which gives the maximum
reduction in impurity in the child nodes, and random computes a random threshold
within the bounds of the selected feature, and uses this as the split point for the
feature

We also provide the following two data modification operations configurable as
part of this component. Balancing the training data, and sampling it. The reason these
operations are placed here is because operations directly affect the nature of construction
of the tree as described in Section 4.6. These are described here.

With balancing, we want to achieve an equal distribution of samples for each target
label. The approach to implement this is to first find the ideal balance of samples
per target label. For example, the label JEEP GRAND CHEROKEE, has 3430 samples

69

5 Implementation

associated with it. But many labels like GRAND DESIGN SOLITUDE, and PORSCHE
PANAMERA TURBO have only 2 and 1 samples respectively. In order to find the balanced
number of samples per target label, we use Equation 5.1, where b is the number of
samples per target label in the balanced case, N is the total number of samples, and y is
the total number of distinct target labels. We then iterate through our data and store for
each label, the row index of the samples labelled with it, as a Python dictionary. We then
iterate through each label in this dictionary, and depending on the number of samples
associated with it, do one of two things:

1. If the number of samples associated with a label is more than the balance target
b, we randomly sample b number of samples for that label. This constitutes
under-sampling

2. If the number of samples associated with a label is lesser than b, then we randomly
sample x rows for this label, where x = b − N . This constitutes over-sampling.
Note the caveat that for labels with very low frequency, less than 10 for example,
the over-sampled rows might create a bias in favour of these target labels. As was
the case before, this has not been dealt with here

b = N

y
(5.1)

In order to apply sampling, the same procedure as described in Section 5.4.4 is
applied.

5.4.8 Results Generation

Results are made available by generating the following result artefacts, as JSON
files:

1. results.json: Contains the performance metrics described in Section 4.4

2. test_label_frequency.json: For every target label, their frequency of occurrence in
the test dataset

3. test_label_precision.json: For every target label, their precision in the test dataset

4. test_label_recall.json: For every target label, their recall in the test dataset

5. features_split.json: The features used for splits at nodes, along with the number of
times splits have been made for that feature

70

5.5 Execution Procedure

The sklearn.metrics package provides accuracy_score, recall_score, and precision_score,
which we use to obtain the corresponding prediction metrics. Note that in order to
compute average precision and recall, we the average=’macro’ setting, which indicates
that the precision and recall for all target labels are individually computed, and then
averaged to obtain the final result. The generated tree model provides the max_depth

attribute which gives the depth of the tree generated. The path to store the result files is
configurable.

5.4.9 Helper Methods

The following methods do not directly contribute to the architecture depicted above,
however, we mention them here for completeness:

1. get_column: For the representation of the data generated by the Initialize Data
component, this method returns all values of the field. It accepts the index of the
field as the input, and a boolean flag which toggle returning of only the unique
values

2. get_label_report: Combines the test_label_frequency.json, test_label_precision.json
and test_label_recall.json result artefacts mentioned above into a helpful CSV file
for instant import into Spreadsheet applications for generation of visualizations

3. compute_entropy: Given a column index, computes the Entropy (Section 4.2)

4. compute_dispersion; Given the index of the free text field, computes the vocabulary
dispersion (Section 4.2)

5.5 Execution Procedure

Our script profile_runner.py, needs the following artefacts before actual evaluation can
begin:

1. The same training and test dataset have to be used for every run to maintain
consistency. Hence, initially, training and test datasets are generated, and they are
dumped onto storage using the Python pickle.dump method, which is a serialization
helper. Subsequently, for every evaluation, the same datasets are loaded using the
pickle.load method

71

5 Implementation

2. The random feature selection of the DQP fitter relies on information of the top
features used for splits in the non corrupted case. Hence, initially, the non-
corrupted classification case is run, and using the features_split.json artefact, the
features are ranked in descending order of their frequency, and stored in a simple
text file, with new line as delimiter

5.6 DQP Computation

We give a quick description of computation of the Entropy and Vocabulary Dispersion
descriptors.

To compute Entropy, we make use of the SciPy method scipy.stats.entropy, which
gives us the flexibility to specify a custom base for our computation. To compute the
distribution of values we use the Counter method. The ratio of the frequency of occurrence
to the total sample size gives us the required value p. We compute this proportion for
every value in the dataset, and the required Entropy is e = scipy.stats.entropy(p, base =

len(p)), where p is a list containing the proportions of occurrence of every field in the
dataset.

