Subnitride im System Alkalimetall-Barium-Stickstoff

Von der Fakultät Chemie der Universität Stuttgart Zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

> vorgelegt von Volodymyr Smetana aus Chervonohrad, Ukraine

Hauptberichter: Mitberichter: Tag der Einreichung: Tag der Prüfung: Prof. Dr. A. Simon Prof. Dr. T. Schleid 06.03.2008 29.05.2008

MAX-PLANCK-INSTITUT FÜR FESTKÖRPERFORSCHUNG, STUTTGART 2008

Teile dieser Arbeit wurden veröffentlicht

"Li₂₆-Cluster in der Verbindung Li₁₃Na₂₉Ba₁₉" V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon *Angew. Chem.* **118** (2006) 6197.

"Li₈₀Ba₃₉N₉: The First Li/Ba Subnitride" V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon *Inorg. Chem.* **45** (2006) 10786.

"Refinement of the crystal structure of barium tetralithium, BaLi₄" V. Smetana, V. Babizhetskyy, C. Hoch, A. Simon *Z. Kristallogr. NCS* **221** (2006) 434.

"Synthesis and crystal structure of LiBa₂N and identification of LiBa₃N" V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon *J. Solid State Chem.* **180** (2007) 1889.

"Double-Icosahedral Li Clusters in a New Binary Compound Ba₁₉Li₄₄: A Reinvestigation of the Ba-Li Phase Diagram" V. Smetana, V. Babizhetskyy, G. Vajenine, C. Hoch, A. Simon *Inorg. Chem.* **46** (2007) 5425.

"Synthesis and Crystal Structure of the New Quaternary Subnitride Na₁₅Li₈Ba₁₂N₆" V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon *Z. Anorg. Allg. Chem.* **633** (2007) 2296.

"Icosahedral Li-Clusters in the Structures of Li_{33.3}Ba_{13.1}Ca₃ and Li_{18.9}Na_{8.3}Ba_{15.3}" V. Smetana, V. Babizhetskyy, C. Hoch, A. Simon *J. Solid State Chem.* **180** (2007) 3302.

"Li_xNa_yBa₁₄LiN₆: New Representatives of the Subnitride Family" V. Smetana, V. Babizhetskyy, A. Simon *Z. Anorg. Allg. Chem.* **634** (2008) 629. Darstellung und Kristallstruktur der Phasen $Li_{26}Na_{58}Ba_{38}E_x$ (E = N, H; x = 0–1) V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon *Z. Anorg. Allg. Chem.* **634** (2008) 849.

> "Neue Li₂₆-Cluster in Li₂₆Na₂₉Ba₁₉" V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon 13. GDCh Vortragstagung, Aachen (2006) [Posterbeitrag]

> "Li₈₀Ba₃₉N₉: Ein erstes Li-Ba-Subnitrid" V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon 13. GDCh Vortragstagung, Aachen (2006) [Posterbeitrag]

"Double-icosahedral Li clusters in a new binary compound Ba₁₉Li₄₄" V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon XIth European Conference On Solid State Chemistry Caen (2007) [Posterbeitrag]

"Synthesis and crystal structures of LiBa₂N and LiBa₃N" V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon XIth European Conference On Solid State Chemistry Caen (2007) [Posterbeitrag]

"Synthesis and Crystal Structure of the new quaternary subnitride Na₁₅Li₈Ba₁₂N₆" V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon Xth International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv (2007) [Posterbeitrag]

"Novel ionic and metallic subnanostructures in Li-rich compounds" V. Smetana, V. Babizhetskyy, G. Vajenine, C. Hoch, A. Simon GDCh Wissenschaftsforum Chemie, Ulm (2007) [Posterbeitrag] International Karlsruhe Nanoscience Workshop "Metal-rich Compounds", Karlsruhe (2007) [Posterbeitrag] "Phase relationship with Li/Ba subnitrides and intermetallic compounds"

V. Smetana, V. Babizhetskyy, G. Vajenine, C. Hoch, A. Simon

Xth International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv (2007) [Vortrag]

Co-Autorschaft bei folgender Veröffentlichung zum Themengebiet

"Subnitrides with Group 1 and 2 Metals" A. Simon, G. Vajenine, V. Smetana, V. Babizhetskyy MRS Fall Meeting, Symposium "Nitrides and Related Bulk Materials", Boston (2007) [Vortrag]

Inhaltsverzeichnis

1 Einleitung	6
2 Experimentelle Grundlagen	8
2.1 Präparative Grundlagen	8
2.1.1 Handhabung der Substanzen	8
2.1.2 Schutzgasanlage und Handschuhkasten	8
2.1.3 Reaktionsgefäße	9
2.1.4 Durchführung der Reaktionen	9
2.1.5 Aufbewahrung luftempfindlicher Substanzen	10
2.2 Analytik	10
2.2.1 Physikochemische Analyse	10
2.2.2 Elektronenmikroskopie	10
2.2.3 Kernresonanzspektroskopie	12
2.3 Ausgangssubstanzen	12
2.3.1 Stickstoffquelle	12
2.3.2 Lithium	12
2.3.3 Natrium und Kalium	13
2.3.4 Magnesium, Calcium, Strontium und Barium	14
2.4 Röntgenuntersuchungen	17
2.4.1 Röntgenbeugung am Pulver	17
2.4.1.1 Gitterparameterbestimmung	17
2.4.1.2 Phasenanalyse und Rietveldverfeinerung	17
2.4.2 Röntgenbeugung am Einkristall	18
2.4.2.1 Schichtaufnahme	18
2.4.2.2 Strukturlösung und Verfeinerung	18
2.5 Thermisches und elektrisches Verhalten	19
2.5.1 Temperaturabhängige Guinier-Aufnahmen	19
2.5.2 Differenzthermoanalyse	20
2.5.3 Elektrischer Widerstand	21

3 Intermetallische Phasen	22
3.1 Binäre Verbindungen	22
3.1.1 Allgemeines	22
3.1.2 NaBa	24
3.1.2.1 Darstellung	24
3.1.2.2 Kristallstruktur	24
3.1.2.3 Substitution des Natriums durch Lithium	25
$3.1.3 \operatorname{Na_2Ba}$	25
3.1.3.1 Darstellung	25
3.1.3.2 Kristallstruktur	26
3.1.4 BaLi ₄	27
3.1.4.2 Darstellung	27
3.1.4.3 Kristallstruktur	27
3.1.5 Ba ₁₉ Li ₄₄	28
3.1.5.1 Darstellung	28
3.1.5.2 Kristallstruktur	28
3.1.5.3 Thermisches Verhalten	31
3.2 Ternäre Verbindungen	32
$3.2.1 \text{ Li}_{13}\text{Na}_{29}\text{Ba}_{19}$	32
3.2.1.1 Entdeckung	32
3.2.1.2 Darstellung	33
3.2.1.3 Kristallstruktur	33
$3.2.2 \text{ Li}_{33.3}\text{Ba}_{13.1}\text{Ca}_3$	37
3.2.2.1 Entdeckung und Darstellung	37
3.2.2.2 Kristallstruktur	37
$3.2.3 \text{ Li}_{18.9} \text{Na}_{8.3} \text{Ba}_{15.3}$	40
3.2.3.1 Darstellung	40
3.2.3.2 Kristallstruktur	41
3.2.4 Elektronenmikroskopie an ternären Phasen des Systems Li-Ba-Ca	44
3.2.4.1 Übersicht	44
3.2.4.2 Ergebnisse	45
3.2.4.2.1 Struktur und Zusammenfassung defektfreier Domänen	45
3.2.4.2.2 Nanoskopische Defekte	53

3.2.4.2.3 Chemisches Verhalten bei Elektronenbestrahlung	53
3.2.4.2.4 Experimentelle Konsequenzen	55
3.3 Phasenzusammenhänge im System Li-Na-Ba	56
4 Subnitride	56
4.1 Binäre Subnitride des Bariums	56
4.1.1 Allgemeines	56
4.1.2 Ba ₂ N	57
$4.1.3 \text{ Ba}_3 \text{N}$	57
4.2 Ternäre Subnitride im Na-Ba-N System	58
4.2.1 Allgemeines	58
4.2.2 NaBa ₃ N	59
4.2.3 Na ₅ Ba ₃ N	59
$4.2.4 \text{ Na}_{16}\text{Ba}_6\text{N}$	60
$4.3 \operatorname{Na}_{n}\operatorname{Ba}_{14}\operatorname{CaN}_{6}$ -Serie	61
4.3.1 Allgemeines	61
$4.3.2 \text{ Na}_7\text{Ba}_{14}\text{CaN}_6$	62
$4.3.3 Na_8 Ba_{14} Ca N_6$	62
$4.3.4 \operatorname{Na}_{14}\operatorname{Ba}_{14}\operatorname{CaN}_{6}$	63
$4.3.5 \text{ Na}_{17}\text{Ba}_{14}\text{CaN}_{6}$	64
$4.3.6 \operatorname{Na}_{21}\operatorname{Ba}_{14}\operatorname{CaN}_{6}$	65
$4.3.7 \operatorname{Na}_{22}\operatorname{Ba}_{14}\operatorname{CaN}_{6}$	65
$4.4 \text{ Li}_{80}\text{Ba}_{39}\text{N}_9$	66
4.4.1 Darstellung	67
4.4.2 Kristallstruktur	67
4.4.3 Elektrische Leitfähigkeit	71
4.5 LiBa ₃ N	72
4.5.1 Darstellung	72
4.5.2 Kristallstruktur	73
4.6 (LiNa)Ba ₃ N	77
4.6.1 Darstellung	77
4.6.2 Kristallstruktur	77
$4.7 \operatorname{LiBa_2N}$	78

4.7.1 Darstellung	78
4.7.2 Kristallstruktur	78
4.8 Zusammenfassung zum Li-Ba-N-System	81
$4.9 Na_{15}Li_8Ba_{12}N_6$	82
4.9.1 Darstellung	82
4.9.2 Kristallstruktur	83
4.9.3 Elektrische Leitfähigkeit	87
$4.10 Na_{14}Ba_{14}LiN_6$	88
4.10.1 Darstellung	88
4.10.2 Kristallstrukturbestimmung	88
4.10.2 Kristallstruktur	89
4.11 Li ₄ Na ₁₁ Ba ₁₄ LiN ₆ und Li ₅ Na ₁₀ Ba ₁₄ LiN ₆	91
4.11.1 Darstellung	91
4.11.2 Kristallstruktur	91
$4.12 \text{ LiN}a_{14}\text{B}a_{14}\text{LiN}_6$	92
4.12.1 Kristallstruktur	92
4.12.2 Elektrische Leitfähigkeit	93
4.13 Vergleich der Strukturen von Li _x Na _y Ba ₁₄ LiN ₆	94
4.14 Thermisches Verhalten von Li _x Na _y Ba ₁₄ LiN ₆	96
$4.15 \text{ Li}_{26} \text{Na}_{58} \text{Ba}_{38} \text{N}_{x}$	97
4.15.1 Darstellung	97
4.15.2 Kristallstruktur	97
4.15.3 Substitution des Stickstoffs durch Wasserstoff	100
5 Zusammenfassung	101
6 Summary	105
7 Literatur	108
8 Tabellenverzeichnis	115
9 Abbildungsverzeichnis	118

10 Kristallographischer Anhang	121
10.1 Definitionen	121
10.2 NaBa	123
10.3 BaLi ₄	125
$10.4 Ba_{19}Li_{44}$	127
$10.5 \text{ Li}_{13}\text{Na}_{29}\text{Ba}_{19}$	130
10.6 Li _{33.3} Ba _{13.1} Ca ₃	134
10.7 $Li_{18.9}Na_{8.3}Ba_{15.3}$	137
$10.8 \text{ Li}_{80}\text{Ba}_{39}\text{N}_9$	151
10.9 LiBa ₃ N	155
10.10 LiBa ₂ N	157
$10.11 \text{ Na}_{15} \text{Li}_8 \text{Ba}_{12} \text{N}_6$	159
$10.12 \text{ Na}_{14}\text{Ba}_{14}\text{LiN}_{6}$	162
$10.13 Li_4 Na_{11} Ba_{14} Li N_6$	164
$10.14 \text{ Li}_5 \text{Na}_{10} \text{Ba}_{14} \text{LiN}_6$	166
10.15 Li ₂₆ Na ₅₈ Ba ₃₈ N(H) _x	168
10.16 Identifizierte nicht nähe charakterisierte Verbindung $Li_xNa_yBa_zN$	177

1 Einleitung

Stickstoff wird in der Chemie wegen seiner Reaktionspassivität gerne als Schutzgas benützt. Auf der anderen Seite kann er mit vielen Elementen des Periodensystems, besonders mit Lithium und den Erdalkalimetallen, Nitride bilden. Ionische Nitride von Beryllium, Magnesium und Calcium sind bekannt und strukturell charakterisiert [1]. Bariumnitrid [2] bedarf weiterer Untersuchungen, jedoch ist das Pernitrid (BaN₂ [3]) hinreichend bestimmt. Neben Li₃N [4] bilden die Alkalimetalle Natrium und Kalium die leicht zersetzlichen Verbindungen Na₃N [5, 6] und K₃N [7]. Gemischte ternäre Nitride sind nur mit Lithium bekannt: LiMgN [8], LiCaN [9], LiSrN [9], LiBaN [10] und Li₄SrN₂ [9].

1955 wurden beim thermischen Abbau von Ba₃N₂ bzw. Sr₃N₂ im Vakuum bei 450 °C neben den ionischen Nitriden metallreiche Nitride der Erdalkalimetalle entdeckt [11]. Zwei Jahre später wurde die Struktur von Ca₂N aus Einkristalldaten bestimmt und verfeinert [12]. Eine weitere Methode, solche Nitride zu synthetisieren, fand Addison [13]: Reaktionen wurden mit dem Zusatz von Natrium durchgeführt. In solchen Mischungen reagiert Stickstoff mit Barium schon bei 300–350 °C. Natrium konnte dann mit Hilfe von Kalium über eine flüssige Na-K-Legierung entfernt werden. Analog zur Komplexbildung in wässriger Lösung wurde ein tetraedrischer Ba₄N- bzw. ein verzerrt kubischer Na₄Ba₄N-Komplex von ihm postuliert [14].

Metallreiche Oxide der Alkalimetalle sind seit 1909 bekannt [15, 16]. Ihre nähere Charakterisierung erwies sich aufgrund der extremen Luftempfindlichkeit und niedrigen Schmelz- bzw. Zersetzungstemperaturen als äußerst schwierig. So konnten ihre genauen Zusammensetzungen nur teilweise bestimmt werden [17], und ein Strukturvorschlag für die Verbindung Cs₃O [18] erfasst die Anordnung der Atome nur unvollständig [19]. Erst in den Siebzigerjahren des vorigen Jahrhunderts konnten die exakten Zusammensetzungen der bekannten und neu entdeckter Rb- und Cs-Suboxide ermittelt und das zugrunde liegende Strukturprinzip aufgeklärt worden. Danach treten Cluster aus sauerstoffzentrierten M₆-Oktaedern auf (M = Rb, Cs) [19, 20]. Die Cluster aus Doppel- (Rb₉O₂ [21]) und Dreifachoktaedern (Cs₁₁O₃ [22]) verhalten sich wie Metallatome und bilden mit zusätzlichem Rubidium und Cäsium andere Verbindungen [23]. Innen sind diese Cluster ionisch, die Sauerstoffatome sind hochgeladen und von den Metallatomen zwischen den Clustern isoliert.

Erste Versuche, die Suboxidchemie auf die Systeme mit Stickstoff zu übertragen, machte Künzel von 1977 bis 1980, jedoch wurde das erste Subnitrid, NaBa₃N [24], erst im Jahre 1992 von Rauch und Simon entdeckt. In der Struktur dieser Verbindung liegen unendliche Reihen von flächenverknüpften stickstoffzentrierten Ba₆-Oktaedern vor, ähnlich wie in der postulierten Struktur von Cs₃O (anti-TiI₃-Typ) [18]. Zwei weitere Verbindungen mit höherem Na-Gehalt, Na₅Ba₃N [25] und Na₁₆Ba₆N [26], wurden danach von Snyder entdeckt. Die erste enthält die gleichen Ba₃-Ketten, die letztere isolierte Ba₆N-Oktaeder. Es war zu vermuten, dass die als Ag₈Ca₃ [27] beschriebene Phase gleichfalls ein Subnitrid, Ag₁₆Ca₆N [26], darstellt. Zwei weitere ternäre Subnitride mit Silber und Calcium, Ag₈Ca₁₉N₇ [28] und Ag_{1.36}Ca₇N₄ [29], wurden von Reckeweg beobachtet. Diese enthalten Cluster aus kantenverknüpften Ca₆N-Oktaedern, die direkt (Ag_{1.36}Ca₇N₄ [29]) oder über zusätzliche Ca₆N-Oktaeder (Ag₈Ca₁₉N₇ [28]) über Ecken verbunden sind.

In den vergangenen Jahren wurde bei Untersuchungen von Steinbrenner eine Reihe quaternärer metallreicher Nitride der Erdalkalimetalle in Kombination mit Natrium entdeckt [19, 30]. Alle diese Verbindungen haben die gleichen Ba₁₄MN₆-Cluster (M = Ca, Sr) umgeben von verschiedener Anzahl an Na-Atomen. Sie können mit der allgemeinen Formel Na_nBa₁₄MN₆ (n = 7, 8, 14, 17, 21, 22) charakterisiert werden. Der Ba₁₄MN₆-Cluster wird aus sechs flächenverknüpften Ba₅CaN-Oktaedern gebildet, ähnlich wie in den Alkalimetallsuboxiden.

Das Ziel der hier vorgestellten Arbeit war die Darstellung und die Untersuchung neuer metallreicher Nitride von Alkalimetallen und Barium. Da das Ba-N- und das Na-Ba-N-System schon weitgehend untersucht war und es nicht gelang, diese Chemie auf die höheren Homologen von Natrium zu übertragen, waren andere Wege angezeigt:

- Durchsuchung der Na_nBa₁₄CaN₆-Familie nach neuen Subnitriden
- Untersuchung des Systems Li-Ba-N
- Untersuchung des Systems Li-Na-Ba-N
- Untersuchung des Systems Li-Ba-Ca-N

Um das Gebiet zu erschließen, sind allerdings eingehende Kenntnisse über die jeweiligen intermetallischen Systeme erforderlich. Im Kapitel 3 werden die bekannten und neuen intermetallischen Verbindungen von Barium, Lithium und Natrium vorgestellt. Aus diesem Grund ist eine kurze Information über die bekannten Ba-Subnitride in den Kapiteln 4.1–4.3 zusammengestellt. Neue Ergebnisse im Subnitridgebiet sind in den Kapiteln 4.4–4.15 vorgestellt und werden kommentiert. Die Arbeit schließt mit einer Zusammenfassung, worin neue Ergebnisse diskutiert und mit bekannten verglichen werden und letztlich mit einem Anhang, wo die kristallographischen Informationen zusammengestellt sind.

2 Experimentelle und theoretische Grundlagen

2.1 Präparative Grundlagen

2.1.1 Handhabung der Substanzen

Die meisten der in dieser Arbeit verwendeten Ausgangssubstanzen sowie die Reaktionsprodukte sind luft- und feuchtigkeitsempfindlich. Dies gilt in besonderem Maße für die Alkalimetalle Lithium, Natrium und Kalium, die schweren Erdalkalimetalle sowie für ihre intermetallischen Verbindungen und Subnitride. Besonders das frisch destillierte Barium ist aufgrund seiner großen spezifischen Oberfläche infolge des Aufbaus aus dendritischen Fasern extrem reaktiv: Spuren von Wasser, Sauerstoff und Stickstoff werden unter Bildung von Bariumhydroxid, -oxid, -nitrid und -pernitrid [2] rasch absorbiert. An Luft sind Natrium, Kalium und Barium pyrophor und reagieren mit Wasser explosionsartig (besonders die Na-K-Legierung). Li-, Na- und Ba-Azide sind an Luft und in Lösung stabil, aber sehr hygroskopisch und sie bilden die Hydrate LiN₃·H₂O [31], NaN₃·3H₂O [32] und Ba(N₃)₂·H₂O [33]. Das andere Problem bei diesen Verbindungen ist ihre thermische Stabilität: LiN₃ und Ba(N₃)₂ zerfallen schon bei 100–120 °C. Die Präparation und Handhabung der Proben erfolgte unter Anwendung der Schlenk-Technik [34] oder in einem Handschuhkasten.

2.1.2 Schutzgasanlage und Handschuhkasten

Ein großer Teil der Arbeit wurde mittels Schlenk-Technik an einer Hochvakuumapparatur durchgeführt. Das als Schutzgas verwendete Argon (99.996%, Fa. Messer-Griesheim) wird zur Trocknung über Kieselgel und ein Molekularsieb geleitet. Danach werden Sauerstoff- und Stickstoffspuren mit Hilfe eines 800 °C heißen Titanschwamms entfernt und letzte Sauerstoff- und Wasserverunreinigungen mit einem Oxisorb-Katalysator $(Cr^{2+} auf Kieselgel)$ [35] beseitigt. Die Evakuierung wurde mit einer zweistufigen Drehschieberpumpe (Fa. Leybold-Heraeus, Vorvakuum minimal 10⁻³ mbar) und einer Silikonöldiffusionspumpe (Fa. Leybold-Heraeus, Vakuum minimal 10⁻⁶ mbar) mit vorgeschalteter Flüssigstickstoff-Kühlfalle durchgeführt.

Für die Einwaagen der Ausgangssubstanzen, das Einkristallsuchen oder die Probenpräparation für die Messungen der physikalischen Eigenschaften stand ein Handschuhkasten (Fa. M. Braun) zur Verfügung. Er war mit Argon (99.996%, Fa. *Messer-Griesheim*) gefüllt, welches mittels eines Molekularsiebs getrocknet und zur Entfernung von Wasserstoff über einen BTS-Katalysator (Fa. *BASF*) geleitet wurde. Der Handschuhkasten wurde regelmäßig auf O₂ (<0.05 ppm) und H₂O (<0.1 ppm) überprüft. Stark luftempfindliche Substanzen, besonders Ba und die Na-K-Legierung, wurden in geschlossenen Gefäßen aufbewahrt.

2.1.3 Reaktionsgefäße

Für die Reaktionen bei niedrigen Temperaturen (100–130 °C) konnten Duran-Ampullen benutzt werden. In diesem Temperaturbereich ist Duran gegenüber Li-Na-Ba-N-Mischungen inert. Gefäße aus Duran wurden vor Gebrauch bei 400 °C im dynamischen Hochvakuum ausgeheizt. Glaskapillaren wurden mit Wasser und Ethanol gespült und bei 300 °C im dynamischen Hochvakuum acht bis zwölf Stunden ausgeheizt.

Tantal ist gegenüber Li-Na-Ba-N-Reaktionsgemengen bis ca. 400 °C, gegenüber Ba-N-Gemengen bis ca. 700 °C resistent. Oberhalb dieser Temperaturen bilden sich aufgrund der hohen Stickstoffaktivität in den Metallschmelzen ternäre und quaternäre Tantalnitride [36-38]. Die Tantalampullen wurden aus Rohren (d = 6-10 mm, Fa. *Plansee*) hergestellt. Vor der Verwendung wurden sie mit einer Säuremischung (HNO₃ (65%): HF(40%) \approx 3:1) gereinigt, mit Wasser gespült, getrocknet, im dynamischen Vakuum auf 1100 °C erhitzt und bis zum Erreichen eines Druckes von max. 10⁻⁵ mbar gehalten. Während des Ausheizens gaben die Ampullen große Mengen von Wasserstoff ab. In so behandeltem Tantal ist analytisch kein Wasserstoff nachweisbar.

2.1.4 Durchführung der Reaktionen

Die Subnitride und die intermetallischen Verbindungen wurden aus den stöchiometrischen Gemengen der Edukte in Tantalampullen präpariert. Diese Ampullen wurden unter gereinigtem Argon mittels eines Lichtbogens verschweißt. Zum Schutz vor Oxidation wurden sie in Duran- oder (bei Reaktionstemperaturen über 400 °C) in Quarzglasampullen eingeschmolzen. Die Proben wurden mit 25–30 °C/h auf 300–350 °C

erhitzt, 5 bis 10 Tage bei dieser Temperatur gehalten, langsam mit 2 bis 0.7 °C/h abgekühlt und 15–30 Tage dort getempert. Noch eine Möglichkeit für die Herstellung der metallreichen Nitride bei niedrigen Temperaturen ist die Nutzung der flüssigen Na-K-Legierung. In diesem Fall konnten die Reaktionen um 180–200 °C durchgeführt werden. Diese Methode ergibt meistens nur polykristalline Proben ohne Einkristalle in guter Qualität.

Für die Synthesen der Verbindungen mit hohem Stickstoffgehalt wurden die Reaktionsgemenge auf 500–600 °C erhitzt, zwei bis drei Tage getempert und mit 5–10 °C/h auf Raumtemperatur abgekühlt.

2.1.5 Aufbewahrung luftempfindlicher Substanzen

Barium, Strontium, Calcium, Natrium und Lithium wurden im Handschuhkasten in modifizierten Schlenk-Gefäßen mit einem Flachboden aufbewahrt. Selten verwendete Metalle wie Magnesium und Kalium, Azide und Tantalampullen wurden in Schlenk-Gefäßen außerhalb des Handschuhkastens gelagert. Glasschliffe wurden mit Lithelen-Fett (Fa. *Leybold-Heraeus*), Apiezon-H (Fa. *M&I Materials*) oder Silikonfett abgedichtet. Selten verwendete Chemikalien und Reaktionsprodukte wurden zur Aufbewahrung in Duran-Ampullen eingeschmolzen.

2.2 Analytik

2.2.1 Physikochemische Analyse

Ausgewählte Proben wurden mit klassischen Mikroanalysen durch atomspektroskopische Methoden (ICP-OES, ICP-MS, AAS) von der Firma "Mikroanalytisches Labor Pascher" (Remagen-Bandorf, Deutschland) untersucht. Dies war besonders hilfreich für die lithiumhaltigen Verbindungen.

2.2.2 Elektronenmikroskopie

Qualitative und halbquantitative Untersuchungen an Kristallen wurden mittels energiedispersiver Röntgenspektroskopie am Rasterelektronenmikroskop (TESCAN 5130MM) durchgeführt. Auch am Transmissionselektronenmikroskop (TEM) stand ein entsprechender Detektor (*Noran* HP-Ge) zur Verfügung. Bei Barium, Strontium, Calcium, Natrium und Stickstoff können halbquantitative Analysen gemacht werden. Lithium kann mit dieser Methode weder quantitativ noch qualitativ detektiert werden. Eine Möglichkeit des Einschleusens unter Schutzgas bestand für die energiedispersive Röntgenmikrobereichsanalyse (EDX) nicht, daher waren alle Kristallflächen teilweise hydrolysiert.

TEM-Untersuchungen an extrem luft- und strahlempfindlichen Substanzen stellen eine besondere experimentelle Herausforderung dar. Sie wurden mit einem Elektronenmikroskop CM 30ST (Fa. Philips, LaB₆-Kathode, Beschleunigungsspannung: 300 kV) durchgeführt, welches mit einem EDX-System (Fa. Noran, Vantage-System) ausgestattet ist. Die Bildaufzeichnung erfolgte mit einer Multiscan CCD-Kamera (Fa. Gatan). Für alle Untersuchungen wurde ein analytischer Doppelkipphalter (Fa. Gatan) mit einer maximalen Verkippung von $\pm 30^{\circ}$ verwendet. Wegen der starken Luftempfindlichkeit wurden diese Proben unter Argon eingeschleust.

Die Methodenvielfalt der TEM (Elektronenbeugung, Abbildung, Spektroskopie) erlaubt in günstigen Fällen die Bestimmung von Struktur und Zusammensetzung mit bis zu atomarer Auflösung. Da die einzelnen Techniken bereits ausführlich beschrieben worden sind [39-43], sollen hier nur einige experimentelle Besonderheiten der aktuellen Untersuchungen aufgeführt werden. Die Probe wurde mittels eine spezielle Apparatur [44] unter Argon gemörsert und in das TEM eingeschleust. EDX-Analysen bestätigten das optimale Funktionieren der Apparatur, da nur marginale O- K_{α} -Intensität auftrat, so dass eine Hydrolyse der Probe tatsächlich minimiert werden konnte. Die niedrigen Schmelzpunkte der Intermetallphasen führten zur eigentlichen experimentellen Herausforderung, die rasche Zersetzung der Probe im Elektronenstrahl. TEM war bei konventionellen Einstellungen nicht möglich, sondern nur bei optimiertem Strahldurchmesser (spot 5-6) und relativ kurzer Belichtungszeit (max. 1s im Falle hochaufgelöster Abbildungen). Außerdem wurde anstelle der Feinbereichsbeugung (SAED) die für strahlempfindliche Proben günstigere Präzessionselektronenbeugung (PED) [45] angewendet. Alle Verbindungen des Systems Li-Ba-Ca zersetzen bis 160 °C und transformieren trotz Anwendung von low-dose-Techniken rasch bei Elektronenbestrahlung, so dass diese Untersuchungen experimentelle Grenzen der TEM ausloten.

Sämtliche hochaufgelösten Abbildungen wurden nach der Fouriertransformation mittels einer geeigneten Maske gefiltert (Software: Digital Micrograph 3.6.1, Fa. Gatan). Zur Simulation hochaufgelöster Abbildungen (multislice-Verfahren [46, 47], $C_s = 1.15$ mm, $\Delta = 7$ nm, $\alpha = 1.2$ mrad) wurde das EMS-Programmpaket verwendet [48]. Die Software Emaps

diente der Simulation von PED-Diagrammen [49] (Präzessionswinkel: 3°). Fouriertransformierte von Kreisausschnitten hochaufgelöster Abbildungen wurden mit dem Programm CRISP [50] berechnet.

2.2.3 Kernresonanzspektroskopie

Die NMR-Analyse wurde für die Kontrolle von Wasserstoffspuren in Barium und Alkalimetallen benutzt. Für die Aufnahme von Festkörper-NMR-Spektren stand ein 300 MHz-Spektrometer (7.05 T, Avance DPX 300 SB, Fa. Bruker, Karlsruhe) mit einem Breitband-Probenkopf (5 mm) und einer Temperiereinheit zur Verfügung. Das NMR-Experiment wurde bei Raumtemperatur mit 114 mg (ca. 30 mmol, *ca.* 90 Gew.-%) feingeriebenem Li₁₃Na₂₉Ba₁₉ bei 50 MHz durchgeführt, da Alkalimetalle und Ba zu große Duktilität für ein Zermörsern besitzen. Die Probe wurde im Handschuhkasten in eine wasserstofffreie Borosilicatglasampulle ($\emptyset_a = 2.5$ mm) eingefüllt und eingeschmolzen. Die Messung ergab keinen erkennbaren Gehalt an Wasserstoff.

2.3 Ausgangssubstanzen

2.3.1 Stickstoffquelle

Bariumazid wurde mit einer Reinheit von 98.5% in Form von Pulver oder kleinen Stücken von der Fa. *Schuchardt* gekauft. Ausschließend wurde es umkristallisiert und ca. 48 Stunden unter Hochvakuum getrocknet. Ebenso, aber ohne Umkristallisation, wurde mit Natriumazid (99.99%, Fa. *Aldrich*) verfahren. Das verwendete Calcium- (99.9%) und Lithiumnitrid (99.5%) wurden von der Fa. Merck bezogen.

2.3.2 Lithium

Lithium (>99 Gew.-%, Fa *Merck*) wurde zuerst mechanisch an Luft von der Oxidhaut befreit und anhaftendes Paraffin mit Benzin abgewaschen. Danach wurde es unter Argon im Handschuhkasten noch einmal mechanisch gereinigt und in eine Ta-Ampulle eingeschlossen.

Die zugeschmolzene Ampulle wurde, um Wasserstoff zu entfernen, unter Hochvakuum auf 1000 °C erhitzt und zwölf Stunden (oder bis zu einem Druck von 10⁻⁵ mbar) bei dieser Temperatur gehalten. Die maximalen Löslichkeiten der anderen Elemente in Lithium sind in der Tabelle 2.1 zusammengestellt.

Tabelle 2.1 Löslichkeiten in Lithium (At.-%) bei 100 und 200 °C [14, 51-55]

T, ℃	Ν	0	Na	K	Rb	Cs	Mg	Ca	Sr	Ba
100	-	-	< 0.001	< 0.001	< 0.001	< 0.001	70	< 0.1	< 0.001	< 0.05
200	0.086	0.0009	5	0.95	< 0.001	< 0.001	70	20	42	34

2.3.3 Natrium und Kalium

Natrium (>99 Gew.-%, Fa. *Merck*) und Kalium (>98%, Fa. *Merck*) wurden routinemäßig durch Filtrieren gereinigt. Diese Metalle wurden ebenso wie Lithium an Luft gesäubert und abgewaschen. Anschließend wurden sie unter Argon durch eine Glasfritte filtriert und in Duran-Ampullen eingeschmolzen. Als stärkste Verunreinigungen im gefilterten Natrium und Kalium sind die anderen Alkali- und Erdalkalimetalle enthalten. Die in flüssigem Natrium und Kalium maximal lösliche Menge (At.-%) an anderen Elementen zeigen die Tabellen 2.2–2.3.

Tabelle 2.2 Löslichkeiten in Natrium (At.-%) bei 100 und 200 °C [14, 51, 56-63]

T, ℃	0	Li	K	Rb	Cs	Mg	Са	Sr	Ba
100	0.0004	<0.1	100	100	100	<0.1	<0.1	1.5	7
200	0.0015	12	100	100	100	<0.1	0.12	4	30

Tabelle 2.3 Löslichkeiten in Kalium (At.-%) bei 100 und 200 °C [14, 52, 56, 64-67]

T, °C	0	Li	Na	Rb	Cs	Mg	Ca	Sr	Ba
100	0.24	<0.1	100	100	100	0.4	< 0.001	< 0.001	< 0.001
200	0.67	0.5	100	100	100	0.6	< 0.001	< 0.001	< 0.001

In der Tabelle 2.4 sind die maximal löslichen Mengen (At.-%) an Wasserstoff bei verschiedenen Temperaturen in den drei Alkalimetallen und in der flüssigen Natrium-Kalium-Legierung zusammengestellt.

t, °C	Li	Na	K	Na-K
100	-	0.00005	0.0002	0.0007
200	0.044	0.0028	0.0095	0.0213
300	0.313	0.036	0.120	0.200
400	1.24	0.220	0.720	0.955
500	3.44	0.832	2.70	3.06
600	7.57	2.33	7.50	7.50

 Tabelle 2.4
 Löslichkeiten von Wasserstoff (At.-%) in den Alkalimetallen [14]

2.3.4 Magnesium, Calcium, Strontium und Barium

Magnesium (>99 Gew.-%, Fa. *Merck*), Calcium (99.5 Gew.-%, Fa. *Merck*), Strontium (99.5 Gew.-%, Fa. *Merck*) und Barium (99.5 Gew.-%, Fa. *Alfa-Aesar*) wurden gekauft und weiter gereinigt. Das Erdalkalimetall wurde im Handschuhkasten unter Argon in eine Quarzglas-Destillationsapparatur mit eingestelltem Tantaltiegel (Abbildung 2.1) eingewogen (10–15 g) und im dynamischen Hochvakuum mit 120 °C/h auf 560 °C (Mg), 720 °C (Sr), 800 °C (Ca) und 820 °C (Ba) erhitzt. Aus dem Tiegel wurden die Metalle an einen wassergekühlten Kupferfinger sublimiert (Mg, Ca, Sr) oder destilliert (Ba). Nach zwei Tagen wurde das Metall vom Kühlfinger entfernt. Das Metall wurde im Argon-Gegenstrom mit einem Edelstahlschaber zuerst in einen Zerkleinerungsraum mit verstärktem Boden und einer Tasche (große Brocken), dann in eine Duran-Ampulle transportiert und dort in zwei Teilen zu 5 bis 8 g eingeschmolzen. Etwa 5 bis 10% des Gesamtgewichts an Metall gingen als Oxid bzw. Nitrid im Sublimations-/Destillationsrückstand verloren und wurden verworfen.

Quantitative Analysen der destillierten Metalle wurden in einer früheren Arbeit gemacht wobei Calcium (0.8 At.-%), Strontium (0.5 At.-%), Wasserstoff (2.6 At.-%), Stickstoff (0.8 At.-%) und Sauerstoff (0.6 At.-%) als stärkste Verschmutzungen gefunden werden konnten [68]. Barium löst bei höheren Temperaturen eine große Menge an Wasserstoff, bis 46 At.-% bei 720 °C und 14 At.-% bei 300 °C [69] der nicht durch Destillation entfernt werden kann.

Zum Entfernen von Wasserstoff wurde destilliertes Barium im Handschuhkasten in Tantaltiegel eingeschlossen, in einem Quarzglasrohr im dynamischen Hochvakuum auf 1050 °C erhitzt und bis zum Erreichen eines Druckes von max. 10⁻⁵ mbar gehalten. Danach wurde es erneut destilliert. Der Wasserstoffgehalt in so gereinigtem Barium liegt bei 0.06 At.-%. Der Unterschied zwischen dem anfänglichen und dem gereinigten Metall kann aus den Abbildungen 2.2–2.3 ersehen werden.

Abbildung 2.1 Destillationsapparatur für Erdalkalimetalle

Abbildung 2.2 Das Pulverdiffraktogramm von nicht destilliertem Barium

Abbildung 2.3 Das Pulverdiffraktogramm von destilliertem und H-freiem Barium.

2.4 Röntgenuntersuchungen

2.4.1 Röntgenbeugung am Pulver

Pulverproben wurden im Handschuhkasten zermörsert und in Röntgenkapillaren aus Spezialglas (0.2, 0.3 oder 0.5 mm \emptyset) eingeschmolzen. Duktile Proben (z. B. LiBa₃N, (LiNa)Ba₃N oder Ba) oder solche mit hohem Alkalimetallgehalt wurden gefeilt oder mit Glaspulver zermörsert und in breitere (0.7 oder 1.0 mm \emptyset) Röhrchen eingeschmolzen. Pulverdiffraktogramme der Proben wurden mit Stoe-Stadi-P Diffraktometern, unter Verwendung von Mo- $K_{\alpha l}$ - bzw. Cu- $K_{\alpha l}$ -Strahlung, aufgenommen und mit dem Programm WinXPow [70] bearbeitet. Jedes Diffraktometer ist mit einem linearen ortsempfindlichen Detektor ausgerüstet und besitzt eine fokussierende Geometrie.

2.4.1.1 Gitterparameterbestimmung

Aus den Diffraktogrammen erfolgte die Bestimmung und die Verfeinerung der Linienpositionen nach einem Kleinste-Quadrate-Algorithmus mit dem Programm WinCSD Cell [71]. Anhand der Linienlagen des Silizium-Standards wurde durch lineare Regression eine Korrekturgerade für die Messwerte ermittelt. Im Falle von isostrukturellen Verbindungen (z. B. LiBa₃N) konnten die Reflexe indiziert und die Gitterparameter verfeinert werden. Die Indizierung der Reflexe von unbekannten Phasen erfolgte nach den Algorithmen von Werner [72], Visser [73] oder Louer [74].

2.4.1.2 Phasenanalyse und Rietveldverfeinerung

Für die qualitative Phasenanalyse wurden Pulverdiagramme zu Strukturmodellen bekannter Verbindungen mit dem Programmpaket WinXPow [70] berechnet und graphisch dargestellt. Solche Analysen sind ebenfalls mit dem Programm WinCSD [71] möglich.

Die Rietveldverfeinerungen der einphasigen Proben der Verbindungen, die zu bereits bekannten isotyp sind, wurden mit dem Programm WinCSD [71] durchgeführt. Zwei- und mehrphasige Proben konnten mit den Programmen Wyriet [75] oder FullProf [76, 77] verfeinert werden. Als Profilfunktion wurde eine Pseudo-Voigt-Funktion verwendet. Die Verwendung von Cu-Strahlung bedingt Absorptionseffekte, die sich auf die Intensitätsverteilung auswirken und bei den stark absorbierenden Verbindungen von Ba nicht mit ausreichender Genauigkeit korrigiert werden können. Die Verwendung von Mo-Strahlung kann teilweise dieses Problem lösen. Eine Methode zur Berechnung des Anteils der Phase *j* in Gemengen aus dem gemessenen Diffraktogramm wurde in der Arbeit von Rusterholz [78] beschrieben und ist mit dem Programm FullProf [76, 77] möglich. Die bei der Anpassung der berechneten an die gemessenen Intensitäten mit Hilfe eines Kleinste-Quadrate-Verfahrens minimierten Größen sind R_p , R_{wp} , R_{exp} , R_{Bragg} , R_F und Goof (siehe Kapitel 7.1).

2.4.2 Röntgenbeugung am Einkristall

Kristalle wurden im Handschuhkasten aus den Proben ausgewählt und in bei 300 °C getrocknetem Silikonfett (Hochvakuumfett, Fa. *Wacker*) zerkleinert und gewaschen. Dann wurden sie mit Hilfe von Silikonfett in Röntgenkapillaren (0.1 mm \emptyset) fixiert und in größere Kapillaren eingeschmolzen. Die Qualität der Einkristalle wurde mit Hilfe von Laue-Standaufnahmen [79] geprüft.

2.4.2.1 Schichtaufnahmen

Schichtaufnahmen konnten nach der Bürger-Präzessionstechnik [80] (Bürger Precession Goniomenter, Fa. *Huber*) durchgeführt werden. Sie wurden benutzt, um die Gittermetrik und die Laue-Symmetrie zu ermitteln. Kristalle wurden mit Zr gefilterter Mo- K_{α} -Strahlung unter Verwendung von Polaroid-Film (Typ 57, 3000 ASA) und einer Kasette mit Fluoreszenzplatte untersucht.

2.4.2.2 Strukturlösung und -verfeinerung

Die Registrierung der Beugungsdaten erfolgte auf Bildplattendiffraktometern (IPDS I und IPDS II, Fa Stoe, Mo K_{α} , Ag K_{α}). Beide Geräte sind im Wesentlichen gleichermaßen für präzise Datensammlungen geeignet, wobei für Kristalle mit größeren Gitterparametern (z. B. Li_{33,3}Ba_{13,1}Ca₃ oder Li_{18,9}Na_{8,3}Ba_{15,3}) Mo-Strahlung benutzt wurde. Bei diesen Diffraktometern ist es mittels eines Video-Mikroskop-Systems einfach, für numerische Absorptionskorrekturen des Kristalls zu indizieren und die Flächen zu vermessen. Die präzisen Elementarzellenparameter von Einkristallen wurden aus den Positionen von bis zu 8000 ermittelt. Die bestimmten starken Reflexen SO Gitterkonstanten wurden bei Strukturverfeinerungen verwendet.

Zur Datenreduktion wurde ein internes Programm [81] eingesetzt. Alle Datensätze wurden mit dem Programm XPREP [82] hinsichtlich der Datenqualität und -vollständigkeit analysiert, womit systematische Auslöschungen beurteilt und Zelltransformationen durchgeführt werden konnten. Für die Strukturlösung mit Direkten Methoden wurde SHELXS-97 [83] oder SIR-97 [84] verwendet. Strukturverfeinerungen wurden mit den Programmen SHELXL-97 [85] im Programmpaket WinGX [86], oder WinCSD [71] durchgeführt. Die bei der Anpassung der berechneten an die gemessenen Intensitäten mit Hilfe eines Kleinste-Quadrate-Verfahrens minimierten Größen sind *R*1 und *wR*2 (siehe Kapitel 7.1). Empirische Absorptionskorrekturen konnten mit SHELXA [87] gemacht werden. Numerische Absorptionskorrekturen mittels Gaußscher Integration wurden mit dem Programm X-RED durchgeführt [88]. Strukturzeichnungen wurden mit Diamond 3.1e [89] angefertigt.

2.5 Thermisches und elektrisches Verhalten

2.5.1 Temperaturabhängige Guinier-Aufnahmen

Temperaturabhängige Röntgenaufnahmen wurden mit einer Guinier-Simon-Kamera [90, 91] (Eigenbau, Cu $K_{\alpha 1}$, $\lambda = 1.54056$ Å) durchgeführt. Die Monochromatisierung und Fokussierung erfolgt durch einen Johansson-Monochromator, bei dem es sich um einen zylindrisch geschliffenen und gebogenen Quarzeinkristall handelt. Die Pulverproben befanden sich während der Messung in Röntgenkapillaren (0.2–0.3 mm Ø, Quarzglas, Fa. Hilgenberg), die unter Argon gefüllt und versiegelt wurden. Für Heiz-Guinier-Aufnahmen der Li-Na-Ba-N-Reaktionsmischungen erfolgt die Erwärmung der Kapillaren über einen Luftstrom, der auf Temperaturen zwischen Raumtemperatur und 250°C geheizt werden kann. Die Datensammlung erfolgt auf Bildplatten ("image plates"), die rechnergestützt ausgelesen und verarbeitet werden (Programm Aida 2.0 [92]). Bei Guinier-Diffraktogrammen erfolgte die Bearbeitung und die Bestimmung der Linienpositionen mit dem Programm Tina 2.0 [93].

