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Abstract

3D rendering gets more and more important in embedded environments like automotive
industry. To reduce hardware costs, power consumptions, and installation space for
Electronic Control Units (ECUs), the ECUs including their GPU are consolidated. Thus,
multiple applications with diverse requirements use the same GPU. For example, the
speedometer has safety-critical requirements, whereby third party application does not.
To execute multiple applications on the GPU a GPU scheduler is necessary. So far, GPUs
do not support preemption and thus, a non preemptive real-time GPU scheduling is
required. Such a real-time GPU scheduler needs the execution time of GPU commands
beforehand. Predicting the GPU execution time is complex and hence, we tackle this
problem by using machine learning concepts to predict the execution time of GPUs.

In this thesis, influence factors for the execution time of 3D rendering commands on
the GPU are analyzed and how these factors are processed to use them as features for
the online machine learning algorithm. This leads to a linear regression problem that
is tackled by using stochastic gradient descent with online normalization of the input
data and an adaptive learning rate calculation. Furthermore, the shaders are analyzed
during runtime and the feature vector contains the GPU instructions. This allows the
algorithm to gain knowledge about the execution time for so far unseen shaders. To
validate the concept, it is implemented and evaluated on a workstation computer and on
an embedded board. We show for the workstation computer that the newly developed
concept has higher accuracy in glmark2-es2 benchmarks than the previous approach.
For the embedded board is shown that the execution times for GPU instructions can be
learned accurately. However, the developed concept provides room for improvement at
constant scenes, where only the execution time changes.
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Kurzfassung

3D-Rendering wird in eingebetteten Umgebungen, wie zum Beispiel der Automobilin-
dustrie, zunehmend wichtiger. Um die Hardwarekosten, den Energieverbrauch und den
Einbauraum von Steuergeräten zu reduzieren, sollen die Steuergeräte einschließlich ihrer
GPU konsolidiert werden. So verwenden mehrere Anwendungen mit unterschiedlichen
Anforderungen dieselbe GPU. Zum Beispiel weist der Tachometer sicherheitskritische
Anforderungen auf, wobei Drittanbieter-Anwendungen diese nicht besitzen. Zur Aus-
führung mehrerer Anwendungen auf der GPU ist ein GPU-Scheduler notwendig. Bisher
unterstützen GPUs keine Preemption, sodass ein preemptiver GPU-Scheduler, welcher
Echtzeitanforderungen erfüllt, erforderlich ist. Ein solcher Echtzeit-GPU-Scheduler
benötigt im Voraus die Ausführungszeit der GPU-Befehle. Um die GPU-Ausführungszeit
vorherzusagen, wird in dieser Arbeit ein Vorhersage-Framework entworfen, welches
maschinelles Lernen verwendet.

In dieser Arbeit werden Einflussfaktoren auf die Ausführungszeit von 3D-Rendering-
Befehlen auf der GPU analysiert. In diesem Zusammenhang wird aufgezeigt, wie diese
Faktoren verarbeitet werden, um sie als Features für den Algorithmus zu verwenden, der
zur Laufzeit maschinelles Lernen einsetzt. Dieses führt zu einer linearen Regressions-
analyse, welche durch die Verwendung des Gradientenverfahrens mit Normalisierung
der Eingabedaten zur Laufzeit und adaptiver Lernratenberechnung angegangen wird.
Außerdem werden die verwendeten Shader zur Laufzeit analysiert und die ermittelten
GPU-Instruktionen in den Feature Vektor aufgenommen. Das erlaubt dem Algorithmus,
Wissen über die Ausführungszeit von bisher unbekannten Shadern zu erlangen. Um das
Konzept zu validieren, wurde es auf einer Workstation und einem eingebetteten Board
implementiert und evaluiert. In der Evaluation wird dargestellt, dass für die Workstation
das neu entwickelte Konzept eine höhere Genauigkeit in glmark2-es2 Benchmark-Tests
besitzt als in dem bisherigen Ansatz. Für das eingebettete Board wird gezeigt, dass die
Ausführungszeiten für GPU-Instruktionen präzise gelernt werden können. Jedoch bietet
das entwickelte Konzept Raum für Verbesserungen bei konstanten Szenen, in denen sich
nur die Ausführungszeiten verändern.
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1 Introduction

In this chapter, the work at this topic is motivated, the contribution in this research area
and the organization of this thesis is presented.

1.1 Motivation

Nowadays, graphics processing units (GPU) are integrated into embedded systems to use
high resolution 3D rendering. The number of displays in embedded systems increases,
which leads to a greater demand of GPUs, that are required to control the displays.
In embedded systems, usually, each electronic control unit (ECU) contains one GPU.
Therefore, with a higher number of display, the number of ECUs increases as well. In the
automotive industry, the cars are using more and more displays to show high resolution
3D graphics.

To reduce cost, energy and space requirements in a setup with multiple ECUs, the ECUs
can be consolidated. However, that means, that multiple 3D rendering tasks need to run
on one ECU in parallel. That leads to the fact, that multiple 3D rendering tasks must
run on one GPU. To run multiple 3D rendering tasks on one GPU, a GPU scheduler is
necessary.

Another aspect that needs to be considered for consolidating ECUs is that, 3D rendering
tasks can have real-time requirements. For example, in the case of the automotive
domain, in high class cars the instrument cluster containing the tachometer is displayed
with 3D rendering commands and has real-time requirements. Other 3D graphics
applications, which run on the same GPU, can be infotainment or third party applications.
If there is at least one 3D rendering task with real-time requirements running on the
GPU, the system needs to handle real-time requirements.

This leads to a setup, in which a real-time GPU scheduler is required. Because of the
fact that the GPU is not a preemptive system, a started 3D rendering job on the GPU
cannot be interrupted and needs to be finished before another 3D rendering job can be
started. Therefore, such a real-time GPU scheduler needs the execution time of each
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1 Introduction

task beforehand. Existing real-time GPU schedulers such as [22] depend on accurate
execution time prediction.

However, prediction of the execution time of 3D rendering commands is complex. To
determine the execution time of 3D rendering commands, the rendering can be emulated
on the central processor unit (CPU). The predicted execution time is accurate, but the
calculation of the execution time takes much more time than executing the 3D rendering
job on the GPU. On the other hand, the execution time can be estimated by only using
the raw input data of the 3D rendering command. Thus, the time to estimate the
execution time is reasonable, but the accuracy of the prediction is insufficient. Thus, a
trade-off between calculating some parts of the 3D rendering command and estimating
other parts needs to be find.

Kato et al. [3] and Yu et al. [26] proposed history based approaches to predict the
execution time of GPU command groups. If the GPU command group data varies, the
results of the history based approach are insufficient accurate. Schnitzer et al. [21] use
the tracked OpenGL context to predict the execution time of GPU command groups. A
downside for this approach is, that for each shader a calibration is needed. A prediction
cannot be performed during the calibration, because the calibrated values are uncertain
and the predicted execution time would be inaccurate.

This motivates us to propose a concept which improves the previous approaches. This
can be done by getting rid of the calibration for new shaders and being adaptive
to varying environments using a self-tuning machine learning. Thus, our machine
learning algorithm leads to higher flexibility and faster adaption of the real world.
However, OpenGL is a complex state based graphics rendering environment, which does
not provide all necessary information for machine learning. Another challenge is the
embedded system setting, in which less computation power is provided. Therefore,
stochastic gradient descent is applied which leads to more challenges.

1.2 Contribution

In this section, an overview of the main contributions of this work is presented. In
general, to predict the execution time, the influence factors need to be analyzed. Using
the measured execution time and the influence factors of past 3D rendering commands,
machine learning is applied to learn the underlying model parameters.

1. Using the influence factors of the execution time of 3D rendering commands
using OpenGL, the features for machine learning are determined and presented.
Furthermore, a linear function which describes the execution time is presented.
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1.3 Outline

2. Learning on GPU instruction level is introduced. Therefore, a linear model, which
is independent on the shader, is presented.

3. The stochastic gradient descent method is applied on a data set collected from the
state based OpenGL context. To this end, online learning with feature normaliza-
tion and adaption of the learning rate is utilized.

4. To evaluate the concept, two platforms are used. On the one hand, a workstation
graphics card, on the other hand, an embedded graphics card.

1.3 Outline

This section comprises an outline of the thesis.

Chapter 2 – Related Work: In this chapter, the previous publications in the area of GPU
execution time prediction of 3D rendering commands using machine learning concepts
are listed.

Chapter 3 – Background: This chapter introduces the background of the following
work. The two majors are the OpenGL rendering pipeline and machine learning using
online learning with gradient descent.

Chapter 4 – Concept: In this chapter, the concept using machine learning is presented.
That contains beyond others, a detailed analysis of the OpenGL rendering pipeline and
the derived linear model. Furthermore, the learning on GPU instruction level is explained
in detail and the resulting stochastic gradient descent algorithm is presented.

Chapter 5 – Implementation: In this chapter, the platform independent implementation
of the concept is introduced.

Chapter 6 – Evaluation: The evaluation compares the existing bounding box solution
for predicting the execution time and the concept of this work. In addition, the execution
time of each GPU instruction is presented.

Chapter 7 – Summary and Future Work: In this chapter, the summary and the future
work are presented.
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2 Related Work

The related work of this thesis is split into two scopes. First, this work is part of real-time
GPU scheduling and thus, execution time prediction of 3D rending commands. In order
that the real-time GPU scheduler can schedule the GPU task with respect to the deadlines,
the execution time prediction has to be precise. The second, the prediction is made
using online machine learning concepts, in particular stochastic gradient descent.

2.1 GPU Scheduling and Execution Time Prediction

So far tasks on GPUs are not preemptive. Microsoft designed a GPU preemption model,
which needs at minimum WDDM version 1.2 and is available since Windows 8. However,
although all WDDM 1.2 display miniport drivers must support this feature, they might
reject it [14].

To set up fine-grained sharing of GPUs, a GPU command scheduler can be implemented
in the device driver. One approach from Kato et al. [9] is called TimeGraph, which is
a GPU scheduler for real-time multi-tasking environments. The TimeGraph scheduler
supports the posterior and apriori enforcement policy. The posterior enforcement submits
a task to the GPU and calculates afterwards an overrun penalty, if the task occupied
the GPU for more time than expected. This has advantages for throughput, but not
performable with real-time requirements. The apriori enforcement policy only allows to
submit GPU command groups if the prediction cost is smaller or equal the budget.

Kato et al. [9] propose a history-based prediction approach for the execution time, where
only the graphics card method and the size of data are considered. The information to
predict the execution time are gained out of the GPU command profiler. If no previous
execution time for the exact same method and size of data exist, the worst-case execution
time over all entries is taken into account. With this approach it is not possible to predict
complex scenes, in which GPU commands change.

Yu et al. [26] propose for one of their scheduling policies a similar history-based
approach like Kato et al. [9]. Instead of taking the entire history into account, the
average execution time of the last twenty executions are considered. In this work, the
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OpenGL context as well as the actual execution time of previous commands are included
to calculate the predicted execution time.

Bautin et al. [3] describe a GPU scheduler based on Deficit Round Robin scheduling.
Irrespective of the demand of a process, it distributes the share of the GPU identical.
The efficient utilization of the GPU is the goal of the scheduler called GERM, which does
not fulfill real-time requirements.

Schnitzer et al. [22] propose a real-time GPU scheduler for 3D GPU rendering. The
scheduler handles different priorities and a desired number of frames per second per
application. Thus, the GPU utilization is optimized. The observing of the real-time
requirements of the GPU scheduler highly depends on the predicted execution time for
each application.

A method to predict the execution time of GPU command groups considering the OpenGL
context is proposed by Schnitzer et al. as well [21]. A prediction model for the main
OpenGL ES 2.0 GPU commands flush, clear, and draw is designed. The presented
framework uses the OpenGL context and the semantic of the OpenGL commands to
predict the execution time. Therefore, the OpenGL API calls are intercepted and the
context is tracked. Additionally, a heuristic to calculate the number of fragments is
presented. The number of fragments is calculated using the 3D bounding box of the
rendered model and the vertex shader projection. This leads to better results than
in history-based prediction. However, the approach needs to calibrate the underlying
model parameters at the beginning of each new shader.

This thesis uses the framework presented by Schnitzer et al. [21] as basis, adding
history-based information and adaption using online machine learning.

2.2 Online Learning: Stochastic Gradient Descent

The previous work in the area of GPU execution time prediction of 3D rendering
commands uses manual model driven approaches so far [21]. To get a more adaptive
setup, online machine learning is used. This arises challenges that are explained in the
following.

One of the challenges is the scale of the feature data. It is unknown and can change
depending on the OpenGL ES 2.0 application. Thus, per-feature scaling needs to
be applied to the data. Ross et al. [20] proposed normalized online learning to be
independent of features scales. Therefore, no pre-normalization of the input data is
required.
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2.2 Online Learning: Stochastic Gradient Descent

Another challenge that we are facing is that, the optimal parameter of unknown input
data cannot be calculated, but have strong impacts on the convergence speed of the
algorithm. Thus, online parameter adaptation is appropriate to achieve reasonable
parameters for the stochastic gradient descent algorithm. The learning rate is one of
the parameters which can be adapted. Almeida et al. [1] proposed parameter adaption
in scenarios with stochastic optimization. A per-feature learning rate is suggested. The
adaption of the learning rate leads to an optimization of the gradient length. In [1] the
learning rate mainly depends on the last two gradients, but does not cover solutions for
sparse data. Another approach called ADAGRAD [5] leads to a more robust gradient
length calculation. However, in this approach the learning rate needs to be set manually.
An extension of the ADAGRAD algorithm is proposed by Zeiler et al. [27]. It is called
ADADELTA and calculates the learning rate on its own. Another advantage is that the
monotonically decreasing learning rate term of ADAGRAD is replaced by a decaying
average. Thus, the learning rate will not end up being infinitesimal small.

