
Shape Derivatives and Shock Capturing

for the Navier–Stokes Equations in

Discontinuous Galerkin Methods

A thesis accepted by the Faculty of

Aerospace Engineering and Geodesy of the University of Stuttgart

in partial fulfillment of the requirements for the degree of

Doctor of Engineering Sciences (Dr.-Ing.)

by

Matthias Sonntag

born in Stuttgart

Main referee: Prof. Dr. Claus-Dieter Munz

Co referee: Prof. Dr. Nicolas R. Gauger

Date of defence: August 10, 2017

Institute of Aerodynamics and Gas Dynamics

University of Stuttgart

2017

Für Patrizia

Preface

This thesis was developed during my work as academic employee at the Insti-

tute of Aerodynamics and Gas Dynamics (IAG) of the University of Stuttgart,

the mathematics division of the center for Computational Engineering Science

(MathCCES) of the RWTH Aachen University and the Chair for Scientific Com-

puting (SciComp) of the University of Kaiserslautern.

I thank my doctoral supervisors Prof. Dr. Nicolas R. Gauger and Prof. Dr. Claus-

Dieter Munz for their unconditional support during the last five years. Both

granted me all scientific freedom and made it possible to work on different topics

and finally even in a joint project. It was a great pleasure being associated to both

of their research groups.

Many thanks also to all my colleagues at IAG, MathCCES and SciComp for

the friendly working atmosphere, the scientific discussions and for sharing their

knowledge with me. In particular, I would like to thank Max Sagebaum for all

the conversations about computers, programming skills and non-scientific topics,

but especially for the accommodation in his home on my trips to Aachen and

Kaiserslautern. Furthermore I thank Dr. Stefan Fechter, Dr. Andrea Beck, Serena

Keller and Timon Hitz for being kind roommates or reviewing this work.

This thesis was developed within projects financed by the German ministry for ed-

ucation and research (BMBF) and the Deutsche Forschungsgemeinschaft (DFG).

Last but not least I am extremely grateful for all the love and support of my wife

Patrizia and my family.

Stuttgart, August 16, 2017

iii

Contents

Preface iii

Symbols and abbreviations vii

Symbols . ix

Abbreviations . xi

Kurzfassung xiii

Abstract xv

1. Introduction 1

2. Fundamentals 7

2.1. Navier–Stokes equations . 7

2.1.1. Stationary Navier–Stokes equations 8

2.2. Weak formulation or variational form 9

2.3. Mapping to reference space . 9

2.3.1. Mapping of the equations 11

3. Shape derivative for the compressible Navier–Stokes equations 13

3.1. Aerodynamic objective functions and boundary conditions 14

3.2. Shape calculus . 15

3.2.1. Definition of the shape derivative and the Hadamard the-

orem . 15

3.2.2. Tangential calculus . 17

3.2.3. Shape derivative for volume and boundary integrals 18

3.3. Shape derivative in strong and variational form 19

3.4. Adjoint calculus . 20

3.4.1. Variational formulation of the continuous adjoint problem 22

3.4.2. Application of adjoint equation to the shape derivative of

the Navier–Stokes equations 24

3.4.3. Transformation to non-conservative variables 26

v

Contents

3.4.4. Subtraction of the shape derivative of the Navier–Stokes

equations from the preliminary shape derivative of the

cost function . 28

3.5. Numerical comparison . 32

3.5.1. High order grid generation and perturbation 32

3.5.2. Test and verification setup 34

3.5.3. Comparison of the pointwise and the variational shape

derivative . 37

4. Discontinuous Galerkin spectral element method 41

4.1. Numerical approximation . 42

4.1.1. Time derivative integral 44

4.1.2. Volume integral . 45

4.1.3. Surface integral . 46

4.1.4. Semi-discrete formulation 47

4.1.5. Gradient approximation for second order equations 48

4.2. Time integration . 48

4.2.1. Time step restriction . 49

4.3. Overview of the implementation 49

4.4. Nonconforming meshes using mortar interfaces 52

4.4.1. Mortar interfaces for DG 53

5. Shock capturing for the Discontinuous Galerkin method 59

5.1. Finite Volume method on sub-cells 61

5.1.1. Discretization . 63

5.1.2. Approximation of the Finite Volume formulation 66

5.2. Time step restriction . 68

5.3. Coupling of Discontinuous Galerkin elements and Finite Volume

sub-cells . 70

5.4. Indicators . 72

5.4.1. Persson indicator . 73

5.4.2. JST indicator . 74

5.4.3. Ducros indicator . 75

5.5. Second order reconstruction . 75

5.5.1. Slope limiters . 77

5.5.2. Reconstruction on curved meshes 79

5.6. Mortar interfaces . 81

5.6.1. Mixed DG and FV sub-cells mortar interfaces 83

5.6.2. Edge local reconstruction at mortar interfaces 84

5.7. Overview of the implementation 87

vi

Contents

6. Numerical results 91

6.1. Validation examples . 92

6.1.1. Sod shock tube . 92

6.1.2. Shu-Osher density fluctuations shock wave interaction

problem . 96

6.1.3. Freestream preservation 98

6.2. Order of convergence . 99

6.3. Parallel efficiency . 102

6.4. Complex examples . 109

6.4.1. Double Mach reflection 110

6.4.2. Forward facing step . 113

6.4.3. Two dimensional Riemann problem 115

6.4.4. Shock boundary layer interaction 127

7. Conclusion and prospects 131

A. Parameter files 133

A.1. Validation examples . 133

A.1.1. Sod shock tube . 133

A.1.2. Shu-Osher density fluctuations shock wave interaction

problem . 135

A.1.3. Freestream preservation 137

A.2. Order of convergence . 139

A.3. Parallel efficiency . 141

A.4. Complex examples . 143

A.4.1. Double Mach reflection 143

A.4.2. Forward facing step . 146

A.4.3. Two dimensional Riemann problem 148

A.4.4. Shock boundary layer interaction 155

Bibliography 157

List of tables 169

List of figures 171

vii

Symbols and abbreviations

Symbols

ai i-th contravariant basis vector

aj j-th covariant basis vector

αRK(N) Scaling factor of the Runge-Kutta time integration for the ad-

vective time step

βRK(N) Scaling factor of the Runge-Kutta time integration for the vis-

cous time step

c Speed of sound

C∞ Scaling factor of the cost function to reference length and

freestream conditions

cv Heat capacity at constant volume

δi j Kronecker delta

∆t Time step

∆x Minimum physical element size

div Divergence, same as ∇·
divΓ Tangential divergence

dJ (Ω;V) Shape derivative of cost function

dV [·] Material derivative

E Reference element

e Total energy

ε Inner energy

ε Step size of finite differences

η Second component of coordinate in reference space

F Flux in reference space (F = F c + F v)

F c Convective flux in reference space

F Flux in physical space (F = F c + F v)

F c Convective flux in physical space

F v Viscous flux in physical space

F̂i jk Nodal interpolation of the flux

(F · n)∗ Numerical flux

f ∗ Riemann solver

ix

Symbols

Fu Derivative of the flux with respect to the state

F v Viscous flux in reference space

F v∇u Derivative of the viscous flux with respect to the gradient of the

state

G Homogenity tensor

Γ Boundary of computational domain

γ Heat capacity ratio

Γadia Adiabatic wall boundary

Γ∞ Farfield boundary

Γiso Isothermal wall boundary

ΓW Wall boundary

∇Γ Tangential gradient

H Enthalpy

h Grid size of structured block

I Interpolation operator

I Indicator function

J Jacobian determinant of the mapping from reference to physical

space

J Target/cost function

K additive curvature (divΓ n)

κi j i j-th Finite Volume sub-cell of a DG element

`i i-th Lagrange interpolation polynomial

Λ Limiter function

λc Maximum signal velocity of the inviscid Euler equations

λv Maximum eigenvalue of the diffusion matrix

N Polynomial degree

N Normal vector in reference space

n Normal vector in physical space

Ω Computational domain

∂Ω Boundary of computational domain

P Projection operator

p Pressure

Φ Test function

P r Prandtl number

ψ Tensor product basis function

R Ideal gas constant

ρ Density

·′ Shape derivative

ŝ Surface element

x

Abbreviations

Σ Adjoint stress tensor

·− Indicates the master side of an interface

·+ Indicates the slave side of an interface

T Temperature

t Time

τ Viscous stress tensor

θ Direction of the force of the cost function (drag or lift)

Tt [V] Perturbation of identity into direction V

u State vector of conservative variables
ˆ̈ui jk Nodal degrees of freedom of FV method

ûi jk Nodal degrees of freedom of DG method

V Vector field of perturbation of identity

v Vector of velocity components

v1, v2, v3 Velocity components

µ Dynamic viscosity

ωi i-th weight of the Gauss integration

w Size of an equidistant FV sub-cell in reference space

X Mapping from reference to physical space

x Coordinate in physical space

x1, x2, x3 Components of coordinate in physical space

ξ Coordinate in reference space

ξ1, ξ2, ξ3 Components of coordinate in reference space

y Second component of coordinate in physical space

z Adjoint solution

Abbreviations

BR1 Lifting scheme of Bassi and Rebay

BR2 Lifting scheme of Bassi and Rebay

CFD Computational fluid dynamics

CFL Courant, Friedrichs and Lewy number

DFL Counterpart of the CFL number for the viscous time step re-

striction

DG Discontinuous Galerkin

DGSEM Discontinuous Galerkin Spectral Elements Method

DOF(s) Degree(s) of freedom

FD Finite Difference

FE Finite Element

FV Finite Volume

xi

Abbreviations

HLLC Harten, Lax, van Leer - contact Riemann solver

HLLE Harten, Lax, van Leer and Einfeldt Riemann solver

HPC High performance computing

IAG Institute of Aero- and Gasdynamics

JST Jameson-Schmidt-Turkel scheme

MPI Message passing interface

NRG Numerics Research Group

NSE Navier-Stokes equations

PDE Partial differential equation

PID Performance index

RK Runke-Kutta time integration

TVD Total Variation Diminishing

Vdm Vandermonde matrix

WENO Weighted essentially non-oscillatory

xii

Kurzfassung

Diese Arbeit befasst sich mit zwei unterschiedlichen Themengebieten, mit den

Formableitungen für die kompressiblen Navier-Stokes-Gleichungen einerseits und

andererseits mit der Behandlung von Stößen oder anderer Strömungsunstetig-

keiten in Discontinuous-Galerkin-Verfahren. In der Luftfahrtindustrie werden für

die Formoptimierung, beispielsweise die Widerstandsreduktion oder Auftriebsma-

ximierung von Flugzeugen, äußerst effiziente Verfahren benötigt. Der Einsatz gra-

dientenbasierter Optimierungsverfahren erfordert dabei Ableitungen der Zielfunk-

tionen nach der Form eines Objekts. Mit den hier vorgestellten Formableitungen

können diese Ableitungen unabhängig von der gewählten Parametrisierung der

Form bestimmt werden und, da die Herleitung im Kontinuierlichen erfolgt, auf

nahezu jede Diskretisierung angewendet werden. Dennoch kann die später ver-

wendete numerische Methode nicht außer Acht gelassen werden. Für Verfahren,

die auf einer variationellen Formulierung basieren, ergibt sich, im Vergleich zu

einer punktweisen Betrachtung, ein Unterschied in der Formableitung, der nicht

vernachlässigt werden kann. Ein Ziel dieser Arbeit ist es daher, die Formablei-

tung des Widerstands- und Auftriebsbeiwertes für die Navier-Stokes-Gleichungen

in variationeller Form herzuleiten und sowohl analytisch als auch numerisch mit

einem punktweisen Ansatz zu vergleichen. Dabei ist eine Diskrepanz insbesondere

für Strömungsphänomene mit starken Gradienten oder Unstetigkeiten, die nicht

die starke Form der Erhaltungsgleichungen erfüllen, zu erwarten.

Diese Strömungsphänomene erfordern, bei Verwendung von Verfahren hoher

Ordnung, prinzipiell eine spezielle numerische Behandlung. Im zweiten Teil dieser

Arbeit wird daher ein Shock-Capturing für das Discontinuous-Galerkin-Verfahren

(DG) entwickelt, das die Oszillationen, die durch die Approximation von Unste-

tigkeiten mit Polynomen hoher Ordnung entstehen, abfängt. Dazu wird in einem

hybriden Ansatz das DG-Verfahren mit einem Finite-Volumen-Verfahren zweiter

Ordnung gekoppelt. In Gitterzellen, die Stöße oder Unstetigkeiten enthalten, wird

der DG-Operator durch die FV-Methode ersetzt, die aufgrund der Steigungsli-

mitierung für ihre Stärken hinsichtlich von Stößen bekannt ist. Allerdings erfor-

dert das Finite-Volumen-Verfahren in glatten Strömungsgebieten eine wesentlich

höhere Auflösung als die DG-Methode. Um den Auflösungsverlust, der bei Verwen-

dung desselben Gitters für das FV-Verfahren wie für die DG-Methode entstehen

würde, zu kompensieren, werden daher die ursprünglichen Gitterzellen in logische

xiii

Kurzfassung

Subzellen unterteilt. Durch die Zuordnung von genau einer FV-Subzelle zu jedem

Freiheitsgrad eines DG-Elements können die selben Datenstrukturen weiterver-

wendet werden. Dies ermöglicht eine effiziente Implementierung des skizzierten

Shock-Capturings für den Einsatz auf Hochleistungsrechnern. Anhand zahlreicher

Beispiele werden daher nicht nur die grundlegenden Eigenschaften dieser hybriden

DG/FV-Subzellen-Methode analysiert, sondern auch Skalierungsstudien hinsicht-

lich der parallelen Effizienz durchgeführt.

xiv

Abstract

This work addresses two different topics, the shape derivatives for the compress-

ible Navier–Stokes equations on the one hand and, on the other hand, the treat-

ment of shocks or other flow discontinuities in Discontinuous Galerkin methods.

There is a strong demand for very efficient methods for shape optimization in

the aerospace industry, for example drag reduction or lift maximization of an air-

craft. The use of gradient based optimization schemes requires derivatives of the

cost function with respect to the shape of an object. With the shape derivatives

presented in this work, these derivatives can be calculated independent of the

parametrization of the object’s shape, and, since the derivation takes place in the

continuous space, they can be applied to almost any discretization. Nevertheless,

one has to take the numerical scheme, which is later applied, into account. For

methods based on the variational formulation a difference in the shape deriva-

tive, compared to the pointwise approach, arises, which cannot be neglected.

Hence, one objective of this work is to derive the shape derivatives of the drag-

and lift-coefficient for the Navier–Stokes equations in variational formulation and

compare it with the pointwise approach both analytically and numerically. A dis-

crepancy has to be expected, especially for flow phenomena with high gradients

or discontinuities which do not fulfill the strong form of the governing equations.

These flow phenomena require a special treatment in numerical methods of high

order. In the second part of this work, a shock capturing for the Discontinuous

Galerkin method is developed which prevents the oscillations originating from the

approximation of discontinuities with high order polynomials. Therefore a hybrid

approach is presented, where the original DG scheme is coupled with a second

order Finite Volume method. In all elements containing shocks or discontinuities

the operator of the DG method is replaced by the Finite Volume scheme. This

scheme is, due to the use of slope limiters, well known for its strengths in handling

shocks. However, in regions where the flow is smooth the Finite Volume method

requires a finer resolution for the same accuracy than the Discontinuous Galerkin

scheme. Using the same mesh for the FV method as for the DG scheme would

lead to a big reduction in resolution. Hence, to compensate this loss the original

elements of the mesh are divided into logical sub-cells. By associating exactly one

Finite Volume sub-cell to each degree of freedom of a DG element, the same

data structures can be used. This enables an efficient implementation of the out-

xv

Abstract

lined shock capturing designated for high performance computations. Therefore,

not only the basic properties of this hybrid DG/FV sub-cell approach are investi-

gated with several examples, but also studies regarding the parallel efficiency are

performed.

xvi

1. Introduction

In the field of computational fluid dynamics (CFD), the simulation of flows is

generally well established not only in research, but also in industry. Aircraft man-

ufacturers for example use CFD in the design stage to predict very precisely

aerodynamic performances, like drag or lift of a wing or even a full aircraft con-

figuration. With the growth of computing capacity over the past decades sim-

ulations became more and more detailed, and besides the pure simulation of a

given design the optimization of specific cost functions with respect to the shape

is nowadays possible. For these optimization two main categories of optimization

methods are available.

Gradient based methods that use the direction of the steepest descent of the

cost function on the one hand and on the other hand heuristic methods that are

derivative-free. The latter type of optimization is widely used in practice, since

it can be applied to more or less any kind of optimization problem. This inde-

pendence is gained through not exploiting the structure of a given problem, but

instead sampling the parameter space. At the same time this freedom is one of

the drawbacks that makes an application to industry size cases very challenging

and time consuming. One subclass of the heuristic methods are evolutionary al-

gorithms which are inspired by mechanisms of the biological evolution, such as

reproduction, mutation and survival of the fittest [4]. They require many popula-

tions to find an optimal solution. Additionally, the number of required iterations

increases drastically with the number of design parameters, which become the

key factor for the numerical costs. In the field of aerodynamic shape optimization

it is therefore common, to restrict the modifications of the shape to a small set

of smooth design parameters, like B-splines or the popular Hicks-Henne func-

tions [36]. This restriction to only a few parameters on the one hand speeds up

the optimization, but on the other hand it limits the optimum of the achievable

shape. The same problem occurs for gradient based methods, if the derivatives

are evaluated by finite differences. To evaluate the sensitivities of the cost func-

tion with respect to all parameters, a flow simulation for each of the individually

disturbed design parameters is required.

Alternative concepts where the computational effort of an optimization does

not depend on the number of design parameters are required. For this purpose

the introduction of adjoint calculus by Pironneau in 1973 [65] initiated a major

1

1. Introduction

advance in the field of fluid dynamics. Jameson [46] as well as Giles and Pierce

[31, 32] further extended the application of adjoint equations to the aeronautical

computational fluid dynamics. More recently, this has been applied to very large

scale aerodynamic design optimization [63, 96, 74].

Another active field of research to prevent expensive computations for a large

number of design variables is the mathematical framework of shape calculus,

where derivatives with respect to the shape are derived for the continuous equa-

tions. Hence, the resulting shape derivatives are independent from the discretiza-

tion and thereby from the number of design parameters. A detailed introduction

into the general theoretical framework of shape calculus is given by Sokolowski

and Zolésio [83] as well as Delfour and Zolésio [22]. Following this approach the

shape derivatives have already been applied to viscous incompressible and com-

pressible flow [13, 75], but since they are all based on a pointwise formulation

of the governing equations they assume the existence of a strong form solution.

However, the existence of such a solution is not clear in general and especially

not in the presence of shock waves or flow discontinuities. In this case, one is

restricted to weak solutions of the governing equations in variational form. Actu-

ally, this is not a major drawback for numerical schemes which are based on this

variational formulation and compute only weak solutions. But unfortunately, these

weak solutions do not necessarily fulfill the strong equations in a pointwise manner

and, hence, there is a small consistency gap when the weak numerical solution

is used to evaluate the shape derivatives stemming from a pointwise derivation.

To overcome this, the whole calculus of the shape derivatives must be based on

the variational form of the partial differential equations, which is actually only

rarely considered in literature [43, 42, 82]. Therefore, one of the main topics in

this work is the investigation of the differences between shape derivatives based

on the pointwise Navier–Stokes equations and shape derivatives in the variational

setting. After introducing some fundamentals in chapter 2, the shape derivatives

of the drag and lift coefficient for the Navier–Stokes equations are derived ana-

lytically in chapter 3. Additionally, both approaches are investigated numerically

to demonstrate the mismatch of the pointwise shape derivatives for a numerical

scheme based on the variational formulation.

Regarding the numerical scheme for this research, one is not bound to a specific

method and can freely choose an appropriate scheme since the entire concept of

shape calculus takes place in the continuous setting. For the same reason the

evaluation of the derivatives of the cost function with respect to the shape is

independent of the number of design parameters, but nevertheless the optimiza-

tion still requires the computation of multiple flow solution. Hence, for large scale

cases the efficiency of the numerical method is a major issue. Due to favorable

2

properties, the Discontinuous Galerkin (DG) scheme has become popular for the

aeronautical computational fluid dynamics in the recent years. Originally intro-

duced by Reed and Hill [68] in 1973, the Discontinuous Galerkin method is a

combination of a local Finite Element (FE) and a Finite Volume (FV) scheme.

The solution is approximated with high order polynomial ansatz functions, but in

contrast to the Finite Element method these are totally element local. Therefore,

the elements are in principle not coupled, leading to only piecewise continuous

data where the states at the interfaces are double valued. Nevertheless the ele-

ments have to be connected, where the Finite Volume method comes into play.

The discontinuities at the element interfaces are interpreted as Riemann problems

and the numerical fluxes computed with Riemann solvers become the link between

the elements. This idea of coupling different domains weakly was introduced by

Nitsche [61] even earlier in 1971. After this first work it took quite a long time,

until in the late 1980’s Cockburn and Shu started their series of papers [15, 16,

18, 19, 20] where they extended the Discontinuous Galerkin method to systems

of non-linear conservation laws. Furthermore, Bassi and Rebay [7, 8] applied the

DG scheme to the compressible Navier–Stokes equations by transforming the

parabolic second order terms into a system of first order equations.

One of the key features of the Discontinuous Galerkin method is the unre-

stricted polynomial degree of the ansatz functions, which theoretically generates

schemes of arbitrary high order. In practice there are restrictions due the floating

point arithmetic of computers for very large polynomial degrees. Nevertheless,

the method is very efficient for smooth regions in terms of the points required

to resolve a wave of given length [28]. However, this is not the case for shock

waves or other non-smooth flow discontinuities where the high order polynomi-

als suffer from the Gibbs phenomenon [30] and will produce spurious oscillations

which may violate the physics by generating negative pressure for example. This

will eventually let the computation fail. To cure the simulation from this mis-

behavior, several different techniques, known as shock capturing, are available.

Already in 1950, von Neumann and Richtmyer [90] proposed the idea of adding

artificial viscosity to the original equation with the intention to smear the dis-

continuity until the solution could be properly resolved by their numerical Finite

Differencing scheme. This approach was adapted by Persson and Peraire [64]

to high order Discontinuous Galerkin methods, where an elementwise constant

artificial viscosity is used to capture shocks without widening them over several

cells. In [6], a smooth artificial viscosity PDE model is used to further improve

this technique and reduce the effects that occur due to non constant viscosity at

element interfaces. Another approach for shock capturing in high order methods

is to directly filter the degrees of freedom (DOFs) of the solution. Yee et al. [94]

3

1. Introduction

introduced nonlinear filters for high order finite differencing schemes to prevent

the generation of oscillations at shock fronts. This adaptive control mechanism

of the numerical dissipation can quite generally be applied to high order methods

and it was adapted by Panourgias and Ekaterinaris [62] for the Discontinuous

Galerkin scheme. A third class of shock capturing techniques are hybrid methods,

where the DG method is combined with a method classically designed for shock

involving computations. Either the original scheme is fully replaced in troubled

regions or the additional method is utilized as a limiter. The latter approach is

for example proposed by Qiu and Shu [67] by using a Hermite weighted non-

oscillatory (HWENO) scheme for the limiting of Runge-Kutta DG methods in

shock regions. A full replacement of the scheme in all problematic elements is

presented by Dumbser et al. [24]. They apply the MOOD paradigm [59] which

a posteriori detects nonphysical candidate solutions and recomputes the troubled

cells with a lower order method on a sub-cell mesh. This is a quite expensive but

robust variant of the classical h-/p-refinement where the polynomial degree of

elements containing a discontinuity is reduced, since they are less susceptible to

the Gibbs phenomenon. At the same time the mesh is refined to compensate the

loss in overall resolution. Huerta et al. [41] adapted this idea of spatial refinement

with low order polynomials for the Discontinuous Galerkin scheme by extending

the space of ansatz functions with piecewise constant functions in sub-cells.

In chapter 5 several of the concepts presented above are revisited to develop

a shock capturing for the Discontinuous Galerkin Spectral Elements Method,

which is summarized in chapter 4. This shock capturing is a hybrid approach,

where the Finite Volume method takes care of the troubled cells. Due to the

low order (second order with reconstruction) and its total variation diminishing

property, provided by slope limiters, this scheme is spared from the generation of

oscillations at discontinuities. Except for the requirement of finer grids than for

the DG method, the Finite Volume scheme is ideally suited to resolve shocks and

other flow discontinuities. This demand on the resolution is handled by introducing

a logical sub-cell refinement of the original elements. Since special attention is

paid to an efficient implementation of the shock capturing for high performance

computations, to each DOF of a DG element exactly one Finite Volume sub-cell is

associated. The properties of this shock capturing for the Discontinuous Galerkin

method using Finite Volume sub-cells are examined in chapter 6 with several test

cases numerically. In addition, the parallel efficiency is investigated to proof the

capability of the hybrid scheme for high performance computations.

In summary, the two main objectives of this work are as follows. In the field

of shape optimization the shape derivatives of the lift and drag coefficient for

the compressible Navier–Stokes equations will be derived, where special attention

4

is paid to the form of the governing equations. A comparison of the variational

approach with the former approach, based on the pointwise Navier–Stokes equa-

tions, will demonstrate that numerical schemes based on the variational form of

the governing equations require a derivation of the shape derivatives which is suit-

able to the form of the Navier–Stokes equations. The second objective addresses

the treatment of shocks or other flow discontinuities in Discontinuous Galerkin

methods. Therefore a shock capturing based on the Finite Volume method will

be presented. This scheme prevents the oscillations originating from the approxi-

mation of discontinuities with high order polynomials by reducing the polynomial

degree of the ansatz functions. This leads to a loss in resolution which is com-

pensated by dividing the original elements into sub-cells. One main focus of this

hybrid scheme will be on the computational efficiency to obtain an algorithm that

is qualified for high performance computing of large scale problems.

5

2. Fundamentals

In this chapter the basic ingredients for the text at hand are summarized. The

fundamental conservation laws in this work are the Navier–Stokes equations. They

are introduced in the pointwise form and are additionally given in the variational

formulation, which is necessary for the derivation of shape derivatives as well

as for the Discontinuous Galerkin and Finite Volume scheme. Furthermore, they

are mapped from physical space to a reference element on which the numerical

methods operate.

2.1. Navier–Stokes equations

The compressible Navier–Stokes equations [60, 87] describe the motion of viscous

fluids and gases and are an extension of the Euler equations [25] by second order

terms. They are conservation laws for mass, momentum and energy, which means

the total amounts of these physical quantities do not change over time within the

considered volume if the boundary fluxes are zero. Considering an infinitesimal

fluid particle leads to the pointwise or strong form of the Navier–Stokes equations,

where they are fulfilled in every point of the domain Ω. This pointwise form, is

given by

ut +∇ · (F c(u)− F v (u,∇u)) = 0 in Ω, (2.1)

where u and ut denote the vector of conservative variables and its temporal deriva-

tive, F c(u) = (f c1 , f
c

2 , f
c

3) the convective fluxes and F v (u,∇u) = (f v1 , f
v

2 , f
v

3) the

viscous fluxes. They are defined in three space dimensions by

u =


ρ

ρv1

ρv2

ρv3

ρe

 , f ci =


ρvi

ρviv1 + δ1ip

ρviv2 + δ2ip

ρviv3 + δ3ip

ρHvi

 , f vi =


0

τ1i

τ2i

τ3i∑
j τi jvj + κ ∂T

∂xi

 i = 1, 2, 3

where δi j is the Kronecker delta and the viscous stress tensor τ is given by

τ = µ

(
∇v + (∇v)> − 2

3
(∇ · v)I

)
I = identity matrix.

7

2. Fundamentals

In table 2.1 the remaining physical quantities and some relations between them

are summarized. To close the Navier–Stokes equations, a relation between the

thermodynamic quantities ρ, p and T is necessary. For an ideal gas, this equation

of state reads

p = ρRT = ρR
e − 1

2
v 2

cv
=
R

cv
ρ

(
e − 1

2
v 2

)
.

ρ density

v1, v2, v3 velocity

p pressure

ε inner energy

e total energy e = ε+ 1
2
v 2

H enthalpy H = e + p
ρ

µ viscosity

τ viscous stress tensor

T temperature Tκ = µγ
P r

(
e − 1

2
v 2
)

κ specific heat transfer coefficient κ = µγcv
P r

R ideal gas constant

γ heat capacity ratio

cv heat capacity at constant volume

P r Prandtl number

Table 2.1.: Physical quantities.

Remark 2.1. Since the Navier–Stokes equations are an extension of the Euler

equations, the Euler equations can be recovered by omitting the viscous flux F v

in equation (2.1). Both conservation laws can be reduced to the two dimensional

space by deleting the equation of the momentum in z-direction and the respective

convective and viscous flux.

2.1.1. Stationary Navier–Stokes equations

A flow field is called steady if the solution does not change over time. This is

equivalent to a vanishing time derivative of the state ut . In this case the stationary

Navier–Stokes equations read

∇ · (F c(u)− F v (u,∇u)) = 0 in Ω. (2.2)

8

2.2. Weak formulation or variational form

2.2. Weak formulation or variational form

The shape derivative for the compressible Navier–Stokes equations in chapter 3,

the Discontinuous Galerkin method in chapter 4 and the shock capturing with

Finite Volume sub-cell in chapter 5 are all based on the weak formulation of the

Navier–Stokes equations. To obtain the weak formulation the pointwise Navier–

Stokes equations from equation (2.1) are multiplied with an arbitrary test function

Φ ∈ H := H1 ×H2 × . . .×H5, where Hi are suitable Hilbert-spaces. Integration

over the domain Ω yields∫
Ω

utΦ dx +

∫
Ω

∇ · (F c − F v) Φ dx = 0.

After partial integration of the second integral one obtains∫
Ω

utΦ dx −
∫

Ω

(F c − F v) · ∇Φ dx +

∫
∂Ω

((F c − F v) · n) Φ dS = 0,

where n is the outwards pointing normal vector.

Respectively, the weak formulation of the stationary Navier–Stokes equations

becomes

−
∫

Ω

(F c − F v) · ∇Φ dx +

∫
∂Ω

((F c − F v) · n) Φ dS = 0. (2.3)

The weak formulation of the Navier–Stokes equations is also called variational

form of the Navier–Stokes equations.

2.3. Mapping to reference space

The above conservation laws are stated in physical space in an arbitrary domain.

Solving these equations numerically requires the discretization of the domain into

elements. The technique to map all elements of a mesh to a reference space to

obtain a general formulation for all elements is very common. In general, different

types of elements, e.g. tetrahedra, pyramids, prisms, hexahedra and so on, are

used to subdivide the domain, leading to different reference elements. This work

restricts the elements to hexahedral meshes only, which requires only a single

reference element E = [−1, 1]3. Of course this limitation has some drawbacks,

but it also enables very efficient implementations as will be discussed in chapter 4.

One of the limitations of the hexahedral meshes is the mesh generation process

for complex geometries, which is still an ongoing topic of research [37, 12, 89].

9

2. Fundamentals

ξ
2 =
co
ns
t

ξ
1
=
c
o
n
s t

a2
a1

a2

a1

Figure 2.1.: Covariant a1, a2 and contravariant a1, a2 basis vectors in two space

dimensions. The line integral along the dotted line gives the physical

size of the gray element.

The physical domain Ω is divided into hexahedral elements which can be curved.

The mapping between reference space ξ =
(
ξ1, ξ2, ξ3

)>
and an arbitrary element

in physical space is given by

X : ξ 7→
(
x1, x2, x3

)>
Given this mapping the covariant basis vectors are given in [51, 50] by

aj =
∂X

∂ξj
. (2.4)

They are tangential to faces of the grid as shown in figure 2.1. In contrast to

that the contravariant basis vectors are perpendicular to the grid faces and can

be computed from the covariant basis with

Jai = aj × ak (i , j, k) cyclic,

where J = J(ξ) is the Jacobian determinant of the mapping.

Definition 2.2 (Line integral). Let r : [a, b] → C be a bijective parametrization

of the piecewise smooth curve C in Rd . For a scalar field f : Rd → R the line

integral along the curve C is defined by∫
C

f ds =

∫ b

a

f (r(t))

∥∥∥∥∂r(t)

∂t

∥∥∥∥
2

dt.

10

2.3. Mapping to reference space

The special case where f = 1 gives the length of the curve C

length of C =

∫ b

a

∥∥∥∥∂r(t)

∂t

∥∥∥∥
2

dt.

Using this definition one can calculate the length of a grid line in physical

space by fixing two coordinate directions of the mapping X. For example, fixing

ξ2, ξ3 = constant gives a curve C(ξ1) following the grid lines of the ξ1 direction.

This is done in the reference element E = [−1, 1]3 by building the line integral

for ξ1 from −1 to 1, which then results in the length of the grid line. A two

dimensional example is shown in figure 2.1. Here, the south side of the gray

element is marked by a dotted line. If this side corresponds to the lower side

of the reference element, where ξ2 = −1 holds, the length of this side can be

calculated as the line integral of the curve C
(
ξ1
)

:= X
(
ξ1,−1

)
, which leads to∫

Cξ1

ds =

∫ 1

−1

∥∥∥∥∂X(ξ1,−1)

∂ξ1

∥∥∥∥
2

dξ1 =

∫ 1

−1

∥∥a1

(
ξ1,−1

)∥∥
2

dξ1.

2.3.1. Mapping of the equations

As already mentioned, the physical domain Ω is divided into hexahedra, which are

all mapped to the reference element E. Mapping the Navier–Stokes equations

from a physical grid cell to the reference element they read

Jut +∇ξ · (F c −F v) = 0 in E, (2.5)

where F c and F v are the transformed fluxes which are defined by the transfor-

mation of the divergence operator from physical space to reference space

∇ · F =
1

J

3∑
i=1

∂Jai · F
∂ξi

=:
1

J
∇ξ · F . (2.6)

Here, the divergence operator is written with a ξ-subscript to indicate the deriva-

tive with respect to the reference coordinates. In the following this subscript will

be omitted, as the divergence always corresponds to the space a flux or quantity

lives in. More details on the transformation, especially of other derivatives, can

be found in [51]. A subset of only the necessary formulas for the Discontinuous

Galerkin method in chapter 4 is introduced briefly in [39]. In the following the

calligraphic F denotes the flux in reference space and the typographic F the flux

in physical space.

11

2. Fundamentals

Using the same steps as for the derivation of the weak formulation in physi-

cal space, the weak formulation of the mapped Navier–Stokes equations on the

reference element E is then given by∫
E

JutΦ dξ −
∫
E

(F c −F v) · ∇Φ dξ +

∫
∂E

((F c −F v) · N) Φ dSξ = 0, (2.7)

where N denotes the normal vector in the reference space.

12

3. Shape derivative for the compressible

Navier–Stokes equations

In the field of aerodynamics, the simulation of flows around an object in general,

e.g. a wing or even a full aircraft, is well established. The capability of predicting

the aerodynamic performance, like the drag or lift coefficient, for a single de-

sign very accurately leads to the wish of not only investigating this design, but

to optimize it with respect to specific cost functions. Derivative free, heuristic

optimization methods are used in practice, but due to the fact that they do not

exploit the structure of a problem heavily, the application to industry size large

scale problems is very challenging and time consuming. Hence, the key factor

that drives the numerical costs, i.e. the number of design parameters, must be

kept low. Therefore, it is very common to limit the modifications of a shape to

a finite set of design parameters, like B-splines or the popular Hicks-Henne func-

tions. This restriction to a reduced set of parameters can conflict with the aim

of achieving not only a good, but the best design. Alternative concepts, where

the numerical effort does not depend on the number of design parameters, are

required. The introduction of adjoint calculus is one of the major advances in

the field of aerodynamic design optimization [65, 31, 29]. In this context the

evaluation of the governing equation by a numerical flow simulation is called the

forward problem, which depends on input quantities that are parameters of an

optimization. The numerical effort required for this optimization directly depends

on the number of these parameters. The basic idea of the adjoint approach is

to solve an adjoint problem, associated to the forward problem, which allows to

remove the dependence of the optimization on the number of design parameters.

A further drawback, which also affects the general adjoint approach, is the use

of proprietary software in the design chain. This is often the case when computer

aided design (CAD) is involved in the mesh generation process. It then becomes

very challenging to apply the adjoint approach to these proprietary parts of overall

optimization and one is forced to use finite differences once again.

One approach to overcome the problem of expensive computations for a large

set of design parameters or non-adjoinable mesh generators is the use of shape

calculus. Shape calculus is the mathematical framework to build derivatives with

respect to the shape in a continuous setting, where the equations are not dis-

13

3. Shape derivative for the compressible Navier–Stokes equations

cretized yet. A detailed introduction into the general theoretical framework can

be found in [22, 83] and is one of the bases of this work. Due to the fact that

shape calculus is performed on the continuous equations, it is always independent

of the number of design parameters. All surface nodes can be chosen as unknowns

leading to the so called “free node parameterization”.

This approach has already been applied to very large scale aerodynamic design

optimization [13, 73, 63, 96], but since they are all based on the strong, pointwise

form of the governing equations they all assume the existence of a strong form

solution. However, the existence of such solutions in the presence of shock waves

or flow discontinuities is not clear and one is restricted to the variational form. This

is not a big issue when the numerical scheme is also based on the variational form

of the governing equations and therefore, anyway only computes a solution to this

form. In contrast to the strong form, only a few work on shape derivatives based

on the variational forms are found in literature, like [43, 82] and especially [42],

where the incompressible Navier–Stokes equations are considered. In this chapter,

which summarizes [85], the focus lies on the shape derivatives for the compressible

Navier–Stokes equations and mainly on the differences that arise due to the use of

the variational form instead of the strong form as origin of the whole derivation.

This chapter is structured as follows. After describing the aerodynamic setting,

the required concepts of shape calculus are introduced. They are then applied to

the strong and the variational form of the Navier–Stokes equations. With adjoint

calculus, the shape derivative of the aerodynamic cost functions are built, which

in the last part are investigated numerically. A comparison to finite differences

shows the advantages of the variational approach over the strong approach.

3.1. Aerodynamic objective functions and boundary conditions

In the field of aircraft design the lift and drag coefficient are the main quantities

characterizing the performance of an airfoil. For an optimization, derivatives of

those coefficients with respect to the shape are of interest since they allow a re-

duction of fuel consumption, for example. Having a wing or aircraft flying through

air in mind, the general flow setup is given as follows. As before, Ω denotes the

domain of the fluid with Γ the boundaries of the domain. These boundaries consist

of the farfield Γ∞ and the wall boundary ΓW , which describe the outline of the

airfoil, wing or aircraft. The wall can be split up in the parts Γiso ∪ Γadia = ΓW ,

where either the isothermal boundary condition T = TW or the adiabatic bound-

ary condition ∇T · n = 0 holds. Furthermore, the no-slip boundary condition of a

zero velocity v = 0 is imposed along the whole wall ΓW .

14

3.2. Shape calculus

Definition 3.1 (Cost Function). Integrating pressure p and viscous forces τ along

the geometry gives the drag and lift coefficients of a body immersed in the flow.

These are considered as cost (or target) functions, given by

J (u) :=
1

C∞

∫
ΓW

(pn − τn) · θ ds, (3.1)

where C∞ is a constant and θ is either θl = (− sin(α), cos(α))> for the lift or

θd = (cos(α), sin(α))> for the drag coefficient and α is the angle of attack.

3.2. Shape calculus

3.2.1. Definition of the shape derivative and the Hadamard theorem

In this section, the basic concepts of shape derivatives are introduced, especially

the fundamental Hadamard theorem, as stated in [22, 83].

Definition 3.2 (Perturbation of identity). Let D be an open set in Rd and let

Ω ⊂ D be a measurable subset of D. For vector fields V ∈ Ck0 (D;Rd),

Tt [V] : D × [0, δ)→ Rd , (x, t) 7→ x + tV (x)

is called the perturbation of identity.

In this definition, the open set D is the so-called hold-all set which contains the

domain Ω. The perturbation of identity is a very common approach to describe

deformations Ωt = Tt [V](Ω) of the original domain Ω and can directly be used

to define the shape derivative of a domain functional in the direction of a vector

field.

Definition 3.3 (Shape derivative, shape differentiable, shape gradient). Let V ∈
Ck0 (D;Rd) and J (Ω) be a domain functional at Ω. The Eulerian derivative

dJ (Ω;V) := lim
t↘0

J (Ωt)− J (Ω)

t

is called the shape derivative of J (Ω) in the direction V . If this shape derivative

dJ (Ω;V) exists for all directions V , and the mapping

G(Ω) : Ck0 (D;Rd)→ R, V 7→ dJ (Ω;V)

is linear and continuous, the functional J is called shape differentiable. The

mapping G(Ω) ∈
(
Ck0 (D;Rd)

)∗
is the shape gradient, which fulfills

dJ (Ω;V) = 〈G(Ω), V 〉(Ck0 (D;Rd))
∗×Ck0 (D;Rd)

∀ V ∈ Ck0 (D;Rd). (3.2)

15

3. Shape derivative for the compressible Navier–Stokes equations

Therewith, the shape derivative can be computed by the dual pair, which is a

generalized scalar product of the shape gradient and the direction V . If this vector

field fulfills V · n = 0 at the boundary of the domain, meaning it is tangential to

this boundary Γ = ∂Ω ∈ Ck , the shape derivative in this direction becomes zero.

A proof of this can be found in [83], but it is intuitively clear. Since deformations

in the tangential directions do not change the shape of the domain, there will be

no change in the flow solution and, therewith, no change in the cost functional.

One can think of such deformations being a reparameterization of the geometry.

Additionally it becomes obvious that the shape derivative only depends on the

normal component of the vector field at the boundary of the domain. There exists

a continuous linear mapping dJ (Γ;·) : Ck(Γ) → R such that for all vector fields

V ∈ Ck(D;Rd) the relation

dJ (Ω;V) = dJ (Γ;V · n)

holds. In the following theorem, the idea of this relation is expanded to the defi-

nition of the shape gradient. If the shape derivative only depends on the normal

component of the vector field at the boundary, there must be a scalar distribu-

tion g(Γ) on the boundary which takes the role of the shape gradient G(Ω) in

equation (3.2).

Theorem 3.4 (Hadamard Theorem, Hadamard formula). For every domain Ω ⊂
D of class Ck , let J (Ω) be a shape differentiable function. Furthermore, let

the boundary Γ be of class Ck−1. There exists the following scalar distribution

g(Γ) ∈ Ck0 (Γ)∗, such that the shape gradient G(Ω) ∈ Ck0 (Ω,Rd)∗ of J (Ω) is

given by

G(Ω) = γ∗Γ(g · n),

where γΓ ∈ L
(
Ck0 (Ω,Rd), Ck0 (Γ,Rd)

)
and γ∗Γ denote the trace operator and its

adjoint operator. In this situation, one can show that [83]

dJ (Ω;V) = dJ (Γ;V · n) = 〈g, V · n〉(Ck0 (Γ))
∗×Ck0 (Γ)

.