2.5.2 Differenzthermoanalyse

Die Verbindungen in den Systemen Li-Na-Ba-N wurden mit einem am Institut gebauten DTA-Gerät untersucht. Dieses bietet die Möglichkeit die absolute Temperatur und gleichzeitig Thermospannungsdifferenz (Hewlett Packard 3457A Mikrovoltmeter, Pt/PtRh-Thermoelemente) einem mit Kompensationsschreiber zu erfassen. Für Differenzthermoanalysen wurden im Handschuhkasten 15-25 mg Probenmaterial in eine Tantalampulle (15 mm lang, 2 mm Durchmesser) eingewogen. Die Ampullen wurden mittels eines Lasers zugeschweißt und mit dem Pt-Draht zusammen mit einer Referenzsubstanz (NH₄NO₃, KNO₃) am Thermoelement angebunden. Die Temperatur des DTA-Ofens wird mit einem elektronischen Temperaturregler (Fa. Eurotherm, Pt/PtRh-Thermoelement) im Bereich von 20 bis 800 °C gesteuert. Die thermischen Untersuchungen wurden unter Argon in der Regel mit einer Heiz- bzw. Abkühlrate von 3 bzw. 1 °C/min durchgeführt.

- a Pt/PtRh-Thermoelement
- b Tantalampulle
- c Probe
- d Schweißnaht
- e Pt-Draht

Abbildung 2.4 DTA-Probengefäß.

2.5.3 Elektrischer Widerstand

Der elektrische Widerstand wurde an zylinderförmigen Pulverpreßlingen mit einer Gleichstrom-Vierpunkt-Technik nach *van der Pauw* unter Helium von 5 K bis Raumtemperatur gemessen. Ideal einkristalline Metalle besitzen am absoluten Nullpunkt einen sehr kleinen Restwiderstand. Der ideale spezifische Widerstand kann nach $\rho_{ideal}(T) = \rho_{real}(T)$ - $\rho_{real}(0 \text{ K})$ berechnet werden. Bei hohem Restwiderstand kann man $\rho_{real}(0 \text{ K})$ durch $\rho_{real}(5 \text{ K})$ ersetzen ($\rho_{ideal}(T) \approx \rho_{real}(T)$ - $\rho_{real}(5 \text{ K})$. Die elektrische Beweglichkeit der Leitungselektronen in dem jeweiligen Metall kann nach

$$B_{el}(T) = \frac{1}{e\rho_{ideal}(T)r_{Elektron}}$$

berechnet werden wobei e die Elementarladung und r_{Elektron} die Leitungselektronendichte ist ($r_{\text{Elektron}} = N/A$ mit N = Zahl der Valenzelektronen pro Elementarzelle, A = Elementarzellenvolumen). Bei bekanntem Zellvolumen und -inhalt kann die Dichte des Elektronengases berechnet werden, unter der Annahme, dass jedes Alkalimetall ein, und jedes Erdalkalimetall zwei Elektronen an das Leitungsband abgibt und jedes Stickstoffatom drei Valenzelektronen lokalisiert. Der ideale spezifische Widerstand und die Beweglichkeit der Leitungselektronen ausgewählter Metalle und bekannter Subnitride sind in der Tabelle 2.5 zusammengestellt.

Substanz	$\rho_{ideal}[\mu\Omega cm]$	$B_{\rm el}[{\rm cm}^2/{\rm Vs}]$		Substanz	$\rho_{ideal}[\mu\Omega cm]$	$B_{\rm el}[\rm cm^2/Vs]$	
Cu	1.68	43.9	[94]	Са	3.99	33.6	[94]
Li	9.28	14.5	[94]	Sr	23.0	7.5	[94]
Na	4.77	51.6	[94]	Ba	49.0	4.0	[95]
Κ	7.20	87.7	[94]	NaBa	50	4	[68]
Rb	12.84	45.0	[94]	Ba ₂ N	160	4	[68]
Cs	20.46	35.4	[94]	Ba ₃ N	100	4	[68]
Be	4.00	6.3	[94]	NaBa ₃ N	240	1.4	[68]
Mg	4.45	16.3	[94]	Na ₅ Ba ₃ N	50	6	[68]

Tabelle 2.5Elektrische Eigenschaften ausgewählter Metalle und
metallreicher Nitride bei 20 °C

3 Intermetallische Phasen

3.1 Binäre Verbindungen

3.1.1 Allgemeines

Einige Na-Ba intermetallische Phasen mit hohem Na-Gehalt wurden beschrieben: Na₁₂Ba [96], Na₆Ba [96], Na₄Ba [62], NaBa [97] und Na₂Ba₅ [98]. Die Existenz der ersten zwei Phasen und von Na₂Ba₅ konnte in einer späteren Arbeit [99] nicht bestätigt werden. Das Pulverdiffraktogramm der in der Arbeit von Kanda [62] gefundenen Phase Na₄Ba wurde später als das gemeinsame von Na₂Ba [99] und Na₅Ba₃N [25] indiziert. Remy hat zuerst NaBa als eine bei 510 °C kongruent schmelzende Verbindung identifiziert [96]. In einer späteren Untersuchung gab Addison für NaBa einen peritektischen Schmelzpunkt von 197 °C an [62, 63]. Die Struktur von dieser Phase wurde erstmals von Snyder und Simon aus Einkristalldaten gelöst [97].

Abbildung 3.1 Phasendiagramm des Systems Na-Ba [62, 63, 97, 99].

Nur eine Untersuchung des Phasendiagramms vom Ba-Li-System wurde veröffentlicht [55], und das gezeigte Diagramm basiert hauptsächlich auf dieser Arbeit. Ein Eutektikum mit 10,5 At.-% Ba bei 143 °C und ein Peritektikum mit 18,4 At.-% Ba bei 156 °C wurden

gefunden. Das Peritektikum bei 156 °C entspricht der inkongruent schmelzenden Verbindung BaLi₄, die durch Röntgenbeugung identifiziert wurde [100]. In der vorliegenden Arbeit wurden die Existenz und die Struktur von BaLi₄ bestätigt und noch eine weitere Phase gefunden.

Abbildung 3.2 Phasendiagramm des Systems Ba-Li [55].

Keine Verbindungen und keine Mischbarkeit im festen Zustand wurden im System Na-Li gefunden [51, 101-103].

Abbildung 3.3 Phasendiagramm des Systems Li-Na [51, 101-103].

3.1.2 NaBa

3.1.2.1 Darstellung

NaBa konnte durch Tempern äquimolarer Mengen von Natrium und Barium bei 200 °C synthetisiert werden. 700 mg destilliertes Barium und 117.2 mg filtriertes Natrium wurden im Handschuhkasten in einen Ta-Tiegel vorgelegt und mit diesem Tiegel in eine Duran-Glasampulle eingeschmolzen. Nach eintägigem Tempern und Abkühlen bis 120 °C hatten beide Metalle phasenreines NaBa gebildet.

3.1.2.2 Kristallstruktur

NaBa kristallisiert mit kubischer Symmetrie in der Raumgruppe Fd3m mit a = 17.027Å [97]. Die Struktur dieser Verbindung kann als eine Packung von zwei Strukturelementen, leeren Ba₆-Oktaedern und Na₄-Tetraedern, beschrieben werden.

Abbildung 3.4 Die Struktur von NaBa Blickrichtung entlang [111], die Ba₆-Oktaeder sind hervorgehoben.

Diese eckenverknüpften Ba-Oktaeder bilden Sechsringe, und das Na-Netz der Struktur ist aus eckenverknüpften Tetraedersternen [104] gebaut (Abbildung 3.4). Alle Na-Atome in der Struktur haben die Koordinationszahl 12 und sind ikosaedrisch umgeben, die Ba-Atome haben die Koordinationszahl 14. Alle Na-Na-(3.65 und 3.87 Å), Na-Ba-(4.100, 4.350 und 4.354 Å) und Ba-Ba-(4.491 und 4.589 Å) Atomabstände sind im Bereich derer anderer bekannter Na-Ba-Verbindungen und nahe den Summen der Atomradien.

3.1.2.3 Substitution des Natriums durch Lithium

In weiteren Untersuchungen des ternären Li-Na-Ba-Systems wurden Einkristalle mit ein wenig kleineren (16.927(2) Å) Gitterkonstanten erhalten. Die Strukturverfeinerung ergab maximal ein Li-Atom in der Position 16 *d* oder zu 96% besetzte Na-Position. Es ist unmöglich zu behaupten, dass Li in der Verbindung ist, aber solche Gitterkonstanten wurden nicht in Synthesen ohne Lithium erhalten, sondern nur in Proben, wo dieses Element enthalten war. Alle Na-Na (3.65(2) und 3.87(2) Å), Na-Ba (4.094(3), 4.349(4) und 4.353(2) Å) und Ba-Ba (4.489(1) und 4.584(1) Å) Atomabstände sind geringfügig kleiner als in der früher untersuchten Phase [97]. Daten zu Strukturverfeinerung und kristallographische Information sind in den Tabellen 7.1–7.4 zusammengefasst.

3.1.3 Na₂Ba

3.1.3.1 Darstellung

Nach bekanntem Phasendiagramm [62, 99] zerfällt Na₂Ba peritektoid in NaBa und Na bei 86 °C. Diese Verbindung kann bis jetzt nur mit großem Natriumüberschuss hergestellt werden [99]. 500 mg destilliertes Ba und 167.5 mg filtriertes Natrium wurden in einer geschlossenen Ta-Ampulle vorgelegt, 10 Tage bei 80 °C getempert und langsam (1 °C/h) auf Raumtemperatur abgekühlt. Die Pulverbeugungsuntersuchung dieser Probe ergab NaBa neben Natrium. Einkristalle dieser Verbindung wurden auch in einer Probe mit dem quaternären Subnitrid Na₁₅Li₈Ba₁₂N₆ [105] gefunden.

3.1.3.2 Kristallstruktur

Na₂Ba [99] kristallisiert in der Raumgruppe $P6_3/mmc$ mit a = 7.393 und c = 11.999 Å und ist isostrukturell mit der hexagonalen Laves-Phase Zn₂Mg.

Abbildung 3.5 Die Struktur von Na₂Ba.

Die Struktur dieser Verbindung kann am besten auf Basis von trigonalen Na-Bipyramiden (Abbildung 3.5) beschrieben werden. Diese eckenverknüpften Polyeder formen unendliche Reihen, die Ba-Atome nehmen den Platz dazwischen ein und bilden zusammen mit den Na-Atomen Frank-Kasper-Polyeder mit der Koordinationszahl 16. Alle Na-Atome haben wie in NaBa [97] die Koordinationszahl 12 und ikosaedrische Umgebung. Ba-Ba-Abstände betragen 4.51 bis 4.52 Å, Na-Na-Abstände 3.61 bis 3.79 Å und Na-Ba-Abstände 4.28 bis 4.33 entsprechend der Summe der jeweiligen Metallradien. Na₂Ba kann auch gut mit dem Modell der gemeinsam dichten Kugelpackung verschieden großer Atome betrachtet werden. Die metallischen Radien von Ba und Na kommen dem idealen Quotienten 1.24 sehr nahe, so dass sich im Modell starrer Kugeln Na-Atome einerseits und Ba-Atome andererseits berühren [106]. Die genauere Behandlung mit deformierbaren Kugeln zeigt, dass ein Vegard-artiges Gesetz für geordnete Strukturen befolgt wird [99, 107].

3.1.4 BaLi₄

3.1.4.1 Darstellung

Im Handschuhkasten wurden 500 mg Barium und 102.0 mg Lithium in einen verschlossenen Tantaltiegel in einer Ampulle aus Duran eingewogen. Die Ampulle wurde auf 250 °C erhitzt, vierzig Tage bei dieser Temperatur gehalten mit 2 °C/h auf 120 °C abgekühlt und 14 Tage getempert. Die Röntgenphasenanalyse des Reaktionsproduktes zeigte etwa 95 Gew-% BaLi₄ neben Ba. In der Mischung wurden metallisch-gelbe Einkristalle von BaLi₄ gefunden.

3.1.4.2 Kristallstruktur

Die Kristallstruktur von BaLi₄ wurde auf Grund von Einkristalldaten verfeinert und kann mit Reihen flächenverknüpfter Li-zentrierter Li₁₂-Ikosaeder (d(Li-Li): 2,91(1)–3,32(1) Å) und Ba₃-Dreiecken charakterisiert werden (Abbildung 3.6).

Die Reihen werden via Li-Atome verbunden, die von sechs Ba Atomen umgeben sind. Jedes Ba-Atom nimmt eine Position zwischen zwei Reihen ein. Ba-Ba-Kontaktabstände liegen im Bereich von 4.5453(4) bis 4.5966(8) Å, Ba-Li-Abstände von 3.842(6) bis 4.085(8) Å. Diskrete oder kondensierte Li₁₃-Ikosaeder finden sich oft in ternären Li-reichen Phasen (Li₁₃Na₂₉Ba₁₉ [108], Li₈₀Ba₃₉N₉ [109]). Ba-Atome haben die für andere intermetallische Ba-Verbindungen untypische Koordinationszahl 18 (4 Ba- und 14 Li-Atome). Experimentelle Einzelheiten und Daten zu den Einkristalluntersuchungen sind in der Tabelle 7.5, Atomkoordinaten, Auslenkungsparameter und interatomare Abstände in den Tabellen 7.6–7.8 zusammengefasst.

3.1.5 Ba₁₉Li₄₄

3.1.5.1 Darstellung

Im Handschuhkasten wurden 500 mg Barium und 59.0 mg Lithium in einen geschlossenen Tantaltiegel in einer Ampulle aus Duran eingewogen. Die Ampulle wurde auf 250 °C erhitzt, vierzig Tage bei dieser Temperatur gehalten, sehr langsam (0.8 °C/h) auf 120 °C abgekühlt und 30 Tage getempert Die Röntgenphasenanalyse des Reaktionsproduktes zeigte etwa 80 Gew-% Ba₁₉Li₄₄ neben BaLi₄ [100] und Ba. In der Mischung wurden metallisch-dunkle Einkristalle von Ba₁₉Li₄₄ gefunden.

3.1.5.2 Kristallstruktur

Ba₁₉Li₄₄ kristallisiert in einer neuen Struktur mit tetragonaler Symmetrie. Daten zur Strukturverfeinerung und kristallographische Informationen sind in den Tabellen 7.9–7.12 enthalten. Die Kristallstruktur kann als eine fcc-Packung von Ba₆ und (BaBa₃Ba_{1/4})₄-Fragmenten betrachtet werden. Ikosaederbasierte polytetraedrische Li₁₉-Cluster und Li-Dreiecke füllen die tetraedrischen Lücken der Packung. Die Struktur kann als eine Variante des Chalkopyrit-Strukturtyps [110] angesehen werden. Die Packung von verschiedenen Baund Li-Polyedern ist in der Abbildung 3.7 gezeigt.

Abbildung 3.7 Positionen der Ba₆- (A), Ba₁₇- (B), und Li₁₉- (C) Fragmente in der Struktur von Ba₁₉Li₄₄.

Ba₆-Oktaeder (A, Abbildung 3.8 a) und Einheiten von vier zentrierten Ba-Tetraedern, die durch eine gemeinsame Ecke (B, Abbildung 3.8 b) (Positionen von jeweils Cu und Fe in der Struktur von CuFeS₂) verbunden werden, bilden die Basis der Struktur. Eine Hälfte der Tetraederlücken in der AB-Packung ist mit Li₁₉-Clustern (C, Abbildung 3.9) gefüllt

Abbildung 3.8 Strukturfragmente des Ba in Ba₁₉Li₄₄: Ba₆-Oktaeder und Ba₁₇-Polyeder.

Diese Cluster zusammen mit den Li-Dreiecken (D), die die übrigen Tetraederlücken füllen, stellen das Li-Netz dieser Struktur dar. Die Packung (AB)(CD)₂ entspricht auch der Packung der Atome in CaF₂. [111]. Im Prinzip ist die Struktur als $A_4B_4C_8D_8 \cong (Ba_6)_4^A(Ba_9Ba_{8/2})_4^B(Li_{19})_8^C(Li_3)_8^D \cong Ba_{19}Li_{44}$ beschreibbar.

Abbildung 3.9 Polytetraedrische Li₁₉-Cluster.

Die Struktur von Ba₁₉Li₄₄ hat viele Ähnlichkeiten mit dem bekannten Ba-Li-Subnitrid Li₈₀Ba₃₉N₉. Ihre Elementarzellenparameter sind ähnlich, allerdings im Gegensatz zum Subnitrid mit einer Volumenzunahme +1.9% im Vergleich zu den Elementen (Tabelle 5.2). Diese Volumenänderung ist viel näher bei der anderen binären Ba-Li-Verbindung BaLi₄ [112]. Ba-Atome in beiden Phasen bilden ähnliche Polyeder: leere (Ba₁₉Li₄₄, d_{Ba-Ba} = 4.3968(1)– 4.4428(1) Å) und N-zentrierte (Li₈₀Ba₃₉N₉, d_{Ba-Ba} = 3.9321(1)–3.9353(1) Å) Ba₆-Oktaeder sowie Komplexe von 4 zentrierten Ba Tetraedern Li₁₂Ba₁₇ (Ba₁₉Li₄₄, d_{Ba-Ba} = 4.2096(1)– 4.2730(1) Å) und Li₁₂Ba₁₇N₆ (Li₈₀Ba₃₉N₉, 4.1156(1)–4.1315(1) Å), die über gemeinsame Ecken verbunden sind. Ba-Atome dieses Clusters, die über gemeinsame Kanten verbunden sind, bilden ein unendliches 3D-Netz (Abbildung 3.10). Eine weitere Ähnlichkeit von Ba₁₉Li₄₄ und anderen Li-Ba-Phasen stellen die polytetraedrischen Li_n-Cluster dar. Diese sind Li₁₇ in Li₈₀Ba₃₉N₉, Li₂₆ in Li₁₃Na₂₉Ba₁₉ und unendliche Reihen von kantenverknüpften zentrierten Li₁₃-Ikosaedern in BaLi₄.

Jeder von den Li-Clustern in Ba₁₉Li₄₄ wird von zwei zentrierten, sich durchdringenden Ikosaedern gebildet und enthält 35 dichtgepackte Tetraeder. Der Li₁₉-Cluster wurde als stabil in der Gasphase [113] vorausgesagt und ist einer der sechs stabilsten Li-Anti-Mackay-Typ-Cluster [114, 115]. Ba₁₉ [116] und Ar₁₉ [117] sind für die gasförmigen Elemente gefunden
worden. Im Festkörper ist das 19-Atom-Doppelikosaeder [118, 119] auch bekannt, dort allerdings aus verschiedenen Atomtypen gebildet.

Abbildung 3.10 Unendliches 3D-Netz der Ba₁₇-Cluster in Ba₁₉Li₄₄.

Dieser Cluster ist auch oft ein Baufragment in vielen dekagonalen Phasen [120, 121]. Alle Li-Atome in der Struktur haben die Koordinationszahl 12. Innere Li-Li-Kontaktabstände für die Li₁₉-Cluster liegen im Bereich von 2.87(3)–3.44(2) Å. Die Abstände zwischen Li-Atomen in den Dreiecken betragen 3.25(3)–3.71(3) Å. Die Ba-Atome bilden Frank-Kasper-Polyeder mit Koordinationszahlen von 14, 15, und 16. Die Ba-Li-Kontaktabstände (3.78(2)– 4.30(2) Å) sind in dem Rahmen für andere bekannte Ba-Li intermetallische Verbindungen (siehe Tabelle 7.12).

3.1.5.3 Thermisches Verhalten

Als Ergebnis der thermischen und Röntgenbeugungsuntersuchungen im Ba-Li-System wurden einige Details zum bekannten Phasengleichgewichtssystem (Abbildung 3.11) hinzugefügt. In der vorliegenden Arbeit wurden Proben zuerst auf 250 °C erhitzt und dann sehr langsam (<1 °Ch⁻¹) auf 120 °C abgekühlt. Dank dieser Methode wurde die Identifikation der zweiten Verbindung Ba₁₉Li₄₄ im Ba-Li-System möglich. Aufgrund der peritektoiden Bildung von Ba₁₉Li₄₄ enthalten Proben dieser Zusammensetzung stets wechselnde Menge an

BaLi₄ und Ba. Durch Erhitzen der Probe mit der Komposition BaLi₂ wurden zwei Spitzen in der DTA-Kurve beobachtet. Um 126(2) °C zerfällt Ba₁₉Li₄₄ peritektoid in Ba und BaLi₄ (gemäß temperaturabhängiger Guinier-Aufnahme [90]) und um 156(2) °C schmilzt BaLi₄ inkongruent (in Übereinstimmung mit dem vorher beschriebenen Phasendiagramm [55])

Abbildung 3.11 Phasendiagramm des Ba-Li-Systems,

ergänzt durch die neue Verbindung Ba₁₉Li₄₄.

3.2 Ternäre Verbindungen

3.2.1 Li₁₃Na₂₉Ba₁₉

3.2.1.1 Entdeckung

Eine neue intermetallische Phase $Li_{13}Na_{29}Ba_{19}$ wurde während der Untersuchung der metallreichen Nitride entdeckt: 476 mg metallisches Ba, 12 mg metallisches Ca, 129 mg Ba $(N_3)_2$, 28 mg metallisches Li und 1200 mg Na-K-Legierung (69 At.-% Na), wurden in einer

Tantal-Ampulle im Handschuhkasten unter Ar eingewogen. Die Ampulle wurde unter Schutzgas mit einem elektrischen Lichtbogen zugeschweißt und in eine Duran-Glasampulle eingeschmolzen. Um das Azid zu zersetzen, wurde das Reaktionsgemenge mit 10 °C/h auf 400 °C erhitzt und fünf Tage bei dieser Temperatur gehalten. Dann wurde es mit 1 °C/h auf 120 °C abgekühlt und einen Monat lang bei dieser Temperatur aufbewahrt. Das spröde metallische Produkt bestand nach Röntgenaufnahmen aus ungefähr gleichen Mengen Li₁₃Na₂₉Ba₁₉ und Na₁₄Ba₁₄CaN₆ [30].

3.2.1.2 Darstellung

Um die neue Verbindung rein herzustellen wurden metallisches Barium, Natrium und Lithium im Verhältnis 19:29:13 gemischt, in Tantal- und Duran-Ampullen unter Ar wie oben beschrieben eingeschmolzen, zehn Tage bei 400 °C gehalten, mit 1 °C/h auf 130 °C abgekühlt und zwei Monate lang bei dieser Temperatur aufbewahrt. Nach röntgenografischer Untersuchung enthielt das Produkt ca. 95 Gew-% Li₁₃Na₂₉Ba₁₉, verunreinigt durch NaBa [97]. Die Handhabung der Ausgangsmaterialien und Produkte erfolgte stets unter gereinigtem Argon in einem Handschuhkasten.

3.2.1.3 Kristallstruktur

Li₁₃Na₂₉Ba₁₉ kristallisiert in einem neuen Strukturtyp von kubischer Symmetrie (Daten zu Strukturverfeinerung und kristallographische Information siehe in Tabellen 7.13–7.16). Auffälliger Bestandteil der Struktur ist ein aus vier einander durchdringenden Ikosaedern gebildeter Li₂₆-Cluster (siehe Abbildung 3.12). Darin ist ein zentrales Li₄-Tetraeder von weiteren 4, 6 und 4×3 Li-Atomen über den Flächen, Kanten und Ecken umgeben. Für die Gasphase wurde die Existenz derartiger Li₂₆-Cluster im Anti-Mackay-Typ [114, 115] vorausgesagt, [113] und isostrukturelle Ar₂₆- [117] und Ba₂₆-Cluster [116] wurden anhand der Clusterverteilung in Massenspektren postuliert. Im Festkörper ist der M₂₆-Cluster mit gleicher Topologie von γ -Messing (Cu₅Zn₈ [122]) bekannt, wird darin jedoch von verschiedenen Atomen gebildet; dies gilt auch für Li_{26-x}Ag_x-Cluster in Ag₄Li₉ [123]. Nach unserem Kenntnisstand ist Li₁₃Na₂₉Ba₁₉ das erste Beispiel mit homoatomaren M₂₆-Clustern im Festkörper.

Abbildung 3.12 Tetraederstern- (a) und Ikosaeder- (b) Fragmente des Li₂₆-Clusters (c).

Das aus 4+4 Metallatomen gebildete Zentrum des Li₂₆-Clusters wird als Tetraederstern (TS) [104] bezeichnet. Dessen Überdachung durch sechs einzelne Li-Atome und vier Dreiecke aus Li-Atomen ergibt die oben erwähnte Anordnung aus vier einander durchdringenden zentrierten Li₁₃-Ikosaedern (I). Die Strukturen einer Vielzahl kristalliner und quasikristalliner intermetallischer Phasen lassen sich sowohl auf der Basis von TS [124] als auch auf der von I [125] systematisieren. Ikosaedrische Li₁₃-Fragmente finden sich gleichfalls im binären BaLi₄; über Flächenverknüpfung bilden sie hier unendliche Ketten. In den Strukturen von Na₂Ba [99] und NaBa [97] sind die Na-Atome (verzerrt) ikosaedrisch umgeben. Die Struktur von NaBa lässt sich auch elegant mit einem TS-Gerüst [124] beschreiben.

Das TS-Polyeder besteht aus 5 und das I-Polyeder aus 20 flächenverknüpften nicht regulären Tetraedern; im Li₂₆-Cluster sind es 57. Derartige dichte Tetraederpackungen in intermetallischen Strukturen wurden von Frank und Kasper früh erkannt, deren Systematisierung sich auch für eine Beschreibung der Umgebungen der Natrium- und

Bariumatome in Li₁₃Na₂₉Ba₁₉ gut verwenden lässt. Während die Na-Atome ikosaedrisch koordiniert sind, bilden größere Frank-Kasper-Polyeder [126] aus 15–17 Atomen die Umgebungen der Ba-Atome. Die Li₂₆-Cluster nehmen die Lagen der kubisch dichtesten Kugelpackung ein (Lage A), und die Ba- und Na-Atome füllen die Zwischenräume (siehe Abbildung 3.13).

Abbildung 3.13 Fcc-Anordnung der Li₂₆-Cluster (hellgrau) in Li₁₃Na₂₉Ba₁₉.
 Oktaedrische und die Hälfte der tetraedrischen Lücken sind durch BaBa₄Na₁₂-Polyeder (dunkelgrau) besetzt. Die übrigen Na und Ba Atome wurden zur Übersichtlichkeit weggelassen.

Alle Oktaederlücken in der Kugelpackung (Lage O) und die Hälfte der Tetraederlücken (Lage T) sind mit BaBa₄Na₁₂-Polyedern wie im LiAlSi-Typ [127, 128] besetzt, entsprechend einer aufgefüllten Zinkblende- oder Kochsalzstruktur. Die Formulierung als $(Li_{26})^{A}_{4}(BaBa_{4}Na_{12})^{O}_{4}(BaBa_{4}Na_{12})^{T}_{4} \cong Li_{13}Na_{12}Ba_{5}$ erfasst nur 5 von 19 Ba-Atomen und 12 von 29 Na-Atomen. Die übrigen Atome füllen den verbleibenden Raum so, dass eine dichte Tetraederpackung resultiert.

Die Li₂₆-Cluster sind jeweils von einem Käfig aus 28 Ba-Atomen umgeben, der aus 16 Drei- und 12 Fünfecken gebildet wird. Die Fünfecke sind nach innen von Li-Atomen aus der Peripherie des Li₂₆-Clusters und nach außen von Na-Atomen überdacht. Diese Atome haben die einzigen Li-Na-Kontakte in der Kristallstruktur, in der alle übrigen Li- und Na-Atome, ganz im Einklang mit der eingangs erwähnten Unmischbarkeit dieser Elemente, streng voneinander getrennt sind.

Die Abstände Li-Li (2.94(7)–3.34(2) Å) und Na-Na (3.54(1)–3.78(1) Å) sind etwas kleiner als die Summen der jeweiligen Metallradien, sie liegen jedoch noch im Bereich der Werte für BaLi₄ und Na₂Ba [99]. Im einzig vorhandenen Li-Na-Kontakt unterschreitet der Abstand (3.19(3) Å) die Summe der Metallradien (3.37 Å). Alle übrigen Kontaktabstände, Li-Ba (3.84(3)–4.07(3) Å), Na-Ba (3.98(1)–4.48(1) Å) und Ba-Ba (4.405(1)–4.461(1) Å) entsprechen weitgehend den Summen der jeweiligen Metallradien. Das Volumen von Li₁₃Na₂₉Ba₁₉ ist geringfügig (–3%) kleiner als die Summe der entsprechenden Elementvolumina, wie dies für Legierungen dieser elektropositiven Elemente untereinander typisch ist (Tabelle 3.1).

Material	$V = V_{\text{Zelle}}/Z, \text{ Å}^3$	Volumenänderung, ^{a)} %	Quelle
Li	21.61	_	[129]
Na	39.50	_	[129]
Ba	63.44	_	[129]
NaBa	102.84	-0.1	[97]
NaBa	101.04	-0.2	[diese Arbeit]
Na ₂ Ba	142.00	-0.3	[99]
BaLi ₄	156.02	+4.1	[100]
BaLi ₄	154.36	+3.0	[112]
$Li_{13}Na_{29}Ba_{19}$	2553.1	-3.0	[diese Arbeit]

 Tabelle 3.1
 Kristallvolumen pro Formeleinheit f
 ür Li, Na, Ba und ihre Verbindungen

a) Die prozentuale Volumenänderung ΔV für Li_xNa_yBa_z wird definiert als

 $100[V(Li_xNa_yBa_z)-xV(Li)-yV(Na)-zV(Ba)]/[xV(Li)+yV(Na)+zV(Ba)].$

Es bleibt die Frage, ob es Verbindungen des Lithiums mit aus Ikosaedern gebildeten Clustern gibt, die noch größer als jene in Li₁₃Na₂₉Ba₁₉ sind. Im Prinzip lässt sich die dichte Tetraederpackung unter Bildung größerer Anti-Mackay-Typ-Cluster fortsetzen, beispielsweise mit 13 einander durchdringenden Li₁₃-Ikosaedern in einem Li₄₅-Cluster [114, 115], analog zu M₄₅-Clustern in Mg₂Al₅Cu₆ und Mg₂Zn₁₁ [130-132]. Nach Berechnungen für die Gasphase steigt bei Vergrößerung der Li-Cluster jedoch die Spannung, sodass eher Cluster vom Mackay-Typ gebildet werden, gefolgt von der fcc-Struktur [113] und schließlich der bcc-Struktur des elementaren Lithiums.

3.2.2 Li_{33.3}Ba_{13.1}Ca₃

3.2.2.1 Entdeckung und Darstellung

Li_{33.3}Ba_{13.1}Ca₃ wurde beim Versuch, ein quaternäres Li/Ba/Ca Subnitrid zu erhalten, identifiziert. Diese Verbindung bildet sich unter ganz ähnlichen Bedingungen wie Ba₁₉Li₄₄ [133]. Am besten reagieren aber Gemenge mit kleinem Li-Überschuss. Ein solches Gemenge aus 500.0 mg destilliertem Ba, 33.6 mg destilliertem Ca and 98.0 mg Li wurde in einem Tantaltiegel auf 250 °C erhitzt, mit 0.8 °C/h auf 100 °C abgekühlt und zwei Monate getempert. Die Röntgenbeugungsanalyse des Reaktionsproduktes ergab etwa 60 Gew-% Li_{33.3}Ba_{13.1}Ca₃ neben metallischem Ba und BaLi₄.

3.2.2.2 Kristallstruktur

Li_{33,3}Ba_{13,1}Ca₃ kristallisiert in einem neuen Strukturtyp mit trigonaler Symmetrie. Seine Kristallstruktur könnte als eine komplizierte hierarchische Variante vom As-Strukturtyp [134] beschrieben werden. Ca/Li-Positionen in einer ikosaedrischen Koordination repräsentieren die Basis der Struktur (Abbildung 3.14). Der Platz zwischen diesen Polyedern wird von zentrierten Li₁₂- (A) und Li₉Ba₃- (B) Ikosaedern besetzt. Experimentelle Einzelheiten und Daten zu den Einkristalluntersuchungen sind in der Tabelle 7.17, Atomkoordinaten, Auslenkungsparameter und interatomare Abstände in den Tabellen 7.18–7.20 zusammengefasst.

Die Ba-Atome der Ikosaeder bilden Zwischenschichtbrücken aus zwei kantenverknüpften Oktaedern. Die polytetraedrischen Li-Cluster (Abbildung 3.15), typisch für Li-reiche Phasen, füllen den Platz zwischen verschiedenen Schichten. Jeder von diesen Clustern wird von einem Käfig mit fünfzähliger Symmetrie umgeben, jeweils Li₁₃ von einem (BaCa)₂₀ Pentagondodekaeder und Li₁₉ von einem (BaCa)₂₅ Polyeder (Abbildung 3.16). Calciumatome in dieser Struktur haben keine eigenen Positionen; sie besetzen teilweise Ba-oder Li-Positionen.

Typisch für andere intermetallische Verbindungen [112, 133] haben alle Li-Atome in der Struktur die Koordinationszahl 12 und ikosaedrische Koordination. Der Li₁₉-Cluster in Li_{33,3}Ba_{13,1}Ca₃ (Abbildung 3.9) wird von zwei zentrierten, sich durchdringenden Ikosaedern gebildet und enthält 35 dichtgepackte Tetraeder. Innere Li-Li-Kontaktabstände in diesem Cluster sind im Bereich 2.89(4)–3.03(4) Å. Dieser Cluster ist einer der sechs stabilsten Li-Anty-Mackay-Typ Cluster [114, 115]. Im Festkörper wurden die gleichen Cluster in Ba₁₉Li₄₄

gefunden. Solche Doppelikosaeder sind auch in den Strukturen von Al₅Co₂ [118] und Al₁₀Mn₃ [119] festgestellt worden, wo diese von verschiedenen Atomtypen gebildet werden.

Abbildung 3.14 Das Basisnetz der Struktur von Li_{33,3}Ba_{13,1}Ca₃.
 Ikosaedrisch koordinierte Ca/Li-Positionen mit den Li₁₂ (A) and Li₉Ba₃ (B) zentrierten Ikosaedern zwischen ihnen.

Die Bariumatome zusammen mit den Calciumatomen bilden Frank-Kasper-Polyeder, die vorwiegend 15 und einige von ihnen 16 und 17 Atome enthalten. Die interatomaren Abstände in dieser Verbindung sind jeweils in den Bereichen 3.89(3)–4.11(4) Å für Ba-Ba/Ca und Ba/Ca-Ba/Ca, 3.89(3)–4.11(4) Å für Ba-Li, 4.14(2) Å für Ba-Ca/Li, 3.934(9)–4.12(3)Å für Ba/Ca-Ca/Li, 3.65(4)–4.09(4) Å für Ba/Ca-Ca/Li, 3.33(2)–3.42(2)Å für Ca/Li-Li, und 2.88(3)–3.27(3) Å für Li-Li.

Abbildung 3.15Polytetraedrische Li-Cluster in der Struktur von Li33,3Ba13,1Ca3.Blickrichtung [001].

Es soll herausgestellt werden, dass Verbindungen mit gemischtbesetzten (Ba/Ca und Ca/Li) Positionen bekannt sind [135-138], aber $Li_{33.3}Ba_{13.1}Ca_3$ ist das erste Beispiel, wo beide Fälle zusammen auftreten. Die Zugabe eines dritten Elements stabilisiert entweder die Struktur (Ca_{8-x}Li_xAl₃ [135]) oder wandelt sie um (Ca_{1.65}Li_{1.85}Si₄ [137]).

Abbildung 3.16 Ba₂₅- und Ba₂₀-Käfige aus Li₁₉- und Li₁₃-Clustern in der Struktur von Li_{33,3}Ba_{13,1}Ca₃.

Kleine Mengen des Calciums in unserem Fall erschweren die Ausbildung der Struktur von Ba₁₉Li₄₄ mit einer bedeutsamen Zunahme der Zellparameter. Trotzdem bleiben die Li₁₉-Cluster und ein ähnliches MI/MII-Verhältnis (2.1 in Li_{33.3}Ba_{13.1}Ca₃ und 2.3 in Ba₁₉Li₄₄) bestehen.

3.2.3 Li_{18.9}Na_{8.3}Ba_{15.3}

3.2.3.1 Darstellung

In einer Tantalampulle wurden 307.2 mg fein pulverisiertes NaBa und 266.8 mg fein pulverisiertes BaLi₄ eingewogen und unter Argon eingeschlossen. Die Probe wurde auf 200 °C erhitzt, zwei Tage bei dieser Temperatur belassen, mit 1 °C/h auf 120 °C abgekühlt und zwei Wochen getempert. Nach Pulverbeugungsuntersuchungen war die Probe einphasig (Abbildung 3.17), und metallisch-gelbe Einkristalle verschiedener Größe wurden beobachtet.

Li_{18.9}Na_{8.3}Ba_{15.3} kann auch aus einer stöchiometrischen Mischung der Elemente synthetisiert werden.

Abbildung 3.17 Beobachtete und berechnete Pulverbeugungsbilder von Li_{18.9}Na_{8.3}Ba_{15.3}.

3.2.3.2 Kristallstruktur

Li_{18.9}Na_{8.3}Ba_{15.3} kristallisiert mit trigonaler Symmetrie in einem eigenen Strukturtyp (Daten zu Strukturverfeinerung und kristallographische Information siehe in Tabellen 7.21–7.24). Seine Kristallstruktur hat viele Ähnlichkeiten mit der von Li_{33.3}Ba_{13.1}Ca₃. Die Verbindung hat praktisch die gleiche Packung der Ba-Atome, jedoch mit defekten Ba-Positionen anstatt der gemischten Ba/Ca-Positionen und sie enthält ikosaederbasierte polytetraedrische Cluster (Li₁₅)₆Li₁₃ statt (Li₁₉)₆Li₁₃. Die Kristallstruktur dieser Verbindung kann auch analog als komplizierte Variante des As-Strukturtyps, aber mit etwas verschiedenen Strukturelementen beschrieben werden. Schichten werden entweder von zentrierten oder von leeren Li/Na-Sechsecken (Abbildung 3.18) gebildet. Die ersten haben Sesselkonformation (M1–M1–M1- und M1–M2–M1-Winkel liegen jeweils in den Bereichen 106.74(5)–109.92(4)° und 61.25(5) – 61.48°, wobei M1 und M2 periphere und zentrale Positionen von Na, Li und Li/Na sind) und die zweiten sind fast planar (\angle M1–M1–M1 = 117.55(5) – 122.61(6)°).

Praktisch gleiche Schichten wurden auch in der Struktur von Na₁₅Li₈Ba₁₂N₆ festgestellt, diese werden aber nur aus Na-Atomen gebildet.

Ähnlich wie in der Struktur von $Li_{33,3}Ba_{13,1}Ca_3$ wird der Platz zwischen diesen Schichten mit polytetraedrischen (Li_{15})₃- und (Li_{15})₆ Li_{13} -Einheiten gefüllt. Teilweise (um z = 0 und 0.5) werden die Sechseckschichten mit Li_{13} -Ikosaedern (Abbildung 3.19) gebildet.

Abbildung 3.18 Na/Li Schichten in der Kristallstruktur von Li_{18.9}Na_{8.3}Ba_{15.3}.

Die Ba-Atome bilden überwiegend Frank-Kasper-Polyeder mit Koordinationszahlen von 12 bis 16. Alle defekten Positionen von Ba-Atomen in der Struktur von Li_{18.9}Na_{8.3}Ba_{15.3} bilden Polyeder mit sehr viel kürzeren Kontaktabständen (2.97(1)–3.31(1) Å). Diese Polyeder können als zwei superponierte flächenverknüpfte Ba₆-Oktaeder (Ba₉) und zwei einander durchdringende Ba₄-Tetraeder (Ba₈) beschrieben werden (Abbildung 3.20). Alle Ba-Atome in den Ba₉-Bioktaedern als auch in den Ba₈-Bitetraedern haben praktisch die gleichen Besetzungsfaktoren, die beide zusammen 100% betragen. Dies bedeutet eine sich gegenseitig ausschließende Füllung durch beide Polyedertypen. Aufgrund so kurzer Abstände können nicht die restlichen Teile dieser Positionen von Li-Atomen besetzt werden.

Abbildung 3.19 (Li₁₅)₆Li₁₃-Cluster in der Struktur von Li_{18.9}Na_{8.3}Ba_{15.3}.

Die Ba-Ba-Kontaktabstände innerhalb beider Polyeder liegen im Bereich 4.20(5)– 4.49(2) Å. Wie in der Struktur von Li_{33.3}Ba_{13.1}Ca₃ bilden hier Ba-Atome um die Li-Cluster Ba₂₀-Pentagondodekaeder und eine verzerrte Variante des Ba₂₅-Polyeders. Alle Kontaktabstände zwischen vollbesetzten Natrium- und Bariumpositionen liegen auch in den Bereichen für bekannte intermetallische Verbindungen.

Keine Verbindungen im System Li-Na und nur eine ternäre intermetallische Verbindung [108] mit Li-Na-Kontakten sind bekannt. Li_{18.9}Na_{8.3}Ba_{15.3} ist das erste Beispiel mit sowohl zahlreichen Li-Na-Kontakten als auch gemischten Na/Li-Positionen. Diese Kontakte werden immer von Ba-Fünfecken wie in Li₁₃Na₂₉Ba₁₉ umgeben. Jede von den gemischten Na/Li-Positionen kann als defekte Na-Position verfeinert werden, aber das Ba/Na-Verhältnis, das mittels EDX und chemischer Analyse festgestellt wurde, entspricht der gemischten Füllung. Alle Li- und Na-Atome in der Struktur haben ikosaedrische Koordination, die ähnlich wie in Li_{33.3}Ba_{13.1}Ca₃ und auch in anderen binären und ternären Li/Ba- und Na/Ba-Verbindungen [97, 99, 108] ist. Polytetraedrische Li_n-Cluster, die sich in dieser Verbindung finden, wurden ebenso in anderen Li-reichen intermetallischen Phase oder Subnitridphasen gefunden: unendliche Reihen von flächenverknüpften Li₁₃-Ikosaedern in BaLi₄, Li₁₇-Einheiten in dem Li/Ba-Subnitrid Li₈₀Ba₃₉N₉, Li₁₉-Cluster in Ba₁₉Li₄₄ und Li₂₆ in Li₁₃Na₂₉Ba₁₉[108].

Abbildung 3.20 Polyeder der Ba-Atome in Li_{18.9}Na_{8.3}Ba_{15.3}.
 Ba₆-flächenverknüpfte Bioktaeder (a) und einander durchdringende
 Ba₄-Tetraeder (b) ergeben einen polytetraedrischen Ba-Cluster (c).

3.2.4 Elektronenmikroskopie an ternären Intermetallphasen des Systems Li-Ba-Ca

3.2.4.1 Übersicht

Intermetallphasen des ternären Systems Li-Ba-Ca wurden mittels TEM untersucht. Durch die PED konnten zwei unterschiedliche Phasen als Hauptkomponenten einer inhomogenen Probe identifiziert werden. Diese kristallisieren im Li_{33.3}Ba_{13.1}Ca₃- bzw. Ba₁₉Li₄₄-Typ. EDX-Analysen und charakteristische Unterschiede in den Gitterkonstanten zeigten, dass beide Phasen einen variablen Ca-Gehalt besitzen können. Hochaufgelöste Abbildungen lassen trotz der experimentellen Herausforderungen eindeutig die erwarteten Motive der Schweratomstruktur erkennen, wie z.B. Cluster. Eine komplexe Alkali-Erdalkali-Intermetallverbindung wurde entdeckt, die mit Domänen des Ba₁₉Li₄₄-Typs kongruent verwächst. Anhaltende Bestrahlung führt in Abhängigkeit vom vorliegenden Strukturtyp zu verschiedenen Produkten. Kristalle des Li_{33.3}Ba_{13.1}Ca₃-Typs zersetzen sich irreversibel zu Domänen mit bcc-Struktur. Für den Ba₁₉Li₄₄-Typ bildet sich eine fehlgeordnete Strukturvariante, die in Beugungsdiagrammen neben den Hauptstrukturintensitäten strukturierte diffuse Intensität zeigt.