To obtain sparse model parameters, the update rule for the model weights contains a
regularization term. Langford et al. [10] proposed a method to implement the regular-
ization term in online stochastic gradient descent. The main approach is to truncate the
gradient, if it points close to zero. Therefore, it is more likely that unimportant weights
close to zero end up in zero weights.
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3 Background

In this chapter, the background of this thesis is explained. On the one hand, background
information about OpenGL is required. In order to find impacts for the execution time
of OpenGL rendering commands, the OpenGL ES 2.0 Pipeline is explained. On the
other hand, to figure out which machine learning algorithm is suitable for the obtained
influence factors, machine learning approaches are presented.

3.1 OpenGL ES 2.0

Open Graphics Library for Embedded Systems 2.0 (OpenGL ES 2.0) is an Application
Programmable Interface (API) in the second version to interact with graphics hardware.
OpenGL ES 2.0 is based on OpenGL 2.0, but is designed primarily for graphics hardware
running on embedded and mobile devices. Substantially, the user first opens a window
with a framebuffer, in which the program will draw later. The framebuffer will be
displayed on a function call. Then, to operate with OpenGL, a context must be created.
Subsequently, the user can specify two- or three-dimensional geometric objects that are
drawn into the framebuffer. Geometric objects are mainly points, line segments, and
polygons. The objects can be modified though additional calls, e.g. lighting, color or
mapping in either two- or three-dimensional space [8, pp. 1, 2].

In the following, the dominating factors with respect to execution time are presented.
Therefore, the OpenGL rendering pipeline is introduced.

3.1.1 Primitives

Primitives in OpenGL ES 2.0 are represented in a generic way using vertex arrays.
With this representation seven geometric objects can be drawn: points, connected line
segments, line segment loops, separate line segments, triangle strips, triangle fans, and
separated triangles. Each of these primitives is defined via one or more vertices. Each
vertex can have attributes, e.g. color, normal, texture coordinates, etc., which are used
in further steps. [8, pp. 4, 15]
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3 Background

Figure 3.1: OpenGL ES 2.0 Processing Pipeline [8, p. 13]

3.1.2 Rendering Pipeline

Figure 3.1 shows the graphics pipeline implemented by OpenGL ES 2.0. Each command is
passed from left to right through the pipeline and the result is written to the framebuffer.
Some commands are used for creating geometric objects, others are used for changing
the state of the respective stages. Using pixel operations, either the texture memory can
be written or the framebuffer can be read or written [8, p. 11].

The three operations, shown in Figure 3.1, are the main functions and they will be
discussed in the following.

3.1.3 Vertex Processing and Primitive Assembly

This first stage consists of four fine-grained stages, that are processed in the following
sequence. In general, each vertex is processed on its own. In case of clipping, new
vertices might be created and obtain modified values, which is described below [8,
15].

Vertex Shader. Each vertex, which is specified in the API calls DrawArrays or
DrawElements, is processed by the vertex shader. After running the vertex shader,
the vertices are passed on to primitive assembly [8, p. 26].

Primitive Assembly. In this stage, the vertices are assembled into primitives, e.g., line
strip, triangle fan.

10



3.1 OpenGL ES 2.0

Coordinate Transformations. OpenGL ES 2.0 has different coordinate systems. In
the first place, the vertices are in clip coordinates, i.e., are four-dimensional
homogeneous vectors. After processing this fine-grained stage, each vertex needs to
be in viewport coordinates. The viewport coordinates are three-dimensional, where
the first two coordinates define the two-dimensional position on the framebuffer
and the third coordinate defines the depth information. To transform the position of
the vertices from clip to viewport coordinates, one intermediate coordinate system
is used: normalized device coordinates, which do not contain the homogeneous
component of the clip coordinates [8, pp. 44, 45].

Primitive Clipping. When the vertices are in the viewport coordinate system, the prim-
itives can be clipped. Therefore, a clip volume is created. Only primitives inside
the clip volume end up in the framebuffer. However, primitives can be completely
inside, completely outside, or partly inside the volume. In the first two cases, it
is obvious that the vertices can either be further considered or dropped. In the
case that the primitive is partly inside the clip volume, the primitive needs to be
shrunken to the edges of the clip volume [8, p. 46].

After the first stage is finished, all primitives are inside the clip volume in viewport
coordinates.

3.1.4 Rasterization

The inputs of this stage are primitives in viewport coordinates which are transformed
into a two-dimensional image. The result of this second stage is the color and depth
information of each point of the image. The primitive rasterization determines if a point
of the image is occupied by a primitive, the texturing obtains the color of a fragment
by sampling the texture image and the fragment shader calculates the color and depth
information [8, pp. 28, 65, 66].

Primitive Rasterization. This fine-grained stage creates fragments for each point in the
image, which is covered by a primitive. The rasterization can be split into three
parts: point, line, and triangle rasterization. To determine the affected fragments
of a point or a line, the radius or line width is considered respectively. However,
the detection of the area of polygons is more challenging. Polygons are three
dimensional objects and have a direction to which they are facing. OpenGL offers
the possibility to render only the front or back face. The other face is not rendered
respectively, which is called culling [8, pp. 48, 49, 57].

Texturing. Texturing is not a stage of its own. It is used by the fragment. The texturing
maps an image onto a fragment, which is realized by the fragment shader. The
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3 Background

fragment shader samples the texture image to obtain the color for the fragment.
This is the typical use case, but the texture can also be filled with other information,
which is supposed to be passed to the fragment shader [8, pp. 65, 66].

Fragment Shader. The fragment shader is a program, which runs for each fragment.
The fragments were created by the rasterization from primitives like points, lines,
and polygons. These fragments are passed to this stage. The fragment shader
computes the color of the fragment [8, pp. 86, 87].

The result of the rasterization stage are fragments with color information.

3.1.5 Per-Fragment Operations

The per-fragment operations perform tests and modifications for each window coordi-
nate. Therefore, the fragments at each window coordinate are considered. The tests are
executed in the order listed below. The result is a filled framebuffer, which is affected by
the fragments processed in this stage.

1. Pixel Ownership Test. The pixel ownership test verifies if the pixel at location
(xw, yw) in the framebuffer is currently owned by the current GL context. If
the pixel is not owned by the current GL context, the fragment is discarded [8,
p. 91].

2. Scissor Test. The scissor test determines if the pixel location is within a rectangle
defined by void Scissor(int left, int bottom, int width, int height). If the pixel is
inside this rectangle, left ≤ xw < left+width and bottom ≤ yw < bottom+height,
the fragment passes the test, otherwise, the fragment is discarded. The scissor test
is optional and can be either enabled or disabled [8, p. 93].

3. Multisample Fragment Operations. Each pixel has an alpha and a coverage value.
These values can be modified by the Multisample Fragment Operations. Multisam-
ple Fragment Operations is an antialiasing technique that works on a subfragment
level. Therefore, every pixel is divided into several samples, which are used for
rendering. Thus, there exists a higher resolution for rendering. Afterwards, the
samples are resolved to achieve the original number of pixels [8, p. 93] [15,
pp. 234,249].

4. Stencil Test The stencil test determines if a fragment gets discarded or not. The first
step is to initialize the stencil buffer with a per-pixel mask by drawing primitives
and the second step is to use the stencil operations (e.g., GL_KEEP, GL_REPLACE

etc.), the stencil function (e.g., GL_EQUAL, GL_LESS etc.) and a compare value to
determine if a fragment update is processed. The stencil test is optional and can
be either enabled or disabled [15, p. 240] [8, p. 95].
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5. Depth Buffer Test Basically, the depth buffer test avoids drawing fragments that are
in the background and covered by other fragments. Therefore, for each fragment,
the actual depth buffer value is compared to the fragment’s depth value. Possible
comparison operators are for example ALWAYS, LESS, EQUAL, etc. If the fragment
passes the test, the depth buffer is updated. Otherwise, the fragment is discarded.
The depth buffer test is optional and can be either enabled or disabled [8, p. 96].

6. Blending Blending modifies the R, G, B and A values of the framebuffer. Therefore,
an incoming fragment at position (xw, yw) is combined with the framebuffer at the
same position. How the values are combined is defined by a blend equation [8,
pp. 96, 97].

7. Dithering Dithering modifies the color in the framebuffer using a dithering algorithm.
The aim of the algorithm is to simulate greater color depth, when only a limited
color depth is available. However, OpenGL ES 2.0 does not specify an algorithm.
Thus, it is implementation-dependent. The dithering test is optional and can be
either enabled or disabled [15, p. 249].

After this last stage, all the fragments are processed and the framebuffer is filled with
the generated scene.

3.1.6 Special Functions

OpenGL ES 2.0 uses a command stream for all commands. For synchronization purpose
the Flush and Finish commands are used. The clear command is a framebuffer
manipulation and provides the functionality to reset the framebuffer to a particular color
[8, pp. 103,122].

Flush The command void Flush(void); indicates that all previously sent commands
must be completed in finite time.

Finish The command void Finish(void); forces that all previously sent commands have
to be complete. This command is blocking and only returns when all commands
are fully propagated.

Clear The command void Clear(bitfield buf); sets every pixel to the same value.
The parameter buf determines which values are set. Possible bits, that can
be set, are COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, and STENCIL_BUFFER_BIT. Re-
spectively to the bits, the buffer values are set to the predefined values.
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3.2 Machine Learning

Machine learning is composed out of machine and learning. In Oxford Dictionary, “to
learn” is defined by “to gain knowledge or skill by studying, from experience, from
being taught, etc.” [17, p. 886], which means in the case of machine learning that we
transfer experience into knowledge. Experience is input data which is processed by the
machine and, as a result, we gain knowledge out of it. Knowledge is data which can be
interpreted in a certain way by the machine.

The machine in our case is an algorithm, which uses the input data to learn from it and
change its internal state respectively. Every time the machine gets new input data it
will take the data into account and learn from it. Thus, the machine gains experience
gradually, can improve, and will perform better in the future.

It is often possible to find a software solution for problems without machine learning.
Anyhow, there exist machine learning algorithms to get better results. For this thesis, the
important reasons to use machine learning algorithms are listed in the following [16].

• A function cannot be described, because the underlying model is unknown. The
only information are input and output data. The machine learning method can
identify the unknown model by matching input and output data and therefore,
adjust its internal state and hence, predict output data for so far unseen input data.

• Structure and correlations in data are not known. This information can often be
identified by machine learning methods.

• For a changing environment, it is more convenient to have a program which can
adapt itself. Machine learning methods provide this possibility.

3.2.1 Classification of Machine Learning Algorithms

In this subsection, a brief overview about different machine learning methods is given.
Thus, the approach which suits best to our problem statement can be determined.

Supervised versus Unsupervised Learning

First we want to distinguish between Supervised and Unsupervised Learning [23]. While
supervised learning uses an expert to gain information, unsupervised learning does
not. The expert or supervisor provides the correct output information of the function
that should be learned. In unsupervised learning this information is not provided and
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in unsupervised learning algorithms, this functionality is obtained by examining the
structure of the data.

For example, a function which marks an email dependent on the content as spam or
not. In supervised learning, the supervisor provides for each email the label spam or
not-spam. Therefore, the function can correlate the email content with the provided
label. In case of unsupervised learning, the unsupervised algorithm needs to figure out
similar structures in emails and separate the emails in two sets: spam and not-spam
[23].

In our problem we have a so-called supervisor. That means that we get labeled input
data with corresponding output data to learn the function to predict the execution time
of a 3D GPU rendering command.

Active versus Passive Learning

Another distinction is the type of learning which can be active or passive. This aspect is
considering at which situation a supervisor is providing the correct output data. An active
learning algorithm can ask the learner for the correct output data anytime, whether a
passive learning algorithm can only get the information by observing the environment
[23].

In the scope of this work, we only can observe the environment and use the provided
information. Thus, we consider the use of passive learning further.

Statistical Classification versus Regression Analysis

There are multiple machine learning algorithms, which have the property of supervisors
and passive learning. The two major categories are statistical classification and regression
analysis.

Classification is to categorize input data into groups. For instance, optical character
recognition uses an image as input and classifies the image into a character. Thus,
each character is a group. This can be extended to character strings by running
the program consecutively for each character [2].

Regression is a method to create a mapping from input variables to an output variable.
For example, in automotive market used cars have different attributes, e.g. mileage.
If we want to predict the prices of newly offered cars on the second hand market
and we already got the data from previous sales, a regression analysis can be made.
A linear function can be used to fit as best as possible for the given data. Then, the
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price for the car can be predicted using the function which is gained through the
regression analysis [2].

Because of our problem statement, where we get a continuous output value provided,
the regression analysis is our choice as algorithm class.

3.2.2 Linear Regression

Linear regression is a regression analysis with a function that is linear with respect
to the input parameters. That means that the output variable depends linear on each
input parameter. A set of pairs of input and output variables are necessary to learn
the model. The input variables are also called predictors, independent variables or
features. By contrast, the output variables are called responses or dependent variables
[7, pp. 9,10].

Input variables are denoted as X and output variables either as Y , if they are quantitative,
or G, if they are qualitative. We only consider quantitative outputs, because our aim is
to determine a function which has a quantitative output variable. Thus, we are using Y

for the output variables. The jth component of a vector X is denoted Xj. The observed
values, also called samples, are written in lowercase: xi for the ith sample of X [7,
p. 10].