To compute the dispsersion, we first need the list of all tokens in the free text field.
We use the regex pattern r"(?u)\b\w\w+\b" [Ped+11] to split every document into distinct
tokens. We then use the Counter method to obtain the frequencies for each token. We
then filter the tokens based on the criteria that their frequency be strictly greater than
10. The length obtained is then divided by the total number of tokens to obtain the
required value.

5.7 Profile Examples

Here, we give example of a DQP for reference, in Table 5.7 To understand the low
Entropy of CRASH, consider here the distribution of its values: ’Y’: 0.06, ’N’: 0.94. The
Low Entropy occurs due to skew in the favour of a single value ’N’.

72

5.7 Profile Examples

Name Cardinality Missing
Values

Invalid Val-
ues

Entropy Dispersion

MFR_NAME 808 0.007 0 0.5
CRASH 3 0 0 0.2
FAILDATE 5936 0 0 0.9
MILES 54177 0.18 0 0.59
POLICE_RPT_YN 3 0 0.008 0.17
MAKE_MODEL_TXT 4936 0 0 0.67
CDESCR 0.79

Table 5.7: DQP Example

73

6 Evaluation

In this chapter, we first define the profiles we will use for our evaluation in Section
6.1. We then analyse the results obtained by executing combinations of the profiles.
And we evaluate our results against the claims made in Section 4.6. Detailed results are
available in Appendix A.

6.1 Profiles

In the above sections, we described how we construct the various profiles necessary for
our evaluation. Here, we detail the profiles we use, along with their contents. These are
based on our original research goals discussed in Section 1.2.

6.1.1 Data Quality Profile

We use the indicators of the DQP described in Table 4.1 to describe the profiles we
construct for our work. Our minimal implementation considers only the factor of missing
values. This gives the quality profiles as described in Table 6.1. Note that the corruption
takes place in accordance to the description in Section 5.4.6

Profile Name Contents
GroundTruth The data in its original form as obtained from source
Missing5 5% of the rows randomly corrupted
Missing15 15% of the rows randomly corrupted
Missing25 25% of the rows randomly corrupted
HighCardinality Feature MILES introduced

Table 6.1: Data Quality Profiles

75

6 Evaluation

Profile ID Contents
Gini Gini index as the splitting criteria
Entopy Information Gain as the splitting criteria
MaxDepth75 Depth of the tree restricted to 75% of the depth

of the tree grown to full depth with the same
configurations

Balanced Dataset balanced in order to obtain equal samples
for all target classes

Sample50 50% of the training dataset sampled with stratifi-
cation before commencing the learning

Table 6.2: Classification Task Profiles

Profile
Name

Splitting
Criterion

Maximum
Depth

Balanced Sampled

Gini gini Till leaf purity No No
Entropy entropy Till leaf purity No No
Max Depth
75

gini 75% of depth ob-
tained for Gini

No No

Balanced gini Till leaf purity Yes No
Sample 50 gini Till leaf purity No 50% strat-

ified sam-
pling

Table 6.3: Descriptor values for the CTPs

6.1.2 Classification Configuration Profile

The configuration of the learning algorithm is set in the CCPs. These are described in
Table 6.2. The descriptor values for each profile, according to the descriptors defined in
Table 4.2, are detailed in Table 6.3.

6.2 Baseline Evaluation

In order to be able to compare the performance of the decision tree classifier, which
performs predictions based on the patterns learnt from the training set, we use another
dummy classifier which performs predictions purely based on the frequencies of the
labels in the test dataset. This is done as follows. For every instance in the test dataset,

76

6.3 Observed Results

Figure 6.1: Accuracy results obtained for k most frequent labels in the test dataset

and for a positive integer k, the baseline classifier returns the top k labels in the test
dataset when sorted from highest to lowest according to their frequencies in the test
dataset [KM16]. This baseline classifier is said to have made an accurate prediction for
an isntance in the test dataset, if the label associated with that instance is one among the
k labels returned by the baseline classifier. The accuracies obtained using this baseline
classifier is shown in Figure 6.1. We evaluate the baseline for values k = 1 to k = 3000.
Note that the instance of k = 1, corresponds to predicting the most frequently occurring
label in the test dataset. Accurate predictions of 80% are obtained for the case when
k = 200, indicating that 80% of the test dataset instances are covered by the 200 most
frequent labels in the test dataset.