3.2.4.2 Ergebnisse

3.2.4.2.1 Struktur und Zusammensetzung defektfreier Domänen

Die untersuchte Probe war, wie nach den Röntgenuntersuchungen zu erwarten, heterogen mit drei Hauptkomponenten, welche dem Li_{33.3}Ba_{13.1}Ca₃-, dem Ba₁₉Li₄₄-Typ und einer einfachen kubisch innenzentrierten Basisstruktur zugeordnet werden konnten. Außerdem wurde ein Kristallit durch Elektronenbeugung und Hochauflösung dem BaLi₄-Typ zugeordnet, allerdings mit kontrahierter Struktur. Die EDX-Analyse zeigte einen erheblichen Calciumgehalt an (Ba:Ca = 4.56). Dieses Verhalten ist auch für die anderen Komponenten der Probe typisch. Die Mehrzahl der untersuchten Kristallite weist die für Intermetallphasen charakteristische Mikrostruktur aus unterschiedlich orientierten Körnern einer chemischen Komponente auf, so dass Überlagerungen die Interpretation von Abbildungen und Elektronenbeugungsdiagrammen erschwerten. Angesicht der Strahlempfindlichkeit hat sich folgende experimentelle Strategie für die Charakterisierung von separierten Körnern als vorteilhaft herausgestellt, wobei allerdings massive Strahlenschäden unvermeidbar waren:

- a) Suche nach separierten Körnern mittels Hellfeldkontrast
- b) EDX-Analyse in einem benachbarten, aber für HRTEM ungünstigen dicken
- Bereich des Korns
- c) Einstellung der Zonenachsenorientierung durch SAED
- d) Aufnahme eines PED-Diagramms
- e) Aufnahme von hochaufgelösten Abbildungen
- f) Erneute EDX-Analyse

Ein Beispiel für SAED- und PED-Diagramme aus den Schritten c) und d) sind in Abbildung 3.21 gezeigt. Die SAED-Technik erfordert eine zeitaufwendige Zonenachsenjustage, die zudem durch Probenvibrationen infolge beginnender Zersetzung erschwert wurde. Somit konnten keine qualitativ hochwertigen SAED-Diagramme erhalten werden, die zweifelsfrei die Bestimmung der Lauesymmetrie erlaubten, vgl. Abbildung 3.21 (links). Die Reflexintensitäten sind infolge dynamischer Anregung wenig differenziert, da die Kristallite offensichtlich beim Mörsern nicht in ausreichend dünne Fragmente zersplitterten. Reflexe aus höheren Lauezonen (HOLZ) wurden nicht in SAED-Diagrammen beobachtet. Im PED-Diagramm (Abbildung 3.21, rechts) ist die dynamische Anregung der gebeugten Reflexe minimiert. Somit ist die Identifizierung der unterschiedlichen Komponenten von inhomogenen Proben erleichtert, da neben den Gitterparametern auch die charakteristischen Intensitäten gefunden werden. Dies ist insbesondere bei Anwesenheit komplexer Phasen wertvoll. Außerdem ist die Messung der Reflexintensitäten bei großen Winkeln möglich und damit die Auflösung erheblich größer als bei den konventionellen Techniken der Elektronenbeugung.

Abbildung 3.21 SAED-(links) und PED-Diagramm (rechts) eines Korns, welches dem Li_{33,3}Ba_{13,1}Ca₃-Strukturtyp zugeordnet werden kann, Zonenachse [-25-1].

Das PED- in Abbildung 3.21 (rechts) im Gegensatz zum SAED-Diagramm zeigt eine deutliche Differenzierung der Reflexintensitäten. Die dichte Abfolge der Reflexe bei hoher Auflösung beruht auf einer Überlagerung mit höheren Schichten, zeigt aber eindeutig die relativ großen Gitterparameter an, die für den Li_{33.3}Ba_{13.1}Ca₃-Strukturtyp erwartet werden. Dies bestätigt sich durch eine Simulation des PED-Diagramms, vgl. Abbildung 3.22b.

An allen Kristalliten dieses Typs wurden nach kurzer Bestrahlung unerwartet hohe Ba:Ca-Verhältnisse gefunden. Die EDX-Analyse des Kristalls aus Abbildung 3.22b (unten) ergibt ein Verhältnis von ca. 7.8 und damit signifikante Abweichungen vom Verhältnis der Röntgenanalyse von ca. 4.4. Es ist allerdings zu bedenken, dass die Elektronenstrahleinwirkung, insbesondere im energiereichen Nanoprobe-Mode, der für EDX-Analysen verwendet wird, die analytischen Ergebnisse verfälschen kann. Tatsächlich ergibt jedoch ein Vergleich von EDX-Analysen vor und nach längerer Bestrahlung nur eine geringe Erhöhung des Ba:Ca-Verhältnisses. Die d-Werte aus Abbildung 3.22b (unten) sprechen für das Vorliegen einer kontrahierten Struktur bei hohem Ba:Ca-Verhältnis, vgl. d(015) = 12.31 Å und d(10-2) = 15.92 Å, gegenüber 12.47 Å bzw. 16.11 Å für den Kristall mit kleinem Ba:Ca-Verhältnis der Röntgenanalyse. An anderen Körnern wurden Variationen des Ba:Ca-Verhältnisses beobachtet, welches allerdings immer kleiner ist als nach den Röntgenanalysen zu erwarten. Die Kontraktion der Elementarzelle war mit abnehmendem Ba:Ca-Verhältnis geringer ausgeprägt.

Abbildung 3.22Experimentelle (jeweils links) und simulierte PED-Diagramme für den
Ba₁₉Li₄₄-Typ (jeweils rechts); a) Zonenachse [100], b) Zonenachse [110].
Fremdreflexe zeigen die beginnende Zersetzung des durchstrahlten
Bereichs an, vgl. 3.3.

Da der Lithiumanteil der Probe nicht durch EDX-Analysen bestimmt werden kann, ist die Interpretation dieses Befundes offen. Man könnte vermuten, dass durch verstärkte Besetzung der gemischten Li/Ca-Lagen durch Lithium Kristallite mit einem relativ hohen Lithiumgehalt vorliegen und sich so die reduzierten Gitterparameter erklären lassen. Synthetische Arbeiten müssen klären, ob derartige Phasenbreiten in thermodynamisch stabilen Produkten realisiert werden können, und die Details der Atomverteilung müssen durch Röntgen-Einkristallstruktruanalysen bestimmt werden.

Die PED-Diagramme einiger Körner konnten eindeutig dem Ba₁₉Li₄₄-Typ zugeordnet werden, vgl. Abbildung 3.23. Die EDX-Analysen beweisen allerdings die Anwesenheit von Calcium. Im Regelfall liegt ein größeres Ba:Ca-Atomverhältnis als bei den Kristalliten mit Li_{33.3}Ba_{13.3}Ca₃-Struktur vor. Auch hier variiert die Zusammensetzung in unterschiedlichen Körnern, und auch für den Ba₁₉Li₄₄-Typ führt die Anwesenheit von Calcium stets zur Kontraktion der Struktur.

Abbildung 3.23Experimentelle (jeweils links) und simulierte PED-Diagramme für
den Ba19Li44-Typ (jeweils rechts); a) Zonenachse [100], b) Zonenachse
[110]. Fremdreflexe zeigen die beginnende Zersetzung des
durchstrahlten Bereichs an, vgl. 3.3.

Das PED-Diagramm mit der Richtung [110] als Präzessionsachse (Abbildung 3.23b, Ba:Ca \sim 6) ergibt d(001) = 16.04 Å und d(-110) = 11.38 Å und damit deutlich kleinere Beträge als für

reines Ba₁₉Li₄₄ (16.36 Å bzw. 11.59 Å). Im PED-Diagramm tritt bei höherer Auflösung das für die innenzentrierte Struktur zu erwartende dichte Überlagerungsmuster mehrerer Lauezonen auf.

Wider alle Erwartungen konnten für sämtliche Komponenten hochaufgelöster Abbildungen aufgenommen werden, welche die für den jeweils vorliegenden Strukturtyp charakteristischen Strukturmotive zeigen. Zeitaufwendige Verkippungen und vollständige Defokussierungen waren allerdings infolge der raschen Strahlenschädigung nicht möglich.

Die Abbildungen 3.24 und 3.25 zeigen Beispiele für den Li_{33,3}Ba_{13,1}Ca₃-Typ. In Abbildung 3.24a ist die Projektion des Kristallpotentials längs der Zonenachse [100] dargestellt. Hohe Beträge sind als helle Punkte wiedergegeben und koinzidieren exakt mit den überlagerten grünen und roten Kreisen, welche die Positionen von Bariumatomen, bzw. Positionen mit einer Mischbesetzung durch Calcium- und Bariumatome hervorheben. Die Darstellung lässt erwarten, dass der Phasenkontrast in hochaufgelösten Abbildungen durch diese Schweratome dominiert wird, während die Lithiumatome, ähnlich wie Lücken der Struktur keinen nennenswerten Beitrag zum Potential liefern und somit von diesen ununterscheidbar sind. Längs [100] separieren die Lithium- und Barium-/Calciumatome maximal, außerdem liegen keine Lücken vor, die zu definierten Punktkontrasten führen könnten. Bereiche mit niedrigem projiziertem Potential können somit auf Basis der Lithium-Substruktur interpretiert werden, so dass beispielsweise unterschiedliche Anordnungen von Lithiumclustern anhand experimenteller Abbildungen identifiziert werden können. Die hochaufgelösten Abbildungen 4b (rechts) zeigen gute Übereinstimmung mit den beigefügten Simulationen (Abbildung 3.24b, links) und belegen damit die Zuordnung dieser Domäne zum Li_{33.3}Ba_{13.1}Ca-Typ. Der Vergleich mit Abbildung 4a (beachte die Skalierung des Potentials) zeigt, dass im Überfokus (Abbildung 4b, oben) geringe Beträge des projizierten Potentials, und somit die Lithium-Teilstruktur, als dunkle Punkte wiedergegeben sind, vgl. dazu elliptische Markierungen. Für $\Delta f = +35$ nm ist das periodische Muster mit den breiten dunklen Kontrasten demnach charakteristisch für die Anordnung der ikosaedrischen Li19-Cluster. Die Schweratome korrelieren mit den weißen Punkten. Im schwachen Unterfokus $(\Delta f = -15 \text{ nm})$ sind die Schweratompositionen höher aufgelöst, vgl. Abbildung 3.24b, unten rechts.

Abbildung 3.24 Hochauflösungsmikroskopie an Kristallen des Li_{33,3}Ba_{13,1}Ca₃-Typs, Zonenachsenorientierung [100]. a) Projiziertes Potential (Skalierung gegenüber experimentellen Abbildungen ca. 234 %), siehe Text. b) Simulierte (links, Fokuswerte spezifiziert, t = 10 nm) und experimentelle (rechts) hochaufgelöste Abbildungen.

Die Strahlempfindlichkeit der Kristallite mit Li_{33.3}Ba_{13.1}Ca₃-Typ verhält sich anisotrop und hängt stark von der vorliegenden Zonenachsenorientierung ab. Für [-25-1], vgl. Abbildung 3.25, liegt eine wesentlich geringere Empfindlichkeit vor, so dass Abbildungen bei starker Defokussierung aufgenommen werden konnten. Bereits die Darstellung des projizierten Potentials (Abbildung 3.25a) deutet die zu erwartende hohe Komplexität der hochaufgelösten Abbildungen an. Die Schweratompositionen (vgl. grüne und rote Kreise in Abbildung 5a) sind charakteristisch überlagert. Für $\Delta f = -40$ nm (Abbildung 5b) sind bereits die Kontrast-Transferbedingungen des Scherzerfokus [139] erkennbar: Hohe Beträge des projizierten Potentials werden als schwarze Punkte abgebildet. Die dunklen Punkte bilden u. a. Paare, vgl. Markierungen in Abbildungen 5a und b (oben und mitte, jeweils rechts), die mit Schweratompositionen korrelieren. Für $\Delta f = -70$ nm wird der Kontrast invertiert, so dass diese Schweratome als weiße Punkte wiedergegeben werden. Selbst bei starker Defokussierung ($\Delta f = -90$ nm) werden qualitativ hochwertige Abbildungen erhalten, mit erheblich detaillierterer Strukturinformation. Die hervorragende Übereinstimmung mit der beigefügten Simulation unterstreicht, dass in dieser Zonenachsenorientierung die Zerstörung der Probe durch Bestrahlung relativ gering ist.

a)

Abbildung 3.25 Hochauflösungsmikroskopie an Kristallen des Li_{33,3}Ba_{13,1}Ca₃-Typs, Zonenachsenorientierung [-25-1]. a) Projiziertes Potential (Skalierung gegenüber den experimentellen Abbildungen ca. 264 %), siehe Text. b) Simulierte (links, Fokuswerte spezifiziert, t = 15.4 nm)) und experimentelle (rechts) hochaufgelöste Abbildungen.

Aus diesen Abbildungen ergeben sich keinerlei Hinweise auf eine Separation von Barium- und Calciumatomen auf den im Mittel gemeinsam besetzten Positionen, vgl. rote Kreise in Abbildung 3.25a.

Die Strahlempfindlichkeit des Ba₁₉Li₄₄-Typs scheint noch stärker als beim Li_{33.3}Ba_{13.1}Ca₃-Typ ausgeprägt zu sein. Abbildung 3.26 zeigt die Gegenüberstellung von projiziertem Potential und einer Fokusserie längs [100]. Für $\Delta f = -35$ nm besteht eine starke Korrelation zwischen Potential und hochaufgelöster Abbildung: Die schwarzen Punkte korrelieren mit den Ba-Positionen, vgl. grüne Kreise in Abbildung 3.26a. Besonders deutlich erkennt man die in der gegebenen Projektion als rechtwinklige Kreuze abgebildeten oktaedrischen und tetraedrischen Ba-Cluster, vgl. Markierungen.

Abbildung 3.26 Hochauflösungsmikroskopie an Kristallen des Ba₁₉Li₄₄-Typs, Zonenachsenorientierung [100]. a) Projiziertes Potential (Skalierung gegenüber experimentellen Abbildungen ca. 166 %), siehe Text. b) Simulierte (links, Fokuswerte spezifiziert, t = 9.8 nm)) und experimentelle (rechts) hochaufgelöste Abbildungen.

Simulationen hochaufgelöster Abbildungen zeigen, dass eine von bekannten Strukturmodellen abweichende Verteilung der Barium- und Calciumatome unter idealen experimentellen Bedingungen nachweisbar wäre. Da diese aber bei der gegebenen Strahlempfindlichkeit unerreichbar scheinen, kann dieses Detail nicht aus den vorliegenden Abbildungen entnommen werden, vgl. hierzu auch Diskussion unter 3.2.4.2.3.

3.2.4.2.2 Nanoskopische Defekte

An einem Kristallit konnte erstmals die Verwachsung einer Domäne mit Ba₁₉Li₄₄-Struktur und einer unbekannten und noch komplexeren Struktur beobachtet werden, vgl. Abbildung 3.27. Die Zonenachsenorientierung der Domäne mit Ba₁₉Li₄₄-Struktur ist [110], vgl. Fouriertransformierte in Abbildung 3.27 (oben, rechts). Im linken Bildbereich differenzieren die Kontraste zu einem komplexeren Muster und die Fouriertransformierte (Abbildung 3.27 oben, links) zeigt eine höhere Signaldichte. Beide Phasen verwachsen kongruent, so dass die Basisintensitäten des Ba₁₉Li₄₄-Typs in der Fouriertransformierten der komplexeren Phase erhalten bleiben. Formal wird die Translationsperiode bezüglich des [-110]* vervierfacht. Von einer Überstruktur des Ba₁₉Li₄₄-Typs sollte Ba₁₉Li₄₄-Typs längs aber nicht gesprochen werden, da keine klare Separation in Hauptund Überstrukturintensitäten aus der Fouriertransformierten ersichtlich ist. EDX-Analysen beweisen, dass beide Domänen einen geringen, wenn auch signifikanten Calciumgehalt besitzen. Dementsprechend sind die oben beschriebenen Gitterkontraktionen im Bereich der Nachweisgrenze. Ein Gitterparameter um 23.2 Å kann keiner bekannten Alkali-Erdalkali-Intermetallphase zugeordnet werden. Die neue Phase erweist sich als äußert strahlempfindlich, so dass wohl nur die Kombination von systematischen Synthesen und Röntgenuntersuchungen ihre wahre Natur ans Licht bringen kann.

3.2.4.2.3 Chemisches Verhalten bei Elektronenbestrahlung

Die strukturellen Veränderungen nach Strahlenschädigung unterscheiden sich für die Kristallite der hier beobachteten Phasen. Im Falle des Li_{33,3}Ba_{13,1}Ca₃-Typs zersetzen sich die Partikel unter Deformation. Im Regelfall nimmt das Ba:Ca-Verhältnis während der Bestrahlung zu, und es bilden sich Domänen mit Wolframtyp-Struktur.

— 5 nm

Abbildung 3.27 HRTEM an einer komplexen Strukturvariante des Ba₁₉Li₄₄-Typs. Oben: Fouriertransformierte aus kreisförmigen Ausschnitten mit (links) und ohne (rechts) Überstruktur. Unten: hochaufgelöste Abbildung (Überfokus).

Die Zersetzung der Kristalle mit Ba₁₉Li₄₄-Struktur verläuft unter Erhalt der Partikelform und der wesentlichen Strukturmotive. PED-Diagramme zeigen bei Bestrahlung durch das Verblassen der Intensitäten in den höheren Lauezonen einen Verlust der strukturellen Komplexität, vgl. Abbildung 3.28. Allerdings beobachtet man nach Bestrahlung weiterhin die Intensitäten des Ba₁₉Li₄₄-Typs in der nullten Schicht, wo jetzt zusätzlich strukturierte diffuse Streaks auftreten. Die Streaks verlaufen parallel zu [-110]* bezüglich des Ba₁₉Li₄₄-Typs. Es ist zu klären, ob die bestrahlte Phase eine fehlgeordnete Variante des Ba₁₉Li₄₄-Strukturtyps darstellt.

Abbildung 3.28 Transformation eines Kristalls mit Ba₁₉Li₄₄-Struktur bei anhaltender Bestrahlung. Links: PED-Diagramm vor der Transformation, Zonenachse [110], rechts: dito nach anhaltender Bestrahlung.

3.2.4.2.4 Experimentelle Konsequenzen

Natürlich müssen die Strategien zur Vermeidung der Strahlenschädigung perfektioniert werden. Eine erste Maßnahme könnte das Einbetten der Probe in ein leitfähiges Polymer sein, da während der Untersuchungen beobachtet wurde, dass sich Partikel mit unmittelbarem Kontakt zum Kupfer-Probennetzchen kaum verändern. Außerdem muss geprüft werden, ob die Strahlenschädigung bei Verwendung eines Tieftemperaturhalters vermieden werden kann. In diesem Falle ist zwar wegen der geringeren Auflösung aufgrund mechanischer Instabilität des Tieftemperaturhalters Hochauflösung erschwert, aber die Quantifizierung von PED-Diagrammen könnte quantitative Strukturinformationen liefern.

3.3 Phasenzusammenhänge im System Li-Na-Ba

Im System Li-Na-Ba wurden zwei neue ternäre Verbindungen, Li₁₃Na₂₉Ba₁₉ und Li_{18.9}Na_{8.3}Ba_{15.3}, gefunden und strukturell charakterisiert. Im binären System Na-Ba wurden die Existenz und die Struktur der bekannten Phasen NaBa [97] und Na₂Ba [99] bestätigt, jedoch konnte NaBa in Anwesenheit des Lithiums mit ein wenig kleineren Gitterparametern entsprechend dem Unterschied in den Atomradien der Alkalimetalle beobachtet werden. Dies deutet auf eine feste Lösung hin. Das System Ba-Li wurde erneut untersucht. Die bekannte Verbindung BaLi₄ wurde aus Einkristalldaten verfeinert, und im Gebiet mit einem größeren Ba-Gehalt konnte noch eine Phase, **Ba₁₉Li₄₄**, synthetisiert werden. Beide ternäre Verbindungen konnten phasenrein synthetisiert werden. Li₁₃Na₂₉Ba₁₉ wurde im Gemenge mit anderen Intermetallphasen (NaBa und Li_{18.9}Na_{8.3}Ba_{15.3}) bzw. Li gefunden, während Li_{18.9}Na_{8.3}Ba_{15.3} im Gemenge mit NaBa, BaLi₄, Ba₁₉Li₄₄ und Li auftrat.

4 Subnitride

4.1 Binäre Subnitride des Bariums

4.1.1 Allgemeines

Das binäre Subnitrid Ba₂N wurde zuerst von Ariya [11] durch thermischen Abbau von Ba₃N₂ im Vakuum hergestellt. Später wurde Ba₂N auch als Endprodukt der Azotierung von Na-Ba-Legierungen erhalten [13]. Während die Strukturen des isotypen Ca₂N bzw. Sr₂N an Einkristallen bestimmt worden waren [12, 140], konnten lange Zeit keine Einkristalle von Ba₂N synthetisiert werden. Erstmals wurden sie 2005 durch eine Reaktion von Ba, NaN₃ und Na hergestellt [141]. Phasenreines Ba₂N kann auch in der Reaktion von BaN₆ mit Ba bei 400 °C hergestellt werden.

Ba₃N konnte bislang nur durch thermischen Abbau von NaBa₃N im Vakuum dargestellt werden. Auf diesem Wege erhielt Steinbrenner [142] diese Verbindung phasenrein. Die Reaktion wurde in einem speziellen länglichen Schlenk-Gefäß aus Duran, in dem sich ein Tantaltiegel befindet und das eine Tasche sowie eine Abschmelzstelle besitzt, durchgeführt.

4.1.2 Ba₂N

Ba₂N kristallisiert im rhomboedrischen *anti*-CdCl₂-Strukturtyp. Die Verbindung ist isotyp zu Ca₂N und Sr₂N ($R\bar{3}m$, a = 4.031, c = 22.532) [140]. Sie besteht aus Schichten kantenverknüpfter stickstoffzentrierter Oktaeder (Abbildung 4.1). Diese Schichten sind über metallische Bindungen miteinander verbunden (d_{Ba-Ba} = 5.044 Å). Interatomare Ba-N-Abstände betragen 2.77 und die Ba-Ba-Abstände reichen von 3.795 bis 4.029 Å.

Abbildung 4.1Das Fragment der Struktur von Ba2NKantenverknüpfte Ba6N-Oktaeder bilden isolierte Schichten.

4.1.3 Ba₃N

Ba₃N kristallisiert in anti-TiCl₃-Strukturtyp mit den Elementarzellparametern a = 7.6418, c = 7.0501 Å und ist auch isotyp zu einem als Cs₃O beschriebenen Suboxid [18]. Die Struktur von Ba₃N ist aus unendlichen isolierten Reihen flächenverknüpfter stickstoffzentrierter Oktaeder gebildet (Abbildung 4.2). Interatomare Ba-N-Abstände betragen 2.73 Å, praktisch gleich wie in Ba₂N. Die Ba-Ba-Abstände innerhalb der Kette und zwischen ihnen sind 3.602–4.027 bzw. 4.868–4.956 Å.

Abbildung 4.2 Die Struktur von Ba₃N Blickrichtung längs [010], Ba₆-Oktaeder sind hervorgehoben.

4.2 Ternäre Subnitride im Na-Ba-N-System

4.2.1 Allgemeines

Drei ternäre Verbindungen, NaBa₃N, Na₅Ba₃N und Na₁₆Ba₆N, wurden im System Na-Ba-N entdeckt [24-26]. Kristalle von NaBa₃N wurden aus einem Na-Ba-N-Reaktionsgemenge (Na:Ba:N = 5.4:6.2:1) isoliert [24]. Die Isolierung größerer Mengen NaBa₃N aus dem Tiegelinhalt gelang nicht. Diese Verbindung wurde auch als Hauptphase neben den binären Phasen NaBa und Ba₂N von Höhn erhalten [143]. NaBa₃N konnte auch als Hauptphase in der Reaktion von Natrium und Barium mit Natriumazid synthetisiert werden. Na₅Ba₃N wurde zuerst bei der Untersuchung intermetallischer Phasen im Na-Ba-System synthetisiert, aber als eine neue Na-Ba-Verbindung falsch beschrieben [62]. Na₁₆Ba₆N konnte im Gegensatz zu NaBa₃N und Na₅Ba₃N nicht in größeren Mengen erhalten werden [26].

4.2.2 NaBa₃N

NaBa₃N kristallisiert in der Raumgruppe $P6_3/mmc$ mit den Gitterkonstanten a = 8.4414, c = 6.9817 Å im BaNiO₃-Antityp [144].

Barium und Stickstoff bilden unendliche Reihen aus flächenverknüpften Oktaedern, und die Na-Atome füllen den Platz dazwischen (Abbildung 4.3). Die Ba-N-Abstände (2.73 Å) sind fast gleich wie in Ba₃N (2.73 Å) und Ba₂N (2.77 Å). Die zwei verschiedenen Ba-Ba-Abstände 3.64 Å und 4.08 Å können durch die gegenseitige elektrostatische Abstoßung der Anionen erklärt werden, die auch für die charakteristischen Verzerrungen in Rb₉O₂ [21, 145] und Cs₁₁O₃ [22] verantwortlich sind.

4.2.3 Na₅Ba₃N

Die Kristallstruktur dieser Verbindung ist sehr ähnlich zu der von NaBa₃N [24]. Flächenverknüpfte stickstoffzentrierte Ba₆-Oktaeder bilden unendliche Reihen entlang der *b*-Achse (Abbildung 4.4). Alle Na-Atome haben die Koordinationszahl 12 und füllen den Platz dazwischen. Na₅Ba₃N kristallisiert in der Raumgruppe *Pnma* mit den Gitterkonstanten a = 11.897, b = 7.056, und c = 17.801 Å. Die Ba-N-Abstände (2.73–2.74 Å) sind praktisch gleich wie in Ba₃N [142] und NaBa₃N [24].

Abbildung 4.4 Die Struktur von Na₅Ba₃N Blickrichtung [010], Ba₆-Oktaeder sind hervorgehoben

4.2.4 Na₁₆Ba₆N

Na₁₆Ba₆N kristallisiert in der Raumgruppe Im 3m mit der Gitterkonstanten a = 12.5266 Å und besitzt die Metallatom-Teilstruktur des Ag₈Ca₃, welches wohl gleichfalls als Subnitrid Ag₁₆Ca₆N zu beschreiben ist [26]. In der Struktur von Na₁₆Ba₆N sind stickstoffzentrierte Ba₆-Oktaeder (Abbildung 4.5), es besteht aber ein wesentlicher Unterschied zwischen dieser Verbindung und den zwei anderen Na-Ba-Subnitriden NaBa₃N [24] und Na₅Ba₃N [25], da diese diskret vorliegen. Die Ba-N-Abstände (2.83 Å) sind deutlich länger als in Ba₂N [141], Ba₃N [142], NaBa₃N [24] und Na₅Ba₃N [25] (alle im Bereich 2.73-2.74 Å).

Abbildung 4.5 Die Struktur von Na₁₆Ba₆N Blickrichtung [100], Ba₆-Oktaeder sind hervorgehoben

4.3 Die Na_nBa₁₄CaN₆-Serie (n = 7, 8, 14, 17, 21, 22)

4.3.1 Allgemeines

Das erste quaternäre Subnitrid im Na-Ba-Ca-N-System wurde bei der Umsetzung von Ba mit N₂ in einer Na-K-Schmelzen zufällig von Steinbrenner entdeckt [146]. Die Strukturanalyse ergab die Formel Na₁₄Ba₁₄KN₆, jedoch eine ungewöhnliche Koordination des Kalium-Atoms, und die EDX-Analyse zeigte, dass Calcium statt Kalium vorlag. Das spurenweise im verwendeten Barium enthaltene Calcium hatte sich in diese Verbindung angereichert. In weiteren Untersuchungen von Steinbrenner, Simon und Vajenine wurden noch fünf weitere Subnitride in diesem System mit der gemeinsamen Formel Na_nBa₁₄CaN₆ (n = 7, 8, 17, 21, 22) [30, 147, 148] synthetisiert. Alle diese Verbindungen haben verschiedene Symmetrie, aber einen gemeinsamen Bestandteil, den Ba₁₄CaN₆-Cluster. Es sollte herausgestellt werden, dass die Substitution des Calciums durch Strontium möglich ist, jedoch wurde keine Verbindung mit Magnesium gefunden.

4.3.2 Na₇Ba₁₄CaN₆

Na₇Ba₁₄CaN₆ (Abbildung 4.6) kristallisiert in der Raumgruppe *R*3*c* mit den Gitterkonstanten *a* = 11.3646 und *c* = 63.0550 Å. Ba-N- und Ba-Ba-Abstände liegen in den Bereichen 2.43–2.84 und 3.788–4.158 Å. In der Arbeit von Vajenine wurde diese Verbindung als Hauptphase aus Na₁₄Ba₁₄CaN₆ [146] und K-reicher Na-K-Legierung synthetisiert. Na₇Ba₁₄CaN₆ konnte auch phasenrein aus der stöchiometrischen Mischung der Elemente bei 270 °C erhalten werden. Na₇Ba₁₄CaN₆ ist stabil bis 338 °C, wo es in Ba(Ca)₂N und NaBa₃N zerfällt.

Abbildung 4.6 Die Struktur von Na₇Ba₁₄CaN₆ Blickrichtung [001], Ba₁₄CaN₆-Cluster sind hervorgehoben

4.3.3 Na₈Ba₁₄CaN₆

Na₈Ba₁₄CaN₆ kristallisiert in der Raumgruppe $P6_3/m$ mit einer ungefähr dreifach kleineren Elementarzelle als der von Na₇Ba₁₄CaN₆ (a = 11.4192 und c = 21.543 Å) und ähnlicher Struktur (Abbildung 4.7).

Alle interatomaren Abstände sind etwas unterschiedlich (Ba-N und Ba-Ba-Abstände sind jeweils von 2.46 bis 2.80 und von 3.809 bis 4.263 Å). Steinbrenner erhielt diese Verbindung als Hauptphase in der Reaktion von $(Ba_{11/12}Ca_{1/12})_2N$ mit Ba und einer kaliumreichen Na-K-Legierung. Na₈Ba₁₄CaN₆ konnte genauso wie Na₇Ba₁₄CaN₆ [147]

phasenrein aus der stöchiometrischen Mischung der Elemente bei 200 °C erhalten werden und zerfällt bei 238 °C in Na₇Ba₁₄CaN₆ und Na.

Abbildung 4.7Ba₁₄CaN₆-Cluster in der Struktur von Na₈Ba₁₄CaN₆Blickrichtung [001], Ba₁₄CaN₆-Cluster sind hervorgehoben

4.3.4 Na₁₄Ba₁₄CaN₆

Die Struktur von Na₁₄Ba₁₄CaN₆ kann als fcc-Packung der Ba₁₄CaN₆-Cluster beschrieben werden. Die Verbindung kristallisiert in der Raumgruppe $Fm\bar{3}m$ mit der Gitterkonstante a = 17.895 Å. Na-Atome bilden große Oktaeder, die von Na₄-Tetraedern (hervorgehoben) zentriert sind (Abbildung 4.8). Zwischen sechs von ihnen befinden sich auch große leere Ba₆-Oktaeder. Ba-N- und Ba-Ba-Abstände liegen jeweils in den Bereichen von 2.50–2.76 und 3.78–4.15 Å. Na₁₄Ba₁₄CaN₆ konnte bisher nur im Gemenge mit NaBa₃N [24] mit einem maximalen Gehalt bis 90 Gew-% synthetisiert werden. Um 168 °C verliert diese Phase Natrium und zerfällt in Na₈Ba₁₄CaN₆.

Abbildung 4.8Die Struktur von Na14Ba14CaN6Blickrichtung [100], Ba14CaN6-Cluster und Na4-Tetraeder sind hervorgehoben

4.3.5 Na₁₇Ba₁₄CaN₆

Na₁₇Ba₁₄CaN₆ kristallisiert im triklinen System (Raumgruppe *P*1) mit relativ kleiner Elementarzelle, a = 11.142, b = 12.065, c = 13.725 Å, $\alpha = 66.65^{\circ}$, $\beta = 67.79^{\circ}$, $\gamma = 78.88^{\circ}$.

Abbildung 4.9Die Struktur von Na17Ba14CaN6Blickrichtung [010], Ba14CaN6-Cluster ist hervorgehoben

Die Struktur stellt eine weitere Variante der Packung von Natriumatomen und Ba₁₄CaN₆-Clustern mit trigonal prismatischer Anordnung dar. Die Ba-N- und Ba-Ba-Atomabstände sind sehr ähnlich wie in Na₁₄Ba₁₄CaN₆ [146] in den Bereichen von 2.47–2.79 und 3.773–4.198 Å. Die Verbindung bildet sich auch unter ganz ähnlichen Bedingungen. Na₁₇Ba₁₄CaN₆ ist aber stabil bis 207 °C ähnlich wie Na₈Ba₁₄CaN₆ [148].

4.3.6 Na₂₁Ba₁₄CaN₆

Abbildung 4.10 Die Struktur von Na₂₁Ba₁₄CaN₆ Blickrichtung [010], Ba₁₄CaN₆-Cluster sind hervorgehoben

Der nächste Vertreter der Na_nBa₁₄CaN₆-Serie, Na₂₁Ba₁₄CaN₆, hat monokline Symmetrie (Raumgruppe *C*2/*m*) und die Gitterparameter *a* = 21.500, *b* = 12.664, *c* = 16.295 Å, β = 129.48°. Die Ba₁₄CaN₆-Cluster sind nahezu kubisch-raumzentriert angeordnet. Die Ba-Nund Ba-Ba-Abstände rangieren jeweils von 2.49 bis 2.80 und von 3.756 bis 4.212 Å. Kristalle von Na₂₁Ba₁₄CaN₆ konnten bislang nur als Nebenprodukt zusammen mit Na₂₂Ba₁₄CaN₆ [30] isoliert werden.

4.3.7 Na₂₂Ba₁₄CaN₆

 $Na_{22}Ba_{14}CaN_6$ kristallisiert in der Raumgruppe $P6_3/mmc$ mit den Gitterparametern a = 12.666, c = 12.635 Å. Diese Verbindung ist der letzte und bislang natriumreichste Vertreter der $Na_nBa_{14}CaN_6$ -Serie. $Na_{22}Ba_{14}CaN_6$ konnte nur mit Na-Überschuss synthetisiert werden. In der Struktur, in der streng geordnete $Na_6Ba_{14}CaN_6$ -Stäbe eine triangulare Stabpackung mit lokaler Fehlordnung bilden. Diffuse Beugung in *hkl* mit $l \neq 0$ lässt sich quantitativ auf eine Frustration dieser Stabpackung zurückführen [149]. Alle Na-Atome in Na₂₂Ba₁₄CaN₆ sind verzerrt ikosaedrisch umgeben, so wie es für beide intermetallischen Na-Ba-Verbindungen NaBa und Na₂Ba gefunden wurde. Die interatomaren Abstände innerhalb der Ba₁₄CaN₆-Cluster (d_{Ba-N} = 2.50–2.80 Å, d_{Ba-Ba} = 3.631–4.183 Å) bleiben praktisch gleich wie jene in Na₁₄Ba₁₄CaN₆ [30].

Abbildung 4.11 Ba₁₄CaN₆-Cluster in der Struktur von Na₂₂Ba₁₄CaN₆ Blickrichtung [001], Ba₁₄CaN₆-Cluster sind hervorgehoben

4.4 Li₈₀Ba₃₉N₉

In den letzten Jahren wurde eine Vielzahl metallreicher Nitride des Bariums in Kombination mit Natrium entdeckt. Es gelang nicht diese Chemie auf die höheren Homologen von Natrium zu übertragen, dagegen konnten wir einige neue Subnitride in Gegenwart von Lithium nachweisen, was dieses Element zu einem vielversprechenden Kandidaten für die Erweiterung des Forschungsgebietes macht. Ein erstes Li-haltiges Subnitrid ist Li₈₀Ba₃₉N₉.
4.4.1 Darstellung

Im Handschuhkasten wurden 486 mg metallisches Barium, 68 mg Lithium und 22.6 mg $Ba(N_3)_2$ in einen Tantaltiegel eingewogen, dieser verschlossen und in eine Ampulle aus Duran eingeschmolzen. Die Ampulle wurde auf 350 °C erhitzt, vier Tage bei dieser Temperatur aufbewahrt, mit 1 °C/h auf 120 °C abgekühlt und 30 Tage getempert. Aus der Mischung waren danach große metallisch-gelbe Kristalle von $Li_{80}Ba_{39}N_9$ gewachsen. Die Röntgenphasenanalyse des Reaktionsproduktes ergab etwa 85 Gew-% $Li_{80}Ba_{39}N_9$ neben 15 Gew-% $LiBa_3N$ [150]. Röntgenographisch reines $Li_{80}Ba_{39}N_9$ wurde auch bei der anschließend durchgeführter Reaktion dieser Probe mit BaLi₄ erhalten.

4.4.2 Kristallstruktur

Die Kristallstruktur von $Li_{80}Ba_{39}N_9$ kann am besten als eine Packung aus vier verschiedenen Fragmenten beschrieben werden (die Details der Strukturuntersuchung an $Li_{80}Ba_{39}N_9$ sind im Kapitel 7.8 zusammengestellt). Typisch für lithiumreiche Phasen, bilden Li-Atome zentrierte ikosaedrische Li_{13} -Cluster, die direkt oder über zusätzliche Li-Atome untereinander verbunden sind. Diese Cluster liegen in einer fcc-Anordnung vor (Fragment *A*, Abbildungen 4.12, 4.13A und 4.14).

Abbildung 4.12Tetraedrische Anordnung der ikosaedrischen Li13-Cluster.Die Position in der Mitte ist mit dem Ba5N6 Cluster besetzt.

Die tetragonale Elementarzelle (I42m, a=16.0763(8), c=32.267(2) Å) entspricht einer Verdopplung der *pseudo*-kubischen Elementarzelle entlang der *c*-Achse, was das c/a-Verhältnis von ~2 in Li₈₀Ba₃₉N₉ erklärt. Die Hälfte der Tetraederlücken in der *A*-Packung wird durch Ba₄-Tetraeder gefüllt (Fragment *B*, Abbildung 4.13B), sodass die *AB*-Packung dem Zinkblende-Strukturtyp entspricht. Die restlichen Tetraederlücken in der Packung werden durch Subnitridcluster der Zusammensetzungen Ba₆N (Fragment *C*, Abbildung 4.13C) und Ba₅N₆ (Fragment *D*, Abbildung 4.13D) gefüllt. So kann die Packung der vier Fragmente auch als eine Variante des CaF₂-Strukturtyps betrachtet werden.

Abbildung 4.13 Baufragmente in Li₈₀Ba₃₉N₉ Li₁₇ Cluster (A), Ba₄ Tetraeder (B), Ba₆N Oktaeder (C), und Ba₅N₆ Cluster (D).

Ikosaedrische Li₁₃-Fragmente, auch aus den Kristallstrukturen von BaLi₄ und Li₁₃Na₂₉Ba₁₉ bekannt, bilden die Basis des Lithiumnetzes in Li₈₀Ba₃₉N₉. Vier zusätzliche Li-Atome liegen über vier angrenzenden Flächen des Clusters (Abbildung 4.13A). Die resultierenden Li₁₇-Cluster sind mit direkten Li-Li-Kontakten (Abbildung 4.12) oder mit monoatomaren Lithiumbrücken zu einem 3D Netz verbunden. Acht solcher Li₁₇-Cluster und 24 Brückenatome entsprechen den 160 Li-Atomen in der Elementarzelle. Die Li-Li-Bindungsabstände innerhalb der Cluster liegen im Bereich 2.92(1)–3.34(1) Å, vergleichbar mit denen in anderen intermetallischen Verbindungen des Lithiums. Interatomare Abstände zwischen diesen Clustern betragen 3.20(1) bis 3.50(1) Å.

Wie oben erwähnt wurde, enthält die fcc-Packung der Li-Cluster Tetraederlücken verschiedener Größen. Eine Hälfte dieser Lücken wird von Ba4-Tetraedern besetzt, und die andere enthält Ba₆N und Ba_5N_6 Subnitridcluster. Damit lässt sich die Gesamtzusammensetzung als $A_8B_8C_6D_2 \cong \text{Li}_{160}(\text{Ba}_4)_8(\text{Ba}_6\text{N})_6(\text{Ba}_5\text{N}_6)_2 \cong \text{Li}_{160}\text{Ba}_{78}\text{N}_{18} \cong$ Li₈₀Ba₃₉N₉ formulieren. Diese Separation ist hilfreich, aber etwas künstlich, weil die Ba-Ba Kontaktabstände zwischen den Ba₄-Tetraedern und den Subnitridclustern von 4.165(1)-4.366(1) Å sogar etwas kürzer sind als die interatomaren Ba-Ba Abstände innerhalb der Ba₄-Tetraeder (4.323(1)–4.664(1) Å). Alle diese Ba-Ba-Abstände liegen im Bereich, der typisch für metallische Bindungen ist.

Die isolierten oktaedrischen Ba₆N-Cluster in Li₈₀Ba₃₉N₉ sind denen in Na₁₆Ba₆N [26] sehr ähnlich: die Ba–N-Abstände betragen 2.755–2.801 Å (2.825 Å in Na₁₆Ba₆N). Im Gegensatz zu diesen schon bekannten Einheiten werden die Ba₅N₆-Cluster zum ersten Mal beobachtet. Hier ist ein zentrales Ba-Atom durch ein Oktaeder aus Stickstoff-Atomen umgeben. Dieses Oktaeder hat zusätzlich vier Ba-Atome über jeder zweiten Fläche in einer tetraedrischen Umgebung (Abbildung 4.13D). Da jedes der sechs N-Atome direkte Kontakte zu zwei Li-Atomen aus den benachbarten Li₁₃-Fragmenten hat, kann die gesamte (Abbildung 4.15d). Der zentrale Teil dieses Clusters mit dem BaN₆-Oktaeder ist dem CaN₆-Oktaeder in der Mitte des Ba₁₄CaN₆-Clusters in den Subnitriden Na_nBa₁₄CaN₆ ähnlich. Die Ba₁₄CaN₆-Cluster kann man als sechs flächenverknüpfte Stickstoff-zentrierte Ba₅CaN-Oktaeder beschreiben. Eine andere Beschreibung braucht man für den Li₁₂Ba₅N₆-Cluster. Hier ist jedes N-Atom durch eine trigonale Bipyramide aus zwei Li- und drei Ba-Atomen umgeben.

Sechs solche Polyeder teilen Ba-Ba-Kanten und eine Ba-Ecke (äquatorial zu allen sechs trigonalen Bipyramiden) und ergeben den $Li_{12}Ba_5N_6$ -Cluster (Abbildung 4.15). Folglich ist $Li_{80}Ba_{39}N_9$ das erste Beispiel von einem Subnitrid mit Stickstoffatomen, welche sowohl mit den beiden Alkali- als auch den Erdalkalimetallatomen verbunden sind. Keines von den vorher bekannten Subnitriden enthält einen Alkalimetall-N-Kontakt. Die einzigen Beispiele der Bindung zwischen den Nichtmetallatomen und zwei verschiedenen Metallatomtypen in Subnitriden oder Suboxiden sind Na_nBa₁₄CaN₆ [19], (Sr_{0.48}Ba_{0.52})₂N, [151] und Rb_{2.59}Cs_{8.37}O_{3,17} [152], in denen die Metallatome allerdings gleiche Valenz haben. Die Ba-Ba-und Ba-N-Kontaktabstände in $Li_{12}Ba_5N_6$ sind vergleichbar mit denen im Ba₁₄CaN₆-Cluster. Die Ba-N- und Ba-Ba-Abstände hier sind jeweils in den Bereichen 2.42-2.85 und 3.62-4.26 Å.

Die Li-N-Abstände (1.73(1)-1.75(2) Å) sind kürzer als die in Li₃N gefundenen [4] ($d_{Li-N} = 1.93$ Å, KZ_N = 8), aber die Stickstoffatome in Li₁₂Ba₅N₆ haben nur drei nahe Nachbarn und noch zwei Bariumatome sind weiter entfernt angeordnet (Abbildung 4.15a). Die Li-N Abstände in der Hochdruckmodifikation von Li₃N [153] betragen 2.05-2.31 Å (CN_N = 11).

Abbildung 4.14 Ba₄-(B), Ba₆N-(C), und Ba₅N₆-(D) Fragmenten in der Struktur von Li₈₀Ba₃₉N₉.
 Die tetragonale Elementarzelle ist eingezeichnet.

In der Struktur von Li₈₀Ba₃₉N₉ gibt es auch zwei Typen von Lücken. Einige sind in den Ba₄-Tetraedern (B Stelle), mit Abständen von der Mitte der Lücke zu den vier Ba Atomen von 2.717(1) - 2.946(1) Å. Die Lücken von dem anderen Typ befinden sich in der Nähe des Tetramers von ikosaedrischen Li-Clustern. Diese Lücken sind auch tetraedrisch umgeben. Die Abstände von der Mitte dieser Lücken zu den nächsten drei Lithiumatomen und zwei Bariumatomen, die eine verzerrte trigonale Bipyramide bilden, sind jeweils 2.70(1), 2.72(1), 2.77(1), 3.403(1), und 3.472(1) Å. Beide Typen der Lücken sind zu klein, um von Lithium besetzt zu werden, aber zu groß für Stickstoff. Solche charakteristischen Hohlräume in den Strukturen der Subnitride wurden für verschiedene Zusammensetzungen in der Na_nBa₁₄CaN₆-Serie [19] systematisiert.