If g(Γ) is integrable over Γ, the Hadamard Formula

dJ (Ω;V) =

∫
Γ

(V · n)g ds

is fulfilled. Terms being of the structure “(V ·n) . . .” are called to be in Hadamard

form.

Proof: Further details and a proof can be found in [22] or in [83].

16

3.2. Shape calculus

The goal is now to find this scalar distribution g(Γ) for a cost function, like drag

or lift coefficient, in the context of the Navier–Stokes equations. In a numerical

context, where the shape is represented by a finite amount of points, one would

then be able to evaluate the shape derivative in each point by simply evaluating

a boundary integral with a vector field that is associated to a deformation of

the shape in this point. For the derivation of such a distribution further general

definitions in the field of shape calculus are required.

Definition 3.5 (Material derivative / Local shape derivative). The total derivative

dV [f] (x) :=
d

dt

∣∣∣∣
t=0

f (t, Tt [V](x))

of f is called the material derivative. Furthermore, the partial derivative

f ′(x) := f ′[V](x) :=
∂

∂t
f (t, x)

is called the local shape derivative of f .

For a vector field V being orthogonal to the boundary Γ, the material derivative

of the normal vector fulfills

dV [n] = −∇Γ(V · n),

which can be found in [72].

Remark 3.6. This material derivative and the local shape derivative are linked to

each other by the chain rule, if both exist

dV [f] (x) = f ′[V](x) +∇f (0, x) · V (x) = f ′ +∇f · V,

where d
dt

∣∣
t=0

Tt [V](x) = d
dt

∣∣
t=0

(x + tV (x)) = V (x) is used for the perturbation

of identity. Since this relation only holds if the local shape derivative exists, one

usually accepts the above formula as a definition of the local shape derivative

instead. This is for example the case at sharp convex corners of the domain, like

trailing edges or other feature edges.

3.2.2. Tangential calculus

Before coming to the shape derivative of volume and boundary integrals, a brief

summary of tangential calculus, which will later be used to derive a preliminary

shape derivative of the lift and drag coefficients, is needed. For further discussions

on tangential calculus the reader is referred to [22], Chapter 8, Section 5.

17

3. Shape derivative for the compressible Navier–Stokes equations

Definition 3.7 (Tangential gradient, tangential divergence). Let f ∈ C1(Γ) be a

function with a C1-extension F into a tubular neighborhood of the boundary Γ

and let n be the normal vector of this boundary. The tangential gradient is given

by

∇Γf := ∇F |Γ−
∂F

∂n
n,

which is the ordinary gradient minus the normal component.

Analogously, for a smooth vector fieldW ∈ (C1(Γ))d∩(C1(Ω))d , the tangential

divergence is defined by

divΓ W := divW −DWn · n.

Theorem 3.8 (Tangential Green’s formula). Let f and W be as defined above.

Then, the tangential Green’s formula is given by∫
Γ

W · ∇Γf ds =

∫
Γ

f K(W · n)− f divΓ W ds,

where K := divΓ n denotes the sum of the principal curvatures, the so called

additive curvature, or (d − 1) times the mean curvature.

Proof: A proof can be found in [22], Chapter 8.

3.2.3. Shape derivative for volume and boundary integrals

The cost functions of interest are integrals over the boundary of the domain. For

numerical investigations these cost functions are evaluated with values from a

flow solution, which is based on the variational form of the governing equations,

here the Navier–Stokes equations. This variational form is a volume integral.

Therefore, not only the shape derivative for a general boundary integral, but also

for volume integrals is needed, as they can be found in [22] for example and will

be recapitulated here. Based on this, a preliminary shape derivative of the drag

and lift coefficients, not yet in Hadamard form, can be stated.

For a general volume integral J (Ω) =
∫

Ω
f (x) dx the shape derivative is given

by

dJ (Ω;V) =

∫
Ω

f ′ dx +

∫
Γ

(V · n)f ds,

while for a general boundary cost function J (Ω) =
∫

Γ
f ds the shape derivative

fulfills

dJ (Ω;V) =

∫
Γ

f ′ + (V · n)

(
∂f

∂n
+Kf

)
ds.

18

3.3. Shape derivative in strong and variational form

Theorem 3.9 (Preliminary shape derivative of the cost functional). Let the vector

field of the perturbation of identity be zero in the neighborhood of the farfield

boundary Γ∞. Then, the shape derivative of the lift and drag coefficients from

equation (3.1) fulfills

dJ (Ω;V) =
1

C∞

∫
ΓW

(p′n − τ ′n) · θ + (V · n) div(pθ − τθ) ds. (3.3)

Proof: A proof is given in [85], which follows the argumentation in [72].

This theorem already states a possible form of the shape derivative of the target

functional. Nevertheless, it is still preliminary since it is not in Hadamard form, due

to the local shape derivatives p′ and τ ′ it still contains. A computation of these,

with finite differences, would require one forward flow solution for each design

parameter of the parameterization of the shape, which is prohibitively costly. To

turn this preliminary formula into Hadamard form, one needs adjoint calculus to

remove these local shape derivatives of the pressure and the viscous stress tensor.

But before this, the shape derivative of the forward problem, the Navier–Stokes

equations, is required.

3.3. Shape derivative in strong and variational form

The application of adjoint calculus to the preliminary shape derivative of the drag

and lift coefficients requires a corresponding forward problem. The compressible

Navier–Stokes equations are therefore linearized with respect to a variation of the

flow domain Ω. As already mentioned above, the distinction between the Navier–

Stokes equations in pointwise and in variational form is of major importance,

which will in the end lead to different Hadamard forms for the shape derivative of

the cost function. The proofs of the following theorems for the shape derivative

of the Navier–Stokes equations in both forms can be found in [85].

Theorem 3.10 (Shape derivative of the pointwise Navier–Stokes equations). The

local shape derivative u′ of the solution of the stationary Navier–Stokes equations

in strong form (2.2) is given as the solution of the equation

0 = ∇ ·
(
F cu (u)u′ −F vu (u,∇u)u′ −F v∇u(u,∇u)∇u′

)
in Ω, (3.4)

where F cu := ∂Fc
∂u ,F vu := ∂Fv

∂u and F v∇u := ∂Fv
∂∇u are the derivatives of the convective

and viscous fluxes with respect to the state and the gradient of the state.

19

3. Shape derivative for the compressible Navier–Stokes equations

Theorem 3.11 (Shape derivative of the variational Navier–Stokes equations). The

shape derivative of the variational form of the stationary Navier–Stokes equations

(2.3) is given by the problem: Find u′ ∈ H, such that

0 =−
(

u′, [F cu (u)−F vu (u,∇u)]
>∇Φ

)
Ω
− (〈V, n〉 [F c(u)−F v (u,∇u)] ,∇Φ)ΓW

−
(

u′,∇ ·
[

(F v∇u(u,∇u))
>∇Φ

])
Ω

+
(

u′, n ·
[

(F v∇u(u,∇u))
>∇Φ

])
Γ

+
(

u′, [n · (F cu (u)−F vu (u,∇u))]
>

Φ
)

Γ\ΓW

−
(
∇u′, (n · F v∇u(u,∇u))

>
Φ
)

Γ\ΓW
+
(
n · (F c(u)−F v (u,∇u))

′
,Φ
)

ΓW

+

∫
ΓW

〈V, n〉∇ · ([F c(u)−F v (u,∇u)] ·Φ) ds ∀Φ ∈ H.
(3.5)

Comparing equation (3.4) and equation (3.5), the main difference is that the

shape derivative of the variational Navier–Stokes equations already contains the

multiplication with the test function and the integration over the domain, since

these two operations are performed before the shape differentiation. For the point-

wise form these two steps will be performed in section 3.4.2 not before, but after

taking the shape derivative. The differences in the final Hadamard form for the

shape derivative of the cost functions will be based on this varied order of shape

differentiation and building of the weak form.

3.4. Adjoint calculus

Using adjoint calculus is a common approach to reformulate shape optimization

problems as documented in [31], [47] or [44]. The basic concept will be stated

in the following for a cost function J = J (u, S), which depends on a function

S describing the shape and the flow solution u of the governing equation. For a

general governing equation

Q(u, S) = 0,

the solution u of this equation depends also on the shape function S. Therewith,

a variation of the shape δS leads to a variation of the cost function given by

δJ =
∂J
∂u

δu +
∂J
∂S

δS. (3.6)

It is clear to see that a numerical computation of this variation δJ requires the

sensitivity of the flow solution δu with respect to each degree of freedom within

20

3.4. Adjoint calculus

the shape deformation. However, the calculation of this variation would require

the computation of a complete flow solution for each parameter defining the

shape, which results in a prohibitive large numerical effort. To avoid this, one has

to eliminate the variation δu from equation (3.6) by using the variation of the

governing equation

δQ =
∂Q

∂u
δu +

∂Q

∂S
δS = 0,

which provides another equation determining the variation δu. Multiplying this

equation by a Lagrange multiplier z and subtracting it from the variation of the

cost function leads to

δJ = δJ − z>δQ.

Putting the last three equations together yields

δJ =
∂J
∂u
δu +

∂J
∂S

δS − z>
(
∂Q

∂u
δu +

∂Q

∂S
δS

)
=

(
∂J
∂u
− z>

∂Q

∂u

)
δu +

(
∂J
∂S
− z>

∂Q

∂S

)
δS,

where the first term, containing δu, can be eliminated, if z is the solution of the

adjoint equation
∂J
∂u
− z>

∂Q

∂u
= 0.

Altogether, the variation of the cost function becomes

δJ =

(
∂J
∂S
− z>

∂Q

∂S

)
δS, (3.7)

which only requires a single solve of the adjoint equation instead of multiple primal

solves.

In the following, this approach is used to remove the remaining local shape

derivatives p′ and τ ′ from the preliminary shape derivative of the drag and lift

coefficients (3.3) and thereby transform it into Hadamard form. Therefore, several

intermediate steps are required. Looking at the right hand side of equation (3.7),

one needs, besides the already given preliminary shape derivative, the solution of

the adjoint equation z and the shape derivative of the Navier–Stokes equations
∂Q
∂S
δS. In figure 3.1 the essential steps of the following way to the Hadamard

form are plotted. After inserting the adjoint Navier–Stokes equations into the

shape derivative of the Navier–Stokes equations one ends up with a combined

equation (3.12) for both approaches, pointwise and variational, where one term is

specially marked and must be omitted for the pointwise approach. This equation is

further transformed into an equation (3.17), including also local shape derivatives

21

3. Shape derivative for the compressible Navier–Stokes equations

prelim. shape derivative

of lift/drag (3.3)

shape derivative of

NSE (3.4)/(3.5)

adjoint NSE

section 3.4.1

z> ∂Q
∂S
δS of (3.7) =̂ equation (3.12)

section 3.4.2

equation (3.17)

transformation to

non-conservative variables

section 3.4.3

subtraction of (3.17) from (3.3)

Hadamard form for

shape derivative of lift/drag

(adjoint) boundary conditions

section 3.4.4

Figure 3.1.: Flow chart of the basic steps to bring the preliminary shape derivative

of the lift and drag coefficients, using adjoint calculus, into Hadamard

form.

of non-conservative variables. As explained above for the general adjoint approach,

this equation is subtracted from the preliminary shape derivatives of the target

function. In the last step the boundary conditions and additionally the adjoint

boundary conditions are inserted to finally end up with the Hadamard form.

3.4.1. Variational formulation of the continuous adjoint problem

The above general adjoint methodology requires the solution of the adjoint equa-

tion. In a numerical framework, where the solver of the forward problem is built on

the variational formulation, for example Finite Volume or Discontinuous Galerkin

methods, one also needs the variational formulation of the continuous adjoint

problem. A lot of details on this variational approach can be found in [42], and

the respective integral transformations are covered in more depth in [35].

22

3.4. Adjoint calculus

Theorem 3.12 (Variational form of the adjoint Navier–Stokes equations). The

variational formulation of the adjoint Navier–Stokes equations is given by finding

z ∈ H such that

−
(

w, (F cu −F vu)>∇z
)

Ω
−
(

w,∇ ·
(

(F v∇u)
>∇z

))
Ω

+
(

w, n ·
(

(F v∇u)
>∇z

))
Γ

+
(

w, (n · (F cu −F vu))
>

z
)

Γ
−
(
∇w, (n · F v∇u)

>
z
)

Γ
= J ′[u](w) ∀w ∈ H,

(3.8)

where the linearization of the cost function in case of drag or lift coefficient is

given by

J ′[u](w) =
(

1
C∞ (pun − τun) · θ,w

)
ΓW

−
(

1
C∞ (τ∇un) · θ,∇w

)
ΓW

.

Proof: A proof following the outline of [42] is given in [85]

Corollary 3.13. Choosing w in equation (3.8) with appropriate compact support

in either Ω or on ΓW and Γ \ ΓW , one can see that

−
(

w, (F cu −F vu)>∇z
)

Ω
−
(

w,∇ ·
(

(F v∇u)
>∇z

))
Ω

= 0 ∀w ∈ H0(Ω) (3.9)

for the volume. For a test function with compact support on ΓW it holds

(
w, n ·

(
(F v∇u)

>∇z
))

ΓW

+
(

w, (n · (F cu −F vu))
>

z
)

ΓW

−
(
∇w, (n · F v∇u)

>
z
)

ΓW

=
(

1
C∞ (pun − τun) · θ,w

)
ΓW

−
(

1
C∞ (τ∇un) · θ,∇w

)
ΓW

∀w ∈ H ∩H0(ΓW),

and finally using the same argumentation on all remaining boundaries Γ \ ΓW

(
w, n ·

(
(F v∇u)

>∇z
))

Γ\ΓW
+
(

w, (n · (F cu −F vu))
>

z
)

Γ\ΓW

−
(
∇w, (n · F v∇u)

>
z
)

Γ\ΓW
= 0

∀w ∈ H ∩H0(Γ \ ΓW). (3.10)

23

3. Shape derivative for the compressible Navier–Stokes equations

3.4.2. Application of adjoint equation to the shape derivative of the

Navier–Stokes equations

The adjoint equations from the last subsection are now inserted into the shape

derivative of the Navier–Stokes equations to derive two intermediate relationships

between the adjoint equation and the pointwise linearization of the Navier–Stokes

equations on the one hand and the linearization of the weak form on the other

hand.

For the pointwise problem, the shape derivative of the Navier–Stokes equations

from theorem 3.10 is multiplied with a test function Φ and integrated over the

domain Ω

0 =
(
∇ ·
(
F cu (u)u′ −F vu (u,∇u)u′ −F v∇u(u,∇u)∇u′

)
,Φ
)

Ω
∀Φ ∈ H.

Integration by parts results in

0 =−
((
F cu (u)u′ −F vu (u,∇u)u′ −F v∇u(u,∇u)∇u′

)
,∇Φ

)
Ω

+
(
n ·
(
F cu (u)u′ −F vu (u,∇u)u′ −F v∇u(u,∇u)∇u′

)
,Φ
)

Γ\ΓW

+
(
n ·
(
F cu (u)u′ −F vu (u,∇u)u′ −F v∇u(u,∇u)∇u′

)
,Φ
)

ΓW
∀Φ ∈ H.

To eliminate the local shape derivatives of the gradient of the solution ∇u′ in the

volume integral, one has to use a further integration by parts. Before this can be

applied n, F cu (u), F vu (u,∇u) and F v∇u(u,∇u) are shifted to the other side of the

products. Doing this also for the farfield boundary yields

0 =−
(

u′, [F cu (u)−F vu (u,∇u)]
>∇Φ

)
Ω

+
(
∇u′, (F v∇u(u,∇u))

>∇Φ
) 1

Ω

+
(

u′, [n · (F cu (u)−F vu (u,∇u))]
>

Φ
)

Γ\ΓW

−
(
∇u′, [n · (F v∇u(u,∇u))]

>
Φ
)

Γ\ΓW

+
(
n ·
(
F cu (u)u′ −F vu (u,∇u)u′ −F v∇u(u,∇u)∇u′

)
,Φ
) 2

ΓW
∀Φ ∈ H.

To simplify the following discussions, framed numbers 1 , 2 , 3 , . . . are used to

refer to certain terms. Integration by parts in the second volume integral 1 and

24

3.4. Adjoint calculus

applying the chain rule backwards to the wall integral 2 leads to

0 =−
(

u′, [F cu (u)−F vu (u,∇u)]
>∇Φ

)
Ω

−
(

u′,∇ ·
[

(F v∇u(u,∇u))
>∇Φ

]) 1

Ω
+
(

u′, n ·
[

(F v∇u(u,∇u))
>∇Φ

]) 1

Γ

+
(

u′, [n · (F cu (u)−F vu (u,∇u))]
>

Φ
)

Γ\ΓW

−
(
∇u′, [n · (F v∇u(u,∇u))]

>
Φ
)

Γ\ΓW

+
(
n · (F c(u)−F v (u,∇u))

′
,Φ
) 2

ΓW
∀Φ ∈ H.

After reformulating the shape derivative of the pointwise Navier–Stokes equations,

the final step is to use the adjoint conditions (3.9) and (3.10) to obtain

0 =
(

u′, n ·
[

(F v∇u(u,∇u))
>∇z

])
ΓW

+
(
n · (F c(u)−F v (u,∇u))

′
, z
)

ΓW

∀z ∈ H, (3.11)

where the name of the dependent variable was changed from Φ to z. At first

glance, it might seem counter-intuitive to use the weak form adjoint equations

(3.9) and (3.10) for the pointwise approach, but a pointwise interpretation of

those does not effect the above equation.

Now the same process is applied to the variational Navier–Stokes equations

from theorem 3.11. Using the adjoint equations (3.9) and (3.10) results in

0 =
(

u′, n ·
[

(F v∇u(u,∇u))
>∇z

])
ΓW

+
(
n · (F c(u)−F v (u,∇u))

′
, z
)

ΓW

+

∫
ΓW

〈V, n〉∇ · ([F c(u)−F v (u,∇u)] · z) ds

− (〈V, n〉 [F c(u)−F v (u,∇u)] ,∇z)ΓW
∀z ∈ H.

Applying the product rule to the divergence yields

0 =
(

u′, n ·
[

(F v∇u(u,∇u))
>∇z

])
ΓW

+
(
n · (F c(u)−F v (u,∇u))

′
, z
)

ΓW

+ (〈V, n〉∇ · [F c(u)−F v (u,∇u)], z)ΓW
∀z ∈ H.

(3.12)

Equation (3.11) differs from equation (3.12) only by the framed extra term. This

term vanishes, if the Navier–Stokes equations are fulfilled pointwise anyway. In

the following, only equation (3.12) will be used to avoid a fork in the derivation

for the pointwise and the variational approach, but one has to keep in mind that

all framed terms only occur in the variational approach.

25

3. Shape derivative for the compressible Navier–Stokes equations

3.4.3. Transformation to non-conservative variables

In this subsection, especially the no-slip condition at the wall v = 0 is used to

reformulate the local shape derivative u′ in equation (3.12) such that the local

shape derivatives of the pressure p′ and the viscous stress tensor τ ′ appear. These

terms will later be used to eliminate their counterparts in the preliminary shape

derivative of the cost function.

Starting with the first integral of equation (3.12), the local shape derivative u′

reduces with the no-slip condition to

u′ =


ρ

ρv1

ρv2

ρe


′

=


ρ′

ρv ′1
ρv ′2

(ρe)′

 on ΓW , (3.13)

where, due to the vanishing velocity v , the relation

(yv)′ = y ′v + yv ′ = yv ′ on ΓW (3.14)

for a general quantity y was used. This relation will also be used for all other

terms containing the velocity v . To incorporate the no-slip condition also on the

right hand side of the first integral, the so called homogeneity tensor is stated as

G =
[
G i jkl

]i j
kl

=
∂ (f vk)i

∂
∂uj
∂xl

,

where (f vk)i denotes the i-th component of the k-th viscous flux vector and
∂uj
∂xl

denotes the derivative of the j-th component of the vector of conservative vari-

ables with respect to xl . In two space dimensions the i and j indices range from 1

to 4 and k, l ∈ {1, 2}. For a detailed discourse of the general homogeneity tensor

see [35]. Using the no-slip condition the homogeneity tensor at the wall is given

by

G11 =
µ

ρ


0 0 0 0

0 4
3

0 0

0 0 1 0

− γ
P r
e 0 0 γ

P r

 , G12 =
µ

ρ


0 0 0 0

0 0 − 2
3

0

0 1 0 0

0 0 0 0

 ,

G21 =
µ

ρ


0 0 0 0

0 0 1 0

0 − 2
3

0 0

0 0 0 0

 , G22 =
µ

ρ


0 0 0 0

0 1 0 0

0 0 4
3

0

− γ
P r
e 0 0 γ

P r

 .

26

3.4. Adjoint calculus

It is clear that the first rows of this tensor are all zero, since the viscous flux has

no influence on the mass equation. Therefore, there is no part in the first integral

of equation (3.12) containing the gradient of the first component of the adjoint

variable ∇z1. For the momentum equations, one introduces the so called adjoint

stress tensor as

Σ := µ

(
∇z2,3 + (∇z2,3)> − 2

3
(∇ · z2,3) I

)
.

With this and the local shape derivative of the state u′ from equation (3.13), the

second and third row of the first integral in equation (3.12) finally reduce to(
u′2,3, n ·

(
(F v∇u)

>
2,3∇z2,3

))
ΓW

=

∫
ΓW

v ′ · (n ·Σ) ds.

It remains the fourth component of ∇z, which correspond to the fourth rows of

G, having non-zero entries only for k = l and j = 1 or 4. Since the j-th column

of the matrices Gkl are multiplied with the j-th component of the vector u the

remaining expression becomes(
u′4, n ·

(
(F v∇u)

>
4 ∇z4

))
ΓW

=

∫
ΓW

µ

ρ

γ

P r

(
−eu′1 + u′4

)
n · ∇z4 ds.

Using u′1 = ρ′ and u′4 = (ρe)′ = ρ′e + ρe ′ as well as

T ′κ =
µγ

P r

(
e ′ −

(
1

2
v 2

)′)
=
µγ

P r
e ′

for Tκ = µγ
P r

(
e − 1

2
v 2
)

at the no-slip wall the above integral is simplified to(
u′4, n ·

(
(F v∇u)

>
4 ∇z4

))
ΓW

=

∫
ΓW

T ′κn · ∇z4 ds.

Putting it all together, the first integral of equation (3.12) becomes(
u′, n ·

(
(F v∇u)

>∇z
))

ΓW

=

∫
ΓW

v ′ · (n ·Σ) ds +

∫
ΓW

T ′κn · ∇z4 ds. (3.15)

For the second integral of equation (3.12) the local shape derivative of the

convective and viscous fluxes at the no-slip wall are needed. Inserting the no-slip

condition via the relation (3.14) into to convective and the viscous fluxes yields

(F c)′ =


ρv1 ρv2

ρv 2
1 + p ρv1v2

ρv1v2 ρv 2
2 + p

ρHv1 ρHv2


′

=


ρv ′1 ρv ′2
p′ 0

0 p′

ρHv ′1 ρHv ′2

 on ΓW

27

3. Shape derivative for the compressible Navier–Stokes equations

and

(F v)′ =


0 0

τ ′11 τ ′12

τ ′21 τ ′22∑
j τ1jv

′
j + κ ∂T

′
∂x1

∑
j τ2jv

′
j + κ ∂T

′
∂x2

 on ΓW .

Inserting these terms into the second integral of equation (3.12) results in

(
n ·
(

(F c(u))
′ − (F v (u,∇u))

′)
, z
)

ΓW

=

∫
ΓW

(p′n − τ ′n) · z2,3 + v ′ · (ρnz1 + (ρHn − τn)z4)−∇T ′ · nκz4 ds. (3.16)

Combining the results of (3.15) and (3.16), the shape derivative of the Navier–

Stokes equations equation (3.12) becomes

0 =

∫
ΓW

v ′ · (n ·Σ) ds +

∫
ΓW

T ′κn · ∇z4 ds

+

∫
ΓW

(p′n − τ ′n) · z2,3 + v ′ · (ρnz1 + (ρHn − τn)z4)−∇T ′ · nκz4 ds

+ ((V · n)(∇ · (F c −F v)), z)ΓW
, (3.17)

where distinction between the pointwise and the variational approach is still

present in the framed term. This formula now includes the no-slip boundary con-

dition and the explicit variations of the primal variables. What remains is the sub-

traction of this equation from the preliminary shape derivative of the cost function

and the incorporation of further primal and adjoint boundary conditions as well

as local shape derivatives of boundary conditions to finally reach the Hadamard

form.

3.4.4. Subtraction of the shape derivative of the Navier–Stokes

equations from the preliminary shape derivative of the cost

function

The last step to finally reach the Hadamard form of the shape derivative of

the lift and drag coefficient is to subtract the shape derivative of the Navier–

Stokes equations equation (3.17) from the preliminary shape derivative of the

28

3.4. Adjoint calculus

cost function (3.3):

dJ (Ω;V)

=
1

C∞

∫
ΓW

(p′n − τ ′n) · θ 4
+ (V · n) div(pθ − τθ) 5 ds

−
∫

ΓW

v ′ · (n ·Σ) ds −
∫

ΓW

T ′κn · ∇z4 ds

−
∫

ΓW

(p′n − τ ′n) · z2,3
6

+ v ′ · (ρnz1 + (ρHn − τn)z4)−∇T ′ · nκz4 ds

− ((V · n)(∇ · (F c −F v)), z)ΓW

7

.

Again, framed numbers are used to label certain terms. If the adjoin boundary

condition z2,3 = 1
C∞ θ on ΓW is fulfilled, the terms 4 and 6 cancel each other

out. This adjoint boundary condition also implies that the z2,3-component of

expression 7 vanish with term 5 , because

(∇ · (F c −F v))2,3 · z2,3 = (∇ · [(ρvivj)i j + pI − τ]) · z2,3

= div(pI − τ) · 1

C∞
θ =

1

C∞
div(pθ − τθ)

is fulfilled due to
∂ρvi vj
∂xk

= ∂ρvi
∂xk
vj + ρvi

∂vj
∂xk

= 0 at the no-slip boundary. In case of

the pointwise approach, term 7 is not present. One might think that in that case

there is no possible way to cancel term 5 , but this term, being the conservation

of momentum, equals zero anyway if the Navier–Stokes equations are fulfilled

pointwise. Altogether, the only framed terms remaining from the above formula

are the first and last component of term 7 . Marking them with 71,4 one obtains

dJ (Ω;V) =−
∫

ΓW

v ′ · (n ·Σ) ds −
∫

ΓW

T ′κn · ∇z4 ds

−
∫

ΓW

v ′ · (ρnz1 + (ρHn − τn)z4)−∇T ′ · nκz4 ds

− ((V · n)(∇ · (F c −F v))1,4, z1,4)ΓW

71,4

.

(3.18)

The previous task to eliminate p′ and τ ′ is accomplished, but only by introducing

the local shape derivatives of the velocity and the temperature. At first it seems

to be unrewarding to reformulate the equations to get rid of some local shape

derivatives and at the same time introducing new ones. But the crucial differ-

ence is that only local shape derivatives of quantities remain, for which boundary

29

3. Shape derivative for the compressible Navier–Stokes equations

conditions at the wall exist. Therefore, the variations of the no-slip, adiabatic

and isothermal boundary conditions are needed. The shape derivatives for general

Dirichlet or Neumann boundary conditions can be found in [85] and lead to the

following expressions

v ′ = −(V · n)
∂v

∂n
on ΓW ,

T ′ = (V · n)
∂TW − T
∂n

on Γiso ,

∇T ′ · n = −(V · n)
∂2T

∂n2
+∇T · ∇Γ(V · n) on Γadia.

Replacing the local shape derivatives in equation (3.18) with these conditions at

the respective parts of the wall results in

dJ (Ω;V) =

∫
ΓW

(V · n)
∂v

∂n
· (n ·Σ) ds

−
∫

Γiso

(V · n)
∂TW − T
∂n

κn · ∇z4 ds −
∫

Γadia

T ′κn · ∇z4 ds 8

+

∫
ΓW

(V · n)
∂v

∂n
· (ρnz1 + (ρHn − τn)z4) ds

+

∫
Γiso

∇T ′ · nκz4 ds 9 −
∫

Γadia

(V · n)
∂2T

∂n2
κz4 ds

+

∫
Γadia

∇T · ∇Γ(V · n)κz4 ds 10

− ((V · n)(∇ · (F c −F v)1,4), z1,4)ΓW

71,4

.

Since at the isothermal wall there is only a condition for the temperature and not

for its gradient of the temperature, still a ∇T ′ term remains at this part of the

wall. The same holds for the adiabatic wall with T ′. These last two local shape

derivatives 8 and 9 vanish if the following adjoint boundary conditions

z4 = 0, on Γiso and ∇z4 · n = 0, on Γadia

are fulfilled. Herewith, the goal to remove all local shape derivatives from the

shape derivative of the cost function is finished. It remains the reformulation into

Hadamard form, that means into an expression of the form
∫

(V · n) . . . ds. The

only term not being of this structure is term 10 . Applying the tangential Green’s

30

3.4. Adjoint calculus

formula from theorem 3.8 to this integral yields∫
Γadia

∇T · ∇Γ(V · n)κz4 ds

=

∫
Γadia

(V · n)K(∇T · n)κz4 − (V · n) divΓ(∇Tκz4) ds

= −
∫

Γadia

(V · n) divΓ(∇Tκz4) ds,

where the adiabatic wall condition ∇T · n = 0 was used in the second line.

Additionally, an expression for the term 71,4 is given. Using again the no-slip

condition at the wall one gets for the first component 71

∇ · (F c −F v)1 = ∇ · (ρv1, ρv2) = ρ(∇ · v)

and for the forth component

∇ · (F c −F v)4

= ∇ · (ρHv1, ρHv2)−∇ ·
(∑

j

τ1jvj + κ
∂T

∂x1
,
∑
j

τ2jvj + κ
∂T

∂x2

)

= ρH(∇ · v)−
∑
i ,j

τi j
∂vj
∂xi
− κ∆T.

In total, the shape derivative of the lift or drag coefficient in Hadamard form is

given by

dJ (Ω;V) =

∫
ΓW

(V · n)
∂v

∂n
· (n ·Σ) ds

−
∫

Γiso

(V · n)
∂TW − T
∂n

κn · ∇z4 ds

+

∫
ΓW

(V · n)
∂v

∂n
· (ρnz1 + (ρHn − τn)z4) ds

−
∫

Γadia

(V · n)

(
∂2T

∂n2
κz4 + divΓ(∇Tκz4)

)
ds

−
∫

ΓW

(V · n)ρ(∇ · v)z1 ds

−
∫

Γadia

(V · n)

(
ρH(∇ · v)−

∑
i ,j

τi j
∂vj
∂xi
− κ∆T

)
z4 ds .

(3.19)

31

3. Shape derivative for the compressible Navier–Stokes equations

Although, there is only this single derivation of the Hadamard form for both

approaches, the difference of the variational and the pointwise approach still exist.

The framed terms in the last equation only appear when considering the Navier–

Stokes equations in variational form. Referring to theorem 3.4, all terms inside

the integrals of equation (3.19) except the vector field (V · n) build a scalar

distribution

g(Γ) =
∂v

∂n
· (n ·Σ)− ∂TW − T

∂n
κn · ∇z4

+
∂v

∂n
· (ρnz1 + (ρHn − τn)z4)−

(
∂2T

∂n2
κz4 + divΓ(∇Tκz4)

)

− ρ(∇ · v)z1 ds −
(
ρH(∇ · v)−

∑
i ,j

τi j
∂vj
∂xi
− κ∆T

)
z4 ,

which are in the following called shape gradient for simplicity.

3.5. Numerical comparison

The differences between the pointwise and the variational approach are now in-

vestigated numerically. Therefore, the Discontinuous Galerkin solver PADGE, de-

veloped primarily at the German Aerospace Center (DLR), Braunschweig, is ex-

tended to calculate the above Hadamard form of the shape derivative, for both

drag and lift coefficient. The major reason for choosing this code for the imple-

mentation of the shape derivative is that this code already includes a solver for

the adjoint problem, which was originally implemented for error estimation in a

h-/p-refinement framework. Here, the adjoint solution together with the primal

solution is used to calculate the Hadamard form (3.19) directly.

3.5.1. High order grid generation and perturbation

The Hadamard form only depends on quantities at the wall and especially includes

geometrical quantities like the normal vector. To gain maximum accuracy in this

high order framework, it is therefore necessary to approximate the shape of the

airfoil appropriately. Later on, calculations up to a polynomial degree of N = 5 will

be shown which also require meshes of sufficient order. For this investigation the

grid is set up in the following way: Basis is a very fine structured linear hexahedral

mesh which only has straight faces. This fine grid is agglomerated to a spatially

coarser grid where multiple cells are combined to a single element with curved

boundaries, see figure 3.2. Even so the resulting grid is coarser in the sense of

32

3.5. Numerical comparison

Figure 3.2.: Generation of curved meshes by agglomerating multiple straight grid

cells to a single grid cell of fourth polynomial order.

number of elements, the geometrical information is preserved in the curvature of

the elements. The flow solver internally builds a fourth order polynomial mapping

for each coarse element which maps the reference element to the physical element.

Hence, the boundary of each element is a polynomial of fourth order and the airfoil

a piecewise curve of such polynomials.

The results obtained from the Hadamard form of the shape derivative of the

cost function are validated with first order finite differences. They are computed

by modifying the mappings from the reference element to the physical elements

for each wall boundary element separately. For all modifications a separate flow

solution is performed. Together with a baseline flow this enables the evaluation of

finite differences for all edges at the airfoil. The mappings are transformed using

a polynomial f satisfying at the wall boundary

f (0) = 0, f ′(0) = 0,

f (1) = 0, f ′(1) = 0,

f (0.5) = ε,

where ε is the finite difference step-length and the line segment in physical dimen-

sions is normalized to the interval [0, 1] with midpoint 0.5. The conditions that

the derivative f at the corners of the element should be zero ensure a smooth

transition between the elements. The other conditions define the “height” of the

deformation, which is the step size of the finite differencing in the middle of the

edge and of course must be zero at the corners of the element. An exaggerated

visualization of such a deformation “bump” is plotted in figure 3.3. Defining such

a polynomial f for all elements at the airfoil enables the computation of finite

differences for each edge individually.

33

3. Shape derivative for the compressible Navier–Stokes equations

Figure 3.3.: Exaggerated visualization of the deformation “bump” of an airfoil

along a single edge.

Since the Hadamard form in equation (3.19) and the cost function are bound-

ary integrals, a Gauss quadrature rule is needed to evaluate them numerically.

To preserve the overall accuracy, a quadrature rule of order eight is used which

results in nine quadrature points along each edge of the airfoil. This very high

order for the numerical quadrature allows precise integration even of products of

multiple polynomials of order five or lower and is sufficient for all terms in the

Hadamard form (3.19). The shape gradient in Hadamard form is evaluated at all

these points, at first without multiplying it with the normal amount of the vector

field (V ·n). Since all other quantities in the Hadamard form are independent from

the factor (V · n), only a single primal and a single adjoint solve are needed for

this calculations. To compare this shape gradient with the results from the finite

differences, each polynomial deformation f is transformed into an effective phys-

ical boundary movement, represented by a corresponding vector field V . For all

edges of the airfoil the above shape gradient is then multiplied with the respective

(V · n) term to build the Hadamard form, which can be compared to the finite

difference results directly.

3.5.2. Test and verification setup

The verification of the shape derivatives in Hadamard form is performed on the

ADIGMA MTC3 test case [86], where a flow of Mach M = 0.5 and a Reynolds

number of Re = 5000 around a NACA0012 airfoil with an angle of attack

α = 2.0◦ is computed. This test case is already included in the PADGE frame-

work and very suitable for this investigations since it is thoroughly verified. The

computational grid consist of 1640 curved cells with 40 curved boundary edges

of polynomial degree four representing the airfoil. The influence of accuracy of

34

3.5. Numerical comparison

Position 1Position 2 Position 3Position 4

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2
10−4

10−3

10−2

10−1

100

Step size of finite differences

d
J

(Ω
;V

) F
D
−
d
J

(Ω
;V

) H
a
d
a
m
a
rd

Position 1

Position 2

Position 3

Position 4

Figure 3.4.: Error of FD-shape gradient versus shape gradient in variational

Hadamard form over different FD step sizes at four different po-

sitions.

the numerical solution to the Hadamard form is studied using different polyno-

mial degrees for the Galerkin ansatz of the primal solution ranging from three

to five. The adjoint solution is computed with a polynomial degree being always

one degree higher, so four to six. For each polynomial degree the shape deriva-

tive in Hadamard form is verified with finite differences computed with the same

polynomial degree, which are computed in the following way. With the above

“bump”-functions f , each edge of the profile is disturbed individually and a flow

computation is performed to calculate the drag and lift coefficient corresponding

to a modification of the respective edge. An extra baseline computation gives the

drag and lift coefficients for the original geometry, which is then used to build the

finite differences for each edge. This process requires a big numerical effort, since

it already needs 41 complete flow calculations for this simple example to build

the shape gradient with finite differences. It is clear that evaluating the shape

derivative in this way in a more complex or even in a three dimensional setting

is impossible and already for this small example requires a lot of computational

time.

35

3. Shape derivative for the compressible Navier–Stokes equations

−1 −0.5 0 0.5 1

−2

−1

0

Position on airfoil

F
in

it
e

d
iff

er
en

ce
s

o
f

d
ra

g
co

effi
ci

en
t

ε = 10−3 ε = 10−5 ε = 10−7 ε = 10−9 ε = 10−12

−1 −0.5 0 0.5 1
−20

−10

0

10

20

30

Position on airfoil

F
in

it
e

d
iff

er
en

ce
s

o
f

lif
t

co
effi

ci
en

t

Figure 3.5.: Finite differences of the shape gradient for drag and lift coefficient

at five different step sizes.

Another drawback of the finite difference approach is the step size ε. A priori,

the absolute value one has to take is absolutely unknown and has to be deter-

mined with numerical experiments. Therefore, the absolute difference of the shape

derivative in variational Hadamard form and the finite differences is computed for

step sizes ranging from 10−12 to 10−3 at four different positions of the airfoil.

Thus, this value can be interpreted as error of the finite differences with respect

to the varying perturbation parameter ε. These errors are plotted in figure 3.4.

Even so there is a quite substantial error at the nose of the airfoil, one can see

that for ε between 10−9 and 10−5 all curves are flat. This means that the error in

this region is independent from the chosen step size. However, the absolute values

of these errors differ a lot between the four positions and it is per se unclear if

the behavior is the same for other positions, for example on the bottom side of

the airfoil. In figure 3.5, therefore, the finite differences of the shape gradient are

plotted as a function of the spacial position to fixed perturbation sizes ε. To stay

within the bounds of the possible numerical effort only five different step sizes are

analyzed for all positions. In total this requires the computation of over 200 flow

solutions. Since the curves for ε = 10−5, 10−7 and 10−9 perfectly coincide both

for drag and lift coefficient the conclusions are the same as above. Consequently,

the step size for the finite difference reference solution to validate the Hadamard

form was chosen to be ε = 10−7 which is between the lower and upper bound of

the suitable range and is very robust with respect to cancellation errors.

36

3.5. Numerical comparison

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

Position on airfoil

S
h

a
p

e
d

er
iv

a
ti

ve
o

f
d

ra
g

co
effi

ci
en

t

Hadamard form (pointwise) Hadamard form (variational) Finite differences

−1 −0.5 0 0.5 1
−40

−20

0

20

Position on airfoil

S
h

a
p

e
d

er
iv

a
ti

ve
o

f
lif

t
co

effi
ci

en
t

Figure 3.6.: Shape gradient of drag and lift coefficient for a polynomial degree of

N = 3.

3.5.3. Comparison of the pointwise and the variational shape

derivative

The shape derivatives of the drag and lift coefficient in Hadamard form for the

variational and the pointwise approach are now compared to each other and to

the finite differences. Figure 3.6 shows on the left hand side the shape derivative

of the drag coefficient and on the right hand side the shape derivative of the lift

coefficient. All calculations in this plot are performed using a polynomial degree

of three for the primal solution. For both cost functions the variational approach

very nicely matches with the finite differences while the pointwise approach shows

noticeably deviations, especially at the leading edge of the airfoil.

Increasing the polynomial degree of the flow solution to N = 4, see figure 3.7,

leads to a better match of both Hadamard forms to the finite differences. How-

ever, there is still an unmissable gap between the pointwise approach and the

finite differences around the nose of the profile. In contrast to that, the agree-

ment of the shape derivative stemming from the variational approach with the

finite differences is remarkably good.

A further enhancement of the accuracy of the flow solution by increasing the

polynomial to N = 5 retains this trend. In figure 3.8, an excellent match between

the variational approach and the finite differences can be seen for both the drag

and the lift coefficient. For the pointwise approach the shape derivative of the

lift coefficient now also shows a good behavior. Nevertheless, for the drag coeffi-

37

3. Shape derivative for the compressible Navier–Stokes equations

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

Position on airfoil

S
h

a
p

e
d

er
iv

a
ti

ve
o

f
d

ra
g

co
effi

ci
en

t

Hadamard form (pointwise) Hadamard form (variational) Finite differences

−1 −0.5 0 0.5 1
−40

−20

0

20

Position on airfoil
S

h
a

p
e

d
er

iv
a

ti
ve

o
f

lif
t

co
effi

ci
en

t

Figure 3.7.: Shape gradient of drag and lift coefficient for a polynomial degree of

N = 4.

cient there is still an obvious difference, even so this difference diminished when

compared to the lower degree cases. This behavior of the pointwise approach in

contrast to the variational approach can be explained as follows. The primal and

adjoint flow solver used to calculate the numerical solution is a Discontinuous

Galerkin solver, which is based on the weak form of the Navier–Stokes equa-

tions equations. Hence, it is only capable of computing a solution that fulfills the

governing equations in a weak sense and not in the strong pointwise manner.

Therefore, it is clear that the comparison of the shape derivative of the vari-

ational approach with the finite differences already for a polynomial degree of

N = 3 shows a very good agreement. In contrast to that, the shape derivative of

the pointwise approach starts with a poor accordance and becomes better with

each refinement step even so it does not reach the same accuracy as the vari-

ational approach. The reason for this improvement is that for higher polynomial

degrees, the governing equations are computed more accurately and therewith,

the solution becomes closer in fulfilling the pointwise equations.

Having accurate shape derivatives at hand, the natural next step is to apply

them in a real design optimization. A recent trend in the field of optimization is

the one-shot optimization method, where primal and dual iteration of the flow

solver are executed simultaneously and even the design update is performed in

each iteration [33, 74, 76]. Hence, shape gradients are evaluated for inexact

and not fully converged flow and adjoint solutions until the residuals go to zero.

38

3.5. Numerical comparison

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

Position on airfoil

S
h

a
p

e
d

er
iv

a
ti

ve
o

f
d

ra
g

co
effi

ci
en

t

Hadamard form (pointwise) Hadamard form (variational) Finite differences

−1 −0.5 0 0.5 1
−40

−20

0

20

Position on airfoil

S
h

a
p

e
d

er
iv

a
ti

ve
o

f
lif

t
co

effi
ci

en
t

Figure 3.8.: Shape gradient of drag and lift coefficient for a polynomial degree of

N = 5.

