
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masters thesis

A framework for service-based
data processing

Khaled Mahrous

Course of Study: Computer Science

Examiner: Prof. Dr.-Ing. habil. Bernhard Mitschang

Supervisor: Dipl.-Inf. Pascal Hirmer

Commenced: 28. February 2017

Completed: 28. August 2017

CR-Classification: I.1.4, I.6.5, J.0

Abstract

The amount of data generated everyday in IT environments keeps increasing. In order
to be able to make use of the large quantities of data generated in actual practical appli-
cations, complex computational requirements are needed to process and understand the
data. It is expected that the amount of data created in the future will increase exponen-
tially. As a result, the processing of data, which includes the extraction, transformation,
and analysis of it, will also become more complex over time. For this Masters thesis,
a framework for service-based data processing was developed by improving upon the
application FlexMash developed at the University of Stuttgart for data integration. The
improvements were done by using Business Process Model and Notation (BPMN), and
creating a Service Platform for data processing services, in order to be able to decouple
the services offered from the application itself. Furthermore, the improvements provide
a simple way to integrate new services to the application in a generic manner, and
enable an ad-hoc approach for data processing services. As a result, more flexibility for
data processing is added to the application with a generic and robust execution and
management environment for the data processing services. This is not limited to the
services provided by FlexMash but is extended to third party services. This elaboration
explains the approach taken for this thesis in order to reach the desired result.

3

Contents

1 Introduction and motivation 15

2 Background 19
2.1 Pipes and Filters Architectural Pattern 19
2.2 Service Oriented Architecture . 21
2.3 Universal Description, Discovery & Integration (UDDI) 23
2.4 Enterprise service bus (ESB) . 26
2.5 Business Process Modeling Notation (BPMN) 28
2.6 Data Mashups . 29
2.7 Camunda engine . 30

3 Related work 33
3.1 FlexMash . 33
3.2 Online Citation Service . 35
3.3 Mashup tools analysis . 35
3.4 SOA-based Mashups . 37

4 Conceptual approach 41
4.1 Overview of the approach . 41
4.2 BPMN Model Transformation . 42
4.3 Service Platform . 44
4.4 Components integration . 48

5 Implementation 51
5.1 Implemented services . 51
5.2 Merge scenario . 52
5.3 Apriori scenario . 56
5.4 Service Platform . 57

6 Evaluation 61

7 Future work and Summary 65
7.1 Future work . 65
7.2 Summary . 65

5

A Appendix 69

Bibliography 77

6

List of Figures

2.1 example of a simple system in the Pipes and Filters style [AZ05] 19
2.2 SOA elements [EAA+04] . 22
2.3 UDDI Registry Instances [GPST06] . 24
2.4 SOA service discovery [GS93] . 24
2.5 Enterprise service bus connecting diverse applications and technologies

[PH07] . 27
2.6 gesf ds . 30

3.1 Mashup plans . 34
3.2 SOA Extension with Mashup [LHSL07] 37

4.1 Extended Mashup Approach [HRWM15] 42
4.2 Transformation example . 44
4.3 Thesis contribution . 48
4.4 Execution flow . 49

5.1 Merge example . 53
5.2 Apriori example . 56

6.1 Maturity levels . 62

7

List of Tables

5.1 POST methods . 58
5.2 GET methods . 58

A.1 Sample data . 73

9

List of Listings

A.1 Sample node JSON representation . 70
A.2 Sample node BPMN format . 71
A.3 Sample Apriori output . 72
A.4 Parallel-Gateway handling . 74

11

List of Algorithms

A.1 Apriori algorithm [WKQ+08] . 69

13

1 Introduction and motivation

In this chapter, the Master thesis tasks, the motivation behind it, and what the end goal
was are described.

Introduction

In the current age we live in, IT systems are getting more complex and bigger in size
everyday [GS93]. The areas of data processing and integration are no exception to the
evolution IT systems are witnessing. As a result of that evolution and growth, the costs
that enterprises need to pay to handle their data and be able to properly use it increase
[GS93].

Extract-Transform-Load (ETL) processes are one of the most common ways of dealing
with data processing and extraction challenges. Unfortunately, traditional ETL processes
come with their own shortcomings, such as:

• The level of complexity and effort required to create and use them

• The technical knowledge level required for personnel expected to manage them
properly

• Their lack of flexibility needed for modern use cases due to the fact that most
of the time, they are executed in a static execution environment [HB16; HM16;
HRWM15].

Enterprises already have and need to continually add a variety of data sources, with
various structures and semantics, which make it a challenge to handle all of the data in
a consistent manner. Building a system that satisfies the needs of the users, while at the
same time provides the flexibility needed to handle data and get the desired outcome, is
not an easy task. However, the more flexibility the solution offers, the more complex it
is to build and maintain.

ETL processes have a statically defined data integration scenario which makes them
easier to implement. In order to be able to create more flexible scenarios, data flows
could be used along with various other technologies, such as workflow engines, data

15

1 Introduction and motivation

integration solutions etc. This would allow for more flexible scenarios based on current
needs without requiring complex processes or a deep technical background.

The approach of this thesis takes advantage of data mashups in order to achieve the
goals intended. Mashups are defined as pipelines that process and integrate data based
on different interconnected operators, that realize data operations such as filter, join,
extraction, alteration, or integration [YBCD08]. The main aim is to integrate data,
which we obtained from various sources, through the execution of data mashups. The
current state-of-the-art creation requires technical knowledge and sometimes program-
ming knowledge to design and execute those operations, which is a disadvantage for
stakeholders with no IT background.

To solve this challenge, the extended data mashup approach FlexMash [HB16; HM16;
HRWM15], developed at the University of Stuttgart, introduces the concept of patterns
to relieve non-IT experts from the technical challenges that arise from needing to
implement their own data processing and integration scenarios. This enables them to
perform data operations using means specific to their domain. The data processing in
FlexMash is done in a distributed manner based on services. These services provide
functionality to filter, aggregate, or analyze data and are usually hosted on powerful
cloud environments.

A key feature that contributes to the method’s flexibility is the ability to add a new data
source and data operations to an existing scenario, while at the same time, keeping
the integrity of the model by being able to easily regenerate and reexecute it. Current
existing solutions provide answers for specific use case scenarios and do not offer a
generic solution.

Another challenge that arises is being able to deal with unstructured data. It is uncom-
mon to find a system that can process and integrate both structured and unstructured
data simultaneously. The integration of unstructured data can enhance the quality of
the information obtained from certain scenarios, but the complexity of that integration
comes at a cost.

In this thesis elaboration, the FlexMash approach introduced in [HB16; HM16] is
briefly discussed and its uses are expanded upon. New enhancements that build upon
the original Flexmash application aim to increase flexibility and robustness for data
processing and integration scenarios. The main goals for this thesis are to:

• increase the flexibility of the application FlexMash

• widen the borders of the possible data processing scenarios that the application
can handle

• maintain the simplicity of the application, so that users with limited or no technical
knowledge are able to use it.

16

A key component that is essential for these goals is the Service Platform, which is
introduced in this thesis elaboration as part of the architecture. The Service Platform
is responsible for keeping track of the services available, making sure they are running
properly through the health checks, and managing the queries made by the users or the
application. It is also responsible for the administration of the services, in addition to
keeping track of the services providers and their services. Thus, the Service Platform is
used to flexibly add services to the application, which can then be be used in different
scenarios. This increases the range of scenarios and use cases of the application,
especially while keeping in mind that the services in the application may have different
providers.

The remainder of this thesis elaboration is structured as follows:

Section 2 provices the background and necessary information needed to be able to
understand the concepts of this thesis.

Section 3 discusses related work and different research connected to this thesis.

Section 4 describes the conceptual approach to the architecture of this Masters thesis,
the different components of the project, and how it all comes together to
achieve the desired outcome.

Section 5 describes the implementation of the services, includes code snippets, a discus-
sion of the technologies used, and the technical level details of the different
components of the project.

Section 6 evaluates how this approach achieves the goals described in the introduction.

Section 7 contains a summary of the approach introduced and possible future work to
build on the work done in this thesis.

17

2 Background

In this chapter, the basic concepts that are needed throughout this thesis are described.
The background concepts serve as a foundation for the understanding of the thesis, and
are important to describe in detail, in order to get a proper overview of the work done,
and the reason behind the choice of concepts and technologies used.

2.1 Pipes and Filters Architectural Pattern

One of the most important elements of building a software system is the architectural
design level of that system, as it can enhance or decrease the scalability and portability
of said system. Thus, IT professionals have begun to pay more attention and dedicate
more resources to to architectural patterns. The architecture for a system separates
computation from control on the system’s level [Dob03].

System architecture is thus concerned with all aspects of the system’s performance, such
as: the functionality of every component in the system, the protocols that are used
for communication between different components, the processing rates of end-to-end
transactions, and hence the overall performance of the system.

In practice, the architectural design of a system provides an abstract level that designers
of the software system can use to understand the system behavior without the need
to go into details of the implementation. There are some common architectural styles
such as: Pipes and Filters, Event-based, Layered Systems, Table Driven Interpreters, etc.
[GS93].

Figure 2.1: example of a simple system in the Pipes and Filters style [AZ05]

19

2 Background

In many applications, the functionality is achieved by processing or transforming data,
which is done by organizing the steps of the transformation into stages that can be
processed simultaneously or in sequence. In this way, the system performs its desired
goal more efficiently. This organization in stages has been transformed into a pattern
[FO09]. One of the patterns used and built upon in this thesis is the Pipes and Filters
pattern [KAB+04], depicted in Fig. 2.1.

In the Pipes and Filters pattern, all components are either filters or pipes. The filters
transform the data provided as input and have typed input and output interfaces. The
pipes act as connectors between two filters, through which data is transferred using a
chosen data transfer protocol. Each pipe has two interfaces: the input interface and the
output interface in order to be able to send and receive data [MKMG97].

The benefits gained from using the pipes and filters architectural patterns is visible
in scenarios, where large amounts of data need to be processed quickly. Examples
include web servers, message processing applications of large enterprises, and business
process engines [GK04]. In our case, there are numerous processing steps that need
to be performed for data processing and transformation in user-defined sequences of
processing, hence, the applicability of the pipes and filters pattern.

Simply put, the filters can have inputs from other filters (or another data source) and
the output is sent to another filter through the pipes. Hence, each filter is a processing
unit along the chain that performs a certain step. This pattern uses chains of filters
as described in Fig. 2.1 to exploit the key aspects of the design mentioned in [Dob03;
GK04; MKMG97]. These include:

• Uniform communication means between the filters

• The statelessness of filters to avoid the overhead resulting from maintaining the
state of the data

• Ease of reuse and recombination of the component which adds flexibility

• Elimination of the need to keep intermediate results in files

There are different variants and extensions of this pattern, which entails some decision
making that would enhance the overall performance of the system. Some examples of
those decisions would be whether to use Push or Pull protocols for the pipes and filters,
a combination of both, or the use of filters with more than one input/output, etc.