Abbildung 4.15 Der Li₁₂Ba₅N₆ Cluster in Li₈₀Ba₃₉N₉
 trigonale Bipyramide Li₂Ba₃N (a), Kantenverknüpfung zwischen zwei (b)
 und vier (c) solchen Fragmenten, Li₁₂Ba₅N₆ Cluster (d).

In Na₇Ba₁₄CaN₆ [147] reichen die Abstände von der Mitte der Lücke zu den umgebenden Bariumatomen von 3.162 bis 3.663 Å. Es wurde gezeigt, dass diese Lücken keine unbemerkten leichten Atome (insbesondere Wasserstoff) enthalten [30]. Sie sind eher eine Folge der Packung der starren Cluster mit weichen Kontakten zwischen ihnen, und deshalb werden sie besonders offensichtlich für kleine Werte von *n* gebildet.

4.4.3 Elektrische Leitfähigkeit

Die elektrischen Messungen wurden an einem regelmäßig geformten Kristall ($5.2 \times 2.3 \times 2.2 \text{ mm}$) von Li₈₀Ba₃₉N₉ durchgeführt. Anstatt der nahezu linearen Widerstandsabhängigkeit von der Temperatur, die meisten Metalle haben, wurde negative Krümmung zwischen 300 und 120 K und positive Krümmung unter 50 K gefunden (Abbildung 4.16). Solcher ungewöhnliche Kurvenverlauf wurde vielfach bei den Supraleitern vom A-15-Strukturtyp beobachtet und außer Elektron-Phonon-Wechselwirkung [154] und Elektron-Elektron-Streuung [155] als Ausdruck der Streuung in ungeordneten Strukturen diskutiert [156, 157].

Beim Abkühlen der Probe war der Absolutwert des Widerstandes geringfügig kleiner als beim anschließenden Aufheizen auf Raumtemperatur. Der spezifische Widerstand bei 20 °C von 410 $\mu\Omega$ /cm ist aber deutlich größer als für die elementaren Metalle und andere Subnitride. Beispielsweise haben Ba₂N und NaBa₃N die Werte 160 bzw. 240 $\mu\Omega$ /cm [68]. Das Restwiderstandsverhältnis beträgt etwa 3. Praktisch gleiche Werte des Widerstands für Li₈₀Ba₃₉N₉ wurden auch aus dem Pulverpressling erhalten, jedoch mit größerem Unterschied zwischen den Abkühl- und Aufheizkurven. Dieser Unterschied könnte mit unzureichenden Kontakten erklärt werden. Zum Vergleich mit den anderen Subnitriden siehe Tabelle 2.5 und Kapitel 4.9.3 und 4.12.2.

Abbildung 4.16 Der spezifische Widerstand eines Kristalls von Li₈₀Ba₃₉N₉

4.5 LiBa₃N

4.5.1 Darstellung

Metallisches Barium, $Ba(N_3)_2$ und metallisches Lithium (10.2 mg) wurden gemischt und in einer Ta-Ampulle (Handschuhkasten, Ar-Atmosphäre) eingeschlossen. Um das Azid zu zersetzen, wurde die Probe auf 400 °C innerhalb 20 h erhitzt, 70 h dort gehalten, langsam (1 °C/h) auf 120 °C abgekühlt und 2 Monate bei dieser Temperatur getempert. Nach dem Pulverdiffraktogramm enthielt die Probe LiBa₃N neben 10 Gew-% Ba₂N (Abbildung 4.17). Im Verlauf der Untersuchung des Systems Li-Ba-N wurde LiBa₃N in mehreren zwei- oder dreiphasigen Proben zusammen mit anderen Ba oder Li-Ba Subnitriden (Ba₂N [151], Ba₃N [142], Li₈₀Ba₃₉N₉, und LiBa₂N [150]) und auch mit Ba, Li und Li₃N erhalten.

Abbildung 4.17 Röntgenpulverdiagramm der Probe "LiBa₃N" mit für LiBa₃N im NaBa₃N-Typ berechneten Reflexen.

4.5.2 Kristallstruktur

Im Pulverbeugungsdiagramm des Reaktionsproduktes des Versuchs, der auf LiBa₃N abzielte, treten Reflexe von LiBa₃N zusammen mit jenen von Ba₂N [151] auf. Das mit der Struktur von NaBa₃N berechnete Pulverdiagramm war in guter Übereinstimmung mit den Hauptlinien der experimentellen Probe. Leider waren die Proben mit einem hohen Gehalt von LiBa₃N sehr duktil, und Einkristalle konnten nicht ausgewählt werden. Nach Indizierung des Pulverdiffraktogramms [71] kristallisiert LiBa₃N mit hexagonaler Symmetrie in der Raumgruppe $P6_3/mmc$ mit den Elementarzellparametern a = 8.182(1), c = 6.922(4) Å (die Details der Strukturuntersuchung an LiBa₃N sind im Kapitel 7.8 zusammengestellt), und hat Anti-BaNiO₃-Struktur [144] (Abbildung 4.18). Alle Reflexe sind sehr breit (Abbildung 4.17). Dafür konnte keine Rietveld-Verfeinerung des Beugungsdiagramms durchgeführt werden.

Die Atomkoordinaten für LiBa₃N und NaBa₃N wurden über die Minimierung der Gesamtenergie mit dem Programm Wien2k [158, 159] optimiert. Die berechnete Bandstruktur für NaBa₃N ist ähnlich der in einer früheren Untersuchung erhaltenen [160] ähnlich (Abbildung 4.19), wobei zwei Änderungen erwähnenswert sind. Erstens, in der neueren Wien2k-Rechnung liegen die gefüllten N-2p-Bänder etwas höher in der Energie verglichen mit den Ergebnissen der LMTO-Rechnung, so dass sie mit dem unteren Teil des metallzentrierten Leitungsbandes überlappen. Experimentell ist aus den an NaBa₃N gemessenen Photoemissionsspektren bekannt, dass die N-2p-Zustände ca. 2–2.5 eV unterhalb des Fermi-Niveaus liegen [161], die Existenz einer Bandlücke zwischen dem Valenz- und Leitungsband konnte jedoch weder bestätigt noch widerlegt werden. Zweitens, sind einige Bänder in der Wien2k-Rechnung in der Energie etwas verschoben gegenüber der LMTO-Rechnung, was auf die Unterschiede zwischen den Rechenmethoden zurückgeführt werden kann. Beide Änderungen in den berechneten Bandstrukturen sollten jedoch keinen wesentlichen Einfluss auf die berechnete Energielandschaft und somit auf die Ergebnisse der Geometrieoptimierung für NaBa₃N (und LiBa₃N) haben.

In der Tabelle 4.1 sind die Ergebnisse mit experimentellen verglichen. Das optimierte c/a-Verhältnis für NaBa₃N ist etwas kleiner als beobachtet [24], während das Elementarzellenvolumen und der x_{Ba} -Parameter sehr gut reproduziert werden. Alle Details der Strukturuntersuchung an LiBa₃N sind in den Tabellen 7.29–7.32 zusammengestellt.

Р	NaBa ₃ N	LiBa ₃ N	Δ, %
	Expe	rimentelle	
<i>a</i> , Å	8.4414(6)	8.182(1)	-3.1
<i>c</i> , Å	6.9817(8)	6.922(4)	-0.9
x(Ba)	0.1439(1)	-	
$d_{\mathrm{Ba-N}}$, Å	2.734(1)	2.722*	-0.44
	The	oretische	
<i>a</i> , Å	8.47	8.22	-2.9
<i>c,</i> Å	6.95	6.88	-1.0
x(Ba)	0.1439	0.1483	
$d_{\rm Ba N}$ Å	2 734	2 723	-0 40

 Tabelle 4.1
 Experimentelle und optimierte Parameter (P) von Li(Na)Ba₃N

* – basiert auf dem theoretischen Wert für x(Ba).

$$(\Delta = \frac{P_{LiBa_{3}N} - P_{NaBa_{3}N}}{P_{NaBa_{3}N}} \cdot 100\%)$$

Blickrichtung [001]. Ba₆-Oktaeder sind hervorgehoben.

Die LMTO-Bandstruktur für NaBa₃N [155]. Abbildung 4.19a

Die roten Linien markieren die wesentlichen Bänder und die Pfeile zeigen die Verschiebung einiger Bänder im Vergleich zur Abbildung 4.19b.

Abbildung 4.19b NaBa₃N-Bandstruktur berechnet mit dem Wien2k-Programmpaket.

Die roten Linien zeigen den Verlauf der Bänder zum Vergleich mit der Abbildung 4.19a. Die grünen Linien markieren die N-2p-Bänder.

Auch die relativen Änderungen der Gitterkonstanten von NaBa₃N zu LiBa₃N werden recht gut reproduziert. Der theoretische Wert von x_{Ba} für LiBa₃N ist sinnvoll, da die Ba-N-Kontakte in beiden Verbindungen vergleichbar sind. Diese theoretischen Ergebnisse können folglich als Argument zugunsten des Strukturmodells und der Zusammensetzung von LiBa₃N angesehen werden. Im Hinblick auf die Einfügung von Ba und Li in LiBa₅N-Oktaeder in der Struktur von LiBa₂N stellt sich jedoch die Frage, ob Li auch teilweise das Ba in LiBa₃N ersetzt, im Gegensatz zu NaBa₃N [24], wo Na ausschließlich Plätze zwischen den Ba₃N-Ketten einnimmt. Eine Antwort auf diese Frage erfordert detaillierte Untersuchungen. Die vorläufigen Untersuchungen deuten nur auf einen Ersatz von Li-Atomen durch Na-Atome hin. Die Unschärfe des Beugungsdiagramms macht jedoch eine weitgehende Fehlordnung wahrscheinlich.

4.6 (Li,Na)Ba₃N

4.6.1 Darstellung

Eine Probe mit Einwaagen, die auf die Darstellung von Li_{0.5}Na_{0.5}Ba₃N abzielten, wurde aus den gleichen Edukten wie für LiBa₃N und metallischem Natrium vorbereitet.

Abbildung 4.20 Röntgenpulverdiagramm der Probe "(Li_{0.5}Na_{0.5})Ba₃N" mit berechneten Reflexen von NaBa₃N.

Eine Probe aus 44.8 mg Ba(N₃)₂, 472.2 mg Barium, 4.2 mg Lithium und 14.0 mg Na (molares Verhältnis Li:Na:Ba:N = 1:1:6:2) wurde in einem geschlossenen Tantaltiegel auf 420 °C erhitzt und zehn Tage bei dieser Temperatur gehalten. Dann wurde die Probe mit 2 °C/h auf 200 °C abgekühlt und 30 Tage dort getempert. Im Pulverdiffraktogramm wurde neben Ba₂N und Ba die Phase (LiNa)Ba₃N nachgewiesen (Abbildung 4.20). Die Anwesenheit von überschüssigem Li ist nicht beobachtbar.

4.6.2 Kristallstruktur

Das Pulverdiffraktogramm der Phase (LiNa)Ba₃N wurde mit hexagonaler Symmetrie mit den Gitterparametern a = 8.381(3), c = 6.953(6) Å indiziert, die etwas kleiner als die

Elementarzellenparameter von NaBa₃N [24] (a = 8.4414, c = 6.9817 Å), aber größer als die von LiBa₃N sind (a = 8.182(1), c = 6.922(4) Å). Die Verbindung hat wahrscheinlich die Struktur von NaBa₃N (Abbildung 4.3) mit unendlichen Reihen von flächenverknüpften Oktaedern aber im vorliegenden Fall mit sowohl Na- als auch Li-Atomen zwischen den Reihen.

Gemäß der EDX-Analyse lag in der Verbindung ein atomares Verhältnis Na/Ba von 1:4 vor, das Li_{0.25}Na_{0.75}Ba₃N entspricht. Leider hat (LiNa)Ba₃N gleiche Kristallisationsprobleme wie LiBa₃N, sodass Einkristalluntersuchungen ausgeschlossen sind. Die Unschärfe des Beugungsdiagramms macht eine Fehlordnung gemäß (Li,Na)(Ba,Li)₃N wahrscheinlich.

4.7 LiBa₂N

4.7.1 Darstellung

LiBa₂N konnte aus verschiedenen Ausgangsmaterialien synthetisiert werden. Als Stickstoffquellen wurden Ba₂N, Li₃N, Ba(N₃)₂ oder LiN₃ benutzt, am besten reagieren jedoch Gemenge mit Ba- oder Li-Aziden. Eine Probe aus 60.4 mg Ba(N₃)₂, 412.5 mg metallischem Barium und 11.5 mg metallischem Lithium wurde in einem geschlossenen Tantaltiegel auf 420 °C erhitzt und zehn Tage bei dieser Temperatur gehalten. Dann wurde die Probe mit 2 °C/h auf 200 °C abgekühlt und 30 Tage bei dieser Temperatur getempert. Nach der Phasenanalyse des Reaktionsproduktes mittels Pulverdiffraktometrie enthielt die Probe etwa 30 Gew-% LiBa₂N neben 50 Gew-% Ba₂N und 20 Gew-% LiBa₃N. Die gleiche Reaktion wurde auch mit 572 mg (1.98 mmol) Ba₂N und 13.8 mg (1.98 mmol) metallischem Li durchgeführt. Die Probe ergab etwa 15 Gew-% LiBa₂N zusammen mit Ba₂N und LiBa₃N. Einkristalle von LiBa₂N wurden auch bei einem Versuch zur Darstellung eines anderen Li-Ba-Subnitrids, LiBa₃N, erhalten.

4.7.2 Kristallstruktur

LiBa₂N kristallisiert in einem neuen Strukturtyp mit tetragonaler Symmetrie mit einer kleinen Elementarzelle a = 7.980(1), c = 14.263(2) Å (die Details der Strukturuntersuchung an

LiBa₂N sind im Kapitel 7.10 zusammengestellt). Kantenverknüpfte N-zentrierte LiBa₅-Oktaeder bilden orthogonale Reihen (Abbildung 4.21). Jedes dieser Oktaeder hat gemeinsame Kanten mit vier anderen, entsprechend LiBa_{2/2}Ba_{3/3}N. Gruppen von vier flächenverknüpften LiBa₅N Oktaedern sind zum neuartigen Li₄Ba_{8/2}Ba₄N₄-Cluster (Abbildung 4.22a) verknüpft. Dieser Cluster hat einen Heterocuban-ähnlichen Ba₄N₄-Kern (Abbildung 4.22b) und Ba₂Li-Dreiecke über allen N-Atomen. Im Vergleich dazu sind die isolierten Ba₁₄CaN₆-Cluster in Na_nBa₁₄CaN₆ [19] aus sechs flächenverknüpften Ba₅CaN-Oktaedern aufgebaut. Im Li₄Ba_{8/2}Ba₄N₄-Fragment (wie im Ba₁₄CaN₆-Cluster) gibt es zwei unterschiedliche Positionen von Ba-Atomen. Ein Ba-Atom hat Kontakte mit drei N-Atomen, das zweite nur mit zwei.

Abbildung 4.21 Tetragonale Elementarzelle von LiBa₂N

Reihen aus kantenverknüpften N- oder O-zentrierten Polyedern sind auch von anderen metallreichen Ba-Verbindungen bekannt. Solche Oktaeder und Tetraeder wurden jeweils in den Strukturen des Ba-Subnitrids Ba₂N [151] und des Na/Ba Suboxids NaBa₂O [162] festgestellt. Dagegen gibt es in NaBa₂O nur Ba-O-Kontakte, und Na-Atome füllen den

Zwischenraum. Interessanterweise kann die Struktur von LiBa₂N von einer bcc-Packung der Metallatome mit fast gleicher Anordnung wie in NaBa₂O [162] abgeleitet werden.

In beiden Strukturen werden Doppelschichten der Ba-Atome von einzelnen Schichten der Na- oder Li-Atome separiert, entsprechend den hypothetischen Legierungen "NaBa₂" oder "LiBa₂" mit MoSi₂-Typ-Struktur [163]. Der Unterschied zwischen beiden Konstruktionen liegt in der Füllung der Lücken mit O/N-Atomen. Während in NaBa₂O ein Teil der Tetraederlücken besetzt wird, füllen in LiBa₂N N-Atome Oktaederlücken, die von einem Li- und fünf Ba-Atomen umgeben sind.

Abbildung 4.22 Li₄Ba₄Ba_{8/2}N₄-Cluster in der Struktur von LiBa₂N (a) mit Heterocuban-ähnlichem Ba₄N₄-Kern (b).

Wie oben erwähnt wurde, gibt es zwei verschiedene Ba-Positionen in der Struktur von LiBa₂N mit nahen Kontakten zu zwei bzw. drei N-Atomen. Die Ba-Ba- Ba-Li-, und Ba-N-Abstände liegen jeweils in den Bereichen 3.844(3)-4.396(1) Å, 3.31(2)-3.59(2) Å und 2.69(1) Å, ähnlich jenen in anderen Li-Ba- und Na-Ba-Subnitriden. Die Li-N-Kontakte sind ein wenig länger als in Li₈₀Ba₃₉N₉ oder Li₃N [4] (d_{Li-N}: 1.74(5)-2.11(4) Å). In der Struktur von LiBa₂N gibt es auch zwei Typen von Oktaederlücken zwischen parallelen Reihen in einer Schicht (LiBa₅) und zwischen verschiedenen Schichten (Li₂Ba₄) mit d_{Ba-Ba} = 3.992(1)-4.240(1) und d_{Ba-Li} = 3.29(2)-3.59(1) Å. Es sollte betont werden, dass Subnitride mit sowohl Ba-N- als auch Li-N-Kontakten gefunden wurden, jedoch ist kein Subnitrid mit Na-N-Kontakten bekannt.

4.8 Phasenzusammenhänge im Li-Ba-N-System

Der metallreiche Teil des Li-Ba-N-Systems wurde bei 120 °C untersucht und drei neue ternäre Verbindungen, **LiBa₂N**, **Li₈₀Ba₃₉N₉** und **LiBa₃N** wurden dadurch entdeckt (Abbildung 4.23). Dieses System ist sehr ähnlich dem System Na-Ba-N [24-26]. Alle drei Verbindungen enthalten stickstoffzentrierte Metalloktaeder, die in zwei von ihnen (LiBa₂N und LiBa₃N) unendliche Reihen bilden. Eine neuentdeckte Intermetallphase, Ba₁₉Li₄₄, wurde im Gleichgewicht mit Li₈₀Ba₃₉N₉ beobachtet.

Abbildung 4.23 Phasengleichgewichtsdiagramm des Systems Ba-Li-N bei 120 °C.

Li₈₀Ba₃₉N₉ konnte phasenrein synthetisiert werden, während LiBa₃N immer im Gemenge mit anderen Nitridphasen (Ba₂N [11], Ba₃N [142], Li₈₀Ba₃₉N₉, Li₃N [4]) bzw. Ba und Li auftrat. LiBa₂N konnte bislang nur mit einem maximalen Anteil von 30 % neben LiBa₃N und Ba₂N [141] dargestellt werden. Es ist interessant, dass eine ähnliche Verbindung mit Wasserstoff mit orthorhombischer Symmetrie (LiSr₂H₂N [164]) im System mit Strontium existiert. Aufgrund der niedrigen Ausbeute wurden Versuche gemacht, die Positionen mit den höchsten Restelektronendichten mit H-Atomen zu besetzen und anschließend zu verfeinern oder isotype Verbindungen durch gezielte Zugabe von Wasserstoff zu synthetisieren. Die Wasserstoffatome waren aber auf ihren zugewiesenen Positionen nicht zu verfeinern. Versuche, LiBa₂H₂N zu synthetisieren, misslangen zudem. Es resultierten Gemenge aus Ba, Ba₃N [142], LiBa₃N und LiBaH₃ [165-167] beim Tempern um 200 °C und aus LiBaH₃ [165-167] und Ba₂NH [168, 169] um 600 °C.

Das thermische Verhalten der zwei ersten Verbindungen, Li₈₀Ba₃₉N₉ und LiBa₃N, wurde ausreichend charakterisiert, während noch Fragen über die Stabilität von LiBa₂N offen bleiben. Li₈₀Ba₃₉N₉ schmilzt inkongruent bei 165 °C und LiBa₃N zerfällt bei 237 °C und somit höher als die zwei Na-Ba-Subnitride Na₅Ba₃N und Na₁₆Ba₆N, aber deutlich niedriger als NaBa₃N (405 °C [68]). In beiden Fällen wurden nach Erreichen dieser Temperaturen nur Linien von Ba₂N [141] im Pulverdiagramm beobachtet. Entsprechend dem niedrigen Anteil von LiBa₂N in der Probe "LiBa₂N" war kein thermischer Effekt beobachtbar, der sich dieser Phase zuordnen ließ. Aus der Synthese um 200 °C resultierte nur LiBa₃N, Ba₂N [141] und Li₃N [4].

Besondere Aufmerksamkeit sollte auf LiBaN gelenkt werden. Diese Verbindung wurde bislang nur in der Arbeit von Brice in 1970 postuliert und teilweise strukturell charakterisiert (hexagonale Elementarzelle, a = 6.79, c = 8.05 Å, Z = 5 ($\rho_{ber} = 4.08$, $\rho_{gem} = 4.03$ g/cm³)) [10]. Alle weiteren Publikationen [9, 170-176] basieren nur auf diesem Ergebnis. Unser Versuch, LiBaN aus Ba(N₃)₂, Ba₂N und Li₃N bei gleichen Konditionen wie in [10] zu synthetisieren, ergab nur ein Gemenge von Ba₂N [141] und Li₃N [4]. Die früher beschriebene Phase Ba₃N₂ [2] wurde in der vorliegenden Arbeit wie auch bei Hochdruckuntersuchungen [177] nicht beobachtet.

4.9 Na₁₅Li₈Ba₁₂N₆

4.9.1 Darstellung

Einkristalle von Na₁₅Li₈Ba₁₂N₆ wurden aus Barium, Ba(N₃)₂, Lithium, und Natrium erhalten. Ba (479,2 mg, 3,49 mmol), Ba(N₃)₂ (33,6 mg, 0,15 mmol), Li (38.2mg, 5,46 mmol) und Na (125,5 mg, 5,46 mmol) wurden in einer Ta-Ampulle in Ar-Atmosphäre eingeschlossen. Die Reaktionsmischung wurde mit 10 °C/h auf 220 °C erhitzt, 5 Tage bei dieser Temperatur gehalten, mit 1 °C/h auf 120 abgekühlt und drei Wochen bei dieser Temperatur aufbewahrt. Nach der Röntgenuntersuchung enthielt die Probe neben Li₁₃Na₂₉Ba₁₉ eine neue Phase, die als Na₁₅Li₈Ba₁₂N₆ identifiziert werden konnte. Durch gezielte Einwaagen wurde dieses Subnitrid als Hauptphase mit einem Gewichtsanteil von ungefähr 90 %.erhalten

4.9.2 Kristallstruktur

Die Verbindung Na₁₅Li₈Ba₁₂N₆ kristallisiert im trigonalen System (Raumgruppe R3m) mit den Gitterkonstanten a = 12.3409(9) und c = 33.311(4) Å (Die Details der Strukturuntersuchung an Na₁₅Li₈Ba₁₂N₆ sind im Kapitel 7.11 zusammengestellt). Die Kristallstruktur kann am besten als eine Packung von drei verschiedenen Fragmenten beschrieben werden: Subnitridcluster Li₈Ba₁₂N₆, Na-Tetraeder (Na(2, 3)) und unendliche Na-Schichten, die von Sechsecken (Na(1, 4)) gebildet werden (Abbildung 4.24).

Na₄-Tetraeder bilden eine fcc-Anordnung. Die Schichten A', B' und C' haben umgekehrte Orientierung der Tetraeder in Bezug auf A-, B-, und C-Schichten. Die Na-Na-Kontaktabstände in den Na₄-Tetraedern sind 3.767(6) und 3.792(7) Å. Li₈Ba₁₂N₆-Cluster und Na-zentrierte Na₆-Sechsecke sind in den Oktaederlücken zwischen diesen Tetraedern eingebaut.

Abbildung 4.24 Die Struktur von Na₁₅Li₈Ba₁₂N₆. Li₈Ba₁₂N₆-Cluster und Na₄-Tetraeder sind hervorgehoben

Alternativ bilden einige Natriumatome aus den Tetraedern (Na(3)) zusammen mit zentrierten Sechsecken unendliche gewellte Flächen. Diese Schichten (Abbildung 4.25) sind entweder aus zentrierten (Sesselkonformation: Na1-Na1-Na1 Winkel ist 107.58(4)°, Na1-Na4-Na1 – $63.57(5)^{\circ}$) oder aus leeren (fast planare: \angle Na1-Na3-Na1 = $118.32(3)^{\circ}$, \angle Na1-Na1-Na3 = $120.62(4)^{\circ}$) Sechsecken aufgebaut. Die Na-Na- und Na-Ba-Abstände in der Struktur liegen jeweils in den Bereichen 3.561(5)–3.859(5) und 4.116(3)–4.465(3) Å, typisch für intermetallische Na-Ba-Verbindungen [97, 99].

Abbildung 4.25 Na-Schichten in der Struktur von Na₁₅Li₈Ba₁₂N₆.

Die Tetraederpackung der Na-Atome ist neu. Reihen von eckenverknüpften Tetraedern oder trigonalen Bipyramiden sind jeweils von Na₅Ba₃N [25] und den Laves-Phasen Na₂Ba, Na₂K, und Na₂Cs bekannt [99, 178]. Schichten von planaren Sechsecken entsprechen denen von Graphit oder AlB₂-Typ-Strukturen, die der Sechsecke in Sesselkonformation sind aus der Struktur von As [134] bekannt. Die partielle Zentrierung der Sechsecke (Abbildung 4.25) zeigt einen Weg der Bewegung von einer Honigwabenanordnung zum Dreiecksnetz. Die Anordnung der Atome im neuartigen Cluster Li₈Ba₁₂N₆ ist in der Abbildung 4.26 gezeigt. Eine hexagonale Li₈-Bipyramide in der Mitte dieses Clusters (Abbildung 4.26c) $(d_{Li(1)-Li(1)(aquatoriale)} = 2.51(1), d_{Li(2)-Li(2)(axiale)} = 2.56(3)$ und $d_{Li(1)-Li(2)} = 2.82(1)$ Å) wird von zwei N₃-Dreiecken ($d_{N-N} = 3.588(6)$ Å) in trigonal-antiprismatischer Anordnung (Abbildung 4.26b, b') und sechs eckenverknüpften Ba-Dreiecken über allen N-Atomen (Abbildung 4.26a, a') überkappt. Die Ba-N- und Li-N-Abstände (2.464(5)–2.689(3) und 2.067(6)–2.100(6) Å) sind vergleichbar mit den in Li₃N [4], Ba₂N [151] oder LiBa₂N gefundenen.

Abbildung 4.26 Die Struktur des Li₈Ba₁₂N₆-Clusters. Li₈-Bipyramide mit weiteren Dreiecken aus N und Ba-Atomen.

Ein realistischerer Blick ist in Abbildung 4.27 wiedergegeben, wonach der Cluster aus einer Anordnung von sechs kanten- und eckenverknüpften Li₃Ba₃N-Oktaedern besteht. Jedes von ihnen hat zwei gemeinsame Kanten und Ecken mit anderen Oktaedern gemäß (Li_{1/3}Li_{2/2}Ba_{2/2}BaN)₆. M₂₀X₆-Cluster sind unbekannt. Allerdings wurden ähnliche Ca₁₉N₆-Cluster mit einem Calciumatom statt des Lithiumspaars in der Mitte vom N₆-Oktaeder in $Ag_8Ca_{19}N_7$ [28] gefunden. Die strukturelle Beziehung zwischen diesen Clustern und den entsprechenden Antitypen wurde vorher für die charakteristischen Cluster in Alkalimetallsuboxiden [20] erkannt.

Abbildung 4.27 Li₈Ba₁₂N₆-Cluster in der Struktur von Na₁₅Li₈Ba₁₂N₆

Ein weiterer Strukturvergleich bietet sich an. Ausgehend von der Topologie des $Mo_6O_{19}^{2-}$ -Ions [179], das von sechs kantenverknüpften MoO₆-Oktaedern gebildet wird, führt der Austausch des einzelnen O-Atoms in der Mitte durch zwei Atome, die auf der dreizähligen Achse liegen, zu der Topologie, die im Li₈Ba₁₂N₆-Cluster gefunden wurde (Abbildung 4.27). Der große Unterschied in den atomaren Größen von Ba und Li fördert die Kippbewegung der (LiBa)₆N-Oktaeder und die Verengung des äquatorialen Li-Sechsecks. Dies ist auch der Grund für die bevorzugte und geordnete Besetzung der jeweiligen Metallatompositionen.

Die Struktur von Na₁₅Li₈Ba₁₂N₆ weicht von den Strukturen der Na/Ba- und Na/Ca/Ba-Subnitride ab, ist aber ähnlich zu denen der Subnitride LiBa₂N und Li₈₀Ba₃₉N₉ in Bezug auf die Koordination der N-Atome durch Alkalimetallatome. Wie vorher erwähnt wurde, gibt es keine Na-N-Kontakte in Na/Ba-Subnitriden im Gegensatz zu Li/Ba-Subnitriden, wo Li-N Kontakte beobachtet wurden. Der Zersetzungspunkt von Na₁₅Li₈Ba₁₂N₆ wurde gemäß DTA-Untersuchungen um 125(2) °C gefunden. Diese Temperatur ist vergleichbar mit jenen für andere Subnitride mit hohem Na-Gehalt, zum Beispiel Na₅Ba₃N (133 °C) [68] bzw. die intermetallische Phase Ba₁₉Li₄₄ (126(3) °C). Sie ist aber etwas niedriger als für die zwei quaternären Subnitride Na₂₂Ba₁₄CaN₆ (152 °C) [68] und Na₁₄Ba₁₄CaN₆ (168 °C) [68].

4.9.3 Elektrische Leitfähigkeit

Die elektrischen Messungen wurden an einer Tablette aus gepresstem Pulver von Na₁₅Li₈Ba₁₂N₆ durchgeführt. Der Pressling dieser Verbindung zeigt metallische Leitfähigkeit. Beim Abkühlen der Probe war der Absolutwert des Widerstandes etwas kleiner als beim anschließenden Aufheizen auf Raumtemperatur Die (Abbildung 4.28). Widerstandsabhängigkeit von der Temperatur ist der beobachtet für Li₈₀Ba₃₉N₉ sehr ähnlich. Zudem sieht man in der Kurve kleinere Sprünge. Dieses Verhalten deutet auf abnehmenden Kontakt zwischen den Pulverkörnern beim Durchlaufen der Messung. Der Absolutwert des Widerstandes wurde aber aus der Abkühlkurve bestimmt. Der spezifische Widerstand bei 20 °C von 203 $\mu\Omega$ /cm ist groß im Vergleich zu anderen Subnitriden, aber kleiner als für NaBa₃N (240 $\mu\Omega$ /cm). Das Restwiderstandsverhältnis beträgt etwa 4. Die elektrische Beweglichkeit der Leitungselektronen in Na₁₅Li₈Ba₁₂N₆ (2.1 cm²/Vs) ist zweimal kleiner als die von Barium (4.0 cm²/Vs) und deutlich unter der von Alkalimetallen.

Abbildung 4.28 Der spezifische Widerstand eines Pulverpresslings aus Na₁₅Li₈Ba₁₂N₆.

4.10 Na₁₄Ba₁₄LiN₆

4.10.1 Darstellung

Ein neues quaternäres Subnitrid, Na₁₄Ba₁₄LiN₆, wurde aus Barium, NaN₃, Lithium, und Natrium erhalten. Eine Probe, die nach Röntgenaufnahmen 90% diese Phase enthielt, wurde aus 500 mg Ba, 71.7 mg Na, 1.8 mg Li und 33.8 mg NaN₃ hergestellt. Das Gemenge wurde in einer Tantal-Ampulle im Handschuhkasten unter Ar eingewogen. Die Ampulle wurde unter Schutzgas mit einem elektrischen Lichtbogen zugeschweißt und in eine Duran-Glasampulle eingeschmolzen. Um das Azid zu zersetzen, wurde die Reaktionsmischung mit 10 °C/h auf 320 °C erhitzt und fünf Tage bei dieser Temperatur gehalten. Dann wurde sie mit 1 °C/h auf 120 °C abgekühlt und einen Monat lang bei dieser Temperatur aufbewahrt. Das spröde metallische Produkt war nach Röntgenbeugungsdaten durch etwa 10% Ba₂N verunreinigt.

4.10.2 Kristallstrukturbestimmung

Abbildung 4.29 Ergebnis der Rietveldverfeinerung für Na₁₄Ba₁₄LiN₆

Das Röntgenbeugungsbild der Verbindung entspricht dem von Na₁₄Ba₁₄CaN₆ [30]. Es

ließ sich mit kubischer Elementarzelle (a = 17.7955(5) Å) in der Raumgruppe Fm3m indizieren. Alle Versuche, einen Einkristall in guter Qualität zu erhalten, haben versagt. Um die Korrektheit des Modells zu prüfen, wurden die Kristallstruktur und atomare Positionen in einer Rietveld-Profilverfeinerung, mittels der Programme WinPLOTR und Fullprof [76, 77] untersucht.

Die Verfeinerung ergab $R_{Bragg} = 4.5\%$, $R_p = 4.5\%$ und $R_{wp} = 6.0\%$ mit 733 Reflexen, 21 globalen, 6 profil- und 14 intensitätabhängigen Parametern. Abbildung 4.29 vergleicht das endgültige berechnete Beugungsbild mit den beobachteten Daten. Die Details der Strukturuntersuchung an Na₁₄Ba₁₄LiN₆ sind in den Tabellen 7.41–7.44 zusammengestellt.

4.10.3 Kristallstruktur

Die Kristallstruktur von Na₁₄Ba₁₄LiN₆ ist isotyp zu der von Na₁₄Ba₁₄CaN₆ [146] und wird am besten als eine kubisch dichteste Kugelpackung von Ba₁₄LiN₆-Clustern beschrieben, die von Na-Atomen umgeben sind (Abbildung 4.30).

Abbildung 4.30 Die Struktur von Na₁₄Ba₁₄LiN₆. Blickrichtung [001]. LiN₆-Oktaeder sind hervorgehoben.

Dieser Cluster bekannter Topologie (Abbildung 4.31) enthält erstmals ein zentrales Li-Atom. Der Cluster besteht aus sechs N-zentrierten flächenverknüpften Ba₅Li-Oktaedern. Die gleichen, jedoch kantenverknüpften Oktaeder treten interessanterweise in der Struktur von LiBa₂N auf.

Abbildung 4.31 Ba₁₄LiN₆-Cluster in der Strukturen von $Li_xNa_yBa_{14}LiN_6$. Ba₅Li-Oktaeder ist hervorgehoben.

Es soll betont werden, dass die interatomaren Li-N-Abstände in Na₁₄Ba₁₄LiN₆ ($d_{Li-N} = 2,56(2)-2,61(3)$ Å) ziemlich genau wie die in Na₁₄Ba₁₄CaN₆ ($d_{Ca-N} = 2,57$ Å) sind. Sechs Stickstoffatome bilden die Lücke. Diese ist auf den ersten Blick ein wenig zu groß für das Li-Kation. Diese Tatsache könnte aber mit der starken Abstoßung zwischen den Nitridionen erklärt werden. Infolgedessen ist Lithium in diesem Cluster noch von acht Ba-Atomen umgeben. Die Abstände zwischen inneren Li- und Ba-Atomen in den Ba₁₄LiN₆-Clustern mit 3.170(3)–3.206(3) Å sind etwas kürzer als die entsprechenden Ba-Ca-Abstände in Na₁₄Ba₁₄CaN₆ (3,2783(2) Å) und deutlich kürzer als für die anderen bekannten Li-Ba-Verbindungen.

4.11 $Li_4Na_{11}Ba_{14}LiN_6$ und $Li_5Na_{10}Ba_{14}LiN_6$

4.11.1 Darstellung

Die Subnitride Li₄Na₁₁Ba₁₄LiN₆ und Li₅Na₁₀Ba₁₄LiN₆ bilden sich unter ganz ähnlichen Bedingungen wie Na₁₄Ba₁₄LiN₆. Kristalle beider Verbindungen wurden in der Reaktion von 500 mg Barium, 19.1 mg Lithium, 97 mg Natrium und 19.7 mg NaN₃ als Nebenphasen beobachtet. Bei dem Versuchs, die reine Phase zu synthetisieren (464.3 mg Ba, 9.1 mg Li, 65.8 mg Na und 57.6 mg Ba(N₃)₂), wurden Li₄Na₁₁Ba₁₄LiN₆ und Li₅Na₁₀Ba₁₄LiN₆ neben NaBa erhalten. Proben mit hoher Ausbeute an diesen Phasen enthielten keine Kristalle in der für Strukturuntersuchungen notwendigen Qualität. Die Angaben zur Struktur beruhen daher auf Pulveruntersuchungen.

4.11.2 Kristallstruktur

Beide Verbindungen, Li₅Na₁₀Ba₁₄LiN₆ und Li₄Na₁₁Ba₁₄LiN₆, kristallisieren in der Raumgruppe F43m mit den Gitterparametern 17.805(2) bzw. 17.874(2) Å. Die Details zur

Abbildung 4.32 Die Struktur von Li₅Na₁₀Ba₁₄LiN₆. Blickrichtung [001]. LiN₆-Oktaeder sind hervorgehoben.

Strukturverfeinerung und kristallographische Informationen für Li₄Na₁₁Ba₁₄LiN₆ und Li₅Na₁₀Ba₁₄LiN₆ sind im Kapitel 7.13–14 zusammengestellt.

Sie stellen weitere Packungsvarianten von Natrium- und jetzt auch Lithiumatomen mit Ba₁₄MN₆-Clustern (M = Ca, Li) dar. Die Strukturen von Li₅Na₁₀Ba₁₄LiN₆ (Abbildung 4.32) und Li₄Na₁₁Ba₁₄LiN₆ sind sehr ähnlich zu der von Na₁₄Ba₁₄LiN₆. Sie enthalten den gleichen Ba₁₄LiN₆-Cluster, mit Li- und Na-Atomen dazwischen, die auch die großen Ba₆-Oktaederlücken besetzen. Der einzige Unterschied zwischen den beiden Strukturen liegt in der Besetzung der Oktaederlücken: In der Struktur von Li₅Na₁₀Ba₁₄LiN₆ sind sie mit den Lithium- und in der Struktur von Li₄Na₁₁Ba₁₄LiN₆ mit den Natriumatomen gefüllt.

4.12 LiNa₁₄Ba₁₄LiN₆

4.12.1 Kristallstruktur

Aus dem stöchiometrischen Gemenge der Elemente mit dem molaren Verhältnis Li:Na:Ba:N = 2:14:14:6 wurde, gemäß der Röntgenpulveruntersuchung des Reaktionsproduktes, nur eine Phase, $\text{Li}_x\text{Na}_{14}\text{Ba}_{14}\text{LiN}_6$, erhalten (Abbildung 4.33). Diese wurde mit kubischer Symmetrie mit dem Gitterparameter a = 17.7941(4) Å indiziert, d. h. praktisch gleich wie für die bekannte Verbindung Na₁₄Ba₁₄LiN₆ (a = 17.7955(5) Å) [180].

Abbildung 4.33 Gemessenes und berechnetes Pulverdiffraktogramm von "LiNa₁₄Ba₁₄LiN₆".

Leider reagiert die Rietveldverfeinerung nicht empfindlich auf die leichten Atome. Der einzige Unterschied zwischen den Strukturen besteht in der Besetzung der Ba₆-Oktaederlücken, also kann die Existenz von LiNa₁₄Ba₁₄LiN₆ nur aus Einkristalldaten bestätigt werden.

4.12.2 Elektrische Leitfähigkeit

Die elektrischen Messungen wurden an einer Tablette aus gepresstem Pulver von LiNa₁₄Ba₁₄LiN₆ durchgeführt. Der Pressling dieser Verbindung zeigt metallische Leitfähigkeit. Die Widerstandsabhängigkeit von der Temperatur (Abbildung 4.34) ist der beobachtet für Li₈₀Ba₃₉N₉ und Na₁₅Li₈Ba₁₂N₆ sehr ähnlich. Zudem sieht man auch in der Kurve kleinere Sprünge und beim Abkühlen der Probe war der Absolutwert des Widerstandes deutlich kleiner als beim Aufheizen. Dieses Verhalten deutet auf abnehmenden Kontakt zwischen den Pulverkörnern beim Durchlaufen der Messung wie dies auch für die vorangehend beschriebenen Messungen beobachtet wurde. Der Absolutwert des Widerstandes wurde aus der Abkühlkurve bestimmt. Der spezifische Widerstand bei 20 °C von 261 μ Ω/cm ist groß im Vergleich zu anderen Subnitriden (siehe Tabelle 2.5), aber vergleichbar mit dem von NaBa₃N (240 μ Ω/cm). Das Restwiderstandsverhältnis beträgt etwa 2.

Abbildung 4.34 Der spezifische Widerstand eines Pulverpresslings von LiNa₁₄Ba₁₄LiN₆

4.13 Vergleich der Strukturen von Li_xNa_yBa₁₄LiN₆

In den Strukturen von Li_xNa_yBa₁₄LiN₆ (x, y = 0, 14; 4, 11; 5, 10) liegen große Ba₆-(d_{Ba-Ba} = 5.4304(5)–5.3560(3) Å) und Na₆- (d_{Na-Na} = 6.053(1)–6.292(1) Å) Oktaeder vor. In der Struktur von Na₁₄Ba₁₄LiN₆ sind die Ba₆-Oktaeder leer. In Li₄Na₁₁Ba₁₄N₆ und Li₅Na₁₀Ba₁₄LiN₆ sind diese oktaedrischen Lücken zwischen Ba-Atomen jeweils mit Na- und Li-Atomen gefüllt (Abbildung 4.35). Vier Flächen des Na₆-Oktaeders werden von Li-Atomen überkappt, die ein Tetraeder in Li₄Na₁₁Ba₁₄LiN₆ bilden (Abbildung 4.35a). In Li₅Na₁₀Ba₁₄LiN₆ und Na₁₄Ba₁₄LiN₆ liegen die Li- und Na-Atome knapp innerhalb der Na₆-Oktaeder (Abbildung 4.36b, c). Gemäß dem Unterschied in den Atomradien von Na und Li, liegt in den Strukturen von Li₄Na₁₁Ba₁₄LiN₆ und Li₅Na₁₀Ba₁₄LiN₆ ein anderer Typ kleiner Lücken im Na₆-Oktaeder vor. Die Na- und Li-Atome zwischen den Ba₁₄LiN₆-Clustern haben ikosaedrische Koordination, was typisch für intermetallische Verbindungen ist. Li₄Na₁₁Ba₁₄LiN₆ und Li₅Na₁₀Ba₁₄LiN₆ gehören ebenfalls zur kleinen Gruppe der Verbindungen mit metallischen Na-Li-Kontakten. Solche Kontakte wurden vorher nur in Li₁₃Na₂₉Ba₁₉ und Li_{18.9}Na_{8.3}Ba_{15.3} [181] beobachtet.

Abbildung 4.35a Die Lücken in der Struktur von Li₄Na₁₁Ba₁₄LiN₆.

Trotz der verschiedenen Umgebungen dieses Clusters in den drei Verbindungen $Li_xNa_yBa_{14}LiN_6$ (x, y = 0, 14; 4, 11; 5, 10) sind die Atomabstände im Clusterkern auf 0.05 Å (Tabelle 4.2) identisch.

Atome		Abstände (Å)			
			Li ₄ Na ₁₁ Ba ₁₄ LiN ₆	Li ₅ Na ₁₀ Ba ₁₄ LiN ₆	
Ν	Li	×6	2.58(2)	2.61(1)	
Ν	Ba1	×12	2.717(7)	2.710(3)	
Ν	Ba2	×12	2.701(7)	2.704(3)	
Ν	Ba3	×6	2.52(2)	2.49(1)	
Li	Ba1	×4	3.206(3)	3.180(3)	
Li	Ba2	×4	3.180(4)	3.170(3)	
Ba1	Ba2	×12	3.687(2)	3.6666(7)	
Ba1	Ba3	×12	4.174(2)	4.1705(7)	
Ba2	Ba3	×12	4.172(2)	4.1699(7)	
			Na ₁₄ Ba ₁₄ LiN ₆	Na ₁₄ Ba ₁₄ CaN ₆	
Ν	Li(Ca)	×6	2.56(1)	2.57	
Ν	Ba1	×6	2.55(1)	2.50	
Ν	Ba2	×24	2.692(8)	2.762	
Ba2	Li(Ca)	×8	3.174(3)	3.2783	
Ba2	Ba1	×24	4.1787(8)	4.1578	
Ba2	Ba2	×12	3.6652(8)	3.7855	

 Tabelle 4.2
 Interatomare Abstände in den Ba₁₄MN₆-Clustern (M = Li, Ca)

Alle weiteren Versuche, Subnitride mit dem $Ba_{14}LiN_6$ -Cluster darzustellen, (beispielweise $Na_nBa_{14}LiN_6$ mit n = 8 oder 17, wie mit Ca, oder $Li_xNa_{15-x}Ba_{14}LiN_6$ mit x = 11) sowie Li-ersetzte Verbindungen mit dem $Ba_{14}CaN_6$ -Cluster, haben versagt. Insbesondere in Anwesenheit von Ca bei Temperaturen über 200 °C konnten nur Na₈Ba₁₄CaN₆ [148] und Na₇Ba₁₄CaN₆ [147] beobachtet werden.