Therefore, using the appropriate shape derivative, which matches to the weak

formulation the flow solver is based on, is of crucial importance. In [48] the

here presented shape derivatives are applied to an one-shot airfoil optimization

comparable to the above setting, where it is additionally coupled with an adaptive

mesh refinement strategy. What remains is the application to flow situations where

a strong solution is questionable and the full benefit of the variational approach

should be visible. This is especially the case for high mach flows involving a shock

or flow discontinuity. Due to limitations in the flow solver PADGE used for the

above results, it is not possible to compute such cases. This would require a stable

shock capturing for the Discontinuous Galerkin method as it will be presented in

chapter 5.

39

4. Discontinuous Galerkin spectral element

method

In the previous chapter shape derivatives for the Navier–Stokes equations have

been presented. The numerical results were limited to subsonic cases since the

used flow solver lacked a proper shock capturing for its Discontinuous Galerkin

method. To overcome this restriction a shock capturing for the Discontinuous

Galerkin method will be presented in chapter 5. This shock capturing is imple-

mented into the open source flow solver FLEXI 1 developed in the Numerics Re-

search Group (NRG) of the Institute of Aero- and Gasdynamics (IAG) at the

University of Stuttgart. The flow solver FLEXI is based on the Discontinuous

Galerkin spectral element method, which is briefly introduced in this chapter to

give a suitable foundation for the formulation of the shock capturing afterwards.

The Discontinuous Galerkin method was originally proposed by Reed and Hill

[68] in 1973. It is a combination of Finite Element (FE) and Finite Volume (FV),

where all elements are independently approximated with local high order ansatz

functions. Since this leads to possible discontinuous states at element interfaces,

the elements are coupled using numerical fluxes, which are well-known from the

Finite Volume method. This idea of coupling different domains weakling was even

earlier, in 1971, introduced by Nitsche [61]. Later, Cockburn and Shu developed

in a series of papers [15, 16, 18, 19, 20] a solid theoretical framework for the

Discontinuous Galerkin scheme.

The Discontinuous Galerkin method is based on the weak formulation of the

Navier–Stokes equations in equation (2.7), already transformed to the reference

space. The main difference to the FE method is that the states are allowed to

be discontinuous across element interfaces, which leads to double-valued states

at the interface between two elements. To obtain an overall conservative scheme

and handle these double valued states, the interface fluxes have to be uniquely

defined for both adjacent elements and therefore, they are approximated with flux

functions based on Riemann solvers known from the Finite Volume method. In the

weak formulation of equation (2.7) the flux at the element interfaces is replaced

with a numerical flux ((F c −F v) · N)∗, which is indicated with a superscript

1www.flexi-project.org

41

https://www.flexi-project.org

4. Discontinuous Galerkin spectral element method

asterisks and leads to the following equation∫
E

JutΦ dξ −
∫
E

F · ∇Φ dξ +

∫
∂E

(F · N)∗Φ dSξ = 0, (4.1)

where additionally for simplicity the convective flux F c and the viscous flux F v
are combined in a single flux F = F c−F v . This equation is now discretized using

polynomial tensor product ansatz functions.

Remark 4.1. Comparing the Discontinuous Galerkin method to the Finite Ele-

ment method, the double-valued states at the interface lead to a larger number

of degrees of freedom. This introduces, especially for lower polynomial degrees

of the ansatz and test functions, a significant extra cost, but has the following

advantages. While the FE method has a global mass matrix, the mass matrix of

the DG method is local and cheaper to invert. For the Discontinuous Galerkin

spectral element method, as considered here, the mass matrix becomes diagonal

and therefore trivial to invert. The second advantage of the non unique states is

the ability to introduce interface fluxes which allow to prefer one state over the

other depending on the flow direction, also known as upwinding.

4.1. Numerical approximation

The solution inside each element E is approximated by a polynomial tensor product

basis of degree N in each space direction

u(ξ, t) ≈
N∑

i ,j,k=0

ûi jk(t)ψi jk(ξ), (4.2)

where ûi jk(t) are the nodal degrees of freedom and

ψi jk = `i(ξ
1)`j(ξ

2)`k(ξ3)

are the tensor product basis functions consisting of the one-dimensional Lagrange

interpolation polynomials

`i(ξ) =

N∏
k=0
k 6=i

ξ − ξk
ξi − ξk

,

which are defined by the nodes of the Gauss quadrature rule {ξi}Ni=0 in the interval

[−1, 1]. The Lagrange interpolation polynomials fulfill the Lagrange property

`i(ξj) = δi j ∀i , j = 0, . . . , N. (4.3)

42

4.1. Numerical approximation

0

ξ1

ξ2

1

1

ûi ju(−1, ξ2j)

u(ξ1i , 1)

Figure 4.1.: DG reference element E in two space dimensions for a polynomial

degree of N = 3 with Gauss points and locations of the boundary

fluxes at the DG interface.

This property will be used later several times to simplify the derivation of the

discrete DG scheme. Since this is a Galerkin scheme, for the test function Φ the

basis functions φ = ψi jk are used.

The same approximation as for the solution is used for each component of the

contravariant fluxes Fm

Fm(u,∇u) ≈
N∑

i ,j,k=0

F̂mijkψi jk(ξ), (4.4)

where F̂mijk is the nodal interpolation of the m-th component of the flux at the

i jk-th node, which is calculated by evaluating the physical flux with the nodal

values and transforming it using the metric terms

F̂mijk =

3∑
m=1

Jamd (ξ1
i , ξ

2
j , ξ

3
k)Fd(u(ξ1

i , ξ
2
j , ξ

3
k),∇u(ξ1

i , ξ
2
j , ξ

3
k)).

For the approximation of the fluxes at the element interfaces the solution at

the element boundaries is needed. Since the Gauss interpolation points are all

located inside of the element, the solution must be extrapolated to the element

boundaries. Due to the tensor product structure of the ansatz functions this can

be done one-dimensionally along the ξ1-, ξ2- and the ξ3-lines. A two dimensional

example is given in figure 4.1. With the boundary states of two adjacent elements,

the numerical flux is then calculated in every flux point of their interface using

Riemann solvers.

43

4. Discontinuous Galerkin spectral element method

These approximations for the solution and the fluxes can now be inserted into

the integrals of the weak formulation, which are approximated in the following

by using the Gauss quadrature rule. Since the interpolation is already based on

Gauss points, the integration can use the same points. With this collocation of

interpolation and integration as well as the Lagrange property (4.3) the formulas

will be significantly simplified. In the next three subsections the approximations

are consecutively inserted into the three integrals of the weak formulation (4.1).

4.1.1. Time derivative integral

Inserting the approximation of the solution (4.2) into the integral of equation (4.1)

containing the time derivative leads to

∂

∂t

∫
E

JuΦ dξ =
∂

∂t

∫ 1

−1

∫ 1

−1

∫ 1

−1

J(ξ)

N∑
m,n,o=0

(ûmnoψmno(ξ))ψi jk(ξ) dξ1 dξ2 dξ3

∀i , j, k,

where the integration over the reference element is split into the three coordinate

directions. Approximating these integrals with the Gauss quadrature and inserting

the tensor product definition of the ansatz functions yields

=
∂

∂t

N∑
λ,µ,ν=0

J(ξλµν)

N∑
m,n,o=0

ûmno `m(ξ1
λ)︸ ︷︷ ︸

δmλ

`n(ξ2
µ)︸ ︷︷ ︸

δnµ

`o(ξ3
ν)︸ ︷︷ ︸

δoν

ψi jk(ξλµν)ωλωµων

=
∂

∂t

N∑
m,n,o=0

J(ξmno)ûmnoψi jk(ξmno)ωmωnωo ∀i , j, k,

where {ωi}Ni=0 are the weights of the Gauss quadrature. Inserting the same tensor

product basis for the test functions and again using the Lagrange property gives

=
∂

∂t

N∑
m,n,o=0

J(ξmno)ûmno `i(ξ
1
m)︸ ︷︷ ︸

δim

`j(ξ
2
n)︸ ︷︷ ︸

δjn

`k(ξ3
o)︸ ︷︷ ︸

δko

ωmωnωo

=J(ξi jk)
∂ûi jk
∂t

ωiωjωk ∀i , j, k.

(4.5)

44

4.1. Numerical approximation

4.1.2. Volume integral

For the volume integral of the weak formulation (4.1), the scalar product can be

written as the sum of the three contravariant flux components∫
E

F · ∇Φ dξ =

3∑
d=1

∫
E

Fd ∂φ
∂ξd

dξ.

Since all three integrals of this sum have the same structure one can exemplarily

consider only the integral in the first direction d = 1. After inserting the approx-

imation of the fluxes (4.4) and the test function one gets∫
E

F1 ∂φ

∂ξ1
dξ =

∫
E

N∑
m,n,o=0

F̂1
mnoψmno(ξ)

∂ψi jk(ξ)

∂ξ1
dξ.

Using the tensor product basis, the Gauss quadrature and the Lagrange property

yields∫
E

F1 ∂φ

∂ξ1
dξ =

N∑
λ,µ,ν=0

N∑
m,n,o=0

F̂1
mno `m(ξ1

λ)︸ ︷︷ ︸
δmλ

`n(ξ2
µ)︸ ︷︷ ︸

δnµ

`o(ξ3
ν)︸ ︷︷ ︸

δoν

∂ψi jk(ξλµν)

∂ξ1
ωλωµων

=

N∑
λ,µ,ν=0

F̂1
i jk

∂ψi jk(ξλµν)

∂ξ1
ωλωµων

=

N∑
λ,µ,ν=0

F̂1
i jk

∂`i(ξ
1)

∂ξ1

∣∣∣∣
ξ=ξ1

λ

`j(ξ
2
µ)︸ ︷︷ ︸

δjµ

`k(ξ3
ν)︸ ︷︷ ︸

δkν

ωλωµων

= ωjωk

N∑
λ=0

F̂1
λjk

∂`i(ξ
1)

∂ξ1

∣∣∣∣
ξ=ξ1

λ

ωλ.

(4.6)

Defining the differentiation matrix

Dab =
∂`b(ξ)

∂ξ

∣∣∣∣
ξ=ξa

with a, b = 0, . . . , N

one can interpret the last sum in equation (4.6) as one-dimensional matrix vector

product. Repeating the last steps also for d = 2 and d = 3 the whole volume

integral becomes∫
E

F · ∇Φ dξ

= ωjωk

N∑
λ=0

F̂1
λjkDλiωλ + ωiωk

N∑
µ=0

F̂2
iµkDµjωµ + ωiωj

N∑
ν=0

F̂3
i jνDνkων . (4.7)

45

4. Discontinuous Galerkin spectral element method

4.1.3. Surface integral

Similar to the volume integral, the surface integral can be split into the different

directions in reference space and be evaluated at ξ1 = {−1, 1}, ξ2 = {−1, 1} and

ξ3 = {−1, 1} independently∫
∂E

(F · N)∗Φ dSξ =

[∫ 1

−1

∫ 1

−1

(F · N)∗Φ dξ2 dξ3

]1

ξ1=−1

+

[∫ 1

−1

∫ 1

−1

(F · N)∗Φ dξ1 dξ3

]1

ξ2=−1

+

[∫ 1

−1

∫ 1

−1

(F · N)∗Φ dξ1 dξ2

]1

ξ3=−1

.

(4.8)

To keep the derivation simple only the ξ1 = 1 face is investigated. All other faces

are treated the same way. At the ξ1 = 1 face, the outward pointing normal vector

in the reference element is given by N = (1, 0, 0)> and the numerical flux reduces

to

F · N = F1.

Given the surface element ŝ and the unit normal vector in physical space n by

ŝ =

√√√√ 3∑
d=1

(
Ja1

d(1, ξ2, ξ3)
)2
, nd =

Ja1
d

ŝ

and with the transformation from equation (2.6) this flux can be written as

F1 =

3∑
d=1

Ja1
d(1, ξ2, ξ3)Fd(1, ξ2, ξ3) = (F · n)ŝ ,

where F is the physical flux. Using Riemann solvers f ∗(uL, uR, n) in the physical

normal direction n, the numerical flux can be expressed as

(F · N)∗ = (F · n)∗ŝ = f ∗(uL, uR, n)ŝ ,

which only depends on the left and right state at the interface and the unit normal

vector. Again this flux is approximated at Gauss points, but this time in Gauss

points at the respective interface as depicted in figure 4.1

(F · N)∗ =

N∑
m,n=0

[f ∗(uL, uR, n)ŝ]
+ξ1

m,n `m(ξ2)`n(ξ3), (4.9)

46

4.1. Numerical approximation

where the superscript +ξ1 indicates the ξ1 = 1 face and the subindices m, n de-

note the evaluation of the Riemann solver at the m, n-th Gauss point, with the

respective states and physical normal vector in these positions. Inserting equa-

tion (4.9) and the test function into corresponding part of equation (4.8) and

using Gauss quadrature as well as the Lagrange property (4.3) results in∫ 1

−1

∫ 1

−1

(F · N)∗Φ dξ2 dξ3

∣∣∣∣
ξ1=1

=

N∑
µ,ν=0

 N∑
m,n=0

[f ∗ŝ]
+ξ1

m,n `m(ξ2
µ)︸ ︷︷ ︸

δmµ

`n(ξ3
ν)︸ ︷︷ ︸

δnν

 `i(1) `j(ξ
2
µ)︸ ︷︷ ︸

δjµ

`k(ξ3
ν)︸ ︷︷ ︸

δkν

ωµων

= [f ∗ŝ]
+ξ1

j,k `i(1)ωjωk ,

where the arguments of the Riemann solver where omitted. Repeating these steps

for all other faces finally gives the whole surface integral∫
∂E

(F · N)∗Φ dSξ =
(

[f ∗ŝ]
+ξ1

j,k `i(1)− [f ∗ŝ]
−ξ1

j,k `i(−1)
)
ωjωk

+
(

[f ∗ŝ]
+ξ2

i ,k `j(1)− [f ∗ŝ]
−ξ2

i ,k `j(−1)
)
ωiωk

+
(

[f ∗ŝ]
+ξ3

i ,j `k(1)− [f ∗ŝ]
−ξ3

i ,j `k(−1)
)
ωiωj .

(4.10)

4.1.4. Semi-discrete formulation

Putting equations (4.5), (4.7) and (4.10) together, the semi-discrete formulation

of the weak formulation, where the time is still continuous, becomes

∂ûi jk
∂t

= − 1

Ji jk

[
N∑
λ=0

F̂1
λjkD̂iλ +

(
[f ∗ŝ]

+ξ1

j,k
ˆ̀
i(1)− [f ∗ŝ]

−ξ1

j,k
ˆ̀
i(−1)

)

+

N∑
µ=0

F̂2
iµkD̂jµ +

(
[f ∗ŝ]

+ξ2

i ,k
ˆ̀
j(1)− [f ∗ŝ]

−ξ2

i ,k
ˆ̀
j(−1)

)

+

N∑
ν=0

F̂3
i jνD̂kν +

(
[f ∗ŝ]

+ξ3

i ,j
ˆ̀
k(1)− [f ∗ŝ]

−ξ3

i ,j
ˆ̀
k(−1)

)]
,

(4.11)

where the precomputed one-dimensional operators are defined by

ˆ̀
i =

`i
ωi
, D̂i j = −ωi

ωj
Di j , i , j = 0, . . . , N.

47

4. Discontinuous Galerkin spectral element method

Each of the lines of equation (4.11) corresponds to the operator for one space

dimension and the extension to higher space dimensions or the restriction to

the two or one-dimensional case is straightforward. This dimension-by-dimension

structure of the semi-discrete operator is a direct consequence of the tensor

product ansatz in conjunction with the collocation of interpolation and integration

points.

4.1.5. Gradient approximation for second order equations

For the above derivation of the Discontinuous Galerkin spectral element method,

the convective flux F c(u) and the viscous flux F v (u,∇u) were combined to a

single flux F to keep the notation simple. As long as the governing equation is a

first order equation that only depends on the solution u and not on the gradient of

the solution ∇u, like the Euler equations, the semi-discrete formulation (4.11) is

sufficient for the approximation of this equation and can directly be implemented.

Nevertheless, the viscous flux of the Navier–Stokes equations depends on the

gradient of the solution. The idea is to rewrite the second order equation into a

first order system and then apply the same DG discretization also for the additional

gradient quantity. This procedure is called lifting and, therewith, leads to a DG

scheme inside of the original DG scheme. In this work for the numerical flux of the

gradient equation the BR1 or BR2 scheme of Bassi and Rebay [7, 8] is used. A

short summary of the BR1 discretization for DGSEM can be found in [39]. For a

more detailed view, including a comparison of BR1 and BR2, one may read [38].

4.2. Time integration

So far, time is still a continuous quantity and the whole derivation of the Dis-

continuous Galerkin method above is independent of the time integration used to

advance the solution numerically in time. In general, any suitable time integration,

implicit or explicit, can be used. The implementation in this work is restricted to

the explicit Runge-Kutta time integration. Based on the work of Williamson [91],

who developed two-register Runge-Kutta schemes, Kennedy et al. [49] derived

five-stage fourth order methods that have optimized coefficients, especially for the

compressible Navier-Stokes equations. Low storage explicit Runge-Kutta schemes

of third and fourth order are used in this work. These have time step restrictions

depending on the spatial discretization, the physical element sizes and fastest

signal velocities.

48

4.3. Overview of the implementation

4.2.1. Time step restriction

The time step of the explicit Runge-Kutta time integration is a direct result of

the CFL condition by Courant, Friedrichs and Lewy [21] and reads

∆t ≤ CFL · αRK(N)
∆x

λc(2N + 1)
, (4.12)

where CFL is the CFL number, ∆x the physical element size, λc the maximal

signal velocity and αRK(N) a scaling factor of the Runge-Kutta time integration

for the Discontinuous Galerkin method that depends on the polynomial degree N

of the spatial discretization. The factor 1
2N+1

takes into account the fact that the

DOFs inside an element are not distributed equidistantly [17]. The CFL number

for this explicit method has to be chosen smaller than 1 to get a stable solution.

The maximal signal velocity λc is given by the eigenvalues of the inviscid Euler

equations and depends on the fluid velocity v and the sound speed c

λc = max(v − c, v , v + c).

In the implementation, the above inequality (4.12) is transformed to the reference

space and therewith the minimum element size becomes 2, which is the size of

the reference element in each space direction. This transformation of course

changes the fluid velocity and the sound speed by the metric terms, but the

overall structure remains the same.

The time step restriction in equation (4.12) is only valid for convection domi-

nated problems, described by the hyperbolic part of the Navier–Stokes equations,

the Euler equations. For the parabolic terms of the Navier–Stokes equations one

has to consider an additional viscous time step restriction [27]

∆t ≤ DFL · βRK(N)
∆x2

λv (2N + 1)2
, (4.13)

where λv denotes the maximal eigenvalue of the diffusion matrix, DFL is the

counterpart of the CFL number for diffusion and βRK(N) is a scaling factor of

the Runge-Kutta time integration for the diffusion.

To guarantee stability one has to take the global minimum of these two time

steps.

4.3. Overview of the implementation

The Discontinuous Galerkin scheme using explicit Runge-Kutta time integration

can be implemented as shown in figure 4.2. The outer loop is the time integration

49

4. Discontinuous Galerkin spectral element method

u

Extrapolate u→ u−, u+ 1.MP I

2. other

SendS→M : u
+

Lifting Flux
1.MP I

2. other

Lifting Volume Operator

Lifting Surface Integral

Extrapolate ∇u→ ∇u−,∇u+ 1.MP I

2. other

ReceiveM←S: u
+

SendM→S: Lifting Flux

ReceiveS←M : Lifting Flux

SendS→M :∇u+

Volume Operator DG

Fluxes
1.MP I

2. other

ReceiveM←S:∇u+

SendM→S: Flux

Surface integral
1. other

2.MP I ReceiveS←M : Flux

∂u
∂t

ex
p
lic
it
R
u
n
g
e
K
u
tt
a
ti
m
e
in
te
g
ra
ti
o
n

Figure 4.2.: Flow chart of the Discontinuous Galerkin operator.

50

4.3. Overview of the implementation

loop. Based on the solution u, the DG operator calculates the derivative of this

state ∂u
∂t

with respect to time, which is used in the Runge-Kutta time integration

to advance in time. Step-by-step, the DG operator computes the single terms of

the semi-discrete formulation (4.11). This will be explained for a parallel execu-

tion of the code where each processor computes a certain portion of all elements

in the domain. The communication between the processors is performed by the

Message Passing Interface (MPI). First of all, the solution is extrapolated from

the inner volume Gauss points to the interfaces of the elements. This is done for

all so called slave MPI interfaces at first so that the solution at these interfaces

can be transmitted immediately from this processor to the adjacent one. The

labels ’master’ and ’slave’ are assigned to the two adjacent elements of an inter-

face. Even so there are two states at the interface, one extrapolated from the

master and one from the slave element of an interface, the flux at the interface

is of course computed only once. The flux evaluation is always performed on the

master side. Hence, the slave side must provide the extrapolated solution at the

interface first. To distinguish the master and slave states they are marked with

superscripts ·− and ·+. At MPI interfaces the slave state must be transmitted to

the processor holding the master element. After starting this non-blocking com-

munication, the solution is extrapolated to all the other sides. This division of

the extrapolation operator into MPI and non-MPI interface enables the start of

the communication as early as possible and therewith hides the communication

of the face solution behind the calculation of the extrapolation to the non-MPI

interface. This technique of split and hide is necessary to achieve a good parallel

performance and is applied to the subsequent communications as well.

The next block contains the lifting operator which calculates the gradients of

the solution using the BR1 or BR2 scheme of Bassi and Rebay. As stated above,

this requires a Discontinuous Galerkin method for the gradient equation which

consists of the same components as the overall DG method. First, the flux for

the lifting is computed. This is done using the already received face states of the

adjacent elements. Again this is done only on one of the two sides of an interface

and therefore the lifting flux has to be sent from the master to the slave elements.

During this transmission the volume operator of the lifting is evaluated to hide

the communication. Afterwards, the lifting surface integral can be calculated. By

this, the gradient is given as a polynomial defined on the same Gauss interpolation

points as the solution, but for the calculation of the fluxes it is later also needed at

the interfaces. Therefore, the last step of the lifting is to extrapolate the gradients

to the interfaces and again send them from the slave to the master elements.

While the transmission of the gradients is going on the volume operator, which

is the evaluation of the volume integral from equation (4.7), is performed.

51

4. Discontinuous Galerkin spectral element method

After that, the face gradients of the solution should be received and the fluxes

can be calculated. This is done using Riemann solvers and corresponds to the

evaluation of the f ∗ terms in equation (4.10). Again, first for the MPI interfaces

to start the transmission of the fluxes from the master to the slave elements as

early as possible.

The last step is to integrate the fluxes over the surface, as in equation (4.10).

This time this is done for the non-MPI interfaces first since this gives some extra

time for the flux transfer.

4.4. Nonconforming meshes using mortar interfaces

The application of numerical methods to more realistic examples beyond aca-

demic test cases introduces several additional restrictions. Besides difficulties like

nontrivial boundary conditions or initial conditions, the approximation of rather

complex geometries is an issue that especially becomes crucial in the mesh gener-

ation process. On the one hand the Discontinuous Galerkin method allows, due its

high order, the use of quite large elements in comparison to low order methods.

On the other hand fine geometrical structures require small cells to resolve the

surface of obstacles. This conflict can partly be resolved by using curved elements

to represent the geometry. Besides this, the most interesting parts of the flow

often arise due to the interaction of the fluid with the objects. Hence, quite small

elements are needed around the geometry to properly resolve these flow features.

In contrast to that, the farfield normally is quite smooth and can be handled with

large elements. For a computational efficient method it is therefore necessary to

reduce the costs by coarsening the grid in the smooth parts of the domain and

only refine the regions of interest. To achieve this, the ability of handling non-

conforming interfaces gives the user a huge benefit and a big freedom in the mesh

generation process.

For the discontinuous spectral element method Kopriva [52] introduced the

mortar technique to handle non-conforming interfaces. The idea is to split the face

of a large element into smaller faces of the adjacent little elements. Restricting the

division to only halving the big face one ends up with at most three different types

of mortar faces in 3D. A big face can be halved vertical or horizontal or in both

directions, see figure 4.3. These types on the one hand keep the implementation

as simple as possible and on the other hand are very common in mesh generators

for non-conforming, purely hexahedral meshes.

52

4.4. Nonconforming meshes using mortar interfaces

η

ξ

(a) Type 1

η

ξ

(b) Type 2

η

ξ

(c) Type 3

Figure 4.3.: All three possible mortar types. The first and second types only have

a different reference direction by which the interface between the big

and the two small elements is split. The last type is a combination

of the types 1 and 2.

4.4.1. Mortar interfaces for DG

The introduction of mortar interfaces into DGSEM, where the possible non-

conforming interfaces are restricted to the three cases of figure 4.3, is quite

easy. The basic idea is to interpolate the solution of the big side to virtual small

sides which are conforming with the small sides of the adjacent smaller elements.

Due to the fact that the virtual face and the face of the small element match,

the face solution of the small element and the solution from the big element (on

the virtual face) are conforming and can directly be used to calculate the flux on

the small side. This is done using the same Riemann solvers as for the conform

case. On each small side this flux can then be applied to the small side element

immediately. For the big side the small side fluxes are projected to the big side

and then applied to the big element. In short this reads:

1. Interpolation of big side solution to the small virtual sides.

2. Use Riemann solvers to calculate fluxes on small conform sides.

3. Apply fluxes to small elements.

4. Project small side fluxes to big side and apply to big element.

As explained above, the steps 2 and 3 are preformed on conform faces and do not

differ from the respective steps of a solver without mortar interfaces. Therefore,

53

4. Discontinuous Galerkin spectral element method

η

ξ

Interpolatio
n

Proje
ction

Figure 4.4.: Interpolation points at a mortar interface. Fluxes are always com-

puted on the points of the small sides.The solution of the big side

(at black dots) must be interpolated to both small sides individually.

Therefore, virtual small sides (magenta triangles and green squares)

are introduced which store the interpolated solution of the big side.

The flux is computed on the conforming small sides and then pro-

jected back to the big side.

only the steps 1 and 4 are of interest and will be explained in the following. Besides

this, due to the tensor product structure, it is sufficient to concentrate on type 1

only. For type 2 one just applies the operators in the other space direction. Type 3

finally is the concatenation of type 1 and 2 operators.

In figure 4.4 the interpolation points of the big side (black dots) and of the

two adjacent small sides as well as the virtual sides (magenta triangles, green

squares) for a type 1 mortar interface, where the big side is split in ξ direction,

are visualized. It is clear that the positions in η direction for all three involved faces

are the same. Therefore, the solution must only be interpolated to new positions

in ξ direction. The Gauss points in the reference interval [−1, 1] are mapped to

the left and right half of this interval using the mappings

[−1, 1]→ [−1, 0]

ξ 7→ ξ − 1

2

and

[−1, 1]→ [0, 1]

ξ 7→ ξ + 1

2

.

54

4.4. Nonconforming meshes using mortar interfaces

With these mappings, the ξ-coordinates of the interpolation points ξL and ξR of

the two small sides in the coordinate system of the big side are given by

ξL ∈
{
ξBi − 1

2
: i = 0, . . . , N

}
, ξR ∈

{
ξBi + 1

2
: i = 0, . . . , N

}
,

where the superscripts B,L and R denote the big, left and right sides. Using the

same superscripts also for the nodal degrees of freedom one can interpolate the

discrete big side solution uB to the positions of the interpolation points of the

left (magenta triangles) and right (green squares) side, which gives the discrete

solutions in the respective small coordinate system

uL[i , j] =

N∑
λ,µ=0

uB[λ, µ]`λ(ξLi) `µ(ηj)︸ ︷︷ ︸
δµj

=

N∑
λ=0

uB[λ, j]`λ(ξLi)

uR[i , j] =

N∑
λ,µ=0

uB[λ, µ]`λ(ξRi) `µ(ηj)︸ ︷︷ ︸
δµj

=

N∑
λ=0

uB[λ, j]`λ(ξRi),

where the notation [i , j] is used to access the i , j-th entry of an array. Defining

the matrices

ILiλ = `λ(ξLi), ξLi ∈
{
ξBi − 1

2
: i = 0, . . . , N

}
,

IRiλ = `λ(ξRi), ξRi ∈
{
ξBi + 1

2
: i = 0, . . . , N

}
,

one can write the interpolation of the nodal values from the big side to the nodal

values of the two small side as

uL[i , j] =

N∑
λ=0

IL[i , λ]uB[λ, j]

uR[i , j] =

N∑
λ=0

IR[i , λ]uB[λ, j],

where for each fixed j this is a matrix vector multiplication. Using the colon to

denote all entries of the specific index this can be written short as matrix vector

multiplications for fixed j ’s

uL[:, j] = IL[:, :] · uB[:, j], uR[:, j] = IR[:, :] · uB[:, j] ∀j. (4.14)

Due to the fact that the matrices IL and IR only depend on the one-dimensional

interpolation to the left/right half, these matrices can directly be used for the

55

4. Discontinuous Galerkin spectral element method

type 2 mortar interface as well, where the big side is halved in η-direction. Using

the superscript U (up) and D (down) to label the upper and lower half one gets

uD[i , :] = IL[:, :] · uB[i , :], uU [i , :] = IR[:, :] · uB[i , :] ∀i ,

where for the η-direction the i-index is fixed. The only difference between these

two types is the direction in which the operators are applied or in a discrete sense

on which index the matrix-vector multiplications are performed.

Concatenating the type 1 and type 2 operations yields the interpolation to the

four type 3 quadrants. For example, the interpolation to the upper left quadrant

can be achieved by applying the IL matrix to the already interpolated upper half

solution uU .

After interpolating the solution of the big side to the small sides, the flux can

be evaluated using the Riemann solvers of the conform case. The functions for

the flux computation do not even have to know that the data originally comes

from a non-conform interface. The fluxes then can directly be integrated over

the two small sides separately and be applied to the DOFs of the respective small

elements. For the big element side the fluxes of the two small side must first be

projected to the big side. This is done using L2 projection, following the ideas

of [52]. Again only the type 1 case, where the ξ-direction is halved, is investigated.

In the coordinate system of the big side, the L2 projection corresponds to finding

the flux that satisfies∫ 1

−1

∫ 0

−1

(
f B(ξB, η)− 2 · f L(2ξB + 1, η)

)
Φ dξB dη

+

∫ 1

−1

∫ 1

0

(
f B(ξB, η)− 2 · f R(2ξB − 1, η)

)
Φ dξB dη = 0, ∀Φ,

where f B, f L and f R denote the fluxes on the big side and the left and right small

sides. The factor 2 in front of the small side fluxes f L and f R is the scaling factor

between the reference coordinate systems of the big and the respective reference

coordinate system of the small sides. Shifting the terms containing f L and f R to

the right hand side and rewriting them in the coordinate system of the respective

small side yields∫ 1

−1

∫ 1

−1

f B(ξB, η)Φ dξBη =

∫ 1

−1

∫ 1

−1

f L(ξL, η)Φ
(
ξL−1

2
, η
)

dξL dη

+

∫ 1

−1

∫ 1

−1

f R(ξR, η)Φ
(
ξR+1

2
, η
)

dξR dη, ∀Φ.

56

4.4. Nonconforming meshes using mortar interfaces

Inserting the approximation of the fluxes and the function Φ as well as replacing

the integration with Gauss quadrature leads to

N∑
λ,ν=0

N∑
i ,j=0

f Bij `i(ξ
B
λ)︸ ︷︷ ︸

δiλ

`j(ην)︸ ︷︷ ︸
δjν

`m(ξBλ)︸ ︷︷ ︸
δmλ

`n(ην)︸ ︷︷ ︸
δnν

ωλων

=

N∑
λ,ν=0

N∑
i ,j=0

f Lij `i(ξ
L
λ)︸ ︷︷ ︸

δiλ

`j(ην)︸ ︷︷ ︸
δjν

`m

(
ξL
λ
−1

2

)
`n(ην)︸ ︷︷ ︸
δnν

ωλων

+

N∑
λ,ν=0

N∑
i ,j=0

f Rij `i(ξ
R
λ)︸ ︷︷ ︸

δiλ

`j(ην)︸ ︷︷ ︸
δjν

`m

(
ξR
λ

+1

2

)
`n(ην)︸ ︷︷ ︸
δnν

ωλων , ∀m, n.

Due to the Lagrange property (4.3) this reduces to

f Bij =

N∑
λ=0

f Lλj`i

(
ξL
λ
−1

2

) ωλ
ωi

+

N∑
λ=0

f Rλj `i

(
ξR
λ

+1

2

) ωλ
ωi
, ∀i , j. (4.15)

Defining the projection matrices

P Liλ = `i

(
ξλ−1

2

) ωλ
ωi

and PRiλ = `i

(
ξλ+1

2

) ωλ
ωi

∀i , λ = 0, . . . , N

the projection (4.15) reads as matrix-vector multiplication

f B[:, j] = P L[:, :] · f L[:, j] + PR[:, :] · f R[:, j], ∀j, (4.16)

which must be applied to all indices j separately. Again, one can see that as a

result of the tensor product ansatz the projection is an one-dimensional operation

which can be applied dimension by dimension. For the type 2 mortar interface,

where the split is in η-direction, the projection matrices must be just applied to

the second index. Finally the type 3 mortar interface is again the concatenation of

these to operations. For a more general view on the mortar interfaces, including

different polynomial degrees at the interface, the reader is referred to [52].

57

5. Shock capturing for the Discontinuous

Galerkin method

High order methods in general, but especially the Discontinuous Galerkin method

presented in the previous chapter, have restricted capabilities to resolve shock

waves or other flow discontinuities. They can be extended to such flow situations

with a variety of different techniques which are generally summarized under the

term shock capturing. An improper shock capturing in the DG implementation of

the PADGE code prevented the application of the shape derivative from chapter 3

to flow cases including shocks. Even so, the Discontinuous Galerkin method allows

discontinuities particularly at the element boundaries, the high order polynomials

representing the solution are unable to resolve inner cell jumps without oscillations.

To show an example, figure 5.1 presents the density of the Sod shock tube problem

after a single time step. This example is initialized with piecewise constant data in

the left and right half of the domain, where the discontinuity is perfectly located at

an element boundary. After a single time step of the DG method, the polynomial

of degree N = 5 immediately starts to oscillate since the scheme is not able to

resolve the propagation of the developing elementary waves.

To circumvent this issue different shock capturing approaches for the Discon-

tinuous Galerkin scheme are available, but they all have the aim in common to

diminish the oscillations that are generated from the high order polynomials for

discontinuous data. One technique is to apply so called artificial viscosity [64, 6,

66], which adds viscosity locally to the original equations with the intention of

smearing the solution such that it can be properly resolved by the polynomials.

This approach was originally proposed by von Neumann and Richtmyer [90] for fi-

nite difference schemes. An adaption of this to high order Discontinuous Galerkin

schemes, which eliminates the high frequencies without widening the shock over

a several cells, was invented by Persson and Peraire [64].

Another approach is to combine the DG method with weighted essentially

non-oscillatory (WENO) schemes. This idea was introduced by Qiu and Shu [67],

who used a Hermite WENO method as limiter for Runge-Kutta DG schemes in

shock regions. With the same concept Balsara et al. [5] extended this to hybrid

RKDG+HWENO schemes, where they used indicators on sub-cells to detect the

troubled zones. One limitation of these schemes, especially for parallel compu-

59

5. Shock capturing for the Discontinuous Galerkin method

0 0.2 0.4 0.6 0.8 1

0.5

1

x

D
en
si
ty

initial solution

DG solution

Figure 5.1.: The density of the Sod shock tube example for the pure DG scheme

immediately starts oscillating after a single time step (t = 0.005).

tations, is that the size of their stencil increases with an increasing polynomial

degree and hence, the amount of required communication between processors

may become a crucial factor.

A further technique for shock capturing it to reduce the polynomial degree of

the elements containing a discontinuity to low order. This is often combined with a

local mesh refinement to keep the overall resolution, leading to the so called h-/p-

refinement [3, 9]. This idea of spatial refinement with lower order ansatz functions

was also exploited by Huerta et al. [41], where they extend the polynomial ansatz

space with piecewise constant functions (low order) in sub-cells (h-refinement)

of the original DG element. The basic concept of the h-/p-refinement is that the

reduction to lower order polynomials decreases the oscillations and the spatial

refinement compensates the loss in overall resolution.

A special variant of the last approach is presented in this section. The general

idea is to replace the DG method in troubled elements with the Finite Volume

(FV) scheme, which is perfectly suited to resolve shocks. For the FV method the

solution in a cell is represented as a single integral mean value. Hence, only re-

placing the DG method in shock containing elements with the FV scheme would

lead to a big loss of resolution, since the information of all DOFs of a DG el-

ement would be compressed into a single state. Therefore, the DG element is

subdivided into several FV sub-cells such that each sub-cell contains exactly one

nodal DOF of the DG scheme, see figure 5.2. This leads to (N + 1)d sub-cells in

the d-dimensional space and there are two main reasons for choosing exactly this

subdivision of a DG element. First, the usage of the same number of FV sub-cells

as the number of DOFs of a DG element enables to reuse the same data struc-

60

5.1. Finite Volume method on sub-cells

tures for both methods. Therewith, the solution can be stored in the same array

independent of the scheme which is used to update an element. This technique is

mandatory for an efficient implementation in a massive parallel environment. The

second reason also concerns the efficiency of the scheme in a parallel environ-

ment. One big issue for a good scaling of computations on multiple processors is

an even distribution of load among the processors. Therefore, the computational

effort needed to update a DG element or a FV sub-cells element should be the

same. Otherwise, travelling shocks would lead to strong load imbalances which

would require a redistribution of the load among the processors. The costs for

such load balancing steps cannot be neglected and they affect the overall per-

formance gravely. Therefore, the aim is to build a shock capturing that does not

require a load balancing.

Remark 5.1 (Finite Volume sub-cells element). The entirety of Finite Volume

sub-cells a DG element is split into, are called a ”FV sub-cells element”. This can

be abbreviated in the following by omitting either ”FV”, ”sub-cells” or ”element”.

From the context or the plural of sub-cells it should always be clear that the whole

block of Finite Volume sub-cells inside a DG element is meant. Especially the term

”FV element” is not referring to a single FV sub-cell, but to the entire original

element split up into sub-cells. If only a specific single FV sub-cell is addressed,

the plural ’s’ is of course missing as well as the word ”element”.

The derivation of the FV sub-cell shock capturing for Discontinuous Galerkin

methods in this chapter is given for the two dimensional case, even though the

implementation is so far 3D only. This keeps the notations and explanations simple

and since everything is based on the tensor product structure of the DG method,

the extension of the theory to any higher space dimension is straightforward.

5.1. Finite Volume method on sub-cells

The Finite Volume sub-cells method, like the Discontinuous Galerkin method in

chapter 4, is derived in reference space. The reference element of the DG method

is split into (N + 1)2 Finite Volume sub-cells such that for each Gauss point of

the original DG interpolation there is one Finite Volume sub-cell. In general, the

distribution of the sub-cells inside the reference element can be arbitrary, but here

only two natural choices are investigated, see figure 5.2. The first way is to use

the weights {ωi}i of the Gauss integration from the DG method as widths of

the sub-cells in reference space. The second distribution is equidistant where all

widths are of the same size and are given by

w =
2

N + 1
,

61

5. Shock capturing for the Discontinuous Galerkin method

ω0

ω0

ω1

ω1

ω2

ω2

ω3

ω3

(a) Gaussian distributed FV sub-cells

w

w

w

w

w

w

w

w

(b) Equidistant distributed FV sub-cells

Figure 5.2.: DG reference element split into FV sub-cells with Gauss points

of the original DG reference element, locations of the inner and

the interface boundary fluxes as well as the sizes ωi and w of the

sub-cells.

where 2 is the edge length of the reference element ranging from −1 to 1. In both

cases the sub-cell corresponding to the i j-th Gauss point is labeled with κi j . Even

so the sub-cells for the equidistant case are of the same size in reference space,

they can become differently sized under the mapping to physical space, e.g. due

to an inner cell stretching or a curving of the mesh. The Gaussian distribution

of FV sub-cells was already covered in [84] and hence the focus will be on the

equidistant case in the following.

Based on the transformed conservation law in reference space from equa-

tion (2.5), the Finite Volume sub-cells method is now formulated. Each sub-cell

κi j becomes a control volume in the finite volume context and after integration

over this sub-cell the equation reads∫
κi j

Jut dξ +

∫
κi j

∇ξ · F(u) dξ = 0 ∀κi j ∈ E.

To get rid of the divergence in the second integral, the divergence theorem is

applied to this term∫
κi j

Jut dξ +

∫
∂κi j

F(u) · N dSξ = 0 ∀κi j ∈ E. (5.1)

Until now the solution u is still continuous and will be discretized in space for the

numerical scheme in the following.

62

5.1. Finite Volume method on sub-cells

Remark 5.2 (Block unstructured FV method). The Finite Volume sub-cells inside

a DG element can be interpreted as a block of Finite Volumes sub-cells. Each DG

element then becomes a block and using FV sub-cells everywhere one ends up

with a blockwise Finite Volume method on unstructured curved hexahedral blocks.

The blocks all have the same number of Finite Volume elements and are coupled

through Riemann solvers to each other.

5.1.1. Discretization

During the computation a shock may travel into a DG element and the algorithm

must switch this DG element to Finite Volume sub-cells. To get an overall con-

servative scheme, the switching from DG to FV and back must not lead to a loss

or growth in the conservative quantities. Therefore, the Finite Volume discretiza-

tion must ensure to keep the integral mean value of the solution over each DG

element constant during this switching process. This is especially the case if the

integral mean value ∫
E

u dξ =

∫
E

uDG dξ =

∫
E

uFV dξ (5.2)

of both discretization, DG and FV, is the same. For a numerical scheme this prop-

erty must be enforced discretely. Inserting the approximation of the DG method

from equation (4.2) into equation (5.2) this reads∫
E

u dξ =

∫
E

N∑
i ,j=0

ûi jψi j(ξ) dξ

=

N∑
λ,µ=0

N∑
i ,j=0

ûi j `i(ξ
1
λ)︸ ︷︷ ︸

δiλ

`j(ξ
2
µ)︸ ︷︷ ︸

δjµ

ωλωµ =

N∑
i ,j=0

ûi jωiωj , (5.3)

where the integration over the reference element is performed with Gauss quadra-

ture.

The Finite Volume formulation in equation (5.1) is now discretized for the two

investigated distributions of FV sub-cells, Gaussian and equidistant. New degrees

of freedom, which take the role of the average cell values in the Finite Volume

context, are introduced and labeled with a double-dot hat

ˆ̈ui j

to distinguish them from the DOFs with a single hat ûi j of the DG method.

The approximation of the Finite Volume formulation has to be chosen such that

the Finite Volume DOFs ˆ̈ui j fulfill the above integral mean value condition in

equation (5.2).