6.3 Observed Results

The profiles introduced in Chapter 5 are implemented, and executed in various
combinations for our analysis. The procedure described in Section 5.4 is followed in
each case. That is, the training dataset is first fit according to the DQP necessary, and
then used to train the model. Our discussion rests on the concepts introduced in Section
4.6, and we attempt to answer the questions set forth in Table 1.1. Using the profiles
defined below, we now redraw Figure 1.3 in Figure 6.2. We first provide the results
obtained by considering each concept, and in a later section we summarize all the results.

77

6 Evaluation

Figure 6.2: Combination of Profiles for Evaluation

Missing
Values

Split Crite-
rion

Accuracy Precision Recall Training
Time (s)

0% Gini Impurity 0.52 0.48 0.49 6,228
0% Information

Gain
0.49 0.42 0.43 17,019

Table 6.4: Performance metrics with different splitting criterion, and varying missing
values proportion

6.3.1 Interaction between Missing Values and Splitting Criteria

We first evaluate the most basic case with no missing values, that is using the original
data through the GroundTruth profile. Here, we consider the criterion used at each node
to select the best possible split. The Gini Imurity and Information Gain split selection
criterion, introduced in Section 2.5 are used here, made available through the CCPs Gini
and Entropy, introduced in Section 6.1.2. The data as obtained from source, through the
GroundTruth DQP is supplied as the dataset for classifications performed through both
the above CCPs. The performance metrics obtained are shown in Table 6.4.

78

6.3 Observed Results

Our expectations are twofold (Section 4.6.1). One, that the features selected for splits
will be relatively same when using both criterion. And two, that the time taken to train
using the Information Gain criterion will be significantly larger due to the additional
logarithmic complexity. In order to analyse this, we first analyse the features selected
during the splits, and their frequency of selection. We take the top 500 features selected
by both the criterion, by frequency of selection, and find this similarity. It is seen that
93% of the features are the same. Which gives justification for the similar behaviour.
Note that the top 500 features also consist of the vectorized text tokens. Thus, we are
selecting the top 500 among approximately 300,000 features, and hence we justify that
a similarity in the top 0.2% of the features is indeed an indicator of the similarity in the
behaviour of the two criterion.

Our other expectation that the difference in the prediction performance should be
minimal holds true. See Table 6.4. Though a uniformly slight drop in overall prediction
performance is seen when Information Gain is used. Note the following observations to
be made:

1. Computing information gain increases training time by over 200%. This can be
attributed to the use of logarithms in the computation of the split. Though it might
seem that a mathematical computation would account for such a significant rise
in training time, we believe that the scale of the feature set makes this possible.
Proving this analytically is out of scope of this work

2. Invalidity seems to have similar effects to the behaviour of both criterion, with
uniform drops in prediction performance with rise in invalidity

6.3.2 Interaction between Missing Values and a single Splitting Criterion

Now, we evaluate the effect of increasing missing values on a single splitting criterion.
For this evaluation, we consider data with varying levels of missing values, as made
available through the DQPs described in Section 6.1.1. This data with increasing levels
of missing values is passed through the analysis pipeline, with the Gini CCP (Section
6.1.2) in each case. The reason for using the Gini CCP is due to the fact that the best
performance for the data in its original form was obtained with the Gini impurity as the
split criterion, as shown above in Table 6.4. Table 6.5 shows the results observed by
applying missing data. Note that the data made available through the GroundTruth data
quality profile is shown as having 0% missing values in Table 6.5 for convenience.

79

6 Evaluation

Missing Values Accuracy Precision Recall Depth Training
Time (s)

0% 0.51 0.48 0.49 604 6228
5% 0.5 0.46 0.48 607 11,073
15% 0.48 0.42 0.44 617 19,625
25% 0.47 0.37 0.4 0 565 27,987

Table 6.5: Performance metrics for data with increasing levels of missing values using
Gini Impurity as the splitting criterion

Figure 6.3: Effect of missing values on prediction performance

Consider Figure 6.3. A consistent drop in the prediction performance metrics is
observed with increasing missing values proportion. Drops in accuracy are relatively
minimal, with only a 1 - 2% drop for every 10% increase in missing values. However,
drops in precision and recall are more pronounced. A 4 - 5% drop for every 10%
increase in missing values. The drop in prediction performance in consistent with the
assumptions made in Section 4.6.1. However, we wish to further investigate the reasons
for the sharper drops in precision and recall. For this, we use the per label precision
and recall metrics artefact generated through our script. In Section 6.2, we observed
that, for the test data, 80% of the samples are covered by the top 200 most frequently
occurring labels. Hence, we find the average precision and recall values for these top
80% labels, and for the bottom 20% labels. This is shown in Table 6.6. As it can be seen,
for the top 80%, the average precision and recall values fall by 4%. However, for the
bottom 20%, they fall by approximately 10%. Thus, we suspect that this is the cause for
the steeper falls in the precision and recall values.