To learn the function which leads to our prediction of the output Ŷ , we use training data
to build prediction rules. Training data is a set of tuples, which are measurements (xi,
yi), i = 1, . . . , N . A simple approach to construct the prediction rules is the linear model
fit by least squares. The linear model has been used for the last 30 years and is still one
of the most important tools [7, p. 11].

The linear model uses a given vector of input values XT = (X1, X2, . . . , Xp) to predict
the output Y using the model

Ŷ = w0 +
p∑

j=1
Xjwj.(3.1)

Values w are coefficients of the linear model. w0 is a constant summand which is called
bias in machine learning. In terms of math, w0 specifies the point (0, w0) at which the
Y -axis is cut. For convenience, it is common to set X0 to 1 and include w0 into the vector
w . Therefore, one can come up with a more general model and denote the prediction
with the inner product

Ŷ = XT w =
p∑

j=0
Xjwj with X0 = 1.(3.2)
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In general, X can be a vector or a matrix and therefore Ŷ can be a scalar or a vector. In
our case, X is a vector and hence, Ŷ is a scalar [7, p. 12].

The prediction can be viewed as a linear function f(X) = XT w. To obtain the gradient
of f , we derive f , which leads to f ′(X) = w. This gradient points to the direction of
ascent and can be used to improve the weights w of the linear model to get a better
approximation of the real world. The most popular approach of fitting the linear model
is the method of least squares [7, p. 12].

The main idea of the method of least squares is to find the coefficients w to minimize
the residual sum of squares

RSS(w) =
N∑

i=1
(yi − xT

i w)2.(3.3)

For the minimum of RSS(w) exists exactly one solution, because it is a quadratic
function. To get the parameter w for which RSS(w) is minimal, Equation (3.3) has to be
differentiated and solved for w. It is simpler to describe the solution in matrix notation
[7, p. 12]. Thus, the matrix notation is

RSS(w) = (y−Xw)T (y−Xw),(3.4)

where y is the vector of output values and X is a matrix containing one sample in each
row. To minimize Equation (3.4), it needs to be differentiated w.r.t. w which leads to

XT (y−Xw) = 0.(3.5)

Hence, there exists a unique solution for w, if XT X is nonsingular:

w = (XT X)−1XT y.(3.6)

If all the input and output data is given in advance, this can be solved by matrix inversion
and multiplication. If the equation can be solved, then it is optimal for the given training
data. However, in the case of this work, the data is not given in advance but continuously
in a stream. For this reason, online machine learning instead of batch learning for the
linear regression will be further considered.

3.2.3 Online Learning with Stochastic Gradient Descent

In general, online machine learning is to learn a function f : X → Y , where X are input
values and Y are output values. Because of the problem we are facing, we are using a
linear map from multiple input values to one output value. Thus, the input value x is a
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vector and the output value y is a scalar. This leads us to linear regression using online
learning, in particular, stochastic gradient descent. Stochastic gradient descent is to
improve the coefficients w of the linear model step by step using a loss function. The loss
function uses an approximate gradient that points in the direction of improvement.

In batch learning, as described in Section 3.2.2, the loss function is a sum over the entire
training data set and hence, the optimal global solution can be calculated. The loss
function is an error function, which returns the error between the current and actual
solution. In online learning, only one sample per time is considered to improve the
weights of the linear model, which leads to a more adaptive algorithm.

The most commonly employed update rule to sequentially update the weights of the
linear model f(x) = xT w is

wt+1 = wt − ηt∇L(y, x),(3.7)

where η is the so-called learning rate and ∇L(y, x) denotes the gradient of the loss
function with its parameters y and x. t is the current and t + 1 the next time step. To
obtain the improved weights, the previous weights are required. This method is called
stochastic gradient descent [2, p. 219].

In general, the gradient descent method calculates the optimal gradient with respect to
the entire trainings set. In stochastic gradient descent, the gradient is calculated only
considering the error of the current sample, not the entire trainings set [4].

Next, the parameter learning rate and loss function are discussed further. The learning
rate and loss function are essential to establish a fast convergence and robust update
rule. The learning rate scales the gradient of the loss function, whereby the gradient
points towards the direction of the minimum at point of the derivation.

Loss Function

A widely used loss function is the sum of least squares

L(y, x) = 1
2(y − xT w)2,(3.8)

where y is the actual desired value, x the training input data and w the weights of the
linear model. The gradient of the loss function

∇L(y, x) = ∂L(y, x)
∂w

= (y − xT w)x(3.9)

is used to improve the weights w of the linear model.
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Learning Rate

The learning rate η is a factor to scale the gradient of the loss function. For higher η,
a faster convergence is gained, but overshooting is more likely as well. Overshooting
means that the update of the weights w was too strong and the optimal goal is passed.
If the learning rate η is chosen too high, it is also possible that the overshooting leads to
divergence.

A common simple approach is to set η in respect to the time. Usually, ηt decays over
time, which is called annealing, e.g.

ηt = 1
t
,(3.10)

where t is the time step or current number of iteration. Robbins and Monro [19]
showed that a convergence is ensured, when η → 0,

∑
t ηt =∞, and

∑
t η2

t <∞. These
requirements are satisfied for Equation 3.10.

3.2.4 Assumptions of Linear Regression

The linear regression model has several assumptions on the input data set. The key
assumptions are listed in the following [18].

No Measurement Error. The observation (x, y) must be measured without an error.
This can be partially relaxed. Then only x must be measured without an error.
Thus, w0 includes the measurement error of y.

Linear Relationship. The output variable y must be linear dependent on each input
variable xi. This does not mean, that a nonlinear data set cannot be used by
the linear model. It is satisfying if there exists a function which transforms the
nonlinear data set to a linear. Thus, x2

i wi is a valid term for the linear model.

Independence. The input variables xi must be independent of each other. Otherwise
multicollinearity is present.

Homoscedasticity. All input variables must have the same constant variance of the
error.

Normally Distributed. The error of each input variable xi must be normally distributed.

However, all these assumptions can be further relaxed, with the drawback that the
learned parameters of the linear model are inaccurate or the learning process takes
longer.
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In this chapter, a concept to predict the execution time of 3D rendering commands using
machine learning is presented. At first, the selection of the features and how to obtain
them is discussed. Further, the required linear model and their persistent storage is
presented. This is followed by the learning on GPU instruction level, online machine
learning and their problems.

4.1 Selection of Features

The selection of the features is one important aspect, because the duration for the
learning progress and the representation of the real world depend on the features.
Thus, the given information need to be analyzed with respect to the execution time. To
determine the impacts on the execution time, we are looking on influence factors in the
OpenGL ES 2.0 processing pipeline. The pipeline was presented in Chapter 3. To predict
the execution time a linear model is applied. The selection of the features will lead to
the parameter of the linear model.

In OpenGL, there are two different type of commands. On the one hand, commands that
are using the GPU and on the other hand, commands that only change the internal state
of OpenGL. Only OpenGL commands which are using the GPU are considered for the
execution time prediction.

Draw Command (glDrawArrays and glDrawElements)

The draw commands are processed by the OpenGL pipeline, which passes several steps.

1. Per-Vertex Operations. This stage processes each vertex using the vertex shader
on its own. Therefore, the execution time of this step depends on the number of
vertices and the execution time of the vertex shader.

2. Rasterization. The primitives are transformed to fragments and processed by
the fragment Shader. The execution time of this step depends on the number of
fragments and the execution time of the fragment shader.
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3. Per-Fragment Operations. At this stage, each fragment is processed in order
to obtain the color for the framebuffer. The tests can be enabled or disabled.
Therefore, the execution time depends, on the one hand, on the number of
fragments and on the other hand, the execution time for each test.

Modern graphics cards support unified shaders. That means, that the graphics card
provides several threads to which the shader can be assigned. Thus, the number of
parallel executions of shaders can vary [11].

The following equation shows the execution time of the draw command considering the
OpenGL pipeline. t denotes the execution time, and N the number of shader instances.
The index vs denotes the vertex shader and the index fs the fragment shader. tests are
the tests, which are processed for each fragment. In ttest, the execution times of all tests
are accumulated.

tdraw = tvs ·Nvs + tfs ·Nfs + ttests ·Nfs(4.1)

Clear Command (glClear)

The clear command sets all pixels in the framebuffer to an initial configured value.
The execution time of this command depends on the number of written pixels in the
framebuffer. The framebuffer contains the color, depth, and stencil information. This
information can be cleared either on its own, in combinations or all at once. Therefore,
it is a difference, if first the color and then the depth information is cleared, because
clearing color and depth information at the same time requires less execution time.

tclear = (tc + td + ts + tcd + tcs + tds + tcds) ·Npixels(4.2)

Where the sum is the execution time to clear one pixel and Npixels is the number of
pixels, that are effected by the clear command. The indexes c, d, and s denote color,
depth, and stencil respectively. For example, the color and depth information is cleared,
thus, the variable tcd is taken into account.

Flush Command (glFlush)

The flush command states that all previously sent commands must be completed. This is
an operation which is propagated to the graphics card and takes a constant execution
time cflush.

tflush = cflush(4.3)
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Swap Buffer Command (eglSwapBuffer)

The swap buffer command is not part of the OpenGL specification and is an improvement
in performance. Instead of rendering directly to the device buffer, at first, the object
is rendered to a renderbuffer that will be linked to the device with the swap buffer
command. The swap buffer command is swapping the two buffers and copies the
memory from the renderbuffer into the framebuffer. A swap buffer commands implies
a flush command on the context before copying the renderbuffer into the framebuffer.
The execution time of the swap buffer command depends on the number of pixels and
the duration to copy one pixel.

tswap = tpixel ·Npixels(4.4)

In this context, tpixel is the execution time to copy one pixel and Npixels the total number
of pixels that are swapped.

4.2 Learning on GPU Instruction Level

In this section, the use of GPU instructions for machine learning is discussed. When
using a shader identifier as feature, the learning process is only done for this particular
shader. When the online learning runs with a program, to which a so far unknown
shader is linked, the learning process starts without knowledge and needs to learn the
weights from scratch for the new shader. Thus, the prediction of the execution time for
new shader leads to high prediction errors in the beginning. Another disadvantage is,
that each shader needs a new weight, which leads first to a higher memory usage and
second, the feature vector gets more entries and therefore, the execution time for online
learning increases.

However, when learning on GPU instruction level is applied, the learning process is done
for each GPU instruction. The number of GPU instructions has in comparison to the
number of possible shaders a smaller upper bound. The amount of instructions depends
on the GPU. The number of required features for shaders is reduced by the use of GPU
instructions.

Another advantage for learning on GPU instruction level is, that jump commands in
the shader can be detected. Because of jumps, the number of instructions cannot
be predicted anymore. Jumps are generated by if-clauses or loops. In the case of
loops, it is possible that the optimizer unrolls the loops. If the number of iterations is
unknown or the internal memory has an insufficient size to unroll the loop, the GPU
instructions contain a jump. In this case, the number of actual GPU instructions cannot
be determined and hence, no worst case execution time can be predicted. Without
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knowing the worst case execution time, the real-time GPU scheduler cannot hold the
deadlines of all tasks.

In the following the GPU instruction code of the used graphics cards is presented.

4.2.1 Nvidia Instruction Set Architecture

As graphics card the Nvidia Quadro 400 (GT216GL) is used. This graphics card belongs
to the NV50 family, which has the Nvidia 3D object codename Tesla. The NV50 family
has subcategories where the Quadro 400 is part of. The subcategory is NVA5 and is also
called GT216 [12] .

The Tesla family uses the Tesla CUDA ISA, which stands for Completely Unified Device
Architecture Instruction Set Architecture. All types of shaders use nearly the same ISA
and therefore, it is possible to execute the shaders on the same streaming multiprocessors
[24].

Tesla ISA is stored in 32-bit little-endian words. Each instruction can be either short (1
word) or long (2 words). To distinguish which instruction is a short and which is a long
one, the bit 0 of the first word is either set or not. In Table 4.1, it can be seen, that there
are two short and five long instruction types.

Table 4.1: Tesla ISA instruction type [24]

Word 0 Bits 0-1 Word 1 Bits 0-1 Instruction Type

0 - short normal
1 0 long normal
1 1 long normal with join
1 2 long normal with exit
1 3 long immediate
2 - short control
3 any long control

In word 0, the first word, the bits 28-31 define the primary opcode field. If the instruction
is a long instruction, the secondary opcode field is in word 1, the second word, bits 29-31.
Respectively this information, an opcode can be disassembled in its instruction. A map
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from the opcode to instruction name can be seen in the Appendix A.2. To determine the
instruction of a given opcode, the instruction type, the primary opcode and depending
on the instruction type, the secondary opcode is necessary [24].

In the following, it will be shown, how the instruction of the given opcode 0xe0850605

0x00204780 is obtained. At first, the instruction type is determined. Therefore, bits 0-1
of word 0 are checked. In the case that word 0 is 0xe0850605, the bit 0 is set and thus,
this is a long instruction. To specify the long instruction bits 0-1 of word 1 are checked.
These are 0 and thus, the instruction type is long normal. The primary opcode is given by
the four highest bits of word 0 0xe0850605 and because we are facing a long instruction,
the secondary opcode is given by the three highest bits of word 1 0x00204780. This
leads to a primary opcode of 0xe and a secondary opcode of 0x0, which finish up in the
instruction fmul+fadd. This instruction name can be taken from Table A.1 out of row 15
column long normal, secondary 0.

4.2.2 Vivante GC2000

As graphics card on the embedded board i.MX6Quad manufactured by Freescale, a
Vivante GC2000 GPU is integrated. For this GPU we are using the opcode, which is used
by the proprietary driver. An enumeration of the opcodes is depicted in Section A.1.