63

5. Shock capturing for the Discontinuous Galerkin method

5.1.1.1. Finite Volume discretization for Gaussian sub-cells

For the discretization of Gaussian sub-cells, the sizes of the sub-cells in reference

space correspond to the weights of the Gauss integration rule used in the Dis-

continuous Galerkin method. As explained above, the integral mean value is of

major importance for conservation. Assuming that the state inside each sub-cell

is constant and using the midpoint rule for integration leads to

∫
E

u dξ =

N∑
i ,j=0

∫
κi j

ˆ̈ui j dξ =

N∑
i ,j=0

ˆ̈ui jωiωj , (5.4)

where the average value inside each sub-cell is the corresponding DOF ˆ̈ui j and the

sizes of the sub-cell κi j are ωi in ξ-direction and ωj in the η-direction, respectively.

Comparing equations (5.3) and (5.4) one directly sees that the degrees of freedom

of the FV sub-cells method are the same as for the DG method. The nodal

representation {ûi j}Ni,j=0 = {ˆ̈ui j}Ni,j=0 can be interpreted as DG solution and as FV

sub-cells solution at the same time, which is the main advantage of the Gaussian

distributed sub-cells over the equidistant distributed sub-cells.

5.1.1.2. Finite Volume discretization for equidistant sub-cells

In contrast to the Gaussian distribution, the degrees of freedom for the equidistant

FV sub-cells differ from the DOFs of the DG method. The conversion between

the FV and the DG discretization can be reduced to matrix-vector multiplications,

which are applied dimension by dimension in a tensor product fashion. Therefore,

and due to simplicity, the following derivation of the involved matrices can be

performed in the one-dimensional case. In this case the reference element of the

DG method reduces to the interval [−1, 1] and for all terms/variables including

indices i , j , the j-index is omitted. The Finite Volume sub-cells of the reference

interval are then given by

[−1 + k · w,−1 + (k + 1) · w] ∀k = 0, . . . , N,

where w = 2
N+1

is the width of all sub-cells. The integral mean value of the

solution is now split into these parts of the reference element

∫
E

u dξ =

∫ 1

−1

u dξ =

N∑
k=0

∫ −1+(k+1)·w

−1+k·w
u dξ.

64

5.1. Finite Volume method on sub-cells

Inserting the DOFs of the FV scheme and numerical integrating over each FV

sub-cell individually with the midpoint rule then gives∫
E

u dξ =

N∑
k=0

∫ −1+(k+1)·w

−1+k·w
u dξ

!
=

N∑
k=0

w ˆ̈uk . (5.5)

To ensure that this approximation with FV sub-cells has the same integral mean

value as the Discontinuous Galerkin method, the DG approximation is inserted

into the sub-intervals on the left hand side of equation (5.5)

N∑
k=0

∫ −1+(k+1)·w

−1+k·w

N∑
i=0

ûiψi(ξ) dξ
!

=

N∑
k=0

w ˆ̈uk . (5.6)

The last step is to resolve the integrals over the sub-intervals on the left hand

side by numerical integration. Since the DG approximation is a polynomial of

degree N, a Gauss integration with N+ 1 points on the sub-interval is exact. The

respective Gauss integration points are defined by linearly mapping the original

Gauss points {ξi}i on the reference interval [−1, 1] to every sub-cell{
ξki

}N
i=0

=
{
−1 + k · w + (ξi + 1) · w

2

}N
i=0

∀k = 0, . . . , N,

where w
2

is the scaling factor between the reference interval [−1, 1] and the sub-

intervals, which all have the length w . Integrating numerically the sub-interval in

equation (5.6) with these sets of Gauss points one obtains

w

2

N∑
k=0

N∑
λ=0

N∑
i=0

ûiψi(ξ
k
λ)ωλ

!
=

N∑
k=0

w ˆ̈uk ,

where ωλ are the Gauss integration weights. Rearranging this equation leads to

N∑
k=0

w

[
N∑
i=0

{
1

2

N∑
λ=0

ωλψi(ξ
k
λ)

}
ûi

]
!

=

N∑
k=0

w ˆ̈uk .

Fulfilling this equation directly ensures discrete conservation and therefore this

equation is used to define the conversion from the DOFs of the Discontinuous

Galerkin method to the DOFs of the Finite Volume sub-cells method

ˆ̈uk :=

[
N∑
i=0

{
1

2

N∑
λ=0

ωλψi(ξ
k
λ)

}
ûi

]
∀k = 0, . . . , N. (5.7)

65

5. Shock capturing for the Discontinuous Galerkin method

The curly bracket in this definition can be interpreted as matrix where the k-th

row defines the conversion to the DOF of the k-th sub-cell and is given by

V dmFV :=

{
1

2

N∑
λ=0

ωλψi(ξ
k
λ)

}N

k,i=0

. (5.8)

With this Vandermonde matrix, the conversion from Discontinuous Galerkin de-

grees of freedom to Finite Volume reduces to a simple matrix-vector multipli-

cation in one space dimension. For higher space dimensions this operation can

be performed dimension by dimension, resulting in multiple matrix-vector multi-

plications. Nevertheless, the matrix is always fix and must only be precomputed

once for the polynomial degree N of the DG method before the simulation. In the

following matrices that interpolate or project solutions from one basis to another

are called Vandermonde matrices.

Multiplying equation (5.7) with the inverse V dmFV
−1 of the transformation

matrix directly gives the definition of the switching from a Finite Volume solution

back to a DG representation. In contrast to the Gaussian distributed sub-cells,

the DOFs for both methods are not the same and switching a DG element to FV

requires the application of V dmFV . These switching operations introduce on the

one hand additional computational tasks, but on the other hand the distribution of

Finite Volume sub-cells is uniformly. This overall regular pattern has advantageous

properties which are exemplarily shown in figure 5.3. Here a closeup view of

the curved shock front of the forward facing step example is presented for two

computations where only the distribution of the FV sub-cells is different. The

irregular pattern of the grid in the case of Gaussian distributed FV sub-cells leads

to small disturbances of the density in this case while the equidistant FV sub-cells

show a much smoother profile. This effect is related to the overall mesh resolution

and more or less vanishes for highly resolved simulations.

After deriving the degrees of freedom of the FV sub-cells and the respective

conversion matrices from Discontinuous Galerkin DOFs to Finite Volume DOFs

and vice versa in one space dimension, the following explanations are again for

the two dimensional case.

5.1.2. Approximation of the Finite Volume formulation

The Finite Volume discretization is now inserted into the Finite Volume formu-

lation from equation (5.1) and the integrals of this equation are approximated

numerically. First, the time derivative integral is approximated. Since the integral

mean value ˆ̈ui j inside the Finite Volume sub-cell κi j is constant, the numerical

66

5.1. Finite Volume method on sub-cells

0.3 0.6 0.9

0.2

0.5

0.8

0.3 0.6 0.9

0.2

0.5

0.8

0.2

6

2

4

ρ

Figure 5.3.: Closeup view of curved shock front of the forward facing step exam-

ple. The uneven distribution of the FV sub-cells for the Gaussian case

(left) introduces small disturbances into the solution. The density for

the equidistant FV sub-cells on the right is much smoother.

integration reduces to ∫
κi j

Jut dξ = ωiωjJi j
∂ˆ̈ui j
∂t

,

where Ji j is the integral mean value of the original Jacobian determinant J inside

the sub-cell κi j . Here, the more general case of the Gaussian distributed FV sub-

cells is used. To obtain the corresponding equations for the equidistant case, one

has to replace each of the widths ωi and ωj of the Gaussian distributed sub-cell

with the equidistant width w . All other parts remain the same.

The boundary integral of equation (5.1) is separated into the four edges of the

sub-cell. Integration along these edges is performed numerically with the midpoint

rule, resulting in∫
∂κi j

F (u) · N dSξ = ωj

(
fi− 1

2 ,j

(
u−, u+,N

)
+ fi+ 1

2 ,j

(
u−, u+,N

))
+ωi

(
fi ,j− 1

2

(
u−, u+,N

)
+ fi ,j+ 1

2

(
u−, u+,N

))
,

where e.g. f
(
u−, u+,N

)
i− 1

2 ,j
is the flux at the left edge of the i j-th sub-cell.

Putting the last two equations together, the Finite Volume sub-cells method

reads

ωiωjJi j
∂ˆ̈ui j
∂t

=− ωj
[
fi− 1

2 ,j

(
u−, u+,N

)
+ fi+ 1

2 ,j

(
u−, u+,N

)]
− ωi

[
fi ,j− 1

2

(
u−, u+,N

)
+ fi ,j+ 1

2

(
u−, u+,N

)]
.

(5.9)

67

5. Shock capturing for the Discontinuous Galerkin method

From this equation the extension to three space dimensions is easy to see. On

the left hand side one has to add ωk and add a third index k to i j . Besides doing

this for the right hand side as well, one has to insert a third square bracket term

for k ± 1
2

. Keep in mind that for the equidistant case all ωi , ωj and ωk have to

be replaced by w .

In both cases, equidistant and Gaussian distributed FV sub-cells, the time

derivative of the DOFs is integrated in time using the same Runge-Kutta time

integration as for the Discontinuous Galerkin method.

5.2. Time step restriction

In section 4.2.1 the time step restriction of the Discontinuous Galerkin method

for the Runge-Kutta time integration was derived. In this section, the influence

of the shock capturing with Finite Volume sub-cells on the time step restriction is

discussed. For other shock capturing techniques, for example the artificial viscosity

approach, it is well known that they can tremendously decrease the overall time

step [1]. Hence, a strict analysis for the here presented scheme is essential. For the

Discontinuous Galerkin Spectral Element Method with an explicit Runge-Kutta

time integration, the time step restriction was already given in equation (4.12)

and is repeated here

∆t ≤ CFL · αRK(N)

2N + 1

∆xDG
λc

.

This time step restriction is derived from the CFL condition. The same can be

done for the time step restriction of the Finite Volume method which then reads

∆t ≤ CFL · αRK(0)
∆xFV
λc

, (5.10)

where ∆xFV is the size of the FV sub-cells. The factor αRK(0) has to be in-

serted for the explicit Runge-Kutta scheme additionally, and in contrast to the

DG method it does not depend on the polynomial degree, but in fact is the value

for the DG scheme with a polynomial degree of N = 0.

To make both time step restrictions comparable to each other, the element

size of the (smallest) FV sub-cell is written as fraction of the DG element size.

For the two different distributions of the FV sub-cells this reads

∆xFV =
∆xDG
N + 1

and ∆xFV =
min(ω)

2
∆xDG

for the equidistant and the Gaussian case, respectively, where min(ω) is the min-

imal weight of the Gauss integration rule. The extra division by 2 is needed since

68

5.2. Time step restriction

0 5 10 15

10−1

100

N

fa
ct
o
r
o
f
ti
m
e
st
ep
re
st
ri
ct
io
n

αRK4(0)
N+1

(equidistant FV)

αRK4(0)·min(ω)
2

(Gaussian FV)

αRK4(N)
2N+1

(DG)

Figure 5.4.: Factors in the time step restriction for the FV sub-cells method and

the DG scheme. For all polynomial degrees and both distributions of

the FV sub-cells, the time step is bigger than the one for the DG

method.

the Gauss weights sum up to
∑N

i=0 ωi = 2. Substituting this into the time step

restriction of the FV method in equation (5.10) this condition becomes

∆t ≤ CFL · αRK(0)

N + 1

∆xDG
λ

or ∆t ≤ CFL · αRK(0)
min(ω)

2

∆xDG
λ

.

Comparing them to the time step restriction of the DG method in equa-

tion (4.12), the only differences are the following factors

DG equidistant FV Gaussian FV

αRK(N)

2N + 1

αRK(0)

N + 1
αRK(0)

min(ω)

2

.

In figure 5.4, these factors are plotted over the polynomial degree for a fourth

order explicit Runge-Kutta time integration.

In all cases the factor of the FV sub-cells method is greater than the factor

of the DG scheme. Hence, the shock capturing with the Finite Volume sub-cells

does not diminish the time step, but indeed can lead to bigger time steps if the

highest signal velocities λc are only present in FV sub-cell regions. For equidistant

sub-cells one might consider to increase the number of FV sub-cells to 2N + 1 in

each direction as this would still give larger time steps than for the DG method.

Dumbser et al. use this number of sub-cells in [24], but this has the disadvantage

of a completely changed data structure.

69

5. Shock capturing for the Discontinuous Galerkin method

DG

û+j

FV

ˆ̈u
−
j

Figure 5.5.: Coupling of a Discontinuous Galerkin element with Gaussian dis-

tributed Finite Volume sub-cells.

5.3. Coupling of Discontinuous Galerkin elements and Finite

Volume sub-cells

The Finite Volume method is dedicated to resolve shocks or high gradients in the

flow solution and should therefore only be applied in such regions. The troubled

zones are detected using indicators which will be explained in section 5.4. In

all other elements, the smooth parts of the domain, the Discontinuous Galerkin

method should be applied to benefit from the high order of this method. Therefore

in general, some parts of the domain are discretized with DG others with FV sub-

cells. Since both methods use numerical fluxes to couple elements, it is natural

to use them to couple regions with the two different methods.

The two different discretizations of the Finite Volume method in equidistant

and Gaussian distributed sub-cells need different couplings to DG elements. First,

the Gaussian distributed sub-cells are considered. In figure 5.5 a DG element and

an adjacent FV sub-cells element are plotted with a small gap between them,

even so they are connected through a single face. In this case, the flux points

of two adjacent elements are both distributed like the Gauss points of the inter-

polation/integration and therefore match. The flux computed with left and right

states {û+
j }j and {ˆ̈u−j }j can directly be used to update the DG element on the

left hand side and the FV sub-cells next to the interface on the right hand side.

In the case of an equidistant FV sub-cells element, the coupling with a DG

element is shown in figure 5.6. Here, the left and right states at the interface are

distributed differently. The left states {û+
j }j are distributed like the Gauss integra-

tion points along the interfaces while the right states {ˆ̈u−j }j are spread uniformly.

70

5.3. Coupling of Discontinuous Galerkin elements and Finite Volume sub-cells

û+j ˆ̈u
+

j

V
d
m
F
V

ˆ̈u
−
j

Figure 5.6.: Coupling of a Discontinuous Galerkin element with equidistant dis-

tributed Finite Volume sub-cells.

Since they do not match, the DG side has to be converted to match with the FV

side. This is done with the same Vandermonde matrix given in equation (5.8),

which is used to convert Discontinuous Galerkin DOFs to Finite Volume DOFs.

The only difference is that here it is applied to face data only and not to the

whole volume data. After this operation, the left and right states are given at the

same positions and the numerical flux can be evaluated using the Riemann solver.

Since these fluxes are computed at equidistant points, they can only be used on

the Finite Volume side directly to update the sub-cells next to the interface. For

the Discontinuous Galerkin side of the interface, the fluxes must first be projected

to Gaussian distributed points. This is done using the inverse operator V dmFV
−1

of the conversion of the state from DG to FV. All these steps written in pseudo

code read

ˆ̈u
+

:= V dmFV · û+
(Interpolate DG solution to equidistant FV points)

ˆ̈f := Riemann solver
(

ˆ̈u
−
, ˆ̈u

+
,N
)

(Calculate numerical flux in FV points)

f̂ := V dmFV
−1 · ˆ̈f (Project flux from FV to DG points).

Therewith, all basic ingredients for a Discontinuous Galerkin shock capturing using

first order Finite Volume sub-cells are described. The only remaining component

to build a numerical scheme is the detection of the troubled DG elements that

should be treated with the FV sub-cells.

71

5. Shock capturing for the Discontinuous Galerkin method

5.4. Indicators

The Finite Volume sub-cells method is designed to be integrated into the high or-

der Discontinuous Galerkin algorithm with the aim to handle shocks or instabilities

that will produce non-physical solutions and finally blow up the high order com-

putation. This requires the knowledge when and where the DG method reaches

its limits and the FV sub-cells should take over the work. Basically, there are two

different approaches to detect the troubled elements: A posteriori and a priori.

The latter approach is used in [24] which is based on the MOOD approach [14].

In general, the idea is to compute each time step with the high order method

for all elements and mark the troubled cells, i.e. with a non-physical solution,

afterwards repeat this time step, but now update the marked cells with a low

order scheme. It is clear that this approach introduces a large additional amount

of extra work and requires a dynamic load balancing to resolve load imbalances

in a parallel setting. Therefore, in this work a posteriori indicators are used which

mark all elements that may become problematic after each time step. On the one

hand this might lead to unnecessarily marked elements, but on the other hand it

does not require a recomputation of every single time step.

The indicators used in this work are described in the following. All these func-

tions are modified in such a way that they return a low value in smooth regions of

the solution and indicate a shock with a high return value. The general idea is to

specify a threshold value which decides where to use the high order DG method

and where to used the shock capturing FV sub-cells. If the indicator value for a

Discontinuous Galerkin element becomes greater than the threshold, the solution

is converted to a Finite Volume sub-cells element. Or the other way round, if

the indicator value falls below the threshold, a FV sub-cells element becomes a

DG element again. Numerical studies showed that a single threshold value might

introduce numerical problems which occur if the indicator value is near the thresh-

old. In this case, after switching from DG to FV sub-cell and performing one time

step, the new indicator value may be on the opposite side of the threshold again

and directly lead to a switching back of the solution to the beforehand type.

This could introduce an alternating switching back and forth between the two

numerical methods which might introduce spurious artifacts. Therefore, the sin-

gle threshold is replaced by an upper and a lower threshold as visualized by the

range in figure 5.7. If the indicator value of a DG element becomes greater then

the upper threshold the solution of this element is switched to the FV sub-cells

method. The element keeps updating with the FV scheme until the indicator value

falls below the lower threshold. The range between the lower and upper threshold

prevents a permanent switching between the two methods.

72

5.4. Indicators

indicator value

time

lower threshold

upper threshold

DG FV DG

Figure 5.7.: To prevent a permanent switching between the DG and the FV sub-

cells method two thresholds are used. The solution switches from

DG to FV if the indicator value becomes greater then the upper

threshold and is only switched back to DG if the indicator value falls

below the lower threshold.

5.4.1. Persson indicator

In [64] Persson and Peraire developed a shock capturing for DG methods where

artificial viscosity should vanish in smooth regions. Therefore, they proposed a

sensor which is based on a representation of the solution in terms of a hier-

archical family of orthogonal polynomials. The basic idea is that for a smooth

solution the coefficients or modes decay very quickly. Since the approximation of

a discontinuity with polynomials leads to oscillations, they propose to take the

amount of the highest mode as a smoothness indicator. The indicator compares

the amount of solution represented only in the highest polynomial mode with the

whole solution up to this mode. Per element this indicator is defined as

S =
(U − Ũ, U − Ũ)L2

(U, U)L2

,

where (·, ·)L2 is the standard L2 inner product of an element and the numerical

solution U is given in a modal hierarchical basis of polynomials up to degree p. The

truncated expansion of this solution is Ũ and these expansions can be expressed

by

U =

N(p)∑
i=1

uiΨi and Ũ =

N(p−1)∑
i=1

uiΨi ,

73

5. Shock capturing for the Discontinuous Galerkin method

where N(p) denotes the total number of polynomial basis functions Ψ up to the

polynomial degree p. Defining the truncation to modes between a and b

[Ũ]ba :=

N(b)∑
i=N(a−1)+1

uiΨi

the indicator can be rewritten to

S =
([Ũ]pp, [Ũ]pp)L2

([Ũ]p1, [Ũ]p1)L2

.

Taking not only the amount of information in the highest mode into account

but also comparing the second highest modes and so on, the indicator can be

generalized to

IPersson = max

{
([Ũ]ii , [Ũ]ii)L2

([Ũ]i1, [Ũ]i1)L2

;i = p − k, . . . , p
}
,

which takes the maximal indicator value for all polynomial degrees of the k highest

modes. For the numerical examples in chapter 6, the Persson indicator refers to

this generalization with k = 2.

5.4.2. JST indicator

This indicator originates from the switching function of the Jameson-Schmidt-

Turkel scheme [45]. A three dimensional adaption to i jk-th Finite Volume sub-cells

or to the i jk-th DOFs of a Discontinuous Galerkin element reads

IJST(i , j, k) =
pmin,i jk − 2pi jk + pmax,i jk
pmin,i jk + 2pi jk + pmax,i jk

(5.11)

where pmin,i jk = min(pi±δid ,j±δdj ,k±δdk , d = 1, 2, 3) is the minimal pressure of the

neighboring nodal values of the node ξi jk and pmax,i jk the respective maximal value.

Equation (5.11) gives an indicator value for each FV sub-cell or DG degree of

freedom, but a single indicator value for the whole DG element is needed. Using

the volume weighted mean value of all nodal values, the single indicator value of

an element reads

IJST =
1

VElement

N∑
i ,j,k=0

IJST(i , j, k)Vi jk ,

where VElement denotes the volume of the whole DG element and Vi jk is the volume

of the i jk-th FV sub-cell. The JST indicator can of course be evaluated for other

74

5.5. Second order reconstruction

variables instead of the pressure, for example the density is also used for the

Navier–Stokes equations. In literature, the JST indicator is often called Jameson

indicator.

5.4.3. Ducros indicator

The JST indicator detects shocks by looking on the surrounding pressure differ-

ences of a point. In turbulent flow this may lead to wrong detection of turbulent

structures. To prevent the JST indicator from this misbehavior, Ducros et al. [23]

developed an additional sensor

IDucros =
(∇ · v)2

(∇ · v)2 + (∇× v)2 + ε
,

where ∇ · v is the divergence of the velocity vector field, ∇× v the vorticity and

ε = 1−15 a small constant that prohibits division by zero. This sensor is zero in

weakly compressible regions and goes to 1 near shocks. It can therefore be used

directly as a shock indicator or, as Ducros et al. suggested, be multiplied to the

JST indicator to exclude triggering of turbulence from the JST indicator.

5.5. Second order reconstruction

The major drawback of the Finite Volume method in contrast to the Discontinu-

ous Galerkin method is the order of accuracy. While the DG method can easily be

built for any polynomial degree (in theory, numerically there are some restrictions

due to the floating point arithmetic) the Finite Volume method, as derived above,

is only a first order method. Due to this poor accuracy, the results of this method

include numerical errors that might not be negligible. Especially the quite large

numerical dissipation smoothens the solution and destroys small flow features.

Therefore, the Finite Volume method should only be applied to regions where it

is unavoidable and this method has it strengths. This is the case in regions where

shocks or high gradients occur and where the total variation diminishing (TVD)

property guarantees stability by not introducing new extrema. The guaranteed

stability follows from the proof of Harten [34] that a total variation diminishing

scheme is monotonicity preserving. Since the overall stability of the scheme is of

major importance, any enhancement of the accuracy of the Finite Volume scheme

must retain the TVD property.

Nevertheless, the first order Finite Volume method can be extended to a second

order scheme without losing the TVD property. In the 1970’s van Leer introduced

75

5. Shock capturing for the Discontinuous Galerkin method

x

u

xi−1 xi xi+1

Figure 5.8.: Reconstruction of a linear polynomial using the slopes from cell cen-

ter to the cell centers of the adjacent cells (dashed lines). Using the

arithmetic mean value of these slopes as slope of the reconstructed

solution, generates a new maximum in this case. This violates the

total variation diminishing property of the scheme which may cause

instabilities.

in a series of papers [58, 54, 55, 56, 57] slope limiters to build higher order meth-

ods. The general concept is to approximate the solution inside a Finite Volume

cell as a linear polynomial instead of constant cell averages. The integral mean

values of the neighboring cells are used to reconstruct a linear solution within each

cell. Figure 5.8 shows a cell and its two neighboring cells in one space dimension.

The slopes from cell center to cell center of the adjacent elements are plotted as

dashed lines. Using the arithmetic mean of the two slopes as slope of the linear

reconstruction, generates in this case a solution that introduces a new maximum.

Therewith, the solution is not guaranteed to be stable, since the new maximum

violates the total variation diminishing property of the scheme.

Remark 5.3 (Reconstruction in primitive quantities). The reconstruction of slopes

can be performed directly on the numerical solution given in conservative quanti-

ties. Due to the nonlinearity of the conversion between primitive and conservative

quantities this has the drawback that even so the conservative quantities do not

generate new extrema, primitive quantities, for example the pressure, can drop

below zero. This negative pressure then enters the numerical flux computation

by the Riemann solver which will produce invalid results. Therefore, the limit-

ing can instead be performed on primitive quantities. For the numerical results

shown in chapter 6 density, velocity, pressure and temperature are limited and

reconstructed.

76

5.5. Second order reconstruction

5.5.1. Slope limiters

To ensure the total variation diminishing property of a second order Finite Volume

scheme, slope limiters are used. They prevent the generation of new extrema as

follows. Let xi−1, xi and xi+1 be the cell centers of three cells in one space dimen-

sion as shown in figure 5.8. The solution at these points are given by ui−1, ui , ui+1

and ∆xi±1 denote the distances between the cell centers. The slopes of the linear

reconstruction to the left and right of the i-th cell are then given by

si−1 =
ui − ui−1

∆xi−1
and si+1 =

ui+1 − ui
∆xi

.

The ratio of this successive slopes

ri =

ui−ui−1

∆xi−1

ui+1−ui
∆xi+1

(5.12)

is plugged into a limiter function Λ(ri) which is then used to limit the right slope

si in such a way that no new extrema occur. In general, the slope of the i-th cell

is computed by

si = Λ(ri)si+1.

Remark 5.4. On an equidistant mesh the distances between the cell centers are

the same and the ratio of the slopes reduces to ri =
ui−ui−1

ui+1−ui
, which is more often

used in literature to define limiter functions. Since here the mesh is arbitrary the

general definition from equation (5.12) is used.

In figure 5.9 the desired region for the slope of a limited FV cell is visualized.

The following description is for the limitation of the i-th cell in figure 5.9. The

three cells at xi−1, xi and xi+1 are not of the same size here to demonstrate the

general case. With ∆xi− 1
2

and ∆xi+ 1
2

, the distances from the cell center of the

i-th cell to its left and right boundary are denoted. Outgoing from the center

of the middle cell two different slopes to both neighboring cells are plotted. The

red slopes mark the maximal slopes that are allowed such that the slopes do not

generate new extrema on the boundary of the respective adjacent cell. The limiter

is prohibited to generate a slope that is steeper than any of the two involved red

lines. In contrast to that the green slopes, which are used to calculate the ratio ri ,

only mark a bound that should at least be reached to reconstruct a linear solution.

As a consequence of this, limiters fulfill

Λ(1) = 1

on a locally linear solution, which is the case when both slopes to the left and the

right are the same and the ratio ri becomes one. Due to the restriction of the

77

5. Shock capturing for the Discontinuous Galerkin method

x

u

xi−1 xi xi+1

∆xi−1 ∆xi+1

∆x
i− 1

2
∆x
i+ 1

2

ui−1

ui

ui+1

Figure 5.9.: Admissible region of the slopes to the left and right adjacent cell.

The reconstructed slope must not be steeper than any of the red

lines, but it is allowed to be flatter than the green lines.

upper bound (red), every limiter restricts the slope to zero at (local) minima or

maxima. This is the case when the ratio ri becomes negative as the signs of the

associated slopes differ

Λ(r) = 0 ∀r ≤ 0.

Following this explanation, the most simple limiter is the MinMod limiter [70]

which takes always the left or right slope with the smaller absolute value and zero

in case of different signs of these slopes

ΛMinMod(r) = max(0,min(1, r)).

Due to its simplicity and great numerical stability, the MinMod limiter is widely

used for computations involving shocks.

Another very common limiter is the Sweby limiter [88] which includes a param-

eter β ∈ [1, 2]. On an equidistant mesh, the limiter is given by

Λ(r) = max(0,min(βr, 1),min(r, β)). (5.13)

The parameter allows to vary the steepness of the limited slope. For β = 1

the Sweby limiter coincides with the MinMod limiter and for β = 2 it is the

Superbee limiter [69]. To transform this limiter to non-equidistant meshes one

78

5.5. Second order reconstruction

has to understand the single parts of equation (5.13). If the ratio r is negative,

both minimum functions are negative and the maximum function will select the

zero. In figure 5.9, the red lines indicate the maximal allowed slopes to the right

and left of the i-th cell such that it remains total variation diminishing to the

neighboring cell. On an equidistant mesh the red slopes are twice as much as

the respective green ones and therefore the β parameter of the Sweby limiter is

bounded by 2. For a β between 1 and 2 the Sweby limiter blends between the

MinMod and the Superbee limiter by reducing the red slopes to only 1.x times the

green slopes. The first minimum function of equation (5.13) chooses the smaller

of the red solid and the dashed green slope in figure 5.9. For min(βr, 1) = 1 it

takes the green dashed slope and for min(βr, 1) = βr the red solid one. Therefore,

it is clear that a modification of equation (5.13) for non-equidistant meshes must

not touch the 1 and only has to rescale the β in the first minimum function for

different cell sizes. On an equidistant mesh, β = 2 is just the ratio

∆xi−1

∆xi− 1
2

= 2.

Therefore, one has to rescale this β with
∆xi−1

2∆x
i− 1

2

for arbitrary cell sizes. The second

minimum function in equation (5.13) chooses between the green solid and the

red dashed line of figure 5.9. By the same reasoning only the β has to be rescaled

and the limiter function of the Sweby limiter on non-equidistant meshes becomes

ΛSweby (r) = max

(
0,min

(
βr

∆xi−1

2∆xi− 1
2

, 1

)
,min

(
r, β

∆xi+1

2∆xi+ 1
2

))
.

5.5.2. Reconstruction on curved meshes

In multiple space dimensions, a second order reconstruction requires the compu-

tation of slopes in every space direction. The basic approach is to build the slopes

to the neighboring elements in each space direction. This becomes even more

complicated if the mesh is stretched or curved. In contrast to the formulation of

the Finite Volume scheme on the reference element, the calculation of the slopes

must be done in physical space. This is necessary due to the slope limiting, where

the two slopes entering the calculation must be of the same scale. Otherwise, a

comparison like in the MinMod-limiter, which chooses the smaller slope, does not

make sense. Figure 5.10 illustrates the influence of the mapping of the equidis-

tant sub-cells of one element into physical space on the distances between FV

sub-cell centers. In this example lines in ξ-direction of the reference space are

mapped to spherical lines in physical space that are additionally stretched along

79

5. Shock capturing for the Discontinuous Galerkin method

Reference space: Physical space:

η

ξ
ξ

η

Figure 5.10.: A nonlinear mapping, e.g. due to a stretching, of a reference FV

sub-cells element to the physical space changes the ratio of lengths

and distances. Therefore, the limiting of slopes for the second order

reconstruction has to be built on the physical distances instead of

reference distances.

this direction. Due to the stretching, even so the reference element is divided into

equidistant sub-cells, the distances between two neighboring cell centers and the

distances from the cell centers to the intermediate faces are not the same.

All these required distances and lengths can be computed once in a preprocess-

ing step. Since the FV sub-cell algorithm inherits the tensor product structure

of the underlying DG method, the calculation of the distances can also be done

dimension by dimension. In the example of figure 5.10 the distances between the

cell centers in ξ-direction are visualized. These distances can be computed for

each index j of the η-direction by integrating along the ξ-direction. Let

Xη(ξ) : L→ C

[−1, 1] 7→ X(ξ, η)

be the mapping that maps the line L(ξ) = {(ξ, η)|ξ ∈ [−1, 1], η = fix} in ξ-

direction of the reference element to a curve C in the physical space. Using

definition 2.2, the physical length of the curve C can be computed with∫
C

1 ds =

∫ 1

−1

1

∥∥∥∥∂Xη(ξ)

∂ξ

∥∥∥∥
2

dξ.

80

5.6. Mortar interfaces

P

Figure 5.11.: Interpolation from the big side to two small virtual sides. The values

are just copied from a big side FV sub-cell to the two adjacent small

sub-cells.

The same can be done in any other coordinate direction of the reference space. Of

course integrating piecewise only parts of these lines is possible as well. There-

with, all distances and lengths can be computed from the Jacobian matrix of

the mapping X, which maps the reference space to the physical space by simply

integrating the norm of the covariant basis vectors from equation (2.4) along

one-dimensional lines in the reference space.

5.6. Mortar interfaces

In section 4.4, mortar interfaces have been introduced into the Discontinuous

Galerkin method to handle nonconforming meshes. To be able to apply the Finite

Volume sub-cells method in every element that needs a shock capturing, regardless

if it is placed at a mortar interface or not, it is necessary to define mortar interfaces

for FV sub-cell interfaces as well. Additionally, mixed mortar interfaces, where on

one side of the interface a FV sub-cells element and on the other DG elements

are located or vice versa, must be handled. Even quite complicated settings are

imaginable, where on the small elements side of a mortar interface different types,

DG of FV sub-cells, may coexist. In all cases the general strategy is the same

as for pure DG mortar interfaces from section 4.4. The solution from the big

side is interpolated to small virtual sides and on these small sides the flux is

evaluated. Afterwards, the small side fluxes are projection back to the big side.

In the following, mortar interfaces for pure FV/FV interfaces are introduced first

and thereafter all possible mixed interfaces are described.

81

5. Shock capturing for the Discontinuous Galerkin method

Following the approach for DG mortar interfaces, one must define only one-

dimensional interpolation and projection operators which are applied for the mor-

tar types 1 and 2 in the respective coordinate direction, or for type 3 are con-

catenated in both directions. Since everything takes place in the reference space,

there are two interpolation operators which interpolate the solution uB from the

reference interval [−1, 1] either to the solution uL on the left half [−1, 0] or to

uR on the right interval [0, 1] of the big element. The mean value inside a Finite

Volume solution is just copied to the adjacent two small sub-cells as shown in fig-

ure 5.11 and can be written like the DG case in equation (4.14) as matrix-vector

product

uL = ILFV · uB, uR = IRFV · uB.
The corresponding interpolation matrices ILFV and IRFV can be defined by taking

the unit matrix and doubling each line. The upper half of this (2N ×N)-matrix is

the interpolation matrix to the left interval [−1, 0] and the lower half to the right

interval [0, 1]. For the example, in figure 5.11 the matrices are given by

ILFV =

1 0 0

1 0 0

0 1 0

 and IRFV =

0 1 0

0 0 1

0 0 1

 . (5.14)

In three space dimension the interpolation operators are applied to the appropri-

ate dimensions of the three different mortar types. A detailed view on the three

dimensional case, including the three different mortar types, is already covered

in the Discontinuous Galerkin framework in section 4.4. The only difference be-

tween DG and FV sub-cells mortar interfaces are the interpolation and projection

matrices that are applied. On the small (virtual) sides, the flux is computed in the

general conform framework as before. These fluxes can be directly added to the

FV sub-cells of the small elements, but must be projected back to the big side.

The projection of the small side fluxes f L and f R to the big side is quite simple.

For one big FV sub-cell, the flux over the mortar interface is just the sum of the

two fluxes over the matching small sides. Thereby, the projection becomes a

matrix-vector multiplication as in equation (4.16)

f B = P LFV · f L + PRFV · f R.

The projection matrices P LFV and PRFV are just the transposed interpolation matri-

ces. Altogether, the mortar interfaces for FV sub-cells elements are treated the

same way as DG mortar interfaces with the only difference in the used matrices.

The last open question is the procedure at mixed DG and FV sub-cells mortar

interfaces.

82

5.6. Mortar interfaces

5.6.1. Mixed DG and FV sub-cells mortar interfaces

The basic strategy at mortar interfaces is to interpolate the solution to small

virtual sides and then compute the flux only at conform interfaces. At this level,

the coupling of DG and FV sub-cells is already given in section 5.3 and can be

summarized as follows

u+
FV := V dmFV · u+

DG (Interpolate DG solution to equidistant FV points)

fFV := Riemann solver(u−FV , u
+
FV ,N) (Calculate numerical flux in FV points)

fDG := V dmFV
−1 · fFV (Project flux from FV to DG points),

where u+
DG denotes the DG solution on the plus side and u−FV the FV solution on

the minus side. The solution from the DG side must be converted to a FV sub-

cells solution u+
FV , since the flux will be computed in FV interface points. This flux

fFV can be added directly to the FV sub-cells element, but for the DG element

it has to be projected back to the DG representation fDG first. The approach

for coupling adjacent conform DG and FV elements is applied the same way at

mortar interfaces.

The procedure for all different possible combinations of DG and FV elements at

a mortar interface is summarized in figure 5.12. In general, there are two different

settings. Either the big side element is a DG element (figure 5.12a), or a FV

sub-cells element (figure 5.12b). In both cases the solution is interpolated to the

small virtual sides, regardless of the adjacent element types. On the small sides

level, the interfaces are conforming and the coupling between DG and FV is done

as described in section 5.3. As long as a side of a FV sub-cells element is involved,

the flux must be computed in FV points. In this case a DG side solution must

be converted to FV points first using the Vandermonde matrix V dmFV . After

computing the fluxes on all small side, they must be projected back to the big

side. Therefore, the paths in figure 5.12 are taken backwards. But this time the

inverse Vandermonde matrix V dmFV
−1 and the projection matrices instead of the

interpolation matrices are used.

In case of a DG element at the big side, see figure 5.12a, the solution on the

big face is interpolated with the operators ILDG and IRDG to DG solutions on the

small virtual faces. For the left small virtual face, the adjacent element is a FV

sub-cells element and therefore the DG solution must be converted to FV using

the matrix V dmFV .

In the other case, the big side element is a FV sub-cells element, see fig-

ure 5.12b. The face solution from this element is interpolated to the small virtual

faces using the FV interpolation operators ILFV and IRFV . For the right small virtual

83

5. Shock capturing for the Discontinuous Galerkin method

u+BDG

ILDG ·

IRDG ·

u+LDG

u+RDG

V dmFV ·

u+LFV

u+RDG

Riemann

Riemann

u−LFV

u−RDG

(a) DG on the big side

u+BFV

ILFV ·

IRFV ·

u+LFV

u+RFV

Riemann

Riemann

u−LFV

u−RDG

u−LFV

u−RFV

V dmFV ·

(b) FV on the big side

Figure 5.12.: Procedure at mixed DG and FV sub-cell mortar interfaces. Basically,

there are two different setting: The big side element is a DG element

(a) or it is a FV sub-cells element (b). In each case the first step

is to interpolate the big side solution to the small virtual sides with

the appropriate operator. The flux computation is performed on

conforming small interfaces. If one side is a FV sub-cells side, the

flux is computed in FV points. In such a case, a DG side must be

interpolated to FV sub-cell points using the Vandermonde matrix

V dmFV .

face in this example, the adjacent element is a DG element and the DG solution

must be converted to FV using the Vandermonde V dmFV .

5.6.2. Edge local reconstruction at mortar interfaces

In the previous section the solution from a big side Finite Volume sub-cell at

a mortar interface is just copied to the two adjacent small virtual sides, see

figure 5.14a. This shifts the average cell value from the cell center of the big side

to the cell centers of the small virtual sides. As long as the solution of the big side

element has a non-zero slope along the mortar interface this leads to spurious

artifacts due to the different mesh resolutions, see the left plot of figure 5.13. To

reduce this problem the big side solution can be reconstructed along the mortar

interface to improve its resolution. With the aim to keep the following explanations

simple, the derivation is restricted to equidistantly distributed FV sub-cells. The

process for Gaussian distributed FV sub-cells follows the same approach.

84

5.6. Mortar interfaces

x

y

0.25 0.65

0

0.5

0.25 0.65

0

0.5

−0.08

0.08

0.00

0.08
ρ− ρexact

Figure 5.13.: Comparison of Finite Volume mortar interfaces without and with

the non-TVD reconstruction. The exact solution is constant in the

x- and linear in the y -direction and is advected in x-direction. The

difference between the numerical and the exact solution after a

single time step, which should be zero, is plotted. Left: without

reconstruction along the mortar interface. Right: with a non-TVD

reconstruction along the mortar interface.

Instead of only copying the big side solution to the small virtual sides, see

figure 5.14a, the big side solution is reconstructed along the mortar interface using

the inner slopes of the element. This is explained for the example in figure 5.14b,

where for a polynomial degree of N = 2 the solution of the three sub-cells at

the big side of the mortar interface have the values a, b and c. Assuming the flux

points of the big side have a distance of ∆y , the slopes along the mortar interface

from the first to the second and from the second to the third sub-cell are given

by

∇ab =
b − a

∆y
and ∇bc =

c − b
∆y

.

These slopes can also be computed by a matrix-vector product of the vector

(a, b, c)> with the matrix

M∇ :=
1

∆y

(
−1 1 0

0 −1 1

)
⇒

(
∇ab
∇bc

)
= M∇ ·

ab
c

 . (5.15)

For a TVD reconstruction one would now take these slopes and also the slopes

to the neighboring outer sub-cells of a and c respectively and limit them using

for example the MinMod limiter. Not only are the slopes to the neighboring outer

sub-cells not uniquely defined for unstructured meshes, this would also lead to a

85

5. Shock capturing for the Discontinuous Galerkin method

quite complicated communication structure over vertices of the mesh. Therefore,

the reconstruction proposed here is element local which leads to a loss of the

TVD property along the mortar interface. But in return, it can be condensed

into a single element local matrix. For the slopes in the outer sub-cell, there is

no choice except taking the slopes to the next inner sub-cell. To keep the overall

scheme symmetric, the slopes for inner sub-cells, here only b, are the mean values

of the two slopes to the neighboring sub-cells. Denoting with ∇a,∇b and ∇c the

slopes of the respective sub-cells along the mortar interface, this can be written

as the following matrix-vector multiplication∇a∇b
∇c

 = Mmean ·
(
∇ab
∇bc

)
with Mmean :=

 1 0

0.5 0.5

0 1

 . (5.16)

These slopes are now used to calculate a reconstructed solution at the small side

points, see figure 5.14b. They are ± 1
4

∆y apart from the big side flux point. For

the sub-cell a this is a− 1
4

∆y ·∇a and a+ 1
4

∆y ·∇a. Again, this is a matrix-vector

multiplication and the interpolation of the big side solution to the small virtual

left and right side including the non-TVD reconstruction can be written in total

as

uL =

aa
b

+ML ·

∇a∇b
∇c

 and uR =

bc
c

+ML ·

∇a∇b
∇c

 ,
where the matrices ML and MR are given by

ML := ∆y

− 1
4

0 0
1
4

0 0

0 − 1
4

0

 and MR := ∆y

0 1
4

0

0 0 − 1
4

0 0 1
4

 . (5.17)

The vectors (a, a, b)> and (b, c, c)> are just the result of the interpolation op-

erators ILFV and IRFV from equation (5.14) without the non-TVD reconstruction.

Inserting this and putting equations (5.15) to (5.17) together, the new inter-

polation from the big side to the small virtual sides that includes a non-TVD

reconstruction along the mortar interface reads

uL =
(
IL +ML ·Mmean ·M∇

)
uB and uR =

(
IR +MR ·Mmean ·M∇

)
uB.

The terms inside the parenthesis are (N + 1) × (N + 1) matrices that are so-

lution independent and can therefore be computed once before the simulation.

Figure 5.13 gives a good impression how well this reconstruction can diminish

the numerical errors that are introduced due to a jump in mesh resolution. The

extension to arbitrary polynomial degree N is straightforward.