80

6.3 Observed Results

Missing
Values

Precision top
80%

Recall top 80% Precision bot-
tom 20%

Recall bottom
20%

0 0.48 0.48 0.47 0.49
5 0.47 0.47 0.46 0.48
15 0.45 0.45 0.42 0.44
25 0.44 0.44 0.37 0.4

Table 6.6: Average Precision and Recall values for the top 80% and the bottom 20%
labels

Figure 6.4: Effect of missing values on depth of constructed tree

Figure 6.5: Effect of missing values on training time

81

6 Evaluation

Missing Values Accuracy Precision Recall
0% 0.52 0.48 0.49
5% 0.5 0.39 0.39
15% 0.48 0.36 0.37
25% 0.47 0.32 0.33

Table 6.7: Prediction performance with a 75% depth restriction

As seen in Figure 6.4, the depth of the constructed tree increases initially with
increasing proportions of missing values in the data, which indicates an attempt to
overfit to the noise in the data, as was assumed by us in Section 4.6.1. However,
strangely, the depth drops drastically for the case with the highest proportion of missing
values. But consequently, observing Figure 6.5, the training times increase linearly with
no exceptions. Thus, we suspect that with increasing levels of missing values in the data,
the time taken to train is a better estimate of the tree being overfit to the noise in the
data, rather than purely the depth alone.

6.3.3 Interaction between Missing Values and Early Stopping Criteria

Here, our purpose is to evaluate the effects of early stopping in the tree growth against
increase in missing values in the data. As seen in Section 6.3.1, performance deteriorates
with increase in missing values. This is attributed to the tree being overfit to the noise in
the training dataset. As described in Section 2.5.2, one approach to deal with overfitting
is to explicitly restrict the depth to which the tree can grow to. We evaluate this strategy
here by using CCP MaxDepth75 (Section 6.1.2). We want to see whether early stopping
the growth of the tree provided us any benefit. This is shown in Table 6.7, and depicted
in Figure 6.6.

With increasing proportion of missing values, no improvements in any of the perfor-
mance metrics is observed through use of the early stopping criteria. This indicates that
the drop in accuracy due to increase in invalidity might not be due to the tree being
overfit to the noise in the dataset. The drops is precision and recall indicate that problem
of label imbalance might be adding sufficient bias in the dataset, so that improving
prediction performance is not possible any more. A possible future work is to study the
effect of early stopping criteria on balanced datasets.

A prominent observation from Figure 6.6 is the sharp drop in the precision and recall
values , but a far less drastic drop in the Accuracy. To investigate this, we find the

82

6.3 Observed Results

Figure 6.6: Prediction performance with depth restriction at 75%

Figure 6.7: Average Precision and Recall for the most frequent and infrequent test data
labels

precision and recall of the first 200 labels, and the rest, due to the motivation described
in Section 6.2, and this is shown in Figure 6.7. As can be seen clearly, the precision and
recall values of the bottom 80% test labels are consistently around 10% lower than that
of the top 20%. This explains the drastic drop in these metrics.

6.3.4 Interaction between Cardinality and Splitting Criteria

Our assumption is that the theoretical bias of information gain for high cardinality
features is offset in our case, because the CART decision tree performs only binary splits,
and as described in Section ??, this eliminates the bias for high cardinality features.
We evaluate this by using the HighCardinality DQP, described in Section 6.1.2, by
introducing the feature MILES with a cardinality of 54077 in the pipeline, and analysing

83

6 Evaluation

Figure 6.8: Top 10 most selected features for split with high cardinality feature and
Information Gain split criterion

Balanced Accuracy Precision Recall
No 0.51 0.48 0.49
Yes 0.21 0.43 0.49

Table 6.8: Performance metrics obtained with balancing applied to the dataset

whether this causes a difference to the features selected during the splits. The top 10
features selected for splits is shown in Figure 6.8. As can be seen MILES is indeed chosen
may times for the split, at position 2. Thus, we observe that binary splits is not a robust
enough tactic to deal with high cardinality features.