4.3 Linear Model

In this section, the linear model using the obtained features is explained. First, the
linearity of the features needs to be checked. That means, that each feature has a linear
dependency on the execution time. In Section 4.1, the execution time model of the
important commands draw, clear, flush, and swap is listed. This model does not consider
different shaders and is improved by the concept which is explained in Section 4.2,
where the level of learning is transferred from shader level to GPU instruction level. In
the following, the figured out features are denoted in the form, that can be used be
machine learning.

Our basic linear model without naming the features is

ET(x) =
N∑

i=0
xi · wi with x0 = 1,(4.5)

where the ET (Execution Time) can be obtained by the model parameters w and the
independent variables x. Which independent variables are picked is discussed in the
following for each command separate.

25



4 Concept

Draw Command

The draw command gets, because of the more fine-grained learning level from the previ-
ous section, more complex. The number of variables increased through the improvement
explained in Section 4.2. Therefore, the part of the linear model, which implies from
the draw command is the following.

ETdraw(vs, fs, t) =
N∑

i=1
(Nvs · vsi + Nfs · fsi) · wi +

N+M∑
j=N+1

(Nfs · tj) · wj(4.6)

N is the number of GPU instructions, Nvs is the number of vertex shader instances,
Nfs is the number of fragment shader instances and fs and vs are the distribution of
commands of the current vertex shader and fragment shader. Thus, vsi is the number of
GPU instruction i in the used vertex shader. For example, vs0 = 5 means, that 5 GPU
instructions of type 0, e.g. MOV, per vertex shader exist. The second sum models the
execution time for the per-fragment operations, where M is the number of per-fragment
tests and ti is set 0 or 1, respectively if the is activated or not.

Clear Command

The execution time of the clear command depends on the combination of buffers that
are cleared and the number of pixels that are effected. In this case each combination
gets one weight assigned, which leads to the equation

ETclear(Npixels, c) = (Npixels · ci) · wi(4.7)

Where Npixels is the number of pixels, which are effected by combination i. If the
combination i is activated, ci is 1, otherwise 0.

Flush and Swap Buffer Command

The flush command has a constant execution time, which yields to a factor f , which is
either 0 or 1. The swap buffer command depends on the number of pixels Npixels, that
are swapped. Thus, the following two equations for the flush and swap buffer command
are denoted.

ETflush(f) = f · w(4.8)

ETswap(Npixels) = Npixels · w(4.9)
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Figure 4.1: Architecture of the Prediction Framework

Summarize

To get the entire linear model, the single commands need to be summed up to accomplish
the entire model, which leads to the following equation. Thus, for each occurrence of
one of the commands explained before, the execution time model sums up all the input
variables to predict the execution time.

ETcg =
∑

c ∈ cg

ETc(4.10)

Where the sum is adding up all execution times of command c from the command group
cg. To obtain all the needed parameters, the OpenGL state needs to be tracked. This is
explained in Section 4.4.

4.4 Prediction Framework

In this section, the prediction framework is presented. Therefore, the architecture of the
prediction framework, how the required parameters for the linear model are obtained,
the measuring of the execution time of command groups, and the communication
between the single tasks are introduced.

4.4.1 Architecture

The architecture of the prediction framework can be seen in Figure 4.1. The framework
bases on the work from Schnitzer et al. [21] and is extended by the functionality of the
prediction using machine learning. The two boxes, which are marked with an orange
background, are untouched by the architecture and are the boundaries of the prediction
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framework. The boxes with blue background are modified or inserted for the sake of the
prediction framework.

The architecture, see Figure 4.1, contains out of three main areas. First, the user space,
where the OpenGL ES 2.0 application and the execution time prediction is running.
Second, the kernel space, in which the GPU driver and scheduler, and the execution time
monitor is running. Third, the hardware, which is the graphics processing unit itself.

Flow of Action

In this subsection, the general procedure of the prediction framework is explained. The
OpenGL ES 2.0 application, which is programmed by a user, is using OpenGL API calls
to render a scene. The application itself stays how it is and does not need to be modified
for the framework. The API calls from the application are intercepted by the Interception
Layer. The Interception Layer is the first stage of the framework. It parses the parameter
of the OpenGL ES 2.0 API calls and build up its own OpenGL state. Therefore, at any
time, the local OpenGL state can be requested and used for prediction.

At the time of interception, the prediction library is called and uses the current parameter
of the API call and the local collected OpenGL state to predict the execution time for
the intercepted GPU command. The predicted execution time is stored, thus, the GPU
scheduler can use it to schedule the GPU command groups, so that the task can comply
its requirements and no deadlines are violated.

After intercepting the API call, the original OpenGL API is called to do not manipulate
the conventional execution of the API call. Thus, the call is forwarded to the GPU Driver
and Scheduler.

When using machine learning, the real execution time is required. Therefore, the
Execution Time Monitor measures the execution time for the GPU commands. GPU
commands are grouped into GPU command groups. A GPU command group is written
into the GPU command buffer and will be executed not preemptively by the GPU.
Reverse, the measured execution time can contain several GPU commands.

4.4.2 Execution Time Prediction using Machine Learning

The execution time prediction using machine learning estimates the execution time of
3D rendering commands. The internal structure can be seen in Figure 4.2. The outer
box Execution Time Prediction using Machine Learning is the main component, which
contains three smaller components: Linear Regression, Shader Analyzer and Number of
Fragments Estimator.
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Figure 4.2: Execution Time Prediction using Machine Learning

To improve the weights of the linear model, the real execution time needs to be ac-
quired. Because the GPU buffer holds usually a bunch of GPU commands, the measured
execution time is the execution time for the entire GPU command group. Therefore,
for learning the linear model, a mapping of multiple single GPU commands to a GPU
command group has to be created.

The Execution Time Prediction using Machine Learning stage contains of four sub-
stages.

Machine Learning. This is the interface to the boundaries. It communications with the
Interception Layer to collect all necessary information for predicting, contacts the
Execution Time Monitor to obtain the real execution time and is organizing the
mapping of single GPU commands to GPU command groups.

Linear Regression. This module contains the mathematical solution for the linear
regression problem. An improved version of the stochastic gradient descent
algorithm is applied. This algorithm is explained in Section 4.5.

Shader Analyzer. The Shader Analyzer examines the shader and creates on the one
hand a distribution of the GPU instruction types the shader is using and on the
other hand, a jump detection is done. This concept is explained in Section 4.2.

Number of Fragments Estimator. One unknown parameter in this system is the num-
ber of fragments. The number of fragments is necessary to determine the execution
time for draw calls. To estimate the number of fragments using the vertex data
and the vertex shader, Schnitzer et al. [21] proposed the method bounding box.
This method to calculate the number of fragments is also used in this work.
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4.5 Online Learning

When using online learning, there are requirements for the trainings data set to have a
convergence of the algorithm. In the following, problems which need to be solved are
listed.

Normalization. Each feature can be scaled differently. In machine learning each scale
should be in the same range. In batch learning all data is known beforehand and
therefore, the scaling of the trainings data for each feature can be done in advance.
However, in online learning no trainings data is given in the beginning and hence,
no scaling can be done beforehand [20].

Adaption of Learning Rate. In the simple approach, listed above, the learning rate
depends only on the time. To boost the convergence of the error function to zero,
the learning rate can be adapted with respect to the gradient [1].

Regularization. To avoid overfitting, regularization can be applied. Overfitting means,
that the model fits perfect for the trained samples, but has poor generalization
power. This can be avoided using regularization. In this work, regularization is
done with the truncated gradient approach [10] and explained in Section 4.5.4;

Sparsity. A data set is sparse, if the most elements are zero. Linear regression is
used for applications, where the number of independent variables are larger than
the number of dependent variables. In this work, we have several independent
variables and only one dependent variable. Often, not all independent variables are
influencing the depend variable. Thus, the goal is to get sparse weights, where only
the relevant weights are set. The truncated gradient approach [10] is combining
regularization and sparsity of the weights.

How these problems are tackled is discussed in the following.

4.5.1 Conceptional Algorithm

In this subsection, the conceptional algorithm is introduced. The parts of this algorithm
are explained in the following subsections. The algorithm can be seen in the listing
Algorithm 4.1. The main loop starting in line 2 is processing all observed samples,
where x are the independent variables, y are the dependent variables, and t the time
step. In this problem statement, one observed sample is one GPU command group
with the feature values x and the real execution time y. In lines 3 and 4 the predicted
execution time ŷ and the gradient g is calculated. The gradient represents the error of
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the prediction. After that, in line 5 the normalization of the observed feature values x is
performed.

The loop over all feature starting in line 6 calculates a reasonable learning rate ηi and
updates the weight wi for each feature. The functions NORMALIZATION, LEARNINGRATE

and WEIGHTUPDATE are explained in the following sections. The rescale of the learning
rate ηi is applied, because it shifts the influence of the input parameter x on the update
to the learning rate η.

Algorithm 4.1 Stochastic gradient descent
1: wi ← 0
2: for all time steps t observe sample (x, y) do
3: ŷ ← ∑

i wixi

4: g ← ∂L(ŷ,y)
∂w

5: (w, g, N)←NORMALIZATION(w, g, x)
6: for all feature i do

7: ηi ←

LEARNINGRATEALMEIDA(ηi, gi, t), for activeAlg = ALMEIDA

LEARNINGRATEADADELTA(ηi, gi, t), for activeAlg = ADADELTA

8: ηi ← ηi
t

N

9: wi ← WEIGHTUPDATE(wi, ηi, gi)
10: end for
11: end for

4.5.2 Normalization of Features

In this section, it is discussed how normalization is applied in our stochastic gradient
descent setting. Like written before, normalization is crucial to converge to the optimum.
Without normalization the feature scale would dominate the importance of a feature.
Ideally, the learning rate η is the only impact on the importance of the current sample.
To put this into effect, the normalization is necessary. The data set we are using is
generated at run time. Therefore, the samples need to be normalized at runtime as
well.

Ross et al. [20] proposed the Normalized Gradient Descent (NG) algorithm, which has
scale invariance in every feature for online learning. The normalization part of the NG
algorithm can be seen in the listing Algorithm 4.2. In the first line, the global variables
are initialized. The maximum value for each feature value si. In plain gradient descent,
the influence of the update of the model weights w depend on the input variable x. To
shift this influence of x to the learning rate ηt, the variable N is used. The main idea, to
obtain scale invariance for each feature, is that the maximum magnitude of each feature
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is calculated. With this maximum magnitude, the input value for the respective feature
is rescaled and a normalized update can be applied.

Algorithm 4.2 Normalization used by stochastic gradient descent
1: si ← 0, N ← 0
2: function NORMALIZATION(w, g, x)
3: for all features i do
4: if |xi| > si then
5: wi ← wis

2
i

|xi|2
6: si ← |xi|
7: end if
8: gi ← gi

s2
i

9: end for
10: N ← N + ∑

i
x2

i

s2
i

11: return (w, g, N)
12: end function

The main loop in line 3 of Algorithm 4.2 is executed for all features. As first step from
line 4 to 7 the maximum magnitude s is calculated and the weights w are adapted
respectively. Second, in line 8, the rescaling of the gradient g is performed. Third, in
line 10, the change in prediction N is calculated. Using the calculated N , the gradient
will be rescaled and the influence of the input variable x is shifted to the learning rate η.
At last step, the adjusted weight w and gradient g are returned.

4.5.3 Adaption of Learning Rate

In this section, we discuss how the learning rate is determined. The learning rate
specifies how strong the current weight update is taken into account. As simplest, the
learning rate is decreasing over time, like shown in Subsection 3.2.3. The effect of
this annealing learning rate is, that the ability of adaptation after numerous iterations
is reduced. If the trainings data set is randomly distributed, no problem comes up.
However, our trainings data set is not random distributed and it can happen that one of
the features show up very late. To still have the opportunity to react on the new seen
feature and be adaptive, each feature can get its own learning rate.

Almeida

Almeida et al. [1] proposed a general method of parameter adaption in stochastic
optimization, which is applicable to stochastic gradient descent. The main idea is to
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consider the last two gradients, instead of using the time step to determine the new
learning rate η

(t)
i , where i is the index of the feature vector and subscript (t) is the tth

iteration.

To update the new learning rate η
(t)
i the update rule

η
(t)
i = η

(t−1)
i ·

1 + k
d

(t)
i d

(t−1)
i

v
(t)
i

(4.11)

is applied, where k is a step size factor, d is the gradient of the loss function ∇L(y, x)
and v an exponential average of the square of d

(t)
i , determined by

v
(t)
i = γv

(t−1)
i + (1− γ) ·

[
d

(t)
i

]2
,(4.12)

where γ is the weight of the average. A high value for γ leads to low pass filter and a
low value for γ to a high pass filter.

This method of Almeida et al. follows two approaches. First, if the last two gradients
point into the same direction, the learning rate η will increase. This is realized by
multiply then two deviations. If the sign of the deviations is the same, the result is
positive, if not, it is negative and the learning rate will decrease. Second, the change of
the learning rate is proportional to the gradients magnitude. For this reason, this rule is
also called normalized update rule [1].

In Algorithm 4.3, the function LEARNINGRATEALMEIDA is listed. The function contains
the calculation of the moving average v and the update of the learning rate η for each
feature index i.