Three example refinement strategies mentioned in [PR99] are blackbox or behavioral
refinement, structural refinement (glassbox refinement), and signature refinement. The
black box refinement is related to systems where the components are black boxes with
no details about how they function. The structural refinement can be addressed by
providing a subsystem architecture.

20

2.2 Service Oriented Architecture

The manipulation of the components’ interfaces is dealt with through signature refine-
ment. In our case, the use of the pattern is done by giving the engine a model that is
a directed acyclic graph. It consists of adhoc services used to manipulate and format
the data, while the pipes in the scenario represent the transmission of data between the
different filters through service discovery. This is discussed in more detail in Section 5
which covers the implementation details. Some examples of known uses of this pattern
were mentioned in [FO09] and include: Microsoft’s BizTalk Server 2004, and the Apache
Cocoon web development framework, etc.

2.2 Service Oriented Architecture

Companies nowadays are facing the challenge of ever increasing IT costs, and they must
find ways to decrease said IT costs, while at the same time maintaining good customer
service [Ran03]. This is further compounded by the following challenges:

• heterogeneity which is a result of the widespectrum of different systems

• architectural patterns of legacy systems and applications, which pose a challenge
especially when the enterprise tries to integrate products from different vendors.

• changing customer needs and requirements which leads to the shortening of the
product cycles in order to be able to improve the time to market.

IT experts are thus always trying to develop more flexible and responsive platforms in
order to meet these challenges, by trying to build applications and platforms that are:
loosely coupled, location transparent, and protocol independent. That is where Service
Oriented Architecture (SOA) comes in, because the consumer of a service does not need
to care about the infrastructure or technicalities of the service.

Particularly, technical specifications from different implementation technologies such as
J2EE or .NET should not affect SOA users [EAA+04; PH07]. A component in service
oriented design is defined in [EAA+04] as “an executable unit of code that provides
physical blackbox encapsulation of related services. Its service can only be accessed through
a consistent, published interface that includes an interaction standard. A component must
be capable of being connected to other components (through a communications interface)
to a larger group”.

By treating components and their services as a black box, we don’t need to worry about
different implementations and technical details, since the services could be interacted
with through a loosely-coupled and message-based communication model.

21

2 Background

Figure 2.2: SOA elements [EAA+04]

SOA takes care of both functional aspects and the quality of service actions as described
in Fig. 2.2. The focus will be on the functional aspects described in the figure as they are
a critical part in the development of this thesis. Briefly, the functional aspects include:

Service Communication Protocol which is the mechanism agreed upon to exchange
requests and responses between the consumer and the provider of a service.

Service Description that is an agreed upon schema for the details of the service such
as its inputs, how it could be invoked, and what it does for a successful service
transaction.

Service Registry that acts as a repository for the services and their descriptions, is used
by providers to advertise their available services, and for consumers to discover
available services.

SOA is focused on solving problems such as application integration, transaction manage-
ment, and security policies. The driving goal of SOA is to ease application integration
through solving or decreasing the impact of the challenges. This enables and supports
the flexibility and agility that IT experts try to achieve while building applications and
systems.

Through SOA, service consumers, regardless of what operating system or programming
language they use, can access a SOA service to create a new business process. Logically,
a service in a SOA system consists of two main parts: service interface and a service
implementation [PH07]. Because interfaces are platform independent, a client from any
communication device, using any computational platform, operating system, and any
programming language can use the service.

How the different functional components interact is described in Fig. 2.4. In order for a
consumer to interact with a service, the consumer needs to first find the service. This is

22

2.3 Universal Description, Discovery & Integration (UDDI)

done by communicating and querying the service registry, which provides the details of
the service to the consumer assuming, of course, that the desired service exists.

The service details include the description and the address of the service, which the
consumer then uses to be able to communicate with the actual service.To be able
to achieve the interaction described, first, services need to be published so that the
consumers are able to query them and then bind and invoke them using the information
provided. By using this architecture, services provide many advantages, which include
that they are self-contained, support interoperability, loose coupling, and have an
interface that is used for consistent communication.

SOA became one of the popular solutions to the challenges facing enterprises due to the
fact that it provides a level of abstraction that allows companies to reuse existing assets
instead of building components from the ground up. It is also easier for integrating ser-
vices to form new scenarios, since it minimizes the impact of changing implementations
of the infrastructure. As a result, SOA helps in reducing the costs of the IT enterprises
while at the same time providing a means to be more responsive and enhance the time
to market.

2.3 Universal Description, Discovery & Integration (UDDI)

The Universal Description, Discovery and Integration (UDDI) is defined in [SRAW03] as
“specification for distributed Web-based information registries for Web Services”. Through
the (UDDI) specifications, a platform-independent way of describing and discovering
Web services and their providers is made available to consumers [CJCR04].

UDDI consists of three components: “white pages” which contains the basic contact
information and identifiers for a company, “yellow pages” to allow companies to be
listed according to their industry categories, and “green pages” to hold and maintain
interface details of how a Web service can be invoked [SRAW03].

The UDDI data model is centered around XML with the data types, and different types of
registries (depicted in 2.3) to represent businesses, their available services, and technical
descriptions of the services [Dra01].

As for the data manipulation, it is completely based on XML and uses SOAP as a
protocol. UDDI could be implemented as a group of distributed registries that are kept
synchronized. The role of the UDDI is a key element in providing the loose coupling
needed. This is why many approaches, such as the ones mentioned in [Dra01; SPAS03;
SRAW03; ZLCC02], are trying to improve the performance and ease of access to such a
component.

23

2 Background

The approaches vary from automatic service discovery (like the approach in [SPAS03])
to enhancing the performance and managing to get better flexibility and efficiency (like
the approaches mentioned in [CJCR04; Dra01; SRAW03]). In the end, the importance
of the concept itself is to have a centralized component that takes care of services listing
and discovery.

Figure 2.3: UDDI Registry Instances [GPST06]

2.3.1 Service Discovery

Figure 2.4: SOA service discovery [GS93]

24

2.3 Universal Description, Discovery & Integration (UDDI)

Service discovery mechanisms are defined in [SKWL99] as the matchmaking process of
services. The challenge is to find the best match for a service required by a consumer
from the available services offered from different providers. This is done through a
middle agent [DSW97]. It is a challenge to find the best available service that matches
the requirements needed for an application, since it will affect the overall performance
of the system as well as the end result.

Unfortunately, the approach based on UDDI requires time and patience from both
providers and the consumers of the services in question [GPST06]. Keeping in mind that
a great amount of data online is available via APIs, which expose the data as JSON or
XML, combining code that matches different data into one application is not the best
practical way to build up systems that depend on multiple data sources. This why service
discovery and uniform access to multiple data sources is important.

Most online published data uses web standards such as URIs, HTTP, XML, SOAP, REST,
etc. [HNP+11]. It all stems from SOA, with the end goal being more flexible and loosely
coupled systems. Thus, efforts are directed towards different aspects of the service
discovery problem. In [MK10], an enhancement over an existing three-tier [PH07] SOA
architecture is proposed, that reduces the number of exchanged messages, by adding a
new layer for the web requests’ preprocessing. Providing uniform access to the services
is also important to decrease the interface’s development effort, which is the approach
suggested in [FHA+99; GPST04].

The biggest challenge affecting service discovery mechanisms is the heterogeneity
between the offered services [GPST06]. It can be seen on many levels including:

• Technological heterogeneity which entails different platforms and/or different
data formats.

• Ontological heterogeneity that could be seen in domain-specific terms within
services that can differ from one another. This is most obvious when comparing
services from different vendors.

• Pragmatic heterogeneity that results in different implementation of domain-specific
processes and their support.

A lot of efforts are directed to having a uniform, automated access to the best services
available, some of which are proposed in [AM07; HNP+11]. In this thesis, the effort for
service discovery is developed based on the concepts of having a central component that
holds all the information of the services the platform offers as shown in Fig. 2.4, while
having the application (Flexmash) connecting to it, in an automated way based on the
workflow provided by the user.

25

2 Background

The platform also allows access to the services from outside the application, thus, serving
more consumers while maintaining the status of each service and whether it is reachable
or not, providing only functional services.

2.4 Enterprise service bus (ESB)

With the rise of SOA, a new need appeared for an infrastructure that is able to combine
Message-Oriented Middleware (MOM), web services, transformation, and routing intel-
ligence, in order to be able to support and enhance SOA. There are multiple definitions
for an ESB but the main concept remains the same. A software service can change over
time due to the increasing growth in the IT environment, their signatures or data types
might change among other aspects that are susceptible to change.

In a large IT-system, it is extremely difficult to have a system built with the same technol-
ogy, logic, protocols, and components that can handle all aspects of the functionalities
required by it. It is even harder to maintain such a system if it even exists. Because such
a system existence is impractical and highly improbable, it has to consist of different
components which by default entails different protocols and technologies. Assuming
that different components of the system communicate with point-to-point integration,
it would be an extremely complex system and the costs for maintenance of such a
system would be extremely high. Essentially, there are two options for building the
communication infrastructure for large systems:

1. Building and designing each component to be able to communicate and integrate
with all other components within the domains of the company

2. Building a communication layer to manage the logic and integration between the
different components (the ESB)

Assuming the decision was made to work with the first option, this would mean that each
component needs to have an interface for each other component. As a result the system
would be tightly coupled. In case a new component is introduced to the system, the
overhead for creating new interfaces for all the components (to be able to communicate
with the new component) would be cumbersome. This makes the second option the
more logical one for building a system, while maintaining the costs of development and
maintenance much lower than the first option.

In order to have a functional ESB, it needs to implement certain functionalities. Some of
those functionalities are mentioned in [Lie13; Men07; PH07], and include:

26

2.4 Enterprise service bus (ESB)

Message Transformation For a large system, it is common to have different compo-
nents with different messaging formats, so the ability to transform the messages
from the source format into a format that the target would understand is a key
feature to avoid developing N*(N-1) interfaces for the components assuming that
we have N components.

Intelligent Routing The task is to deliver the messages sent from the consumer to the
correct intended service providers, and then send the responses back to the right
consumer. There are several examples of routing, such as content-based routing or
routing specific messages to several destinations where the consumers subscribe to
a certain topic.

Adapters which are used to connect to the native APIs and data structures that the
applications expose. Many ESB solutions offer a wide range of adapters.