6.3.5 Interaction between dataset with Imbalanced Labels and Data
Balancing

In order to combat target class imbalance, the approach we take is to balance the
dataset so that there are equal number of samples for every target class. This was
achieved by oversampling the under-represented labels, and undersampling the others.
The results for this are in Table 6.8. For convenience, the results with the unbalanced
case are also provided.

84

6.3 Observed Results

Figure 6.9: Average Precision and Recall for the most frequent and infrequent labels for
the balanced and unbalanced case

The major observation is of the sharp drop in accuracy, however, a not so sharp drop in
the precision and recall values. Comparing with what we saw in Section 6.3.3, accuracy
seems to be the metric which is robust compared to the other metrics. Our understanding
in Section 4.6.4 is that this occurs due to the majority labels over-compensating for
the minority labels. However, here we see a contrast. A possible hint is that due to
the undersampling of the majority labels performed, the prediction performance of the
majority labels has reduced, thereby leading to a lower accuracy. We try to make this
concrete using the similar top 80% figure, which is shown in Figure ??. Our assumptions
are indeed true as can be seen. The precision and recall values of the most frequent
labels drops drastically. Thus, undersampling the majority labels is not an effective
solution for the problem of label imbalance.

6.3.6 Interaction between Missing Values and Data Sampling

As stated in Section 4.6.2, the purpose of testing with a sampled amount of the dataset
is to evaluate whether a smaller data sample does indeed result in simpler trees, and if
the simpler trees compensate for the invalidity in data.

As can be seen in Table 6.9, sampling the training data failed to provide any improve-
ment with increasing missing values in the data. Comparing with Table 6.7, sampling
leads to an even further deterioration in performance, with almost similar depths as
of the 75% depth restriction. Hence, in our case, we have been unable to achieve any
benefit with sampling in face of missing values. However, depths of the tree have seen
reduction by approximately 65%, as was our assumption in Section 4.6.2.

85

6 Evaluation

Missing Value Accuracy Precision Recall Depth Training Time (s)
0% 0.42 0.38 0.41 482 3,014
5% 0.42 0.36 0.39 473 5,159
15% 0.41 0.33 0.36 480 9,538
25% 0.39 0.28 0.32 426 12,947

Table 6.9: Performance metrics with 50% sampled data

Evaluation Question Finding
How do missing values in the training
data affect the prediction performance
and quality of tree generated?

Deterioration in both the prediction per-
formance and the tree quality is observed.
With sharper deterioration for precision
and recall

How do the two splitting criterion behave
with data of same quality?

Behaviour is similar as can be seen in the
top features picked for splits

How effective are tree growth early stop-
ping criteria in mitigating the effect of
missing values in the data?

We were unable to observe any improve-
ment due to early stopping of tree growth.
A consistent drop in prediction perfor-
mance was observed

How effective is training data sampling in
mitigating the effect of missing values in
the data, and how does it compare to the
effect of early stopping criteria?

No improvement was observed with sam-
pled data. A drop in tree depth was ob-
served

How does data balancing affect predic-
tion performance, and is it effective in
improving prediction performance of low
frequency samples?

Undersampling of the majority sampled
led to a drop in overall prediction perfor-
mance

Table 6.10: Evaluation Questions from Table 1.1 and our Findings

6.4 Summary

We summarize the findings of the evaluations by answering our original evaluation
questions from Table 1.1.

6.5 Conclusion

To reiterate, our research goals were as under:

86

6.5 Conclusion

1. A holistic evaluation of the impact of the interaction between the quality of the
dataset, and the choice and configuration of the learning algorithm used on the
performance of the learning algorithm

2. An approach to systematically perform such evaluation through the use of DQPs
and CTPs

3. Demonstration of the applicability of such an approach though the use of a sample
analysis task, with the CART Decision Tree algorithm

The profiles defined in Section 6.1 serve as our tool to perform a holistic evaluation.
The various concepts discussed above form the grounds on which we claim to show the
impact the two screws have on the performance of the learning algorithm, which in our
case is the CART Decision Tree. Hence, we assert that we have studied the relevance of
the various aspects of data quality and the classification algorithm on the performance
of the latter.

87

7 Conclusion and Future Work

The purpose of this work is to holistically study the influence of interaction between
data quality, and the configurations of the learning algorithm, on the performance of
the learning algorithm. This work is motivated by the need to perform a systematic
analysis, and to establish a procedure for the same. Though existing work exists which
extensively study these two themes in depth, a lack of a systematic approach in studying
their interaction was felt. Through our work, we attempt to provide a middle ground
which bridges the gap between the above two approaches, and allows to perform a
holistic analysis.