4.14 Thermisches Verhalten von Li_xNa_yBa₁₄LiN₆

Li₅Na₁₀Ba₁₄LiN₆ ist stabil bis 255(1) °C, wo es in NaBa₃N [24] und Ba₂N [141] zerfällt. Na₁₄Ba₁₄LiN₆ zersetzt sich bei 249(2) °C. Diese Temperatur ist höher als jene der strukturell verwandten Na/Ba-Phasen, Na₁₄Ba₁₄CaN₆ (168 °C) [68], Na₂₂Ba₁₄CaN₆ (152 °C) [68], Na₁₇Ba₁₄CaN₆ (208 °C) [68] und Na₈Ba₁₄CaN₆ (238(3)) °C sowie der Li/Ba-Subnitride Li₈₀Ba₃₉N₉ (165(1) °C) und LiBa₃N (237 °C), jedoch vergleichbar mit einer anderen verwandten Phase, Na₇Ba₁₄CaN₆ (338(3) °C). Es ist auffällig, dass der endotherme Effekt bei einer Probe der Zusammensetzung "LiNa₁₄Ba₁₄LiN₆" bei 267(1) °C um 18 °C höher als bei Na₁₄Ba₁₄LiN₆ erscheint.

4.15 Li₂₆Na₅₈Ba₃₈N_x

4.15.1 Darstellung

Metallisches Barium, metallisches Lithium, Ba(N₃)₂ und BaH₂ (Merck, 99 %) wurden für die Synthesen benutzt. Folgende Mengen der Ausgangssubstanzen wurden in Tantal-Ampullen im Handschuhkasten unter Ar eingewogen. Probe А (Gesamtzusammensetzung Li₄Na₆Ba₆N): 486.1 mg Ba, 83.7 mg Na, 17.0 mg Li und 22.4 mg Ba(N₃)₂; Probe B (Li₂₆Na₅₈Ba₃₈N): 497.8 mg Ba, 127.8 mg Na, 17.4 mg Li und 3.5 mg Ba(N₃)₂; Probe C (Li₂₆Na₅₈Ba₃₈N_{0.5}): 499 mg Ba, 127.8 mg Na, 17.4 mg Li und 1.8 mg Ba(N₃)₂; Probe D (Li₂₆Na₅₈Ba₃₈H): 493.4 mg Ba, 127.8 mg Na, 17.4 mg Li und 6.7 mg BaH₂; Probe E (Li₂₆Na₅₈Ba₃₈H_{0.5}): 497.3 mg Ba, 127.8 mg Na, 17.4 mg Li und 3.8 mg BaH₂; Probe F (Li₁₃Na₂₉Ba₁₉): 500 mg Ba, 127.8 mg Na und 17.4 mg Li. Die Ampullen wurden unter Schutzgas mit einem elektrischen Lichtbogen zugeschweißt und in Duran-Glasampullen eingeschmolzen. Um das Azid zu zersetzen, wurden die Reaktionsgemenge mit 10 °C/h auf 400 K erhitzt und fünf Tage bei dieser Temperatur gehalten. Dann wurden sie mit 1 °C/h auf 120 °C abgekühlt und zwei Wochen lang bei dieser Temperatur aufbewahrt. Nach röntgenografischer Untersuchung enthielt Probe A ca. 60 Gew-% Li₅Na₁₀Ba₁₄LiN₆, und 40 % Li₂₆Na₅₈Ba₃₈N. Die Proben B, C und D enthielten Li₂₆Na₅₈Ba₃₈E_x verunreinigt durch NaBa. Li₁₃Na₂₉Ba₁₉ war in der Probe F zu etwa 90% enthalten.

4.15.2 Kristallstruktur

Bei Untersuchungen an Li-Na-Ba-Subnitriden wurden einige Kristalle mit kubischer F-zentrierter Elementarzelle gefunden, deren Beugungsdiagramm dem von Li₁₃Na₂₉Ba₁₉ mit einem um 0.7% größeren entsprach, allerdings Gitterparameter. Die Kristallstrukturanalyse ergab die gleichen Metallatompositionen wie für Li₁₃Na₂₉Ba₁₉, jedoch eine Restelektronendichte von 2.9 e^{-1}/A^3 auf der Position 4d, die der zentralen Tetraederlücke im Li₂₆-Cluster ($d_{Li - Q1} = 1.9$ Å) entspricht. Die Verfeinerung erfolgte daraufhin mit einem N-Atom in 4d. Mit gezielten Einwagen für die Darstellung von $Li_{26}Na_{58}Ba_{38}N_x$ für x = 1 und 0.5 wurden Produkte mit a = 27.530(2) Å und 27.415(3) Å erhalten.

Das zentrale Strukturmerkmal ist ein großer Li₂₆N-Cluster (Abbildung 4.36a). Darin ist ein N-zentriertes Li₄-Tetraeder von weiteren 4. 6 und 4 × 3 Li Atomen über den Flächen, Kanten und Ecken umgeben. Diese Li₂₆N-Cluster nehmen die Lagen der kubisch dichtesten Kugelpackung ein, und Ba- und Na-Atome füllen die Zwischenräume. Alle Oktaederlücken in der Kugelpackung und die Hälfte der Tetraederlücken sind mit BaBa₄Li₁₂-Polyedern besetzt wie im LiAlSi-Strukturtyp [127, 128]. Ba-Atome sind durch Frank-Kasper-Polyeder mit Koordinationszahlen 15, 16 und 17 (3 – 5 Ba Atome in der Koordinationssphäre, Abbildung 4.37) umgeben, während alle Na und Li Atome in den Strukturen ikosaedrisch umgeben sind.

Abbildung 4.36 Li₂₆N-Cluster (a) in der Struktur von Li₂₆Na₅₈Ba₃₈N. Zentrales Tetraeder (b) ist hervorgehoben.

Die Anwesenheit der Stickstoff- oder Wasserstoffatome ändert die Struktur von $Li_{13}Na_{29}Ba_{19}$ nur geringfügig: Ikosaeder im Li_{26} -Cluster werden leicht verzerrt, dabei bleibt die Struktur des Clusters und seines zentralen Teils (Abbildung 4.36b) praktisch unverändert. Die im zentralen Li₄-Tetraeder tangential abgeflachten Schwingungsellipsoide in der Struktur von $Li_{26}Na_{58}Ba_{38}N$ sind charakteristisch für die Besetzung des Zentrums mit einem Anion und damit starken zentral gerichteten Bindungen. In der Struktur der intermetallischen Phase $Li_{13}Na_{29}Ba_{19}$ tritt eine solche Anisotropie nicht auf. Interessanterweise führt das Auffüllen der Tetraederlücken zu einer leichten Aufweitung der Kristallstruktur im Vergleich zu $Li_{13}Na_{29}Ba_{19}$. Der Li-N-Bindungsabstand in $Li_{26}Na_{58}Ba_{38}N$ liegt bei 1.92(2) Å, ähnlich wie in Li_3N [4]. Dabei sind die Li-Li-Abstände mit 2.96(2)–3.31(1) Å ähnlich denen in anderen Li-haltigen intermetallischen Verbindungen. Li-Na-Kontakte (3.28(2)–3.33(2) Å) unterschreiten etwas die Summe der Metallradien.

Abbildung 4.37 Koordinationspolyeder um Barium mit Koordinationszahlen 15 (a), 16 (b) und 17 (c) in der Strukturen von Li₂₆Na₅₈Ba₃₈E_x.

Alle restlichen Atomabstände, Ba-Ba (4.4391(9)–4.5314(7) Å), Ba-Na (3.971(7)– 4.370(6) Å), Ba-Li (3.79(3)–4.21(1) Å) und Na-Na (3.56(1)–3.88(2) Å) entsprechen weitgehend den Summen der jeweiligen Metallradien.

Da die "leere" intermetallische Verbindung Li₁₃Na₂₉Ba₁₉ als eine polytetraedrische Struktur beschreibbar ist, könnte die Einführung von N-Atomen zur Auffüllung verschiedener Tetraederlücken führen. Es werden jedoch ausschließlich die zentralen Tetraeder der Li₂₆-Cluster besetzt. Möglicherweise sind viele der Tetraederlücken aufgrund der Beteiligung von Na-Atomen ungünstige Lagen für die Stickstoffatome, was sich aufgrund der geringen Stabilität von Na₃N [6] vermuten lässt. Dieses Argument gilt allerdings nicht für weitere Lücken die von Li₄- und Li_nBa_{4-n}-Tetraedern (n = 1–3) gebildet werden.

4.15.3 Substitution des Stickstoffs durch Wasserstoff

Bei zwei weiteren Proben (D und E) wurden Synthesen mit Wasserstoff durchgeführt. Die erhaltenen Verbindungen hatten fast die gleichen Gitterparameter wie die der Stickstoffverbindung (x = 1, Tabelle 1), was wohl mit ähnlichen Ionenradien der Anionen N³⁻ und H⁻ erklärt werden kann. Das Li₄-Tetraeder ist offensichtlich etwas zu klein für das N³⁻(H⁻)-Anion und seine Auffühlung führt zu einer Aufweitung des Tetraeders. Das Volumen des zentralen Li₄-Tetraeders in Li₂₆Na₅₈Ba₃₈N ist mit 3.65 Å³ um 21% größer als in Li₁₃Na₂₉Ba₁₉ (3.03 Å³), 7% größer als in Li₂₆Na₅₈Ba₃₈N_x und fast gleich groß wie in Li₂₆Na₅₈Ba₃₈H (3.61 Å³).

Probe	Е	X	<i>a</i> , Å
А	N	1	27.528(2)
В	Ν	1*	27.530(2)
С	Ν	0.5*	27.415(3)
D	Н	1*	27.554(3)
Е	Н	0.5*	27.405(7)
F	-	0*	27.335(2)

Tabelle 4.3. Gitterkonstanten der Verbindungen Li₂₆Na₅₈Ba₃₈E_x

* - über Einwaagen vorgegebene Zusammensetzungen

5 Zusammenfassung

Diese Arbeit beschreibt die Darstellung, die Kristallstrukturen und die physikalischen Eigenschaften von Subnitriden in den Systemen Li-Ba-N und Li-Na-Ba-N sowie der intermetallischen Verbindungen von Li, Na, Ba und Ca. Die Strukturen von zwei bekannten Phasen, BaLi₄ und NaBa, wurden aufgrund der kleineren detektierten Gitterparameter noch einmal verfeinert.

In früheren Untersuchungen wurden mehrere metallreiche Nitride von Barium in Kombination mit Natrium entdeckt. Wegen fehlender Perspektiven, dieses Gebiet um Natrium oder schwere Alkalimetalle zu erweitern, wurden Versuche gemacht, Subnitride mit Lithium zu synthetisieren. Aufgrund bekannter binärer Li-Verbindungen mit Stickstoff und Barium und der schlechten Mischbarkeit mit Natrium waren einige neue Phasen zu erwarten; stattdessen wurde eine große Reihe ternärer und quaternärer Verbindungen entdeckt. Alle diese Verbindungen sind in Tabelle 5.1 zusammengestellt. Wie man daraus ersehen kann, kristallisieren alle mit hoher Symmetrie.

	Verbindung	RG	а	С
1	Li ₈₀ Ba ₃₉ N ₉	$I\overline{4} 2m$	16.0763(8)	32.167(2)
2	LiBa ₂ N	$P4_2/nmc$	7.980(1)	14.263(2)
3	LiBa ₃ N	$P6_3/mmc$	8.182(1)	6.922(4)
4	Li _{0.25} Na _{0.75} Ba ₃ N	$P6_3/mmc$	8.381(3)	6.953(6)
5	$Na_{15}Li_8Ba_{12}N_6$	$R\bar{3}m$	12.3409(9)	33.311(4)
6	$Na_{11}Ba_{14}Li_5N_6$	$F\overline{4} 3m$	17.874(2)	-
7	$Na_{10}Ba_{14}Li_6N_6$	$F\overline{4} 3m$	17.805(2)	-
8	Na ₁₄ Ba ₁₄ LiN ₆	$Fm\overline{3}m$	17.7956(8)	-
9	Li ₂₆ Na ₅₈ Ba ₃₈ N	$F\overline{4} 3m$	27.528(2)	-
10	Li _x Na _y Ba _z N	-	-	-
11	$Ba_{19}Li_{44}$	$I\overline{4} 2d$	16.3911(5)	32.712(1)
12	$Li_{13}Na_{29}Ba_{19}$	$F\overline{4} 3m$	27.335(1)	-
13	Li _{33.3} Ba _{13.1} Ca ₃	$R\bar{3}c$	19.9127(4)	90.213(3)
14	Li _{18.9} Na _{8.3} Ba _{15.3}	$P\overline{3}$	20.420(3)	92.914(19)
1a	BaLi ₄	$P6_3/mmc$	10.936(1)	8.943(2)
2a	NaBa(Li)	$Fd\overline{3}m$	16.927(1)	-

 Tabelle 5.1
 Die Ergebnisse der Röntgenuntersuchung der neuen Verbindungen

Viele dieser Verbindungen weisen eine neue Struktur auf, drei Subnitride, LiBa₃N, (LiNa)Ba₃N und Na₁₄Ba₁₄LiN₆, sind isostrukturell zu bereits bekannten Verbindungen. Es wurden keine Einkristalle von diesen drei Phasen erhalten und sie wurden daher anhand der Pulverdaten charakterisiert. Es bleiben aber noch Fragen sowohl zu der Struktur von LiBa₃N als auch zu der der festen Lösung (Li,Na)Ba₃N. Einige bekannte Subnitride wurden weitergehend untersucht und es gelang, Na₈Ba₁₄CaN₆ und Na₇Ba₁₄CaN₆ rein zu erhalten. Ba₁₄MN₆-Cluster wurden mit Li, Ca, und Sr, aber nicht mit Mg beobachtet.

In den früher beschriebenen Subnitriden der Alkali- und Erdalkalimetalle wurden nur für letztere direkte Kontakte zu den Stickstoffatomen gefunden. Der Einsatz von Lithium brachte neue Perspektiven auf diesem Gebiet. In den Systemen mit Li wurden vier neue Cluster entdeckt, **Li**₁₂**Ba**₅**N**₆ (Li₈₀Ba₃₉N₉), **Li**₄**Ba**₈**N**₄ (LiBa₂N), **Li**₈**Ba**₁₂**N**₆ (Na₁₅Li₈Ba₁₂N₆) und **Ba**₁₄**LiN**₆ (Li_xNa_yBa₁₄LiN₆), worin beide, Lithium und Barium, an Stickstoff gebunden sind (Abbildungen jeweils 4.15d, 4.22a, 4.27 und 4.31). Die Struktur von Li₈₀Ba₃₉N₉ enthält sowohl Li₁₂Ba₅N₆-Cluster, die aus sechs flächenverknüpften, stickstoffzentrierten Li₂Ba₃N-Bipyramiden aufgebaut sind, als auch isolierte Ba₆N-Oktaeder. Ba₁₄LiN₆-Cluster bilden sich aus sechs Ba₅LiN-Oktaedern. Die in der Struktur von LiBa₂N bzw. Na₁₅Li₈Ba₁₂N₆ gefundenen Li₄Ba₈N₄- bzw. Li₈Ba₁₂N₆-Cluster sind jeweils aus 4 und 6 kanten- und eckenverknüpften Li/Ba-Oktaedern gebildet. Im Gegensatz zu NaBa₃N, wo Na- und Ba-Atome klar in der Struktur verteilt sind, könnten in der Verbindung LiBa₃N Li-Atome Positionen in den Ba₃-Ketten besetzen und damit auch an Stickstoff gebunden sein.

In allen entdeckten intermetallischen Verbindungen bzw. einem Subnitrid, Li₈₀Ba₃₉N₉, wurden vorher nicht bekannte monoatomare Li-Anti-Mackay-Cluster beobachtet. Von den sechs stabilsten mit n = 19, 23, 26, 29, 34, 45, die jeweils aus 2, 3, 4, 5, 6 und 13 sich durchdringenden Ikosaedern gebildet werden, wurden nur die mit n = 19 und 26 beobachtet. Reihen aus flächenverknüpften Li-Ikosaedern waren von der Struktur des BaLi₄ bekannt. Li₁₅- bzw. Li₁₇-Gruppen, die sich aus Ikosaedern mit zwei bzw. vier zusätzlichen Li-Atomen bilden, wurden in Li_{18.9}Na_{8.3}Ba_{15.3} bzw. Li₈₀Ba₃₉N₉ gefunden.

Die sehr luft- und strahlempfindlichen Verbindungen des Systems Li-Ba-Ca wurden erstmals mittels Elektronenmikroskopie untersucht. In einer Probe mit 25 At.-% Ca konnten mittels Precession Electron Diffraction zwei unterschiedliche Phasen als Hauptkomponenten einer inhomogenen Probe identifiziert werden. Diese kristallisieren im Li_{33.3}Ba_{13.1}Ca₃- bzw. Ba₁₉Li₄₄-Typ. EDX-Analysen und charakteristische Unterschiede in den Gitterparametern zeigten, dass beide Phasen einen variablen Ca-Gehalt besitzen können. Noch eine weitere unbekannte Ca-haltige Phase kann der bcc-Struktur zugeordnet werden.
Die Volumina von fast allen Subnitriden sind 2–6% kleiner als die Summe der entsprechenden Elementvolumina (Tabelle 5.2). In den Verbindungen mit hohem Stickstoffgehalt, Ba₂N, Ba₃N₂ bzw. LiBa₂N ist Δ V jeweils –17.2, –20.1 bzw. –23.6%. Im Gegensatz dazu, ist Δ V in allen Li-haltigen intermetallischen Phasen (außer Li₁₃Na₂₉Ba₁₉) um 2–9% größer. Im Falle von Li_{18.9}Na_{8.3}Ba_{15.3} kann die Volumenzunahme um 8.7% mit einer großen Zahl unbesetzter Ba-Positionen erklärt werden kann.

Material	$V = V_{\text{Zelle}}/Z, \text{ Å}^3$	ΔV , %	Literatur
NaBa	102.8	-0.1	[97]
NaBa(Li)	101.0	-0.2	[diese Arbeit]
Na ₂ Ba	142.0	-0.3	[99]
BaLi ₄	156.0	+3.0	[diese Arbeit]
Ba ₁₉ Li ₄₄	2197.2	+1.9	[diese Arbeit]
Li ₁₃ Na ₂₉ Ba ₁₉	2553.1	-3.0	[diese Arbeit]
Li _{18.9} Na _{8.3} Ba _{15.3}	1864.0	+8.7	[diese Arbeit]
Li _{33.3} Ba _{13.1} Ca ₃	1721.0	+2.6	[diese Arbeit]
Ba ₂ N	105.1	-17.2	[141]
Ba ₃ N	178.3	-6.3	[142]
Ba_3N_2	150.7	-20.1	[2]
NaBa ₃ N	215.4	-6.3	[24]
LiBa ₃ N	200.7	-5.3	[diese Arbeit]
$(Na_{0.75}Li_{0.25})Ba_3N$	211.5	-6.1	[diese Arbeit]
Na ₅ Ba ₃ N	373.6	-3.7	[25]
Na ₁₆ Ba ₃ N	982.8	-2.9	[26]
LiBa ₂ N	113.5	-23.6	[diese Arbeit]
Li ₈₀ Ba ₃₉ N ₉	4165	-0.9	[diese Arbeit]
Na7Ba14CaN6	1175.5	-2.6	[147]
$Na_8Ba_{14}CaN_6$	1216.4	-2.4	[148]
$Na_{14}Ba_{14}CaN_6$	1432.6	-3.4	[30]
Na ₁₇ Ba ₁₄ CaN ₆	1566.2	-2.2	[30]
$Na_{21}Ba_{14}CaN_6$	1712.2	-2.7	[30]
Na ₂₂ Ba ₁₄ CaN ₆	1755.4	-2.4	[30]
Na ₁₅ Li ₈ Ba ₁₂ N ₆	1464.7	-4.1	[diese Arbeit]
Na ₁₁ Ba ₁₄ Li ₅ N ₆	1427.5	-0.22	[diese Arbeit]
Na ₁₀ Ba ₁₄ Li ₆ N ₆	1409.7	-0.22	[diese Arbeit]
Li ₂₆ Na ₅₈ Ba ₃₈ N	5215.0	-0.9	[diese Arbeit]
Li ₂₆ Na ₅₈ Ba ₃₈ H	5229.9	-0.8	[diese Arbeit]
Na ₁₄ Ba ₁₄ LiN ₆	1421.0	-2.9	[diese Arbeit]
"LiNa14Ba14LiN6"	1408.5	-5.1	[diese Arbeit]

 Tabelle 5.2
 Kristallvolumen pro Formeleinheit f
 ür untersuchte Verbindungen

Das thermische Verhalten der Subnitride und der intermetallischen Verbindungen wurde untersucht, sofern diese in hinreichender Ausbeute dargestellt werden konnten. In der Abbildung 5.1 sind alle Schmelz- bzw. Zerfalltemperaturen der neuen Subnitride bzw. der intermetallischen Verbindungen mit den Daten bekannter Phasen verglichen. Die stabilsten der Li-haltigen Subnitride, Li_xNa_yBa₁₄LiN₆ bzw. LiBa₃N, zerfallen deutlich früher (249–267 bzw. 237 °C) als solche mit Na, Na₇Ba₁₄CaN₆ und NaBa₃N (338 bzw. 405 °C). Na₁₄Ba₁₄LiN₆ ist jedoch stabiler als die isostrukturelle Verbindung mit Ca (249 bzw. 168 °C). Die noch genau zu charakterisierende Verbindung Li_xNa_yBa_zN zersetzt sich schon bei 112 °C. Alle Lihaltigen Intermetallphasen zerfallen zwischen 123 °C (Li_{33,3}Ba_{13,1}Ca₃) und 156 °C (BaLi₄).

Abbildung 5.1 Thermische Stabilität der Li-haltigen Verbindungen

6 Summary

Because of its chemical inertness molecular nitrogen is often used in chemistry as a protective atmosphere. However it forms nitrides with many elements of the periodic system, with this reaction being spontaneous for lithium and the alkaline-earth metals. Ionic nitrides of beryllium, magnesium and calcium are well-known and structurally characterized [1]. Barium nitride [2] needs further investigations, however the pernitride (BaN₂ [3]) has been investigated thoroughly. In addition to Li₃N [4], the alkali metals sodium and potassium form the easily decomposable compounds Na₃N [5, 6] and K₃N [7]. Mixed ternary nitrides have been characterized only with lithium: LiMgN [8], LiCaN, LiSrN [9], LiBaN [10] and Li₄SrN₂ [9].

Metal-rich nitrides of the alkaline-earth metals [11] were discovered in 1955 by the thermal decomposition of Ba₃N₂ and Sr₃N₂ in the vacuum at 450 °C. The structure of Ca₂N was determined and refined from the single crystal diffraction data two years later [12]. Another method to synthesize such nitrides was found by Addison [13]: reactions were carried out with the addition of sodium. In such mixtures nitrogen reacts with barium already at 300–350 °C. Sodium could then be removed with the help of potassium as a liquid Na-K alloy. By analogy to the complex formation in aqueous solutions, a tetrahedral Ba₄N- and a distorted cubic Na₄Ba₄N complex were postulated [14].

Metal-rich oxides of the alkali metals are well-known since 1909 [15, 16]. Because of the extreme air sensitivity and low melting and decomposition temperatures their detailed characterization proved to be extremely difficult. So their exact compositions could be only partially investigated [17]. A structural proposal for the compound Cs_3O [18] contained an incomplete arrangement of the atoms [19]. The exact compositions and the structure principle of the known and newly discovered Rb and Cs suboxides were determined only in the 1970s. So clusters with oxygen-centered M₆O octahedra (M = Rb, Cs) were discovered [19, 20]. The clusters with double (Rb₉O₂ [21]) and triple (Cs₁₁O₃ [22]) octahedra behave like metal atoms and form with additional rubidium and cesium atoms series of compounds [23].

First attempts to transfer the suboxide chemistry into the systems with nitrogen were made by Künzel from 1977 to 1980, however the first subnitride, NaBa₃N [24], was discovered only in 1992 by Rauch and Simon. In the structure of this compound infinite rows of face-sharing nitrogen centered Ba₆ octahedra are arranged, similarly to the postulated structure of Cs₃O in the anti-TiI₃ structure type) [18]. Two further compounds with higher Na content, Na₅Ba₃N [25] and Na₁₆Ba₆N [26], were discovered later by Snyder. The first contains the same Ba₃N chains as in NaBa₃N, while the latter isolated Ba₆N octahedra. It was also clarified that

the phase previously described as Ag_8Ca_3 [27] is actually an isostructural subnitride, $Ag_{16}Ca_6N$ [26]. Two further ternary subnitrides with silver and calcium, $Ag_8Ca_{19}N_7$ [28] and $Ag_{1.36}Ca_7N_4$ [29], were discovered by Reckeweg. These contain clusters with face-sharing Ca_6N octahedra, which are connected directly ($Ag_{1.36}Ca_7N_4$ [29]) or via additional Ca_6N octahedra ($Ag_8Ca_{19}N_7$ [28]) to each other.

In recent years, numerous metal-rich nitrides of alkaline-earth metals in combination with Na have been discovered by Steinbrenner [19, 30]. All these compounds contain the same $Ba_{14}MN_6$ cluster (M = Ca, Sr) surrounded by different number of Na atoms. They can be characterized with the general formula $Na_nBa_{14}MN_6$ (*n* = 7, 8, 14, 17, 21, 22). The $Ba_{14}MN_6$ cluster is formed from six face-sharing Ba_5MN -octahedra, similarly as in the alkali metal suboxides.

A detailed knowledge of the relevant intermetallic systems is needed to open up this field of research. The well known and new intermetallic compounds of barium, lithium, and sodium are introduced in the chapter 3. For this reason a brief overview of the well known Ba subnitrides is compiled in the chapters 4.1–4.3. New results in the subnitride chemistry are presented and discussed in the chapters 4.4–4.15. Extending this chemistry to the heavier homologues of Na proved unsuccessful; however, Li emerged as the most promising candidate for further development of the field. Based on previously known binary Li compounds with nitrogen and barium and the poor miscibility with sodium, some new phases were expected, but a large row of ternary and quaternary compounds was discovered. For the structures of two phases, BaLi₄ and NaBa, the refinement was repeated due to somewhat smaller obtained lattice parameters. All these results are summarized in the Table 5.1.

Many of these compounds crystallize in a new structure type, three subnitrides, LiBa₃N, (LiNa)Ba₃N and Na₁₄Ba₁₄LiN₆, are isostructural to already known compounds. No single crystals of these phases were found, and their crystal structures were characterized based on the powder diffraction data. However, questions remain yet to the structure of LiBa₃N and of the solid solution (Li,Na)Ba₃N. Some previously known subnitrides were reexamined and it was possible to obtain pure Na₈Ba₁₄CaN₆ and Na₇Ba₁₄CaN₆. Ba₁₄MN₆ clusters have been observed with M = Li, Ca, and Sr, but up to now not with Mg.

In the previously described subnitrides of the alkali and alkaline-earth metals only for the latter direct contacts to the nitrogen atoms were found. In the systems with Li four new clusters, $Li_{12}Ba_5N_6$ in $Li_{80}Ba_{39}N_9$, $Li_4Ba_8N_4$ in $LiBa_2N$, $Li_8Ba_{12}N_6$ in $Na_{15}Li_8Ba_{12}N_6$ and $Ba_{14}LiN_6$ in $Li_xNa_yBa_{14}LiN_6$ were discovered, in which both lithium and barium have bonding contacts to nitrogen (Figures 4.15d, 4.22a, 4.27, and 4.31 respectively). The crystal structure of

 $Li_{80}Ba_{39}N_9$ contains both $Li_{12}Ba_5N_6$ clusters consisting of six face-sharing, nitrogen-centered Li_2Ba_3N bipyramids, as well as isolated Ba_6N -octahedra. A $Ba_{14}LiN_6$ -cluster is formed from six Ba_5LiN octahedra. The $Li_4Ba_8N_4$ and $Li_8Ba_{12}N_6$ clusters found in the structure of $LiBa_2N$ and $Na_{15}Li_8Ba_{12}N_6$ are formed of 4 and 6 vertex-sharing Li/Ba octahedra, respectively. In contrast to NaBa_3N, in which the structural roles of Na and Ba atoms are clearly different, in the structure of $LiBa_3N$ Li atoms could also occupy the positions in the Ba_3N -chains with close contacts to nitrogen.

In all discovered intermetallic compounds and one subnitride, $Li_{80}Ba_{39}N_9$, previously not known monoatomic Li anti-Mackay-type cluster were observed. From the six most stable with n = 19, 23, 26, 29, 34, 45, which are formed by 2, 3, 4, 5, 6, and 13 interpenetrating icosahedra respectively, only the ones with n = 19 and 26 were observed. Rows of face-sharing Li icosahedra already known from the structure of BaLi₄. Li₁₅ and Li₁₇ groups, formed of icosahedra with additional Li atoms, were found in Li_{18.9}Na_{8.3}Ba_{15.3} and Li₈₀Ba₃₉N₉.

The very moisture and electron beam sensitive compounds of the Li-Ba-Ca system were examined for the first time via electron microscopy and diffraction. In a sample with 25 At.-% Ca two different phases could be identified by means of Precession Electron Diffraction as main components of the inhomogeneous sample. These compounds crystallize in the Li_{33,3}Ba_{13,1}Ca₃ and Ba₁₉Li₄₄ type structures. EDX analyses and characteristic differences in the lattice parameters showed a variable Ca content in both phases. Another unknown Ca-containing phase can be assigned to the bcc structure.

The crystal volumes of almost all subnitrides are 2–6% smaller than the sum of the corresponding elemental volumes (Table 5.2). In the compounds with high nitrogen content, Ba₂N, Ba₃N₂ and LiBa₂N, Δ V is –17.2, –20.1, and –23.6 % respectively. In contrast to that, Δ V in all Li-containing intermetallic phases (except Li₁₃Na₂₉Ba₁₉) is about 2–9%. In the case of Li_{18.9}Na_{8.3}Ba_{15.3} the volume increases by about 8.7% can be explained with a large number of unoccupied Ba positions.

The thermal behavior of the subnitride and the intermetallic compounds was examined as far as they could be synthesized with sufficient yield and purity. In the figure 5.1 all melting and decomposition temperatures of the new subnitrides and the intermetallic compounds are compared with the data of the previously known phases. The most stable of the Li-containing subnitrides, Li_xNa_yBa₁₄LiN₆ and LiBa₃N, decompose at lower temperatures (249–267 and 237 °C) than those with Na, Na₇Ba₁₄CaN₆ and NaBa₃N (338 and 405 °C). Na₁₄Ba₁₄LiN₆ is however more stable than the isostructural compound with Ca (249 and 168 °C). All Li-containing intermetallic phases decompose between 123 °C (Li_{33.3}Ba_{13.1}Ca₃) and 156 °C (BaLi₄).

7 Literatur

- [1] O. Reckeweg, F. DiSalvo, Z. Anorg. Allg. Chem. 627 (2001) 371.
- [2] H.-T. Künzel, *Dissertation*, Universität Stuttgart 1980.

[3] G. Vajenine, G. Auffermann, Y. Prots, W. Schnelle, R. Kremer, A. Simon, R. Kniep, *Inorg. Chem.* **40** (2001) 4866.

- [4] H. Schulz, K. Schwarz, Acta Cryst. 34 (1978) 999.
- [5] D. Fischer, M. Jansen, Angew. Chem. 114 (2002) 1831.
- [6] G. Vajenine, *Inorg. Chem.* **46** (2007) 5146.
- [7] D. Fischer, Z. Cancarevic, J. Schön, M. Jansen, Z. Anorg. Allg. Chem. 630 (2004) 156.

[8] H. Yamane, T. Okabe, O. Ishiyama, Y. Waseda, M. Shimada, *J. Alloys Compounds* 319 (2001) 124.

- [9] G. Cordier, A. Gudat, R. Kniep, *Angew. Chem.* **101** (1989) 1689.
- [10] J.-F. Brice, J. Aubry, C. R. acad. Sci. 271 (1970) 825.
- [11] S. Ariya, E. Prokofyeva, I. Matveeva, J. General. Chem. USSR (Engl. Transl.) 25 (1955)609.
- [12] E. Keve, A. Skapski, Inorg. Chem. 7 (1968) 1757.
- [13] C. Addison, R. Pulham, E. Trevillion, J. Chem. Soc. Dalton Trans 20 (1975) 2082.
- [14] C. Addison, *The Chemistry of the Liquid Alkali Metals*, Wiley & Sons, Chichester, 1984.
- [15] E. Rengade, Bull. Soc. Chim. France 5 (1909) 994.
- [16] E. Rengade, C. R. Acad. Sci. Paris 148 (1909) 1199.
- [17] G. Brauer, Z. Anorg. Chem. 255 (1947) 101.
- [18] K.-R. Tsai, P. Harris, E. Lassettre, J. Phys. Chem. 60 (1956) 338.
- [19] A. Simon in: Molecular Clusters of the Main Group Elements; Eds.: M. Driess, H. Nöth,
- Wiley-VCH, Weinheim, 2004, pp. 246.
- [20] A. Simon in: Crystal Structure and Chemical Bonding in Inorganic Chemistry; Eds.: C. J.

M. Rooymans, A. Rabenau, North-Holland Publ. Comp., 1975, p. 47.

- [21] A. Simon, Z. Anorg. Allg. Chem. **395** (1973) 301.
- [22] A. Simon, Z. Anorg. Allg. Chem. 428 (1977) 187.
- [23] A. Simon, *Struct. Bonding* **36** (1979) 81.
- [24] P. Rauch, A. Simon, Angew. Chem. 104 (1992) 1505.
- [25] G. Snyder, A. Simon, J. Am. Chem. Soc. 117 (1995) 1996.
- [26] G. Snyder, A. Simon, Angew. Chem. 106 (1994) 713.
- [27] L. Calvert, C. Rand, Acta Crystallogr. 17 (1964) 1175.
- [28] O. Reckeweg, Th. Braun, F.-J. DiSalvo, H.-J. Meyer, Z. Anorg. Allg. Chem. 626 (2000) 62.

[29] P. Höhn, G. Auffermann, R. Ramlau, H. Rosner, W. Schnelle, R. Kniep, *Angew. Chem.***45** (2006) 6881.

- [30] A. Simon, U. Steinbrenner, J. Chem. Soc., Faraday Trans. 92 (1996) 2117.
- [31] O. Reckeweg, A. Simon, Z. Naturforsch. B 58 (2003) 1097.
- [32] *Gmelins Handbuch der Anorganischen Chemie, Band Natrium*, Verlag Chemie, Weinheim, 1966.

[33] E. Walitzi, H. Krischner, Z. Kristallogr. Kristallgeo. Kristallphys. Kristallchem. **137** (1973) 368.

- [34] H. Lux in: Anorganisch-chemische Experimentierkunst; Ed. J. A. Barth, 1954.
- [35] H. Kraus, H. Stach, Z. Anorg. Allg. Chem. 366 (1969) 34.
- [36] F. Helmlinger, P. Höhn, R. Kniep, Z. Naturforsch. B 48 (1993) 1015.
- [37] P. Höhn, R. Kniep, J. Maier, Angew. Chem. 105 (1993) 1409.
- [38] X. Chen, D. Ward, H. Eick, J. Alloys Compounds 206 (1994) 129.
- [39] D. B. Williams, C. B. Carter, *Transmission Elektron Microscopy: A Textbook in Material Science*, New York, Plenum Press, 1996.

[40] L. Reimer, *Transmission Elektron Microscopy, Third Edition*, Berlin, Heidelberg, New York, Springer, 1993.

- [41] R. Gruehn, R. Roß, *Chemie in unserer Zeit* **21**(6) (1987) 194.
- [42] E. Ruska, Angew. Chem. 99 (1987) 611.
- [43] R. Gruehn, H. Groh, Umschau 84(2) (1984) 55.
- [44] P. Jeitschko, A. Simon, R. Ramlau, Hj. Mattausch, Europ. Microsc. Anal. 2 (1997) 21.
- [45] L. Kienle, persönliche Mitteilung.
- [46] P. Goodman, A. Moodie, Acta Cryst. A30 (1974) 280.
- [47] J. Cowley, A. Moodie, Acta Cryst. 10 (1957) 609.
- [48] P. Stadelmann, *Ultramicroscopy* **21** (1987) 131.
- [49] Emaps 1.0, AnaliTEX 2002-2007.
- [50] Crisp 2.1a, Calidris, Manhemsvägen 4, Sollentuna, Sweden, 2007.
- [51] O. Salmon, D. Ahmann, J. Phys. Chem. 60 (1956) 13.
- [52] F. Smith, J. Less-Common Met. 147 (1974) 35.
- [53] B. Bohm, W. Klemm, Z. Anorg. Allg. Chem. 69 (1939) 243.
- [54] F. Kanda, D. Keller, U.S. Dept. Energy **TID-20849** (1964).
- [55] D. Keller, F. Kanda, A. King, J. Phys. Chem. 62 (1958) 732.
- [56] J. Ott, J. Goates, D. Anderson, H. Hall, J. Trans. Faraday Soc. 65 (1969) 2870.
- [57] J. Goates, J. Ott, C. Hsu, J. Trans. Faraday Soc. 66 (1970) 25.

- [58] J. Ott, J. Goates, D. Oyler, J. Trans. Faraday Soc. 67 (1971) 31.
- [59] C. Mathewson, Z. Anorg. Allg. Chem. 48 (1906) 193.
- [60] R. Lorenz, R. Winzer, Z. Anorg. Allg. Chem. 179 (1929) 281.
- [61] W. Roberts, U.S. Atomic Energy Comm. **TID-20639** (1964) 99.
- [62] F. Kanda, R. Stevens, D. Keller, J. Phys. Chem. 69 (1965) 3867.
- [63] C. Addison, G. Greffield, P. Hubberstey, R. Pulham, J. Chem. Soc. A (1971) 2688.
- [64] J. Goates, J. Ott, E. Delavarde, J. Trans. Faraday Soc. 67 (1971) 1612.
- [65] J. Goates, J. Ott, H. Hall, J. Chem. Eng. Data 71 (1971) 83.
- [66] D. Smith, Z. Anorg. Allg. Chem. 56 (1908) 113.
- [67] W. Klemm, D. Kunze, in *Proc. Int. Symp. on Alkali Metals, London Chem. Soc., Vol. 22*, 1967, pp. 3.
- [68] U. Steinbrenner, *Dissertation*, Universität Stuttgart 1997.
- [69] D. Peterson, M. Indig, J. Am. Chem. Soc. 80 (1960) 5645.
- [70] Stoe and Cie, Darmstadt, Germany, WinXPow, 1999.
- [71] L. Akselrud, P. Zavalii, Yu. Grin, V. Pecharsky, B. Baumgartner, E. Wölfel, Mater. Sci.

Forum 133–136 (1993) 335.

- [72] P. Werner, L. Eriksson, M. Westdahl, J. Appl. Crystallogr. 18 (1985) 367.
- [73] J. Visser, J. Appl. Crystallogr. 2 (1969) 89.
- [74] A. Boultif, D. Louer, J. Appl. Crystallogr. 24 (1991) 987.
- [75] J. Schneider, R. Dinnebier, Mater. Sci. Forum 79-82 (1991) 277.
- [76] T. Roisnel, J. Rodriguez-Carvajal, *WinPLOTR: A windows tool for powder diffraction pattern analysis, materials science forum*, Eds.: R. Delhez, E. J. Mittenmeijer, *Proceedings of the 7th European Powder Diffraction Conference*, 2000, p.118.
- [77] J. Rodriguez-Carvajal, *Physica B* **192** (1993) 55.
- [78] A. Rusterholz, *Helv. Phys. Acta* **4** (1931) 68.
- [79] W. Friedrich, P. Knippig, M. von Laue, Sitzungsberichte der mathematisch-

physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften zu München, 1912.

[80] M. Bürger, *The Precession Method*, Wiley, New York, 1964.

- [81] Fa. Stoe: Programpaket für IPDS Version 2.0, Darmstadt 1994.
- [82] G. M. Sheldrick, XPREP Data Preparation and Reciprocal Space Exploration, 1996.
- [83] G. M. Sheldrick, *SHELXS-97: Program for the solution of Crystal Structures*, University of Göttingen, Germany, 1997.

[84] L. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.

[85] G. M. Sheldrick, *SHELXL-97: Program for the Refinement of Crystal Structures*, University of Göttingen, Germany, 1997.

[86] A. Altomare, M. Burla, M. Camalli, B. Carroccini, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni, G. Polidori, R. Rizzi, *J. Appl. Crystallogr.* 32 (1999) 115.

- [87] G. M. Sheldrick, *Teilprogramm von SHELX-97*, University of Göttingen, Germany, 1997.
- [88] X-RED Data Reduction for STADI4 and IPDS, Stoe & Cie. GmbH, Darmstadt 1998.
- [89] K. Brandenburg, Diamond. Visual Crystal Structure Information System. Version 3.1e,

Crystal Impact, Bonn, Germany, 2006.

- [90] A. Simon, J. Appl. Crystallogr. 4 (1971) 138.
- [91] A. Guinier, Ann. de Phys. 12 (1939) 161.
- [92] Raytest Isotopenmessgeräte GmbH, Aida 2.0, 1998.
- [93] Raytest Isotopenmessgeräte GmbH, Tina 2.0, 1994.
- [94] R. Weast, *Handbook of Chemistry and Physics, 66. Auflage*, CRC-Press, Boca Raton, 1986.
- [95] C. Smithells, E. Brandes, *Metals Reference Book, 5. Auflage*, Butterworth, Boston, 1976.
- [96] H. Remy, G. Wolfrum, H. Haase, Schweiz. Arch. Angew. Wiss. Techn. 26 (1960) 5.
- [97] G. Snyder, A. Simon, J. Chem. Soc., Dalton Trans. 1994 (1994) 1159.
- [98] F. Kanda, A. King, U.S. Atomic Energy Comm. **TID-5691** (1960) 46.
- [99] G. Snyder, A. Simon, Z. Naturforsch., B. 49 (1994) 189.
- [100] F. Wang, F. Kanda, C. Miskell, A. King, Acta Cryst. B 18 (1965) 24.
- [101] P. Feitsma, J. Hallers, F. Werff, W. Van der Lugt, *Physica B* 79 (1975) 35.
- [102] F. Kanda, R. Faxon, D. Keller, Phys. Chem. Liquids 1 (1968) 61.
- [103] H. Schurmann, R. Parks, *Phys. Rev. Lett.* 27 (1971) 1790.
- [104] K. Schubert, Kristallstrukturen zweikomponentiger Phasen, Springer, Berlin, 1964.
- [105] V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon, Z. Anorg. Allg. Chem. 633 (2007)2296.
- [106] F. Laves, H. Wallbaum, Z. Anorg. Allg. Chem. 250 (1942) 110.
- [107] A. Simon, Angew. Chem. 22 (1983) 95.
- [108] V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon, Angew. Chem. 118 (2006) 6197.
- [109] V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon, *Inorganic Chemistry* 45 (2006) 10786.
- [110] T. Kratz, H. Fuess, Z. Kristallogr. 186 (1989) 167.
- [111] D. Batchelder, R. Simmons, J. Chem. Phys. 41 (1964) 2324.
- [112] V. Smetana, V. Babizhetskyy, C. Hoch, A. Simon, Z. Kristallogr. NCS 221 (2006) 434.