Process Orchestration may be included in an ESB, which is an engine that is able
to execute business processes described with the Web Services Business Process
Execution Language (WS-BPEL)

Reliable Messaging to be able to queue messages and ensure a guaranteed delivery to
the destination, while being able to respond back to the requester if needed. That
includes synchronous and asynchronous messages.

Figure 2.5: Enterprise service bus connecting diverse applications and technologies
[PH07]

Different approaches were made to extend an ESB, such as in [Muh12], for Multi-
Tenancy support. Regarding the evolution of the ESB in general the discussion in [Lie13],
emphasizes the importance of the concept. In Fig. 2.5, an example architecture of an

27

2 Background

ESB is shown, where the ESB integrates a .NET application using a C# client, J2EE
application using JMS, an MQ application that interfaces with legacy applications, in
addition to external applications and data sources using Web services.

As the figure shows, the ESB allows a more efficient integration of components, where
they only need to have interfaces to communicate with the ESB, not interfaces for
every other component. It also provides abstract connection information for physical
destinations which allows communications to use logical names instead of IPs and ports.
ESBs can also be implemented in different protocols such as HTTP, JMS, etc. [EAA+04].
It is up to the system architect to decide the best way for communication between
the system’s components, based on the end goal of the system, and the features of
the components. Three alternative ways of communicating between an ESB and an
application are mentioned in [KAB+04; PH07]:

1. Using applications that provide a Web service interface where the WSDL defines
the interface to communicate directly with the application business logic.

2. Using a non-web service that interface where the application does not expose
business logic via Web services. An application-specific adapter can be exposed by
the application to act as an intermediate layer between the application API and
the ESB.

3. Using a service wrapper that acts as an interface to adapters. In some cases the
adapter may not supply the correct protocol (JMS, for example) that the ESB
expects. In this case, the adapter would be Web service enabled.

2.5 Business Process Modeling Notation (BPMN)

BPMN is a proposed process modeling technique, which was developed based on
revisions of other notations such as UMO, IDEF, ebXML [RIRG06]. It was developed
as a result of the demand for having a graphical notation for modeling processes. The
main goal of BPMN is to make it easy to be clearly understandable by all relevant
stakeholders, starting with the business users who create the requirements and first draft
of the processes, the technical developers who implement the technology responsible
for performing the processes, and finally the business people responsible for monitoring
them.

BPMN defines a Business Process Diagram (BPD), which is based on a flow charting
technique tailored for creating graphical models of business process operations [Whi04].
The BPD makes it easier for users and stakeholders with no technical background
to understand the flow of the processes, without having to understand the low level

28

2.6 Data Mashups

implementation details, providing them with the ability to also create understandable
diagrams. BPMN also allows models to extend some of its basic notation, which is a
feature that enables more flexibility for different businesses to use it.

BPMN could be used to communicate a variety of different information to different users
and audiences. This includes various types of modeling, with different levels of details.
There are two basics types of models that BPD can be used to implement: Collaborative
(Public) B2B Processes and Internal (Private) Business Processes. The B2B processes
express the flow of interactions between business entities (two or more), which offers a
bird’s-eye view over the entire interaction flow. Internal business processes focus more
on a narrowed down view of a single business organization, despite the fact the internal
processes often interact with external services and participants.

Modeling patterns are also available for users [All16], since similar problems are en-
countered repeatedly by the people that need to model processes. The patterns offer
a way to model those recurring cases, and to save time by not having to develop spe-
cific solutions each time. A good feature that could be used with BPMN standards
is choreography modeling. A choreography model contains the relevant interactions
and dependencies [Rec08], which can be done through the different control patterns
described in [WAD+].

2.6 Data Mashups

According to [YBCD08], Web mashups are Web applications developed using contents
and services available online, with the goal being to combine sources to create a new
application or service. The HousingMaps1 application is an example of a successful
mashup. It serves as an assistant to people who are moving from one city to another
and are searching for housing, by combining real-estate data with map data. A similar
application could be developed using conventional technologies, but by using mashups,
even end users can create useful mashups from data sources without any in depth
technical know how.

Several mashup specific development tools and frameworks have recently emerged that
increase the speed of the mashup development process, and at the same time give the
end users the ability to develop their own mashups. Some of these tools are existing

1(www.housingmaps.com)

29

2 Background

mashup solutions that were mentioned in [HRWM15; YBCD08] such as: Yahoo Pipes2,
IBM Mashup Center3, Intel Mashmaker4 and OpenIoT Mashup5.

Mashups are generally created to aid with reusability and ease of access, and so end
users will be able to compose their own mashups. That being said, in [HRWM15]
limitations for the previously mentioned tools were found and tackled in regards with
coping with different requirements of various scenarios, usability by non IT-experts,
handling of heterogeneous data, and scalability.

2.7 Camunda engine

Figure 2.6: Process Engine Architecture6

The core of Camunda BPM is a model execution engine that supports the OMG standard
BPMN 2.0 for process automation. It supports key concepts such as:

• Flexible implementation through several extension points and customization.

2http://pipes.yahoo.com/pipes/
3http://pic.dhe.ibm.com/infocenter/mashhelp/v3/
4http://intel.ly/1BW2crD
5http://openiot.eu/
6www.camunda.org

30

2.7 Camunda engine

• Job executor which helps in optimizing the performance and scalability.

• Transactions management, i.e, whether it’s done through the engine itself or
through a platform transaction manager.

Hence, this engine was used for executing the models in this thesis, which will be
discussed in details in later sections. It also applies persistence through a number
of strategies mentioned in their documentation. The Process Engine Architecture in
Fig. 2.6 facilitates its integration with the application FlexMash. Using the public
API provided, which is a Service-oriented API, allows Java applications like FlexMash
to interact with the process engine. Using the API, the application can control the
different responsibilities of the process engine (i.e., Process Repository, Runtime Process
Interaction, Task Management, etc.). The core engine then transforms the BPMN XML
files generated from the transformation of the Mashup Plans into Java Objects and a set
of BPMN Behavior implementations such as Service Tasks and Gateways.

31

3 Related work

In this section, the basic concepts required for the development of this thesis are
described in more detail. The related work serves as foundation for the concepts on
which this thesis is built, and it is important to describe in order to get an overview of
the work done and the reason behind the choice of concepts and technologies used.

There are many approaches for using Mashups to process data, which are characterized
in [YBCD08] by looking at the components and how they are glued together i.e, the
composition logic. The component model is what decides the nature of the components,
as well as how they can be integrated together. In [YBCD08] components are character-
ized using three properties: type, interface, and extensibility. The composition model on
the other hand, is what determines how the components are integrated. It has many
distinct characteristics that could be used to better understand it.

3.1 FlexMash

FlexMash is a proposed mashup approach in [HB16; HM16; HRWM15] that consists of
five main steps:

1. the modeling of Mashup Plans

2. the selection of transformation patterns

3. the pattern-based transformation of Mashup Plans into an executable format

4. the cloud-based data mashup execution based on user requirements

5. the storage and/or visualization of the derived result [HM16]

In this thesis, the following steps are discussed (2, 3, and 4), since they are where the
contribution of this thesis comes in, for the enhancements of the application FlexMash.
It divides the data mashup into four abstraction levels. These are the model, its trans-
formation, execution, and presentation level. It successfully enables the abstraction
from the non-technical, domain-specific modeling to the technical execution. Hence,
FlexMash can be considered an applicable data mashup solution.

33

3 Related work

The Pipes and Filters pattern is used to take advantage of the software components it
creates, and enable easy interconnection between them for different possible scenarios.
This means, that after the graphical model is created, it is then transformed into an
executable format such as, e.g., a workflow model. Using the executable model, the
functionality of the filters is provided by services, that are called in the order as defined
by the data mashup model [HB16].

3.1.1 Mashup plans

(a) Mashup Plan Transformation Components [HRWM15]

(b) Overview of Mashup Plans [HM16]

Figure 3.1: Mashup plans

Mashup Plans (shown in Fig. 3.1b) that are related to the Pipes and Filters are introduced
in [HRWM15], and defined as “non-executable, domain-specific model to define data
mashups [HM16]”. This is essentially a directed, cohesive flow graph containing nodes
and edges, where a node is either a Data Source Description (DSD) or a Data Processing
Description (DSP).

The mashup plans need to have at least one DSD and one DSP, which is one of the
restrictions for a model to qualify as a mashup plan [HRWM15]. Throughout the
development of this thesis, the approach for mashup transformation and execution is
built upon as explained in 3.1a. Since the modeling of a mashup plan abstracts the

34

3.2 Online Citation Service

technical details of the plan and how it can be executed, a technical model needs to be
generated that translates the plan into an executable model. Different transformation
patterns are also introduced in [HRWM15]. For this thesis, the Robust Mashup pattern
was used.

3.2 Online Citation Service

In [TAR07], an approach for a complex dynamic data integration mashup framework is
introduced. Using Mashups, this framework offers data transformation, query generation,
and online entity matching capabilities. The scenario used to illustrate the approach is
an Online Citation Service1 (OCS). The example is an implementation that combines
bibliographic data to dynamically calculate citation counts for venues and authors. OCS
allows the generation of citation counts for publication lists of authors and venues.
It obtains the publication lists from the DBLP bibliography2 and the citation counts
are obtained from Google Scholar. The citation counts from Google Scholar (GS) are
obtained dynamically based on the scenario at hand.

The framework enables developers to create their mashup algorithms as scripts, where
functionality of a mashup script is also available as a web service. This is so that it can
be used by a web interface or by another web service, e.g., within another mashup.

Mashups are developed using a high-level script language, which also uses XML data
structures. The framework also offers several operators for data transformation, e.g.,
fuse, aggregate, and set operations e.g., union, intersection, and difference. Fuse
transformation functionality for example, performs object matching and merging. Fuse
takes as input two XML documents A and B representing various objects, and identifies
objects referring to the same real world entity.

3.3 Mashup tools analysis

[DHPB09] presents an analysis of the richness and weaknesses of various Mashup tools
with respect to their data integration aspects. The analysis included seven Mashup tools,
chosen based on the tools’ popularity when the analysis was performed. In addition, the
tools’ availability was taken into account to ensure that sufficient experimentation and
accurate reporting results could be gained for the study. The objective was to offer a

1http://labs.dbs.uni-leipzig.de/ocs
2http://www.informatik.uni-trier.de/~ley/db/

35

3 Related work

view on the state of those tools, and understand the general approach to developing
them. The tools considered in the study were:

1. Damia, a Mashup tool provided by IBM. This tool focuses on data feed aggregation
and transformation in enterprise environments.

2. Yahoo pipes, a web-based tool provided by Yahoo. Users can build mashup
applications by aggregating and manipulating data from web feeds, web pages,
and other services.