Algorithm 4.3 Learning rate calculation based on Almeida et al.
Global Parameters: γ, k

Global Initialization: vi ← 0
1: function LEARNINGRATEALMEIDA(ηi, gi, t)
2: vi ← γvi + (1− γ)

[
g

(t)
i

]2

3: ηi ← ηi(1 + k
g

(t−1)
i g

(t)
i

vi
)

4: return ηi

5: end function

ADADELTA

Zeiler proposed the method ADADELTA to adapt the learning [27]. This method results
from an improvement of ADAGRAD [5]. ADADELTA follows two main ideas, first,
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the denominator is a local estimate and it not an infinity sum, like for the simple
approach for calculating the learning rate (see Section 3.2.3). The other idea is to use
an approximation of the Hessian matrix to obtain the same units for numerator and
denominator, and have second order derivative information.

In order to find the step ∆w to improve the weights, the following equation is applied.

∆w = RMS(∆w)(t−1)

RMS(g)(t) g(t),(4.13)

where g is gradient, and the tth iteration is denoted by subscript (t). RMS is the root
mean square and is defined by

RMS(x) =
√

E(x) + ϵ.(4.14)

The root mean square takes an exponential decaying average, which is calculated over a
window.

E(x)(t) = γE(x)(t−1) + (1− γ)x2(4.15)

The learning rate can then be determined by dividing the descent step by the gradient:

η = ∆w

g
(4.16)

The applied algorithm is listed in Algorithm 4.4. In line 2 the exponential decaying
average of gi is calculated. In the following line, the step ∆w is calculated. Therefore,
the root mean square of ∆wi and gi are considered. For RMS(∆w2

i ) only all previous
∆wi are taken, because the step size of the current step is not set so far. After getting the
step size ∆wi, the exponential decaying average of ∆wi is calculated in line 4. As last
step, the learning rate is return.

Algorithm 4.4 Learning rate calculation based on ADADELTA
Global Parameters: γ, ϵ

Global Initialization: E[g2
i ]← 0, E[∆w2

i ]← 0
1: function LEARNINGRATEADADELTA(gi)
2: E[g2

i ]← γE[g2
i ] + (1− γ)g2

i

3: ∆wi ← RMS(∆w2
i )

RMS(g2
i ) gi

4: E[∆w2
i ]← γE[∆w2

i ] + (1− γ)∆w2
i

5: return ∆wi

gi

6: end function
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4.5.4 Regularization and Sparsity

Regularization and sparsity are correlated to each other. Regularization adds penalization
to the loss function. The simple loss function in Section 3.2.3 can be extended by
regularization term. In the following equation an L1-regularization can be seen.

L(y, x) = 1
2(y − xT w)2 + λ|w|1(4.17)

Through this regularization term, non-zero weights are penalized and larger weights are
even more penalized. Therefore, it is more likely that a weight is zero and the weight
vector is sparse. Another aspect is, that the regularization term is used to decrease the
chance of over fitting.

Langford et al. proposed sparse online learning via truncated gradient, which covers
an improved version of the L1-regularization [10]. The basic concept is to truncate the
gradient, if the weight update would result into a weight, which lies in the interval
[−θ, θ]. Instead of rounding the weight directly to zero, a smoother approach is applied.
The equation

wi = T1(wi − ηigi, ηiηr, θ)(4.18)

shows the usage of the truncated gradient function T1. The variables r and θ are added
by this approach, where r is a gravity parameter and θ the interval range. By rising r

and θ the chance, that the solution is sparse, increases.

T1(vj, α, θ) =


max(0, vj − α) if vj ∈ [0, θ]
min(0, vj + α) if vj ∈ [−θ, 0]
0 otherwise

(4.19)

The truncation can only be performed every K iterations, to gain a more aggressive
truncation with gravity parameter Kg. Thus, it is more likely to get better sparsity.

The algorithm for the weight update using the truncated gradient function is listed in
Algorithm 4.5. The variable gi is already the gradient. Thus, the gravity parameter g

gets the name r in the algorithm description.
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Algorithm 4.5 Weight update for online learning
Global Parameters: K, θ, r

1: function WEIGHTUPDATE(wi, ηi, gi, t)

2: wi ←

T1(wi − ηigi, ηirK, θ) if t
K
∈ N

wi − ηigi otherwise
3: return wi

4: end function

4.6 Store the Model Parameters

In this section, the persistent storage of the model parameters is explained. Without a
persistent storage, the model is untrained at every new start of an application. Thus,
the prediction of the execution time in the beginning is inaccurate. Because of real-time
requirements, an inaccurate prediction cannot be used for the GPU scheduler and is
pointless. A wrong estimation can violate tasks with real-time restrictions. That implies,
that a persistent storage for the parameters is necessary.

Choice of Parameters

The parameters of the linear model are the weights w. On the basis of the facts that
the features are normalized and the learning rate is adapted during online learning, the
variables for both methods need to be reviewed for a persistent storage as well.

The Normalized Gradient Descent algorithm, which is described in Section 4.5.2, uses
the variables w, s, t, ŷ. The meaning of the variables is described in that section as well.
The prediction ŷ is calculated before the value is used and hence, a persistent storage of
ŷ is redundant. All other values are stored persistent.

The calculation of the learning rate proposed by Almeida et al. [1], which is presented
in Section 4.5.3, uses v and η for each feature as variables. The learning rate η and the
moving average v is changing over time and needs to be stored persistent.

To calculate the learning rate using ADADELTA, the learning rate η does not need to
be stored persistent, because this method is determining the learning rate using the
exponential decaying average of the gradient g and the step width ∆w. These both
moving averages need to be stored to have initialized values and have a smooth adaption
of the learning rate in the beginning for a new program.
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Method to Store Model Parameters

The method to store the model parameter is described in the following. At the initializa-
tion of the machine learning module, the model parameters are initialized. After that
it is checked, if a previous configuration file with model parameters exist. If previous
values for the model exist, they are loaded into the module and are used for further
learning. After finishing learning, the values are written to the configuration file. As file
format Extensible Markup Language (XML) is chosen. Basically, all variables get a tag
assigned and are written consecutive to the file.
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In this chapter, the implementation of the concepts from the previous chapter is ex-
plained. First, the used setup and then, the implementation containing the interception
layer, machine learning module, and stochastic gradient descent module is presented.

5.1 Setup

The implemented software is designed for two platforms with two different graphics
cards. On the one hand, a workstation and on the other hand, an embedded computer
which are listed below.

1. Workstation

Operating System: Linux distribution Fedora with a fully preemptive kernel.

Graphics Card: Nvidia GT216GL (Quadro 400)

2. Embedded Computer

Operating System: Linux distribution with a fully preemptive kernel.

Graphics Card: Vivante GC2000

The software is written in the programming language C and written in a general way to
support both graphics cards as best as possible. As 3D rendering pipeline we are using
OpenGL ES 2.0. The main differences in the implementation of the two different systems
are the following.

Swap Buffer Command. After drawing the primitives into the renderbuffer, the ren-
derbuffer is swapped to display the scene. Depending on the graphics card, the
prediction of the execution time for swapping the buffer is implemented in a
different way.

Obtaining GPU Code. The GPU instructions of shaders are received on different ways.
The information is obtained from the graphics card driver which differs on both
systems.
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5.2 Interception Layer

The implementation of the interception layer is presented in this section. The imple-
mentation of this layer is taken from Schnitzer et al. [21] and extended by the machine
learning calls and state tracing. The interception is the first stage of the system. In
this stage, the OpenGL API calls are intercepted and used to change the internal stored
context. The interception layer contains two layers. One is the general interception of
the OpenGL calls. The other is designed to trace the OpenGL state and to forward the
correct data to the machine learning layer.

5.2.1 General Interception

The interception of the OpenGL API calls is depicted in Algorithm 5.1. The original
OpenGL API call is overwritten with an own function. The function declaration describes
a function which is called instead of the real OpenGL API call. In this self-defined
function, the real OpenGL API function is called. But the prediction library is called
beforehand to be able to trace the state properly. Some OpenGL API calls have parame-
ters, others do not have parameters. If the original function has parameters, they are
passed to the prediction library and the real OpenGL API function in the same way. If
the OpenGL API call has a return value, it is passed as well.

Algorithm 5.1 General interception of OpenGL calls
1: function OPENGLCALL(...) // Overwritten openGlCall
2: ETP_OPENGLCALL(...)
3: return REAL_OPENGLCALL(...) // real openGlCall
4: end function

5.2.2 Prediction State Tracing

The state tracing and the forwarding of all necessary information to the machine learning
module is described in this subsection. Only the relevant functionality to understand the
crucial implementation is explained.

Initialization

At the beginning, applications create an OpenGL context which is used to render the
objects afterwards. At this point, the internal context is created and initialized by setting
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all variables to their default values. At last, the prediction state is initialized as well.
This is illustrated in Algorithm 5.2.

Algorithm 5.2 Interception of eglCreateContext
1: procedure ETP_EGLCREATECONTEXT

2: INITIALIZECONTEXT( )
3: INITIALIZEPREDICTIONSTATE(state)
4: end procedure

The OpenGL API calls glCreateProgram, glAttachShader and glUseProgram are imple-
mented respectively, such that the internal state contains the program and the attached
vertex and fragment shader after the initialization.

Draw Commands

The execution time model for the draw command of Chapter 4 requires the number
of vertices, number of fragments, and the GPU instructions of the vertex and fragment
shader. At this point, we obtain the number of vertices and number of fragments.
The draw commands are split into glDrawArrays and glDrawElements. Both of these
commands provide the number of vertices as parameter count. Algorithm 5.3 line 2
shows the implementation of summing up the number of vertices. To obtain the number
of fragments, the bounding box algorithm [21] is used. The bounding box algorithm
calculates a bounding box that contains all vertices and uses the vertex shader projection
to calculate the framebuffer area which is covered by the bounding box. The bounding
box is calculated for all draw calls in one command group, except the Mode-View-Matrix
is changed or glFlush is called. Therefore, the bounding box is iteratively constructed
in each draw call and can by extended by the data of the vertices. This functionality is
called by the function in line 3 of Algorithm 5.3.

Algorithm 5.3 Interception of glDrawArrays
1: procedure ETP_GLDRAWARRAY(mode, first, count)
2: state.numVertices← state.numVertices + count
3: BOUNDINGBOXPREPERATION( )
4: end procedure

After constructing the bounding box, the vertex shader projection is applied to obtain
the number of fragments. The function ETP_PREDICTDRAWEXECUTIONTIME, listed in
Algorithm 5.4, is called when the end of a command group is reached or the Mode-View-
Matrix changes. The bounding box is reset in line 3. Finally, the current command group
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index is obtained and the collected state is passed to the machine learning stage. The
machine learning stage is explained in the following section.

Algorithm 5.4 Predicting the execution time at the end of each command group
1: procedure ETP_PREDICTDRAWEXECUTIONTIME

2: state.numFragments← BOUNDINGBOXFRAGMENTESTIMATION( )
3: BOUNDINGBOXRESET( )
4: cg_idx← GETCURRENTCOMMANDGROUPINDEX( )
5: ML_ADD_SAMPLE(cg_idx, state)
6: end procedure

Clear Command

The clear command requires the number of pixels and the type of buffer that is cleared.
The number of pixels are determined by the window dimensions. This is implemented
by a multiplication in line 2 of Algorithm 5.5. The window width and height are set
at initialization time. The kind of buffer is determined by the bitmask which is passed
as a parameter. A mapping from the mask to state variables needs to be created. This
is done by adding up an index over the mask such that each index is identifying one
combination. This combination is used as switch criteria to assign it to the correct state
variable.

Flush Command

The flush command depends only on the number of flush commands. Thus, every time
glFLush is called, a state variable is incremented. Therefore, this trivial algorithm is not
listed.

Swap Buffer Command

The implementation of the swap buffer command is not included in the graphics card
driver itself because the command is not part of the OpenGL specification. On the
workstation a X-Server is responsible for the memory transfer. The execution time of
the memory transfer has a high variance, because of this, a reasonable prediction with
the swap buffer command is not possible. Therefore, the swap buffer command is
suppressed and the prediction is not implemented.

However, on the Vivante GPU the execution time can be predicted. The analysis of the
swap buffer command is presented in Chapter 4 and considers the number of pixels that
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Algorithm 5.5 Interception of glClear
1: procedure ETP_GLCLEAR(mask)
2: numPixels← state.windowWidth * state.windowHight
3: index← 0
4: if mask & GL_COLOR_BUFFER_BIT then // & =̂ bitwise "and"
5: index← index + 1
6: end if
7: if mask & GL_DEPTH_BUFFER_BIT then
8: index← index + 2
9: end if

10: if mask & GL_STENCIL_BUFFER_BIT then
11: index← index + 4
12: end if
13: switch index do
14: case 1: state.clear_color← pixels

15: case 2: state.clear_depth← pixels

16: case 3: state.clear_stencil← pixels

17: case 4: state.clear_color_depth← pixels

18: case 5: state.clear_color_stencil← pixels

19: case 6: state.clear_depth_stencil← pixels

20: case 7: state.clear_color_depth_stencil← pixels

21: end procedure

are affected by the swap buffer command. Usually, the entire renderbuffer is swapped,
but the Vivante GPU driver sends only areas to the GPU that are affected. Analyzing
the binary code that is sent to the GPU buffer, the width and height of the area that is
swapped is determined. Thus, the state variable is calculated as follows: state.swap←
width * height.

Get Predicted Execution Time

The GPU scheduler requires the predicted execution time when the GPU buffer is filled.
At this time, the framework calls the function ETP_PREDICTEXECUTIONTIME with the
command group index as a parameter. The function returns the predicted execution
time of the passed command group index and is explained in Algorithm 5.6. In line 2,
the current state is passed to the machine learning. At this time, all the information that
influence the execution time of the current command group are passed to the machine
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learning stage. In the next step, the machine learning module predicts the execution
time for the current command group (see in line 3).