- [113] M. Sung, R.-W. Kawai, J. Weare, Phys. Rev. Lett. 73 (1994) 3552.
- [114] J. Doye, D. Wales, J. Chem. Soc., Faraday Trans. 93 (1997) 4233.
- [115] K. Kuo, Struct. Chem. 13 (2002) 221.
- [116] D. Rayane, P. Melinon, B. Cabaud, A. Hoareau, B. Tribollet, M. Broyer, *Phys. Rev. A* 39 (1989) 6056.
- [117] I. Harris, R. Kidwell, J. Northby, Phys. Rev. Lett. 53 (1984) 2390.
- [118] J. Newkirk, P. Black, A. Damjanovic, Acta Crystallogr. 14 (1961) 532.
- [119] M. Taylor, Acta Crystallogr. 12 (1959) 393.
- [120] E. Cockayne, M. Widom, Phil. Mag. A 77 (1998) 593.
- [121] E. Lord, S. Ranganathan, Acta Crystallogr. A 57 (2001) 531.
- [122] J. Brandon, R. Brizard, P. Chieh, R. McMillan, W. Pearson, *Acta Crystallogr. B* 30 (1974) 1412.
- [123] L. Arnberg, S. Westman, Acta Chem. Scand. 26 (1972) 1748.
- [124] U. Häussermann, C. Svensson, S. Lidin, J. Am. Chem. Soc. 120 (1998) 3867.
- [125] G. Kreiner, H. Franzen, J. Alloys Compds. 221 (1995) 15.
- [126] F. Frank, J. Kasper, Acta Cryst. B 11 (1958) 184.
- [127] H. Nowotny, F. Holub, Monatsh. Chem. 91 (1960) 877.
- [128] L. Spina, Y. Jia, B. Ducourant, M. Tillard, C. Belin, Z. Kristallogr. 218 (2003) 740.
- [129] F. Galasso, Structure and Properties of Inorganic Solids, Pergamon, Oxford, 1970.
- [130] S. Samson, Acta Chem. Scand. 3 (1949) 809.
- [131] L. Pauling, Phys. Rev. Lett. 58 (1987) 365.
- [132] S. Samson, Acta Chem. Scand. 3 (1949) 835.
- [133] V. Smetana, V. Babizhetskyy, G. Vajenine, C. Hoch, A. Simon, *Inorg. Chem.* 46 (2007) 5425.
- [134] D. Schiferl, C. Barrett, J. Appl. Crystallogr. 2 (1969) 30.
- [135] G. Miller, R. Nesper, J. Alloys Compds 185 (1992) 221.
- [136] F. Zuercher, R. Nesper, Z. Kristallogr. 214 (1999) 417.
- [137] W. Müller, H. Schäfer, A. Weiss, Z. Naturforsch. B 25 (1970) 1371.
- [138] W. Müller, R. Voltz, Z. Naturforsch. B 29 (1974) 163.
- [139] O. Scherzer, J. Appl. Phys. 20 (1949) 20.
- [140] O. Reckeweg, F.-J. DiSalvo, Solid State Sci. 4 (2002) 575.
- [141] O. Reckeweg, F.-J. DiSalvo, Z. Kristallogr. NCS 220 (2005) 519.
- [142] U. Steinbrenner, A. Simon, Z. Anorg. Allg. Chem. 624 (1998) 228.
- [143] P. Höhn, Priv. Mitteilung, Stuttgart, 1994.

- [144] Y. Takeda, F. Kanamaru, M. Shimada, M. Koizumi, *Acta. Crystallogr. B.* 32 (1976)2464.
- [145] A. Simon, Z. Anorg. Allg. Chem. 431 (1977) 5.
- [146] U. Steinbrenner, A. Simon, Angew. Chem. 108 (1996) 595.
- [147] G. Vajenine, A. Simon, Eur. J. Inorg. Chem. 2001 (2001) 1189.
- [148] G. Vajenine, U. Steinbrenner, A. Simon, C. R. acad. Sci. 2 (1999) 583.
- [149] U. Steinbrenner, A. Simon, Z. Kristallogr. 212 (1997) 688.
- [150] V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon, J. Solid State Chem. 180 (2007)1889.
- [151] O. Reckeweg, F.-J. DiSalvo, Solid State Sci. 4 (2002) 575.
- [152] H.-J. Deiseroth, A. Simon, Rev. Chim. Miner. 20 (1983) 475.
- [153] H. Beister, S. Haag, R. Kniep, K. Stroessner, K. Syassen, *Angew. Chem.* 100 (1988)1116.
- [154] G. Webb, Z. Fisk, J. Engelhardt, S. Bader, Phys. Rev. B 15 (1977) 2624.
- [155] V. Marchenko, Sov. Phys. Solid State 15 (1973) 1261.
- [156] P. Cote, L. Meisel, Phys. Rev. Lett. 39 (1977) 102.
- [157] L. Testardi, J. Poate, H. Levinstein, Phys. Rev. B 15 (1977) 2570.
- [158] J. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
- [159] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented

Plane Wave + Local Orbitals Program for Calculating Crystal Properties Ed. K. Schwarz,

- Techn. Universität Wien, Austria, 2001. ISBN 3-9501031-1-2.
- [160] H. Weiss, G. Vajenine, U. Steinbrenner, A. Simon, E. Balthes, P Wyder, *Phys. Rev. B* 63 (2001) 115104.
- [161] U. Steinbrenner, P. Adler, W. Hölle, A. Simon, J. Phys. Chem. Solids 59 (1998) 1527.
- [162] G. Vajenine, A. Simon, Angew. Chem. 113 (2001) 4348.
- [163] Y. Harada, M. Morinaga, D. Saso, M. Takata, M. Sakata, Intermetallics 6 (1998) 523.
- [164] B. Blaschkowski, T. Schleid, Z. Anorg. Allg. Chem. 633 (2007) 2644.
- [165] B. Blaschkowski, M. Kaller, T. Schleid, Z. Anorg. Allg. Chem. 632 (2006) 2149.
- [166] A. Maeland, A. Andresen, J. Chem. Phys. 48 (1968) 4660.
- [167] C. Messer, J. Eastman, R. Mers, A. Maeland, Inorg. Chem. 3 (1964) 776.
- [168] F. Altorfer, W. Bührer, B. Winkler, G. Coddens, R. Essmann, H. Jakobs, *Solid State Ionics* **70/71** (1994) 272.

[169] B. Wegner, R. Essmann, J. Bock, H. Jakobs, P. Fischer, *Eur. J. Solid State Inorg. Chem.***29** (1992) 1217.

- [170] P. Hubberstey, P. Roberts, J. Chem. Soc. Dalton Trans. 1994 (1994) 667.
- [171] N. Brese, M. O'Keeffe, Struct. Bonding 79 (1992) 307.
- [172] J. David, Rev. Chim. Miner. 9 (1972) 717.
- [173] A. Elmaslou, J. Motte, J. Solid State Chem. 7 (1973) 250.
- [174] D. Gregory, Coord. Chem. Rev. 215 (2001) 301.
- [175] A. Gudat, R. Kniep, J. Maier, Z. Naturforsch. B 47 (1992) 1363.
- [176] O. Hochrein, Dissertation, Universität Darmstadt 2001.
- [177] E. Horvath-Bordon, R. Riedel, A. Zerr, P. F. McMillan, G. Auffermann, Y. Prots, W.

Bronger, R. Kniep, P. Kroll, Chem. Soc. Rev. 35 (2006) 987.

- [178] J. Hafner, Phys. Rev. B 15 (1977) 617.
- [179] S. Ghammami, Crystal Research and Technology 38 (2003) 913.
- [180] V. Smetana, V. Babizhetskyy, A. Simon, Z. Anorg. Allg. Chem. 634 (2008) 629.
- [181] V. Smetana, V. Babizhetskyy, C. Hoch, A. Simon, Solid State Chem. 180 (2007) 3302.

8 Tabellenverzeichnis

2.1	Löslichkeiten in Lithium	13
2.2	Löslichkeiten in Natrium	13
2.3	Löslichkeiten in Kalium	13
2.4	Löslichkeiten von Wasserstoff in Alkalimetallen	14
2.5	Elektrische Eigenschaften ausgewählter Metalle und metallreicher Nitride	21
3.1	Kristallvolumen pro Formeleinheit für Li, Na, Ba und ihre Verbindungen	36
4.1	Experimentelle und optimierte Parameter von Li(Na)Ba ₃ N	74
4.2	Interatomare Abstände in den $Ba_{14}MN_6$ -Clustern (M = Li, Ca)	96
4.3	Gitterkonstanten der Verbindungen Li ₂₆ Na ₅₈ Ba ₃₈ E _x	100
5.1	Die Ergebnisse der Röntgenuntersuchung der neuen Verbindungen	101
5.2	Kristallvolumen pro Formeleinheit für Li, Na, Ba, Ca, ihre Subnitride und	
	intermetallische Verbindungen	103
10.1	Kristalldaten und Strukturverfeinerung von NaBa	123
10.2	Atomkoordinaten in NaBa	124
10.3	Anisotrope Auslenkungsparameter in NaBa	124
10.4	Interatomare Abstände in NaBa	124
10.5	Kristalldaten und Strukturverfeinerung von BaLi4	125
10.6	Atomkoordinaten in BaLi ₄	126
10.7	Anisotrope Auslenkungsparameter in BaLi ₄	126
10.8	Interatomare Abstände in BaLi ₄	126
10.9	Kristalldaten und Strukturverfeinerung von Ba19Li44	127
10.10	Atomkoordinaten in Ba ₁₉ Li ₄₄	128
10.11	Anisotrope Auslenkungsparameter in Ba ₁₉ Li ₄₄	128
10.12	Interatomare Abstände in Ba ₁₉ Li ₄₄	129
10.13	Kristalldaten und Strukturverfeinerung von Li13Na29Ba19	130
10.14	Atomkoordinaten in Li ₁₃ Na ₂₉ Ba ₁₉	131
10.15	Anisotrope Auslenkungsparameter in Li ₁₃ Na ₂₉ Ba ₁₉	132
10.16	Interatomare Abstände in Li ₁₃ Na ₂₉ Ba ₁₉	133
10.17	Kristalldaten und Strukturverfeinerung von Li33.3Ba13.1Ca3	134
10.18	Atomkoordinaten in Li _{33,3} Ba _{13,1} Ca ₃	135
10.19	Anisotrope Auslenkungsparameter in Li _{33,3} Ba _{13,1} Ca ₃	136

10.20	Interatomare Abstände in Li _{33.3} Ba _{13.1} Ca ₃	137
10.21	Kristalldaten und Strukturverfeinerung von Li18.9Na8.3Ba15.3	139
10.22	Atomkoordinaten in Li _{18.9} Na _{8.3} Ba _{15.3}	140
10.23	Anisotrope Auslenkungsparameter in Li _{18.9} Na _{8.3} Ba _{15.3}	146
10.24	Ausgewählte Interatomare Abstände in Li _{18.9} Na _{8.3} Ba _{15.3}	148
10.25	Kristalldaten und Strukturverfeinerung von Li80Ba39N9	151
10.26	Atomkoordinaten in Li ₈₀ Ba ₃₉ N ₉	152
10.27	Anisotrope Auslenkungsparameter in Li ₈₀ Ba ₃₉ N ₉	153
10.28	Interatomare Abstände in Li ₈₀ Ba ₃₉ N ₉	154
10.29	Daten zu Strukturaufklärung von LiBa ₃ N	155
10.30	Auswertung einer Pulveraufnahme von LiBa ₃ N	155
10.31	Atomkoordinaten in LiBa ₃ N	156
10.32	Interatomare Abstände in LiBa ₃ N	156
10.33	Kristalldaten und Strukturverfeinerung von LiBa2N	157
10.34	Atomkoordinaten in LiBa ₂ N	158
10.35	Anisotrope Auslenkungsparameter in LiBa2N	158
10.36	Interatomare Abstände in LiBa ₂ N	158
10.37	Kristalldaten und Strukturverfeinerung von Na ₁₅ Li ₈ Ba ₁₂ N ₆	159
10.38	Atomkoordinaten in Na ₁₅ Li ₈ Ba ₁₂ N ₆	160
10.39	Anisotrope Auslenkungsparameter in Na ₁₅ Li ₈ Ba ₁₂ N ₆	160
10.40	Interatomare Abstände in Na ₁₅ Li ₈ Ba ₁₂ N ₆	161
10.41	Datensammlung zu Rietveldverfeinerung für Na ₁₄ Ba ₁₄ LiN ₆	162
10.42	Atomkoordinaten in Na ₁₄ Ba ₁₄ LiN ₆	163
10.43	Interatomare Abstände in Na ₁₄ Ba ₁₄ LiN ₆	163
10.44	Kristalldaten und Strukturverfeinerung von Li ₄ Na ₁₁ Ba ₁₄ LiN ₆	164
10.45	Atomkoordinaten in Li ₄ Na ₁₁ Ba ₁₄ LiN ₆	165
10.46	Anisotrope Auslenkungsparameter in Li ₄ Na ₁₁ Ba ₁₄ LiN ₆	165
10.47	Interatomare Abstände in Li ₄ Na ₁₁ Ba ₁₄ LiN ₆	165
10.48	Kristalldaten und Strukturverfeinerung von Li5Na10Ba14LiN6	166
10.49	Atomkoordinaten in Li ₅ Na ₁₀ Ba ₁₄ LiN ₆	167
10.50	Anisotrope Auslenkungsparameter in Li ₅ Na ₁₀ Ba ₁₄ LiN ₆	167
10.51	Interatomare Abstände in Li ₅ Na ₁₀ Ba ₁₄ LiN ₆	167

10.52	Kristalldaten und Strukturverfeinerung von Li26Na58Ba38N	168
10.53	Atomkoordinaten in Li ₂₆ Na ₅₈ Ba ₃₈ N	169
10.54	Anisotrope Auslenkungsparameter in Li26Na58Ba38N	170
10.55	Kristalldaten und Strukturverfeinerung von $Li_{26}Na_{58}Ba_{38}N_x$ (x = 0.5)	171
10.56	Atomkoordinaten in $Li_{26}Na_{58}Ba_{38}N_x$ (x = 0.5)	172
10.57	Anisotrope Auslenkungsparameter in $Li_{26}Na_{58}Ba_{38}N_x$ (x = 0.5)	173
10.58	Kristalldaten und Strukturverfeinerung von Li26Na58Ba38H	174
10.59	Atomkoordinaten in Li ₂₆ Na ₅₈ Ba ₃₈ H	175
10.60	Anisotrope Auslenkungsparameter in Li26Na58Ba38H	176
10.61	Beugungsreflexe der neuen Verbindung LixNayBazN	178
10.62	Phasenanteile in den Proben für die Synthese von Li _x Na _y Ba _z N	179

8 Abbildungsverzeichnis

2.1	Destillationsapparatur für Erdalkalimetalle	15
2.2	Das Pulverdiffraktogramm von nicht destilliertem Barium	16
2.3	Das Pulverdiffraktogramm von destilliertem und H-freiem Barium	16
2.4	DTA-Probengefäß	20
3.1	Phasendiagramm des Systems Na-Ba	22
3.2	Phasendiagramm des Systems Ba-Li	23
3.3	Phasendiagramm des Systems Li-Na	23
3.4	Die Struktur von NaBa	24
3.5	Die Struktur von Na ₂ Ba	26
3.6	Die Struktur von BaLi ₄	27
3.7	Positionen der Ba ₆ -, Ba ₁₇ -, und Li ₁₉ -Fragmente	
	in der Struktur von Ba ₁₉ Li ₄₄	29
3.8	Strukturfragmente des Ba in Ba19Li44: Ba6-Oktaeder und Ba17-Polyeder	29
3.9	Polytetraedrische Li ₁₉ -Cluster	30
3.10	Unendliches 3D-Netz der Ba ₁₇ -Cluster in Ba ₁₉ Li ₄₄	31
3.11	Phasengleichgewichtsdiagramm des Systems Ba-Li	32
3.12	Tetraederstern- und Ikosaederfragmente des Li ₂₆ -Clusters (c)	34
3.13	Fcc-Anordnung der Li ₂₆ -Cluster in Li ₁₃ Na ₂₉ Ba ₁₉	35
3.14	Das Basisnetz der Struktur von Li _{33.3} Ba _{13.1} Ca ₃	38
3.15	Polytetraedrische Li-Cluster in der Struktur von Li _{33.3} Ba _{13.1} Ca ₃	39
3.16	Ba25- und Ba20-Käfige der Li19- und Li13-Cluster	
	in der Struktur von Li _{33.3} Ba _{13.1} Ca ₃	40
3.17	Beobachtete und berechnete Röntgenpulverdiagramme von Li _{18.9} Na _{8.3} Ba _{15.3}	41
3.18	Na/Li-Schichten in der Kristallstruktur von Li _{18.9} Na _{8.3} Ba _{15.3}	42
3.19	(Li ₁₅) ₆ Li ₁₃ -Cluster in der Struktur von Li _{18.9} Na _{8.3} Ba _{15.3}	43
3.20	Polyeder der Ba-Atome in Li _{18.9} Na _{8.3} Ba _{15.3}	44
3.21	SAED- und PED-Diagramm eines Korns des Li _{33.3} Ba _{13.1} Ca ₃ -Strukturtyps	46
3.22	Experimentelle und simulierte PED-Diagramme für den Ba ₁₉ Li ₄₄ -Typ	47
3.23	Experimentelle und simulierte PED-Diagramme für den Ba ₁₉ Li ₄₄ -Typ	48
3.24	Hochauflösungsmikroskopie an Kristallen des Li _{33.3} Ba _{13.1} Ca ₃ -Typs	50
3.25	Hochauflösungsmikroskopie an Kristallen des Li _{33.3} Ba _{13.1} Ca ₃ -Typs	51
3.26	Hochauflösungsmikroskopie an Kristallen des Ba19Li44-Typs	52

3.27	HRTEM an einer komplexen Strukturvariante des Ba19Li44-Typs	54
3.28	Transformation eines Kristalls mit Ba19Li44-Struktur bei anhaltender Bestrahlung	55
4.1	Das Fragment der Struktur von Ba ₂ N	57
4.2	Die Struktur von Ba ₃ N	58
4.3	Die Struktur von NaBa ₃ N	59
4.4	Die Struktur von Na5Ba3N	60
4.5	Die Struktur von Na ₁₆ Ba ₆ N	61
4.6	Die Struktur von Na ₇ Ba ₁₄ CaN ₆	62
4.7	Ba14CaN6-Cluster in der Struktur von Na8Ba14CaN6	63
4.8	Die Struktur von Na ₁₄ Ba ₁₄ CaN ₆	64
4.9	Die Struktur von Na ₁₇ Ba ₁₄ CaN ₆	64
4.10	Die Struktur von Na ₂₁ Ba ₁₄ CaN ₆	65
4.11	Ba14CaN6-Cluster in der Struktur von Na22Ba14CaN6	66
4.12	Tetraedrische Anordnung der ikosaedrischen Li13-Cluster	67
4.13	Baufragmente in Li ₈₀ Ba ₃₉ N ₉	68
4.14	Ba ₄ -, Ba ₆ N-, und Ba ₅ N ₆ -Fragmente in der Struktur von $Li_{80}Ba_{39}N_9$	70
4.15	Der Li ₁₂ Ba ₅ N ₆ -Cluster in Li ₈₀ Ba ₃₉ N ₉	71
4.16	Der spezifische Widerstand eines Pulverpresslings aus Li ₈₀ Ba ₃₉ N ₉	72
4.17	Röntgenpulverdiagramm der Probe "LiBa ₃ N" mit berechneten Reflexen	73
4.18	Die Struktur von LiBa ₃ N	75
4.19a	Die LMTO-Bandstruktur für NaBa ₃ N	75
4.19b	NaBa ₃ N-Bandstruktur berechnet mit dem Wien2k-Programmpaket	76
4.20	Röntgenpulverdiagramm der Probe "(Li _{0.5} Na _{0.5})Ba ₃ N"	77
4.21	Tetragonale Elementarzelle von LiBa ₂ N	79
4.22	Li ₄ Ba ₄ Ba _{8/2} N ₄ -Cluster in der Struktur von LiBa ₂ N	80
4.23	Phasengleichgewichtsdiagramm des Ba-Li-N-Systems	81
4.24	Die Struktur von Na ₁₅ Li ₈ Ba ₁₂ N ₆	83
4.25	Na-Schichten in der Struktur von Na ₁₅ Li ₈ Ba ₁₂ N ₆	84
4.26	Struktur des Li ₈ Ba ₁₂ N ₆ -Clusters	85
4.27	Li ₈ Ba ₁₂ N ₆ -Cluster in der Struktur von Na ₁₅ Li ₈ Ba ₁₂ N ₆	86
4.28	Der spezifische Widerstand eines Pulverpresslings aus Na ₁₅ Li ₈ Ba ₁₂ N ₆	87
4.29	Ergebnis der Rietveldverfeinerung für Na ₁₄ Ba ₁₄ LiN ₆	88
4.30	Die Struktur von Na ₁₄ Ba ₁₄ LiN ₆	89

4.31	Ba ₁₄ LiN ₆ -Cluster in der Struktur von Li _x Na _y Ba ₁₄ LiN ₆	90
4.32	Die Struktur von Li5Na10Ba14LiN6	91
4.33	Gemessenes und berechnetes Pulverdiffraktogramm von "LiNa ₁₄ Ba ₁₄ LiN ₆ "	92
4.34	Der spezifische Widerstand eines Pulverpresslings von $LiNa_{14}Ba_{14}LiN_6$	93
4.35	Lücken in der Strukturen von Li _x Na _y Ba ₁₄ LiN ₆	94
4.36	Li ₂₆ N-Cluster (a) in der Struktur von Li ₂₆ Na ₅₈ Ba ₃₈ N	98
4.37	Koordinationspolyeder um Barium in der Struktur von $Li_{26}Na_{58}Ba_{38}E_x$	99
5.1	Thermische Stabilität der Li-Na-Ba-Subnitride und intermetallischen Phasen	104
10.1	Gemessenes Pulverdiffraktogramm der Phase Li _x Na _y Ba _z N	177

10 Kristallographischer Anhang

10.1 Definitionen

Der interne *R*-Wert beschreibt die Abweichung symmetrieäquivalenter Reflexe von ihrem arithmetischen Mittel. Er wird erhalten durch Summation über alle Reflexe, für die zwei oder mehr Symmetrieäquivalente gemessen wurden.

$$R_{\rm int} = \frac{\sum \left| F_o^2 - \overline{F}_o^2 \right|}{\sum F_o^2}$$

Die statistische Präzision der Daten kann man anhand der R_{σ} beurteilen:

$$R_{\sigma} = \frac{\sum \sigma F_o^2}{\sum F_o^2}$$

Die kristallographischen *R*-Werte sind Gütefaktoren für die Übereinstimmung von Experiment und Modell. Sie sind definiert als

$$R1 = \frac{\sum \left\|F_o\right| - \left|F_c\right|}{\sum F_o} \text{ und } wR2 = \sqrt{\frac{\sum \left(F_o^2 - F_c^2\right)^2}{w\left(F_o^2\right)^2}}$$

mit $F_c = \sum_i f_j \cdot e^{T_i \left(\frac{\sin \theta}{\lambda}\right)^2} \cdot e^{2\pi i (hx_i + ky_i + lz_i)}$,
 $F_o = \sqrt{\frac{I}{PLA}}$, wo P = Polarisationsfaktor, L = Lorentzfaktor und A = Absorbtionsfaktor
 $w = \frac{1}{\sigma^2 (F_o)^2 + (aS)^2 + bS}$ und
 $S = \frac{\max \left(F_o^2, 0\right) + 2F_c^2}{3}$

Der *goodness of fit* (GooF) berücksichtigt zusätzlich den Grad der Übereinstimmung der Strukturparameter. Er ist definiert als

$$\text{GooF} = \sqrt{\frac{\sum \left(F_o^2 - F_c^2\right)^2}{m - n}}$$

mit m = Zahl der Reflexe und n = Zahl der Parameter.

Der Temperaturfaktor beträgt jeweils

$$T = \exp\left(-8\pi^2 U_{eq} \frac{\sin^2 \vartheta}{\lambda^2}\right) \text{ für isotrope und}$$
$$T = \exp\left(-2\pi^2 \left(U_{11}h^2 \vec{a}^{*2} + \dots + 2U_{23}kl\vec{b}^* \vec{c}^*\right)\right)$$

für anisotrope Auslenkungsparameter. Der äquivalente isotrope Auslenkungsparameter ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

Für Rietveldverfeinerungen werden die Gütefaktoren Rp, Rwp, Rexp, RBragg und RF definiert als

$$R_{p} = \frac{\sum_{i} \left| y_{o,i} - y_{c,i} \right|}{\sum_{i} y_{o,i}}$$

$$R_{wp} = \sqrt{\frac{\sum_{i} w_{i} (y_{o,i} - y_{c,i})^{2}}{\sum_{i} w_{i} (y_{o,i})^{2}}}$$

$$R_{exp} = \sqrt{\frac{N - P + C}{\sum_{i} w_{i} y_{o,i}^{2}}},$$

wo N = Anzahl der Reflexe, P = Zahl der Parameter und C = Zahl der Einschränkungen.

$$R_{Bragg} = \frac{\sum_{i} \left| I_{o,i} - I_{c,i} \right|}{\sum_{i} \left| I_{o,i} \right|}$$
$$R_{F} = \frac{\sum_{i} \left| F_{o,i} - F_{c,i} \right|}{\sum_{i} \left| F_{o,i} \right|}$$

Der goodness of fit wird definiert als

$$GooF = \frac{R_{wp}}{R_{exp}}$$

Damit benutzt man noch eine Charakteristik χ^2_{ν}

$$\chi_{\nu}^{2} = \left(\frac{R_{wp}}{R_{exp}}\right)^{2}.$$

10.2 NaBa

Summenformel:	$Na_{1-x}Li_xBa (x \approx 0.01)$
Molmasse:	159.84 g/mol
Temperatur:	20 °C
Wellenlänge:	0.71073 Å
Kristallsystem:	kubisch
Raumgruppe:	Fd3m
Gitterparameter:	a = 16.927(2) Å
Zellvolumen:	4929(1) Å ³
Formeleinheiten pro Zelle:	48
Kristallgröße:	$0.15~mm \times 0.17~mm \times 0.18~mm$
Berechnete Dichte:	2.603 g/cm ³
μ:	8.385 mm ⁻¹
<i>F</i> (000):	5400
Gemessener 2θ Bereich:	5.4° bis 56.0°
Indexbereich:	$-28 \le h, k, l \le 28$
Gemessene (unabhängige) Reflexe:	41642 (627)
Diffraktometer:	STOE IPDS II
Strukturverfeinerung:	SHELX-97
Daten, Parameter, GooF an F^2	627, 11, 1.07
R _{int} :	0.171
<i>R</i> 1, <i>wR</i> 2 [<i>I</i> >2 σ (<i>I</i>)]:	0.057, 0.148
R1, wR2 (alle Daten):	0.076, 0.159
Wichtung (<i>a</i> , <i>b</i>):	0.0433, 172.3
$\Delta \rho(\max), \Delta \rho(\min)$:	$1.520 \text{ e}^{-}/\text{\AA}^3$, $-0.655 \text{ e}^{-}/\text{\AA}^3$

 Tabelle 10.1
 Kristalldaten und Strukturverfeinerung von (Na,Li)Ba

Tabelle 10.2 Atomkoordinaten und äquivalente Auslenkungsparameter in (Na,Li)Ba

Atom	Position	x	У	Ζ	$U_{ m eq}$, Å ²	Anteil
Ba	48 <i>f</i>	0.31548(6)	0.125	0.125	0.0360(3)	1
Na1	32 <i>e</i>	0.2948(4)	0.9552(4)	0.9552(4)	0.052(2)	1
Na2	16 <i>d</i>	0.5	0	0	0.052(5)	0.97(1)
Li	16 <i>d</i>	0.5	0	0	0.052(5)	0.03(1)

Tabelle 10.3Anisotrope Auslenkungsparameter [Ų] in (Na,Li)Ba

Atom	<i>U</i> ₁₁	<i>U</i> ₂₂	U ₃₃	U ₂₃	U_{13}	<i>U</i> ₁₂
Ba	0.0402(5)	0.0339(3)	U_{22}	-0.0025(4)	0	0
Na1	0.052(2)	U_{11}	U_{11}	-0.04(4)	-U ₂₃	- <i>U</i> ₂₃
Na2	0.053(5)	U_{11}	U_{11}	0.04(4)	U_{23}	U_{23}
Li	0.053(5)	U_{11}	U_{11}	0.04(4)	U_{23}	U_{23}

		0			
Tabelle 10.4	Interatomare Abstände	[A]	in ((Na,Li)Ba

Na1	4.102(8)
Na2	4.3489(9)
Na1	4.354(2)
Ba	4.4894(7)
Ba	4.584(2)
Na2	3.655(3)
Na1	3.861(9)
	Na1 Na2 Na1 Ba Ba Na2 Na1

10.3 BaLi₄

Summenformel: BaLi₄ Molmasse: 165.10 g/mol 20 °C Temperatur: 0.71073 Å Wellenlänge: Kristallsystem: hexagonal Raumgruppe: $P6_3/mmc$ Gitterparameter: a = 10.936(1), c = 8.943(2) Å 926.3(2) Å³ Zellvolumen: Formeleinheiten pro Zelle: 6 Kristallgröße: $0.24 \text{ mm} \times 0.24 \text{ mm} \times 0.26 \text{ mm}$ 2.664 g/cm^3 Berechnete Dichte: 9.385 mm⁻¹ μ: *F*(000): 612 4.3° bis 64.1° Gemessener 2θ Bereich: Indexbereich: $-15 \le h \le 15, -16 \le k \le 14 - 13 \le l \le 13$ Gemessene (unabhängige) Reflexe: 15702 (641) Diffraktometer: STOE IPDS II Strukturverfeinerung: SHELX-97 Daten, Parameter, GooF an F^2 641, 21, 1.10 $R_{\rm int}$: 0.065 0.029, 0.067 *R*1, *wR*2 [$I \ge 2\sigma(I)$]: 0.033, 0.068 *R*1, *wR*2 (alle Daten): Wichtung (a, b): 0.0218, 1.6005 $0.684 \text{ e}^{-}/\text{\AA}^{3}$, $-0.867 \text{ e}^{-}/\text{\AA}^{3}$ $\Delta \rho(\max), \Delta \rho(\min)$: Hinterlegungsnummer: ^a CSD-409902

Tabelle 10.5Kristalldaten und Strukturverfeinerung von BaLi4

^a Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer angefordert werden.

			-		.	
Atom	Position	x	у	Ζ	$U_{ m eq}$, Å ²	
Ba	6 <i>h</i>	0.47188(2)	0.94376(4)	0.25	0.0349(2)	
Li1	2 <i>a</i>	0	0	0	0.051(5)	
Li2	4 <i>f</i>	0.33333	0.66667	0.585(2)	0.053(4)	
Li3	6 <i>h</i>	0.0986(8)	0.197(2)	0.25	0.050(3)	
Li4	12 <i>k</i>	0.1645(6)	0.329(1)	0.566(1)	0.048(2)	

 Tabelle 10.6
 Atomkoordinaten und äquivalente Auslenkungsparameter in BaLi₄

Tabelle 10.7Anisotrope Auslenkungsparameter [Ų] in BaLi4

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ba	0.0335(2)	0.0334(2)	0.0378(2)	0	0	$1/2U_{22}$
Lil	0.051(8)	U_{11}	0.05(1)	0	0	$1/2U_{11}$
Li2	0.050(6)	U_{11}	0.06(1)	0	0	$1/2U_{11}$
Li3	0.052(6)	0.042(7)	0.053(8)	0	0	$1/2U_{22}$
Li4	0.046(3)	0.050(5)	0.049(5)	0.002(4)	0.001(2)	$1/2U_{22}$

Tabelle 10.8Interatomare Abstände [Å] in BaLi4

Ba	Li2	3 973(7)	Li1	Li4	3 17(1)
Du	2.12	5.575(7)			5.17(1)
Ba	L12	3.98(1)	L1I	L14	3.171(6)
Ba	Li3	3.87(1)	Li2	Li2	3.95(2)
Ba	Li4	3.842(7)	Li2	Li4	3.20(1)
Ba	Li4	3.84(1)	Li3	Li4	3.09(1)
Ba	Li4	4.084(9)	Li3	Li4	3.18(1)
Ba	Ba	4.5454(6)	Li3	Li3	3.24(2)
Ba	Ba	4.597(1)	Li4	Li4	3.30(1)
Lil	Li3	2.91(1)	Li4	Li4	3.33(2)
Lil	Li3	2.913(5)			

10.4 Ba₁₉Li₄₄

	na Strantar (errenner ang (err Darj)2144
Summenformel:	Ba ₁₉ Li ₄₄
Molmasse:	5829.64 g/mol
Temperatur:	20 °C
Wellenlänge:	0.71073 Å
Kristallsystem:	tetragonal
Raumgruppe:	$\overline{I42d}$
Gitterparameter:	a = 16.3911(5), Å, $c = 32.712(1)$ Å
Zellvolumen:	8788.7(5) Å ³
Formeleinheiten pro Zelle:	4
Kristallgröße:	$0.16 \text{ mm} \times 0.16 \text{ mm} \times 0.15 \text{ mm}$
Berechnete Dichte:	2.203 g/cm ³
μ:	8.349 mm ⁻¹
<i>F</i> (000):	4784
Gemessener 2θ Bereich:	4.3° bis 50.0°
Indexbereich:	$-24 \le h \le 24, -24 \le k \le 24, -48 \le l \le 40$
Gemessene (unabhängige) Reflexe:	51584 (7569)
Diffraktometer:	STOE IPDS II
Strukturverfeinerung:	SHELX-97
Daten, Parameter, GooF an F^2	7569, 89, 0.95
$R_{\rm int}$:	0.108
<i>R</i> 1, <i>wR</i> 2 [<i>I</i> >2σ(<i>I</i>)]:	0.049, 0.044
<i>R</i> 1, <i>wR</i> 2 (alle Daten):	0.096, 0.048
Wichtung (<i>a</i>):	0.0171
$\Delta \rho(\max), \Delta \rho(\min)$:	$1.429 \text{ e}^{-}/\text{Å}^{3}, -1.417$
Hinterlegungsnummer: ^a	CSD-417929

Tabelle 10.9Kristalldaten und Strukturverfeinerung von Ba₁₉Li₄₄

^a Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer angefordert werden.

	12 11				
Atom	Position	x	У	Ζ	$U_{ m eq},{ m \AA}^2$
Ba1	4 <i>b</i>	0.5	0	0.25	0.0330(2)
Ba2	8 <i>c</i>	0	0	0.09525(2)	0.0337(1)
Ba3	16e	0.11195(3)	0.09593(3)	0.20204(2)	0.0317(1)
Ba4	16e	0.41522(3)	0.10003(3)	0.05021(2)	0.0318(1)
Ba5	16e	0.00431(4)	0.30881(3)	0.25100(2)	0.0332(1)
Ba6	16e	0.35705(3)	0.34933(3)	0.07488 (2)	0.0326(1)
Lil	8 <i>d</i>	0.010(1)	0.25	0.125	0.037(5)
Li2	8 <i>d</i>	0.539(2)	0.25	0.125	0.066(8)
Li3	16e	0.172(1)	0.171(1)	0.0844(5)	0.048(4)
Li4	16e	0.2815(8)	0.5619(8)	0.0321(4)	0.026(3)
Li5	16e	0.2340(9)	0.5191(9)	0.1307(5)	0.036(4)
Li6	16e	0.1346(9)	0.1622(8)	0.3152(5)	0.040(3)
Li7	16e	0.5727(8)	0.0626(8)	0.1434(4)	0.031(3)
Li8	16e	0.2435(9)	0.2705(9)	0.2586(4)	0.043(3)
Li9	16e	0.1158(9)	0.6376(9)	0.0683(5)	0.047(4)
Li10	16e	0.1511(9)	0.6765(8)	0.1609(5)	0.046(4)
Li11	16e	0.2874(9)	0.0752(9)	0.2830(5)	0.037(3)
Li12	16e	0.285(1)	0.687(1)	0.0945(6)	0.056(4)

Tabelle 10.10Atomkoordinaten und äquivalente/isotrope Auslenkungsparameterin Ba19Li44

Tabelle 10.11

Anisotrope Auslenkungsparameter [Å²] in Ba₁₉Li₄₄

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ba1	0.0329(3)	0.0329(3)	0.0332(5)	0	0	0
Ba2	0.0325(4)	0.0372(4)	0.0314(3)	0	0	0.0018(3)
Ba3	0.0301(3)	0.0332(3)	0.0318(3)	-0.0022(2)	0.0008(2)	0.0005(2)
Ba4	0.0348(3)	0.0278(2)	0.0328(3)	-0.0018(2)	0.0001(3)	0.0004(2)
Ba5	0.0337(2)	0.0304(2)	0.0356(3)	-0.0004(3)	-0.0034(2)	0.0004(3)
Ba6	0.0339(3)	0.0305(3)	0.0333(2)	0.0012(2)	-0.0018(3)	0.0018(2)

Ba1	Li7	3.82(1)	Ba4	Ba4	4.2986(9)	Li4	Li9	3.21(2)
Ba1	Li11	3.85(1)	Ba5	Li6	3.84(1)	Li4	Li8	3.39(2)
Ba1	Li4	3.87(1)	Ba5	Li10	3.90(1)	Li4	Li5	3.39(2)
Ba2	Li10	3.81(1)	Ba5	Li3	3.94(2)	Li4	Li11	3.41(2)
Ba2	Li5	3.93(1)	Ba5	Li5	3.94(1)	Li4	Li7	3.41(2)
Ba2	Li3	3.99(1)	Ba5	Li8	3.94(1)	Li5	Li10	3.08(2)
Ba2	Li9	4.08(1)	Ba5	Li3	3.97(2)	Li5	Li6	3.10(2)
Ba2	Ba3	4.2477(7)	Ba5	Li8	3.98(1)	Li5	Li12	3.12(2)
Ba2	Ba5	4.3968(7)	Ba5	Li10	4.08(1)	Li5	Li7	3.34(2)
Ba3	Li4	3.83(1)	Ba5	Li9	4.11(1)	Li5	Li9	3.42(2)
Ba3	Li9	3.85(1)	Ba5	Ba4	4.3589(8)	Li6	Li11	3.07(2)
Ba3	Li5	3.86(1)	Ba6	Li2	3.78(2)	Li6	Li8	3.13(2)
Ba3	Li6	3.87(1)	Ba6	Li7	3.82(1)	Li6	Li7	3.18(2)
Ba3	Li9	3.88(1)	Ba6	Li8	3.84(1)	Li6	Li12	3.19(2)
Ba3	Li11	3.92(1)	Ba6	Li5	3.89(1)	Li6	Li12	3.20(2)
Ba3	Li1	3.941(9)	Ba6	Li4	3.90(1)	Li6	Li10	3.23(2)
Ba3	Li8	4.03(1)	Ba6	Li11	3.91(1)	Li6	Li2	3.39(2)
Ba3	Li3	4.13(2)	Ba6	Li4	3.95(1)	Li7	Li12	3.13(2)
Ba3	Li3	4.15(2)	Ba6	Li7	3.96(1)	Li7	Li7	3.15(2)
Ba3	Ba6	4.2096(8)	Ba6	Li11	3.96(2)	Li7	Li(11	3.44(2)
Ba3	Ba5	4.2252(8)	Ba6	Ba1	4.1939(5)	Li8	Li10	3.13(2)
Ba4	Li9	3.98(1)	Li1	Li10	3.13(2)	Li8	Li12	3.16(2)
Ba4	Li8	4.02(2)	Li1	Li3	3.25(3)	Li8	Li9	3.33(2)
Ba4	Li2	4.02(1)	Li1	Li9	3.33(2)	Li8	Li11	3.38(2)
Ba4	Li4	4.03(1)	Li2	Li11	3.12(2)	Li9	Li12	3.01(2)
Ba4	Li7	4.04(1)	Li2	Li7	3.17(1)	Li9	Li10	3.15(2)
Ba4	Li7	4.05(1)	Li2	Li12	3.22(3)	Li9	Li10	3.17(2)
Ba4	Li11	4.08(2)	Li2	Li6	3.39(2)	Li10	Li12	3.09(2)
Ba4	Li6	4.08(1)	Li3	Li8	3.40(2)	Li10	Li12	3.14(2)
Ba4)	Li6	4.12(1)	Li3	Li5	3.47(2)	Li10	Li10	3.36(3)
Ba4	Ba6	4.2730(8)	Li4	Li12	2.90(2)	Li11	Li12	3.08(2)
Ba4	Ba6	4.2771(8)	Li4	Li11	3.09(1)	Li12	Li12	2.87(3)

 Tabelle 10.12
 Interatomare Abstände [Å] in Ba₁₉Li₄₄

10.5 Li₁₃Na₂₉Ba₁₉

Courses ou forme al.	Li Na Da
Summenformel:	$L_{1_{13}}Na_{29}Ba_{19}$
Molmasse:	3366.39 g/mol
Temperatur:	20 °C
Wellenlänge:	0.56086 Å
Kristallsystem:	kubisch
Raumgruppe:	$F\overline{4}3m$
Gitterparameter:	a = 27.335(2) Å
Zellvolumen:	20424(3) Å ³
Formeleinheiten pro Zelle:	8
Kristallgröße:	$0.12 \text{ mm} \times 0.13 \text{ mm} \times 0.14 \text{ mm}$
Berechnete Dichte:	2.189 g/cm^3
μ:	3.872 mm^{-1}
<i>F</i> (000):	11376
Gemessener 2θ Bereich:	3.2° bis 42.0°
Indexbereich:	$-30 \le h \le 30, -30 \le k \le 30 - 29 \le l \le 30$
Gemessene (unabhängige) Reflexe:	25544 (1321)
Diffraktometer:	STOE IPDS I
Strukturverfeinerung:	SHELX-97
Daten, Parameter, GooF an F^2	1321, 115, 1.01
R _{int} :	0.147
<i>R</i> 1, <i>wR</i> 2 [$I > 2\sigma(I)$]:	0.031, 0.048
<i>R</i> 1, <i>wR</i> 2 (alle Daten):	0.048, 0.051
Wichtung (<i>a</i>):	0.0081
$\Delta \rho(\max), \Delta \rho(\min)$:	0.430 $e^{-}/Å^{3}$ and -0.726 $e^{-}/Å^{3}$
Hinterlegungsnummer: ^a	CSD-416631

^a Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer angefordert werden.