3. Popfly, a web-based Mashup application by Microsoft. It allows the users to create
a Mashup combining data and media sources.

4. Google Mashup Editor(GME), a Mashup development, deployment and distribution
environment by Google. The Mashup can be created using technologies like HTML,
Java Script, CSS along with the GME.

5. Exhibit, a framework for creating web pages containing dynamic and rich visual-
izations of structured data.

6. Apatar, a Mashup data integration tool that helps users integrate desktop data with
the web.

7. MashMaker, a web-based tool by Intel for editing, querying and manipulating web
data. It allows users to create a mashup by browsing and combining different web
pages.

According to the study, the majority of the tools have an XML-based internal data model.
This is due to the fact that most web-data is mainly exposed in XML format [DHPB09].
The other dominant internal data model present in Mashup tools is object based. In order
to manage data, the tools offer a small set of operators for integration and manipulation
of data. Those operators are offered based on the main goal of the tool.

It is worth mentioning that none of the analyzed tools implemented a Push strategy for
data refreshing. The reason for this is that the majority of the currently available APIs
are REST based, which in turn entails that the communication is initiated by the client
and not the server. This makes maintaining the state of the connection in this case not
achievable. Instead, the tools used a Pull strategy to maintain the integrity of the data.

According to above mentioned study, the majority of tools do not support the reuse of
created Mashups. Instead, they focus on offering services to process and manage data.
Finally, all the tools are meant to target “non-expert” users, but some programming
knowledge is usually required. This limits the pool of users capable of using the tools to
those with some basic to advanced programming knowledge, that are able to develop
the mashups using programming languages such as Java Script.

36

3.4 SOA-based Mashups

3.4 SOA-based Mashups

Figure 3.2: SOA Extension with Mashup [LHSL07]

A Mashup application consists architecturally of three different participants: API/content
providers, the mashup host, and the consumer. It is a process that integrates data from
different sources, and therefore, it is a service composition style from a SOA perspective.
In [LHSL07], an approach is introduced to extend the current SOA model with Mashups.
In addition, a new mashup component model is proposed. The approach extends the
basic SOA roles (provider, broker and consumer), according to the Mashup architecture
and roles. Mashups are thus in this case an extension of the SOA paradigm, which
entails a similar life-cycle to that depicted in Fig.3.2.

For Mashups, this approach extends the service composition style of SOA to the interface
level, which is at the application level in traditional service composition cases. This
means that the users have access to simpler techniques for composing a scenario, which
decreases the need to have a technical background.

The component model introduced is classified into three elements:

1. UI component: the part the user interacts with, usually consists of the UI compo-
nents that hide the service components’ details. This abstracts the details of the
composition, hides it from the users, and enables them to only deal with the UI.

37

3 Related work

2. Service component: deals with data manipulation and processing. It can vary in
the implementation details for the same logic.

3. Action component: acts as the connector between UI and Service components, as
it defines actions driven by events like a button click on the UI for example.

Since users can focus on the UI level composition, the data exchange between two
mashup components is processed by their own Action Components. This leaves the
detailed generation of the code in the hands of the browser. Once a component is chosen
and used in the Mashup, the code corresponding to the component is added in the
background. The total model is then used to execute the scenario based on the code
generated. This provides users with the ability to experiment safely with powerful tools,
without affecting the usual IT process.

38

4 Conceptual approach

In this section, the architecture of the masters thesis, the different components that
were developed, and how they work together are described. The architecture of the
application, and how the different components fit together are also further expanded
upon.

Through the development of this thesis, a comprehensive set of data services is created.
This set contains basic functionality to process data, covering the most important
scenarios. It is important to highlight that the development of these data services is
done in a generic manner to ensure their re-usability. These data services consist of
functionalities to filter, aggregate, and analyze data. Furthermore, a concept for uniform
interfaces and a uniform data exchange format of the data services is proposed.

4.1 Overview of the approach

In order to achieve the goals mentioned before, the FlexMash application needed to
be extended to make it compatible with the desired Service Platform. Furthermore,
the processing of mashups needed to be adjusted, in order to be able to make it more
generic, and for easier integration with the services provided.

Removing the need to adjust the application itself with the addition of a desired new
service, provides more flexibility to the overall flow of the application. The work done
in this thesis consists of:

• Creating a Service Platform that acts as a centralized repository for the services
available for FlexMash.

• Extending FlexMash in order to use Camunda BPMN engine in a generic way for
the services provided through the Service Platform.

• Integrating the Service Platform directly into FlexMash to be able to use the
services as well as making it reachable from outside the application.

• Creating and integrating prototypical implementations of data services to provide
the functionalities of data Filtration, Aggregation, and Classification.

41

4 Conceptual approach

4.2 BPMN Model Transformation

Figure 4.1: Extended Mashup Approach [HRWM15]

The approach for the extended mashup on which the application FlexMash is built is
explained in Fig. 4.1. The main contributions of this thesis for the FlexMash application
(in addition to the Service Platform) are done for the method’s steps: Transformation,
Data Extraction and Execution of Data Operations, Result Storage, and Result Utilization.
The plan transformation is done via a JSON format the front-end sends to a BPMN
workflow, which the Camunda BPMN engine can execute. The JSON format can be
found in Listing A.1.

When the user starts executing the designed model, the data is sent from the front-end
application engine through HTTP. The JSON data sent is a representation of the model,
with the user inputs, connections between the different nodes, and front-end styling
elements saved as a template. The back-end extracts the relevant data from the file
in order to be able to transform it into an executable BPMN model. For a successful
transformation, the nodes of the model, node inputs (if they exist), and the flow or
connections between the nodes are needed. The styling data is ignored since it is not
needed for the actual execution.

Using this information, the application transforms the model sent by the front-end, into a
BPMN model that can be executed using the Camunda BPMN engine. The reconstruction
is done by traversing the JSON data, and building the BPMN model, node by node, until
all the nodes are represented and connected in the same way. This process results in a
logically equivalent model in BPMN notation. An example of that transformation process
is depicted in Fig. 4.2, with a sample scenario (Fig. 4.2a)and the logically equivalent
BPMN model (Fig. 4.2b).

42

4.2 BPMN Model Transformation

When comparing the two models depicted in Fig. 4.2, it is obvious that in Fig. 4.2b two
extra components – logical gates – are present, unlike in Fig. 4.2a. The logical gates are
a necessary adjustment made during the transformation to obtain a sound execution
of the model. For parallel paths, as shown in the figure, the BPMN engine requires the
presence of the parallel gates in the model to properly work.

The functionality of the gates is to act as a semaphore that waits for both branches
to finish execution before starting the final execution of the node at the end of the
forked path. During the transformation, the nodes with multiple incoming or outgoing
transitions must be kept track of to ensure that the parallel gates are correctly placed in
the right position in the model.

The idea behind the replacement is to have the parallel gates directly after the nodes with
multiple outgoing transitions, and again directly before the final nodes with multiple
incoming transitions. The parallel gateways are what synchronizes the execution of the
multiple branches, and doesn’t execute the final merge until all of them are finished
executing. Without the parallel gateways the merge functionality at the end would be
executed multiple times, once for each brach.

When it comes to the user, the nodes with multiple transitions and the parallel gates are
treated as one unit, which is handled by the transformation algorithm, so that the user
never needs to model extra nodes or take care of the multiple branching. This allows
the process to be simple for the end user.

43

4 Conceptual approach

(a) FlexMash model

(b) Result BPMN model

Figure 4.2: Transformation example

The workflow generated is then processed and executed based on the various data
sources and services used. The automated execution is done through a generic execution
that communicates with a service registry, gets the information of the service that should
be used, and communicates with it. The results are then returned to the engine for
further processing and to continue with the flow of the generated model.

The transformation process takes care of the multiple branching in a workflow, in order
to take the burden off of the user when modeling a scenario. Since the BPMN engine
requires adding special gates before and after each multi branch path, the transformation
phase models the Mashup Plan with the appropriate notation.

4.3 Service Platform

IT giants such as Google, Amazon, Microsoft, IBM have started providing various services
online, thus saving a lot of users the costs of doing the computations they need on their
own. It saves the users from the hassle of self software deployment and maintenance.
Providing Software as a Service (SaaS) [TSB10] is a rapidly growing market due to

44

4.3 Service Platform

a variety of reasons, one of main ones being that, with SaaS, users do not have to
incorporate the entire implementation and service costs of those services into their
budgets.

With that growth of online services, it is now easier to integrate different sources of data
and functionalities into mashups [MRG08]. Depending on their level of maturity, the
platform contributes to decreasing the development effort and reducing operating costs
[CLPZ]. The Service Platform developed for this thesis consists of three main parts: the
services management infrastructure, service registry, and the actual services.

4.3.1 Infrastructure

For the infrastructure, upon which the Service Platform was built, I used Consul1. It is a
Service Discovery and Configuration platform that provides a lot of useful features that I
used for the Service Platform. It has multiple components, but as a whole, it is a tool for
discovering and configuring services. It provides several key features:

• Service Discovery: Services could be provided to Consul, and Consul enables the
consumers to discover providers of a given service. Using either DNS or HTTP,
applications can easily find the services they depend upon.

• Health Checking: Service providers could also supply Consul with health checks
associated with a given service ("is the webserver returning 200 OK"). It is used by
the service discovery components to route traffic away from unhealthy hosts.

• Key-Value Store: Applications can make use of Consul’s hierarchical key/value store
for any number of purposes, including dynamic configuration, feature flagging,
coordination, leader election, and more. The simple HTTP API makes it easy to
use.

• Multi Data center: Consul supports multiple data centers out of the box, which
eliminates the need for building additional layers of abstraction to grow to multiple
regions.

Consul is a distributed system, which enables the Service Platform to grow with no extra
effort of development. Consul nodes running on different instances run an agent, which
is responsible for the health checks of the services on the node. While at the same time
not affecting the discovering of services since it is not needed for that. The function
of the agents is to talk to the available Consul servers, where all the services-related
information is stored and replicated. It is the job of the nodes to elect a leader, while at

1www.consul.io

45

4 Conceptual approach

the same time providing the possibility to run it only on one node. For queries regarding
a service, the agents or the nodes could be used where the agents forward the requests
to the servers. In case of a cluster, the service discovery requests are sent by the local
server to the remote data centers and returns the results. This provides consumers with
a level of abstraction of the infrastructure and the flexibility of configuration, since they
do not need to contact each server separately.