It was observed that in order to be able to perform such an analysis, we need a formal
notation for representing both the themes, and importantly, this approach must allow us
to perform comparisons against multiple versions of similar things. This was achieved
through the use of descriptive metadata known as profiles, for both the data quality,
and the classification algorithm theme. The data quality profile consists of quality
indicators for the data, and the classification task profile consists of the configuration
of the classification task applied, and the preprocessing stages applied. Variations in
each of the two themes are represented through a distinct profile which gives us the tool
necessary to be able to perform a systematic analysis.

The viability of such an approach was demonstrated through a sample classification
task on an open dataset. The technological scope was limited to the CART decision tree
algorithm to construct the classification model. For evaluation purposes, the following
aspects of decision trees were considered: the effect of splitting criterion, the effect
of missing values in the training data, the effect of high cardinality features, effect of
restricting the depth of the tree, and the effects of balancing and sampling the dataset
prior to constructing the learning model.

It was observed that the claims made by us based on theoretical backings were
supported in some cases. A consistent deterioration was observed in the prediction
performance and in the quality of the tree generated. The information gain bias to high

89

7 Conclusion and Future Work

cardinality features was also demonstrated. However, we were unable to mitigate the
effects of missing values in data either through early stopping the tree construction, or
through sampling the training data.

Thus, we were able to make evaluations considering the aspects of both data quality,
and the classification algorithm. Such an evaluation was possible due to flexibility
provided by using a profile based approach. Thus we claim that such an approach can
be a valuable tool in order to perform evaluations concerning two disparate themes. The
evaluations performed by us also enable us to claim that certain aspects of data quality
can have an influence on the construction of learning models, and in the results of these
models.

7.1 Future Work

The scope of the work was heavily restricted. This naturally leads to the motivation to
further this work by expanding on the following accounts:

1. By considering additional learning algorithms. The most immediate possibility can
be consideration of other decision tree families like C4.5 and ID3

2. Normalizing quality indicators is a non trivial task for some quality issues like label
imbalance. This hints that the data quality profile can in itself warrant significant
attention

3. Balancing for multi-class datasets is also a non-trivial concern. Even though
balancing has been studied and mitigated extensively for binary classification
problems, it is still a challenging task to accomplish for multi-class problems

Specifically with respect to the implementation, the associated script profile_runner.py
allows the flexibility to select, to a certain degree, the features to corrupt per row. This
can be exploited to achieve multiple combinations like single feature, or all feature
corruption etc. Another feature provided by the script is the ability to provide values
to use for corruption. This allows for study along the lines of the effect of single value
corruption againt multi value corruption.

90

A Appendix

A.1 Execution Results

The results presented in Chapter 6 only focus on the results which convey a useful
concept. Here, we provide the entire results of all executions performed. The profile
descriptions can be found in Section 6.1.

DQP CTP Accuracy Precision Recall Depth Training
Time (s)

Ground
Truth

Gini 0.51 0.48 0.49 604 6,228

Ground
Truth

Entropy 0.49 0.42 0.43 64 17,019

Missing5 Gini 0.5 0.46 0.48 607 11,073
Missing15 Gini 0.48 0.42 0.44 617 19,625
Missing25 Gini 0.47 0.37 0.4 565 27,987
Ground
Truth

Sample50 0.42 0.38 0.41 482 3,014

Ground
Truth

Balanced 0.21 0.43 0.49 1206 11,665

Missing5 Sample50 0.42 0.36 0.39 473 5,159
Missing15 Sample50 0.41 0.33 0.36 480 9,538
Missing25 Sample50 0.39 0.28 0.32 426 12,947
Missing5 MaxDepth75 0.5 0.39 0.39 455 10,834
Missing15 MaxDepth75 0.48 0.36 0.37 463 19,041
Missing25 MaxDepth75 0.47 0.32 0.33 424 29,760

Table A.1: All Execution Results

91

Bibliography

[Alp10] E. Alpaydin. Introduction to Machine Learning. 2nd. The MIT Press, 2010.
ISBN: 026201243X, 9780262012430 (cit. on pp. 22, 34).

[BRS12] M. Bank, R. Remus, M. Schierle. “Textual Characteristics for Language
Engineering.” In: LREC. 2012, pp. 515–519 (cit. on pp. 20, 21).

[Bre+84] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen. Classification and regres-
sion trees. CRC press, 1984 (cit. on pp. 36, 38).