Atom	Position	x	У	Ζ	$U_{ m eq/iso}$, Å ²
Ba1	4 <i>b</i>	0.5	0	0	0.0367(9)
Ba2	16e	0.34451(4)	-0.15549(4)	0.15549(4)	0.0371(4)
Ba3	48 <i>h</i>	0.50258(3)	-0.18774(2)	0.18774(2)	0.0355(2)
Ba4	48 <i>h</i>	0.54167(3)	-0.15780(2)	0.34220(2)	0.0362(2)
Ba5	16e	0.59379(4)	-0.09379(4)	0.09379(4)	0.0367(4)
Ba6	4 <i>d</i>	0.25	-0.25	0.25	0.0402(9)
Ba7	16e	0.40696(5)	-0.40696(5)	0.09304(5)	0.0612(5)
Na1	16e	0.5492(3)	-0.0492(3)	0.4508(3)	0.064(3)
Na2	24 <i>f</i>	0.5	0	0.3414(4)	0.077(3)
Na3	48 <i>h</i>	0.2632(3)	-0.4230(2)	0.0770(2)	0.062(2)
Na4	48 <i>h</i>	0.4535(2)	-0.1397(3)	0.0465(2)	0.063(2)
Na5	48 <i>h</i>	0.2969(2)	-0.2969(2)	0.1050(2)	0.049(2)
Na6	48 <i>h</i>	0.5493(2)	-0.0493(2)	0.2322(3)	0.075(2)
Li1	16e	0.680(1)	-0.1805(10)	0.319(1)	0.05(1)
Li2	24g	0.612(1)	-0.25	0.25	0.046(9)
Li3	16e	0.7118(9)	-0.2118(9)	0.2118(9)	0.037(9)
Li4	48 <i>h</i>	0.6317(7)	-0.1317(7)	0.227(1)	0.051(7)

 Tabelle 10.14
 Atomkoordinaten und äquivalente/isotrope Auslenkungsparameter in Li₁₃Na₂₉Ba₁₉

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Bal	0.0367(9)	<i>U</i> ₁₁	<i>U</i> ₁₁	0	0	0
Ba2	0.0401(9)	U_{11}	U_{11}	0	0	0
Ba3	0.0371(4)	U_{11}	U_{11}	-0.0014(6)	U_{23}	U_{23}
Ba4	0.0612(5)	U_{11}	U_{11}	0.0005(8)	- <i>U</i> ₂₃	- <i>U</i> ₂₃
Ba5	0.0366(4)	U_{11}	U_{11}	-0.0006(5)	U_{23}	- <i>U</i> ₂₃
Ba6	0.0341(6)	0.0362(3)	U_{22}	0.0003(4)	- <i>U</i> ₂₃	U_{23}
Ba7	0.0340(5)	0.0371(4)	U_{22}	-0.0034(5)	-0.0018(3)	U_{13}
Na1	0.063(4)	U_{11}	U_{11}	0.007(4)	- <i>U</i> ₂₃	- <i>U</i> ₂₃
Na2	0.072(3)	U_{11}	0.090(7)	0	0	-0.003(6)
Na3	0.066(5)	0.060(3)	U_{22}	-0.002(4)	0.006(2)	U_{13}
Na4	0.047(2)	U_{11}	0.053(5)	0.001(2)	- <i>U</i> ₂₃	0.002(3)
Na5	0.063(3)	0.061(5)	U_{11}	0.000(2)	0.003(4)	0.000(2)
Na6	0.074(3)	0.075(3)	0.077(6)	0.002(3)	- <i>U</i> ₂₃	0.008(4)

Tabelle 10.15Anisotrope Auslenkungsparameter [Ų] in Li13Na29Ba19

Ba1	Na5	4.220(7)	Ba7	Na4	4.375(6)
Ba2	Na4	4.358(6)	Ba7	Na6	4.229(7)
Ba3	Na3	4.228(7)	Na1	Na1	3.80(2)
Ba3	Na5	4.237(8)	Na1	Na2	3.54(1)
Ba3	Na4	4.306(4)	Ba7	Na3	4.479(4)
Ba4	Na1	4.242(3)	Na2	Na3	3.67(1)
Ba4	Na2	4.018(5)	Na2	Na6	3.54(1)
Ba4	Na3	3.977(8)	Na3	Na4	3.647(8)
Ba4	Na4	4.266(7)	Na3	Na5	3.58(1)
Ba4	Ba7	4.453(1)	Na3	Na6	3.637(9)
Ba5	Li4	3.92(3)	Na4	Na4	3.63(1)
Ba5	Na5	4.237(4)	Na4	Na4	3.79(1)
Ba5	Na6	4.155(8)	Na5	Na5	3.59(2)
Ba5	Ba6	4.405(1)	Na5	Na5	3.60(1)
Ba6	Li3	3.83(3)	Na5	Na6	3.64(1)
Ba6	Li4	3.99(1)	Na6	Li4	3.19(3)
Ba6	Na3	4.261(4)	Na6	Na3	3.637(9)
Ba6	Na4	4.212(5)	Na6	Na5	3.64(1)
Ba6	Na5	4.293(4)	Na6	Na6	3.81(2)
Ba6	Na6	4.174(4)	Li1	Li2	3.18(4)
Ba6	Ba7	4.432(1)	Li1	Li3	3.28(3)
Ba7	Lil	3.90(4)	Li1	Li4	3.16(3)
Ba7	Li3	4.05(2)	Li2	Li2	2.95(7)
Ba7	Li4	4.06(2)	Li2	Li3	3.11(3)
Ba7	Na1	4.20(1)	Li2	Li4	3.12(4)
Ba7	Na2	4.4614(8)	Li3	Li4	3.34(2)

 Tabelle 10.16
 Interatomare Abstände [Å] in Li13Na29Ba19

10.6 Li_{33.3}Ba_{13.1}Ca₃

Summenformel:	$Li_{33.305(3)}Ba_{13.076(7)}Ca_{2.95(1)}$
Molmasse:	2145.49 g/mol
Temperatur:	20 °C
Wellenlänge:	0.71073 Å
Kristallsystem:	trigonal
Raumgruppe:	$R\overline{3}c$
Gitterparameter:	a = 19.9127(4), Å, $c = 90.213(3)$ Å
Zellvolumen:	30978(1) Å ³
Formeleinheiten pro Zelle:	18
Kristallgröße:	$0.14 \text{ mm} \times 0.12 \text{ mm} \times 0.12 \text{ mm}$
Berechnete Dichte:	2.070 g/cm^3
μ:	7.559 mm ⁻¹
<i>F</i> (000):	12600
Gemessener 2θ Bereich:	4.1° bis 64.4°
Indexbereich:	$-24 \le h \le 24, -24 \le k \le 24, -112 \le l \le 112$
Gemessene (unabhängige) Reflexe:	65919 (6588)
Diffraktometer:	STOE IPDS II
Strukturverfeinerung:	SHELX-97
Daten, Parameter, GooF an F^2	6588, 226, 1.32
R _{int} :	0.12
<i>R</i> 1, <i>wR</i> 2 [$I > 2\sigma(I)$]:	0.10, 0.16
<i>R</i> 1, <i>wR</i> 2 (alle Daten):	0.12, 0.16
Wichtung (<i>a</i>):	0, 3201
$\Delta \rho(\max), \Delta \rho(\min)$:	$1.32 \text{ e}^{-}/\text{Å}^{3}, -1.40 \text{ e}^{-}/\text{Å}^{3}$
Hinterlegungsnummer: ^a	CSD-418125

Tabelle 10.17	Kristalldaten	und Strukturv	erfeinerung vo	on Li _{33.3} Ba _{13.1} C	a ₃
---------------	---------------	---------------	----------------	--	----------------

^a Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer angefordert werden.

Atom	Position	y	1,	7	II , $Å^2$	Anteil
	12.	л 	<i>y</i>	$\frac{2}{0.10(0((2)))}$	0.021(1)	
Bal	12C	0	0	0.10696(3)	0.031(1)	0.68(2)
Cal	12 <i>c</i>	0	0	0.10696(3)	0.031(1)	0.32(2)
Ba2	12 <i>c</i>	0	0	0.06148(3)	0.031(1)	0.49(2)
Ca2	12 <i>c</i>	0	0	0.06148(3)	0.031(1)	0.51(2)
Ba3	18 <i>e</i>	0.86971(8)	0	0.25	0.0327(7)	0.90(2)
Ca3	18 <i>e</i>	0.86971(8)	0	0.25	0.0327(7)	0.10(2)
Ba4	18 <i>e</i>	0.65184(7)	0	0.25	0.0335(5)	1
Ba5	36 <i>f</i>	0.21206(6)	0.33229(6)	0.02215(1)	0.0340(4)	1
Ba6	36 <i>f</i>	0.32391(6)	0.19655(6)	0.14529(1)	0.0350(5)	0.96(1)
Ca6	36 <i>f</i>	0.32391(6)	0.19655(6)	0.14529(1)	0.0350(5)	0.04(1)
Ba7	36 <i>f</i>	0.32403(6)	0.19304(6)	0.02163(1)	0.0342(5)	0.95(2)
Ca7	36 <i>f</i>	0.32403(6)	0.19304(6)	0.02163(1)	0.0342(5)	0.05(2)
Ba8	36 <i>f</i>	0.12647(6)	0.00005(6)	0.20963(1)	0.0344(5)	0.96(1)
Ca8	36 <i>f</i>	0.12647(6)	0.00005(6)	0.20963(1)	0.0344(5)	0.04(1)
Ba9	36 <i>f</i>	0.00681(8)	0.19931(8)	0.12100(2)	0.0328(6)	0.71(1)
Ca9	36 <i>f</i>	0.00681(8)	0.19931(8)	0.12100(2)	0.0328(6)	0.29(1)
Ba10	36 <i>f</i>	0.00708(8)	0.19881(8)	0.04672(2)	0.0315(7)	0.61(1)
Ca10	36 <i>f</i>	0.00708(8)	0.19881(8)	0.04672(2)	0.0315(7)	0.39(1)
Li1	6 <i>b</i>	0	0	0	0.02(1)	1
Li2	12 <i>c</i>	0	0	0.1740(5)	0.04(1)	1
Li3	18e	0.2103(3)	0	0.25	0.058(13)	1
Li4	36 <i>f</i>	0.101(2)	0.099(2)	0.0261(3)	0.037(6)	1
Li5	36 <i>f</i>	0.190(2)	0.181(2)	0.0538(4)	0.039(7)	1
Li6	36 <i>f</i>	0.269(2)	0.249(2)	0.0837(3)	0.040(7)	1
Li7	36 <i>f</i>	0.099(2)	0.100(3)	0.1434(5)	0.056(9)	1
Li8	36 <i>f</i>	0.001(2)	0.316(2)	0.2205(4)	0.036(6)	1
Li9	36 <i>f</i>	0.095(2)	0.180(2)	0.0841(4)	0.054(9)	1
Li10	36 <i>f</i>	0.007(2)	0.163(2)	0.0057(4)	0.049(8)	1
Li11	36 <i>f</i>	0.186(1)	0.081(1)	0.0838(3)	0.023(5)	1
 Li12	, 36f	0.161(2)	0.160(2)	0 1772(3)	0.024(5)	-
	50	0.101(2)	0.100(2)	0.1772(3)	0.027(3)	I

Tabelle 10.18 Atomkoordinaten und äquivalente/isotrope Auslenkungsparameter in Li_{33,3}Ba_{13,1}Ca₃

1 01 150	Lung Tabe					
Li13	36 <i>f</i>	0.004(2)	0.157(2)	0.1642(3)	0.030(6)	1
Li14	36 <i>f</i>	0.195(2)	0.333(2)	0.0652(4)	0.035(6)	1
Li15	36 <i>f</i>	0.349(2)	0.176(2)	0.0651(3)	0.039(6)	1
Li16	36 <i>f</i>	0.347(2)	0.174(2)	0.1017(3)	0.043(7)	1
Li17	36 <i>f</i>	0.188(2)	0.180(2)	0.1133(4)	0.044(7)	1
Ca18	36 <i>f</i>	0.0066(6)	0.3352(6)	0.0134(1)	0.035(4)	0.29(3)
Li18	36 <i>f</i>	0.0066(6)	0.3352(6)	0.0134(1)	0.035(4)	0.71(3)
Ca19	36 <i>f</i>	0.240(1)	0.240(1)	0.2112(3)	0.03(1)	0.06(3)
Li19	36 <i>f</i>	0.240(1)	0.240(1)	0.2112(3)	0.03(1)	0.94(3)

Fortsetzung Tabelle 10.18

Tabelle 10.19 A

Anisotrope Auslenkungsparameter [Å²] in Li_{33.3}Ba_{13.1}Ca₃

Atom	U_{11}	U_{22}	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Bal	0.031(1)	0.031(1)	0.032(2)	0	0	0.0153(6)
Cal	0.031(1)	0.031(1)	0.032(2)	0	0	0.0153(6)
Ba2	0.031(1)	0.031(1)	0.029(2)	0	0	0.0155(7)
Ca2	0.031(1)	0.031(1)	0.029(2)	0	0	0.0155(7)
Ba3	0.0325(9)	0.029(1)	0.036(1)	0.0003(6)	0.0001(3)	0.0144(5)
Ca3	0.0325(9)	0.029(1)	0.036(1)	0.0003(6)	0.0001(3)	0.0144(5)
Ba4	0.0338(6)	0.0323(8)	0.0342(8)	0.0001(6)	0.0001(3)	0.0161(4)
Ba5	0.0337(6)	0.0329(6)	0.0335(6)	0.0009(4)	-0.0004(4)	0.0148(5)
Ba6	0.0358(7)	0.0372(7)	0.0336(7)	-0.0021(4)	0.0005(4)	0.0192(5)
Ca6	0.0358(7)	0.0372(7)	0.0336(7)	-0.0021(4)	0.0005(4)	0.0192(5)
Ba7	0.0349(7)	0.0375(7)	0.0314(7)	0.0016(4)	0.0025(4)	0.0189(5)
Ca7	0.0349(7)	0.0375(7)	0.0314(7)	0.0016(4)	0.0025(4)	0.0189(5)
Ba8	0.0317(7)	0.0324(7)	0.0362(7)	0.0017(4)	0.0010(4)	0.0137(5)
Ca8	0.0317(7)	0.0324(7)	0.0362(7)	0.0017(4)	0.0010(4)	0.0137(5)
Ba9	0.0294(8)	0.0339(9)	0.0346(8)	-0.0004(5)	0.0008(5)	0.0156(6)
Ca9	0.0294(8)	0.0339(9)	0.0346(8)	-0.0004(5)	0.0008(5)	0.0156(6)
Ba10	0.0325(9)	0.0310(9)	0.0319(9)	0.0003(6)	-0.0003(6)	0.0166(7)
Ca10	0.0325(9)	0.0310(9)	0.0319(9)	0.0003(6)	-0.0003(6)	0.0166(7)

				-				
Ba1	Li17	3.71(3)	Ba5	Li17	4.00(4)	Ba7	Li19	4.05(2)
Bal	Li9	3.72(4)	Ba5	Li5	4.01(3)	Ba7	Li18	4.09(1)
Ba1	Li11	3.84(2)	Ba5	Li4	4.06(3)	Ba8	Li8	3.89(3)
Ba1	Li7	3.87(4)	Ba5	Li18	4.061(9)	Ba8	Li3	3.99(3)
Ba2	Li9	3.70(4)	Ba5	Li10	4.07(3)	Ba8	Li15	4.05(4)
Ba2	Li5	3.76(3)	Ba5	Ba9	4.190(2)	Ba8	Li16	4.08(4)
Ba2	Li4	3.76(3)	Ba6	Li8	3.86(3)	Ba8	Li2	4.09(4)
Ba2	Li11	3.79(2)	Ba6	Li17	3.86(4)	Ba8	Li12	4.12(2)
Ba3	Li3	3.63(5)	Ba6	Li7	3.87(4)	Ba8	Li13	4.15(3)
Ba3	Li15	3.86(3)	Ba6	Li12	3.98(2)	Ba8	Li19	4.15(2)
Ba3	Li16	3.90(4)	Ba6	Li16	4.00(3)	Ba8	Li19	4.15(2)
Ba3	Li19	4.14(2)	Ba6	Li13	4.04(3)	Ba8	Li12	4.15(3)
Ba3	Li19	4.14(2)	Ba6	Li18	4.10(1)	Ba9	Li14	3.78(3)
Ba3	Ba4	4.340(2)	Ba6	Li12	4.11(3)	Ba9	Li16	3.79(4)
Ba3	Ba8	4.450(1)	Ba6	Ba6	4.110(2)	Ba9	Li11	3.81(2)
Ba4	Li16	3.89(3)	Ba6	Li13	4.11(3)	Ba9	Li17	3.84(4)
Ba4	Li15	3.90(4)	Ba7	Li10	3.81(4)	Ba9	Li17	3.86(4)
Ba4	Li(14	3.94(3)	Ba7	Li5	3.86(4)	Ba9	Li7	3.87(5)
Ba4	Li11	3.95(2)	Ba7	Li8	3.87(3)	Ba9	Li9	3.89(4)
Ba4	Li19	4.11(2)	Ba7	Li4	3.90(3)	Ba9	Li18	3.938(9)
Ba4	Li19	4.11(2)	Ba7	Li10	3.96(3)	Ba9	Li13	3.97(3)
Ba5	Li14	3.89(3)	Ba7	Li13	3.97(3)	Ba9	Li7	4.03(5)
Ba5	Li8	3.98(3)	Ba7	Li12	3.99(3)	Ba10	Li14	3.72(3)
Ba5	Li10	4.00(4)	Ba7	Li15	4.00(3)	Ba10	Li10	3.78(4)
Ba5	Li7	4.00(4)	Ba7	Li19	4.05(2)	Ba10	Li11	3.80(2)
			1					

 Tabelle 10.20
 Interatomare Abstände [Å] in Li_{33,3}Ba_{13,1}Ca₃

	-							
Ba10	Li15	3.80(4)	Li5	Li11	3.35(4)	Li9	Li14	3.18(5)
Ba10	Li5	3.82(3)	Li5	Li15	3.39(4)	Li9	Li17	3.20(5)
Ba10	Li4	3.83(3)	Li6	Li11	2.89(4)	Li9	Li11	3.26(5)
Ba10	Li5	3.88(3)	Li6	Li6	2.94(6)	Li9	Li5	3.31(5)
Ba10	Li9	3.91(4)	Li6	Li9	2.98(6)	Li10	Li10	3.34(4)
Ba10	Li18	4.05(1)	Li6	Li17	3.05(4)	Li10	Li18	3.49(4)
Li1	Li4	3.06(3)	Li6	Li5	3.07(4)	Li11	Li16	3.21(4)
Li1	Li10	3.22(4)	Li6	Li16	3.10(5)	Li11	Li9	3.26(5)
Li2	Li13	3.21(3)	Li6	Li8	3.12(4)	Li11	Li15	3.29(5)
Li2	Li12	3.22(3)	Li6	Li15	3.14(4)	Li11	Li17	3.31(4)
Li2	Li7	3.40(5)	Li6	Li4	3.17(5)	Li11	Li5	3.35(4)
Li3	Li15	3.23(4)	Li6	Li8	3.17(4)	Li12	Li13	3.32(4)
Li3	Li16	3.27(4)	Li6	Li14	3.19(4)	Li12	Li13	3.40(4)
Li3	Li6	3.30(7)	Li7	Li17	3.20(4)	Li12	Li19	3.45(3)
Li3	Li8	3.40(5)	Li7	Li13	3.21(5)	Li12	Li18	3.56(3)
Li4	Li5	3.04(4)	Li7	Li12	3.25(5)	Li12	Ba6	3.98(2)
Li4	Li10	3.09(5)	Li7	Li13	3.35(5)	Li13	Li18	3.61(3)
Li4	Li10	3.31(5)	Li7	Li7	3.50(6)	Li14	Li17	3.16(4)
Li4	Li10	3.37(5)	Li8	Li17	3.16(4)	Li14	Li14	3.29(7)
Li4	Li4	3.41(5)	Li8	Li15	3.27(5)	Li15	Li16	3.30(4)
Li5	Li6	3.07(4)	Li8	Li14	3.27(4)	Li15	Li19	3.34(3)
Li5	Li8	3.13(4)	Li8	Li16	3.28(5)	Li16	Li19	3.34(4)
Li5	Li14	3.15(4)	Li9	Li11	3.05(5)	Li16	Li17	3.39(5)
Li5	Li9	3.31(5)	Li9	Li14	3.13(5)	Li18	Li19	3.42(2)
			I			l		

Fortsetzung Tabelle 10.20
10.7 Li_{18.9}Na_{8.3}Ba_{15.3}

Summenformel:	$Li_{18.9}Na_{8.3}Ba_{15.3}$
Molmasse:	2422.8 g/mol
Temperatur:	20 °C
Wellenlänge:	0.71073 Å
Kristallsystem:	trigonal
Raumgruppe:	$P\overline{3}$
Gitterparameter:	a = 20.420(3), Å, $c = 92.914(19)$ Å
Zellvolumen:	33550(10) Å ³
Formeleinheiten pro Zelle:	18
Kristallgröße:	$0.16 \text{ mm} \times 0.14 \text{ mm} \times 0.14 \text{ mm}$
Berechnete Dichte:	2.159 g/cm^3
μ:	8.683 mm ⁻¹
<i>F</i> (000):	19500
Gemessener 2θ Bereich:	2.5° bis 43.0°
Indexbereich:	$-20 \le h \le 18, -20 \le k \le 20, -77 \le l \le 79$
Gemessene (unabhängige) Reflexe:	51202 (17813)
Diffraktometer:	STOE IPDS II
Strukturverfeinerung:	SHELX-97
Daten, Parameter, GooF an F^2	17813, 863, 1.09
<i>R</i> _{int} :	0.046
<i>R</i> 1, <i>wR</i> 2 [I >2 $\sigma(I$)]:	0.11, 0.31
<i>R</i> 1, <i>wR</i> 2 (alle Daten):	0.18, 0.33
Wichtung (<i>a</i> , <i>b</i>):	0.1561, 1038.87
$\Delta \rho(\max), \Delta \rho(\min)$:	$5.30 \text{ e}^{-}/\text{Å}^{3}, -4.78 \text{ e}^{-}/\text{Å}^{3}$
Hinterlegungsnummer: ^a	CSD-418126

Tabelle 10.21	Kristalldaten ı	nd Strukturverfeinerung	g von Li _{18.9} Na _{8.3} Ba _{15.3}
----------------------	-----------------	-------------------------	---

Atom	Position	x	у	Ζ	$U_{ m eq/iso}, { m \AA}^2$	Anteil
Ba1	2 <i>c</i>	0	0	0.06145(7)	0.046(2)	1
Ba2	2c	0	0	0.43861(7)	0.051(2)	1
Ba3	2c	0	0	0.39417(7)	0.046(2)	1
Ba4	2c	0	0	0.10585(7)	0.045(2)	1
Ba5	2d	0.3333	0.6667	0.77233(8)	0.044(3)	0.86(2)
Ba6	2d	0.3333	0.6667	0.27229(6)	0.026(1)	1
Ba7	2d	0.3333	0.6667	0.72758(8)	0.047(3)	0.85(2)
Ba8	2d	0.3333	0.6667	0.22748(6)	0.025(1)	1
Ba9	2d	0.3333	0.6667	0.3954(2)	0.090(9)	0.48(2)
Ba10	2d	0.3333	0.6667	0.89500(9)	0.041(3)	0.73(2)
Ba11	2d	0.3333	0.6667	0.93931(9)	0.042(3)	0.76(2)
Ba12	2d	0.3333	0.6667	0.4397(2)	0.09(1)	0.45(2)
Ba13	2 <i>d</i>	0.3333	0.6667	0.6052(1)	0.047(5)	0.53(2)
Ba14	2d	0.3333	0.6667	0.5606(1)	0.051(5)	0.58(2)
Ba15	2d	0.3333	0.6667	0.0605(5)	0.09(2)	0.20(2)
Ba16	2d	0.3333	0.6667	0.1037(4)	0.09(2)	0.23(2)
Ba17	6g	0.0021(1)	0.3506(2)	0.25011(4)	0.045(1)	1
Ba18	6g	0.0010(2)	0.5468(2)	0.18942(4)	0.049(1)	1
Ba19	6g	0.3444(2)	0.2051(2)	0.18904(4)	0.050(1)	1
Ba20	6g	0.2102(2)	0.3449(2)	0.18912(4)	0.045(1)	1
Ba21	6g	0.3434(2)	0.2054(2)	0.31110(4)	0.050(1)	1
Ba22	6g	0.1352(1)	0.4733(1)	0.21363(3)	0.0275(8)	1
Ba23	6g	0.2097(2)	0.3459(2)	0.31096(4)	0.044(1)	1
Ba24	6g	0.3245(2)	0.1212(2)	0.47751(5)	0.058(1)	1
Ba25	6g	0.0034(2)	0.5479(2)	0.31067(4)	0.048(1)	1
Ba26	6g	0.4765(2)	0.1329(2)	0.28639(4)	0.035(2)	0.83(1)
Ba27	6g	0.1225(2)	0.3228(2)	0.47747(4)	0.056(1)	1
Ba28	6g	0.1245(2)	0.3209(2)	0.02241(4)	0.053(1)	1
Ba29	6g	0.4769(2)	0.1333(2)	0.21377(4)	0.059(1)	1
Ba30	6g	0.1990(2)	0.1940(2)	0.11991(4)	0.045(1)	1

Auslenkungsparameter in Li₁₈ Na₈ 3Ba₁₅ 3

und

Atomkoordinaten

äquivalente/isotrope

Tabelle 10.22

	0					
Ba31	6g	0.3346(2)	0.1223(2)	0.14406(4)	0.054(1)	1
Ba32	6g	0.1949(2)	0.1934(2)	0.45274(4)	0.051(1)	1
Ba33	6g	0.1270(1)	0.1272(1)	0.28841(4)	0.0417(9)	1
Ba34	6g	0.1247(2)	0.3311(2)	0.35594(5)	0.062(1)	1
Ba35	6g	0.3265(2)	0.1196(2)	0.02260(4)	0.056(1)	1
Ba36	6g	0.1978(2)	0.1956(2)	0.38019(4)	0.047(1)	1
Ba37	6g	0.1360(1)	0.4741(1)	0.28631(3)	0.0254(8)	1
Ba38	6g	0.4632(2)	0.0013(2)	0.47765(4)	0.057(2)	1
Ba39	6g	0.3314(2)	0.1224(2)	0.35600(4)	0.055(1)	1
Ba40	6g	0.1276(1)	0.0001(2)	0.25004(4)	0.0444(9)	1
Ba41	6g	0.4652(2)	0.0053(2)	0.02233(4)	0.057(1)	1
Ba42	6g	0.1250(2)	0.3273(2)	0.14423(5)	0.060(1)	1
Ba43	6g	0.4711(2)	0.0078(2)	0.14431(5)	0.064(2)	1
Ba44	6g	0.1965(2)	0.1921(2)	0.04725(4)	0.052(1)	1
Ba45	6g	0.1272(1)	0.1269(1)	0.21159(4)	0.0409(9)	1
Ba46	6g	0.4676(2)	0.0007(2)	0.35583(5)	0.070(1)	1
Ba47	6g	0.3267(2)	0.3231(2)	0.41670(6)	0.073(2)	1
Ba48	6g	0.3307(2)	0.3191(1)	0.08338(6)	0.056(2)	1
Ba49	6g	0.4688(2)	0.3262(2)	0.11954(5)	0.038(2)	0.72(1)
Ba50	6g	0.3256(5)	0.4614(4)	0.4534(1)	0.093(5)	0.51(1)
Ba51	6g	0.4654(2)	0.3253(2)	0.04675(5)	0.047(2)	0.74(1)
Ba52	6g	0.3237(4)	0.4672(4)	0.3808(1)	0.079(4)	0.48(1)
Ba53	6g	0.2068(2)	0.5390(2)	0.04490(5)	0.049(2)	0.78(1)
Ba54	6g	0.3332(2)	0.5388(2)	0.08338(5)	0.0516(19)	0.80(1)
Ba55	6g	0.5402(4)	0.2046(4)	0.3783(1)	0.079(4)	0.47(1)
Ba56	6g	0.5384(4)	0.3326(4)	0.4169(1)	0.072(4)	0.46(1)
Ba57	6g	0.2057(2)	0.5401(2)	0.12183(5)	0.052(2)	0.79(1)
Ba58	6g	0.5379(4)	0.2063(4)	0.4550(1)	0.075(4)	0.47(1)
Ba59	6g	0.4649(3)	0.3256(3)	0.45318(7)	0.052(3)	0.57(1)
Ba60	6g	0.4684(3)	0.3269(3)	0.38048(7)	0.048(3)	0.56(1)
Ba61	6g	0.3334(3)	0.5397(3)	0.41671(7)	0.048(3)	0.56(1)
Ba62	6g	0.2073(3)	0.5394(3)	0.45515(7)	0.047(3)	0.56(1)

Fortsetzung Tabelle 10.22

.

Ba63	6g	0.2065(3)	0.5405(3)	0.37832(7)	0.050(3)	0.57(1)
Ba64	6g	0.5400(8)	0.3333(8)	0.2120(2)	0.035(4)	0.16(1)
Ba65	6g	0.5397(9)	0.2063(9)	0.2502(2)	0.024(7)	0.14(1)
Ba66	6g	0.5403(9)	0.3337(9)	0.2882(2)	0.039(4)	0.16(1)
Ba67	6g	0.5393(8)	0.2040(9)	0.1217(2)	0.081(8)	0.24(1)
Ba68	6g	0.5375(9)	0.3317(8)	0.0832(2)	0.088(8)	0.26(1)
Ba69	6g	0.5366(8)	0.2057(8)	0.0450(2)	0.084(8)	0.25(1)
Na1	2c	0	0	0.3228(5)	0.09(1)	1
Na2	6g	0.0010(9)	0.343(1)	0.1802(3)	0.074(8)	1
Na3	6g	0.0019(9)	0.343(1)	0.3200(3)	0.064(7)	1
Na4	6g	0.002(1)	0.326(1)	0.5130(4)	0.087(9)	1
Na5	6g	0.0016(9)	0.244(1)	0.2875(2)	0.062(5)	1
Na6	6g	0.0020(9)	0.2432(9)	0.2127(2)	0.058(5)	1
Na7	6g	0.171(1)	0.001(1)	0.1777(3)	0.070(6)	1
Na8	6g	0.330(1)	0.324(1)	0.0128(4)	0.078(8)	1
Na9	6g	0.3335(9)	0.3287(9)	0.1533(3)	0.067(8)	1
Na10	6g	0.331(1)	0.330(1)	0.3466(4)	0.09(1)	1
Na11	6g	0.328(1)	0.449(1)	0.0458(3)	0.064(6)	1
Na12	6g	0.3215(8)	0.4669(8)	0.1194(2)	0.039(4)	1
Na13	6g	0.168(2)	0.500(2)	0.5058(5)	0.12(1)	1
Na14	2c	0	0	0.1774(6)	0.07(2)	0.7(1)
Li14	2 <i>c</i>	0	0	0.1774(6)	0.07(2)	0.3(1)
Na15	2d	0.3333	0.6667	0.3442(7)	0.10(3)	0.75(2)
Li15	2d	0.3333	0.6667	0.3442(7)	0.10(3)	0.25(2)
Na16	2d	0.3333	0.6667	0.1567(6)	0.07(2)	0.7(1)
Li16	2d	0.3333	0.6667	0.1567(6)	0.07(2)	0.3(1)
Na17	2d	0.3333	0.6667	0.0097(7)	0.07(2)	0.6(1)
Li17	2d	0.3333	0.6667	0.0097(7)	0.07(2)	0.4(1)
Na18	2d	0.3333	0.6667	0.6559(9)	0.05(3)	0.3(1)
Li18	2d	0.3333	0.6667	0.6559(9)	0.05(3)	0.7(1)
Na19	6g	0.171(1)	0.001(1)	0.3222(3)	0.058(9)	0.88(8)
Li19	6g	0.171(1)	0.001(1)	0.3222(3)	0.058(9)	0.12(8)

Fortsetzung Tabelle 10.22

Na20	6g	0.164(1)	0.163(1)	0.3357(3)	0.06(1)	0.74(8)
Li20	6g	0.164(1)	0.163(1)	0.3357(3)	0.06(1)	0.26(8)
Na21	6g	0.166(1)	0.163(1)	0.1647(3)	0.08(1)	0.89(9)
Li21	6g	0.166(1)	0.163(1)	0.1647(3)	0.08(1)	0.11(9)
Na22	6g	0.334(1)	0.499(1)	0.1553(4)	0.08(1)	0.79(9)
Li22	6g	0.334(1)	0.499(1)	0.1553(4)	0.08(1)	0.21(9)
Na23	6g	0.001(1)	0.102(1)	0.1431(4)	0.07(1)	0.58(8)
Li23	6g	0.001(1)	0.102(1)	0.1431(4)	0.07(1)	0.42(8)
Na24	6g	0.001(2)	0.100(2)	0.3568(4)	0.06(1)	0.47(7)
Li24	6g	0.001(2)	0.100(2)	0.3568(4)	0.06(1)	0.53(7)
Na25	6g	0.333(1)	0.497(1)	0.0102(3)	0.09(1)	0.86(9)
Li25	6g	0.333(1)	0.497(1)	0.0102(3)	0.09(1)	0.14(9)
Na26	6g	0.500(2)	0.330(2)	0.0038(4)	0.10(1)	0.86(9)
Li26	6g	0.500(2)	0.330(2)	0.0038(4)	0.10(1)	0.14(9)
Na27	6g	0.167(1)	0.502(1)	0.1692(4)	0.06(1)	0.61(7)
Li27	6g	0.167(1)	0.502(1)	0.1692(4)	0.06(1)	0.39(7)
Na28	6g	0.332(2)	0.570(2)	0.1905(4)	0.07(2)	0.53(8)
Li28	6g	0.332(2)	0.570(2)	0.1905(4)	0.07(2)	0.47(8)
Na29	6g	0.506(2)	0.329(2)	0.1606(6)	0.11(2)	0.5(1)
Li29	6g	0.506(2)	0.329(2)	0.1606(6)	0.11(2)	0.5(1)
Na30	6g	0.499(2)	0.168(2)	0.5077(4)	0.08(2)	0.64(8)
Li30	6g	0.499(2)	0.168(2)	0.5077(4)	0.08(2)	0.36(8)
Na31	6g	0.333(2)	0.570(2)	0.3087(5)	0.06(2)	0.31(8)
Li31	6g	0.333(2)	0.570(2)	0.3087(5)	0.06(2)	0.69(8)
Na32	6g	0.003(3)	0.151(3)	0.5060(7)	0.04(2)	0.10(7)
Li32	6g	0.003(3)	0.151(3)	0.5060(7)	0.04(2)	0.90(7)
Na33	6g	0.333(2)	0.5005(2)	0.3441(4)	0.10(2)	0.67(9)
Li33	6g	0.333(2)	0.5005(2)	0.3441(4)	0.10(2)	0.33(9)
Na34	6g	0.504(2)	0.330(2)	0.3416(5)	0.09(2)	0.52(9)
Li34	6g	0.504(2)	0.330(2)	0.3416(5)	0.09(2)	0.48(9)
Na35	6g	0.160(3)	0.316(3)	0.2662(7)	0.07(2)	0.22(8)
Li35	6g	0.160(3)	0.316(3)	0.2662(7)	0.07(2)	0.78(8)

Fortsetzung Tabelle 10.22

Na36	6g	0.164(2)	0.499(2)	0.3306(4)	0.06(2)	0.43(8)	_
Li36	6g	0.164(2)	0.499(2)	0.3306(4)	0.06(2)	0.57(8)	
Na37	6g	0.507(2)	0.167(2)	0.1724(6)	0.09(2)	0.39(9)	
Li37	6g	0.507(2)	0.167(2)	0.1724(6)	0.09(2)	0.61(9)	
Na38	6g	0.499(2)	0.164(2)	0.3290(5)	0.09(2)	0.55(9)	
Li38	6g	0.499(2)	0.164(2)	0.3290(5)	0.09(2)	0.45(9)	
Na39	6g	0.320(2)	0.401(2)	0.2501(6)	0.06(2)	0.25(7)	
Li39	6g	0.320(2)	0.401(2)	0.2501(6)	0.06(2)	0.75(7)	
Na40	6g	0.191(3)	0.002(3)	0.4456(7)	0.06(2)	0.15(7)	
Li40	6g	0.191(3)	0.002(3)	0.4456(7)	0.06(2)	0.85(7)	
Na41	6g	0.213(3)	0.203(3)	0.2502(8)	0.05(3)	0.09(7)	
Li41	6g	0.213(3)	0.203(3)	0.2502(8)	0.05(3)	0.91(7)	
Li42	1 <i>a</i>	0	0	0	0.06(4)	1	
Li43	1 <i>b</i>	0	0	0.5	0.06(3)	1	
Li44	2 <i>d</i>	0.3333	0.6667	0.843(1)	0.02(2)	1	
Li45	2 <i>d</i>	0.3333	0.6667	0.511(2)	0.04(3)	1	
Li46	6g	0.001(3)	0.533(3)	0.2674(8)	0.03(2)	1	
Li47	6g	0.162(3)	0.575(4)	0.2495(8)	0.06(2)	1	
Li48	6g	0.001(4)	0.091(4)	0.473(1)	0.06(2)	1	
Li49	6g	0.159(3)	0.342(3)	0.0994(8)	0.03(2)	1	
Li50	6g	0.162(3)	0.316(3)	0.2333(8)	0.02(1)	1	
Li51	6g	0.314(3)	0.159(3)	0.2668(7)	0.02(1)	1	
Li52	6g	0.009(4)	0.498(4)	0.066(1)	0.05(2)	1	
Li53	6g	0.006(4)	0.491(4)	0.0999(9)	0.04(2)	1	
Li54	6g	0.004(3)	0.533(3)	0.2315(9)	0.03(2)	1	
Li55	6g	0.112(4)	0.448(4)	0.084(1)	0.06(2)	1	
Li56	6g	0.330(3)	0.134(3)	0.0997(8)	0.03(2)	1	
Li57	6g	0.318(3)	0.309(3)	0.2803(9)	0.04(2)	1	
Li58	6g	0.329(3)	0.483(3)	0.2792(8)	0.03(2)	1	
Li59	6g	0.324(3)	0.309(3)	0.2136(8)	0.03(2)	1	
Li60	6g	0.191(3)	0.003(3)	0.1130(8)	0.03(2)	1	
Li61	6g	0.315(4)	0.160(4)	0.234(1)	0.05(2)	1	

Fortsetzung Tabelle 10.22

	-					
Li62	6g	0.149(3)	0.147(3)	0.0068(7)	0.01(1)	1
Li63	6g	0.329(3)	0.477(3)	0.2221(8)	0.03(2)	1
Li64	6g	0.095(5)	0.002(5)	0.026(1)	0.07(3)	1
Li65	6g	0.169(3)	0.351(4)	0.0653(9)	0.04(2)	1
Li66	6g	0.239(4)	0.484(4)	0.2498(8)	0.03(1)	1
Li67	6g	0.002(3)	0.495(3)	0.3988(9)	0.03(2)	1
Li68	6g	0.191(3)	0.008(3)	0.3864(9)	0.04(2)	1
Li69	6g	0.001(3)	0.188(3)	0.0542(9)	0.04(2)	1
Li70	6g	0.115(4)	0.452(4)	0.416(1)	0.05(2)	1
Li71	6g	0.162(4)	0.341(4)	0.399(1)	0.04(2)	1
Li72	6g	0.338(4)	0.143(4)	0.066(1)	0.05(2)	1
Li73	6g	0.330(5)	0.154(5)	0.394(1)	0.07(3)	1
Li74	6g	0.165(5)	0.348(5)	0.433(1)	0.07(3)	1
Li75	6g	0.016(5)	0.358(4)	0.115(1)	0.06(2)	1
Li76	6g	0.011(4)	0.346(4)	0.446(1)	0.05(2)	1
Li77	6g	0.341(4)	0.158(4)	0.4345(9)	0.04(2)	1
Li78	6g	0.102(5)	0.186(5)	0.415(1)	0.09(3)	1
Li79	6g	0.106(4)	0.187(4)	0.083(1)	0.06(2)	1
Li80	6g	0.189(4)	0.091(4)	0.086(1)	0.05(2)	1
Li81	6g	0.005(3)	0.500(4)	0.4352(9)	0.04(2)	1
Li82	6g	0.441(4)	0.096(4)	0.086(3)	0.05(2)	1
Li83	6g	0.460(4)	0.117(4)	0.417(1)	0.05(2)	1
Li84	6g	0.001(4)	0.265(4)	0.416(2)	0.09(3)	1
Li85	6g	0.192(5)	0.099(5)	0.416(1)	0.08(3)	1
Li86	6g	0.006(4)	0.342(5)	0.386(1)	0.05(3)	1
Li7	6g	0.016(5)	0.348(5)	0.057(1)	0.07(3)	1
Li88	6g	0.007(4)	0.270(6)	0.085(2)	0.05(3)	1
Li89	6g	0.404(5)	0.311(5)	0.250(2)	0.05(3)	1

Fortsetzung Tabelle 10.22

Atom	U_{11}	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Bal	0.044(2)	0.044(2)	0.050(6)	0	0	0.0221(9)
Ba2	0.043(2)	0.043(2)	0.066(6)	0	0	0.022(1)
Ba3	0.045(2)	0.045(2)	0.048(6)	0	0	0.022(1)
Ba4	0.047(2)	0.047(2)	0.042(6)	0	0	0.024(1)
Ba5	0.047(3)	0.047(3)	0.037(7)	0	0	0.023(1)
Ba6	0.029(1)	0.029(1)	0.019(4)	0	0	0.0144(7)
Ba7	0.047(3)	0.047(3)	0.046(7)	0	0	0.023(1)
Ba8	0.029(1)	0.029(1)	0.016(4)	0	0	0.0146(7)
Ba9	0.061(7)	0.061(7)	0.15(2)	0	0	0.030(3)
Ba10	0.043(3)	0.043(3)	0.038(8)	0	0	0.022(2)
Ba11	0.040(3)	0.040(3)	0.046(8)	0	0	0.020(2)
Ba12	0.055(7)	0.055(7)	0.17(3)	0	0	0.028(4)
Ba13	0.044(5)	0.044(5)	0.05(1)	0	0	0.022(2)
Ba14	0.050(5)	0.050(5)	0.05(1)	0	0	0.025(2)
Ba17	0.042(2)	0.021(1)	0.049(3)	-0.002(2)	-0.001(1)	-0.001(1)
Ba18	0.055(2)	0.036(2)	0.049(3)	0.001(2)	0.000(2)	0.019(1)
Ba19	0.034(2)	0.061(2)	0.051(3)	0.001(2)	-0.002(2)	0.023(2)
Ba20	0.052(2)	0.044(2)	0.050(3)	0.005(2)	0.001(2)	0.032(1)
Ba21	0.055(2)	0.035(2)	0.049(3)	-0.002(2)	-0.003(2)	0.014(1)
Ba22	0.027(1)	0.027(1)	0.025(2)	0.001(1)	0.002(1)	0.011(1)
Ba23	0.034(1)	0.051(2)	0.048(3)	-0.000(2)	0.000(1)	0.022(1)
Ba24	0.045(2)	0.073(2)	0.060(4)	-0.003(2)	-0.001(2)	0.033(2)
Ba25	0.052(2)	0.048(2)	0.052(3)	-0.001(1)	-0.004(2)	0.032(2)
Ba26	0.036(2)	0.022(2)	0.041(4)	0.002(2)	0.000(2)	0.011(2)
Ba27	0.061(2)	0.053(2)	0.056(4)	-0.001(2)	-0.000(2)	0.031(2)
Ba28	0.045(2)	0.052(2)	0.061(3)	0.002(2)	0.001(2)	0.024(2)
Ba29	0.056(2)	0.038(2)	0.075(4)	-0.002(2)	-0.001(2)	0.018(1)
Ba30	0.052(2)	0.038(2)	0.045(3)	-0.001(2)	0.002(2)	0.022(1)
Ba31	0.052(2)	0.048(2)	0.065(4)	0.001(2)	0.002(2)	0.029(2)
Ba32	0.050(2)	0.055(2)	0.050(3)	0.004(2)	0.001(2)	0.027(2)

Tabelle 10.23Anisotrope Auslenkungsparameter [Ų] in Li18.9Na8.3Ba15.3

Fortsetzung Tabelle 10.23

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Ba33	0.044(2)	0.038(2)	0.043(3)	0.000(1)	-0.005(2)	0.019(1)
Ba34	0.073(2)	0.067(2)	0.060(4)	-0.003(2)	-0.004(2)	0.046(2)
Ba35	0.049(2)	0.043(2)	0.064(4)	-0.001(2)	0.000(2)	0.015(2)
Ba36	0.049(2)	0.058(2)	0.040(3)	0.004(2)	0.003(2)	0.032(2)
Ba37	0.025(1)	0.027(1)	0.019(2)	0.000(1)	0.001(1)	0.009(1)
Ba38	0.072(3)	0.049(2)	0.054(4)	-0.005(2)	-0.001(2)	0.034(2)
Ba39	0.046(2)	0.058(2)	0.061(4)	-0.000(2)	-0.002(2)	0.024(2)
Ba40	0.037(2)	0.055(2)	0.036(3)	-0.001(1)	-0.002(1)	0.019(1)
Ba41	0.051(2)	0.053(2)	0.060(4)	-0.005(2)	-0.003(2)	0.020(2)
Ba42	0.057(2)	0.049(2)	0.068(4)	0.002(2)	-0.001(2)	0.021(2)
Ba43	0.093(3)	0.055(2)	0.060(4)	-0.002(2)	0.001(2)	0.050(2)
Ba44	0.048(2)	0.054(2)	0.056(3)	-0.003(2)	0.001(2)	0.028(2)
Ba45	0.037(2)	0.042(2)	0.041(3)	0.005(1)	-0.001(1)	0.017(1)
Ba46	0.056(2)	0.120(3)	0.051(4)	-0.002(2)	-0.001(2)	0.057(2)
Ba47	0.066(3)	0.144(4)	0.039(5)	-0.002(2)	-0.001(2)	0.075(3)
Ba48	0.088(3)	0.048(2)	0.045(4)	-0.001(2)	0.003(2)	0.043(2)
Ba49	0.038(2)	0.030(2)	0.042(4)	0.001(2)	0.002(2)	0.014(2)
Ba50	0.132(7)	0.041(4)	0.10(1)	-0.002(4)	-0.009(6)	0.040(4)
Ba51	0.038(2)	0.038(2)	0.058(5)	-0.002(2)	0.004(2)	0.014(2)
Ba52	0.074(6)	0.087(6)	0.11(1)	-0.010(5)	-0.007(5)	0.063(5)
Ba53	0.052(3)	0.043(2)	0.052(4)	-0.001(2)	-0.004(2)	0.024(2)
Ba54	0.063(3)	0.040(2)	0.041(4)	0.000(2)	0.001(2)	0.018(2)
Ba55	0.062(5)	0.051(5)	0.12(1)	-0.009(5)	-0.011(5)	0.027(4)
Ba56	0.041(5)	0.058(5)	0.10(1)	0.004(5)	0.001(4)	0.015(3)
Ba57	0.044(2)	0.053(3)	0.059(5)	0.003(2)	0.000(2)	0.024(2)
Ba58	0.066(5)	0.056(5)	0.11(1)	0.002(4)	0.005(5)	0.032(4)
Ba59	0.041(3)	0.074(4)	0.044(6)	-0.004(3)	0.001(3)	0.030(3)
Ba60	0.061(4)	0.047(4)	0.040(6)	-0.001(3)	0.000(3)	0.028(3)
Ba61	0.067(4)	0.062(4)	0.037(6)	0.003(3)	-0.001(3)	0.048(3)
Ba62	0.052(3)	0.043(3)	0.046(6)	0.000(3)	0.003(3)	0.025(3)
Ba63	0.050(3)	0.041(3)	0.057(6)	-0.001(3)	-0.004(3)	0.019(3)