The features it provides add value to the robustness of the Service Platform in different
ways. Service discovery and configuration is one of the main challenges that faces SOA
compliant solutions. In many cases, organizations build their own solutions, which adds
a lot of costs and overhead to develop and maintain. Hence, the use of Consul for this
thesis in order to eliminate those costs. By exploiting this open source technology, more
efforts are directed towards the actual goals of the system instead of reinventing the
wheel.

Despite the fact that it provides a lot of useful functionalities, I needed to build a
layer of communication that is responsible for choreography of the desired interactions.
This layer is needed to be able to maintain a consistent choreography, without giving
consumers the ability to interact directly with Consul itself. Some of the constraints
that this layer provides are ensuring the users to have access tokens to maintain each
user’s services, and to ensure that the administrative actions done on services are being
executed from the owner of that service. It could also be used in future work to keep logs
and relevant information for analysis and reference to be able to extend the platform
further.

4.3.2 Service registry

The service registry is the layer which the service providers and consumers interact
with. It uses the choreography depicted Fig. 2.4. It provides service consumers with the
available services, and their details that are given by the providers. It also makes sure
that the returned services are healthy and functional by using the health checks that the
infrastructure provides. Thus, making sure that the results returned to the consumers
contain reachable services only.

As for the service providers, it is responsible for keeping track of the services provided
and the operations executed. By providing service providers with tokens, each token
holder can only control the services registered to this token. The data is stored in Consul
but the authentication and choreography is taken care of by the registry. It is worth
mentioning that both consumers and FlexMash application are able to communicate
with it, which expands the services paradigm that could be provided for both. The
authentication logic and the service queries are taken care of by the Service Platform,

46

4.3 Service Platform

while the Consul platform is used to maintain the data, and perform the health checks
for the services. Using the interfaces provided by Consul, the platform orchestrates the
flow of the functionalities it offers.

4.3.3 Services

For this thesis, I implemented three services for data processing that are hosted on the
Service Platform itself. These services are mainly developed as proof of concept, and the
scenario I used them for is to process data in the CSV format. The services as mentioned
before are filtration, aggregation, and data analysis. These services are contained and
hosted in the Service Platform.

In order for them to be used through FlexMash, they have to be added as nodes to
the application. Adding them as nodes also entails registering/publishing them on the
service registry through the application. Since users can add nodes directly through the
application, all the registered services from different instances, will be available through
the service registry, making it possible for other users to incorporate these services, if
needed, into their own Mashup Plans.

The filtration service supports simple AND/OR operations that filter the columns in the
CSV data and returns the result. An example of the data I used is depicted in Table A.1.
The conditions applied to for filteration can be AND conditions or OR conditions, but the
service I implemented does not support a mix of both operations. An example condition
can be (sex = F AND reason = course) which if applied to the data in Table A.1, it will
filter out all rows except those which fit the condition.

As for the aggregation service, it creates an SQL DB instance in memory with both CSV
data sets to be merged. After that, they are transformed into relational tables. It also
supports simple AND/OR operations. Instead of implementing the merging functionality
from scratch, I took advantage of the capabilities of SQL DBMS since it would implement
the merging logic efficiently to return the appropriate result.

Then, the SQL instance is deleted from memory and the result then is transformed back
into CSV that could be used in other services. For the classification services, I used the
Weka2 library for data mining to implement the Apriori algorithm. The Apriori algorithm
generates association rules on the CSV data set that is used as an input for the service.
In the implementation section, I will use an example to demonstrate the entire flow,
including the services that I implemented for the data processing.

2http://www.cs.waikato.ac.nz/ml/weka/

47

4 Conceptual approach

4.4 Components integration

Figure 4.3: Thesis contribution

One of the main goals of this thesis, is to provide a generic way to extend the scenarios
that FlexMash is capable of executing. In order for that goal to be achieved, integrating
new services into the application should be done seamlessly, without the need for code
changes. The first step towards that goal is to have a generic execution environment,
that is capable of adapting to the services being modeled.

To clarify that more, the FlexMash execution engine is a Camunda engine instance, that
is capable of executing the BPMN models that are obtained from the transformation
phase steps 4 and 5 in Fig. 4.1 to provide the flexibility needed. In a BPMN model,
each task has a service assigned to it to be called by the Camunda engine for the actual
execution. That entails that for each new service added to FlexMash we need to add
new code for that service.

Thus, the integration of FlexMash and Camunda required a generic execution service
that adapts to all services, gathers the inputs from the previous nodes/tasks, and sends
it to the next service to be implemented. This generic executor is responsible for calling
the service registry to get the service information, then contacting the service itself with
the information obtained from the registry as explained in Fig. 4.4.

48

4.4 Components integration

Figure 4.4: Execution flow

The service platform is built as shown in Fig. 4.3, so that it encapsulates the Consul
operations and logic and the users can directly interact with it. It also adds more logic
for the application such as authentication, service queries and service management.
Using the features of the infrastructure, records are kept for the services registered with
the Service Platform per user, as well as deletion rights. This also adds more control
over the nodes running behind the Service Platform. For authentication purposes, the
Service Platform requires users to acquire tokens for all future interactions, in order to
be able to maintain the data of each user separately. This applies to all possible users,
including the application FlexMash, which enables the integration as well as making
services available for all FlexMash instances.

The Camunda engine integrates the intermediate results that were retrieved from the
services into the execution using the job executor to store them in the process variables.
For each executed model, an instance of the engine is created using the API provided, to
ensure that each instance is autonomous and robust. This adds the possibility for the
history of the executions and models generated to be maintained.

49

5 Implementation

In this section, the main concepts of this thesis with technical details are described, and
a practical example is provided where the FlexMash is used in combination with the
Service Platform. The example provides a concrete way to explain how the different
components interact with each other, and will also highlight the technical details used
and the reasons behind using them.

5.1 Implemented services

5.1.1 Filtration service

One of the services implemented throughout the course of this thesis is a service to apply
filters to CSV data sets. The service takes as inputs the user’s filtration criteria and the
CSV data. The filtration criteria supports AND/OR logical operations. In the scenario
modeled “sex = M AND address = U” is used. For both operations, each criteria and
condition is evaluated separately, while keeping track of the indexes that match each
condition.

The main difference is that for the AND operations, a match for each condition should
be found. This means that the index of the entry should be found N times in the indexes
list, where N is the number of conditions and in that case the entry is added to the result
set.

As for the OR operation the same process is completed, with the exception of the last
step. Here where the list of indexes that is constructed by matching each condition
separately, is cleared of all duplicate entries, and the cleaned list is then returned as the
result set.

51

5 Implementation

5.1.2 Merging service

As mentioned earlier, the use cases for this thesis use the CSV data format. The merging
service uses that same format, where it takes as inputs the merging conditions which
also supports both logical operations as the filtration service, and two CSV datasets that
will be merged. The service then creates a SQL DB instance in memory with both CSV
data sets to be merged, represented as tables.

The goal behind this approach is to take advantage of the DBMS efficiency and make
it take care of the merging logic. It is worth mentioning that the column names in
both CSV data sets should be unique, otherwise the service will assign the conditions
randomly, in case both data sets have the same column name. The results of this service
are returned also in CSV format, after transforming the result SQL table into that format.
An example condition can be (sex = sex AND reason = reason) to the two sets of data,
which are similar in structure to the data in Table A.1. The result of the process is the
resulting SQL table generated in CSV format.

5.2 Merge scenario

This example is to demonstrate the merge service, in which I used the datasets mentioned
before to be merged. The scenario is depicted in Fig. 5.1a.

5.2.1 Sample data used

To run a practical example, a sample dataset1 was obtained. A sample of the data is
depicted in A.1, and consists of two CSV files to demonstrate the new services as well
as the interaction between the components. The data were obtained in a survey of
students’ math and Portuguese language courses in secondary school. The data includes
various social and gender studies about the students, which can be used to do different
operations and analysis using the services implemented for this thesis.

It is important to know that the objective of the scenarios demonstrated in this thesis,
is to showcase the technical functionalities. The data provided is being used only for
this purpose. That does not negate the fact that the services could be used for scenarios
where the goal is processing the data for a different end goal.

1https://www.kaggle.com/uciml/studentalcoholconsumption

52

5.2 Merge scenario

5.2.2 Model Transformation

(a) Merge example

(b) Result BPMN model

Figure 5.1: Merge example

The model in Fig. 5.1a is constructed by the FlexMash application user. It is then sent to
the back end in JSON format that represents the details of that model. An example of
that representation is depicted in Listing. A.1, where this JSON code represents the start
node2, as well as the transitions going out from it.

2I removed the styling elements for the sake of relevance to this context.

53

5 Implementation

Looking at the Listing A.1, under the transition node, there are two data sources for CSV,
which is the representation of Fig. 5.1a. The entire document is then transformed into a
BPMN model, using the Camunda Java API. By traversing the entire model, creating the
nodes that represent the model first, then creating the transitions between them. The
result of that process is transforming an entire JSON model that consists of multiple
nodes into the BPMN file that the Camunda engine can execute. The end result of that
transformation is shown in Listing A.23.

When there are multiple outgoing transitions from one node, and multiple incoming
transitions into a different node, the Camunda engine requires that Parallel Gateways
(PG) are modeled before the multiple transitions, as depicted in Fig. 5.1b. The gateways
in general and the PG in this case are used to model concurrency in a process. The
functionality of the parallel gateway is based on the incoming and outgoing sequence
flow(s):

• fork: all outgoing sequence flows are followed in parallel, creating one concurrent
execution for each sequence flow.

• join: all concurrent executions arriving at the parallel gateway wait at the gateway
until an execution has arrived for each of the incoming sequence flows. Then the
process continues past the joining gateway.

The PG can have both fork and join behaviors, if there are multiple incoming and
outgoing sequence flows for the same parallel gateway. In that case, the gateway will
first join all incoming sequence flows, before splitting into multiple concurrent paths
of executions. In our example, it allows forking into multiple paths of execution and
joining multiple incoming paths of execution.

The user is not required to model those gateways, which is due to the fact that the
transformation logic built takes care of that problem, without the need of the users’
input. The transformation process first traverses the JSON representation in both
directions from the start node to the end node and vice versa, while keeping track of all
nodes represented, the outgoing transitions from each node with their targets, and the
incoming transitions for each node with their sources.

Through the engine’s Java API, the three lists are represented as objects of the relevant
types. For each node with multiple incoming or outgoing transitions, this node is
connected in the new model to a PG, which in turn takes all of the incoming or outgoing
transitions as its own. The result of the process could be seen in the logical difference
between both Listing A.1 and Listing A.2.

3This is a part of document for demonstration purposes for this thesis.