[CLS06] S. F. Crone, S. Lessmann, R. Stahlbock. “The impact of preprocessing on
data mining: An evaluation of classifier sensitivity in direct marketing.”
In: European Journal of Operational Research 173.3 (2006), pp. 781–800
(cit. on pp. 25, 39, 40).

[DI] N. Office of Defects Investigation. Office of Defects Investigation Flat File
Downloads. URL: https://www-odi.nhtsa.dot.gov/downloads/ (cit. on
p. 59).

[Ell+] M. B. Ellefi, Z. Bellahsene, J. G. Breslin, E. Demidova, S. Dietze, J. Szymanski,
K. Todorov. Dataset profiling–a guide to features, methods, applications and
vocabularies (cit. on p. 22).

[HKK07] B. Heinrich, M. Kaiser, M. Klier. “How to measure data quality? A metric-
based approach.” In: (2007) (cit. on pp. 20, 21).

[JOP+01] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for
Python. [Online; accessed <today>]. 2001–. URL: http://www.scipy.org/
(cit. on p. 62).

[JS02] N. Japkowicz, S. Stephen. “The class imbalance problem: A systematic
study.” In: Intelligent data analysis 6.5 (2002), pp. 429–449 (cit. on p. 27).

[KKP06] S. Kotsiantis, D Kanellopoulos, P. Pintelas. “Data preprocessing for super-
vised leaning.” In: International Journal of Computer Science 1.2 (2006),
pp. 111–117 (cit. on pp. 12, 18, 25, 26, 30, 32, 38–40).

[KM16] L. Kassner, B. Mitschang. “Exploring Text Classification for Messy Data: An
Industry Use Case for Domain-Specific Analytics.” In: EDBT. 2016, pp. 491–
502 (cit. on p. 77).

93

https://www-odi.nhtsa.dot.gov/downloads/
http://www.scipy.org/

Bibliography

[KZP06] S. B. Kotsiantis, I. D. Zaharakis, P. E. Pintelas. “Machine learning: a review
of classification and combining techniques.” In: Artificial Intelligence Review
26.3 (2006), pp. 159–190 (cit. on pp. 13, 19, 23, 24, 33).

[Kan+11] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham, N. H. Riche,
C. Weaver, B. Lee, D. Brodbeck, P. Buono. “Research directions in data
wrangling: Visualizations and transformations for usable and credible data.”
In: Information Visualization 10.4 (2011), pp. 271–288 (cit. on pp. 12, 41).

[Kie] C. Kiefer. “Assessing the Quality of Unstructured Data: An Initial Overview.”
In: () (cit. on pp. 18–20, 26).

[Lau86] K. C. Laudon. “Data quality and due process in large interorganizational
record systems.” In: Communications of the ACM 29.1 (1986), pp. 4–11
(cit. on p. 17).

[Loh11] W.-Y. Loh. “Classification and regression trees.” In: Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 1.1 (2011), pp. 14–23 (cit.
on p. 35).

[Mit97] T. M. Mitchell. Machine Learning. 1997 (cit. on pp. 20, 22, 34, 36).

[Mur98] S. K. Murthy. “Automatic construction of decision trees from data: A multi-
disciplinary survey.” In: Data mining and knowledge discovery 2.4 (1998),
pp. 345–389 (cit. on pp. 35, 38).

[PK04] L. Pipino, D. P. Kopcso. “Data Mining, Dirty Data, and Costs.” In: IQ. 2004,
pp. 164–169 (cit. on p. 44).

[PLW02] L. L. Pipino, Y. W. Lee, R. Y. Wang. “Data quality assessment.” In: Communi-
cations of the ACM 45.4 (2002), pp. 211–218 (cit. on p. 18).

[Ped+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay. “Scikit-learn: Machine
Learning in Python.” In: Journal of Machine Learning Research 12 (2011),
pp. 2825–2830 (cit. on pp. 28, 38, 72).

[Pyl99] D. Pyle. Data preparation for data mining. Vol. 1. morgan kaufmann, 1999
(cit. on pp. 12, 21, 23–25, 47).

[Qui86] J. R. Quinlan. “Induction of decision trees.” In: Machine learning 1.1 (1986),
pp. 81–106 (cit. on pp. 14, 31, 35, 40, 42, 43, 45).

[RD00] E. Rahm, H. H. Do. “Data cleaning: Problems and current approaches.” In:
IEEE Data Eng. Bull. 23.4 (2000), pp. 3–13 (cit. on p. 12).