86

5.7. Overview of the implementation

c

b

a

c

b

a

P

c

c

b

b

a

a

(a) without reconstruction

c

b

a

c

b

a

P

(b) with reconstruction

Figure 5.14.: Mortar interpolation of the solution from the big side to the small

virtual sides. Without a reconstruction along the mortar interface

this reduces to a simple copy of the solution to the adjacent small

virtual sides (a). This can be improved by using the slopes between

the sub-cells of the big side element to reconstruct a solution at

the flux points of the small virtual sides (b).

5.7. Overview of the implementation

In this section the integration of the Finite Volume sub-cell scheme into the

algorithm of the Discontinuous Galerkin scheme from section 4.3 is explained.

Comparing the semi-discrete formulations of the DG method in equation (4.11)

and the FV sub-cell method in equation (5.9) one can see that they share common

parts like the numerical fluxes, but overall they are quite different. The difficulty

of the incorporation of the shock capturing with FV sub-cells into the existing DG

implementation is to change the structure of the code as little as possible to keep

its good numerical performance. Therefore, common blocks of the FV scheme

and the DG method must be identified. Matching components of the FV scheme

should then be implemented into the respective routines of the DG operator.

The DG operator consists of two main parts, the volume integral, which is

an element local operation, and the surface integral, which couples adjacent DG

elements via the numerical fluxes. In contrast to that, for an update of a FV sub-

cell no volume integral but only surface integrals are computed. Nevertheless, the

special structure of the FV sub-cells inside a DG element can be exploited. The

faces of all sub-cells inside a DG element are of two different types. There are the

87

5. Shock capturing for the Discontinuous Galerkin method

u

Extrapolate u→ u−, u+ 1.MP I

2. other

SendS→M : 2u
+,Type

Lifting Flux
1.MP I

2. other

Lifting Vol. Op. / Inner Reconstr.

Lifting Surf Int. / Surf. Reconstr.

Extrapolate ∇u→ ∇u−,∇u+ 1.MP I

2. other

ReceiveM←S: 2u
+,Type

SendM→S: Lifting Flux

ReceiveS←M : Lifting Flux

SendM→S: interface slope

SendS→M :∇u+

Vol. Op. DG / FV inner faces
ReceiveS←M : interf. slope

Fluxes
1.MP I

2. other

ReceiveM←S:∇u+

SendM→S: Flux

Surface integral
1. other

2.MP I ReceiveS←M : Flux

∂u
∂t

ex
p
lic
it
R
u
n
g
e
K
u
tt
a
ti
m
e
in
te
g
ra
ti
o
n

Figure 5.15.: Flow chart of the hybrid Discontinuous Galerkin/Finite Volume sub-

cells operator. Procedures underlined in red are modified to perform

their specific task either for DG or FV elements. At the same time

the BR1/2 lifting of the DG elements is computed, the 2nd order

reconstruction of the FV sub-cells is built. The counterpart to the

DG volume integral are the fluxes over inner FV sub-cell interfaces.

Additional communication is required. Besides the information of

which type (DG or FV) an element at a MPI interfaces is, for the FV

reconstruction a second array of face data has to be transmitted,

which is indicated by the red numbers 2.

88

5.7. Overview of the implementation

faces that coincide with the faces of the DG element, from now on called outer

faces, and the remaining inner faces. All the FV sub-cells inside a DG element

can be understood as a block, see remark 5.2, where the numerical fluxes of the

outer faces connect the block to other blocks or DG elements and the inner faces

are a sort of volume operation of the block.

In figure 5.15 the modified algorithm is shown. The basic structure is the same

as for the DG scheme in figure 4.2. Therefore, only the differences to the DG

algorithm, marked in red, are explained. The extrapolation of the solution to the

interfaces of the elements changes for FV elements. Here the average cell values

from the sub-cells next to the interface are just copied to the boundary without a

reconstruction since the slope computation over the interface requires the states

of the adjacent elements which may not yet be available in a parallel setting. But

in preparation for the reconstruction over these interfaces, an additional face array

is filled which contains the slopes between the first and second sub-cell next to the

interface, or for DG elements the nodal values at the first Gauss points next to the

interface. As for the pure DG algorithm, the face state u− must be transmitted

from the slave to the master and additionally the array for the reconstruction.

Therefore, the amount of communication doubles, which is indicated by the red

number 2 in figure 5.15. Besides this, a single logical per interface is sent to tell

the master if the slave element is a DG element or a FV sub-cells element.

The next block contains the lifting operation for the DG method which consists

of a volume and a surface term. Since the lifting computes the gradients of the DG

elements it is appropriate to build the slopes for the second order reconstruction

in these routines. At the same time the routine of the volume operator of the

lifting is performed for DG elements, all inner slopes of the FV elements are

computed. Both operations are completely element local and are used to hide

the communication of the lifting flux. During the evaluation of the lifting surface

integral, the slopes over the interfaces can be computed using the additional

array that was filled beforehand. After that, the gradients are extrapolated to the

element interfaces, which needs the same modifications as for the states in the

first step. In fact, the same extrapolation procedure is used for the state and the

gradient. Additionally to the communication of the extrapolated gradients from

the slave to the master, the reconstructed slopes over the element interfaces

must be sent from the master to the slave, since the slave side needs them to

limit the slopes inside the FV sub-cells next to the interface.

While this communication proceeds, the volume operator of the DG elements

is evaluated to hide the transmission. For the Finite Volume sub-cells at all in-

ner faces, the numerical fluxes are computed and directly integrated over the

respective inner faces.

89

5. Shock capturing for the Discontinuous Galerkin method

Next, the numerical fluxes at the element interfaces are evaluated. At mixed

interfaces the state from the DG side must be interpolated to FV flux points

first. The flux computation with the Riemann solver in this routine does not

change since this just requires the left and right states. Then the fluxes have to

be projected back to DG points for the DG side.

In the last step the fluxes are integrated along the interfaces. This routine has

to be adapted for the Finite Volume sub-cells, but the basic method is the same.

All in all, the incorporation of the FV sub-cell method into the DG algorithm does

not affect the overall structure of the scheme. Many routines must be adapted

to be able to handle both types of discretizations. But due to the logical subdi-

vision of a DG element into a structured block of FV sub-cells there are always

analogous parts to the components of the DG operator. Even so the communi-

cation in a parallel setting increases, in comparison to the pure DG method, the

additional amount of data that must be transmitted is minimal and to hide these

communications the same techniques are used.

90

6. Numerical results

The shock capturing for the Discontinuous Galerkin Spectral Element Method

presented in the previous chapter is implemented in the open source computa-

tional fluid dynamics (CFD) solver FLEXI 1. The fundamental numerical method

of this solver is the DG scheme as given in chapter 4. Numerical results with

the Discontinuous Galerkin method of this code can, for example, be found in

[11, 10, 26]. They are limited to flow scenarios where no shocks or strong flow

discontinuities occur. Such cases, which require a shock capturing, are presented

in the following.

The FLEXI code is mainly developed in the Numerics Research Group (NRG)

of the Institute of Aero- and Gasdynamics (IAG) and is published under the GNU

General Public License v3. All meshes used for simulations in this chapter are

built with the high order preprocessor HOPR2, also supplied by the NRG as open

source. Both software are executed from the command line and are controlled with

parameter files. In appendix A HOPR parameter files as well as FLEXI parameter

files for all investigated examples are provided. They can be used to repeat the

computations. The only exception from this is the shock boundary layer interac-

tion in section 6.4.4, which was simulated with a previous version of FLEXI not

published as open source. The reason for this is that this computation is really

large and expensive (≈ 240 million DOFs, more than 90,000 processors), but it is

expected that the simulation can be recomputed using the open source version of

FLEXI . This example is also an exception in another way. Only this simulation is

performed on Finite Volume sub-cells, which are distributed by the weights of the

Gauss integration. This distribution of the FV sub-cells is investigated in detail

in [84]. Therefore, all other examples in this chapter are performed on equidis-

tant FV sub-cells but for most of them an equivalent simulation on Gaussian FV

sub-cells can be found in the paper mentioned.

The numerical examples in this chapter are used to show the shock capturing

with FV sub-cells. First, one-dimensional test cases validate the basic properties

of the scheme. Next, the influence of the Finite Volume sub-cells on the order

of convergence of the DG method is examined. In section 6.3 scaling tests show

the parallel efficiency of the hybrid DG/FV sub-cells scheme for high performance

1www.flexi-project.org
2www.hopr-project.org

91

https://www.flexi-project.org
https://www.hopr-project.org

6. Numerical results

computations on thousands of processors. After proving all these essential prop-

erties, the method is applied to complex examples involving shocks.

6.1. Validation examples

In this section the shock capturing using Finite Volume sub-cells for the Dis-

continuous Galerkin method is applied to one-dimensional test cases and a three

dimensional freestream example. In one space dimension, waves can only travel

left or right but cannot interact with each other under an angle. This makes it

possible to study the basic capabilities and show the advantages of the scheme.

The influences of the polynomial degree N of the Discontinuous Galerkin method

and the indicator thresholds are investigated. With the indicator thresholds, the

amount of Finite Volume sub-cells used to resolve discontinuities can be influ-

enced and the sensitivity of the simulation regarding this user defined parameters

will be shown.

6.1.1. Sod shock tube

The Sod shock tube problem [81] is one of the most famous test cases for shock

capturing. An initial discontinuity is located in the middle of the computational

domain Ω = [0, 1], where the state on the left side is ρ = 1, v1 = 0, p = 1 and

on the right side ρ = 0.125, v1 = 0, p = 0.1. This test case is used to analyze

the behavior of the hybrid DG/FV sub-cell scheme with respect to the polynomial

degree N of the DG elements. To obtain comparable results for the different

polynomial degrees, the overall computational work is kept nearly the same by

adjusting the number of grid cells.

The numerical setup is as follows. With the Jameson indicator on the pres-

sure, the shock cells are marked; the upper and lower thresholds are chosen to

0.015 and 0.014. An additional Persson indicator with a threshold of −6.7 is used

to avoid switching of FV sub-cell elements to DG elements if they contain high

mode oscillations. The MinMod limiter is used to limit the slopes of the second

order reconstruction. For an even number of grid cells, the discontinuity is per-

fectly located at a grid line and, depending on the indicator thresholds, the initial

discontinuity may not be detected since the solution inside the DG elements is

constant and perfectly smooth. Therefore, the very first time step is computed

with enforced Finite Volume sub-cells in the whole domain. The CFL number is

set to 0.8 and the HLLC Riemann solver is used for the numerical fluxes. At both

boundaries of the domain Dirichlet boundary conditions with the initial states are

used.

92

6.1. Validation examples

0 0.2 0.4 0.6 0.8 1

0.5

1

x

D
en
si
ty

Exact solution

pure FV

N = 3, . . . , 11

Figure 6.1.: Density of Sod shock tube problem at t = 0.2 with a DG polynomial

degree ranging between N = 3, . . . , 11. To yield a total amount

of work comparable for all polynomial degrees, the number of DG

elements ranges between 44 elements for N = 3 and 10 elements for

N = 11. The pure Finite Volume computation uses 252 FV sub-cells,

which leads to nearly the same number of time steps times DOFs.

In figure 6.1, the density profiles for computations with nine different polynomial

degrees N = 3, . . . , 11 are plotted. Besides this, the solution for a pure Finite

Volume computation and an exact solution are shown. To achieve a numerical

effort comparable for all cases, the number of DG elements of the equidistant

grid is adjusted such that the DOFs multiplied with the number of time steps is

nearly the same. The coarsest grid for N = 11 has 10 elements. With the above

numerical setup this leads to 141 time steps until the end time t = 0.2. The total

numerical effort for this computation can be quantified with

DOFs ·#timesteps = 12 · 10 · 141 = 16920,

where 12 is the number of DOFs per element. For a fixed end time, the number of

time steps only depends on the time step itself which in turn depends on the grid

size, the CFL number and the polynomial degree, see equation (4.13). Hence,

for the other polynomial degrees the number of elements directly influences the

number of time steps via the grid size which must be adjusted such that a com-

parable load is obtained. For all investigated cases, the number of elements and

therewith time steps are listed in table 6.1. Except the change of the polynomial

93

6. Numerical results

N 3 4 5 6 7 8 9 10 11

#elements 44 33 26 22 18 16 13 12 10

#time steps 100 107 113 127 127 136 126 149 141

≈ % FV 9.9 8.9 10.4 10.8 12.1 13.8 19.2 19.1 22.1

#FV elems 4.3 2.9 2.7 2.4 2.2 2.2 2.5 2.3 2.2

Table 6.1.: Numerical properties for the investigation of a varying polynomial

degree on the solution of the Sod shock tube example. To obtain

a comparable total computational effort, the grid has to be adjusted

which results in the number of time steps for a CFL scale of 0.8. The

amount of elements that are in total updated with the FV sub-cells

method rises with increasing polynomial degree.

degree and the number of grid cells, the numerical setups of all computations are

absolutely the same.

Figure 6.1 shows that for all polynomial degrees the solution is quite the same,

regardless of the polynomial degree. Since all computations are comparable in

terms of the numerical costs, one might conclude that there is no benefit of the

underlying higher order Discontinuous Galerkin scheme. Therefore, the results of

the hybrid scheme must be analyzed in detail. First of all, the pure Finite Volume

scheme benefits from a weaker time step restriction which leads to bigger time

steps and thereby to more grid cells to keep the numerical costs the same as for the

hybrid scheme. To distinguish the nine coupled DG/FV sub-cells computations, a

closer look at the contact discontinuity, where some deviations occur, is helpful.

The closeup view in figure 6.2 shows that this wave is for polynomial degrees up to

N = 6 quite comparably resolved. For larger N, the contact discontinuity is more

and more flattened and the largest investigated polynomial degree of N = 11

shows the most smear. However, the differences are so small that any general

conclusions would be rather disputable. Instead, the similarities of the solutions

for different polynomial degrees are further investigated. One of the main features

of high order methods is their small numerical dissipation. That means that for

smooth solutions a higher polynomial degree with the same numerical costs in

total should give better results. Indeed, the Sod shock tube example is not smooth

but dominated by discontinuities which require the shock capturing using FV sub-

cells. This method is designed to introduce dissipation to blur the sharp wave

fronts such that they are numerically resolvable. These two contrary dissipative

mechanisms must be in balance to produce stable results. An analysis of the

amount of the FV sub-cells that are used to update all elements over all time

steps, see table 6.1, shows that the higher the polynomial degree is, the greater

94

6.1. Validation examples

0.66 0.67 0.68 0.69 0.7 0.71

0.25

0.3

0.35

0.4

x

D
en
si
ty

Exact solution

pure FV

N = 3

N = 4

N = 5

N = 6

N = 7

N = 8

N = 9

N = 10

N = 11

Figure 6.2.: Closeup view of the contact discontinuity of the Sod shock tube for

select polynomial degrees. Increasing the polynomial degree of the

DG elements from 3 to 5 improves the sharpness of the contact

discontinuity. Further increment to N = 11 leads to bigger smear of

this wave.

the percentage of elements that are updated with the FV sub-cells method. This

behavior becomes quite clear with the following argument. To resolve a wave

front, at least one DG element is switched to the FV sub-cell method. Since for

large N there are only a few elements, a single FV sub-cells element leads to a

greater amount of FV sub-cells than for a grid with more elements. For example,

with ten elements, for the N = 11 case, two marked elements already lead to

about 20% FV sub-cells. In the last row of table 6.1 the different FV amounts

are converted to the absolute number of elements that are updated with the FV

method during the whole computation. Except for N = 3 these numbers range

between 2 and 3 which is remarkable low for two sharp wave fronts and the kinks

at the bounds of the rarefaction wave. Since all numerical results nearly look the

same, the following can be concluded from table 6.1. A higher polynomial degree

leads to a bigger amount of FV sub-cells which introduces more dissipation into

the computations than for the lower polynomial degrees. This is compensated

by the smaller numerical dissipation of the DG scheme for higher polynomial

degrees. It seems that these contrary dissipative mechanisms are in balance for

a varying polynomial degree in this case. Altogether, the Discontinuous Galerkin

shock capturing with Finite Volume sub-cells works very well for all N in this

example, although a true benefit of the high order scheme is not visible in this

case.

95

6. Numerical results

−4 −2 0 2 4

2

4

x

D
en
si
ty

Reference solution

DG part of solution

FV part of solution

Figure 6.3.: Density of Shu-Osher fluctuations shock wave interaction problem

at t = 1.8 with a polynomial degree of N = 3 on a grid with 100

elements. The results of 10 different computations with an upper

threshold value of the indicator based switching between DG and FV

sub-cells, varying from 0.007 to 0.12. The lower threshold is 0.005.

6.1.2. Shu-Osher density fluctuations shock wave interaction

problem

Shu and Osher proposed in [79, 80] a test case for the interaction of smooth

data with a discontinuity. A shock wave travels with Mach = 3 into a sinusoidal

density wave. The domain is [−5, 5] and the initial shock is placed at x = −4. To

the left and right of this shock, the initial conditions are given by

(ρ, v1, p) =

{
(3.857143, 2.629369, 10.33333) x < −4

(1.0 + 0.2 · sin(5x), 0.0, 1.0) x ≥ 4.

In section 5.4 an upper and lower threshold for the indicator, which manages the

switching between DG elements and FV sub-cells, is introduced. This test case is

used to investigate the sensitivity of these thresholds on the solution.

The numerical setup is as follows. The mesh consists of 100 elements and the

polynomial degree is N = 3. With the JST indicator on the pressure, the elements

containing a shock are marked and the Roe Riemann solver is used as numerical

flux. Figure 6.3 shows the influence of the upper threshold. In general, the total

variation diminishing property of the FV shock capturing introduces a noticeable

amount of dissipation to resolve the shock without over- or under-shoots. This

leads to the gap in amplitudes in the region behind the shock front in comparison

96

6.1. Validation examples

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

3

3.5

4

4.5 decreasing lower threshold

x

D
en
si
ty

Reference solution

DG part of solution

FV part of solution

Figure 6.4.: Close-up view of the density of Shu-Osher fluctuations shock wave

interaction problem at t = 1.8 with a polynomial degree of N = 3

on a grid with 100 elements. The results of 5 different computations

with a lower threshold value of the indicator based switching be-

tween DG and FV sub-cells varying from 0.001 to 0.008. The upper

threshold is 0.011.

to the reference solution, which was produced with a pure second order Finite

Volume method on a very fine grid. In figure 6.3 ten computations with a varying

upper threshold value between 0.007 and 0.12 are plotted. The lower threshold is

fixed to 0.005 for all cases. Increasing the upper threshold further than the bound

0.12 leads to unstable solutions. Nevertheless, the range of the upper threshold

is quite large and does not affect the solution much. All computations directly lie

on each other, except for the three shock fronts between x = −3 and 0, where

noticeable differences occur. Here, small oscillations appear for too large upper

thresholds, but they do not influence the stability of the computation. This is only

the case if those steps are not resolved with FV sub-cells. A single Finite-Volume

sub-cell at these steps prevents the oscillations. Beginning with an upper threshold

of 0.012 and larger, in more and more time steps these sharp parts are computed

with DG and therefore introduce oscillations. The total amount of elements that

are treated with the FV sub-cells method ranges between ≈ 2.5% (for 0.007)

and ≈ 1.6% (for 0.12). Altogether, the sensitivity of the upper threshold on the

solution is quite small.

The same numerical setup is now used to examine the influences of the lower

threshold. In this case the upper threshold is fixed to 0.011 and the lower threshold

varies between 0.001 and 0.008. In figure 6.4 the influences on the solution are

97

6. Numerical results

x
z

y

Figure 6.5.: Curved periodic mesh of the freestream preservation example. The

right half in z-direction is refined in both other directions. The dis-

tribution of the DG and FV elements is manually fixed, such that

every second element along the space filling curve is either FV (red)

or DG (blue). The solution is initialized with a constant state which

should not change over time or by mesh induced effects.

visualized. The solution for only five different lower thresholds (0.001, 0.002,

0.004, 0.006 and 0.008) are plotted to keep them distinguishable. Since the only

difference can be seen right behind the shock front, figure 6.4 shows a close-

up view of this region. All solutions are similar, except the amplitudes between

x = 0.5 and x = 2.5 differ. Here, smaller thresholds lead to smaller amplitudes

which can be explained as follows. The lower threshold triggers the switching from

FV elements to DG sub-cells and if this value is smaller this is happening later

when the shock wave leaves an element. Therewith, the overall amount of FV

sub-cells that is used to resolve the shock front increases and directly leads to

more introduced dissipation which diminishes the amplitudes. Varying the lower

threshold between 0.001 and 0.008 results in an amount of FV sub-cells which

ranges between ≈ 3.1% and ≈ 2.0%, which confirms the hypothesis.

6.1.3. Freestream preservation

In contrast to the examples above, this is a fully three dimensional test case,

which proofs the numerical conservation property of the hybrid DG/FV sub-cells

method. To show this, a constant freestream solution is initialized, which should

not change over time for periodic or consistent Dirichlet boundary conditions.

After several time steps, the error in L2- and L∞-norm is analyzed. The grid is

chosen quite complex to test several features of the code and their interactions

at the same time.

98

6.2. Order of convergence

To examine the freestream preservation on curved meshes the cubical domain

is deformed by
Ω→ Ωdef

x 7→ x + 0.1 · sin(x1) · sin(x2) · sin(x3).

The mesh consists of two blocks in z-direction where one block has twice the

resolution in x- and y - direction than the other block. Thereby, mortar interfaces

are introduced in the mesh. Every second element along the space filling curve

is manually switched from a DG element to a FV sub-cells element, resulting in

a checkerboard like distribution of the DG and FV elements. This is visualized

in figure 6.5, where the curved elements are approximated with a geometrical

polynomial degree of Ngeo = 3. For freestream preservation, the polynomial de-

gree of the approximation of the solution must be N ≥ 2 · Ngeo and hence the

polynomial degree is chosen to N = 6. In the whole domain the constant state

u = (1, 1, 1, 1, 1)> is initialized and periodic boundaries are used. After more than

300 time steps (t = 0.5), the error norms are

u1 u2 u3 u4 u5

L2 4.49e−15 6.12e−15 6.04e−15 5.89e−15 1.86e−14

L∞ 4.57e−13 3.92e−13 3.74e−13 4.92e−13 1.72e−12

.

They are in the region of the machine precision and therewith the freestream

preservation of the shock capturing with FV sub-cells for the DG method is proven

on curved meshes including mortar interfaces.

6.2. Order of convergence

In this section the order of convergence of the pure DG and the coupled DG/FV

sub-cells method is investigated. One of the main properties of the Discontinuous

Galerkin method is the ability to use high polynomial degrees N for the ansatz and

test functions. The theory then states that the scheme is of high order, namely

of order N+ 1. But since the Finite Volume method with reconstruction is of the-

oretical order 2, one cannot expect higher orders for the coupled method. This

section focuses on the convergence rates for the hybrid DG/FV sub-cells scheme

including mortar interfaces and is restricted to structured linear meshes. On un-

structured curved 3D meshes, comparable convergence rates for the DGSEM

implementation in the FLEXI code were found by Hindenlang et al. [39].

In a first step the convergence rate of the pure DG method is verified. There-

fore, a simple test case of a periodic diagonal density sine wave, which is ad-

vected in direction (1, 1, 1)>, is used. The computational domain is a cartesian

99

6. Numerical results

x
z

y

Figure 6.6.: Exemplary mesh with a baseline resolution of 2 elements per direction

for the investigation of the order of convergence. The upper half in

z-direction has always twice the resolution in x- and y -direction,

leading to mortar interfaces of type 3. FV sub-cell elements are used

in the gray half, while the other half are DG elements. The right

cube shows the initial diagonal sine wave of the density.

poly.

degree

baseline

cells
L2 error L2 order L∞ error L∞ order

theor.

order

N=2

12 2.13e-04 2.12e-03

3
16 8.96e-05 3.01 9.05e-04 2.96

20 4.58e-05 3.01 4.65e-04 2.98

24 2.65e-05 3.01 2.70e-04 2.99

N=3

12 6.81e-06 7.98e-05

4
16 2.16e-06 4.00 2.59e-05 3.91

20 8.85e-07 3.99 1.07e-05 3.94

24 4.27e-07 3.99 5.23e-06 3.95

N=4

8 1.35e-06 1.78e-05

5
12 1.77e-07 5.01 2.43e-06 4.90

16 4.19e-08 5.01 5.84e-07 4.96

20 1.37e-08 5.01 1.92e-07 4.98

N=5

8 4.43e-08 6.02e-07

6
12 3.87e-09 6.02 5.68e-08 5.82

16 6.85e-10 6.01 1.03e-08 5.92

20 1.79e-10 6.01 2.74e-09 5.95

Table 6.2.: Errors and convergence rates of the density for a 3D advected si-

nus wave for the pure DG method with a polynomial degree ranging

from N = 2 to N = 5. The upper half in z-direction is refined in x-

and y -direction to twice the resolution, which requires mortar inter-

faces. The number of baseline cells denotes the number of unrefined

elements in each space direction of the periodic cube.

100

6.2. Order of convergence

box [−1, 1]3, discretized with two structured blocks, one for the lower half and

one for the upper half in z-direction. The division of the domain into two sepa-

rate blocks is used to additionally test the mortar interfaces. Therefore, the upper

block uses twice the grid resolution in x- and y -direction as the lower block. In

figure 6.6 the mesh for a baseline resolution of 2 elements and the initial density

sine wave is visualized. The specifications of the number of grid cells in tables 6.2

and 6.3 refer to this baseline resolution and lead to (m2 + (2m)2) ·m elements in

total for a baseline resolution of m elements.

For the polynomial degrees N = 2, . . . , 5 the number of grid cells in each space

direction is increased in each run by four elements to obtain the spatial order. To

prevent a masking of the errors with a temporal error, the CFL number is reduced

to 0.8. Table 6.2 lists the errors and convergence rates of the pure DG method.

For all polynomial degrees, the theoretical order is accurately matched. Increasing

the polynomial degree further requires time integration with an appropriate order

or a very low CFL number because otherwise the spatial order is hidden behind

the time error. In [84] the same convergence test for N = 11 required a CFL

number of 0.005 to see the spatial convergence even so the computation is also

stable for CFL = 1.

The convergence rate for the coupled DG/FV sub-cells method is investigated

with the same test problem. Since this problem is smooth, the use of FV sub-cells

is enforced in the right half in x-direction. The left half x < 0 is computed with

the DG method. Therewith, mixed DG/FV interfaces as well as mortar interfaces

are included in this study. Again, the tests are performed for polynomial degrees

of N = 2, . . . , 5 for the DG elements. But since the theoretical order of the

Finite Volume method, including the presented reconstruction, is limited to two,

one cannot expect higher numerical orders of convergence than two. Actually,

this theoretical order is diminished even further by the use of the TVD limiters.

Therefore, the tests are executed for three different setups. First, without any

reconstruction which should yield a first order convergence. Subsequently then

with the MinMod limiter and with a central limiter. The latter one is not supposed

to be stable in general, but for this example it works and shows the full theoretical

order. In table 6.3 the results are summarized. To keep the table compact this

time only the L2 error norms and convergence rates are listed, since the L∞ values

show the same behavior. The case without a reconstruction shows a convergence

rate of nearly 1 for all polynomial degrees, as expected. For the MinMod limiter,

the convergence rate is only about 1.6. This loss in convergence rate, compared

to the theoretical order, is well known and is due to the TVD property of this

limiter [71, 70]. By using more advanced limiters like the van Leer or the Sweby

limiter for example, the convergence rates can be improved slightly, but do not

101

6. Numerical results

poly. baseline no reconstruction MinMod central

degree cells error order error order error order

N=2

12 4.05e-02 7.88e-03 1.31e-03

16 3.17e-02 0.85 5.01e-03 1.58 7.37e-04 2.01

20 2.61e-02 0.88 3.49e-03 1.61 4.71e-04 2.01

24 2.21e-02 0.90 2.60e-03 1.62 3.27e-04 2.00

N=3

12 3.18e-02 5.01e-03 7.36e-04

16 2.46e-02 0.88 3.15e-03 1.61 4.14e-04 2.00

20 2.01e-02 0.91 2.19e-03 1.62 2.65e-04 2.00

24 1.70e-02 0.92 1.63e-03 1.64 1.84e-04 2.00

N=4

8 3.71e-02 6.72e-03 1.06e-03

12 2.61e-02 0.87 3.50e-03 1.61 4.71e-04 2.01

16 2.01e-02 0.91 2.20e-03 1.62 2.65e-04 2.00

20 1.64e-02 0.93 1.52e-03 1.64 1.69e-04 2.00

N=5

8 3.18e-02 5.02e-03 7.38e-04

12 2.21e-02 0.89 2.60e-03 1.62 3.27e-04 2.01

16 1.70e-02 0.92 1.63e-03 1.63 1.84e-04 2.00

20 1.38e-02 0.94 1.13e-03 1.64 1.18e-04 2.00

Table 6.3.: L2 errors and convergence rates of the density for a 3D advected

sinus wave for the coupled DG/FV sub-cells method with a polynomial

degree of the DG approximation ranging from N = 2 to N = 5. Left

of x = 0 the domain is computed with the DG method, right FV sub-

cell elements are enforced. The upper half in z-direction is refined

in x- and y -direction to have twice the resolution, which requires

mortar interfaces. The number of baseline cells denotes the number

of unrefined elements in each space direction of the periodic cube.

reach the full theoretical order of two. Nevertheless, this is not a big issue since

the FV sub-cells shock capturing should only be applied in the regions of the

shock, where a high order of convergence cannot be expected.

6.3. Parallel efficiency

The application of the presented method to large scale problems requires the

usage of high performance computing (HPC) systems. The numerical effort is

distributed to multiple processors with the aim of reducing the wall-clock time of

the simulation. A perfect strong scaling is achieved when doubling the number of

102

6.3. Parallel efficiency

processors leads to a halving of the wall-clock time. The implementation of the

hybrid DG/FV sub-cells method in the FLEXI code in general has no limit in the

number of processors it can run on. But for a specific problem with a fixed number

of elements, there are several bounds that restrict the number of processors. The

grid cells are spread to the different cores such that each processor treats a

subdomain of the mesh. Therefore, the upper bound in the possible number of

processor is the number of elements when each core handles a single element.

The lower bound is related to the amount of memory that is available on each

core. A low number of processors leads to a large number of elements per core

and hence the memory increases.

Remark 6.1. The terms processor and core are used synonymously throughout

this section. Both denote a physical computing unit inside a CPU, but not virtual

cores in a simultaneous multithreading environment.

The implementation of the pure Discontinuous Galerkin method in the FLEXI

code has proven its ability to efficiently scale on several 10,000 cores [2, 38]. In

this section, the focus is on the parallel scaling of the shock capturing with Finite

Volume sub-cells. Following the best practice guideline for reporting performance

results by Hoefler and Belli [40], the numerical setup, test environment and work-

flow of this investigation are given in detail. All simulations are performed on the

supercomputer ”Hazel Hen”, a Cray XC40-system of the High-Performance Com-

puting Center (HLRS) in Stuttgart. This supercomputer consists of 7712 nodes,

each equipped with 128 GB of memory and 2 sockets. Each socket holds an Intel

Xeon CPU (E5-2680 v3) with 12 cores running at 2.50 GHz. The FLEXI code is

built with the GNU Fortran (GCC) 6.3.0 compiler and the Cray MPI library 7.5.2

with the default compiler options of the FLEXI code, except for the switch on of

the FV sub-cells. The full set of all compiler flags is given in the appendix A.3.

To test the parallel efficiency of the scheme for different problem sizes, twelve

cases are investigated. All cases use the same numerical setup except the number

of elements in the mesh. The polynomial degree of the Discontinuous Galerkin

method is set to N = 6 and the solution is initialized with a freestream as in

section 6.1.3. Since this case does not require any shock capturing, the use of

Finite Volume sub-cells must be enforced. The mesh for the smallest case is a

cuboid, which is discretized with 63 elements. This baseline mesh is refined for the

other cases by always doubling the number of elements in one direction compared

to the previous case, see table 6.4. For all cases the baseline configuration against

which the parallel efficiency is measured is given in table 6.4 by the minimum

number of nodes, where each nodes consists of 24 cores. The last case is so large

that it requires more memory than available on a single node. Hence, the baseline

configuration of this case is run on two nodes. Each case is run for all powers of

103

6. Numerical results

case 1 2 3 4 5 6 7 8 9 10 11 12

#elementsX 6 12 12 12 24 24 24 48 48 48 96 96

#elementsY 6 6 12 12 12 24 24 24 48 48 48 96

#elementsZ 6 6 6 12 12 12 24 24 24 48 48 48

min #nodes 1 1 1 1 1 1 1 1 1 1 1 2

max #nodes 1 2 4 8 16 32 64 128 256 512 1024 2048

Table 6.4.: The parallel efficiency is investigated for different problem sizes. Each

case has twice the number of elements than the previous one. The

maximal number of nodes, a case is run on, also doubles for each

case, which corresponds to only 9 elements per core for all cases.

two between the minimal and maximal number of nodes which always leads to

only 9 elements per core at the highest number of nodes.

The simulation is executed for exactly 100 time steps and the performance index

(PID) is measured for the pure computational time without any file input/output

or initialization. The performance index is the time that is required to update one

DOF on one core and can be calculated as

PID =
wall-clock-time ·#cores

#DOF ·#time steps ·#RK-stages
.

To investigate the performance of the Finite Volume sub-cells shock captur-

ing, four different synthetic indicator functions are used to mark elements for

the FV sub-cells method. A pure Discontinuous Galerkin computation and a pure

Finite Volume computation, where all elements are updated with the respective

operator, are performed to compare the parallel performance of these operators.

The influence of mixed DG/FV interfaces on the parallel performance is investi-

gated with the following two indicators. The checkerboard indicator marks every

second element along the space filling curve for the FV method, which leads to

mixed DG/FV interfaces in the whole domain. This is the worst case in terms

of operation counts, since the mixed interfaces require the interpolation of the

DG side solution to FV points and the projection back of the numerical fluxes.

This introduces additional operations compared to pure DG/DG or FV/FV inter-

faces. Nevertheless the load is distributed evenly among the processors since this

extra work is required at all interfaces in the domain. Of course, this cannot be

expected in a real world example where a shock front leads only locally to mixed

DG/FV interfaces. This scenario is considered with the last synthetic indicator

where the domain is halved in x-direction into a Discontinuous Galerkin part and

a Finite Volume sub-cells part, which causes mixed interfaces only at x = 0. To

104

6.3. Parallel efficiency

obtain results that are comparable for the different indicators, the runs for all four

indicators are performed in a single job.

Furthermore to gather some statistics, each single run is repeated five times.

The median of those runs is used to calculate the parallel efficiency, which is

defined by

P̃ID1

P̃IDP

· 100%,

where P̃ID1 is the median of the performance indices on a single node and P̃IDP

the respective value for the computations on P nodes. For the largest cases, the

baseline value is evaluated for two nodes. The parallel efficiency over a varying

number of cores is plotted for all cases in figure 6.7. Each case is represented by

a colored line, which starts at 100% with the baseline run on the lowest number

of nodes. The symbols mark the median of all repetitions of the specific configu-

ration and the error bars show the best and worst run. For all problem sizes, the

number of cores is increased until only 9 element reside on a single core, which are

the right end points of the curves. The pure DG computation in the top left plot

of figure 6.7 shows a superlinear scaling, where the parallel efficiency becomes

greater than 100% for nearly all problem sizes. This superlinear scaling can be

either explained with caching effects of the processors or a not so good baseline

run on the lowest number of cores. In contrast to the superlinear scaling there

are also runs where the efficiency is substantially below 100% and the variabil-

ity heavily increases. This behavior is especially visible for the largest (or second

largest) number of cores in a case, where only nine (or eighteen) elements reside

on a single core. Due to this small number of elements per core, the amount of

communication compared to the local work is quite large. In this case the inter-

action with other jobs running at the same time on the supercomputer affects

the parallel performance. Wright et al. [93] traced this loss of performance mainly

to the variation of the MPI communication over the network when different jobs

share the same network resources. The results for the other indicators show a

similar behavior, but the superlinear scaling effects are less pronounced. Further-

more the load imbalance of the half/half indicator, shown in the bottom right

plot of figure 6.7, leads to a slightly diminished parallel efficiency for some cases.

Nevertheless it is for most of the computations over 90%, which is still remarkably

good. However these plots of the parallel efficiency present relative data only and

are not comparable among the different indicators or problem sizes.

Therefore in figure 6.8 another point of view on the same data is presented.

In this figure, the performance index is plotted over the number of DOFs per

core, which shows the scaling results more or less the other way round than

before. In contrast to figure 6.7 going to the right on the x-axis, the number

105

6. Numerical results

DG

102 103 104
60

80

100

120

#cores

P
ar

a
lle

l
effi

ci
en

cy

#elements 63 · 21 63 · 22 63 · 23 63 · 24 63 · 25

63 · 26 63 · 27 63 · 28 63 · 29 63 · 210 63 · 211

FV

102 103 104
60

80

100

120

#cores

checkerboard

102 103 104
60

80

100

120

#cores

P
ar

a
lle

l
effi

ci
en

cy

half/half

102 103 104
60

80

100

120

#cores

Figure 6.7.: Parallel efficiency of a strong scaling for different problem sizes. Each

color/line corresponds to a specific mesh, for which the number of

elements is given in the legend. The baseline simulation is performed

on a single node (24 cores) except for the largest cases, which does

not fit on a single node due to memory restrictions. For all meshes,

the number of cores is doubled until each core has only 9 elements.

To reduce statistical effects every single simulation is repeated five

times and the variability is visualized with the error bars.

106

6.3. Parallel efficiency

DG

103 104 105 106
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

#DOFs/core

P
ID
(µ
s/
D
O
F
)

63 · 20 63 · 21 63 · 22 63 · 23 63 · 24 63 · 25

63 · 26 63 · 27 63 · 28 63 · 29 63 · 210 63 · 211

FV

103 104 105 106
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

#DOFs/core

checkerboard

103 104 105 106
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

#DOFs/core

P
ID
(µ
s/
D
O
F
)

half/half

103 104 105 106
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

#DOFs/core

Figure 6.8.: Performance index of a strong scaling for different problem sizes and

distributions of DG and FV elements. A good performance can be

achieved for about 10,000 DOFs and more per core. Lower numbers

of DOFs per core can lead to better results but the variability, caused

by the sharing of network resources with other jobs, may reduce the

parallel performance.

107

6. Numerical results

of cores is decreasing. The 100% baseline point of each line now corresponds

to the most right point of each case and the runs with the highest number of

processors (9 elements per core) are on the left side. This time the performance

is not shown as a ratio to the baseline run, but looking at the absolute numbers

of the PID allows to compare different cases which represent a big bandwidth of

problem sizes as well as different distributions of DG and FV elements enforced

by the synthetic indicators. The pure Discontinuous Galerkin computations in the

top left plot of figure 6.8 show that the performance is absolutely independent

of the problem size. Even for the largest case with 63 · 212 = 884, 736 elements

the performance index is about 1µs/DOF. For low numbers of DOFs per core

the PID can, on the one hand, fall to about 0.8µs/DOF which is explained by

caching effects where most of the data a processor works on fits into its cache.

This reduces reading and writing of data from and to the memory and thereby

speeds up the access of data. On the other hand the performance index can

increase for low number of DOFs per core. This is paired with a greater variability

in the results which indicates an influence by jobs running at the same time on

the supercomputer, which use the same network resources.

For a pure FV computation the results in the top right plot of figure 6.8 are the

same, except that they show an about 15% larger PID. One of the main reasons

for this is the memory access pattern of the Finite Volume sub-cells method which

is not as consecutive as for the DG operator. The evaluation of the numerical flux

at all inner FV interfaces is performed slice-by-slice in the ξ-, η- and ζ-direction

individually and requires the states from both sides of the interface. This slice-

wise data is obtained from the array of the volume solution. For the ζ-direction

the storage order of the data in the slices corresponds to the storage order of the

volume data, which results in sequential memory accesses. In ξ- and η-direction

the memory access for the slice data in the volume array is strided. Hence the

improvement, due to caching effects, for lower number of DOFs per core is not as

distinct as for the pure Discontinuous Galerkin case. Nevertheless the performance

indices of the DG operator and the FV sub-cells method are in the same range.

In the bottom plots of figure 6.8 the influence of the element interfaces between

those methods is investigated. The left bottom plot shows the results for the

synthetic checkerboard indicator where all element interfaces in the whole domain

are mixed DG/FV interfaces. These mixed interfaces require additional operations

and hence the checkerboard like distribution of DG and FV elements is the worst

imaginable case. This can be seen in a larger PID, but the overall behavior is still

the same which is not surprising since the extra work at the mixed interfaces has

to be done by all processors. Hence the load is still in balance between all cores.

In a real world example this cannot be expected, but it is more likely that only

108

6.4. Complex examples

locally, at shock fronts, mixed DG/FV interfaces are necessary. This scenario is

emulated by the half/half indicator. In this case not all processors have to perform

the extra work at mixed interfaces which leads to load imbalances. However this

does not influence the parallel performance. The results in the bottom right plot

of figure 6.8 show values between the values of the pure DG and the pure FV

computations in the top row plots.

6.4. Complex examples

The one-dimensional examples showed the abilities of the shock capturing for the

Discontinuous Galerkin method using Finite Volume sub-cells. The fundamental

properties and the scaling results for massive parallel setups enable the application

of the scheme to more complex examples.

Remark 6.2 (Visualization with ParaView). The pseudo color or contour plots

of simulation results in this work are generated with the application ParaView3.

The state files of the FLEXI code are written in a HDF 5 format, which is not di-

rectly readable by ParaView and therefore the state files must be converted to an

appropriated format first. Another possibility that does not require a conversion

of the files, is the use of custom file readers, which ParaView offers via a plugin

infrastructure. The FLEXI code is delivered with such a ParaView plugin that

allows direct visualization of the HDF 5 state files. This has multiple advantages

over a conversion approach. First of all, no additional disk space is required for

the converted files, which actually can be very large for accurate visualizations

of multiple derived quantities. Second, it is built in a way that the original rou-

tines of the FLEXI code are available. This is extremely useful for the calculation

of the reconstruction of the Finite Volume sub-cells or for the gradients of the

Discontinuous Galerkin elements via the lifting procedure. Another benefit is the

possibility to choose the number of super sampling points of the rendering freely.

Therewith, one can first adjust the layout with a low order visualization and only

for the generation of nice pictures switch to a high order visualization. This im-

proves the overall workflow drastically. Furthermore, the ParaView plugin directly

inherits all improvements in the FLEXI code, since they share a common source

code basis. From a technical point of view the ParaView plugin is linked against

the FLEXI-library, which consists of the whole flow solver except for the main

routine.

3www.paraview.org

109

http://www.paraview.org/

6. Numerical results

6.4.1. Double Mach reflection

This test problem is a famous test case for shock capturing methods in general

and especially for high order methods. Even so Ernst Mach investigated reflections

of shock waves already in the 19th century, it has been Woodward and Colella [92]

who suggested this problem to test the ability of numerical schemes to represent

shock and contact discontinuities. A Mach 10 oblique shock wave is sent into a

reflecting wall, which is equivalent to a shock wave encountering a 30◦ wedge.