The second part of this function contains the learning process of already passed com-
mand groups. The measured execution time is required to learn. From line 5 to 8,
the while loop iterates over all command groups that are already sent to the GPU,
but were not considered for learning. If such a command group exists, the function
TRYGETMEASUREDET tries to get the execution time of the command group. If the
measured execution is set by the function, the loop condition is true and the learning of
the command group is executed in line 7.

Algorithm 5.6 Predicting the execution time for one command group
1: procedure ETP_PREDICTEXECUTIONTIME(current_cg_index)
2: ML_ADD_SAMPLE(current_cg_index, state)
3: predictedET← ML_PREDICT_COMMAND_GROUP(current_cg_index)
4: cg_idx← ML_GET_NEXT_LEARNING_INDEX( )
5: while cg_idx != -1 and TRYGETMEASUREDET(cg_idx, measured_ET) = 0 do
6: ML_LEARN(cg_idx, state)
7: cg_idx← ML_GET_NEXT_LEARNING_INDEX( )
8: end while
9: return predictedET

10: end procedure

5.3 Machine Learning

The machine learning module is a piece of software that connects the surrounding
software components: interception layer, shader analyzer and linear regression. The
interception layer is described in the previous section and is calling the machine learning
module. The machine learning module is split into three parts. Adding new samples,
learning the new added samples and predicting the execution time of command group.
These three parts are explained in the following.

Add New Samples

To eventually learn the parameters of the linear model, data needs to be collected. This
is done by collecting the state which is depicted in Algorithm 5.7. This function is called
by the interception layer. In line 2 the state is transformed to the feature vector which is
used by the linear regression. This transformation is described in Algorithm 5.8 and is
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explained afterwards. After the feature vector is obtained, the feature vector is added to
the buffer. The buffer is a module variable and is visible inside the machine learning
module. Usually, the function ML_ADD_SAMPLE is called more than once per command
group. Then, the buffer contains more than one feature vectors with the same command
group index. In line 4, the state is reset and all used state variables are cleared.

Algorithm 5.7 Add new samples to the machine learning module
1: procedure ML_ADD_SAMPLE(cg_index, state)
2: ML_STATE_TO_FEATURE_VECTOR(state, feature_vector)
3: buffer.add(cg_index, feature_vector)
4: ML_RESET_STATE(state) // Initializing values in the state
5: end procedure

Algorithm 5.8 shows how the state is transformed to the feature vector. The state is
a structured data type, whereby, the feature vector is an array of floating numbers.
To create the feature vector, the distribution of the GPU instructions of the vertex
and fragment shader are required. The distribution is represented as an array, where
the index identifies a GPU instruction and the stored value identifies the number of
occurrences in the current shader, e.g., dist[1] = 4 means that the GPU shader instruction
1 (e.g. ADD) exists four times in the shader. The distribution is calculated by the shader
analyzer and has to be done once per program. Therefore, in line 2 is a check which
checks if the distribution of the current program has not been created. If that is true, the
GPU instruction distribution for the program is created.

At this point all information for the feature vector are available. The values for the
feature vector are assigned in the following lines of code. If a draw call arose, the
constant bias for draw calls is activated by writing a one to the feature vector with
the index 0. The following lines of code contain the set of the clear, swap, and flush
command up to index 9. The for loop in the end of the function calculates the number
of GPU instructions that occur in the draw call. After finishing, the feature vector is set
completely.

Predicting the Execution Time

The prediction of the execution time is done by summing up all seen commands in
the command group and asking the linear regression module for the prediction. This
is depicted in Algorithm 5.9. The function buffer.sumUp in line 2 sums up all feature
vectors for the given command group index. In the following line, the prediction of the
command group is forwarded to the linear regression module.
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Algorithm 5.8 Transformation of the state into the feature vector
1: procedure ML_STATE_TO_FEATURE_VECTOR(state, vector)
2: if program.instructionDist = 0 then
3: SHADERANALYZER_CREATE_DIST(program)
4: program.instructionDist← 1
5: end if
6: if state.numVertices > 0 then
7: vector[0]← 1.0 // Bias for draw command
8: end if
9: vector[1]← state.clear_color

10: ...
11: vector[7]← state.clear_color_depth_stencil
12: vector[8]← state.swap
13: vector[9]← state.flush
14: for i← 0 to NUM_GPU_INSTRUCTIONS do
15: vector[10 + i] ← state.numVertices * program.vs.dist[i] +

state.numFragments * program.fs.dist[i]
16: end for
17: end procedure

Algorithm 5.9 Predicting the execution time
1: procedure ML_PREDICT(cg_index)
2: feature_vector← buffer.sumUp(cg_index)
3: LR_PREDICT(feature_vector)
4: end procedure

Learning the Model Parameters

The learning of the model parameters requires the collected feature vectors. The
collection of feature vectors is done by the call of Algorithm 5.7. Another requirement
is the measured execution time from the kernel space. Every time the execution time
for one command group is predicted (see Algorithm 5.6), the learning is activated. This
requires that the measured execution time is available. Algorithm 5.10 depicts, how the
learning is forwarded to the linear regression module. At first, the feature vector for the
given command group is summed up. The feature vector and the measured execution
time are required to improve the weights of the linear model. In line 4, the just now
learned elements from the current command group are removed from the buffer.
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Algorithm 5.10 Using the measured execution time to learn the model parameters
1: procedure ML_LEARN(cg_index, measured_ET)
2: feature_vector← buffer.sumUp(cg_index)
3: LR_LEARN(feature_vector, measured_ET)
4: buffer.removeAll(cg_index)
5: end procedure

5.4 Shader Analyzer

In this section, the shader analyzer is explained. It has two main purposes. First, it
creates a distribution over the shader instructions and second, it detects jumps. The
functionality is depicted in Algorithm 5.11. The function SHADERANALYZER_CREATE_DIST

creates the distribution of the GPU instructions for the fragment and vertex shader. The
implementation for the vertex and fragment shader is equivalent. Thus, it is outsourced
in an additional function. This function starts in line 5. The for loop iterates over all
GPU instructions inside the shader. It first obtains the type of instruction in line 7. Then,
it is checked if the instruction is of the type jump. If that is true, the execution time of
this shader cannot be predicted for sure. In the second step in line 11, the distribution
of the instruction types is created. Thus, each instruction type in the array has a number
of occurrences in the given shader assigned.

Algorithm 5.11 Creating the distribution of GPU instruction for a program
1: procedure SHADERANALYZER_CREATE_DIST(program)
2: SHADERANALYZER_CREATE_SHADER_DIST(program.vs)
3: SHADERANALYZER_CREATE_SHADER_DIST(program.fs)
4: end procedure
5: procedure SHADERANALYZER_CREATE_SHADER_DIST(shader)
6: for i← 0 to shader.binary_length do
7: instruction← shader.binary_code[i]
8: if instruction is jump then
9: ABORT( )

10: end if
11: shader.dist[instruction]← shader.dist[instruction] + 1
12: end for
13: end procedure
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5.5 Linear Regression

In the linear regression module, the stochastic gradient descent algorithm is imple-
mented. To hold the variables beyond one function call, they are placed in a global
way. Thus, all linear regression function can access them. All variables are hold in the
structured data type LRstate that is listed in the following.

typedef struct {

double w[LINEAR_REGRESSION_NUM_FEATURES]; // weights

double s[LINEAR_REGRESSION_NUM_FEATURES]; // normalization: max value of sample

double eta[LINEAR_REGRESSION_NUM_FEATURES]; // Almeida: learning rate

double v[LINEAR_REGRESSION_NUM_FEATURES]; // Almeida: exponential average of g^2

double g_last[LINEAR_REGRESSION_NUM_FEATURES]; // Almeida: g of t-1

double E_g2[LINEAR_REGRESSION_NUM_FEATURES]; // ADADELTA: exponential average of g^2

double E_delta_w2[LINEAR_REGRESSION_NUM_FEATURES]; // ADADELTA: exponential average

of delta w^2

} LRstate;

On the one hand, the data type is holding the weights w and the variables for the
normalization, on the other hand, it holds variables for the calculation of the learning
rate η.

The linear regression module consists of two main functions. The first implements the
prediction of a given feature vector and the second is to improve the model parameters.
Both are described in the following.

Predicting the Execution Time

The prediction of the execution time is listed in Algorithm 5.12. It simply implements
the multiplication of the transposed feature vector x and the weights vector w.

Algorithm 5.12 Predicting the execution time
1: function LR_PREDICT(x)
2: res← 0
3: for for i← 0 to LR_NUM_FEATURES do
4: res← res + x[i] * LRstate.w[i]
5: end for
6: return res
7: end function
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Learning the Model Parameters

Learning the model parameters using stochastic gradient descent is depicted in Algo-
rithm 5.13. This function is called by ML_LEARN and provides the feature vector for
one group x and the measured execution time y. This function is split into three parts.
The first, where the normalization is done (Subsection 4.5.2), the second contains the
calculation of the learning rate η (Subsection 4.5.3) and third, the update of the weight
vector w (Subsection 4.5.4).

Algorithm 5.13 Learning the model parameters using stochastic gradient descent
1: procedure LR_LEARN(x, y)
2: for i← 0 to LR_NUM_FEATURES do
3: if |x[i]| > LRstate.s[i] then
4: LRstate.w[i]← LRstate.w[i] * LRstate.s[i] * LRstate.s[i]

LRstate.x[i] * LRstate.x[i]
5: LRstate.s[i]← |LRstate.x[i]|
6: end if
7: end for
8: y_hat← LR_PREDICT(x)
9: for i← 0 to LR_NUM_FEATURES do

10: if LRstate.s > 0 then
11: gradient_loss← (y_hat - y) * x[i]
12: gradient[i]← gradient_loss / (LRstate.s[i] * LRstate.s[i])
13: switch activeLearningRateAlgorithm do
14: case Almeida: LRstate.eta[i]← LR_ALMEIDA(gradient, i)

15: case ADADELTA: LRstate.eta[i]← LR_ADADELTA(gradient, i)

16: if truncatedGradient = 1 then
17: ML_TRUNCATEDGRADIENT(gradient, i)
18: else
19: LRstate.w[i]← LRstate.w[i] - LRstate.eta[i] * gradient[i]
20: end if
21: end if
22: end for
23: end procedure

The first loop is part of the normalization and rescales the weight, if a higher absolute
input value is seen. The maximum absolute value s is stored respectively. In line 8,
the prediction of the passed feature vector x is calculated. This is required to calculate
the gradient in the next steps. The second loop, starting in line 9, is processing each
feature on its own and updates its weights in the end. Line 10 let only input values pass,
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that are set. Thus, the learning is only applied to set features. In line 11 and 12 is the
gradient with respect to the feature calculated and normalized.

The second part, the normalization, is implemented in the switch. The linear regression
module provides two different variants to calculate the learning rate. One is the method
proposed by Almeida et al. [1] and the other one is proposed by Zeiler [27]. Depending
on which learning rate algorithm is chosen, the calculate of the learning rate η differs.

After calculating the learning rate, the update phase is reached. If the truncateGradient
flag is set, the truncated gradient algorithm [10] is used to perform the weight update,
otherwise, the update is performed with the default update rule.

In Algorithm 5.14 the implementation of the learning calculation using the method of
Almeida et al. is shown. This method has two parameters γ and k. The parameter
γ influences the exponential average of the gradient. The step size of increasing η, if
the last and the current gradient point in the same direction, is hold by k. In line 2 of
the algorithm listing, the exponential average of the gradient is calculated and in the
following line the learning rate η is calculated. To provide the gradient of the previous
round, it is stored in g_last at the end of the function before returning the learning
rate.

Algorithm 5.14 Implementation of the learning rate calculation based on Almeida et al.
Global Parameters: γ, k

1: function ML_ALMEIDA(gradient, i)
2: LRstate.v[i]← γ * LRstate.v[i] + (1 - γ) * gradient[i] * gradient[i]
3: LRstate.eta[i]← LRstate.eta[i] * (1 + k * LRstate.g_last[i] * gradient[i]

LRstate.v[i] )
4: LRstate.g_last[i]← gradient[i]
5: return LRstate.eta[i]
6: end function

In Algorithm 5.15 the implementation of the calculation of the learning rate based on
the ADADELTA method is presented. The method uses the parameter γ and ϵ, where γ

has the same purpose as in the algorithm proposed by Almeida et al. and influences the
exponential average of the gradient. The algorithm description of the implementation
only slightly differs from the conceptional algorithm. Thus, the algorithm is only
explained briefly at this place. RMS represents the root mean square of the variable,
e.g., RMS_delta_w is the root mean square of delta_w.

The sparse online learning via truncated gradient is listed in Algorithm 5.16. The code
contains a main procedure and the threshold function T1 that is called by the main
procedure. The if statement in line 2 guarantees that the truncated gradient function
is only called every K time steps. The threshold function only affects the update if the
new weight w is between −θ and θ.
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Algorithm 5.15 Implementation of the learning rate calculation based on ADADELTA
Global Parameters: γ, ϵ

1: function ML_ADADELTA(gradient, i)
2: RMS_delta_w← 0, RMS_gradient← 0, delta_w← 0, eta← 0
3: RMS_delta_w←

√
LRstate.E_delta_w2[i] + ϵ

4: RMS_gradient←
√

LRstate.E_g2[i] + ϵ

5: delta_w← RMS_deta_w / RMS_gradient * gradient[i]
6: LRstate.E_delta_w2[i]← γ * LRstate.E_delta_w2[i] + (1 - γ) * delta_w * delta_w
7: eta← delta_w / gradient[i]
8: return eta
9: end function

Algorithm 5.16 Implementation of the truncated gradient algorithm
Global Parameters: K, θ, r

1: procedure LR_TRUNCATEDGRADIENT(gradient, i)
2: if LRstate.t mod K = 0 then
3: LRstate.w[i]← T1(LRstate.w[i] - LRstate.eta[i] * gradient[i], LRstate.eta[i]

* K * r, θ)
4: else
5: LRstate.w[i]← LRstate.w[i] - LRstate.eta[i] * gradient[i]
6: end if
7: end procedure
8: function T1(v, alpha, theta)
9: if v > 0 and v < theta then

10: return MAX(0, v - alpha)
11: else if v > -theta and v < 0 then
12: return MIN(0, v + alpha)
13: else
14: return v
15: end if
16: end function
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In this chapter, we evaluate the effectivity of the newly developed machine learning
algorithm. Therefore, the evaluation setup is introduced. Afterwards the choice of
the machine learning algorithm is evaluated and a comparison of the bounding box
algorithm and machine learning algorithm is presented.