54

5.2 Merge scenario

The code responsible for this replacement is depicted in the code snippit A.4, where
lines starting from 9 are responsible for removing all the nodes with multiple outgoing
transitions, and replaces them with the parallel gate in the list of sequence flows. The
code traverses the model starting from the end node until the start node. Lines starting
from 36 are responsible for removing all the nodes with multiple outgoing transitions,
and replaces them with the parallel gate in the list of sequence flows. The traversal of
the model in this case is done from the start node until the end node.

5.2.3 Execution

The Camunda engine takes care of the model execution, which is BPMN compliant as
explained in the previous subsection. Each task has class attributes in the model, which
are then used to specify which code functionalities should be used for this task. In
our case, there are two different classes used, the first one being “CSVExe”. This is
responsible for the reading of the local file. It loads the CSV files into the engine as
process variables, that can be then used within the scope of the executable process.

The second class is “GenericExe”, which is the generic executor developed as part of
this thesis’ extensions for FlexMash. It is responsible for getting results from the direct
predecessors of the task, and making them available to the task being executed. This
part is done automatically where all the inputs for a task, whether the user inputs to the
task or outputs to the the predecessors, are collected by the generic executor.

The generic executor is responsible for the main integration part between FlexMash and
the Service Platform. For each task being executed, it queries the service registry, using
the service name, and gets the details of the service explained in previous sections. The
main pieces of information used by the executor from the query result are the address of
the service and the inputs of the service. Since it constructs the request to the service
using those parameters, using JSON, the input names are used in requests made to the
service. The flow of execution that is done for each task by the generic executor is:

1. Query the executable model and get the task’s predecessors

2. Get the outputs of the direct predecessors of the task being executed - if available -

3. Query the Service Platform using the task name

4. Contact the service using the information obtained from the query in step 2

5. Incorporate the result of the service into the process engine as output for the task
being executed

55

5 Implementation

In our example, due to the existence of the PGs in the executable mode, each branch
of the transitions between the Start and the Merge tasks is executed concurrently, yet
the execution of the merge task does not begin, until both branches are done with
their execution, that way the engine is able to incorporate both inputs from the results
of those branches, into the merge process through the generic executor. Without the
modeling of the PG during the transformation phase, the engine would execute the
Merge task twice, once for each branch.

5.3 Apriori scenario

A popular data mining approach is to find frequent itemsets from a transaction dataset
and derive association rules. Finding frequent itemsets (itemsets with frequency larger
than or equal to a user specified minimum support criteria). Once frequent itemsets are
obtained, it is straightforward to generate association rules with confidence larger than
or equal to a specified minimum confidence. The Apriori algorithm (Algorithm. A.1) is
one of the popular algorithms, used in order to generate the desired association rules.

Figure 5.2: Apriori example

56

5.4 Service Platform

For the implementation of this service, I integrated the Weka4 library into the service
platform. It contains a collection of machine learning algorithms, that are used for data
mining tasks. When it comes to the classification algorithms, it contains three different
available algorithms, of which I integrated the Apriori algorithm. It provides different
attributes which could be used to adjust the outcome, such as the minimum support, the
minimum confidence, etc. According to [WFHP16], the implementation starts -assuming
the default values are not changed- with a minimum support of 100% of the data items
and decreases this in steps of 5% until there are at least 10 rules with the required
minimum confidence of 0.9 or until the support has reached a lower bound of 10%,
whichever occurs first.

For the scenario in Fig. 5.2, I used one from the data set mentioned in the previous
scenario, in order to ensure that the service could be integrated with other services.
As for the more relevant test, I used a supermarket dataset5 which resulted in the
association rules shown in A.3. The execution logic is the same as mentioned in the
previous section.

5.4 Service Platform

The Service Platform offers a number of both POST and GET methods, available for
users to interact with it. The methods offered comply with the definitions of both
methods, where GET is idempotent, i.e, repeating the query does not have side-effects,
while POST submits data to be processed, i.e, the POST requests have side-effects on
the data maintained by the Service-platform. The available methods offered by the
Service Platform are shown in Table 5.1 and Table 5.2. The aim of the methods and
their separation between GET and POST, in addition to the Idempotence concept, is
to make the Service Platform accessible for service consumers without the need for
authentication. At the same time, it gives the service providers the ability to control
their services, through the token authentication required for the POST methods.

When each of the methods is called, it calls the Consul engine and executes the requests.
It also constructs the information received from the Consul engine into object oriented
notions. The services which are available, are then returned to the requestors in JSON
format,where they can map them to their own object structure. During the integration of
the Service Platform with FlexMash, I added the service object structure. Thus, whenever
the generic executor queries a service, it deals with an object instead of dealing with

4http://www.cs.waikato.ac.nz/ml/weka/
5http://storm.cis.fordham.edu/~gweiss/data-mining/datasets.html

57

5 Implementation

the HTTP requests. The parameters for the object representing a service, are the same
inputs needed for service registration, which are shown in Table. 5.1.

Method Signature Functionality

getNewUserToken() provides the user with a
token for service admin

interaction with the Service
Platform

registerService(usertoken,
port, healthcheck, ttl,

servicename,
serviceaddress, description,

parameters, tags)

Allows providers to publish
services on the Service

Platform

deregisterService(usertoken,
serviceid)

Allows providers to
deregister services on the

Service Platform

Table 5.1: POST methods

Method Signature Functionality

getServicesWithTags(tags) Users can query the Service
Platform for services that are
registered with certain tags.

getServiceName(servicename) The service name is used to
get a specific service’s details.

getAllServices() Returns all the services
published on the Service

Platform with their details.

getService(serviceid) The service ID is used to get a
specific service.

Table 5.2: GET methods

The aim of having the service platform as an intermediate layer between users and
the Consul engine, instead of just using the capabilities of the engine, is to construct
and control the logical interactions and use cases for the platform. It is also to be
able to collect the data stored in the engine, to achieve an object oriented approach
for communication, because the architectural approach for this thesis is not achieved
directly by the Consul architecture. Data concerning the services are stored as services
on the engine, while the data needed for the administration scenarios are stored in a

58

5.4 Service Platform

different data structure and a different place. To be able to unify both data sets into
a common logic, the Service Platform is needed. I tried to achieve the best level of
interaction simplicity throughout the thesis, which included choosing to work with JSON
objects for simplicity, instead of web services for example. That way, users don’t have
to adapt to new WSDL files whenever they are changed. Simplicity also includes the
object oriented approach, where service consumers can query the Service Platform and
get the data they need, without the need to query different entities or to do more than
one query to get the data related to the service they want to use.

59

6 Evaluation

In this chapter, I evaluate the implemented functionalities and concepts throughout this
thesis.

Evaluation

According to Microsoft MSDN [CC06], there are four maturity levels - described below
and shown in Fig. 6.1 - that we could classify SaaS into. Those levels are differentiated
through different aspects like deployment customization, configurability, multi-tenant
efficiency, and scalability.

Level 1 Ad-Hoc/Custom: At the first level of maturity, customers are able to customize
their own versions that they are running on the application host’s servers. Migrating
a traditional non-networked or client-server application to this level requires the
development effort to reduce operating costs.

Level 2 Configurable: this level provides better flexibility through configurable meta-
data, which enables many customers to use different instances of the same applica-
tion code. This approach allows the vendor to meet the different needs of each
customer through detailed configuration options, while simplifying maintenance
of the common code base.

Level 3 Configurable, Multi-Tenant-Efficient: Adding multi-tenancy to the second level,
so that a single program instance serves multiple customers. This approach enables
potentially more efficient use of server resources without any apparent difference
to the end user.

Level 4: Scalable, Configurable, Multi-Tenant-Efficient: explicit scalability features
are added through a multi-tier architecture supporting a load-balanced farm of
identical application instances, running on a variable number of servers. The
system’s capacity can be increased or decreased to match demand by adding
or removing servers, without the need for any further alteration of application
software architecture.

61

6 Evaluation

Figure 6.1: Maturity levels

The work done in this thesis, achieves many of the previously mentioned features to be
able to achieve the goals explained in the first section. FlexMash allows the users to
add their own services/nodes to the instances they are running, in order to model and
process the scenarios that are relevant to them. Through the integration of FlexMash
and the Service Platform, the integration of new services into the individual instances of
the application is easier, which reduces the need for custom code changes depending on
the user’s needs.

It also helps with reducing the operating costs, since the registered services are hosted
on the Service Platform in our case, which shifts the use of computation resources to the
Service Platform instead of the users’ instances. It also simplifies the maintenance of the
services, since the code base is common and in one place, not hosted on each instance,
which introduces centralization of the service maintenance.

As mentioned in the first section, the main goals for this thesis are to increase the
flexibility of the application FlexMash, widen the borders of the possible data processing
scenarios that the application can handle, while at the same time maintain the simplicity
of the application, so that users with limited or no technical knowledge are able to use
it.

Flexibility is achieved through different features, which includes the ability to integrate
new services easily, and integration with the Service Platform which also enables the

62

generic execution of the services. Using the BPMN notation, instead of the BPEL notation
that was previously used, also simplifies the required code maintenance. Mashup
Plans are now transformed and executed seamlessly, with the ability to integrate more
scenarios into the application.

63

7 Future work and Summary

7.1 Future work

There are many possibilities to enhance upon the work completed for this thesis. Integrat-
ing a database structure into the application, in order to keep track of the interactions
between the users and the platform is an important step, because it will provide more
data about the behaviors of both the services consumers and providers.

Such data can be used for analysis to discover new enhancement possibilities, through
the identification of the use patterns of the application and the platform together. Since
each Mashup plan executed in FlexMash is transformed into a BPMN model, there is
also a possibility to record and keep track of the evolution and history of the models,
which in turn can help users compare different models for the same scenario to find the
optimal model for them.

Another important possibility is integrating a logging mechanism into the generic
executor, to be able to analyze the overall execution of the model in a step by step
style. Adding such a feature would help FlexMash users identify which services which
can better suit their needs, since they would be able to integrate different services into
the application, compare the results obtained from each of them, and decide which
service serves the scenario being modeled better. That feature combined with keeping
the history of the models, would help reduce the time needed to find the best model for
the scenario using the best services available.

7.2 Summary

Data and application as services will keep growing in market share due to increasing
demand in this area from both IT departments and users to simplify and cut down on IT
budgets and complexity.

In this paper, an overview of the application FlexMash was provided, as well as the
current state-of-the-art techniques it relies on, including data mashups, service discovery
mechanisms, workflow engine, and BPMN.

65

7 Future work and Summary

The contributions of this thesis and possible future work that can be further developed
from it would increase the maturity level of the FlexMash application. The main
contributions of this thesis include shifting the "ownership" of the services provided to
the Service Platform instead of the application instance. The application instance is then
a terminal that communicates with the services provided on the Service Platform with
no need to implement the services themselves on the instance.