The initial conditions are given by the Rankine-Hugoniot conditions

(ρ, v1, v2, p) =(8.0, 8.25 · cos(30◦),−8.25 · sin(30◦), 116.5) x < x0 +
√

1
3
y

(1.4, 0.0, 0.0, 1.0) x ≥ x0 +
√

1
3
y
,

where x0 = 1
6

is the start of the wall and the computational domain is Ω =

[0, 4]× [0, 1], which is discretized by an equidistant cartesian mesh.

The numerical setup for all presented computations is nearly the same. Only

the mesh resolution and the variable the indicator acts on are varied, which will be

mentioned each time they deviate from the following settings. The JST indicator

with a lower and upper threshold of 0.005 and 0.01 is used to detect the elements

containing shocks. An additional Persson indicator with a threshold of −5.5 avoids

switching FV sub-cell elements to DG as this would introduce high mode oscil-

lations. The limiter of the second order reconstruction is the MinMod limiter. A

Riemann solver that does not show the carbuncle phenomenon is required, here

the HLLE solver is chosen. The polynomial degree of the DG elements is N = 5.

All results are shown at the end time t = 0.2, where the time step is calculated

with CFL = 0.9.

This test case is used to present the advantages of the high order Discon-

tinuous Galerkin scheme for the non-shock parts of the solution. Therefore, the

hybrid DG/FV sub-cell method is compared to a pure second order Finite Volume

scheme. The Double Mach reflection is known to produce small vortices along

the slip line for numerical schemes with low numerical dissipation. For a mesh

with 120× 30 elements, the hybrid DG/FV sub-cell schemes is capable of resolv-

ing the first small vortices, which can be seen in the top plot of figure 6.9. The

idea is now to enforce the use of FV sub-cells throughout the whole domain and

refine the grid until a comparable result is obtained. As it turns out, the mesh

must be refined 8 times in each space direction leading to 960× 240 elements. It

should be noted that this means (6 ·960)× (6 ·240) = 5760×1440 FV sub-cells,

since a polynomial degree of N = 5, with 6 sub-cells in each space dimension, is

110

6.4. Complex examples

0 0.5 1 1.5 2 2.5 3

0

0.5

1

0 0.5 1 1.5 2 2.5 3

0

0.5

1

5

20

10

15

ρ

Figure 6.9.: Comparison of the density of a hybrid DG/FV sub-cells computation

with a polynomial degree of N = 5 on a coarse grid (120×30) in the

top row with a pure FV calculation on a finer grid (960 × 240 under-

lying DG elements) in the bottom row. The results are comparable

even so the pure FV solution required 64 times more DOFs.

used. The bottom row of figure 6.9 shows the result of the pure Finite Volume

computation. It is quite clear that the higher order of the DG scheme introduces

considerably less numerical dissipation than the pure FV method, but nevertheless

it is remarkable that in this case the Finite Volume requires 64 times more DOFs

to catch up.

Another way of showing the influences of the numerical dissipation on the

quality of the solution is to investigate the amount of FV sub-cell elements that

are used during the computation. Since this depends on the thresholds of the

indicator, it is possible to increase the number of FV sub-cell elements by reducing

the indicator thresholds. Therefore, the setup of the above hybrid DG/FV sub-cell

computation is repeated on a finer mesh with 480x120 DG elements first. Then,

the thresholds are diminished while all other solver settings stay the same to see

the influences of an increasing amount of FV sub-cells. A closeup view of the

density in the interaction zone at final time t = 0.2 is visualized in figure 6.10.

111

6. Numerical results

2.2 2.5 2.8

0

0.5

2.2 2.5 2.8

0

0.5

2.2 2.5 2.8

2.2 2.5 2.8

5

20

10

15

ρ

Figure 6.10.: Closeup view of the density of two computations, where only the

thresholds of the indicator are different. This shows the influence

of the numerical dissipation. The bottom row shows the results

with lower thresholds, leading to more FV sub-cell elements, which

are visualized on the right in red. More FV sub-cells lead to more

numerical dissipation and hence not so fine resolved structures.

The first row shows the results for the original thresholds and the second row for

smaller thresholds and a look on the right column shows immediately the greater

amount of FV sub-cells.

Due to the much finer grid than before, the Kelvin-Helmholtz instabilities along

the primary slip line produce vortex-like structures. In the top right of figure 6.10 it

can be seen that the JST indicator on the pressure with upper and lower thresholds

of 0.01 and 0.005 is only active along the shock fronts. It completely ignores the

fine structures along the slip line since here the pressure does not jump. The

thresholds are now lowered to 0.004 and 0.003, respectively, to enforce more

FV sub-cell elements. In the bottom row of figure 6.10 one can see that, even

so the thresholds were lowered a lot, the density contours are still comparable.

112

6.4. Complex examples

Along the secondary reflected shock and along the slip line more elements are

detected for the shock capturing. This directly effects the resolution capabilities

and leads to a loss of the very fine structures, even so the total amount of FV

sub-cell elements accumulated over the whole computational time in both cases

is very low. For the original thresholds it is 0.748% and 0.823% for the smaller

thresholds. This means that over 99% of the computation can benefit from good

properties, like e.g. low numerical dissipation or high order of the Discontinuous

Galerkin method, and only the shock fronts that are not stably resolvable with

the DG polynomials are handled by the Finite Volume sub-cell elements. Overall,

the results are in good accordance to other high order results, like from Zanotti

et al. [95].

6.4.2. Forward facing step

Another example to test the shock capturing capabilities of a numerical scheme

was also presented by Woodward and Colella in [92] and is here used to investigate

the influence of the variable, either density or pressure, the indicator acts on. Here,

air at Mach= 3 hits a step in a two dimensional wind tunnel, which has a length

of 3 and a height of 1. The step is located at x = 0.6 and is 0.2 high. Therefore,

the computational domain is given by [0, 3]× [0, 1] \ [0.6, 3]× [0, 0.2]. Reflective

wall boundaries are applied to the top, bottom and step boundaries. In the x-

direction inflow and outflow boundary conditions are used. The initial conditions

are a freestream with density ρ = 1.4, velocity v = (3, 0), pressure p = 1 and

the heat capacity ratio of air γ = 1.4. The simulation is performed until the

final time t = 4.0 on an equidistant mesh with an element size of h = 1/100,

leading to 300 × 100 − 20 × 240 DG elements. The polynomial degree of the

DG approximation is N = 5 and the HLLE Riemann solver is used as numerical

flux. To detect shocks, the Persson indicator with lower and upper thresholds of

−6.5 and −5.5 is used. Two computations, one where the Persson indicator is

computed on the density and one on the pressure, are compared. Additionally, the

very first time steps until t = 0.001 are performed with FV sub-cell elements in

the whole domain to relax the initial impingement of the freestream with the step

of the wind tunnel. The second order reconstruction is limited with the MinMod

limiter.

In figure 6.11, the numerical schlieren for both computations where the nu-

merical setups are identical, except for the variable of the Persson indicator, are

shown. At a first glance, the results do not show any differences, the shock fronts

are identical. A closer look at the Kelvin-Helmholtz instability that develops along

the top shear wave reveals sharper and more turbulent structures for the case

where the Persson indicator is evaluated on the pressure. Figure 6.12 shows that

113

6. Numerical results

0 0.5 1 1.5 2 2.5 3

0

0.5

1

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Figure 6.11.: Numerical schlieren of the forward facing step at t = 4.0 for nearly

identical setups, where only the variable the Persson indicator acts

on is different. The top image shows the results for the Persson

indicator on the density, while the bottom image is computed with

the Persson indicator on the pressure.

a Persson indicator acting on the density detects more FV sub-cell elements along

this shear wave. This prevents the generation of small turbulent structures. In con-

trast to that, the pressure across the shear wave is constant. Hence, evaluating

the Persson indicator on the pressure variable instead on the density prevents

the detection of turbulent structures in the density. Not a single DG element is

switched to FV along the slip line in this case.

Another feature that is only visible for high order computations with a very

low numerical dissipation are the acoustic waves that are emitted from the shear

wave. Due to their small amplitudes, they would be damped very fast for a pure

Finite Volume method.

114

6.4. Complex examples

0 0.5 1 1.5 2 2.5 3

0

0.5

1

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Figure 6.12.: Distribution of DG and FV sub-cell elements of the forward facing

step at t = 4.0. The top image shows the results for the Persson

indicator on the density, while the bottom image is computed with

the Persson indicator on the pressure.

6.4.3. Two dimensional Riemann problem

The one-dimensional Riemann problem consists of piecewise constant initial states

with a single discontinuity. The Sod shock tube from section 6.1.1 is the most

famous example for a Riemann problem of the Euler equations. Its solution con-

sist of the three elementary waves: A rarefaction wave, a contact discontinuity

and a shock wave. When transferring the basic idea of the Riemann problem of

piecewise constant initial data to two space dimension, the situation becomes

quite complicated. In contrast to the one-dimensional case, waves now have an

extension orthogonal to their direction of motion which might not be parallel to

the fronts of the other waves. This leads to interactions of waves under a non-zero

angle, which increases the complexity tremendously. Therefore, the basic setup

115

6. Numerical results

12

3 4

-0.5 0 0.5

-0.5

0

0.5

x

y

Figure 6.13.: The domain of the two dimensional Riemann problems is divided

into four quadrants, numbered 1–4. In each quadrant a constant

state is initialized such that only single elementary waves connect

adjacent quadrants.

for the two dimensional Riemann problems is restricted as follows. The domain is

quadratic and halved in both directions, see figure 6.13.

In each of the resulting quadrants, a constant state is initialized in a special

manner. The four states are chosen in such a way that the quadrants are separated

by a single elementary wave. Schulz-Rinne [77, 78] classified in total sixteen differ-

ent combinations of initial data. Among these configurations, nine include at least

one shock wave which are of major interest for the presented shock capturing.

These configurations are summarized in table 6.5. There are two configurations

with shock waves only, one configuration with two shock and two rarefaction

waves and six configurations with two contact discontinuities. Besides the types

of the four waves (shock (S), contact (J) or rarefaction (R)), a minimal set of re-

quired initial conditions is given. The remaining initial states of all four quadrants

can then be calculated from the minimal set, using the conditions holding for the

elementary waves. For the shock wave this is the Rankine-Hugoniot condition. At

the rarefaction wave one uses the Riemann invariant and the isentropic relation

v +
2c

γ − 1
and

pl
pr

=

(
ρl
ρr

)γ
,

where c is the speed of sound and γ the heat capacity ratio. Over the contact

discontinuity, pressure and normal velocity are the same, i.e. pl = pr and vl = vr .

In the following, the general numerical setup is summarized. These parameters

are the same for all configurations if they are not given explicitly for a specific

116

6.4. Complex examples

Cfg wave types initial conditions

3

←−
S 21

↓ S32 ↓ S41←−
S 34

p = 0.3 p = 1.5, ρ = 1.5, v1 = 0, v2 = 0

4

←−
S 21

↑ S32 ↓ S41−→
S 34

p = 0.35 p = 1.1, ρ = 1.1, v1 = 0, v2 = 0

6

−→
R 21

↑ S32 ↓ S41←−
R 34

ρ = 0.5 p = 1, ρ = 1, v1 = 0, v2 = 0

E

←−
S 21

J32 ↓ S41

J34

p = 0.4 p = 1, ρ = 1, v1 = 0.1, v2 = 0

ρ = 0.8

F

−→
S 21

J32 ↑ S41

J34

p = 1, ρ = 1 p = 0.4, v1 = 0, v2 = 0

ρ = 0.8

J
J21

↓ S32 ↓ S41

J34

ρ = 2, v2 = 0.3 p = 1, ρ = 1, v2 = −0.3

p = 0.4 v1 = 0

G

−→
R 21

J32 ↓ S41

J34

p = 0.4 p = 1, ρ = 1, v1 = 0.1, v2 = −0.3

ρ = 0.8

H

←−
R 21

J32 ↑ S41

J34

p = 1 p = 0.4, v1 = 0.1, v2 = 0.1

ρ = 0.8 ρ = 1

K
J21

↓ S32 ↑ R41

J34

p = 0.35 p = 1.1, ρ = 1.1, v1 = 0, v2 = 0

Table 6.5.: Elementary waves and initial conditions of all two dimensional Rie-

mann problems involving shock waves. The configurations are labeled

as in [77]. Only the necessary initial conditions are given. All remain-

ing initial states are defined by the conditions of the waves, e.g. the

Rankine-Hugoniot condition for the shock wave.

117

6. Numerical results

configuration. The polynomial degree is set to N = 5 for the DG elements and the

JST indicator on the density is used to detect the elements that need a FV sub-

cells treatment. The slopes of the second order reconstruction are limited with

the MinMod limiter and the numerical fluxes are resolved with the Roe Riemann

solver. Furthermore, the basic mesh consists of 100×100 uniform elements. The

boundary conditions for all configurations are Dirichlet boundary conditions where

the outer state is given by the exact solution of the respective elementary wave.

Since the discontinuity of the outer state of the boundary condition is sharp but

the numerical calculation smears the wave fronts, this might produce spurious

artifacts that travel into the computational domain. In some configurations, the

domain is therefore extended at the problematic boundaries to keep the artifacts

outside of the original domain. If this extension of the domain is needed, it is

explicitly mentioned in the detailed description of the individual configurations.

Furthermore, the Riemann solver for the boundary condition fluxes is changed in

some cases from the Roe Riemann solver to the HLLE.

6.4.3.1. Configurations without contact discontinuities

There are three configurations without a contact discontinuity. The configurations

3 and 4 are initialized with shock waves only and configuration 6 consists of two

shock and two rarefaction waves.

Configuration 3

Four shock waves are initialized at the quadrant interfaces travelling downwards

and left in this example. The basic mesh of 100× 100 DG elements is refined in

the region [−0.3, 0] × [−0.3, 0] to half the grid size. In total, the mesh consists

of 1002 − 302 + 602 = 12700 elements. The local refinement requires the mortar

technique. In contrast to all other configurations, the Roe Riemann solver is

replaced with the HLLE Riemann solver out of stability reasons. Also, the Riemann

solver for the boundary conditions is the HLLE. The lower and upper thresholds of

the JST indicator are chosen as 0.004 and 0.009 and additionally to this indicator

the Persson indicator with a threshold of −6.0 is used to avoid switching of FV

sub-cell elements to DG elements, if they contain high mode oscillations. The

numerical solution at final time t = 0.3 is shown in the first row of figure 6.14.

Regarding the main flow structures, the result shows a good agreement to the

results in [53]. Nevertheless, due to the high order of this simulation, many more

small scale features are resolved, which were also detected by Dumbser et al. [24].

118

6.4. Complex examples

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

0.11

1.76

0.5

1

1.5

ρ

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

0.48

1.95

0.8

1.2

1.6

ρ

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

0.45

1

0.6

0.8

ρ

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

Figure 6.14.: Two dimensional Riemann problem, configurations 3, 4 and 6. Left:

Density at final time. Right: FV (red) and DG (blue) elements.

119

6. Numerical results

Configuration 4

This configuration is initialized with four shock waves, but in contrast to config-

uration 3 the left and bottom waves travel in opposite direction. The lower and

upper thresholds of the JST indicator are chosen as 0.005 and 0.002, but no

additional Persson indicator is needed. The boundary condition Riemann solver is

the HLLE. In the second row of figure 6.14, the numerical results at tend = 0.25

are shown. Most shock waves are resolved with a single FV sub-cells element or

at most in two elements if the shock front is near a DG element boundary. As

one can see, this example does not produce small structures. Therefore, the mesh

resolution can be reduced. Results with a mesh sizes of 67× 67 elements can be

found in [84].

Configuration 6

Two shock and two rarefaction waves which move in clockwise direction are

initialized in this case. To avoid spurious artifacts at the boundary conditions of

the rarefaction waves, the domain has been extended in y -direction to [−1, 1],

with the same mesh size of h = 1
100

and additionally the HLLE Riemann solver

is used for this boundaries. Lower and upper thresholds for the JST indicator are

0.004 and 0.01 and as for configuration 3, the Persson indicator is used with a

threshold of −6.0 to avoid switching of FV sub-cell elements to DG elements,

if they contain high mode oscillations. The last row of figure 6.14 contains the

results at tend = 0.2. At most, two FV sub-cell elements are required to resolve

the shock front. Only at the very beginning of the computation, the rarefaction

waves require the FV shock capturing technique. After a short time these waves

gain a certain width such that they can be easily resolved by the DG polynomials.

A comparison to the numerical investigations of Schulz-Rinne [78] shows a good

agreement.

6.4.3.2. Configurations with two shock waves and two contact discontinuities

The three configurations consist of two contact discontinuities and two shock

waves and are used to investigate the mortar interfaces for locally refined meshes

in more detail. For each configuration a baseline simulation on the original 100×
100 mesh is performed. Afterwards, the mesh is refined in the regions of most in-

terest and the simulations are repeated with the same numerical setup again. The

only difference between the setups of these configurations is at which quadrant

interface the specific waves are initialize and the direction of travel of the shock

wave fronts. Due to the similarity of these examples, the JST indicator with the

120

6.4. Complex examples

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

0.55

1.21

0.75

1

ρ

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

0.54

1.7

1

1.5

ρ

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

Figure 6.15.: Two dimensional Riemann problem, configurations E and F. Left:

Density at final time. Right: FV (red) and DG (blue) elements.

same lower and upper threshold of 0.002 and 0.005 was used. Only configuration

F changes the Riemann solver for the boundary conditions from Roe to HLLE.

Configuration E and F

The two shock waves are initialized at the top and right quadrant interface and

travel left/down for configuration E and right/up for configuration F. Referring

to Schulz-Rinne [78], both examples are symmetric to y −x = (v2−v1)∗ t. Since

both initial velocities are zero for configuration F, the contact discontinuities do

not move at all in this case. This is also true for the left contact discontinuity

of configuration E, but not for bottom wave which moves with v2 = 0.1 to the

121

6. Numerical results

right and therefore is numerically more challenging for the boundary condition.

To circumvent this, the domain of configuration E is extended at the bottom

boundary to y = −1 with the same mesh size. The first row (E) and second row

(F) of figure 6.15 show the numerical results at t = 0.3 and t = 0.25, respec-

tively. Due to the movement of the bottom contact discontinuity in configuration

E, this wave gets a numerical extension, but can be resolved within a single FV

sub-cells element. In comparison to this, the left contact discontinuity and both

discontinuities of configuration F are located perfectly at an element interface

and thus stay perfectly sharp. The shock fronts are resolved within at most two

elements in both examples and the numbers of FV sub-cell elements are quite

minimal. Only for the non-moving contact discontinuities, which are directly lo-

cated at the element interfaces, it might not be absolutely necessary to have the

adjacent elements marked. This is only possible for this special case where the

wave fronts coincide with the mesh, but the JST indicator detects the jump in

density and therefore marks this elements in a more general way.

Now the meshes of both cases are refined in the regions where small flow

structures occur from h = 1
100

to h = 1
200

. For both configurations the mesh

resolution is doubled in the central subdomain [−0.2, 0] × [−0.2, 0], which is

visualized in figure 6.16 by the dashed rectangles. For the element interfaces

lying at the connection between the outer region and the refined part, mortar

interfaces are required. For configuration E the choice of the refined rectangle

leads to an intersection of the wave fronts with the mortar interfaces under a

non-zero and non-orthogonal angle. Comparing the results, it is quite remarkable

that the mortar interfaces do not influence the wave fronts at all. Of course,

inside the refined region the improved resolution leads to smaller structures in the

two developing vortices. First signs of a Kelvin-Helmholtz instability are visible

and the minimal density inside the vortices is lower for the refined case.

For configuration F the situation is different. Here, the contact discontinuities

and the mortar interfaces are parallel and even lie on one and another. Again,

the mortar interfaces do not affect the wave fronts and the doubled resolution

mostly changes the small vortices. As for configuration E, the absolute density

level inside is lower and a Kelvin-Helmholtz instability starts to develop. It is quite

clear that small structures along the shear wave can only be visible if the resolution

of the simulation is high enough to resolve them. Hence, for the last configuration

J with two shock waves and contact discontinuities each the mesh resolution is

increased further to show this effect.

122

6.4. Complex examples

−0.30 −0.20 −0.10 0.00 0.10

−0.30

−0.20

−0.10

0.00

0.10

0.55

1.21

0.75

1.00

ρ

−0.30 −0.20 −0.10 0.00 0.10

−0.30

−0.20

−0.10

0.00

0.10

−0.25 −0.15 −0.05
−0.25

−0.15

−0.05

0.55

1.70

1.00

1.50

ρ

−0.25 −0.15 −0.05
−0.25

−0.15

−0.05

Figure 6.16.: Closeup view of the two dimensional Riemann problem, configura-

tions E and F. Left: Density at final time for the original mesh.

Right: Inside the dashed rectangle the mesh resolution is doubled.

123

6. Numerical results

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

0.53

2.4

1

1.5

2

ρ

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

Figure 6.17.: Two dimensional Riemann problem, configuration J. Left: Density

at final time. Right: FV (red) and DG (blue) elements.

Configuration J

This configuration is separated into a left and right part by a contact disconti-

nuity. The two shock waves at the left and right quadrant interfaces travel with

different speeds downwards, which produces a vortex in the center of the domain.

The numerical results at t = 0.3 are plotted in the last row of figure 6.17 and

are comparable to the results of Kurganov and Tadmor [53]. In this case an ad-

ditionally Persson indicator with a threshold of −6.0 is used to avoid switching

of FV sub-cell elements to DG elements, if they contain high mode oscillations.

Increasing the overall mesh resolution from h = 1
100

to h = 1
200

and with the mor-

tar interfaces locally in the region of highest interest [−0.3,−0.1] × [−0.4, 0.2]

to even h = 1
400

, the solution shows more small-scale features. In figure 6.18 a

close-up view of the center region for both mesh resolutions is plotted. Due to

the reduced numerical dissipation, the solution for the fine mesh shows a Kelvin-

Helmholtz instability along the shear wave. The same high order behavior was

detected by Dumbser et al. [24] at other two dimensional Riemann problems

involving shear waves.

6.4.3.3. Configurations with one shock wave, one rarefaction wave and two

contact discontinuities

The remaining two dimensional Riemann problems involving shocks are presented

only briefly, since the fundamental properties of the hybrid DG/FV sub-cells

scheme are here the same as for the previous two dimensional Riemann problems.

124

6.4. Complex examples

−0.15 −0.10 −0.05 0.00 0.05

−0.06

−0.01

0.04

0.09

0.14

0.53

2.40

1.00

1.50

2.00

ρ

−0.15 −0.10 −0.05 0.00 0.05

−0.06

−0.01

0.04

0.09

0.14

Figure 6.18.: Two dimensional Riemann problem, configuration J. Left: Close-up

view of density for h = 1
100

. Right: Close-up view of density for

h = 1
400

.

Referring to Schulz-Rinne [77], there are three different configurations consisting

of two contact discontinuities and one shock and one rarefaction wave. In config-

uration G and H the two contact discontinuities are adjacent to each other while

in configuration K they are opposite.

Configurations G and H

For both examples the top quadrant interface is initialized with a rarefaction

wave and the right one with a shock wave. The other two quadrant interfaces

are contact discontinuities. The main difference between the configurations is the

direction of travel of the rarefaction and the shock wave. In configuration G these

waves move clockwise, while in configuration H they move counter-clockwise. To

avoid problems with boundary conditions, the domain has been extended with

the same mesh size of h = 1
100

at the left, bottom and top to x = −1 and

y = ±1 respectively. The lower and upper thresholds of the JST indicator are

chosen as 0.002 and 0.001. In addition to this indicator the Persson indicator

with a threshold of −5.5 is used to avoid switching of FV sub-cell elements to

DG elements, if they contain high mode oscillations. In the first (G) and second

(H) row of figure 6.19 the numerical solution at t = 0.2 is plotted. A comparison

to Kurganov and Tadmor [53] or Schulz-Rinne [78] shows a very nice match.

Both examples need at most two FV sub-cells elements to resolve the waves.

125

6. Numerical results

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

0.43

0.99

0.6

0.8

ρ

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

0.52

1.02

0.6

0.75

0.9

ρ

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

0.5

2

1

1.5

ρ

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

Figure 6.19.: Two dimensional Riemann problem, configurations G, H and K.

Left: Density at final time. Right: FV (red) and DG (blue) elements.

126

6.4. Complex examples

Configuration K

This configuration is comparable to configuration J in the sense that the domain

is divided by the two slip lines into a left and a right section. At the junction

of the two slip lines a vortex forms. To compute this example the JST indicator

thresholds are set to 0.001 and 0.004. The numerical solution at final time t = 0.3

is given in the last row of figure 6.19. As before, the wave fronts are resolved in

at most two FV sub-cell elements. Interesting is the part below the rarefaction

wave on the right where a light shock wave occurs. Only a few marked cells are

sufficient to resolve this shock.

6.4.4. Shock boundary layer interaction

The last example in this chapter is intended to demonstrate the capabilities of the

shock capturing in a real world massively parallel setting. In the research field of

aircraft propulsion systems that are capable of generating thrust in the hypersonic

flight regime, the supersonic combustion ramjet, short scramjet, is a promising

design. A ramjet is an air-breathing jet engine where the compression of the in-

flowing air is achieved only by the converging inlet at supersonic speed and not due

to rotating compressors as in turbo jet engines. The main difference of scramjets

compared to ramjets is that the air throughout the entire engine is supersonic,

whereas the ramjet slows the incoming flow down to subsonic speeds before the

combustion. Therefore, the operation at high Mach numbers requires a profound

knowledge of the appearing physical phenomena. One of these phenomena is the

interaction of a shock wave with a flat plate turbulent boundary layer, which is

investigated in this example with a direct numerical simulation (DNS).

The numerical simulation and the visualizations were performed by Muhammed

Atak with a previous revision of the FLEXI code with the Gaussian distribution of

the FV sub-cells, not published as open source. A flat boundary layer at Mach=

2.67 is impinged by an oblique shock, which has a pressure relation of p2/p1 =

1.5. In general, this leads to a non travelling shock which is only moving due

to the interaction with the turbulent boundary layer. The computational domain

is discretized with a structured hexahedral mesh consisting of 1,125,000 grid

cells. The polynomial degree of the Discontinuous Galerkin elements is set to

N = 5, which results in 63 FV sub-cells per DG element or 243 million DOFs

in total. Elements containing a shock are detected by the Jameson indicator in

combination with the Ducros sensor, which avoids the marking of the turbulent

boundary layer by the Jameson indicator. The computation was performed on up

to 93, 750 processors.

127

6. Numerical results

t=81.0

x = 7

t=84.5

x = 7

Figure 6.20.: Two snapshots at t = 81.0s and t = 84.5s of the shock boundary

layer interaction. Visualized are isocontours of the Lambda-2 vortex

criterion, which are colored by the streamwise velocity. The backside

plane shows the density and the upper additional backside plane

shows the distribution of the DG (blue) and the FV sub-cell (red)

elements. In gray, the shock position is visualized with isocontours

of zero dilatation.

128

6.4. Complex examples

In figure 6.20, two snapshots at t = 81.0s and t = 84.5s of the computation

are shown. The turbulent structures of the boundary layer are visualized with

the Lambda-2 vortex criterion, which are additionally colored by the streamwise

velocity. With the isocontour of zero dilatation, the shock positions are plotted

in gray. The primary shock impinges on the boundary layer at about x = 7. Due

to the interaction with the boundary layer, two new shocks emerge from the

interaction zone. These secondary shocks are not steady like the primary shock

front, but dynamically develop from the turbulent structures. This can be seen

especially when comparing the distributions of DG (blue) and FV sub-cell (red)

elements, which are visualized in the two additional backside planes of figure 6.20.

Altogether, the shock capturing using Finite Volume sub-cells works really well

for this complex flow situation.

129

7. Conclusion and prospects

The optimization of lift and drag of an airfoil with respect to its shape is one

of the key issues to improve the performance of an airplane by reducing the

fuel consumption. For the numerical realization of such a shape optimization,

the shape of an object has to be discretized by a finite number of parameters.

The optimization procedure then modifies all these parameters until an extremum

of the resulting aerodynamic performance values has been found. This requires

the evaluation of many flow solutions. Since this can become quite expensive,

the number of required computations is the major factor for the costs of an

optimization. It even gets worse if the number of solver runs additionally depends

on parameters of the discretization. In this case, the number of parameters which

define the shape directly multiplies the number of necessary flow solutions. Hence,

one limits the set of parameters to a few to keep the numerical cost in acceptable

bounds. However, this restricts the freedom of the shape’s morphing, which is in

contrast to the goal of finding not only a good, but the best design.

To overcome expensive computations for a large set of design parameters this

work discusses shape derivatives in Hadamard form. Since their whole derivation

takes place in the continuous setting, they are completely independent from the

numerical scheme with regards to the number of parameters used to approximate

the shape. Nevertheless, the type of the numerical scheme is important in another

aspect. As it turns out, the shape derivative depends on the formulation of the

governing equation, either in variational or pointwise form. For methods based

on the variational formulation, the shape derivative of drag and lift coefficients

includes extra terms, which only vanish if the solution fulfills the strong equations.

Numerical investigations showed that this leads to a discrepancy of a shape deriva-

tive based on the strong form when using the Discontinuous Galerkin method,

which solves the Navier–Stokes equations weakly. Especially for flow phenomena

where a strong form solution is not clear, a significant difference between both

forms is to be expected. This is for example the case for the shock which forms at

transonic conditions above an airfoil and leads to a rapid increase of the drag. The

shape derivative of the drag could be used to optimize the shape such that this

loss in performance is reduced or totally eliminated. However, limitations in the

implementation of the Discontinuous Galerkin scheme used for this research pre-

131

7. Conclusion and prospects

vented such cases. With improvements in the code, the application of the shape

derivative should be extended in the future to flow conditions including shocks.

A milestone on the path to this aim is a solid shock capturing, which is pro-

vided in the second part of this work. High order methods in general, but also

the Discontinuous Galerkin method used here, have the problem that polynomials

used to represent the solution are not suitable to approximate discontinuities,

since they suffer from the Gibbs phenomenon. Hence, these methods have lim-

itations when it comes to shocks or other flow discontinuities which require a

shock capturing. Among several techniques to treat this problem, hybrid meth-

ods, where the high order method is chosen for the smooth parts of the flow

and the low order scheme handles the shocks, are well suited. Therefore, in this

work the Discontinuous Galerkin spectral elements method is coupled to a Finite

Volume scheme. Elements containing shocks or other problematic flow solutions

are detected by indicator functions. In these marked elements the DG operator

is switched to the Finite Volume scheme. With a reconstruction, this method is

of second order and due to the usage of slope limiters a perfect candidate for

the shock capturing. However, it has substantially higher demands on the mesh

resolution than the high order Discontinuous Galerkin method, which uses rather

large elements. Therefore, a logical mesh refinement of sub-cells inside the ele-

ments of the original grid is introduced in a special manner. For every degree of

freedom of a DG element, exactly one Finite Volume sub-cell is generated, which

enables to use the same data structures for both methods. This is crucial for an

efficient implementation for high performance computations.

The implementation of the shock capturing in the open source code FLEXI has

been investigated with several numerical examples. One-dimensional test cases

provided a good understanding of the basic properties of the scheme and with

scaling tests the high parallel efficiency has been verified. Therewith, the method

has shown its potential to be applied to more complex and larger problems, like

the shock boundary layer interaction which was performed on tens of thousands

processors. Furthermore, it has been shown that the shock capturing is freestream

preserving on curved grids even with mortar interfaces at local mesh refinements,

which is essential for complex geometries. The future of this method should

therefore be an application to “real world” cases involving shocks or other flow

discontinuities. To come full circle, this is for example the case for airfoils at

transonic speed. The shape derivatives derived in the first part of this work can

provide the sensitivities needed for a shape optimization. However, they require

the implementation of an adjoint solver into the flow solver FLEXI , which remains

an open task for future research.

132

A. Parameter files

A.1. Validation examples

A.1.1. Sod shock tube

HOPR parameter file

! Each polynomial degree requires a different number of grid cells
! to end up with a comparable load. The number of elements in
! x-direction is given by:
! #elements: XX = 10,12,13,16,18,22,25,33,44

! OUTPUT
ProjectName = SOD˙XX ! Name of output files
Debugvisu = F ! no debug visualization

! MESH
Mode = 1 ! Mode for Cartesian boxes
nZones = 1 ! number of blocks

! BLOCK 1
Corner = (/ 0.,-1.,-1. ,, 1.,-1.,-1. ,, 1.,1.,-1. ,, 0.,1.,-1.,,

↪→ 0.,-1., 1. ,, 1.,-1., 1. ,, 1.,1., 1. ,, 0.,1., 1. /)
nElems = (/ XX ,1,1 /) ! number of elements in each direction
BCIndex = (/ 5,3,2,4,1,6 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

vv = (/ 0.,2.,0. /) ! vectors connection opposite
vv = (/ 0.,0.,2. /) ! periodic BCs

! BOUNDARY CONDITIONS
BoundaryName = BC˙x -
BoundaryType = (/ 2,0,0, 0 /) ! Dirchilet
BoundaryName = BC˙x+
BoundaryType = (/ 2,0,0, 0 /) ! Dirchilet
BoundaryName = BC˙y -
BoundaryType = (/ 1,0,0, 1 /) ! periodic
BoundaryName = BC˙y+
BoundaryType = (/ 1,0,0,-1 /) ! periodic
BoundaryName = BC˙z -
BoundaryType = (/ 1,0,0, 2 /) ! periodic
BoundaryName = BC˙z+
BoundaryType = (/ 1,0,0,-2 /) ! periodic

133

A. Parameter files

FLEXI parameter file

! OUTPUT
ProjectName = sod

! INTERPOLATION
N = 3 ! 4,5,...,11
! the polynomial degree is varied between 3 and 11
! for each polynomial degree the number of elements in the mesh
! file is adjusted accoring to the following table
! N = 3, 4, 5, 6, 7, 8, 9, 10, 11
! #elements = 44, 33, 26, 22, 18, 16, 13, 12, 10

! MESH
MeshFile = SOD˙XX˙mesh.h5 ! XX is #elements
useCurveds = F

! FV
IndicatorType = Jameson ! JST indicator
IndVar = 6 ! pressure
IndStartTime = 0.00001 ! one time step pure FV
FV˙LimiterType = MinMod
FV˙IndUpperThreshold = 0.015 ! if IndValue above , switch to FV
FV˙IndLowerThreshold = 0.014 ! if IndValue below , switch to DG
FV˙toDG˙indicator = T ! additional Persson for FV -¿ DG
FV˙toDG˙limit = -6.7 ! threshold for additional Persson

! EQUATION
IniExactFunc = 11 ! shock tube
RefState = (/ 1.0, 0.,0.,0., 1.0 /)
RefState = (/ 0.125, 0.,0.,0., 0.1 /)

! RIEMANN
Riemann = hllc

! TIMEDISC
tend = 0.2 ! End time
CFLscale = 0.8 ! Scaling of theoretical CFL number

! ANALYZE
Analyze˙dt = 0.2 ! Timestep of analyze outputs
CalcErrorNorms = F ! Calculate error norms

134

A.1. Validation examples

A.1.2. Shu-Osher density fluctuations shock wave interaction

problem

HOPR parameter file

! OUTPUT
ProjectName = SHUOSHER˙100 ! Name of output files
Debugvisu = F ! no debug visualization

! MESH
Mode = 1 ! Mode for Curved boxes
nZones = 1 ! number of blocks

! BLOCK 1
Corner = (/ -5.,0.,0. ,, 5.,0.,0. ,, 5.,1.,0. ,, -5.,1.,0. ,,

↪→ -5.,0.,1. ,, 5.,0.,1. ,, 5.,1.,1. ,, -5.,1.,1. /)
nElems = (/ 100,1,1 /) ! number of elements in each direction
BCIndex = (/ 5,3,2,4,1,6 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

vv = (/ 0.,1.,0. /) ! vectors connection opposite
vv = (/ 0.,0.,1. /) ! periodic BCs

! BOUNDARY CONDITIONS
BoundaryName = BC˙x -
BoundaryType = (/ 2,0,0, 0 /) ! Dirichlet
BoundaryName = BC˙x+
BoundaryType = (/ 2,0,0, 0 /) ! Dirichlet
BoundaryName = BC˙periodicy -
BoundaryType = (/ 1,0,0, 1 /) ! periodic
BoundaryName = BC˙periodicy+
BoundaryType = (/ 1,0,0,-1 /) ! periodic
BoundaryName = BC˙periodicz -
BoundaryType = (/ 1,0,0, 2 /) ! periodic
BoundaryName = BC˙periodicz+
BoundaryType = (/ 1,0,0,-2 /) ! periodic

135

A. Parameter files

FLEXI parameter file

! OUTPUT
ProjectName = shuosher

! INTERPOLATION
N = 3 ! Polynomial degree

! MESH
MeshFile = SHUOSHER˙100˙mesh.h5
useCurveds = F

! FV
IndicatorType = Jameson ! JST indicator
IndVar = 6 ! pressure
FV˙LimiterType = MinMod

! For test of varying upper threshold (lower threshold fix)
! performe a simulation for each of the following values:
! XXX = 0.007 ,0.008 ,0.009 ,0.010 ,0.011 ,0.012 ,0.020 ,0.040 ,0.080 ,0.120
FV˙IndUpperThreshold = XXX ! if IndValue above , switch to FV
FV˙IndLowerThreshold = 0.005 ! if IndValue below , switch to DG

! For test of varying lower threshold (upper threshold fix)
! performe a simulation for each of the following values:
! XXX = 0.001 ,0.002 ,0.003 ,0.004 ,0.005 ,0.006 ,0.007 ,0.008
FV˙IndUpperThreshold = 0.011 ! if IndValue above , switch to FV
FV˙IndLowerThreshold = XXX ! if IndValue below , switch to DG

! EQUATION
IniExactFunc = 12 ! shu osher example

! RIEMANN
Riemann = Roe

! TIMEDISC
tend = 1.8 ! End time
CFLscale = 0.9 ! Scaling of theoretical CFL number

! ANALYZE
Analyze˙dt = 1.8 ! Timestep of analyze outputs
CalcErrorNorms = F ! Calculate error norms

136

A.1. Validation examples

A.1.3. Freestream preservation

HOPR parameter file

! OUTPUT
ProjectName = FREESTREAM ! Name of output files
Debugvisu = F

! MESH
Mode = 1 ! Mode for Cartesian boxes
nZones = 2 ! number of blocks

! BLOCK 1
Corner = (/ -1.,-1.,-1.,, 3.,-1.,-1.,, 3.,3.,-1.,, -1.,3.,-1.,,

↪→ -1.,-1., 1., ,3.,-1., 1.,, 3.,3., 1.,, -1.,3., 1. /)
nElems = (/ 4,4,2 /) ! number of elements in each direction
BCIndex = (/ 5,3,2,4,1,0 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype =108 ! element type (108: Hexahedral)

! BLOCK 2
Corner = (/ -1.,-1.,1.,, 3.,-1.,1.,, 3.,3.,1.,, -1.,3.,1.,,

↪→ -1.,-1.,3.,, 3.,-1.,3.,, 3.,3.,3.,, -1.,3.,3. /)
NElems = (/ 8,8,2 /) ! number of elements in each direction
BCIndex = (/ 0,3,2,4,1,6 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

vv = (/ 2.,0.,0. /) ! vectors connection opposite
vv = (/ 0.,2.,0. /) ! periodic BCs
vv = (/ 0.,0.,2. /) !

MeshScale = 0.5 ! scale mesh by this factor
MeshPostDeform = 31 ! x=x+0.1* sin(PI*x)*sin(PI*y)*sin(PI*z)
useCurveds = T
BoundaryOrder = 4 ! polynomial degree of geometry

! BOUNDARY CONDITIONS
BoundaryName = BC˙x -
BoundaryType = (/ 1,0,0, 1 /) ! periodic
BoundaryName = BC˙x+
BoundaryType = (/ 1,0,0,-1 /) ! periodic
BoundaryName = BC˙y -
BoundaryType = (/ 1,0,0, 2 /) ! periodic
BoundaryName = BC˙y+
BoundaryType = (/ 1,0,0,-2 /) ! periodic
BoundaryName = BC˙z -
BoundaryType = (/ 1,0,0, 3 /) ! periodic
BoundaryName = BC˙z+
BoundaryType = (/ 1,0,0,-3 /) ! periodic

137

A. Parameter files

FLEXI parameter file

! OUTPUT
ProjectName = freestream

! INTERPOLATION
N = 6 ! polynomial degree (2* NGeo)
NAnalyze = 10 ! Number of analyze points

! MESH
MeshFile = FREESTREAM˙mesh.h5
useCurveds = T

! FV
IndicatorType = checkerboard
FV˙LimiterType = minmod

! EQUATION
IniExactFunc = 1 ! constant RefState
IniRefState = 1
RefState = (/ 1.0 ,1.0 ,1.0 ,1.0 ,1.0 /)
Riemann = Roe

! TIMEDISC
tend = 0.5 ! End time
CFLscale = 0.9 ! Scaling of theoretical CFL number

! ANALYZE
CalcErrorNorms = T ! Calculate error norms
CalcBodyForces = F ! Calculate body forces

138

A.2. Order of convergence

A.2. Order of convergence

HOPR parameter file

! Grid convergence is investigated for a periodic cube , where the upper
! half in z-direction has twice the resolution in the x and y-direction
! The number of baseline number of elements per direction is varied:
! #elements: XX = 8,12,16,20,24

! OUTPUT
ProjectName = CONV˙XX ! Name of output files
Debugvisu = F ! no debug visualization

! MESH
Mode = 1 ! Mode for Cartesian boxes
nZones = 2 ! number of blocks

! BLOCK 1
Corner = (/ -1.,-1.,-1. ,, 1.,-1.,-1. ,, 1.,1.,-1. ,, -1.,1.,-1.,,

↪→ -1.,-1., 0. ,, 1.,-1., 0. ,, 1.,1., 0. ,, -1.,1., 0. /)
nElems = (/ XX ,XX ,XX/2 /) ! number of elements in each direction
BCIndex = (/ 5,3,2,4,1,0 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

! BLOCK 2 (refined in x- and y-direction)
Corner = (/ -1.,-1., 0. ,, 1.,-1., 0. ,, 1.,1., 0. ,, -1.,1., 0.,,

↪→ -1.,-1., 1. ,, 1.,-1., 1. ,, 1.,1., 1. ,, -1.,1., 1. /)
NElems = (/ XX*2,XX*2,XX/2 /) ! number of elements in each direction
BCIndex = (/ 0,3,2,4,1,6 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

vv = (/ 2.,0.,0. /) ! vectors connection opposite
vv = (/ 0.,2.,0. /) ! periodic BCs
vv = (/ 0.,0.,2. /) !