6.1 Setup

In this section, the setup for the evaluation is introduced. We are using two different se-
tups to evaluate our algorithm. First, a workstation computer and second, an embedded
board.

Setup 1 Workstation computer with an Intel Core i7-3770K CPU running with 3.50
GHz and Nvidia GT216GL (Quadro 400) revision a2 as graphics card using the
nouveau GPU drivers. As operating system, the Linux distribution Fedora with a
fully preemptive kernel is running.

Setup 2 Embedded Freescale SABRE Board for Smart Devices with an i.MX6Q rev1.2
processor equipped. The processor runs with 792 MHz. The board uses 1 GiB of
DRAM and has the GPU Vivante GC2000. As graphics card driver we are using
the proprietary driver provided by Freescale. The operating system is a fully
preemptive Linux distribution.

6.2 Choice of Stochastic Gradient Descent Setup

In Chapter 4 are different options for the stochastic gradient descent algorithms pre-
sented. The learning rate is either calculated using the method of Almeida et al. or using
the ADADELTA method. Further, there is the option to use truncated gradient to gain
regularization. To evaluate which of the options suit best for the developed feature set,
a scenario is required in which all features come into effect. The most of the features
are caused by adding the number of each GPU instruction to the feature vector (4.2).
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Thus, a scenario with changing shaders gives the best possibility to evaluate with which
options we get best results. In the following, the four options are listed and in the next
subsection, the method to create a scenario with changing shaders is explained.

Almeida. Using the method of Almeida et al. to determine the learning rate. Do not
use regularization.

Almeida and Truncated Gradient. Using the method of Almeida et al. to determine
the learning rate and use regularization with the truncated gradient method to
gain sparse resulting model weights.

ADADELTA. Using ADADELTA to determine the learning rate. Do not use regularization.

ADADELTA and Truncated Gradient. Using ADADELTA to determine the learning rate
and use regularization with the truncated gradient method to gain sparse resulting
model weights.

We use k = 0.01 and γ = 0.9 for the algorithm proposed by Almeida et al. For ADADELTA
we used ϵ = 1E − 5 and γ = 0.9 to evaluate our solution. The truncated gradient
algorithm uses the parameter K, r and θ, where we set θ =∞ such it is proposed in the
publication [10], K = 10 and the gravity parameter r is set to 0.001.

6.2.1 Generation of Shaders

In this subsection, we describe which scenario we create to decide which algorithm suits
best. Therefore, we developed an application that draws a random number of vertices.
The number of vertices is chosen between 300 000 and 600 000 randomly. To gain a
single draw call in one command group, a flush is sent immediately after the draw call.
Thus, the command group only contains a draw and a flush call. Additionally, with a
probability of 20%, a separate flush command is sent. And with a probability of 10% a
clear command that clears a random buffer combination is sent.

We want to avoid to generate fragments through our scenario, because an error in
the heuristic to estimate the number of fragments would distort the evaluation. To
achieve this, we only create a vertex shader that only generates vertices that are outside
the clip volume. Thus, no fragments are created. For each draw call a separate vertex
shader is generated that contains one or two different OpenGL Shading Language (GLSL)
commands. So far only eleven different GLSL commands are chosen, but this can be
extended easily. Each of the GLSL shader commands occurs 10 to 20 times in the shader.
For further reference, we call this application "shadergen".
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Figure 6.1: Convergence of machine learning algorithms using the application "shader-
gen" on the Nvidia GPU.

6.2.2 Convergence of Machine Learning Algorithms

Using the just introduced application shadergen we can evaluate how strong the different
machine learning algorithms converge. We let the four different options of algorithms
run the application for 10k command groups and measured the prediction error. In
Figure 6.1 and Figure 6.2 is the Bézier curve over the error for each algorithm depicted.
Figure 6.1 shows the convergence on the Nvidia GPU and Figure 6.2 for the Vivante GPU
respectively. The ADADELTA algorithm leads on both platforms to better performance in
respect to convergence. This approach of determining the learning rate is more stable as
well.

From Figure 6.1 and Figure 6.2 it cannot be determined whether the truncated gradient
algorithm comes with advantages or not. Further it is not possible to see how accurate
the ADADELTA algorithm is. This is considered in the next subsection.

6.2.3 Accuracy

The accuracy reflects how precise the prediction of the execution time is. To show the
accuracy we use the cumulative distribution function (CDF) of the prediction error. The
scenario is the following: In opposite to the previous evaluation, we use an initialized
weight vector. The weights are taken from the ADADELTA algorithm of the previous
evaluation.
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Figure 6.2: Convergence of machine learning algorithms using the application "shader-
gen" on the Vivante GPU.

Figure 6.3 and Figure 6.4 depict the CDF of the Nvidia and Vivante GPU respectively. It
can be seen, that the truncated gradient algorithm reduces the ability of the ADAGRAD
algorithm. Especially on the Vivante GPU is the impact large. A reasonable explanation
for that is, that our weights vector is already sparse and we only consider weights
that are influencing the predicted execution time. Thus, we drop the L1-regularization
preliminary in this evaluation.

Furthermore, we can observe that the prediction error on the Nvidia GPU is larger than
on the Vivante GPU, although the execution time of each command group is shorter on
average. On the Nvidia GPU, one command group has an execution time of around 1ms

to 13ms and on the Vivante GPU, one command group needs around 16ms to 42ms. The
differences are the underlying hardware and the graphics card driver that creates the
shader binary code. We observed differences in how instructions are mapped between
GLSL and shader binary code. One of the reasons for worse results on Nvidia than on
Vivante could be caused by the mapping between GLSL and shader binary code. This
can induce linear dependencies between shader instructions and violates the assumption
of linear regression. Thus, it is possible that the stochastic gradient descent algorithm
stucks in a local minimum. Further, the hardware architecture of the Nvidia graphics
card is a black box where techniques to improve the execution time could such as buffers
are implemented. These effects could also harm the linear model assumptions.
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Figure 6.3: Nvidia: Comparing accuracy of machine learning algorithms using the
program "shadergen".
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Figure 6.4: Vivante: Comparing accuracy of machine learning algorithms using the
program "shadergen".
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6.2.4 Execution Time of GPU Instructions

Using the evaluation results from previous subsection we can obtain the execution time
of the GPU instructions. Each weight in the weight vector represents the execution time
for this feature. Because we are using the GPU instructions as features, we can extract
the weights after executing the previous evaluation. The figured out execution time for
the GPU instructions of the Nvidia GPU are listed in Table 6.1. Whether it needs to be
considered, that these execution times are uncertain, because the CDF in Figure 6.3
shows a not negligible prediction error.

Table 6.1: Estimated Execution Time of Nvidia GPU Instructions

Instruction Execution Time [µs] Instruction Execution Time [µs]

MOV 0.413202 EX2 0.053226
FADD 0.023050 FMIN 0.039195
FMUL 0.017729 FMAX 0.036597

FMADD 0.052592 LOGIC_OP 0.031032
CVT_F2F 0.044275 RSQRT 0.089171

PRESIN_PREEX2 0.053226 FSET 0.033656
LG2 0.080294 CVT_I2F 0.033656

For the Vivante GPU, however, the prediction error is much smaller and therefore, the
estimated execution time is more reliable. The estimated execution time for the Vivante
GPU is depicted in Table 6.2. Using this information and assuming that the shortest
execution time correspond to one GPU cycle, the most of the GPU instructions take one
cycle. But RSQ and EXP take 7, and LOG takes 9 cycles.

Table 6.2: Estimated Execution Time of Vivante GPU Instructions

Instruction Execution Time [µs] Instruction Execution Time [µs]

MOV 0.208379 LOG 1.895198
ADD 0.210483 FLOOR 0.209549
MUL 0.214238 EXP 1.473430
MAX 0.213748 SIGN 0.210650
MIN 0.208210 STEP 0.210643
RSQ 1.472668
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6.3 Machine Learning versus Bounding Box

In this section, the machine learning algorithm is compared to the bounding box algo-
rithm. We are not able to use the introduced application "shadergen" from the previous
section. So far, the bounding box implementation requires the position transformation of
the vertex shader. Therefore, we are going to use different scenarios which are explained
in the following.

6.3.1 Scenarios

To generate scenarios for the execution time prediction, different benchmarks are used.
On the one hand, we show an evaluation for glmark2-es2 benchmark "buffer" and on
the other hand, we use glmark2-es2 benchmark "build, model horse" to compare the
machine learning and bounding box algorithm. glmark2-es2 is a benchmark program,
which uses OpenGL ES 2.0 API-calls and can create various 3D-scenes [6]. It is primary
used to test the speed of the graphics card. For this evaluation, we are using it to
measure the error of the execution time prediction.

We focus on two different benchmark scenes. In the following the properties of the
scenes are explained. On the contrary to the application "shadergen" the glmark2-es2
benchmark program uses a nearly constant setup of shaders, vertices and number of
fragments.

Buffer. The scene "buffer" uses two different command group calls alternating. The one
contains a draw and a clear command, and the other contains a swap and flush
command. The number of vertices is constant for the entire scene. The number of
fragments changes over time slowly. However, the fragment estimation does not
realize this change. Thus, the machine learning and bounding box algorithm do
not now that the number of fragments changes. Hence, the execution time of each
draw command has only a small fluctuation.

Build. The scene "build, model horse" has the same command group setup, but the
number of fragments changes. The heuristic to calculate the number of fragments
shows a strong deviation to the real number of fragments in this setup.

Before we present the evaluation results, we first explain the machine learning and the
bounding box approach shortly.

Machine Learning (ML). This approach is the implementation of the concept from
Chapter 4. It uses the bounding box algorithm to estimate the number of fragments.
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Bounding Box (BB). This approach is the reference implementation from Schnitzer
et al. [21]. It pre-calibrates the used shaders and uses the calibrated values to
predict the execution time. To still be adaptive to calibration errors and changing
environments, an adaption is implemented. To estimate the number of fragments
the bounding box algorithm is applied, which is presented in the same publication.

The bounding box algorithm needs to calibrate each shader in advance, whether the
machine learning algorithm adapts over time. Thus, the expectation is, that the bounding
box algorithm has advantages in the beginning, but after certain learning steps the
machine learning algorithm takes the lead.

6.3.2 Adaptivity

In this section, the adaptivity of online machine learning algorithms in comparison to
the bounding box algorithm is shown. Adaptivity means to adjust the parameter of the
used linear model to fit to the current environment. In general, the parameters are
untrained in the beginning and can be chosen randomly. Over time the parameters of
the algorithm adjust continuously to fit to the actual execution time in the end. However,
we want to create a realistic setup for the both algorithms. Therefore, the bounding
box algorithm already run and could calibrate the system parameters, and the machine
learning application run with the application "shadergen" to pre-calibrate the weights.
We are using the pre-calibrated weights from the previous section.

In Figure 6.5 the adaption of the parameters on the Nvidia graphics is shown. The
glmark2-es2 program using the scene "buffer" is used to generate this scenario. In
general, the first predictions are made with the start parameters, because the prediction
and measurement of the execution time is performed at different times. It exists an
asynchronous behavior in the prediction framework. The prediction is made before the
graphics commands are executed, the measurement of the real execution time is finished
after the GPU completed its execution. Because the prediction is in user space and the
measurement of the execution time is in kernel space, it can lead to further delays.

In the first 100 command groups the bounding box algorithm needs to calibrate itself
and is not processing the buffer benchmark. During this calibration no prediction is
made and the error corresponds to the execution time of the calibration. Thus, for the
bounding box algorithm the benchmark "buffer" is delayed and not executed for the first
100 command groups. After 100 command groups the convergence of the bounding box
algorithm is faster than for the machine learning algorithm.

In contrast, the machine learning algorithm has two primary curves. The reason is, that
two different command groups are executed alternated: the overestimation, the flush
command and the underestimation, the draw command. The execution time of the flush
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Figure 6.5: Adaptivity of the bounding box and machine learning algorithm using
glmark2-es2 "buffer" on the Nvidia graphics card.

command varies from application to application. The flush command is not calibrated
properly by the application "shadergen" and has an estimated execution time of around
100µs whether the execution time for the flush command in this scenario is around 40µs.
The curve that underestimates in the beginning is caused by the draw command. The
execution time of the draw command is around 1ms. Without calibration that would
be the prediction error at start time. Because of the calibration, the draw command is
around −630µs which leads to an improvement of around 370µs in the beginning.

Overall we can see that the calibration for the command group of the draw command
is better for the machine learning than for the bounding box. The worst prediction of
the bounding box algorithm is around −800µs whether −630µs the worst prediction
for the machine learning algorithm is. However, the convergence of the bounding box
algorithm to this static scene is much faster.