This greatly improves the flexibility available for modeling data processing scenarios,
even for users with relatively weak IT backgrounds. This allows a greater range of users
to benefit from the application. There is also the possibilty to add more services from a
wider range of service providers than before.

Furthermore, it reallocates the responsibility for the services infrastructure and manage-
ment from the user to the service provider. By doing this, the computational costs are
reduced, through hosting, providing and maintaining services in one place, instead of
locally for each instance.

66

A Appendix

Algorithmus A.1 Apriori algorithm [WKQ+08]

69

A Appendix

Listing A.1 Sample node JSON representation
{

"xy": [33, 200.00000762939453],

"name": "start1248",

"width": 40,

"description": "",

"transitions": [{

"name": "connector2055"

},

"source": "start1248",

"target": "dataSource_CSV1882"

},{

"name": "connector3011"

},

"sourceXY": [],

"targetXY": [],

"source": "start1248",

"target": "dataSource_CSV2838"

},

"type": "start",

}

70

Listing A.2 Sample node BPMN format
1 <startEvent id="start1248" name="start1248">

2 <outgoing>start1248-PGstart1248</outgoing>

3 </startEvent>

4 <serviceTask camunda:class="CSVExe" id="dataSource_CSV1882" name="CSV">

5 <incoming>PGstart1248-dataSource_CSV1882</incoming>

6 <outgoing>dataSource_CSV1882-filter3685</outgoing>

7 </serviceTask>

8 <serviceTask camunda:class="CSVExe" id="dataSource_CSV2838" name="CSV">

9 <incoming>PGstart1248-dataSource_CSV2838</incoming>

10 <outgoing>dataSource_CSV2838-filter4399</outgoing>

11 </serviceTask>

12 <serviceTask camunda:class="GenericExe" id="filter3685" name="">

13 <incoming>dataSource_CSV1882-filter3685</incoming>

14 <outgoing>filter3685-PGmerge4868</outgoing>

15 </serviceTask>

16 <serviceTask camunda:class="GenericExe" id="filter4399" name="">

17 <incoming>dataSource_CSV2838-filter4399</incoming>

18 <outgoing>filter4399-PGmerge4868</outgoing>

19 </serviceTask>

20 <serviceTask camunda:class="GenericExe" id="merge4868" name="merge">

21 <incoming>PGmerge4868-merge4868</incoming>

22 <outgoing>merge4868-end5705</outgoing>

23 </serviceTask>

24 <endEvent id="end5705" name="end5705">

25 <incoming>merge4868-end5705</incoming>

26 </endEvent>

27 <parallelGateway camunda:async="false" id="PGstart1248" name="PGstart1248">

28 <incoming>start1248-PGstart1248</incoming>

29 <outgoing>PGstart1248-dataSource_CSV1882</outgoing>

30 <outgoing>PGstart1248-dataSource_CSV2838</outgoing>

31 </parallelGateway>

32 <sequenceFlow id="start1248-PGstart1248" sourceRef="start1248" targetRef="PGstart1248"/>

33 <parallelGateway camunda:async="false" id="PGmerge4868" name="PGmerge4868">

34 <incoming>filter3685-PGmerge4868</incoming>

35 <incoming>filter4399-PGmerge4868</incoming>

36 <outgoing>PGmerge4868-merge4868</outgoing>

37 </parallelGateway>

71

A Appendix

Listing A.3 Sample Apriori output
Apriori

=======

Minimum support: 0.15 (694 instances)

Minimum metric <confidence>: 0.9

Number of cycles performed: 17

Generated sets of large itemsets:

Size of set of large itemsets L(1): 44

Size of set of large itemsets L(2): 380

Size of set of large itemsets L(3): 910

Size of set of large itemsets L(4): 633

Size of set of large itemsets L(5): 105

Size of set of large itemsets L(6): 1

Best rules found:

1. biscuits=t frozen foods=t fruit=t total=high 788 ==> bread and cake=t 723

<conf:(0.92)> lift:(1.27) lev:(0.03) [155] conv:(3.35)

2. baking needs=t biscuits=t fruit=t total=high 760 ==> bread and cake=t 696

<conf:(0.92)> lift:(1.27) lev:(0.03) [149] conv:(3.28)

3. baking needs=t frozen foods=t fruit=t total=high 770 ==> bread and cake=t 705

<conf:(0.92)> lift:(1.27) lev:(0.03) [150] conv:(3.27)

4. biscuits=t fruit=t vegetables=t total=high 815 ==> bread and cake=t 746 <conf:(0.92)>

lift:(1.27) lev:(0.03) [159] conv:(3.26)

5. party snack foods=t fruit=t total=high 854 ==> bread and cake=t 779 <conf:(0.91)>

lift:(1.27) lev:(0.04) [164] conv:(3.15)

6. biscuits=t frozen foods=t vegetables=t total=high 797 ==> bread and cake=t 725

<conf:(0.91)> lift:(1.26) lev:(0.03) [151] conv:(3.06)

7. baking needs=t biscuits=t vegetables=t total=high 772 ==> bread and cake=t 701

<conf:(0.91)> lift:(1.26) lev:(0.03) [145] conv:(3.01)

8. biscuits=t fruit=t total=high 954 ==> bread and cake=t 866 <conf:(0.91)> lift:(1.26)

lev:(0.04) [179] conv:(3)

9. frozen foods=t fruit=t vegetables=t total=high 834 ==> bread and cake=t 757

<conf:(0.91)> lift:(1.26) lev:(0.03) [156] conv:(3)

10. frozen foods=t fruit=t total=high 969 ==> bread and cake=t 877 <conf:(0.91)>

lift:(1.26) lev:(0.04) [179] conv:(2.92)

72

school sex age famsize Pstatus Medu Fedu Mjob Fjob reason

GP F 18 GT3 A 4 4 at_home teacher course

GP F 17 GT3 T 1 1 at_home other course

GP F 15 LE3 T 1 1 at_home other other

GP F 15 GT3 T 4 2 health services home

GP F 16 GT3 T 3 3 other other reputation

GP M 17 GT3 T 3 2 services services course

GP M 16 LE3 T 4 3 health other home

GP M 15 GT3 T 4 3 teacher other reputation

GP M 15 GT3 T 4 4 health health other

GP M 16 LE3 T 4 2 teacher other course

GP M 16 LE3 T 2 2 other other reputation

GP F 15 GT3 T 2 4 services health course

GP F 16 GT3 T 2 2 services services home

GP M 15 GT3 T 2 2 other other home

GP M 15 GT3 T 4 2 health services other

GP M 16 LE3 A 3 4 services other home

GP M 16 GT3 T 4 4 teacher teacher home

GP M 15 GT3 T 4 4 health services home

GP M 15 GT3 T 4 4 services services reputation

GP M 16 GT3 T 3 3 services other home

GP F 17 GT3 T 2 4 services services reputation

MS F 17 GT3 T 1 2 other other course

MS F 18 LE3 T 4 4 other other reputation

MS F 18 GT3 T 1 1 other other home

MS F 20 GT3 T 4 2 health other course

MS F 18 LE3 T 4 4 teacher services course

MS F 18 GT3 T 3 3 other other home

MS F 17 GT3 T 3 1 at_home other reputation

MS M 18 GT3 T 4 4 teacher teacher home

MS M 18 GT3 T 2 1 other other other

MS M 17 GT3 T 2 3 other services home

Table A.1: Sample data

73

A Appendix

Listing A.4 Parallel-Gateway handling

1 public void replaceValues(Map<String, ArrayList<String>> outTransitionMap,

2 Map<String, ArrayList<String>> inTransitionMap,

3 BPMNmodel BPMNWorkFlow) {

4

5 // Iterator for source nodes

6 ArrayList<String> replaceKeys = new ArrayList<>();

7 Map<String, ArrayList<String>> outTransitionMapReplaced = new HashMap<String,

ArrayList<String>>();

8

9 for (Iterator<Entry<String, ArrayList<String>>> outIter = outTransitionMap

10 .entrySet().iterator(); outIter.hasNext();) {

11

12 // oEntry <Source node, list of target nodes>

13 Map.Entry<String, ArrayList<String>> oEntry = (Map.Entry<String, ArrayList<String>>)

outIter

14 .next();

15

16 if (oEntry.getValue().size() > 1 && !oEntry.getKey().startsWith("PG")) {

17 ParallelGateway parallel = BPMNWorkFlow.createElement(

18 BPMNWorkFlow.MainProcess, "PG" + oEntry.getKey(),

19 ParallelGateway.class);

20 parallel.setName("PG" + oEntry.getKey());

21 parallel.setCamundaAsync(false);

22 BPMNWorkFlow.createSequenceFlow(

23 BPMNWorkFlow.MainProcess, BPMNWorkFlow.ModelInstance

24 .getModelElementById(oEntry.getKey()),

25 parallel);

26 outTransitionMapReplaced.put(parallel.getName(),

27 oEntry.getValue());

28 replaceKeys.add(oEntry.getKey());

29

30 }

31 }

32 replaceKeys.forEach((k) -> outTransitionMap.remove(k));

33 outTransitionMapReplaced.forEach((k, v) -> outTransitionMap.put(k, v));

34 replaceKeys.clear();

74

35

36 for (Iterator<Entry<String, ArrayList<String>>> inIter = inTransitionMap

37 .entrySet().iterator(); inIter.hasNext();) {

38 Map.Entry<String, ArrayList<String>> iEntry = (Map.Entry<String, ArrayList<String>>)

inIter

39 .next();

40 if (iEntry.getValue().size() > 1) {

41

42 ParallelGateway parallel = BPMNWorkFlow.createElement(

43 BPMNWorkFlow.MainProcess, "PG" + iEntry.getKey(),

44 ParallelGateway.class);

45 parallel.setName("PG" + iEntry.getKey());

46 parallel.setCamundaAsync(false);

47 BPMNWorkFlow.createSequenceFlow(BPMNWorkFlow.MainProcess,

48 parallel, BPMNWorkFlow.ModelInstance

49 .getModelElementById(iEntry.getKey()));

50

51 for (Iterator<String> sourceNodes = iEntry.getValue()

52 .iterator(); sourceNodes.hasNext();) {

53

54 String sourceNode = sourceNodes.next();

55

56 outTransitionMap.get(sourceNode).add(parallel.getName());

57 outTransitionMap.get(sourceNode).remove(iEntry.getKey());

58 }

59

60 }

61 }

62

63 }

75

Bibliography

[All16] T. Allweyer. BPMN 2.0: introduction to the standard for business process
modeling. BoD–Books on Demand, 2016 (cit. on p. 29).