! BOUNDARY CONDITIONS
BoundaryName = BC˙x -
BoundaryType = (/ 1,0,0, 1 /) ! periodic
BoundaryName = BC˙x+
BoundaryType = (/ 1,0,0,-1 /) ! periodic
BoundaryName = BC˙y -
BoundaryType = (/ 1,0,0, 2 /) ! periodic
BoundaryName = BC˙y+
BoundaryType = (/ 1,0,0,-2 /) ! periodic
BoundaryName = BC˙z -
BoundaryType = (/ 1,0,0, 3 /) ! periodic
BoundaryName = BC˙z+
BoundaryType = (/ 1,0,0,-3 /) ! periodic

139

A. Parameter files

FLEXI parameter file

! OUTPUT
ProjectName = convtest

! INTERPOLATION
N = 2 ! 2,...,5
! the polynomial degree is varied between 2 and 5
! for each polynomial degree the computation is performed
! on different grids , where the baseline number of elements
! per direction is:
! #elements = 8,12,16,20,24
NAnalyze = 10 ! Number of analyze points

! MESH
MeshFile = CONV˙XX˙mesh.h5 ! XX = #elements
useCurveds = F

! FV
! the convergence is investigated for pure DG and FV with
! different limiters:
! LimiterFunction: YY = none , minmod , central
IndicatorType = DG ! DG,FV
FV˙LimiterType = YY ! YY = LimiterFunction
IndVar = 1 ! density

! EQUATION
IniExactFunc = 2 ! diagonal density wave
IniRefState = 1
RefState = (/ 1.0 ,0.3 ,0.0 ,0.0 ,0.71428571 /)
AdvVel = (/ 1.0 ,1.0 ,1.0 /)
Riemann = Roe

! TIMEDISC
tend = 0.5 ! End time
CFLscale = 0.8 ! Scaling of theoretical CFL number

! ANALYZE
CalcErrorNorms = T ! Calculate error norms
CalcBodyForces = F ! Calculate body forces

140

A.3. Parallel efficiency

A.3. Parallel efficiency

Compile flags

-DEQNSYSNR=2 -DFV˙ENABLED=1 -DFV˙RECONSTRUCT=1
-DH5DIFF=“”/ opt/cray/hdf5 /1.10.0.1/ bin/h5diff “” -DLUSTRE -DPARABOLIC=1
-DPP˙Lifting=1 -DPP˙N=N -DPP˙NodeType=1 -DPP˙VISC=0 -DPP˙nVar=5
-DPP˙nVarPrim=6 -DUSE˙MPI=1 -fdefault -real -8 -fdefault -double -8
-fbackslash -ffree -line -length -0 -DGNU -O3 -march=core -avx2
-finline -functions -fstack -arrays -Jinclude -xf95 -cpp -input -fPIC

HOPR parameter file

! Parallel efficiency is investigated for different problems sizes.
! Therefore in total 12 different meshes are generated.
! The smallest configuration consists of 6x6x6 = 216 elements.
! All other cases are build by doubling the number of elements of
! the previous case.
! This results in the following configurations , where XXX ,YYY ,ZZZ
! are the number of elements in the respective directions.
! Case 1 2 3 4 5 6 7 8 9 10 11 12
!--
! XXX 6 12 12 12 24 24 24 48 48 48 96 96
! YYY 6 6 12 12 12 24 24 24 48 48 48 96
! ZZZ 6 6 6 12 12 12 24 24 24 48 48 48

! OUTPUT
ProjectName = XXXxYYYxZZZ ! Name of output files
Debugvisu = F ! no debug visualization

! MESH
Mode = 1 ! Mode for Cartesian boxes
nZones = 1 ! number of blocks

! BLOCK 1
Corner = (/ -6.,0.,0.,, 6.,0.,0.,, 6.,8.,0.,, -6,,8.,0.,,

↪→ -6.,0.,8.,, 6.,0.,8.,, 6.,8.,8.,, -6.,8.,8. /)
nElems = (/ XXX ,YYY ,ZZZ /) ! number of elements in each direction
BCIndex = (/ 1,2,3,4,5,6 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

! BOUNDARY CONDITIONS
BoundaryName = BC˙z -
BoundaryType = (/ 2,0,0,0 /) ! Dirichlet
BoundaryName = BC˙y -
BoundaryType = (/ 2,0,0,0 /) ! Dirichlet
BoundaryName = BC˙x+
BoundaryType = (/ 2,0,0,0 /) ! Dirichlet
BoundaryName = BC˙y+
BoundaryType = (/ 2,0,0,0 /) ! Dirichlet
BoundaryName = BC˙x -
BoundaryType = (/ 2,0,0,0 /) ! Dirichlet
BoundaryName = BC˙z+
BoundaryType = (/ 2,0,0,0 /) ! Dirichlet

141

A. Parameter files

FLEXI parameter file

! OUTPUT
ProjectName = cartbox
WriteStateFiles = F

! INTERPOLATION
N = 6
doWeakLifting = T

! MESH
MeshFile = ../ XXXxYYYxZZZ˙mesh.h5

! FV
! To compare the DG and the FV sub -cells method and furthermore
! mixed DG/FV interfaces the indicator is set to one of the
! following four synthetic indicator functions
! III = DG, FV, checkerboard , halfhalf
IndicatorType = III
FV˙LimiterType = MinMod
FV˙IniSupersample = F ! do not supersample initial solution

! Riemann
Riemann = LF

! EQUATION
IniExactFunc = 1 ! Freestream
IniRefState = 1
RefState = (/ 1.,1.,1.,1.,1. /)
mu0 = 0.000018547 ! physical constants
R = 1.0 !
Pr = 0.72 !
kappa = 1.4 !

! TIMEDISC
TimeDiscMethod = carpenterrk4 -5 ! Runge -Kutta scheme
tend = 500.0 ! big number , the simulation
Analyze˙dt = 500.0 ! is terminated by:
maxIter = 100 ! maximal number of timesteps
CFLscale = 0.99 ! Scaling of theoretical CFL
DFLscale = 0.4 ! Scaling of theoretical DFL

142

A.4. Complex examples

A.4. Complex examples

A.4.1. Double Mach reflection

HOPR parameter file

! OUTPUT
! The Double Mach Reflection example is performed on grids ,
! with different resolutions :
! #elements for physical length of 1.0 : XX = 30, 120, 240,
ProjectName = DMR˙XX ! Name of output files
Debugvisu = F ! no debug visualization

! MESH
Mode = 1 ! Mode for Cartesian boxes
nZones = 2 ! number of blocks

! BLOCK 1
Corner = (/ 0.,0.,-6. ,, 1.,0.,-6. ,, 1.,6.,-6. ,, 0.,6.,-6. ,,

↪→ 0.,0., 6. ,, 1.,0., 6. ,, 1.,6., 6. ,, 0.,6., 6. /)
nElems = (/ XX/6,XX ,1 /) ! number of elements in each direction
BCIndex = (/ 1,2,0,4,5,6 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

! BLOCK 2
Corner = (/ 1.,0.,-6. ,, 24.,0.,-6. ,, 24.,6.,-6. ,, 1.,6.,-6. ,,

↪→ 1.,0., 6. ,, 24.,0., 6. ,, 24.,6., 6. ,, 1.,6., 6. /)
NElems = (/ XX*23/6,XX ,1 /) ! number of elements in each direction
BCIndex = (/ 1,7,3,4,0,6 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

vv = (/ 0.,0.,12. /) ! vector connection opposite
! periodic BCs

postScaleMesh = T ! rescale mesh after building of mesh
meshScale = 0.1666666666666 ! to 1/6

! BOUNDARY CONDITIONS
BoundaryName = BC˙z -
BoundaryType = (/ 1,0,0, 1 /) ! periodic
BoundaryName = BC˙y -
BoundaryType = (/ 2,0,0, 0 /) ! periodic
BoundaryName = BC˙x+
BoundaryType = (/ 24,0,2, 0 /) ! pressure ouflow
BoundaryName = BC˙y+
BoundaryType = (/ 2,0,0, 0 /) ! Dirichlet
BoundaryName = BC˙x -
BoundaryType = (/ 2,0,0, 0 /) ! Dirichlet
BoundaryName = BC˙z+
BoundaryType = (/ 1,0,0,-1 /) ! periodic
BoundaryName = BC˙wall
BoundaryType = (/ 9,0,0, 0 /) ! Euler slip wall

143

A. Parameter files

A.4.1.1. Pure Finite Volume on a fine grid

FLEXI parameter file

! OUTPUT
ProjectName = dmr˙purefv

! INTERPOLATION
N = 5 ! Polynomial degree

! MESH
MeshFile = DMR˙240˙mesh.h5
useCurveds = F

! FV
IndicatorType = FV
IndVar = 6 ! pressure
FV˙LimiterType = MinMod
FV˙IndUpperThreshold = 0.010 ! if IndValue above , switch to FV
FV˙IndLowerThreshold = 0.005 ! if IndValue below , switch to DG

! EQUATION
IniExactFunc = 13
RefState = (/ 8.0 ,7.14471 , -4.125 ,0. ,116.5 /) ! pre shock
RefState = (/ 1.4 ,0. ,0. ,0.,1.0 /) ! post shock
Riemann = HLLE

! TIMEDISC
tend = 0.2 ! End time
CFLscale = 0.9 ! Scaling of theoretical CFL number

! ANALYZE
Analyze˙dt = 0.1 ! Timestep of analyze outputs
CalcErrorNorms = F ! Calculate error norms

A.4.1.2. Hybrid DG/FV sub-cell simulation on a coarse grid comparative to

pure FV on a fine grid

FLEXI parameter file

! OUTPUT
ProjectName = dmr˙coarse

! INTERPOLATION
N = 5 ! Polynomial degree

! MESH
MeshFile = DMR˙30˙mesh.h5
useCurveds = F

! FV
IndicatorType = Jameson ! JST indicator
IndVar = 6 ! pressure

144

A.4. Complex examples

FV˙LimiterType = MinMod
FV˙IndUpperThreshold = 0.010 ! if IndValue above , switch to FV
FV˙IndLowerThreshold = 0.005 ! if IndValue below , switch to DG
FV˙toDG˙indicator = T ! additional Persson for FV -¿ DG
FV˙toDG˙limit = -5.5 ! threshold for additional Persson

! EQUATION
IniExactFunc = 13
RefState = (/ 8.0 ,7.14471 , -4.125 ,0. ,116.5 /) ! pre shock
RefState = (/ 1.4 ,0. ,0. ,0.,1.0 /) ! post shock
Riemann = HLLE

! TIMEDISC
tend = 0.2 ! End time
CFLscale = 0.9 ! Scaling of theoretical CFL number

! ANALYZE
Analyze˙dt = 0.2 ! Timestep of analyze outputs
CalcErrorNorms = F ! Calculate error norms

A.4.1.3. Investigation of the numerical dissipation introduced by the FV

sub-cells

FLEXI parameter file

! OUTPUT
! To show the influence of the numerical dissipation introduced
! by the FV sub -cells the amount of FV sub -cells is increased
! by adjusting the upper and lower thresholds.
! Two configurations are investigated:
! upper ,lower threshold: XXX ,YYY = 0.010 , 0.005
! upper ,lower threshold: XXX ,YYY = 0.004 , 0.003
ProjectName = dmr˙thresholds˙XXX˙YYY

! INTERPOLATION
N = 5 ! Polynomial degree

! MESH
MeshFile = DMR˙120˙mesh.h5
useCurveds = F

! FV
IndicatorType = Jameson ! JST indicator
IndVar = 6 ! pressure
FV˙LimiterType = MinMod
FV˙IndUpperThreshold = XXX ! if IndValue above , switch to FV
FV˙IndLowerThreshold = YYY ! if IndValue below , switch to DG
FV˙toDG˙indicator = T ! additional Persson for FV -¿ DG
FV˙toDG˙limit = -5.5 ! threshold for additional Persson

! EQUATION
IniExactFunc = 13
RefState = (/ 8.0 ,7.14471 , -4.125 ,0. ,116.5 /) ! pre shock

145

A. Parameter files

RefState = (/ 1.4 ,0. ,0. ,0.,1.0 /) ! post shock
Riemann = HLLE

! TIMEDISC
tend = 0.2 ! End time
CFLscale = 0.9 ! Scaling of theoretical CFL number

! ANALYZE
Analyze˙dt = 0.2 ! Timestep of analyze outputs
CalcErrorNorms = F ! Calculate error norms

A.4.2. Forward facing step

HOPR parameter file

! OUTPUT
ProjectName = FFS ! Name of output files
Debugvisu = F ! no debug visualization

! MESH
Mode = 1 ! Mode for Cartesian boxes
nZones = 3 ! number of blocks

! BLOCK 1
Corner = (/ 0.,0.,0. ,, 0.6 ,0. ,0. ,, 0.6 ,0.2 ,0. ,, 0.,0.2 ,0. ,,

↪→ 0.,0.,1. ,, 0.6,0. ,1. ,, 0.6 ,0.2 ,1. ,, 0. ,0.2 ,1. /)
nElems = (/ 60,20,1 /) ! number of elements in each direction
BCIndex = (/ 1,2,2,0,5,6 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

! BLOCK 2
Corner = (/ 0.,0.2 ,0. ,, 0.6 ,0.2 ,0. ,, 0.6 ,1. ,0. ,, 0.,1.,0. ,,

↪→ 0.,0.2,1. ,, 0.6 ,0.2 ,1. ,, 0.6,1.,1. ,, 0.,1.,1. /)
nElems = (/ 60,80,1 /) ! number of elements in each direction
BCIndex = (/ 1,0,0,4,5,6 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

! BLOCK 3
Corner = (/ 0.6 ,0.2 ,0. ,, 3.,0.2 ,0. ,, 3.,1.,0. ,, 0.6 ,1. ,0. ,,

↪→ 0.6 ,0.2 ,1. ,, 3.,0.2,1. ,, 3.,1.,1. ,, 0.6,1.,1. /)
nElems = (/ 240,80,1 /) ! number of elements in each direction
BCIndex = (/ 1,2,3,4,0,6 /) ! Indices of Boundary Conditions

! (z-,y-,x+,y+,x-,z+)
elemtype = 108 ! element type (108: Hexahedral)

vv = (/ 0.,0.,1. /) ! vector connection opposite
! periodic BCs

! BOUNDARY CONDITIONS
BoundaryName = BC˙z -
BoundaryType = (/ 1,0,0, 1 /) ! periodic
BoundaryName = BC˙wall

146

A.4. Complex examples

BoundaryType = (/ 9,0,1, 0 /) ! Euler slip wall
BoundaryName = BC˙outflow
BoundaryType = (/ 24,0,1, 0 /) ! pressure outflow
BoundaryName = BC˙symmetry
BoundaryType = (/ 9,0,1, 0 /) ! Euler slip wall
BoundaryName = BC˙inflow
BoundaryType = (/ 2,0,1, 0 /) ! Dirichlet
BoundaryName = BC˙z+
BoundaryType = (/ 1,0,0,-1 /) ! periodic

FLEXI parameter file

! OUTPUT
! With the Forward Facing Step example the influence of the
! variable the indicator is evaluated for is investigated.
! The Persson indicator is evaluated for:
! indicator variable: XXX = 1, 6 ! 1: density , 6: pressure
ProjectName = ffs˙persson˙XXX

! INTERPOLATION
N = 5 ! Polynomial degree

! MESH
MeshFile = FFS˙mesh.h5
useCurveds = F

! FV
IndicatorType = Persson
IndVar = XXX ! 1: density , 6: pressure
FV˙LimiterType = MinMod
IndStartTime = 0.001
FV˙IndLowerThreshold = -6.5 ! if IndValue above , switch to FV
FV˙IndUpperThreshold = -5.5 ! if IndValue below , switch to DG

! EQUATION
IniExactFunc = 1
IniRefState = 1
RefState = (/ 1.4 ,3. ,0. ,0. ,1.0 /)
Riemann = HLLE

! TIMEDISC
tend = 4.0 ! End time
CFLscale = 0.9 ! Scaling of theoretical CFL number

! ANALYZE
Analyze˙dt = 1.0 ! Timestep of analyze outputs
CalcErrorNorms = F ! Calculate error norms

147

A. Parameter files

A.4.3. Two dimensional Riemann problem

HOPR parameter file

! For the different two dimensional Riemann problems
! indiviual meshes are build:
! XXX = Configuration
! The HOPR parameter file for all configurations is
! the same , except the Block definitions.
! They will be listed for the configurations indiviually.
! OUTPUT
ProjectName = riemann2d˙cfgXXX ! Name of output files
Debugvisu = F ! no debug visualization

! MESH
Mode = 1 ! Mode for Cartesian boxes

! BLOCK 1
! ... insert definition of block 1 here
! BLOCK 2
! ... insert definition of block 2 here
! ...
! ...

vv = (/ 0.,0.,1. /) ! vector connection opposite
! periodic BCs

BoundaryName = BC˙2
BoundaryType = (/ -101,0,2, 0 /) ! special Riemann2D BC
BoundaryName = BC˙4
BoundaryType = (/ -101,0,4, 0 /) ! special Riemann2D BC
BoundaryName = BC˙3
BoundaryType = (/ -101,0,3, 0 /) ! special Riemann2D BC
BoundaryName = BC˙1
BoundaryType = (/ -101,0,1, 0 /) ! special Riemann2D BC
BoundaryName = BC˙zminus
BoundaryType = (/ 1,0,0, 1 /) ! periodic
BoundaryName = BC˙zplus
BoundaryType = (/ 1,0,0,-1 /) ! periodic

FLEXI parameter file

! For the different two dimensional Riemann problems
! this basis parameter file is used:
! XXX = Configuration
! OUTPUT
ProjectName = riemann2d˙cfgXXX

! INTERPOLATION
N = 5

! MESH
MeshFile = riemann2d˙cfgXXX˙mesh.h5
useCurveds = F

148

A.4. Complex examples

! FV
IndicatorType = Jameson ! JST indicator
IndVar = 1 ! density
FV˙LimiterType = MinMod
! The upper and lower thresholds vary for the different
! configurations and are given in the following table:
! Configuration — 3 — 4 — 6 — E,F,J — G,H — K
! Configuration — 3 — 4 — 6 — 11-13 — 15-16 — 19
! upper threshold: YYY — 0.009 — 0.005 — 0.01 — 0.005 — 0.002 — 0.004
! lower threshold: ZZZ — 0.004 — 0.002 — 0.004 — 0.002 — 0.001 — 0.001
FV˙IndUpperThreshold = YYY
FV˙IndLowerThreshold = ZZZ
FV˙toDG˙indicator = T ! for Cfg 3,6,13,15,16

! all other Cfgs set it to ’F’
FV˙toDG˙limit = ! -5.5 for Cfg 15 ,16.

! -6.0 fog Cfg 3,6,13

! EQUATION
IniExactFunc = -XXX

! RIEMANN
Riemann = Roe ! except CFG 3, which uses HLLE
RiemannBC = ! HLLE for Cfg 3,4,6,12

! Roe for all other Cfgs
! TIMEDISC
! The end time varies for the different configurations:
! Configuration — 3 — 4 — 6 — 11 — 12 — 13 — 15-16 — 19
! End time — 0.3 — 0.25 — 0.2 — 0.3 — 0.25 — 0.3 — 0.2 — 0.3
tend =
CFLscale = 0.9 ! Scaling of theoretical CFL number

! ANALYZE
Analyze˙dt = 0.3 ! Timestep of analyze outputs
CalcErrorNorms = F ! Calculate error norms

A.4.3.1. Configurations without contact discontinuities

Configuration 3

HOPR parameter file (Double resolution in [−0.3, 0]× [−0.3, 0])

nZones = 5 ! number of blocks

! BLOCK 1
Corner = (/ -0.3,-0.3,0,, 0.0,-0.3,0,, 0.0,0.0,0,,-0.3,0.0,0,,

↪→ -0.3,-0.3,1,, 0.0,-0.3,1,, 0.0,0.0,1,,-0.3,0.0,1 /)
nElems = (/ 60,60,1 /)
elemtype = 108
BCIndex = (/ 5,0,0,0,0,6 /)

! BLOCK 2
Corner = (/ -0.5,-0.5,0,,-0.3,-0.5,0,,-0.3,0.0,0,,-0.5,0.0,0,,

↪→ -0.5,-0.5,1,,-0.3,-0.5,1,,-0.3,0.0,1,,-0.5,0.0,1 /)

149

A. Parameter files

nElems = (/ 20,50,1 /)
elemtype = 108
BCIndex = (/ 5,3,0,0,1,6 /)

! BLOCK 3
Corner = (/ -0.3,-0.5,0,,0.5,-0.5,0,,0.5,-0.3,0,,-0.3,-0.3,0,,

↪→ -0.3,-0.5,1,,0.5,-0.5,1,,0.5,-0.3,1,,-0.3,-0.3,1 /)
nElems = (/ 80,20,1 /)
elemtype = 108
BCIndex = (/ 5,3,2,0,0,6 /)

! BLOCK 4
Corner = (/ 0.0,-0.3,0,, 0.5,-0.3,0,, 0.5,0.5,0,, 0.0,0.5,0,,

↪→ 0.0,-0.3,1,, 0.5,-0.3,1,, 0.5,0.5,1,, 0.0 ,0.5 ,1 /)
nElems = (/ 50,80,1 /)
elemtype = 108
BCIndex = (/ 5,0,2,4,0,6 /)

! BLOCK 5
Corner = (/ -0.5,0.0,0,, 0.0,0.0,0,, 0.0,0.5,0,, -0.5,0.5,0,,

↪→ -0.5,0.0,1,, 0.0,0.0,1,, 0.0,0.5,1,, -0.5,0.5,1 /)
nElems = (/ 50,50,1 /)
elemtype = 108
BCIndex = (/ 5,0,0,4,1,6 /)

Configuration 4

HOPR parameter file

nZones = 1 ! number of blocks

! BLOCK 1
Corner = (/ -0.5,-0.5,0,, 0.5,-0.5,0,, 0.5,0.5,0,, -0.5,0.5,0,,

↪→ -0.5,-0.5,1,, 0.5,-0.5,1,, 0.5,0.5,1,, -0.5,0.5,1 /)
nElems = (/ 100 ,100 ,1 /)
elemtype = 108
BCIndex = (/ 5,3,2,4,1,6 /)

Configuration 6

HOPR parameter file

nZones = 1 ! number of blocks

! BLOCK 1
Corner = (/ -0.5,-1.,0 ,, 0.5,-1.,0 ,, 0.5, 1.,0 ,, -0.5, 1.,0 ,,

↪→ -0.5,-1.,1 ,, 0.5,-1.,1 ,, 0.5, 1.,1 ,, -0.5, 1.,1 /)
nElems = (/ 100 ,200 ,1 /)
elemtype = 108
BCIndex = (/ 5,3,2,4,1,6 /)

150

A.4. Complex examples

A.4.3.2. Configurations with two shock waves and two contact

discontinuities

Configuration E

HOPR parameter file

nZones = 1 ! number of blocks

! BLOCK 1
Corner = (/ -0.5,-1.,0 ,, 0.5,-1.,0 ,, 0.5 ,0.5 ,0 ,, -0.5,0.5,0 ,,

↪→ -0.5,-1.,1 ,, 0.5,-1.,1 ,, 0.5 ,0.5 ,1 ,, -0.5,0.5,1 /)
nElems = (/ 100 ,150 ,1 /)
elemtype = 108
BCIndex = (/ 5,3,2,4,1,6 /)

HOPR parameter file (Double resolution in [−0.2, 0]× [−0.2, 0])

nZones = 6 ! number of blocks

! BLOCK 1
Corner = (/ -0.5,-0.5,0,, -0.2,-0.5,0,, -0.2,0.0,0,, -0.5,0.0,0,,

↪→ -0.5,-0.5,1,, -0.2,-0.5,1,, -0.2,0.0,1,, -0.5,0.0,1 /)
nElems = (/ 30,50,1 /)
elemtype = 108
BCIndex = (/ 5,0,0,0,1,6 /)

! BLOCK 2
Corner = (/ -0.2,-0.5,0,, 0.5,-0.5,0,, 0.5,-0.2,0,, -0.2,-0.2,0,,

↪→ -0.2,-0.5,1,, 0.5,-0.5,1,, 0.5,-0.2,1,, -0.2,-0.2,1 /)
nElems = (/ 70,30,1 /)
elemtype = 108
BCIndex = (/ 5,0,2,0,0,6 /)

! BLOCK 3
Corner = (/ 0.0,-0.2,0,, 0.5,-0.2,0,, 0.5,0.5,0,, 0.0,0.5,0,,

↪→ 0.0,-0.2,1,, 0.5,-0.2,1,, 0.5,0.5,1,, 0.0 ,0.5 ,1 /)
nElems = (/ 50,70,1 /)
elemtype = 108
BCIndex = (/ 5,0,2,4,0,6 /)

! BLOCK 4
Corner = (/ -0.5,0.0,0,, 0.0,0.0,0,, 0.0,0.5,0,, -0.5,0.5,0,,

↪→ -0.5,0.0,1,, 0.0,0.0,1,, 0.0,0.5,1,, -0.5,0.5,1 /)
nElems = (/ 50,50,1 /)
elemtype = 108
BCIndex = (/ 5,0,0,4,1,6 /)

! BLOCK 5
Corner = (/ -0.2,-0.2,0,, 0.0,-0.2,0,, 0.0,0.0,0,, -0.2,0.0,0,,

↪→ -0.2,-0.2,1,, 0.0,-0.2,1,, 0.0,0.0,1,, -0.2,0.0,1 /)
nElems = (/ 40,40,1 /)
elemtype = 108
BCIndex = (/ 5,0,0,0,0,6 /)

151

A. Parameter files

! BLOCK 6
Corner = (/ -0.5,-1.0,0,, 0.5,-1.0,0,, 0.5,-0.5,0,, -0.5,-0.5,0,,

↪→ -0.5,-1.0,1,, 0.5,-1.0,1,, 0.5,-0.5,1,, -0.5,-0.5,1 /)
nElems = (/ 100,50,1 /)
elemtype = 108
BCIndex = (/ 5,3,2,0,1,6 /)

Configuration F

HOPR parameter file

Same as for configuration 4 in appendix A.4.3.1.

HOPR parameter file (Double resolution in [−0.2, 0]× [−0.2, 0])

nZones = 5 ! number of blocks

! BLOCK 1
Corner = (/ -0.5,-0.5,0,, -0.2,-0.5,0,, -0.2,0.0,0,, -0.5,0.0,0,,

↪→ -0.5,-0.5,1,, -0.2,-0.5,1,, -0.2,0.0,1,, -0.5,0.0,1 /)
nElems = (/ 30,50,1 /)
elemtype = 108
BCIndex = (/ 5,3,0,0,1,6 /)

! BLOCK 2
Corner = (/ -0.2,-0.5,0,, 0.5,-0.5,0,, 0.5,-0.2,0,, -0.2,-0.2,0,,

↪→ -0.2,-0.5,1,, 0.5,-0.5,1,, 0.5,-0.2,1,, -0.2,-0.2,1 /)
nElems = (/ 70,30,1 /)
elemtype = 108
BCIndex = (/ 5,3,2,0,0,6 /)

! BLOCK 3
Corner = (/ 0.0,-0.2,0,, 0.5,-0.2,0,, 0.5,0.5,0,, 0.0,0.5,0,,

↪→ 0.0,-0.2,1,, 0.5,-0.2,1,, 0.5,0.5,1,, 0.0 ,0.5 ,1 /)
nElems = (/ 50,70,1 /)
elemtype = 108
BCIndex = (/ 5,0,2,4,0,6 /)

! BLOCK 4
Corner = (/ -0.5,0.0,0,, 0.0,0.0,0,, 0.0,0.5,0,, -0.5,0.5,0,,

↪→ -0.5,0.0,1,, 0.0,0.0,1,, 0.0,0.5,1,, -0.5,0.5,1 /)
nElems = (/ 50,50,1 /)
elemtype = 108
BCIndex = (/ 5,0,0,4,1,6 /)

! BLOCK 5
Corner = (/ -0.2,-0.2,0,, 0.0,-0.2,0,, 0.0,0.0,0,, -0.2,0.0,0,,

↪→ -0.2,-0.2,1,, 0.0,-0.2,1,, 0.0,0.0,1,, -0.2,0.0,1 /)
nElems = (/ 40,40,1 /)
elemtype = 108
BCIndex = (/ 5,0,0,0,0,6 /)

152

A.4. Complex examples

Configuration J

HOPR parameter file

Same as for configuration 4 in appendix A.4.3.1.

HOPR parameter file (Double resolution in [−0.3, 0.1]× [−0.4, 0.2])

nZones = 5 ! number of blocks

! BLOCK 1
Corner = (/ -0.5,-0.5,0,, -0.3,-0.5,0,, -0.3,0.2,0,, -0.5,0.2,0,,

↪→ -0.5,-0.5,1,, -0.3,-0.5,1,, -0.3,0.2,1,, -0.5,0.2,1 /)
nElems = (/ 40,140,1 /)
elemtype = 108
BCIndex = (/ 5,3,0,0,1,6 /)

! BLOCK 2
Corner = (/ -0.3,-0.5,0,, 0.5,-0.5,0,, 0.5,-0.4,0,, -0.3,-0.4,0,,

↪→ -0.3,-0.5,1,, 0.5,-0.5,1,, 0.5,-0.4,1,, -0.3,-0.4,1 /)
nElems = (/ 160,20,1 /)
elemtype = 108
BCIndex = (/ 5,3,2,0,0,6 /)

! BLOCK 3
Corner = (/ 0.1,-0.4,0,, 0.5,-0.4,0,, 0.5,0.5,0,, 0.1,0.5,0,,

↪→ 0.1,-0.4,1,, 0.5,-0.4,1,, 0.5,0.5,1,, 0.1 ,0.5 ,1 /)
nElems = (/ 80,180,1 /)
elemtype = 108
BCIndex = (/ 5,0,2,4,0,6 /)

! BLOCK 4
Corner = (/ -0.5,0.2,0,, 0.1,0.2,0,, 0.1,0.5,0,, -0.5,0.5,0,,

↪→ -0.5,0.2,1,, 0.1,0.2,1,, 0.1,0.5,1,, -0.5,0.5,1 /)
nElems = (/ 120,60,1 /)
elemtype = 108
BCIndex = (/ 5,0,0,4,1,6 /)

! BLOCK 5
Corner = (/ -0.3,-0.4,0,, 0.1,-0.4,0,, 0.1,0.2,0,, -0.3,0.2,0,,

↪→ -0.3,-0.4,1,, 0.1,-0.4,1,, 0.1,0.2,1,, -0.3,0.2,1 /)
nElems = (/ 160 ,240 ,1 /)
elemtype = 108
BCIndex = (/ 5,0,0,0,0,6 /)

A.4.3.3. Configurations with one shock wave, one rarefaction wave and two

contact discontinuities

Configuration G

HOPR parameter file

nZones = 4 ! number of blocks

153

A. Parameter files

! BLOCK 1
Corner = (/ -0.5,-0.5,0,, 0.5,-0.5,0,, 0.5,0.5,0,, -0.5,0.5,0,,

↪→ -0.5,-0.5,1,, 0.5,-0.5,1,, 0.5,0.5,1,, -0.5,0.5,1 /)
nElems = (/ 100 ,100 ,1 /)
elemtype = 108
BCIndex = (/ 5,0,2,0,0,6 /)

! BLOCK 2
Corner = (/ -0.5,-1.0,0,, 0.5,-1.0,0,, 0.5,-0.5,0,, -0.5,-0.5,0,,

↪→ -0.5,-1.0,1,, 0.5,-1.0,1,, 0.5,-0.5,1,, -0.5,-0.5,1 /)
nElems = (/ 100,50,1 /)
elemtype = 108
BCIndex = (/ 5,3,2,0,1,6 /)

! BLOCK 3
Corner = (/ -1.0,-0.5,0,, -0.5,-0.5,0,, -0.5,0.5,0,, -1.0,0.5,0,,

↪→ -1.0,-0.5,1,, -0.5,-0.5,1,, -0.5,0.5,1,, -1.0,0.5,1 /)
nElems = (/ 50,100,1 /)
elemtype = 108
BCIndex = (/ 5,3,0,4,1,6 /)

! BLOCK 4
Corner = (/ -0.5,0.5,0,, 0.5,0.5,0,, 0.5,1.0,0,, -0.5,1.0,0,,

↪→ -0.5,0.5,1,, 0.5,0.5,1,, 0.5,1.0,1,, -0.5,1.0,1 /)
nElems = (/ 100,50,1 /)
elemtype = 108
BCIndex =(/ 5,0,2,4,1,6 /)

Configuration H

HOPR parameter file

Same as for configuration G in appendix A.4.3.3.

Configuration K

HOPR parameter file

Same as for configuration 4 in appendix A.4.3.1.

154

A.4. Complex examples

A.4.4. Shock boundary layer interaction

The simulation of the shock boundary layer interaction was performed with a

previous version of FLEXI , not published as open source. Nevertheless a parameter

file for this simulation is listed for the sake of completeness. Since several options

changed their name and available values, this parameter file can only be seen as

a reference.

FLEXI parameter file

! OUTPUT
ProjectName = SWBLIM267˙p2p1˙15˙x˙7
GatheredWrite = T
GroupSize = 16

! INTERPOLATION
N = 5 ! Polynomial degree
GeometricNGeo = 1 ! Degree of mesh representation
NAnalyze = 10 ! Number of analyze points
Filter˙relax = 0.0

doOverintegration = F ! no overintegration

! MESH
MeshFile = TBLM267˙25010045˙mesh.h5
useCurveds = F

! FV
IndType = 78 ! Jameson * Ducros
IndVariable = 1 ! Density
FV˙LimiterType = MinMod
FV˙Type = 1 ! Gaussian
FV˙IndMin = 0.000002
FV˙IndMax = 0.000001

! EQUATION
IniExactFunc = 167
RefState = (/ 0.456097987 ,0.0 ,0. ,0. ,0.100195783 /)
UseNonDimensionalEqn = T
BulkMach = 2.67
BulkReynolds = 100000.
Tref = 564. ! ref. temperature for Sutherland ’s law

! SPONGE
SpongeLayer = T
SpongeExactFunc = T
rampNo = 2 ! Number of sponge zones
damping = 0.6 ! 1st sponge zone
xStart = (/ 9.0 ,0. ,0. /) ! in x-direction
SpongeDir = (/ 1.,0.,0. /)
SpongeDistance = 1.4
damping = 0.01 ! 2nd sponge zone
xStart = (/ 0. ,1.25 ,0. /) ! in y-direction
SpongeDir = (/ 0.,1.,0. /)

155

A. Parameter files

SpongeDistance = 0.265

! BLASIUS
Ma˙1 = 2.67 ! Mach Number of the BL
T˙1 = 564. ! Temperature of the BL
Re˙1 = 100000. ! Reynolds Number of the BL
Wallparam = 1 ! wall temperature: ad=0, iso=1
Twall˙1 = 1236.57638454 ! if Wallparam=1: wall temperature
Pr = 0.71 ! Prandtl -Number
kappa = 1.4

! DISTURBANCES
nInterpolationData = 3 ! Number of data sets to be interpolated
InterpolationMethod = 0 ! spline (0) or linear interpolation (1)
nEigenfuncs = 5 ! Number of Eigenfunctions used to disturb

! initial solution
xScale = 1.156 ! Scaling of the y-velocity by the

! x-coordinate
AmpliMax = (/ 0.04 ,0.04 ,0.04 ,0.04 ,0.08 /)
Frequenz = (/ 3.0 ,4.0 ,6.0 ,8.0 ,9.0 /)
DisturbPhase = (/ 0.01 ,0.2 ,0.8 ,0.0 ,0.7 /)
ObliqueFactor = 21.0

! TIMEDISC
tend = 120.5 ! End time
CFLscale = 0.9 ! Scaling of theoretical CFL number
DFLscale = 0.6 ! Scaling of theoretical DFL number

! ANALYZE
Analyze˙dt = 0.5 ! Timestep of analyze outputs
CalcErrorNorms = F ! Calculate error norms

156

Bibliography

[1] C. Altmann, A. Taube, G. Gassner, F. Lörcher, and C.-D. Munz. “Shock

detection and limiting strategies for high order discontinuous Galerkin

schemes”. In: Shock Waves: 26th International Symposium on Shock

Waves, Volume 2. Ed. by K. Hannemann and F. Seiler. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009, pp. 1053–1058. DOI: 10.1007/978-3-

540-85181-3˙42.

[2] M. Atak, A. Beck, T. Bolemann, D. Flad, H. Frank, and C.-D. Munz.

“High Fidelity Scale-Resolving Computational Fluid Dynamics Using the

High Order Discontinuous Galerkin Spectral Element Method”. In: High

Performance Computing in Science and Engineering 15: Transactions of

the High Performance Computing Center, Stuttgart (HLRS) 2015. Ed. by

E. W. Nagel, H. D. Kröner, and M. M. Resch. Cham: Springer International

Publishing, 2016, pp. 511–530. DOI: 10.1007/978-3-319-24633-8˙33.

[3] I. Babuska and M. Suri. “The p and h-p Versions of the Finite Element

Method, Basic Principles and Properties”. In: SIAM Review 36.4 (1994),

pp. 578–632. DOI: 10.1137/1036141.

[4] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strate-

gies, Evolutionary Programming, Genetic Algorithms. Oxford, UK: Oxford

University Press, 1996.

[5] D. S. Balsara, C. Altmann, C.-D. Munz, and M. Dumbser. “A sub-cell

based indicator for troubled zones in RKDG schemes and a novel class of

hybrid RKDG+HWENO schemes ”. In: Journal of Computational Physics

226.1 (2007), pp. 586–620. DOI: 10.1016/j.jcp.2007.04.032.

[6] G. E. Barter and D. L. Darmofal. “Shock capturing with PDE-based arti-

ficial viscosity for DGFEM: Part I. Formulation”. In: Journal of Computa-

tional Physics 229.5 (2010), pp. 1810–1827. DOI: 10.1016/j.jcp.2009.

11.010.

[7] F. Bassi and S. Rebay. “A high-order accurate discontinuous finite element

method for the numerical solution of the compressible Navier–Stokes equa-

tions”. In: Journal of computational physics 131.2 (1997), pp. 267–279.

DOI: 10.1006/jcph.1996.5572.

157

http://dx.doi.org/10.1007/978-3-540-85181-3_42
http://dx.doi.org/10.1007/978-3-540-85181-3_42
http://dx.doi.org/10.1007/978-3-319-24633-8_33
http://dx.doi.org/10.1137/1036141
http://dx.doi.org/10.1016/j.jcp.2007.04.032
http://dx.doi.org/10.1016/j.jcp.2009.11.010
http://dx.doi.org/10.1016/j.jcp.2009.11.010
http://dx.doi.org/10.1006/jcph.1996.5572

Bibliography

[8] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini. “A high-

order accurate discontinuous finite element method for inviscid and viscous

turbomachinery flows”. In: Proceedings of the 2nd European Conference

on Turbomachinery, Fluid Dynamics and Thermodynamics. Ed. by R. De-

cuypere and G. Dibelius. Antwerpen, Belgium, 1997, pp. 99–108.

[9] C. E. Baumann and J. T. Oden. “A discontinuous hp finite element method

for the Euler and Navier–Stokes equations”. In: International Journal for

Numerical Methods in Fluids 31.1 (1999), pp. 79–95. DOI: 10.1002/

(SICI)1097-0363(19990915)31:1¡79::AID-FLD956¿3.0.CO;2-C.

[10] A. D. Beck, G. J. Gassner, T. Bolemann, H. Frank, F. Hindenlang, and

C.-D. Munz. “Underresolved Turbulence Simulations with Stabilized High

Order Discontinuous Galerkin Methods”. In: Direct and Large-Eddy Sim-

ulation IX. Ed. by J. Fröhlich, H. Kuerten, B. J. Geurts, and V. Arme-

nio. Vol. 20. ERCOFTAC Series 1. Springer International Publishing, 2015,

pp. 103–108. DOI: 10.1007/978-3-319-14448-1˙14.

[11] A. Beck, T. Bolemann, D. Flad, H. Frank, G. Gassner, F. Hindenlang,

and C.-D. Munz. “High Order Discontinuous Galerkin Spectral Element

Methods for Transitional and Turbulent Flow Simulations”. In: International

Journal of Numerical Methods in Fluids 76.8 (2014), pp. 522–548. DOI:

10.1002/fld.3943.

[12] K. Bock and J. Stiller. “Energy-Minimizing Curve Fitting for High-Order

Surface Mesh Generation”. In: Applied Mathematics 5 (2014), pp. 3318–

3327. DOI: 10.4236/am.2014.521309.

[13] C. Castro, C. Lozano, F. Palacios, and E. Zuazua. “Systematic Continuous

Adjoint Approach to Viscous Aerodynamic Design on Unstructured Grids”.

In: AIAA Journal 45.9 (Sept. 2007), pp. 2125–2139. DOI: 10.2514/1.

24859.

[14] S. Clain, S. Diot, and R. Loubàre. “A high-order finite volume method for

systems of conservation laws – Multi-dimensional Optimal Order Detection

(MOOD)”. In: Journal of Computational Physics 230.10 (2011), pp. 4028–

4050. DOI: 10.1016/j.jcp.2011.02.026.

[15] B. Cockburn, S. Hou, and C.-W. Shu. “The Runge–Kutta Local Projec-

tion Discontinuous Galerkin Finite Element Method for Conservation Laws.

IV: The Multidimensional Case”. In: Mathematics of Computation 54.190

(1990), pp. 545–581. DOI: 10.2307/2008501.

158

http://dx.doi.org/10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
http://dx.doi.org/10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
http://dx.doi.org/10.1007/978-3-319-14448-1_14
http://dx.doi.org/10.1002/fld.3943
http://dx.doi.org/10.4236/am.2014.521309
http://dx.doi.org/10.2514/1.24859
http://dx.doi.org/10.2514/1.24859
http://dx.doi.org/10.1016/j.jcp.2011.02.026
http://dx.doi.org/10.2307/2008501

Bibliography

[16] B. Cockburn, S.-Y. Lin, and C.-W. Shu. “TVB Runge–Kutta local pro-

jection discontinuous Galerkin finite element method for conservation laws

III: One-dimensional systems”. In: Journal of Computational Physics 84.1

(1989), pp. 90–113. DOI: 10.1016/0021-9991(89)90183-6.

[17] B. Cockburn and C.-W. Shu. “Runge–Kutta Discontinuous Galerkin Meth-

ods for Convection-Dominated Problems”. In: Journal of Scientific Com-

puting 16.3 (2001), pp. 173–261. DOI: 10.1023/A:1012873910884.

[18] B. Cockburn and C.-W. Shu. “The Runge–Kutta discontinuous Galerkin

Method for conservation Laws V: Multidimensional systems”. In: Journal

of Computational Physics 141.2 (1998), pp. 199–224. DOI: 10.1006/

jcph.1998.5892.

[19] B. Cockburn and C.-W. Shu. “The Runge–Kutta local projection P1-

discontinuous-Galerkin finite element method for scalar conservation laws”.