[RS04] L. E. Raileanu, K. Stoffel. “Theoretical comparison between the gini index
and information gain criteria.” In: Annals of Mathematics and Artificial
Intelligence 41.1 (2004), pp. 77–93 (cit. on p. 37).

94

[SGM14] K. Slavakis, G. B. Giannakis, G. Mateos. “Modeling and optimization for big
data analytics:(statistical) learning tools for our era of data deluge.” In:
IEEE Signal Processing Magazine 31.5 (2014), pp. 18–31 (cit. on p. 11).

[SL01] A. Sun, E.-P. Lim. “Hierarchical text classification and evaluation.” In: Data
Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on.
IEEE. 2001, pp. 521–528 (cit. on p. 33).

[SL09] M. Sokolova, G. Lapalme. “A systematic analysis of performance measures
for classification tasks.” In: Information Processing & Management 45.4
(2009), pp. 427–437 (cit. on pp. 32, 33).

[SO13] R. Schutt, C. O’Neil. Doing data science: Straight talk from the frontline. "
O’Reilly Media, Inc.", 2013, pp. 41–43 (cit. on pp. 11, 22–24, 30).

[SV06] V. Sessions, M. Valtorta. “The Effects of Data Quality on Machine Learning
Algorithms.” In: ICIQ 6 (2006), pp. 485–498 (cit. on p. 46).

[Seb+00] M Sebbanü, R NockO, J Chauchat, R Rakotomalala. “Impact of learning set
quality and size on decision tree performances.” In: IJCSS 1.1 (2000), p. 85
(cit. on p. 38).

[Seb02] F. Sebastiani. “Machine learning in automated text categorization.” In: ACM
computing surveys (CSUR) 34.1 (2002), pp. 1–47 (cit. on pp. 21, 25, 29).

[Tan+06] P.-N. Tan et al. Introduction to data mining. Pearson Education India, 2006,
pp. 158–172 (cit. on p. 37).

[Ter+15] I. Terrizzano, P. M. Schwarz, M. Roth, J. E. Colino. “Data Wrangling: The
Challenging Yourney from the Wild to the Lake.” In: CIDR. 2015 (cit. on
pp. 12, 41).

[VZK16] A. G. Villanueva Zacarías, C. Kiefer. “Relevance of the two adjusting screws
in data analytics: data quality and optimization of algorithms.” Institute for
Parallel and Distributed Systems, University of Stuttgart, Stuttgart. 2016
(cit. on pp. 13, 14, 49, 54).

[WS96] R. Y. Wang, D. M. Strong. “Beyond accuracy: What data quality means
to data consumers.” In: Journal of management information systems 12.4
(1996), pp. 5–33 (cit. on pp. 18, 19).

[WSF95] R. Y. Wang, V. C. Storey, C. P. Firth. “A framework for analysis of data
quality research.” In: IEEE transactions on knowledge and data engineering
7.4 (1995), pp. 623–640 (cit. on p. 17).

[Zha16] Z. Zhang. “Missing data imputation: focusing on single imputation.” In:
Annals of translational medicine 4.1 (2016) (cit. on p. 26).

[jbl] jblackburne. Categorical splits for tree-based learners. URL: https://github.
com/scikit-learn/scikit-learn/pull/4899/ (cit. on p. 66).

https://github.com/scikit-learn/scikit-learn/pull/4899/
https://github.com/scikit-learn/scikit-learn/pull/4899/

All links were last followed on July 26, 2017.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Data Analytics Pipeline
	1.2 Research Questions

	2 Background
	2.1 Data Quality
	2.2 Machine Learning
	2.3 Machine Learning Pipeline
	2.4 Classification based Learning
	2.5 Decision Trees

	3 Related Work
	3.1 Data Preparation
	3.2 Empirical Evaluation
	3.3 Discussion

	4 Approach
	4.1 Concept of a Profile
	4.2 Data Quality Profile
	4.3 Classification Configuration Profile
	4.4 Performance Metrics
	4.5 Usage
	4.6 Concepts for evaluation

	5 Implementation
	5.1 The Dataset
	5.2 The Classification Task
	5.3 Technology Considerations
	5.4 System Architecture
	5.5 Execution Procedure
	5.6 DQP Computation
	5.7 Profile Examples

	6 Evaluation
	6.1 Profiles
	6.2 Baseline Evaluation
	6.3 Observed Results
	6.4 Summary
	6.5 Conclusion

	7 Conclusion and Future Work
	7.1 Future Work

	A Appendix
	A.1 Execution Results

	Bibliography