In Figure 6.6 the adaption of the parameter on the Vivante graphics card can be seen.
To be able to compare the Nvidia and Vivante graphics cards, the same scenario, using
the glmark2-es2 program with the scene "buffer", is also applied on the Vivante graphics
card. The main difference is, that the flush command is not implemented on the
Vivante platform and the swap buffer command is implemented. The bounding box
algorithm calibrates the program for the first 100 command groups and cannot make
any predictions. After that the algorithm is converging faster than the machine learning
algorithm.
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Figure 6.6: Adaptivity of the bounding box and machine learning algorithm using
glmark2-es2 "buffer" on the Vivante graphics card.

In comparison to the Workstation graphics cards driver implementation, the implemen-
tation on the Freescale platform differs. The main commands in the two curves are
the swap buffer command and the draw command. In this scenario, both commands
take similar execution time usage. The execution time of the draw command is slightly
higher, than the execution time of the swap buffer command. Using the application
"shadergen" it was not possible to calibrate the swap buffer command, because the
application does not create fragments. Therefore, the prediction of the swap buffer
command starts as lowest at around −1000µs. Whether for the draw command exist
initial weights and we observe a start prediction error of around −690µs instead of
−1270µs, which is an improvement of more than 45% of the real execution time. Further
it can be observed, that the first predictions of the machine learning algorithm are better
than of the bounding box algorithm.

Overall, we observe for the Nvidia and Vivante GPU, that the system calibration is
more accurate for the machine learning algorithm than for the bounding box algorithm.
Further, the adaptivity of the applied stochastic gradient descent algorithm is slower than
the bounding box algorithm. Nevertheless, it is possible to determine a learning rate,
which is optimal in this scenario, but would lead to overshooting in other scenarios.
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Figure 6.7: Vivante: Learning the model parameters using glmark2-es2 "buffer".

6.3.3 Learning the Parameters of the Execution Time Model

In this scenario, we evaluated if the algorithms can learn the scene and still predict
reasonable execution times if the online learning is turned off. In Figure 6.7 a Bézier
curve over the prediction error is shown. The figure shows the evaluation for the Vivante
graphics card. This evaluation is split into two phases. First, the trainings phase and
second, the evaluation of the trained parameters.

The first phase runs for 2000 graphics command groups. First, both algorithms are
improving their prediction. The bounding box algorithm improves via calibrating the
program and adapting their parameters online. The online machine learning algorithm
by training the model parameters. After finishing the first phase, the adaption is turned
off. Both algorithms were able to adapt their parameters and the parameter adaption is
evaluated. In the first 100 command groups, the bounding box algorithm is calibrating
itself and is not predicting the benchmark scene "buffer". The machine learning algorithm
continuously improves its weights and is better on average in the first phase.

In the second phase, beginning with the 2001st graphics command group, the prediction
is running without online adaption. It only uses the adapted parameters from the
previous phase. Both algorithms reach similar results. Because the scene "buffer"
generates nearly constant input and output parameters, the prediction should not have
any variation after the training is finished. However, the estimation of the fragment is a
complex heuristic, which has an error. This estimation error of the heuristics can be seen

63



6 Evaluation

in phase two. Although all parameters are constant, the error of the number of fragment
estimation propagates to the prediction error for both algorithms.

6.3.4 Accuracy of Execution Time Prediction

In this section, the accuracy of the execution time prediction is presented. Therefore, the
bounding box algorithm and the proposed concept in this thesis are compared, when
the parameters of the algorithms are already trained. The scenario is the following:
Beforehand, both algorithm train their parameters. That means, that they can improve
their parameters and adapt them to the scene. This is done by running the benchmark
with each algorithm and store the obtained parameters persistent. After that, the
evaluation starts with another execution of the benchmark program and the prediction
error is measured. To show the accuracy a cumulative distribution function over the
error is presented. In this scenario we use the glmark-es2 program with the "buffer" and
"build, model horse" scene.

In Figure 6.8 the cumulative distribution function of the error for the Nvidia graphics
card is depicted. The results for the scene "build" are similar for both algorithms. The
machine learning algorithm is better to prevent underestimation in this scene. For the
scene "buffer" the machine learning algorithm has a bigger advantage. The bounding
box algorithm has an overestimation for around 66% of the command groups and a
larger prediction error overall. In general, the machine learning algorithm shows in
comparison to the bounding box algorithm better or similar results on many of the
glmark2-es2 scenes.

Figure 6.9 depicts the CDF of the same scenes "buffer" and "build" for the Vivante
graphics card. By comparing the CDFs of the scene "build" it can be seen that the
bounding box algorithm is slightly better, especially for underestimation. However,
for the scene "build" the bounding box algorithm has a clear benefit. As previously
mentioned, the scene "build" consists of two alternating command groups. One contains
mainly a draw command and the other mainly the swap buffer command. Both of
them have strong prediction errors. In the following we analyze why they have a strong
prediction error. First we consider the draw command. Analyzing the scene "build"
shows us that the entire environment is constant except the number of fragments. The
number of fragments do not show any linearity to the execution time. Thus, it is not
possible to find a linear mapping for this parameter. However, analyzing the real number
of fragments afterwards shows that a linear dependency between the real number of
fragments and the execution time exists. Hence, a better heuristic to estimate the number
of fragments would probably lead to better results for the draw command. Second,
we analyze the cause of the error for the command group containing the swap buffer
command. This command group has a constant number of pixels that are swapped, but
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Figure 6.8: Cumulative distribution function of the error of machine learning and
bounding box algorithm for the Nvidia graphics card.

a high variance in execution time. The range is from 560µs to 740µs, which is caused
by a tiled-based rasterization that is used by the Vivante GPU [13, p. 22]. The machine
learning algorithm tries to find one weight for this feature, which leads to an average
prediction of around 640µs. This implies a high error in many predictions.

We still need to consider why the bounding box algorithm gets better results although
both effects apply to it as well. The adaption algorithm of the bounding box does not
try to fit a model in comparison to the machine learning algorithm. It is adaptive to the
current scene, only considers the recent values and is adaptive to them. Hence, as long
as the scene has only minor changes from one command group to the next command
group, the bounding box algorithm has advantages in predicting the execution time.
However, when the scene has major or has noise
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Figure 6.9: Cumulative distribution function of the error of machine learning and
bounding box algorithm for the Vivante graphics card.
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7 Summary and Future Work

In this chapter, a short summary and the future work is presented.

7.1 Summary

As we presented in the motivation, the use of high resolution 3D rendering in embedded
systems is increasing. Through consolidating of GPUs, a real-time GPU scheduler is
needed that needs the accurate GPU execution time of GPU commands to schedule the
GPU commands.

In this thesis, a framework for predicting the GPU execution time using machine learning
was presented. At first, background information about OpenGL ES 2.0 and machine
learning were introduced. After that, the influence factors for the GPU execution time
of the 3D rendering Pipeline of OpenGL ES 2.0 were analyzed. Using this informa-
tion, a linear model which allows us to predict the execution time was created. The
linear model contains the GPU instructions of the shaders as features. After that, the
architecture of the prediction framework including the machine learning module was
introduced. As online machine learning algorithm, we presented the stochastic gradient
descent algorithm using normalization, adaption of the learning rate, and regularization.
Then, we presented our implementation of the prediction framework, generalized and
implemented on a workstation computer and an embedded board.

The evaluation of the concept was performed on both platforms. We showed, considering
the shader binary code in the feature vector yields to better predictions for so far unseen
shaders. For the Vivante GPU it was possible to determine precise execution times
of GPU instructions. Furthermore, we observed a slower convergence of the machine
learning algorithm. However, this depends on the learning rate which is still tunable. The
accuracy of the machine learning algorithm in comparison to the bounding box algorithm
evaluated with the glmark2-es2 benchmark shows better results on the Nvidia GPU than
on the Vivante GPU. Although the accuracy for random shaders was more precise on the
embedded board, the accuracy in glmark2-es2 benchmarks on the embedded board has
space for improvement. However, the evaluated scenes are highly repetitive with minor
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changes in consecutive command groups. In conclusion, the bounding box algorithm
adapts to recent changes, whereas, the machine learning algorithm tries to fit a model.

7.2 Future Work

In this section, we present topics for future work in this research area.

One point of improvement is to avoid underestimation. The prediction was designed to
predict accurately. However, errors are not avoidable and are punished independently if
they are overestimations or underestimations in the same way. For a real-time scheduler
an underestimation can lead to miss deadlines of a task. On the contrary, overestimation
cannot harm the real-time system. There are two approaches to deal with it. First, it
is possible to punish an underestimation and temporarily increase the learning rate
η to do not predict with an underestimation again. The second option deals with an
overestimation in the current state where the algorithm slows down in continuously
approaching the optimum. This can be implemented by decreasing the learning rate η,
if the gradient points towards a reduction of the predicted execution time.

Furthermore, we do not support jumps in shaders yet. Generally, a precise estimation
cannot be made, if a jump command exists in a shader. However, jumps which go
forward and skip GPU commands lead only to overestimation. An upper bound of
execution time can still be determined. Overestimation of a command group can only
make a command group not to be executed.

Moreover, the loading time of a shader depends among others on the shader attributes.
We did not consider the loading time so far. However, including the shader attributes in
the feature vector could be another idea to improve the prediction of the execution time
even further.
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A Appendix

A.1 Vivante Opcodes

In this section, we present the opcode of the graphics card Vivante GC2000. The opcode
is provided by the GPU driver version 5.0.11.p4.25762 published by Freescale [25]. The
following enumeration holds the opcodes of the Vivante GC2000.

typedef enum _gcSL_OPCODE {
NOP, MOV, SAT, DP3, DP4, ABS, JMP, ADD, MUL, RCP, SUB, KILL, TEXLD, CALL,
RET, NORM, MAX, MIN, POW, RSQ, LOG, FRAC, FLOOR, CEIL, CROSS, TEXLDPROJ, TEXBIAS,
TEXGRAD, TEXLOD, SIN, COS, TAN, EXP, SIGN, STEP, SQRT, ACOS, ASIN, ATAN, SET, DSX,
DSY, FWIDTH, DIV, MOD, AND_BITWISE, OR_BITWISE, XOR_BITWISE, NOT_BITWISE,
LSHIFT, RSHIFT, ROTATE, BITSEL, LEADZERO, LOAD, STORE, BARRIER, STORE1,
ATOMADD, ATOMSUB, ATOMXCHG, ATOMCMPXCHG, ATOMMIN, ATOMMAX, ATOMOR, ATOMAND,
ATOMXOR, TEXLDPCF, TEXLDPCFPROJ, SINPI = 80, COSPI, TANPI, ADDLO, MULLO, CONV,
GETEXP, GETMANT, MULHI, CMP, I2F, F2I, ADDSAT, SUBSAT, MULSAT, DP2, UNPACK,
IMAGE_WR, SAMPLER_ADD, MOVA, IMAGE_RD, IMAGE_SAMPLER, NORM_MUL,
NORM_DP2, NORM_DP3, NORM_DP4, PRE_DIV, PRE_LOG2, MAXOPCODE

} gcSL_OPCODE;

A.2 Tesla Instruction Set Architecture

In this section, the binary code of the Tesla Instruction Set Architecture is depicted.
Table A.1 and Table A.2 depict the mapping between opcode and instruction name. Each
instruction has a primary code which can be seen in the first column. Further, each
instruction is of a type that is encoded in the first 32 bits. Depending on the type, the
column is selected respectively. For the type long normal exists a secondary code that is
written in the header column as well.
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Table A.1: Tesla opcode map part 1/2 adapted from [24].

Primary
opcode

short
normal

long
immediate

long normal,
secondary 0

long normal,
secondary 1

long normal,
secondary 2

long normal,
secondary 3

0x0 - - ld a[] mov from $c mov from $a mov from $sr
0x1 mov mov mov ld c[] ld s[] vote
0x2 add/sub add/sub add/sub - - -
0x3 add/sub add/sub add/sub - - set
0x4 mul mul mul - - -
0x5 sad - sad - - -
0x6 mul+add mul+add mul+add mul+add mul+add mul+add
0x7 mul+add mul+add mul+add mul+add mul+add mul+add
0x8 interp - interp - - -
0x9 rcp - rcp - rsqrt lg2
0xa - - cvt i2i cvt i2i cvt i2f cvt i2f
0xb fadd fadd fadd fadd - fset
0xc fmul fmul fmul - fslct fslct
0xd - logic op logic op add $a ld l[] st l[]
0xe fmul+fadd fmul+fadd fmul+fadd fmul+fadd dfma dadd
0xf texauto/fetch - texauto/fetch texbias texlod tex misc
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Table A.2: Tesla opcode map part 2/2 adapted from [24].

Primary
opcode

long normal,
secondary 4

long normal,
secondary 5

long normal,
secondary 6

long normal,
secondary 7

short
control

long
control

0x0 st o[] mov to $c shl to $a st s[] - discard
0x1 - - - - - bra
0x2 - - - - - call
0x3 max min shl shr - ret
0x4 - - - - - prebrk
0x5 - - - - - brk
0x6 mul+add mul+add mul+add mul+add - quadon
0x7 mul+add mul+add mul+add mul+add - quadpop
0x8 - - - - - bar
0x9 sin cos ex2 - trap trap
0xa cvt f2i cvt f2i cvt f2f cvt f2f - joinat
0xb fmax fmin presin/preex2 - brkpt brkpt
0xc quadop - - - - bra c[]
0xd ld g[] st g[] red g[] atomic g[] - preret
0xe dmul dmin dmax dset - -
0xf texcsaa/gather (unknown) emit/restart nop/pmevent - -
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