In: 1st National Fluid Dynamics Conference. Fluid Dynamics and Co-

located Conferences. American Institute of Aeronautics and Astronautics,

1987. DOI: 10.2514/6.1988-3797.

[20] B. Cockburn and C.-W. Shu. “TVB Runge–Kutta Local Projection Discon-

tinuous Galerkin Finite Element Method for Conservation Laws II: General

Framework”. In: Mathematics of Computation 52.186 (1989), pp. 411–

435. DOI: 10.2307/2008474.

[21] R. Courant, K. Friedrichs, and H. Lewy. “Über die partiellen Differenzengle-

ichungen der mathematischen Physik”. In: Mathematische Annalen 100.1

(1928), pp. 32–74. DOI: 10.1007/BF01448839.

[22] M. C. Delfour and J.-P. Zolésio. Shapes and Geometries. Analysis, Differ-

ential Calculus and Optimization. Philadelphia: Society for Industrial and

Applied Mathematics, 2001. DOI: 10.1137/1.9780898719826.

[23] F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq, C. Gacherieu, and

T. Poinsot. “Large-Eddy Simulation of the Shock/Turbulence Interaction”.

In: Journal of Computational Physics 152.2 (1999), pp. 517–549. DOI:

10.1006/jcph.1999.6238.

[24] M. Dumbser, O. Zanotti, R. Loubère, and S. Diot. “A posteriori subcell lim-

iting of the discontinuous Galerkin finite element method for hyperbolic con-

servation laws”. In: Journal of Computational Physics 278 (2014), pp. 47–

75. DOI: 10.1016/j.jcp.2014.08.009.

[25] L. Euler. “Principes généraux de l’état d’équilibre des fluides”. In: Mémoires

de l’académie des sciences de Berlin 11 (1755), pp. 217–273.

159

http://dx.doi.org/10.1016/0021-9991(89)90183-6
http://dx.doi.org/10.1023/A:1012873910884
http://dx.doi.org/10.1006/jcph.1998.5892
http://dx.doi.org/10.1006/jcph.1998.5892
http://dx.doi.org/10.2514/6.1988-3797
http://dx.doi.org/10.2307/2008474
http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1137/1.9780898719826
http://dx.doi.org/10.1006/jcph.1999.6238
http://dx.doi.org/10.1016/j.jcp.2014.08.009

Bibliography

[26] H. Frank and C.-D. Munz. “Direct aeroacoustic simulation of acoustic feed-

back phenomena on a side-view mirror”. In: Journal of Sound and Vibration

371 (2016), pp. 132–149. DOI: 10.1016/j.jsv.2016.02.014.

[27] G. Gassner. “Discontinuous Galerkin Methods for the Unsteady Compress-

ible Navier-Stokes Equations”. PhD thesis. Universität Stuttgart, 2009.

DOI: 10.18419/opus-3788.

[28] G. Gassner and D. A. Kopriva. “A Comparison of the Dispersion and Dissi-

pation Errors of Gauss and Gauss–Lobatto Discontinuous Galerkin Spectral

Element Methods”. In: SIAM Journal on Scientific Computing 33.5 (2011),

pp. 2560–2579. DOI: 10.1137/100807211.

[29] N. R. Gauger. “Das Adjungiertenverfahren in der aerodynamischen For-

moptimierung”. PhD thesis. TU Braunschweig, 2003.

[30] J. W. Gibbs. “Fourier’s Series”. In: Nature 59 (Apr. 1899), pp. 200, 606.

DOI: 10.1038/059606a0.

[31] M. Giles and N. Pierce. “Adjoint equations in CFD – Duality, boundary

conditions and solution behaviour”. In: 13th Computational Fluid Dynamics

Conference. Fluid Dynamics and Co-located Conferences. American Insti-

tute of Aeronautics and Astronautics, June 1997. DOI: 10.2514/6.1997-

1850.

[32] M. B. Giles and N. A. Pierce. “An Introduction to the Adjoint Approach to

Design”. In: Flow, Turbulence and Combustion 65.3 (2000), pp. 393–415.

DOI: 10.1023/A:1011430410075.

[33] A. Griewank. “Projected Hessians for Preconditioning in One-Step One-

Shot Design Optimization”. In: Large-Scale Nonlinear Optimization. Ed.

by G. Di Pillo and M. Roma. Boston, MA: Springer US, 2006, pp. 151–

171. DOI: 10.1007/0-387-30065-1˙10.

[34] A. Harten. “High resolution schemes for hyperbolic conservation laws”. In:

Journal of Computational Physics 49.3 (1983), pp. 357–393. DOI: 10.

1016/0021-9991(83)90136-5.

[35] R. Hartmann. “Numerical Analysis of Higher Order Discontinuous Galerkin

Finite Element Methods”. In: VKI LS 2008-08: CFD – ADIGMA course

on very high order discretization methods, Oct. 13-17, 2008. Ed. by H.

Deconinck. Von Karman Institute for Fluid Dynamics, Rhode Saint Genèse,

Belgium, 2008.

[36] R. M. Hicks and P. A. Henne. “Wing Design by Numerical Optimization”.

In: Journal of Aircraft 15.7 (July 1978), pp. 407–412. DOI: 10.2514/3.

58379.

160

http://dx.doi.org/10.1016/j.jsv.2016.02.014
http://dx.doi.org/10.18419/opus-3788
http://dx.doi.org/10.1137/100807211
http://dx.doi.org/10.1038/059606a0
http://dx.doi.org/10.2514/6.1997-1850
http://dx.doi.org/10.2514/6.1997-1850
http://dx.doi.org/10.1023/A:1011430410075
http://dx.doi.org/10.1007/0-387-30065-1_10
http://dx.doi.org/10.1016/0021-9991(83)90136-5
http://dx.doi.org/10.1016/0021-9991(83)90136-5
http://dx.doi.org/10.2514/3.58379
http://dx.doi.org/10.2514/3.58379

Bibliography

[37] F. Hindenlang, T. Bolemann, and C.-D. Munz. “Mesh Curving Techniques

for High Order Discontinuous Galerkin Simulations”. In: IDIHOM: Indus-

trialization of High-Order Methods – A Top-Down Approach: Results of a

Collaborative Research Project Funded by the European Union, 2010–2014.

Ed. by N. Kroll, C. Hirsch, F. Bassi, C. Johnston, and K. Hillewaert. Cham:

Springer International Publishing, 2015, pp. 133–152. DOI: 10.1007/978-

3-319-12886-3˙8.

[38] F. Hindenlang. “Mesh Curving Techniques for High Order Parallel Simula-

tions on Unstructured Meshes”. PhD thesis. Universität Stuttgart, 2014.

DOI: 10.18419/opus-3957.

[39] F. Hindenlang, G. J. Gassner, C. Altmann, A. Beck, M. Staudenmaier,

and C.-D. Munz. “Explicit discontinuous Galerkin methods for unsteady

problems ”. In: Computers & Fluids 61 (2012), pp. 86–93. DOI: 10.1016/

j.compfluid.2012.03.006.

[40] T. Hoefler and R. Belli. “Scientific Benchmarking of Parallel Computing

Systems: Twelve Ways to Tell the Masses when Reporting Performance

Results”. In: Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis. SC ’15. Austin,

Texas: ACM, 2015, 73:1–73:12. DOI: 10.1145/2807591.2807644.

[41] A. Huerta, E. Casoni, and J. Peraire. “A simple shock-capturing technique

for high-order discontinuous Galerkin methods”. In: International Journal

for Numerical Methods in Fluids 69.10 (2012), pp. 1614–1632. DOI: 10.

1002/fld.2654.

[42] K. Ito, K. Kunisch, and G. H. Peichl. “Variational approach to shape deriva-

tives”. In: ESAIM: Control, Optimisation and Calculus of Variations 14.3

(2008), pp. 517–539. DOI: 10.1051/cocv:2008002.

[43] K. Ito, K. Kunisch, and G. H. Peichl. “Variational approach to shape deriva-

tives for a class of Bernoulli problems”. In: Journal of Mathematical Anal-

ysis and Applications 314.1 (2006), pp. 126–149. DOI: 10.1016/j.jmaa.

2005.03.100.

[44] A. Jameson, L. Martinelli, and N. Pierce. “Optimum Aerodynamic Design

Using the Navier–Stokes Equations”. In: Theoretical and Computational

Fluid Dynamics 10.1 (1998), pp. 213–237. DOI: 10.1007/s001620050060.

161

http://dx.doi.org/10.1007/978-3-319-12886-3_8
http://dx.doi.org/10.1007/978-3-319-12886-3_8
http://dx.doi.org/10.18419/opus-3957
http://dx.doi.org/10.1016/j.compfluid.2012.03.006
http://dx.doi.org/10.1016/j.compfluid.2012.03.006
http://dx.doi.org/10.1145/2807591.2807644
http://dx.doi.org/10.1002/fld.2654
http://dx.doi.org/10.1002/fld.2654
http://dx.doi.org/10.1051/cocv:2008002
http://dx.doi.org/10.1016/j.jmaa.2005.03.100
http://dx.doi.org/10.1016/j.jmaa.2005.03.100
http://dx.doi.org/10.1007/s001620050060

Bibliography

[45] A. Jameson, W. Schmidt, and E. Turkel. “Numerical solution of the Eu-

ler equations by finite volume methods using Runge Kutta time stepping

schemes”. In: 14th Fluid and Plasma Dynamics Conference. Fluid Dynam-

ics and Co-located Conferences. American Institute of Aeronautics and

Astronautics, 1981. DOI: 10.2514/6.1981-1259.

[46] A. Jameson. “Aerodynamic design via control theory”. In: Journal of Sci-

entific Computing 3.3 (1988), pp. 233–260. DOI: 10.1007/BF01061285.

[47] A. Jameson. “Optimum aerodynamic design using CFD and control the-

ory”. In: 12th Computational Fluid Dynamics Conference. Fluid Dynamics

and Co-located Conferences. American Institute of Aeronautics and Astro-

nautics, 1995. DOI: 10.2514/6.1995-1729.

[48] L. Kaland, M. Sonntag, and N. R. Gauger. “Adaptive Aerodynamic Design

Optimization for Navier-Stokes Using Shape Derivatives with Discontinuous

Galerkin Methods”. In: Advances in Evolutionary and Deterministic Meth-

ods for Design, Optimization and Control in Engineering and Sciences. Ed.

by D. Greiner, B. Galván, J. Périaux, N. Gauger, K. Giannakoglou, and G.

Winter. Cham: Springer International Publishing, 2015, pp. 143–158. DOI:

10.1007/978-3-319-11541-2˙9.

[49] C. A. Kennedy, M. H. Carpenter, and R. Lewis. “Low-storage, explicit

Runge–Kutta schemes for the compressible Navier–Stokes equations”. In:

Applied Numerical Mathematics 35.3 (2000), pp. 177–219. DOI: 10.1016/

S0168-9274(99)00141-5.

[50] D. A. Kopriva. Implementing Spectral Methods for Partial Differential

Equations. Springer, 2009. DOI: 10.1007/978-90-481-2261-5˙8.

[51] D. A. Kopriva. “Metric Identities and the Discontinuous Spectral Element

Method on Curvilinear Meshes”. In: Journal of Scientific Computing 26.3

(2006), pp. 301–327. DOI: 10.1007/s10915-005-9070-8.

[52] D. A. Kopriva, S. L. Woodruff, and M. Y. Hussaini. “Computation of elec-

tromagnetic scattering with a non-conforming discontinuous spectral ele-

ment method”. In: International Journal for Numerical Methods in Engi-

neering 53.1 (2002), pp. 105–122. DOI: 10.1002/nme.394.

[53] A. Kurganov and E. Tadmor. “Solution of two-dimensional Riemann prob-

lems for gas dynamics without Riemann problem solvers”. In: Numerical

Methods for Partial Differential Equations 18.5 (2002), pp. 584–608. DOI:

10.1002/num.10025.

162

http://dx.doi.org/10.2514/6.1981-1259
http://dx.doi.org/10.1007/BF01061285
http://dx.doi.org/10.2514/6.1995-1729
http://dx.doi.org/10.1007/978-3-319-11541-2_9
http://dx.doi.org/10.1016/S0168-9274(99)00141-5
http://dx.doi.org/10.1016/S0168-9274(99)00141-5
http://dx.doi.org/10.1007/978-90-481-2261-5_8
http://dx.doi.org/10.1007/s10915-005-9070-8
http://dx.doi.org/10.1002/nme.394
http://dx.doi.org/10.1002/num.10025

Bibliography

[54] B. v. Leer. “Towards the ultimate conservative difference scheme. II. Mono-

tonicity and conservation combined in a second-order scheme”. In: Journal

of Computational Physics 14.4 (1974), pp. 361–370. DOI: 10.1016/0021-

9991(74)90019-9.

[55] B. v. Leer. “Towards the ultimate conservative difference scheme. III.

Upstream-centered finite-difference schemes for ideal compressible flow”.

In: Journal of Computational Physics 23.3 (1977), pp. 263–275. DOI:

10.1016/0021-9991(77)90094-8.

[56] B. v. Leer. “Towards the ultimate conservative difference scheme. IV. A new

approach to numerical convection”. In: Journal of Computational Physics

23.3 (1977), pp. 276–299. DOI: 10.1016/0021-9991(77)90095-X.

[57] B. v. Leer. “Towards the ultimate conservative difference scheme. V. A

second-order sequel to Godunov’s method”. In: Journal of Computational

Physics 32.1 (1979), pp. 101–136. DOI: 10.1016/0021-9991(79)90145-

1.

[58] B. van Leer. “Towards the ultimate conservative difference scheme. I. The

quest of monotonicity”. In: Proceedings of the Third International Confer-

ence on Numerical Methods in Fluid Mechanics: Vol. I General Lectures.

Fundamental Numerical Techniques July 3–7, 1972 Universities of Paris VI

and XI. Ed. by H. Cabannes and R. Temam. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1973, pp. 163–168. DOI: 10.1007/BFb0118673.

[59] R. Loubère, M. Dumbser, and S. Diot. “A New Family of High Order Un-

structured MOOD and ADER Finite Volume Schemes for Multidimensional

Systems of Hyperbolic Conservation Laws”. In: Communications in Com-

putational Physics 16.3 (Sept. 2014), pp. 718–763. DOI: 10.4208/cicp.

181113.140314a.

[60] C.-L. Navier. “Mémoire sur les lois du mouvement des fluids”. In: Mémoires

de l’Académie Royale des Sciences de l’Institut de France 6 (1822),

pp. 389–416.

[61] J. Nitsche. “Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen

bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen

sind”. In: Abhandlungen aus dem Mathematischen Seminar der Universität

Hamburg 36.1 (1971), pp. 9–15. DOI: 10.1007/BF02995904.

[62] K. T. Panourgias and J. A. Ekaterinaris. “A nonlinear filter for high order

discontinuous Galerkin discretizations with discontinuity resolution within

the cell ”. In: Journal of Computational Physics 326 (2016), pp. 234–257.

DOI: 10.1016/j.jcp.2016.08.049.

163

http://dx.doi.org/10.1016/0021-9991(74)90019-9
http://dx.doi.org/10.1016/0021-9991(74)90019-9
http://dx.doi.org/10.1016/0021-9991(77)90094-8
http://dx.doi.org/10.1016/0021-9991(77)90095-X
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://dx.doi.org/10.1007/BFb0118673
http://dx.doi.org/10.4208/cicp.181113.140314a
http://dx.doi.org/10.4208/cicp.181113.140314a
http://dx.doi.org/10.1007/BF02995904
http://dx.doi.org/10.1016/j.jcp.2016.08.049

Bibliography

[63] D. Papadimitriou and K. Giannakoglou. “A continuous adjoint method with

objective function derivatives based on boundary integrals, for inviscid and

viscous flows ”. In: Computers & Fluids 36.2 (2007), pp. 325–341. DOI:

10.1016/j.compfluid.2005.11.006.

[64] P.-O. Persson and J. Peraire. “Sub-Cell Shock Capturing for Discontinuous

Galerkin Methods”. In: Proceedings of the 44th AIAA Aerospace Sciences

Meeting and Exhibit. American Institute of Aeronautics and Astronautics,

2006. DOI: 10.2514/6.2006-112.

[65] O. Pironneau. “On optimum profiles in Stokes flow”. In: Journal of Fluid

Mechanics 59.1 (1973), pp. 117–128. DOI: 10.1017/S002211207300145X.

[66] S. Premasuthan, C. Liang, and A. Jameson. “Computation of flows with

shocks using the Spectral Difference method with artificial viscosity, I: Basic

formulation and application”. In: Computers & Fluids 98 (2014), pp. 111–

121. DOI: 10.1016/j.compfluid.2013.12.013.

[67] J. Qiu and C.-W. Shu. “Hermite WENO schemes and their application as

limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional

case”. In: Journal of Computational Physics 193.1 (2004), pp. 115–135.

DOI: 10.1016/j.jcp.2003.07.026.

[68] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron trans-

port equation. Technical Report LA-UR-73-479. Los Alamos Scientific Lab-

oratory, 1973.

[69] P. L. Roe. “Characteristic-Based Schemes for the Euler Equations”. In:

Annual Review of Fluid Mechanics 18.1 (1986), pp. 337–365. DOI: 10.

1146/annurev.fl.18.010186.002005.

[70] P. L. Roe. “Discrete models for the numerical analysis of time-dependent

multidimensional gas dynamics”. In: Journal of Computational Physics 63.2

(1986), pp. 458–476. DOI: 10.1016/0021-9991(86)90204-4.

[71] M. Sabat, A. Larat, A. Vié, and M. Massot. “Comparison of Realizable

Schemes for the Eulerian Simulation of Disperse Phase Flows”. In: Finite

Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic

Problems. Ed. by J. Fuhrmann, M. Ohlberger, and C. Rohde. Vol. 78.

Springer Proceedings in Mathematics & Statistics. Springer International

Publishing, 2014, pp. 935–943. DOI: 10.1007/978-3-319-05591-6˙95.

[72] S. Schmidt. “Efficient Large Scale Aerodynamic Design Based on Shape

Calculus”. PhD thesis. University of Trier, Germany, 2010.

164

http://dx.doi.org/10.1016/j.compfluid.2005.11.006
http://dx.doi.org/10.2514/6.2006-112
http://dx.doi.org/10.1017/S002211207300145X
http://dx.doi.org/10.1016/j.compfluid.2013.12.013
http://dx.doi.org/10.1016/j.jcp.2003.07.026
http://dx.doi.org/10.1146/annurev.fl.18.010186.002005
http://dx.doi.org/10.1146/annurev.fl.18.010186.002005
http://dx.doi.org/10.1016/0021-9991(86)90204-4
http://dx.doi.org/10.1007/978-3-319-05591-6_95

Bibliography

[73] S. Schmidt, C. Ilic, V. Schulz, and N. R. Gauger. “Airfoil design for com-

pressible inviscid flow based on shape calculus”. In: Optimization and En-

gineering 12.3 (2011), pp. 349–369. DOI: 10.1007/s11081-011-9145-3.

[74] S. Schmidt, C. Ilic, V. Schulz, and N. R. Gauger. “Three-Dimensional

Large-Scale Aerodynamic Shape Optimization Based on Shape Calculus”.

In: AIAA Journal 51.11 (Sept. 2013), pp. 2615–2627. DOI: 10.2514/1.

J052245.

[75] S. Schmidt and V. Schulz. “Shape derivatives for general objective functions

and the incompressible Navier-Stokes equations”. In: Control and Cyber-

netics 39.3 (2010), pp. 677–713.

[76] V. Schulz and I. Gherman. “One-Shot Methods for Aerodynamic Shape

Optimization”. In: MEGADESIGN and MegaOpt — German Initiatives for

Aerodynamic Simulation and Optimization in Aircraft Design: Results of the

closing symposium of the MEGADESIGN and MegaOpt projects, Braun-

schweig, Germany, 23–24 May, 2007. Ed. by N. Kroll, D. Schwamborn,

K. Becker, H. Rieger, and F. Thiele. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 207–220. DOI: 10.1007/978-3-642-04093-1˙15.

[77] C. W. Schulz-Rinne. “Classification of the Riemann Problem for Two-

Dimensional Gas Dynamics”. In: SIAM Journal on Mathematical Analysis

24.1 (1993), pp. 76–88. DOI: 10.1137/0524006.

[78] C. W. Schulz-Rinne, J. P. Collins, and H. M. Glaz. “Numerical Solution

of the Riemann Problem for Two-Dimensional Gas Dynamics”. In: SIAM

Journal on Scientific Computing 14.6 (1993), pp. 1394–1414. DOI: 10.

1137/0914082.

[79] C.-W. Shu and S. Osher. “Efficient implementation of essentially non-

oscillatory shock-capturing schemes”. In: Journal of Computational Physics

77.2 (1988), pp. 439–471. DOI: 10.1016/0021-9991(88)90177-5.

[80] C.-W. Shu and S. Osher. “Efficient implementation of essentially non-

oscillatory shock-capturing schemes, Part II”. In: Journal of Computational

Physics 83.1 (1989), pp. 32–78. DOI: 10.1016/0021-9991(89)90222-2.

[81] G. A. Sod. “A survey of several finite difference methods for systems of non-

linear hyperbolic conservation laws”. In: Journal of Computational Physics

27.1 (1978), pp. 1–31. DOI: 10.1016/0021-9991(78)90023-2.

[82] B. Soemarwoto. The Variational Method for Aerodynamic Optimization

Using the Navier-Stokes Equations. Tech. rep. 97-71. Institute for Com-

puter Applications in Science and Engineering, 1997.

165

http://dx.doi.org/10.1007/s11081-011-9145-3
http://dx.doi.org/10.2514/1.J052245
http://dx.doi.org/10.2514/1.J052245
http://dx.doi.org/10.1007/978-3-642-04093-1_15
http://dx.doi.org/10.1137/0524006
http://dx.doi.org/10.1137/0914082
http://dx.doi.org/10.1137/0914082
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1016/0021-9991(89)90222-2
http://dx.doi.org/10.1016/0021-9991(78)90023-2

Bibliography

[83] J. Sokolowski and J.-P. Zolésio. Introduction to Shape Optimization. Shape

Sensitivity Analysis. Berlin: Springer-Verlag, 1992. DOI: 10.1007/978-3-

642-58106-9.

[84] M. Sonntag and C.-D. Munz. “Efficient Parallelization of a Shock Capturing

for Discontinuous Galerkin Methods using Finite Volume Sub-cells”. In:

Journal of Scientific Computing 70.3 (2017), pp. 1262–1289. DOI: 10.

1007/s10915-016-0287-5.

[85] M. Sonntag, S. Schmidt, and N. R. Gauger. “Shape derivatives for the

compressible Navier-Stokes equations in variational form ”. In: Journal of

Computational and Applied Mathematics 296 (2016), pp. 334–351. DOI:

10.1016/j.cam.2015.09.010.

[86] K. A. Sørensen and H. Bieler. “Verification and Assessment”. In: ADIGMA

- A European Initiative on the Development of Adaptive Higher-Order Vari-

ational Methods for Aerospace Applications. Springer, Berlin, Heidelberg,

2010, pp. 465–482. DOI: 10.1007/978-3-642-03707-8˙33.

[87] G. G. Stokes. “On the theories of the internal friction of fluids in motion,

and of the equilibrium and motion of elastic solids”. In: Transactions of the

Cambridge Philosophical Society 8 (1845), pp. 287–305. DOI: 10.1017/

CBO9780511702242.005.

[88] P. K. Sweby. “High Resolution Schemes Using Flux Limiters for Hyperbolic

Conservation Laws”. In: SIAM Journal on Numerical Analysis 21.5 (1984),

pp. 995–1011. DOI: 10.1137/0721062.

[89] T. Toulorge, C. Geuzaine, J.-F. Remacle, and J. Lambrechts. “Robust

untangling of curvilinear meshes”. In: Journal of Computational Physics

254 (2013), pp. 8–26. DOI: 10.1016/j.jcp.2013.07.022.

[90] J. VonNeumann and R. D. Richtmyer. “A Method for the Numerical Cal-

culation of Hydrodynamic Shocks”. In: Journal of Applied Physics 21.3

(1950), pp. 232–237. DOI: 10.1063/1.1699639.

[91] J. H. Williamson. “Low-storage Runge–Kutta schemes”. In: Journal of

Computational Physics 35.1 (1980), pp. 48–56. DOI: 10.1016/0021-

9991(80)90033-9.

[92] P. Woodward and P. Colella. “The numerical simulation of two-dimensional

fluid flow with strong shocks”. In: Journal of Computational Physics 54.1

(1984), pp. 115–173. DOI: 10.1016/0021-9991(84)90142-6.

166

http://dx.doi.org/10.1007/978-3-642-58106-9
http://dx.doi.org/10.1007/978-3-642-58106-9
http://dx.doi.org/10.1007/s10915-016-0287-5
http://dx.doi.org/10.1007/s10915-016-0287-5
http://dx.doi.org/10.1016/j.cam.2015.09.010
http://dx.doi.org/10.1007/978-3-642-03707-8_33
http://dx.doi.org/10.1017/CBO9780511702242.005
http://dx.doi.org/10.1017/CBO9780511702242.005
http://dx.doi.org/10.1137/0721062
http://dx.doi.org/10.1016/j.jcp.2013.07.022
http://dx.doi.org/10.1063/1.1699639
http://dx.doi.org/10.1016/0021-9991(80)90033-9
http://dx.doi.org/10.1016/0021-9991(80)90033-9
http://dx.doi.org/10.1016/0021-9991(84)90142-6

Bibliography

[93] N. J. Wright, S. Smallen, C. M. Olschanowsky, J. Hayes, and A. Snavely.

“Measuring and Understanding Variation in Benchmark Performance”. In:

Proceedings of the 2009 DoD High Performance Computing Modernization

Program Users Group Conference. HPCMP-UGC ’09. Washington, DC,

USA: IEEE Computer Society, 2009, pp. 438–443. DOI: 10.1109/HPCMP-

UGC.2009.72.

[94] H. Yee, N. Sandham, and M. Djomehri. “Low-Dissipative High-Order

Shock-Capturing Methods Using Characteristic-Based Filters”. In: Journal

of Computational Physics 150.1 (1999), pp. 199–238. DOI: 10.1006/

jcph.1998.6177.

[95] O. Zanotti, F. Fambri, M. Dumbser, and A. Hidalgo. “Space–time adaptive

ADER discontinuous Galerkin finite element schemes with a posteriori sub-

cell finite volume limiting ”. In: Computers & Fluids 118 (2015), pp. 204–

224. DOI: 10.1016/j.compfluid.2015.06.020.

[96] A. Zymaris, D. Papadimitriou, K. Giannakoglou, and C. Othmer. “Con-

tinuous adjoint approach to the Spalart–Allmaras turbulence model for in-

compressible flows ”. In: Computers & Fluids 38.8 (2009), pp. 1528–1538.

DOI: 10.1016/j.compfluid.2008.12.006.

167

http://dx.doi.org/10.1109/HPCMP-UGC.2009.72
http://dx.doi.org/10.1109/HPCMP-UGC.2009.72
http://dx.doi.org/10.1006/jcph.1998.6177
http://dx.doi.org/10.1006/jcph.1998.6177
http://dx.doi.org/10.1016/j.compfluid.2015.06.020
http://dx.doi.org/10.1016/j.compfluid.2008.12.006

List of tables

2.1. Physical quantities. 8

6.1. Numerical properties for the investigation of a varying polynomial

degree on the solution of the Sod shock tube example. To obtain a

comparable total computational effort, the grid has to be adjusted

which results in the number of time steps for a CFL scale of 0.8.

The amount of elements that are in total updated with the FV

sub-cells method rises with increasing polynomial degree. 94

6.2. Errors and convergence rates of the density for a 3D advected

sinus wave for the pure DG method with a polynomial degree

ranging from N = 2 to N = 5. The upper half in z-direction

is refined in x- and y -direction to twice the resolution, which

requires mortar interfaces. The number of baseline cells denotes

the number of unrefined elements in each space direction of the

periodic cube. 100

6.3. L2 errors and convergence rates of the density for a 3D advected

sinus wave for the coupled DG/FV sub-cells method with a poly-

nomial degree of the DG approximation ranging from N = 2 to

N = 5. Left of x = 0 the domain is computed with the DG

method, right FV sub-cell elements are enforced. The upper half

in z-direction is refined in x- and y -direction to have twice the

resolution, which requires mortar interfaces. The number of base-

line cells denotes the number of unrefined elements in each space

direction of the periodic cube. 102

6.4. The parallel efficiency is investigated for different problem sizes.

Each case has twice the number of elements than the previous

one. The maximal number of nodes, a case is run on, also doubles

for each case, which corresponds to only 9 elements per core for

all cases. 104

169

List of tables

6.5. Elementary waves and initial conditions of all two dimensional

Riemann problems involving shock waves. The configurations are

labeled as in [77]. Only the necessary initial conditions are given.

All remaining initial states are defined by the conditions of the

waves, e.g. the Rankine-Hugoniot condition for the shock wave. 117

170

List of figures

2.1. Covariant a1, a2 and contravariant a1, a2 basis vectors in two space

dimensions. The line integral along the dotted line gives the phys-

ical size of the gray element. 10

3.1. Flow chart of the basic steps to bring the preliminary shape deriva-

tive of the lift and drag coefficients, using adjoint calculus, into

Hadamard form. 22

3.2. Generation of curved meshes by agglomerating multiple straight

grid cells to a single grid cell of fourth polynomial order. 33

3.3. Exaggerated visualization of the deformation “bump” of an airfoil

along a single edge. 34

3.4. Error of FD-shape gradient versus shape gradient in variational

Hadamard form over different FD step sizes at four different po-

sitions. 35

3.5. Finite differences of the shape gradient for drag and lift coefficient

at five different step sizes. 36

3.6. Shape gradient of drag and lift coefficient for a polynomial degree

of N = 3. 37

3.7. Shape gradient of drag and lift coefficient for a polynomial degree

of N = 4. 38

3.8. Shape gradient of drag and lift coefficient for a polynomial degree

of N = 5. 39

4.1. DG reference element E in two space dimensions for a polynomial

degree of N = 3 with Gauss points and locations of the boundary

fluxes at the DG interface. 43

4.2. Flow chart of the Discontinuous Galerkin operator. 50

4.3. All three possible mortar types. The first and second types only

have a different reference direction by which the interface between

the big and the two small elements is split. The last type is a

combination of the types 1 and 2. 53

171

List of figures

4.4. Interpolation points at a mortar interface. Fluxes are always com-

puted on the points of the small sides.The solution of the big side

(at black dots) must be interpolated to both small sides individ-

ually. Therefore, virtual small sides (magenta triangles and green

squares) are introduced which store the interpolated solution of

the big side. The flux is computed on the conforming small sides

and then projected back to the big side. 54

5.1. The density of the Sod shock tube example for the pure DG

scheme immediately starts oscillating after a single time step

(t = 0.005). 60

5.2. DG reference element split into FV sub-cells with Gauss

points of the original DG reference element, locations of the

inner and the interface boundary fluxes as well as the sizes ωi
and w of the sub-cells. 62

5.3. Closeup view of curved shock front of the forward facing step

example. The uneven distribution of the FV sub-cells for the

Gaussian case (left) introduces small disturbances into the solu-

tion. The density for the equidistant FV sub-cells on the right is

much smoother. 67

5.4. Factors in the time step restriction for the FV sub-cells method

and the DG scheme. For all polynomial degrees and both distri-

butions of the FV sub-cells, the time step is bigger than the one

for the DG method. 69

5.5. Coupling of a Discontinuous Galerkin element with Gaussian dis-

tributed Finite Volume sub-cells. 70

5.6. Coupling of a Discontinuous Galerkin element with equidistant

distributed Finite Volume sub-cells. 71

5.7. To prevent a permanent switching between the DG and the FV

sub-cells method two thresholds are used. The solution switches

from DG to FV if the indicator value becomes greater then the

upper threshold and is only switched back to DG if the indicator

value falls below the lower threshold. 73

5.8. Reconstruction of a linear polynomial using the slopes from cell

center to the cell centers of the adjacent cells (dashed lines). Us-

ing the arithmetic mean value of these slopes as slope of the re-

constructed solution, generates a new maximum in this case. This

violates the total variation diminishing property of the scheme

which may cause instabilities. 76

172

List of figures

5.9. Admissible region of the slopes to the left and right adjacent cell.

The reconstructed slope must not be steeper than any of the red

lines, but it is allowed to be flatter than the green lines. 78

5.10. A nonlinear mapping, e.g. due to a stretching, of a reference

FV sub-cells element to the physical space changes the ratio of

lengths and distances. Therefore, the limiting of slopes for the

second order reconstruction has to be built on the physical dis-

tances instead of reference distances. 80

5.11. Interpolation from the big side to two small virtual sides. The

values are just copied from a big side FV sub-cell to the two

adjacent small sub-cells. 81

5.12. Procedure at mixed DG and FV sub-cell mortar interfaces. Ba-

sically, there are two different setting: The big side element is a

DG element (a) or it is a FV sub-cells element (b). In each case

the first step is to interpolate the big side solution to the small

virtual sides with the appropriate operator. The flux computation

is performed on conforming small interfaces. If one side is a FV

sub-cells side, the flux is computed in FV points. In such a case,

a DG side must be interpolated to FV sub-cell points using the

Vandermonde matrix V dmFV . 84

5.13. Comparison of Finite Volume mortar interfaces without and with

the non-TVD reconstruction. The exact solution is constant in

the x- and linear in the y -direction and is advected in x-direction.

The difference between the numerical and the exact solution after

a single time step, which should be zero, is plotted. Left: without

reconstruction along the mortar interface. Right: with a non-

TVD reconstruction along the mortar interface. 85

5.14. Mortar interpolation of the solution from the big side to the small

virtual sides. Without a reconstruction along the mortar interface

this reduces to a simple copy of the solution to the adjacent

small virtual sides (a). This can be improved by using the slopes

between the sub-cells of the big side element to reconstruct a

solution at the flux points of the small virtual sides (b). 87

173

List of figures

5.15. Flow chart of the hybrid Discontinuous Galerkin/Finite Volume

sub-cells operator. Procedures underlined in red are modified to

perform their specific task either for DG or FV elements. At the

same time the BR1/2 lifting of the DG elements is computed,

the 2nd order reconstruction of the FV sub-cells is built. The

counterpart to the DG volume integral are the fluxes over inner FV

sub-cell interfaces. Additional communication is required. Besides

the information of which type (DG or FV) an element at a MPI

interfaces is, for the FV reconstruction a second array of face data

has to be transmitted, which is indicated by the red numbers 2. . 88

6.1. Density of Sod shock tube problem at t = 0.2 with a DG poly-

nomial degree ranging between N = 3, . . . , 11. To yield a total

amount of work comparable for all polynomial degrees, the num-

ber of DG elements ranges between 44 elements for N = 3 and

10 elements for N = 11. The pure Finite Volume computation

uses 252 FV sub-cells, which leads to nearly the same number of

time steps times DOFs. 93

6.2. Closeup view of the contact discontinuity of the Sod shock tube

for select polynomial degrees. Increasing the polynomial degree

of the DG elements from 3 to 5 improves the sharpness of the

contact discontinuity. Further increment to N = 11 leads to

bigger smear of this wave. 95

6.3. Density of Shu-Osher fluctuations shock wave interaction problem

at t = 1.8 with a polynomial degree of N = 3 on a grid with 100

elements. The results of 10 different computations with an upper

threshold value of the indicator based switching between DG and

FV sub-cells, varying from 0.007 to 0.12. The lower threshold is

0.005. 96

6.4. Close-up view of the density of Shu-Osher fluctuations shock wave

interaction problem at t = 1.8 with a polynomial degree of N = 3

on a grid with 100 elements. The results of 5 different computa-

tions with a lower threshold value of the indicator based switching

between DG and FV sub-cells varying from 0.001 to 0.008. The

upper threshold is 0.011. 97

174

List of figures

6.5. Curved periodic mesh of the freestream preservation example.

The right half in z-direction is refined in both other directions.

The distribution of the DG and FV elements is manually fixed,

such that every second element along the space filling curve is

either FV (red) or DG (blue). The solution is initialized with a

constant state which should not change over time or by mesh

induced effects. 98

6.6. Exemplary mesh with a baseline resolution of 2 elements per di-

rection for the investigation of the order of convergence. The

upper half in z-direction has always twice the resolution in x- and

y -direction, leading to mortar interfaces of type 3. FV sub-cell

elements are used in the gray half, while the other half are DG

elements. The right cube shows the initial diagonal sine wave of

the density. 100

6.7. Parallel efficiency of a strong scaling for different problem sizes.

Each color/line corresponds to a specific mesh, for which the num-

ber of elements is given in the legend. The baseline simulation

is performed on a single node (24 cores) except for the largest

cases, which does not fit on a single node due to memory restric-

tions. For all meshes, the number of cores is doubled until each

core has only 9 elements. To reduce statistical effects every single

simulation is repeated five times and the variability is visualized

with the error bars. 106

6.8. Performance index of a strong scaling for different problem sizes

and distributions of DG and FV elements. A good performance

can be achieved for about 10,000 DOFs and more per core. Lower

numbers of DOFs per core can lead to better results but the

variability, caused by the sharing of network resources with other

jobs, may reduce the parallel performance. 107

6.9. Comparison of the density of a hybrid DG/FV sub-cells com-

putation with a polynomial degree of N = 5 on a coarse grid

(120 × 30) in the top row with a pure FV calculation on a finer

grid (960 × 240 underlying DG elements) in the bottom row.

The results are comparable even so the pure FV solution required

64 times more DOFs. 111

175

List of figures

6.10. Closeup view of the density of two computations, where only the

thresholds of the indicator are different. This shows the influence

of the numerical dissipation. The bottom row shows the results

with lower thresholds, leading to more FV sub-cell elements, which

are visualized on the right in red. More FV sub-cells lead to more

numerical dissipation and hence not so fine resolved structures. . 112

6.11. Numerical schlieren of the forward facing step at t = 4.0 for nearly

identical setups, where only the variable the Persson indicator acts

on is different. The top image shows the results for the Persson

indicator on the density, while the bottom image is computed with

the Persson indicator on the pressure. 114

6.12. Distribution of DG and FV sub-cell elements of the forward facing

step at t = 4.0. The top image shows the results for the Persson

indicator on the density, while the bottom image is computed with

the Persson indicator on the pressure. 115

6.13. The domain of the two dimensional Riemann problems is divided

into four quadrants, numbered 1–4. In each quadrant a constant

state is initialized such that only single elementary waves connect

adjacent quadrants. 116

6.14. Two dimensional Riemann problem, configurations 3, 4 and 6.

Left: Density at final time. Right: FV (red) and DG (blue)

elements. 119

6.15. Two dimensional Riemann problem, configurations E and F. Left:

Density at final time. Right: FV (red) and DG (blue) elements. . 121

6.16. Closeup view of the two dimensional Riemann problem, configu-

rations E and F. Left: Density at final time for the original mesh.

Right: Inside the dashed rectangle the mesh resolution is doubled. 123

6.17. Two dimensional Riemann problem, configuration J. Left: Density

at final time. Right: FV (red) and DG (blue) elements. 124

6.18. Two dimensional Riemann problem, configuration J. Left: Close-

up view of density for h = 1
100

. Right: Close-up view of density

for h = 1
400

. 125

6.19. Two dimensional Riemann problem, configurations G, H and K.

Left: Density at final time. Right: FV (red) and DG (blue)

elements. 126

176

List of figures

6.20. Two snapshots at t = 81.0s and t = 84.5s of the shock boundary

layer interaction. Visualized are isocontours of the Lambda-2 vor-

tex criterion, which are colored by the streamwise velocity. The

backside plane shows the density and the upper additional back-

side plane shows the distribution of the DG (blue) and the FV

sub-cell (red) elements. In gray, the shock position is visualized

with isocontours of zero dilatation. 128

177

	Preface
	Symbols and abbreviations
	Symbols
	Abbreviations

	Kurzfassung
	Abstract
	1 Introduction
	2 Fundamentals
	2.1 Navier–Stokes equations
	2.1.1 Stationary Navier–Stokes equations

	2.2 Weak formulation or variational form
	2.3 Mapping to reference space
	2.3.1 Mapping of the equations

	3 Shape derivative for the compressible Navier–Stokes equations
	3.1 Aerodynamic objective functions and boundary conditions
	3.2 Shape calculus
	3.2.1 Definition of the shape derivative and the Hadamard theorem
	3.2.2 Tangential calculus
	3.2.3 Shape derivative for volume and boundary integrals

	3.3 Shape derivative in strong and variational form
	3.4 Adjoint calculus
	3.4.1 Variational formulation of the continuous adjoint problem
	3.4.2 Application of adjoint equation to the shape derivative of the Navier–Stokes equations
	3.4.3 Transformation to non-conservative variables
	3.4.4 Subtraction of the shape derivative of the Navier–Stokes equations from the preliminary shape derivative of the cost function

	3.5 Numerical comparison
	3.5.1 High order grid generation and perturbation
	3.5.2 Test and verification setup
	3.5.3 Comparison of the pointwise and the variational shape derivative

	4 Discontinuous Galerkin spectral element method
	4.1 Numerical approximation
	4.1.1 Time derivative integral
	4.1.2 Volume integral
	4.1.3 Surface integral
	4.1.4 Semi-discrete formulation
	4.1.5 Gradient approximation for second order equations

	4.2 Time integration
	4.2.1 Time step restriction

	4.3 Overview of the implementation
	4.4 Nonconforming meshes using mortar interfaces
	4.4.1 Mortar interfaces for DG

	5 Shock capturing for the Discontinuous Galerkin method
	5.1 Finite Volume method on sub-cells
	5.1.1 Discretization
	5.1.2 Approximation of the Finite Volume formulation

	5.2 Time step restriction
	5.3 Coupling of Discontinuous Galerkin elements and Finite Volume sub-cells
	5.4 Indicators
	5.4.1 Persson indicator
	5.4.2 JST indicator
	5.4.3 Ducros indicator

	5.5 Second order reconstruction
	5.5.1 Slope limiters
	5.5.2 Reconstruction on curved meshes

	5.6 Mortar interfaces
	5.6.1 Mixed DG and FV sub-cells mortar interfaces
	5.6.2 Edge local reconstruction at mortar interfaces

	5.7 Overview of the implementation

	6 Numerical results
	6.1 Validation examples
	6.1.1 Sod shock tube
	6.1.2 Shu-Osher density fluctuations shock wave interaction problem
	6.1.3 Freestream preservation

	6.2 Order of convergence
	6.3 Parallel efficiency
	6.4 Complex examples
	6.4.1 Double Mach reflection
	6.4.2 Forward facing step
	6.4.3 Two dimensional Riemann problem
	6.4.4 Shock boundary layer interaction

	7 Conclusion and prospects
	A Parameter files
	A.1 Validation examples
	A.1.1 Sod shock tube
	A.1.2 Shu-Osher density fluctuations shock wave interaction problem
	A.1.3 Freestream preservation

	A.2 Order of convergence
	A.3 Parallel efficiency
	A.4 Complex examples
	A.4.1 Double Mach reflection
	A.4.2 Forward facing step
	A.4.3 Two dimensional Riemann problem
	A.4.4 Shock boundary layer interaction

	Bibliography
	List of tables
	List of figures