[AM07] E. Al-Masri, Q. H. Mahmoud. “Discovering the best web service.” In: Pro-
ceedings of the 16th international conference on World Wide Web. ACM.
2007, pp. 1257–1258 (cit. on p. 25).

[AZ05] P. Avgeriou, U. Zdun. “Architectural patterns revisited-a pattern language.”
In: (2005) (cit. on p. 19).

[CC06] F. Chong, G. Carraro. “Architecture strategies for catching the long tail.”
In: MSDN Library, Microsoft Corporation (2006), pp. 9–10 (cit. on p. 61).

[CJCR04] J. Colgrave, K. Januszewski, L. Clément, T. Rogers. “Using wsdl in a uddi
registry, version 2.0. 2.” In: Technical note, OASIS (2004) (cit. on pp. 23,
24).

[CLPZ] K. S. Candan, W.-S. Li, T. Phan, M. Zhou. “Frontiers in Information and
Software as Services.” In: () (cit. on p. 45).

[DHPB09] G. Di Lorenzo, H. Hacid, H.-y. Paik, B. Benatallah. “Data Integration in
Mashups.” In: SIGMOD Record 38.1 (2009), p. 59 (cit. on pp. 35, 36).

[Dob03] E.-E. Doberkat. “Pipelines: Modelling a software architecture through
relations.” In: Acta Informatica 40.1 (2003), pp. 37–79 (cit. on pp. 19,
20).

[Dra01] V. Draluk. “Discovering Web Services: An Overview.” In: VLDB. 2001,
pp. 637–640 (cit. on pp. 23, 24).

[DSW97] K. Decker, K. Sycara, M. Williamson. “Middle-agents for the internet.” In:
IJCAI (1). 1997, pp. 578–583 (cit. on p. 25).

[EAA+04] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl, M. Luo,
T. Newling. Patterns: service-oriented architecture and web services. IBM
Corporation, International Technical Support Organization, 2004 (cit. on
pp. 21, 22, 28).

77

Bibliography

[FHA+99] G. Fox, T. Haupt, E. Akarsu, A. Kalinichenko, K.-S. Kim, P. Sheethalnath,
C.-H. Youn. “The gateway system: uniform Web based access to remote
resources.” In: Proceedings of the ACM 1999 conference on Java Grande.
ACM. 1999, pp. 1–7 (cit. on p. 25).

[FO09] E. B. Fernandez, J. L. Ortega-Arjona. “The secure pipes and filters pat-
tern.” In: Database and Expert Systems Application, 2009. DEXA’09. 20th
International Workshop on. IEEE. 2009, pp. 181–185 (cit. on pp. 20, 21).

[GK04] B. Gröne, F. Keller. Conceptual Architecture Patterns: FMC-based Represen-
tation. Universitätsverlag, 2004 (cit. on p. 20).

[GPST04] J. Garofalakis, Y. Panagis, E. Sakkopoulos, A. Tsakalidis. “Web service dis-
covery mechanisms: Looking for a needle in a haystack.” In: International
Workshop on Web Engineering. Vol. 38. 2004 (cit. on p. 25).

[GPST06] J. Garofalakis, Y. Panagis, E. Sakkopoulos, A. Tsakalidis. “Contemporary
web service discovery mechanisms.” In: J. Web Eng. 5.3 (2006), pp. 265–
290 (cit. on pp. 24, 25).

[GS93] D. Garlan, M. Shaw. “An introduction to software architecture.” In: Ad-
vances in software engineering and knowledge engineering 1.3.4 (1993)
(cit. on pp. 15, 19, 24).

[HB16] P. Hirmer, M. Behringer. “FlexMash 2.0–Flexible Modeling and Execution
of Data Mashups.” In: International Rapid Mashup Challenge. Springer.
2016, pp. 10–29 (cit. on pp. 15, 16, 33, 34).

[HM16] P. Hirmer, B. Mitschang. “FlexMash–Flexible Data Mashups Based on
Pattern-Based Model Transformation.” In: Rapid Mashup Development
Tools. Springer International Publishing, 2016, pp. 12–30 (cit. on pp. 15,
16, 33, 34).

[HNP+11] A. Harth, B. Norton, A. Polleres, B. Sapkota, S. Speiser, S. Stadtmüller,
O. Suominen. “Towards Uniform Access to Web Data and Services.” In:
(2011) (cit. on p. 25).

[HRWM15] P. Hirmer, P. Reimann, M. Wieland, B. Mitschang. “Extended Techniques
for Flexible Modeling and Execution of Data Mashups.” In: DATA. 2015,
pp. 111–122 (cit. on pp. 15, 16, 30, 33–35, 42).

[KAB+04] M. Keen, A. Acharya, S. Bishop, A. Hopkins, S. Milinski, C. Nott, R. Robin-
son, J. Adams, P. Verschueren. “Patterns: Implementing an SOA using an
enterprise service bus.” In: IBM Redbooks 336 (2004) (cit. on pp. 20, 28).

[LHSL07] X. Liu, Y. Hui, W. Sun, H. Liang. “Towards service composition based on
mashup.” In: Services, 2007 IEEE Congress on. IEEE. 2007, pp. 332–339
(cit. on p. 37).

78

Bibliography

[Lie13] S. Lie. “Enabling the compatible evolution of services based on a cloud-
enabled ESB solution.” MA thesis. 2013 (cit. on pp. 26, 27).

[Men07] F. Menge. “Enterprise service bus.” In: Free and open source software
conference. Vol. 2. 2007, pp. 1–6 (cit. on p. 26).

[MK10] S. Mallick, D. Kushwaha. “An efficient web service discovery architecture.”
In: International Journal of Computer Applications 3.12 (2010), pp. 1–5
(cit. on p. 25).

[MKMG97] R. T. Monroe, A. Kompanek, R. Melton, D. Garlan. “Architectural styles,
design patterns, and objects.” In: IEEE software 14.1 (1997), pp. 43–52
(cit. on p. 20).

[MRG08] E. M. Maximilien, A. Ranabahu, K. Gomadam. “An online platform for
web apis and service mashups.” In: IEEE Internet Computing 12.5 (2008)
(cit. on p. 45).

[Muh12] D. Muhler. “Extending an open source enterprise service bus for multi-
tenancy support focusing on administration and management.” MA thesis.
2012 (cit. on p. 27).

[PH07] M. P. Papazoglou, W.-J. Heuvel. “Service oriented architectures: ap-
proaches, technologies and research issues.” In: The VLDB Journal—The
International Journal on Very Large Data Bases 16.3 (2007), pp. 389–415
(cit. on pp. 21, 22, 25–28).

[PR99] J. Philipps, B. Rumpe. “Refinement of pipe-and-filter architectures.” In:
FM’99—Formal Methods (1999), pp. 708–709 (cit. on p. 20).

[Ran03] S. Ran. “A model for web services discovery with QoS.” In: ACM Sigecom
exchanges 4.1 (2003), pp. 1–10 (cit. on p. 21).

[Rec08] J. C. Recker. “BPMN modeling–who, where, how and why.” In: BPTrends
5.3 (2008), pp. 1–8 (cit. on p. 29).

[RIRG06] J. C. Recker, M. Indulska, M. Rosemann, P. Green. “How good is BPMN
really? Insights from theory and practice.” In: (2006) (cit. on p. 28).

[SKWL99] K. Sycara, M. Klusch, S. Widoff, J. Lu. “Dynamic service matchmaking
among agents in open information environments.” In: (1999) (cit. on
p. 25).

[SPAS03] K. Sycara, M. Paolucci, A. Ankolekar, N. Srinivasan. “Automated discovery,
interaction and composition of semantic web services.” In: Web Semantics:
Science, Services and Agents on the World Wide Web 1.1 (2003), pp. 27–46
(cit. on pp. 23, 24).

79

[SRAW03] A. ShaikhAli, O. F. Rana, R. Al-Ali, D. W. Walker. “Uddie: An extended
registry for web services.” In: Applications and the Internet Workshops,
2003. Proceedings. 2003 Symposium on. IEEE. 2003, pp. 85–89 (cit. on
pp. 23, 24).

[TAR07] A. Thor, D. Aumueller, E. Rahm. “Data Integration Support for Mashups.”
In: (2007) (cit. on p. 35).

[TSB10] W.-T. Tsai, X. Sun, J. Balasooriya. “Service-oriented cloud computing
architecture.” In: Information Technology: New Generations (ITNG), 2010
Seventh International Conference on. IEEE. 2010, pp. 684–689 (cit. on
p. 44).

[WAD+] P. Wohed, W. M. van der Aalst, M. Dumas, A. H. ter Hofstede, N. Russell.
“Pattern-based Analysis of BPMN.” In: () (cit. on p. 29).

[WFHP16] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016 (cit. on p. 57).

[Whi04] S. A. White. “Introduction to BPMN.” In: IBM Cooperation 2.0 (2004), p. 0
(cit. on p. 28).

[WKQ+08] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLach-
lan, A. Ng, B. Liu, S. Y. Philip, et al. “Top 10 algorithms in data mining.” In:
Knowledge and information systems 14.1 (2008), pp. 1–37 (cit. on p. 69).

[YBCD08] J. Yu, B. Benatallah, F. Casati, F. Daniel. “Understanding Mashup Develop-
ment.” In: IEEE Internet Computing 12.5 (2008), p. 44 (cit. on pp. 16, 29,
30, 33).

[ZLCC02] L.-J. Zhang, H. Li, H. Chang, T. Chao. “XML-based advanced UDDI search
mechanism for B2B integration.” In: Advanced Issues of E-Commerce and
Web-Based Information Systems, 2002.(WECWIS 2002). Proceedings. Fourth
IEEE International Workshop on. IEEE. 2002, p. 4 (cit. on p. 23).

All links were last followed on July, 2017.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction and motivation
	2 Background
	2.1 Pipes and Filters Architectural Pattern
	2.2 Service Oriented Architecture
	2.3 Universal Description, Discovery & Integration (UDDI)
	2.4 Enterprise service bus (ESB)
	2.5 Business Process Modeling Notation (BPMN)
	2.6 Data Mashups
	2.7 Camunda engine

	3 Related work
	3.1 FlexMash
	3.2 Online Citation Service
	3.3 Mashup tools analysis
	3.4 SOA-based Mashups

	4 Conceptual approach
	4.1 Overview of the approach
	4.2 BPMN Model Transformation
	4.3 Service Platform
	4.4 Components integration

	5 Implementation
	5.1 Implemented services
	5.2 Merge scenario
	5.3 Apriori scenario
	5.4 Service Platform

	6 Evaluation
	7 Future work and Summary
	7.1 Future work
	7.2 Summary

	A Appendix
	Bibliography