Ba1	Li64	3.80(9)	Ba16	Na14	4.23(2)	Ba32	Li77	3.80(7)
Ba1	Li79	3.88(8)	Ba17	Na35	3.93(5)	Ba32	Na40	4.04(5)
Ba2	Li48	3.67(9)	Ba17	Ba37	4.273(4)	Ba33	Li57	3.88(7)
Ba2	Li40	3.94(5)	Ba18	Li59	3.61(7)	Ba33	Ba40	4.411(5)
Ba3	Li85	3.96(9)	Ba18	Ba20	4.304(4)	Ba34	Na36	3.90(3)
Ba3	Na24	4.02(3)	Ba19	Li59	3.29(7)	Ba34	Ba52	4.274(8)
Ba4	Li80	3.83(7)	Ba19	Na29	3.99(5)	Ba35	Li69	3.98(7)
Ba4	Li79	3.92(8)	Ba20	Li59	3.58(6)	Ba35	Ba41	4.480(5)
Ba5	Ba7	4.16(1)	Ba20	Na28	3.99(3)	Ba36	Li78	3.71(9)
Ba5	Ba29	4.188(4)	Ba21	Li57	3.75(8)	Ba36	Na20	4.19(3)
Ba6	Li47	3.699(3)	Ba21	Na34	4.11(4)	Ba37	Li47	3.895(3)
Ba6	Li58	3.77(5)	Ba22	Li47	3.817(3)	Ba37	Na6	4.08(2)
Ba7	Ba65	3.31(2)	Ba22	Li54	3.83(6)	Ba38	Li76	3.86(9)
Ba7	Ba26	4.198(4)	Ba23	Li57	3.91(7)	Ba38	Ba59	4.424(7)
Ba8	Li47	3.654(3)	Ba23	Li58	3.96(7)	Ba39	Li68	3.86(7)
Ba8	Li66	3.841(3)	Ba24	Na40	3.94(6)	Ba39	Ba55	4.260(8)
Ba9	Ba12	4.11(3)	Ba24	Li77	4.05(9)	Ba40	Li51	3.88(5)
Ba9	Ba52	4.20(1)	Ba25	Li46	4.04(8)	Ba40	Ba33	4.411(5)
Ba10	Ba68	3.31(2)	Ba25	Na11	4.19(3)	Ba41	Na26	4.05(3)
Ba10	Ba11	4.12(1)	Ba26	Li46	3.88(6)	Ba41	Ba53	4.332(5)
Ba11	Ba68	3.36(2)	Ba26	Na38	4.00(4)	Ba42	Li75	3.75(9)
Ba11	Ba51	4.232(5)	Ba27	Li76	3.89(9)	Ba42	Na3	4.30(3)
Ba12	Ba61	3.36(1)	Ba27	Na32	4.09(6)	Ba43	Li75	3.64(9)
Ba12	Ba50	4.31(1)	Ba28	Li69	3.95(7)	Ba43	Ba67	4.10(2)
Ba13	Ba56	3.32(1)	Ba28	Na9	4.13(3)	Ba44	Li79	3.79(9)
Ba13	Ba14	4.15(2)	Ba29	Li54	3.83(6)	Ba44	Na9	4.19(3)
Ba14	Ba56	3.35(1)	Ba29	Na37	3.90(6)	Ba45	Na7	4.27(2)
Ba14	Ba59	4.239(7)	Ba30	Li49	3.99(6)	Ba45	Ba40	4.414(5)
Ba15	Ba54	3.37(3)	Ba30	Na23	4.11(3)	Ba46	Li86	3.863(4)
Ba15	Ba16	4.01(6)	Ba31	Li75	3.95(9)	Ba46	Na34	4.09(4)
Ba16	Ba54	3.22(2)	Ba31	Ba49	4.316(5)	Ba47	Li77	3.89(7)

 Tabelle 10.24
 Ausgewählte Interatomare Abstände [Å] in Li_{18.9}Na_{8.3}Ba_{15.3}

Ba47	Ba61	4.356(7)	Ba66	Ba66	4.48(3)	Na14	Li49	3.54(7)
Ba48	Li79	3.99(7)	Ba67	Ba67	4.54(3)	Na15	Na21	3.57(3)
Ba48	Ba44	4.289(6)	Ba68	Ba69	4.46(3)	Na15	Na23	3.80(6)
Ba49	Ba67	3.46(2)	Ba69	Li72	4.10(8)	Na16	Na22	3.44(2)
Ba49	Na10	4.19(3)	Na1	Li19	3.49(2)	Na16	Li27	3.57(3)
Ba50	Li81	3.64(7)	Na1	Li20	3.54(3)	Na17	Na25	3.46(2)
Ba50	Ba47	4.44(1)	Na2	Na33	3.39(3)	Na17	Li26	3.60(3)
Ba51	Ba69	3.41(2)	Na2	Li36	3.66(4)	Na18	Na34	3.30(4)
Ba51	Na9	4.19(3)	Na3	Na27	3.47(3)	Na18	Na38	3.65(5)
Ba52	Li67	3.77(7)	Na3	Na8	3.53(3)	Na19	Na24	3.53(4)
Ba52	Na11	4.29(3)	Na4	Na36	3.40(4)	Na19	Na20	3.61(3)
Ba53	Li65	4.00(7)	Na4	Li38	3.48(4)	Na20	Na19	3.66(3)
Ba53	Li87	4.04(9)	Na5	Na12	3.54(4)	Na20	Li24	3.50(4)
Ba54	Li55	3.87(7)	Na5	Na30	3.56(4)	Na21	Na23	3.55(4)
Ba54	Ba57	4.411(6)	Na6	Li51	3.43(6)	Na22	Na28	3.59(5)
Ba55	Ba60	3.478(9)	Na6	Na35	3.43(6)	Na22	Na27	3.60(4)
Ba55	Na18	4.11(7)	Na7	Li50	3.42(6)	Na23	Li60	3.34(8)
Ba56	Li77	4.16(7)	Na7	Li61	3.48(8)	Na23	Li23	3.57(4)
Ba57	Li55	3.97(9)	Na8	Na23	3.51(4)	Na24	Li68	3.27(8)
Ba57	Na16	4.15(4)	Na8	Na21	3.58(3)	Na24	Li24	3.51(5)
Ba58	Li83	3.89(9)	Na9	Li26	3.52(3)	Na25	Li26	3.60(4)
Ba59	Li81	3.75(7)	Na9	Na25	3.51(3)	Na25	Na26	3.71(4)
Ba59	Na5	4.22(3)	Na10	Li22	3.47(3)	Na27	Na28	3.54(4)
Ba60	Li67	3.77(7)	Na10	Na21	3.56(3)	Na28	Li28	3.40(5)
Ba60	Na11	4.24(3)	Na11	Li33	3.48(4)	Na28	Li63	3.48(8)
Ba61	Li71	4.17(7)	Na11	Na20	3.55(3)	Na29	Li44	3.25(4)
Ba62	Ba62	4.480(8)	Na12	Li45	3.42(4)	Na29	Li37	3.43(6)
Ba63	Li86	4.148(5)	Na12	Li30	3.57(4)	Na29	Na37	3.43(6)
Ba64	Ba65	4.40(3)	Na13	Li65	3.37(7)	Na30	Li45	3.81(7)
Ba65	Ba66	4.37(3)	Na13	Li25	3.44(4)	Na31	Li58	3.25(8)
Ba65	Ba65	4.49(3)	Na14	Na22	3.38(4)	Na31	Li31	3.41(6)

Fortsetzung Tabelle 10.24

Na31	Li33	3.58(6)	Li50	Li63	3.51(8)	Li68	Li73	2.99(11)
Na31	Na36	3.61(5)	Li51	Li61	3.07(12)	Li68	Li86	3.12(6)
Na32	Li43	3.11(5)	Li51	Li89	3.13(5)	Li69	Li87	3.15(10)
Na32	Li32	3.25(7)	Li52	Li53	3.19(13)	Li69	Li72	3.22(10)
Na32	Li48	3.31(9)	Li52	Li87	3.23(11)	Li70	Li74	3.23(12)
Na33	Li36	3.62(5)	Li53	Li82	2.96(7)	Li70	Li71	3.28(10)
Na34	Na38	3.47(5)	Li53	Li55	3.09(11)	Li71	Li78	3.14(12)
Na34	Li38	3.60(5)	Li54	Li63	3.02(8)	Li71	Li74	3.24(15)
Na35	Li50	3.06(9)	Li54	Li89	3.32(6)	Li72	Li88	3.15(8)
Na35	Li39	3.21(7)	Li55	Li88	3.18(7)	Li72	Li69	3.22(10)
Na35	Li66	3.34(5)	Li55	Li65	3.25(11)	Li73	Li85	3.23(14)
Na35	Li57	3.54(8)	Li56	Li88	2.85(6)	Li73	Li86	3.38(9)
Na35	Li58	3.63(8)	Li56	Li80	2.87(10)	Li74	Li84	3.30(9)
Na37	Li44	3.61(7)	Li57	Li89	3.32(8)	Li74	Li76	3.35(12)
Na39	Li66	2.91(4)	Li57	Li58	3.44(8)	Li75	Li88	3.31(10)
Na39	Li54	3.12(8)	Li58	Li66	3.31(7)	Li75	Li82	3.48(9)
Na40	Li76	3.09(8)	Li59	Li63	3.46(9)	Li76	Li84	3.17(11)
Na41	N35	3.34(8)	Li59	Li61	3.49(10)	Li76	Li81	3.35(10)
Li42	Li64	3.07(9)	Li60	Li88	3.08(7)	Li77	Li85	3.16(12)
Li42	Li62	3.08(5)	Li60	Li80	3.12(11)	Li77	Li84	3.29(7)
Li43	Li32	3.11(5)	Li61	Li89	3.05(8)	Li78	Li85	3.13(13)
Li44	Li29	3.25(4)	Li62	Li64	3.14(11)	Li78	Li84	3.19(9)
Li46	Li58	3.17(8)	Li62	Li62	3.27(7)	Li79	Li80	3.16(10)
Li46	Li89	3.25(6)	Li63	Li66	3.21(7)	Li9	Li88	3.25(7)
Li47	Li66	2.97(4)	Li64	Li69	3.25(13)	Li81	Li83	3.34(11)
Li47	Li63	3.31(7)	Li64	Li64	3.34(14)	Li82	Li87	3.52(11)
Li48	Li48	3.21(9)	Li65	Li87	3.20(11)	Li83	Li84	3.48(7)
Li49	Li88	3.03(6)	Li65	Li79	3.37(11)	Li84	Li85	3.07(9)
Li49	Li55	3.10(9)	Li67	Li70	3.25(10)	Li84	Li86	3.16(4)
Li50	Li66	3.34(6)	Li67	Li83	3.32(10)	Li87	Li88	3.01(12)
			1					

Fortsetzung Tabelle 10.24

10.8 Li₈₀Ba₃₉N₉

Summenformel:	Li ₈₀ Ba ₃₉ N ₉
Molmasse:	6037.56 g/mol
Temperatur:	20 °C
Wellenlänge:	0.56086 Å
Kristallsystem:	tetragonal
Raumgruppe:	$I\overline{4}2m$
Gitterparameter:	a = 16.0763(8), Å, $c = 32.267(2)$ Å
Zellvolumen:	8330.0(8) Å ³
Formeleinheiten pro Zelle:	2
Kristallgröße:	$0.18 \text{ mm} \times 0.16 \text{ mm} \times 0.16 \text{ mm}$
Berechnete Dichte:	2.407 g/cm^3
μ:	4.791 mm ⁻¹
<i>F</i> (000):	4974
Gemessener 2θ Bereich:	3.8° bis 56.3°
Indexbereich:	$-24\leq h\leq 24,-24\leq k\leq 24,-49\leq l\leq 49$
Gemessene (unabhängige) Reflexe:	27544 (7996)
Diffraktometer:	STOE IPDS I
Strukturverfeinerung:	SHELX-97
Daten, Parameter, GooF an F^2	5879, 115, 1.01
R _{int} :	0.076
<i>R</i> 1, <i>wR</i> 2 [$I > 2\sigma(I)$]:	0.039, 0.085
R1, wR2 (alle Daten):	0.063, 0.093
Wichtung (<i>a</i>):	0.043
$\Delta \rho(\max), \Delta \rho(\min)$:	2.711 e ⁻ /Å ³ , and -1.063 e ⁻ /Å ³
Hinterlegungsnummer: ^a	CSD-416656

Tabelle 10.25	Kristalldaten und Strukturve	erfeinerung von L	i80Ba39N9
---------------	------------------------------	-------------------	-----------

		81	00		
Atom	Position	x	У	Z	$U_{eq/iso}, Å^2$
Ba1	2b	0.5	0.5	0	0.0347(2)
Ba2	4 <i>e</i>	0	0	0.08566(2)	0.0298(1)
Ba3	8 <i>f</i>	0	0.17435(3)	0	0.0294(1)
Ba4	8 <i>h</i>	0.5	0	0.16286(1)	0.0294(1)
Ba5	8 <i>i</i>	0.10502(3)	0.10502(3)	0.19630(1)	0.0338(1)
Ba6	8 <i>i</i>	0.35312(3)	0.35312(3)	0.07463(2)	0.0349(1)
Ba7	8 <i>i</i>	0.40487(3)	0.40487(3)	0.19882(2)	0.0321(1)
Ba8	16 <i>j</i>	0.00351(3)	0.32699(2)	0.25034(1)	0.0298(1)
Ba9	16 <i>j</i>	0.40390(3)	0.10675(3)	0.04809(1)	0.0312(1)
N1	2a	0	0	0	0.014(2)
N2	4d	0	0.5	0.25	0.013(1)
N3	4 <i>e</i>	0.5	0.5	0.0869(2)	0.012(1)
N4	8 <i>g</i>	0.3271(3)	0.5	0	0.011(1)
Li1	8 <i>i</i>	0.148(1)	0.148(1)	0.3083(8)	0.064(6)
Li2	8 <i>i</i>	0.1481(7)	0.1481(7)	0.0728(4)	0.025(3)
Li3	8 <i>i</i>	0.255(1)	0.255(1)	0.2510(8)	0.048(4)
Li4	8 <i>i</i>	0.298(1)	0.702(1)	0.1011(7)	0.045(4)
Li5	8 <i>i</i>	0.377(1)	0.377(1)	0.3128(8)	0.058(6)
Li6	8 <i>i</i>	0.4291(9)	0.5709(9)	0.1080(6)	0.043(4)
Li7	8 <i>i</i>	0.763(1)	0.237(1)	0.0123(6)	0.045(4)
Li8	8 <i>i</i>	0.8312(8)	0.1688(8)	0.0934(5)	0.036(3)
Li9	16 <i>j</i>	0.002(1)	0.7489(9)	0.1244(4)	0.049(3)
Li10	16 <i>j</i>	0.1879(9)	0.3308(9)	0.3353(4)	0.039(3)
Li11	16 <i>j</i>	0.3511(7)	0.1475(6)	0.1781(3)	0.023(2)
Li12	16j	0.526(1)	0.238(1)	0.1311(5)	0.052(3)
Li13	16 <i>j</i>	0.5709(9)	0.2862(9)	0.0352(4)	0.041(3)
Li14	16j	0.645(1)	0.116(1)	0.0719(6)	0.064(4)

Auslenkungsparameter in Li₈₀Ba₃₉N₉

und

äquivalente/isotrope

Atomkoordinaten

Tabelle 10.26

		1	01		00	
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ba1	0.0345(3)	0.0345(3)	0.0352(5)	0	0	0
Ba2	0.0329(2)	0.0329(2)	0.0237(3)	0	0	0.0020(4)
Ba3	0.0300(2)	0.0245(2)	0.0336(2)	0	0.0012(2)	0
Ba4	0.0332(2)	0.0304(2)	0.0247(2)	0	0	-0.0012(3)
Ba5	0.0345(2)	0.0345(2)	0.0322(2)	-0.0016(2)	-0.002(1)	0.0023(2)
Ba6	0.0346(2)	0.0346(2)	0.0354(2)	-0.0001(2)	-0.0001(2)	0.0001(2)
Ba7	0.0323(2)	0.0323(2)	0.0317(2)	-0.0003(1)	-0.0003(1)	0.0018(2)
Ba8	0.0330(2)	0.0242(2)	0.0322(2)	-0.0003(1)	-0.0013(2)	0.0004(2)
Ba9	0.0317(2)	0.0293(2)	0.0324(2)	-0.0011(1)	-0.0016(1)	0.0008(2)
N1	0.016(3)	0.016(3)	0.009(3)	0	0	0
N2	0.012(2)	0.012(2)	0.016(3)	0	0	0
N3	0.013(2)	0.013(2)	0.010(3)	0	0	-0.001(3)
N4	0.008(2)	0.007(2)	0.016(2)	-0.002(2)	0	0

Tabelle 10.27Anisotrope Auslenkungsparameter [Ų] in Li₈₀Ba₃₉N9

N4	2.780(5)	Ba6	Li7	3.86(2)	Li3	Li5	3.41(4)
N3	2.806(6)	Ba6	Li6	3.86(1)	Li4	Li7	3.19(3)
Li13	3.793(14)	Ba6	Li13	3.88(1)	Li4	Li14	3.21(2)
N1	2.7640(6)	Ba7	Li5	3.73(2)	Li12	Li4	3.14(2)
Li2	3.39(2)	Ba7	Li3	3.81(2)	Li4	Li10	2.93(2)
Li8	3.84(2)	Ba7	Li12	3.97(2)	Li4	Li8	2.95(3)
Ba3	3.9354(6)	Ba7	Li6	3.98(2)	Li4	Li6	2.98(3)
Ba5	4.2940(8)	Ba7	Li1	4.00(2)	Li4	Li13	3.00(2)
Ba3	3.37(1)	Ba7	Ba7	4.323(1)	Li5	Li8	3.20(3)
Ba3	4.05(1)	Ba7	Ba8	4.3683(5)	Li5	Li10	3.20(3)
Ba3	4.3533(6)	Ba8	N2	2.7804(4)	Li5	Li9	3.49(2)
Ba3	3.9617(7)	Ba8	Li11	3.31(1)	Li12	Li6	3.24(2)
Li14	4.16(2)	Ba8	Li10	3.92(1)	Li6	Li6	3.22(4)
Ba3	2.8013(5)	Ba8	Ba8	3.9321(5)	N3	Li6	1.75(2)
Li7	3.95(2)	Ba8	Li1	4.14(1)	Li6	Li13	3.28(2)
N2	2.8119(5)	Li11	Ba8	3.39(1)	Li7	Li13	3.28(2)
Li11	3.40(1)	Ba9	Li14	3.75(2)	Li7	Li14	3.32(2)
Ba8	3.9467(5)	Ba9	Li9	3.89(1)	Li8	Li7	3.04(3)
Li12	3.98(2)	Ba9	Li7	3.922(9)	Li8	Li14	3.18(2)
Li10	4.06(1)	Ba9	Li12	3.93(2)	Li8	Li10	3.26(2)
Li14	4.19(2)	Ba9	Li14	3.96(2)	Li14	Li9	3.00(3)
Ba4	4.19(1)	Ba9	Li13	3.96(1)	Li11	Li9	3.37(2)
Ba5	4.2919(5)	Ba9	Ba9	4.3781(8)	Li10	Li9	3.15(2)
Li5	3.70(2)	Li1	Li10	3.14(3)	Li10	Li10	3.25(3)
Li9	3.72(1)	Lil	Li4	3.17(3)	Li10	Li12	3.03(2)
Li1	3.74(2)	Li1	Li6	3.21(3)	Li10	Li14	3.19(2)
Li3	3.83(2)	Li1	Li12	3.32(2)	Li11	Li12	3.50(2)
Li2	4.10(1)	Li3	Li1	3.05(4)	Li12	Li13	3.27(2)
Ba6	4.1318(6)	Li2	Li9	3.36(2)	Li12	Li14	3.34(2)
Ba6	4.1764(8)	Li7	Li2	3.41(2)	Li14	Li13	3.21(2)
N3	3.361(1)	Li3	Li10	3.17(2)	Li13	Li13	3.22(3)
Li12	3.80(2)	Li3	Li11	3.30(2)	Li13	N4	1.74(1)
	N4 N3 Li13 N1 Li2 Li8 Ba3 Ba5 Ba3 Ba3 Ba3 Li14 Ba3 Li14 Ba3 Li14 Ba3 Li14 Ba3 Li11 Ba8 Li12 Li10 Li14 Ba4 Ba5 Li2 Li10 Li11 Ba4 Ba5 Li2 Ba4 Ba5 Li3 Li2 Ba6 Ba6 Ba6 N3 Li12	N42.780(5)N32.806(6)Li133.793(14)N12.7640(6)Li23.39(2)Li83.84(2)Ba33.9354(6)Ba54.2940(8)Ba33.37(1)Ba34.05(1)Ba34.05(1)Ba33.9617(7)Li144.16(2)Ba32.8013(5)Li73.95(2)N22.8119(5)Li113.40(1)Ba83.9467(5)Li123.98(2)Li104.06(1)Li144.19(2)Ba44.19(1)Ba54.2919(5)Li53.70(2)Li93.72(1)Li13.74(2)Li33.83(2)Li24.10(1)Ba64.1318(6)Ba64.1764(8)N33.361(1)Li123.80(2)	N42.780(5)Ba6N32.806(6)Ba6Li133.793(14)Ba6N12.7640(6)Ba7Li23.39(2)Ba7Li33.84(2)Ba7Ba33.9354(6)Ba7Ba33.9354(6)Ba7Ba33.937(1)Ba7Ba33.37(1)Ba7Ba34.05(1)Ba7Ba34.05(1)Ba7Ba33.9617(7)Ba8Li144.16(2)Ba8Ba32.8013(5)Ba8Li173.95(2)Ba8N22.8119(5)Li11Li113.40(1)Ba9Ba83.9467(5)Ba9Li123.98(2)Ba9Li144.19(2)Ba9Ba54.2919(5)Ba9Li53.70(2)Li1Li93.72(1)Li1Li33.83(2)Li1Li33.83(2)Li1Li33.361(1)Li3Ba64.1764(8)Li7N33.361(1)Li3	N4 2.780(5) Ba6 Li7 N3 2.806(6) Ba6 Li6 Li13 3.793(14) Ba6 Li13 N1 2.7640(6) Ba7 Li5 Li2 3.39(2) Ba7 Li3 Li8 3.84(2) Ba7 Li12 Ba3 3.9354(6) Ba7 Li6 Ba5 4.2940(8) Ba7 Li1 Ba3 3.37(1) Ba7 Ba7 Ba3 4.05(1) Ba7 Ba8 Ba3 4.05(1) Ba7 Ba8 Ba3 4.3533(6) Ba8 N2 Ba3 3.9617(7) Ba8 Li11 Li14 4.16(2) Ba8 Li10 Ba3 2.8013(5) Ba8 Ba8 Li7 3.95(2) Ba8 Li1 N2 2.8119(5) Li11 Ba8 Li11 3.40(1) Ba9 Li12 Li12 3.98(2) Ba9 Li7 <td>N4 2.780(5) Ba6 Li7 3.86(2) N3 2.806(6) Ba6 Li6 3.86(1) Li13 3.793(14) Ba6 Li13 3.88(1) N1 2.7640(6) Ba7 Li5 3.73(2) Li2 3.39(2) Ba7 Li12 3.97(2) Ba3 3.9354(6) Ba7 Li6 3.98(2) Ba5 4.2940(8) Ba7 Li1 4.00(2) Ba3 3.37(1) Ba7 Ba7 4.323(1) Ba3 4.05(1) Ba7 Ba8 4.3683(5) Ba3 4.05(1) Ba7 Ba8 4.3683(5) Ba3 4.05(1) Ba7 Ba8 4.3683(5) Ba3 3.9617(7) Ba8 Li10 3.921(1) Li14 4.16(2) Ba8 Li10 3.921(1) Li7 3.95(2) Ba8 Ba8 3.9321(5) Li7 3.95(2) Ba8 Li1 3.14(1) N2 <</td> <td>N4$2.780(5)$Ba6Li7$3.86(2)$Li3N3$2.806(6)$Ba6Li6$3.86(1)$Li4Li13$3.793(14)$Ba6Li13$3.88(1)$Li4N1$2.7640(6)$Ba7Li5$3.73(2)$Li12Li2$3.39(2)$Ba7Li3$3.81(2)$Li4Li8$3.84(2)$Ba7Li12$3.97(2)$Li4Ba3$3.9354(6)$Ba7Li6$3.98(2)$Li4Ba3$3.9354(6)$Ba7Li1$4.00(2)$Li4Ba3$3.71(1)$Ba7Ba7$4.323(1)$Li5Ba3$4.05(1)$Ba7Ba8$4.3683(5)$Li5Ba3$4.05(1)$Ba7Ba8$4.3683(5)$Li5Ba3$3.9617(7)$Ba8Li10$3.92(1)$Li6Ba3$2.8013(5)$Ba8Ba8$3.9321(5)$N3Li7$3.95(2)$Ba8Li1$4.14(1)$Li6N2$2.8119(5)$Li11Ba8$3.39(1)$Li7Li11$3.40(1)$Ba9Li12$3.92(2)$Li8Li12$3.9467(5)$Ba9Li9$3.89(1)$Li8Li12$3.94(2)$Ba9Li14$3.96(2)$Li14Ba4$4.19(1)$Ba9Li12$3.93(2)$Li8Li14$4.19(2)$Ba9Li14$3.96(2)$Li14Ba5$4.2919(5)$Ba9Ba9$4.3781(8)$Li10Li14$3.70(2)$Li11</td> <td>N42.780(5)Ba6Li73.86(2)Li3Li3Li5N32.806(6)Ba6Li63.86(1)Li4Li7Li133.793(14)Ba6Li133.88(1)Li4Li14N12.7640(6)Ba7Li53.73(2)Li12Li4Li23.39(2)Ba7Li33.81(2)Li4Li10Li83.84(2)Ba7Li123.97(2)Li4Li8Ba33.9354(6)Ba7Li163.98(2)Li4Li6Ba54.2940(8)Ba7Li14.00(2)Li4Li13Ba33.37(1)Ba7Ba74.323(1)Li5Li8Ba34.05(1)Ba7Ba84.3683(5)Li5Li10Ba33.9617(7)Ba8Li113.31(1)Li12Li6Li144.16(2)Ba8Li103.92(1)Li6Li6Ba32.8013(5)Ba8Ba83.9321(5)N3Li6Li173.95(2)Ba8Li14.14(1)Li6Li13N22.8119(5)Li11Ba83.39(1)Li7Li14Ba83.9467(5)Ba9Li93.89(1)Li8Li7Li123.98(2)Ba9Li143.76(2)Li14Li9Ba44.19(1)Ba9Li143.96(1)Li14Li9Ba54.2919(5)Ba9Ba94.3781(8)Li10Li10Li144.19(2)Ba9Li14<t< td=""></t<></td>	N4 2.780(5) Ba6 Li7 3.86(2) N3 2.806(6) Ba6 Li6 3.86(1) Li13 3.793(14) Ba6 Li13 3.88(1) N1 2.7640(6) Ba7 Li5 3.73(2) Li2 3.39(2) Ba7 Li12 3.97(2) Ba3 3.9354(6) Ba7 Li6 3.98(2) Ba5 4.2940(8) Ba7 Li1 4.00(2) Ba3 3.37(1) Ba7 Ba7 4.323(1) Ba3 4.05(1) Ba7 Ba8 4.3683(5) Ba3 4.05(1) Ba7 Ba8 4.3683(5) Ba3 4.05(1) Ba7 Ba8 4.3683(5) Ba3 3.9617(7) Ba8 Li10 3.921(1) Li14 4.16(2) Ba8 Li10 3.921(1) Li7 3.95(2) Ba8 Ba8 3.9321(5) Li7 3.95(2) Ba8 Li1 3.14(1) N2 <	N4 $2.780(5)$ Ba6Li7 $3.86(2)$ Li3N3 $2.806(6)$ Ba6Li6 $3.86(1)$ Li4Li13 $3.793(14)$ Ba6Li13 $3.88(1)$ Li4N1 $2.7640(6)$ Ba7Li5 $3.73(2)$ Li12Li2 $3.39(2)$ Ba7Li3 $3.81(2)$ Li4Li8 $3.84(2)$ Ba7Li12 $3.97(2)$ Li4Ba3 $3.9354(6)$ Ba7Li6 $3.98(2)$ Li4Ba3 $3.9354(6)$ Ba7Li1 $4.00(2)$ Li4Ba3 $3.71(1)$ Ba7Ba7 $4.323(1)$ Li5Ba3 $4.05(1)$ Ba7Ba8 $4.3683(5)$ Li5Ba3 $4.05(1)$ Ba7Ba8 $4.3683(5)$ Li5Ba3 $3.9617(7)$ Ba8Li10 $3.92(1)$ Li6Ba3 $2.8013(5)$ Ba8Ba8 $3.9321(5)$ N3Li7 $3.95(2)$ Ba8Li1 $4.14(1)$ Li6N2 $2.8119(5)$ Li11Ba8 $3.39(1)$ Li7Li11 $3.40(1)$ Ba9Li12 $3.92(2)$ Li8Li12 $3.9467(5)$ Ba9Li9 $3.89(1)$ Li8Li12 $3.94(2)$ Ba9Li14 $3.96(2)$ Li14Ba4 $4.19(1)$ Ba9Li12 $3.93(2)$ Li8Li14 $4.19(2)$ Ba9Li14 $3.96(2)$ Li14Ba5 $4.2919(5)$ Ba9Ba9 $4.3781(8)$ Li10Li14 $3.70(2)$ Li11	N42.780(5)Ba6Li73.86(2)Li3Li3Li5N32.806(6)Ba6Li63.86(1)Li4Li7Li133.793(14)Ba6Li133.88(1)Li4Li14N12.7640(6)Ba7Li53.73(2)Li12Li4Li23.39(2)Ba7Li33.81(2)Li4Li10Li83.84(2)Ba7Li123.97(2)Li4Li8Ba33.9354(6)Ba7Li163.98(2)Li4Li6Ba54.2940(8)Ba7Li14.00(2)Li4Li13Ba33.37(1)Ba7Ba74.323(1)Li5Li8Ba34.05(1)Ba7Ba84.3683(5)Li5Li10Ba33.9617(7)Ba8Li113.31(1)Li12Li6Li144.16(2)Ba8Li103.92(1)Li6Li6Ba32.8013(5)Ba8Ba83.9321(5)N3Li6Li173.95(2)Ba8Li14.14(1)Li6Li13N22.8119(5)Li11Ba83.39(1)Li7Li14Ba83.9467(5)Ba9Li93.89(1)Li8Li7Li123.98(2)Ba9Li143.76(2)Li14Li9Ba44.19(1)Ba9Li143.96(1)Li14Li9Ba54.2919(5)Ba9Ba94.3781(8)Li10Li10Li144.19(2)Ba9Li14 <t< td=""></t<>

Tabelle 10.28Interatomare Abstände [Å] in Li₈₀Ba₃₉N₉

10.9 LiBa₃N

_

	0
Summenformel:	LiBa ₃ N
Molmasse:	432.96 g/mol
Raumgruppe:	<i>P</i> 6 ₃ / <i>mmc</i>
Gitterparameter:	<i>a</i> = 8.182(1), Å, <i>c</i> = 6.922(4) Å
Zellvolumen:	401.3(1) Å ³
Formeleinheiten pro Zelle:	2
Berechnete Dichte:	3.596 g/cm^3
Temperatur:	20 °C
Wellenlänge:	Mo <i>K</i> _{α1} , 0.71073 Å
Diffraktometer/ Detektor:	STOE STADI P/ PSD
Gemessener 2θ Bereich:	3.0° bis 45.0°

Tabelle 10.29Daten zu Strukturaufklärung von LiBa₃N

Tabelle 10.30 Auswertung einer Pulveraufnahme von LiBa₃N

h	k	l	$2\theta_{\rm gem}$	$2\theta_{\rm ber}$	Igem	Iber
0	1	0	5.751	5.737	54.1	58.7
0	1	1	8.200	8.208	12.0	8.8
1	1	0	9.959	9.946	3.2	4.2
0	2	0	11.493	11.489	15.9	19.1
0	0	2	11.770	11.746	22.3	29.5
0	2	1	12.897	12.909	100	100
0	1	2	13.056	13.081	13.4	8.9
1	2	1)		16.180		20.7
$\overline{0}$	$\overline{2}$	$\overline{2}$	16.338	16.462	32.1	18.0
0	3	1	18.268	18.253	12.1	13.9
2	2	0	19.967	19.967	11.3	13.5
2	3	0	25.204	25.200	11.4	8.4
2	5	1	36.923	36.927	2.9	3.4

 Tabelle 10.31
 Atomkoordinaten in LiBa₃N

Atom	Position	x	У	Ζ
Li1	2 <i>c</i>	0.3333	0.6667	0.25
Ba1	6 <i>h</i>	0.2966	0.1483	0.25
N1	2 <i>a</i>	0	0	0

Tabelle 1	0.32
-----------	------

Interatomare Abstände [Å] in LiBa₃N

Ba1	N1	2.722
Ba1	Li1	4.099
Bal	Li1	4.342
Ba1	Bal	3.640
Ba1	Ba1	4.049

10.10 LiBa₂N

Summenformel:	LiBa ₂ N
Molmasse:	295.56 g/mol
Temperatur:	20 °C
Wellenlänge:	0.56086 Å
Kristallsystem:	tetragonal
Raumgruppe:	$P4_2/nmc$
Gitterparameter:	a = 7.980(1), Å, $c = 14.263(2)$ Å
Zellvolumen:	908.3(9) Å ³
Formeleinheiten pro Zelle:	8
Kristallgröße:	$0.14~mm \times 0.12~mm \times 0.08~mm$
Berechnete Dichte:	4.323 g/cm^3
μ:	9.01 mm ⁻¹
<i>F</i> (000):	972
Gemessener 2θ Bereich:	5.6° bis 44.0°
Indexbereich:	$-13 \le h \le 13, -13 \le k \le 13, -23 \le l \le 23$
Gemessene (unabhängige) Reflexe:	30260 (1216)
Diffraktometer:	STOE IPDS I
Strukturverfeinerung:	SHELX-97
Daten, Parameter, GooF an F^2	1216, 26, 1.02
R _{int} :	0.10
<i>R</i> 1, <i>wR</i> 2 [$I > 2\sigma(I)$]:	0.039, 0.077
R1, wR2 (alle Daten):	0.071, 0.088
Wichtung (<i>a</i> , <i>b</i>):	0.0672, 3.5618
$\Delta \rho(\max), \Delta \rho(\min)$:	$2.16 \text{ e}^{-1}/\text{\AA}^3$, $-2.34 \text{ e}^{-1}/\text{\AA}^3$
Hinterlegungsnummer: ^a	CSD-417744

 Tabelle 10.33
 Kristalldaten und Strukturverfeinerung von LiBa₂N

Atom	Position	x	у	Z	$U_{\rm eq},{ m \AA}^2$
Li	8 <i>g</i>	0.498(4)	0.75	0.9909(14)	0.026(4)
Ba1	8g	0.75	0.00696(9)	0.14241(3)	0.0136(1)
Ba2	8g	0.75	0.99085(8)	0.82504(3)	0.0149(1)
Ν	8g	0.504(1)	0.75	0.8311(8)	0.032(2)

Tabelle 10.34 Atomkoordinaten und äquivalente Auslenkungsparameter in LiBa₂N

Tabelle 10.35	Anisotrope Auslenkungsparameter [Å ²] in LiBa ₂ N	

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Li	0.0121(3)	0.0179(3)	0.01089(18)	-0.0026(2)	0	0
Ba1	0.0238(4)	0.0108(3)	0.00997(18)	-0.0004(2)	0	0
Ba2	0.014(14)	0.002(11)	0.061(11)	0	0.011(7)	0
Ν	0.021(5)	0.031(5)	0.044(5)	0	0.003(4)	0

Tabell	e 10.36 Inter	atomare Abstän	de [Å] in Li	Ba ₂ N	
N	Ba1	2.69(1)	Ba1	Ba2	3.991(2)
Ν	Ba1	2.833(8)	Ba1	Ba2	3.958(1)
Ν	Ba2	2.788(8)	Ba1	Ba2	4.240(2)
Ν	Li	2.28(2)	Ba2	Ba2	3.844(3)
Bal	Li	3.36(2)	Ba2	Ba2	4.136(3)
Ba1	Li	3.59(2)	Ba2	Li	3.31(2)
Ba1	Bal	3.879(3)	Ba2	Li	3.52(2)
Ba1	Bal	4.101(3)			

10.11 Na₁₅Li₈Ba₁₂N₆

Summenformel:	Na ₁₅ Li ₈ Ba ₁₂ N ₆
Molmasse:	2132.55 g/mol
Temperatur:	20 °C
Wellenlänge:	0.71073 Å
Kristallsystem:	trigonal
Raumgruppe:	$R\overline{3}m$
Gitterparameter:	<i>a</i> = 12.3409(9), Å, <i>c</i> = 33.311(4) Å
Zellvolumen:	4394(2) Å ³
Formeleinheiten pro Zelle:	3
Kristallgröße:	$0.14 \text{ mm} \times 0.12 \text{ mm} \times 0.18 \text{ mm}$
Berechnete Dichte:	2.418 g/cm ³
μ:	8.035 mm ⁻¹
<i>F</i> (000):	2709
Gemessener 2θ Bereich:	4.0° bis 64.3°
Indexbereich:	$-17 \le h \le 18, -16 \le k \le 17, -49 \le l \le 49$
Gemessene (unabhängige) Reflexe:	17658 (1912)
Diffraktometer:	STOE IPDS II
Strukturverfeinerung:	SHELX-97
Daten, Parameter, GooF an F^2	1912, 45, 1.01
R _{int} :	0.075
<i>R</i> 1, <i>wR</i> 2 [$I > 2\sigma(I)$]:	0.037, 0.046
R1, wR2 (alle Daten):	0.059, 0.055
Wichtung (<i>a</i> , <i>b</i>):	0.0116, 15.761
$\Delta \rho(\max), \Delta \rho(\min)$:	$0.89 \text{ e}^{-}/\text{Å}^{3}, -0.93 \text{ e}^{-}/\text{Å}^{3}$
Hinterlegungsnummer: ^a	CSD-417928

		0 12 0			
Atom	Position	x	У	Ζ	$U_{ m eq}$, Å ²
Ba1	18 <i>h</i>	-0.10531(4)	0.44735(2)	0.42548(1)	0.0311(1)
Ba2	18 <i>h</i>	-0.12250(2)	0.12250(2)	0.39348(1)	0.0368(1)
Nal	18 <i>h</i>	0.2309(2)	0.4618(3)	0.3729(1)	0.0588(9)
Na2	18 <i>h</i>	0.1682(2)	0.3364(4)	0.4789(1)	0.0611(9)
Na3	6 <i>c</i>	0.3333	0.6667	0.4649(2)	0.071(2)
Na4	3 <i>b</i>	0	0	0.5	0.063(3)
Ν	18 <i>h</i>	-0.2365(3)	0.2365(3)	0.3825(2)	0.027(1)
Lil	18 <i>f</i>	-0.1296(9)	0.3333	0.3333	0.040(3)
Li2	6 <i>c</i>	-0.3333	0.3333	0.3717(5)	0.024(4)

Tabelle 10.38 Atomkoordinaten und äquivalente/isotrope Auslenkungsparameter in Na₁₅Li₈Ba₁₂N₆

Tabelle 10.39Anisotrope Auslenkungsparameter [Ų] in Na15Li8Ba12N6a)

Atom	U_{11}	U ₃₃	<i>U</i> ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Ba1	0.0325(2)	0.0280(2)	-0.00346(9)	- <i>U</i> ₂₃	0.0159(2)
Ba2	0.0392(2)	0.0426(3)	0.00250(9)	- <i>U</i> ₂₃	0.0122(1)
Na1	0.069(2)	0.049(2)	0.0025(9)	- <i>U</i> ₂₃	0.036(2)
Na2	0.069(2)	0.050(2)	0.0025(9)	- <i>U</i> ₂₃	0.042(2)
Na3	0.065(4)	0.053(6)	0	0	0.033(2)
Na4	0.080(3)	0.054(5)	0	0	0.040(2)
Ν	0.028(3)	0.023(2)	-0.000(1)	- <i>U</i> ₂₃	0.016(2)
Lil	0.043(5)	0.026(6)	-0.006(3)	- <i>U</i> ₂₃	0.019(6)
Li2	0.028(6)	0.014(8)	0	0	0.014(3)

a) $U_{22} = U_{33}$

Tabel	le 10.40	Interatomare Abstan	Ide [A] in $Na_{15}L$	18Ba ₁₂ N ₆		
Ba1	N	2.690(3)	Na2	Na2	3.859(5)	_
Ba1	Li1	3.03(1)	Na2	Ba2	4.298(3)	
Ba1	Li2	3.327(2)	Na2	Ba2	4.361(4)	
Ba1	Ba2	4.050(2)	Na2	Ba1	4.465(3)	
Ba1	Bal	4.221(2)	Na3	Na2	3.561(5)	
Ba1	Na3	4.391(6)	Na3	Na1	3.767(7)	
Ba1	Na1	4.425(2)	Na4	Na2	3.662(4)	
Ba2	Ν	2.462(6)	Na3	Ba1	4.391(6)	
Ba2	Li2	3.319(6)	Na4	Na2	3.662(5)	
Ba2	Bal	4.050(2)	Na4	Ba2	4.4100(9)	
Ba2	Na1	4.116(3)	Ν	Li2	2.068(6)	
Ba2	Na2	4.298(3)	Ν	Li1	2.103(7)	
Ba2	Na1	4.332(4)	Ν	Ba1	2.690(3)	
Ba2	Na2	4.361(4)	Li1	Ν	2.103(7)	
Na1	Na3	3.767(7)	Li1	Li1	2.55(3)	
Na1	Na2	3.780(5)	Lil	Li2	2.82(1)	
Na1	Na1	3.791(7)	Li1	Ba1	3.03(1)	
Na1	Ba2	4.115(3)	Li2	Ν	2.068(6)	
Na1	Ba2	4.332(4)	Li2	Li2	2.52(1)	
Na1	Bal	4.425(2)	Li2	Li1	2.82(1)	
Na2	Na3	3.561(5)	Li2	Ba2	3.319(6)	
Na2	Na4	3.662(4)	Li2	Ba1	3.327(2)	

. 1 . 11 10 40 ... ŝп т: р ът . ът

10.12 Na₁₄Ba₁₄LiN₆

Summenformel:	Na ₁₄ Ba ₁₄ LiN ₆
Molmasse:	2335.56 g/mol
Temperatur:	20 °C
Wellenlänge:	Mo <i>K</i> _{α1} , 0.71073 Å
Gemessener 2θ Bereich:	6° bis 70.0°
Schrittweite:	0.01°
Messgeschwindigkeit pro Schritt	180 s
Kristallsystem:	kubisch
Raumgruppe:	$Fm\bar{3}m$
Gitterparameter:	$a = 17.7955(5), \text{\AA}$
Zellvolumen:	5635.6(2) Å ³
Formeleinheiten pro Zelle:	4
Berechnete Dichte:	2.763 g/cm^3
Diffraktometer/ Detektor:	STOE STADI P/ PSD
Datenpunkte	6400
Anzahl der Reflexe/Parameter	733, 20
Profilfunktion	Pseudo-Voigt
Mischungsparameter:	0.91(1)
Halbwertsparameter (u, v, w)	0.33(1), -0.129(6), 0.0293(5)
R _p	0.045
$R_{ m wp}$	0.060
R _{exp}	0.027
$R_{ m Bragg}$	0.045
Hinterlegungsnummer: ^a	CSD-418457

Atom	Position	x	у	Z	$U_{\rm eq}$, Å ²
Ba1	24 <i>e</i>	0.71294(7)	0	0	0.063(2)
Ba2	32 <i>f</i>	0.10295(3)	0.10295(3)	0.10295(3)	0.034(2)
Nal	24 <i>d</i>	0.75	0.25	0	0.110(3)
Na2	32 <i>f</i>	0.3281(2)	0.3281(2)	0.3281(2)	0.110(3)
Li	4 <i>a</i>	0	0	0	0.08*
Ν	24 <i>e</i>	0.8568(7)	0	0	0.069(9)

Tabelle 10.42Atomkoordinaten und äquivalente/isotrope Auslenkungsparameter
in Na14Ba14LiN6

* - fixiert

 Tabelle 10.43
 Interatomare Abstände [Å] in Na14Ba14LiN6

Ba1	Ν	2.551(7)	Ba2	Na2	4.373(4)
Ba1	Na1	4.4975(2)	Ba2	Ba1	4.1770(8)
Ba1	Na2	4.363(4)	Ba2	Ba2	3.6641(8)
Ba1	Ba2	4.177(1)	Na1	Na2	3.635(4)
Ba2	Ν	2.691(5)	Na2	Na2	3.986(5)
Ba2	Li	3.1732(5)	Li	Ν	2.557(7)
Ba2	Nal	4.1294(5)			

10.13 Li₄Na₁₁Ba₁₄LiN₆

Summenformel:	Li ₄ Na ₁₁ Ba ₁₄ LiN ₆
Molmasse:	2294.4 g/mol
Temperatur:	20 °C
Wellenlänge:	0.56086 Å
Kristallsystem:	kubisch
Raumgruppe:	$F\overline{4}3m$
Gitterparameter:	a = 17.874(2) Å
Zellvolumen:	$5710(1) \text{ Å}^3$
Formeleinheiten pro Zelle:	4
Kristallgröße:	$0.10 \text{ mm} \times 0.16 \text{ mm} \times 0.16 \text{ mm}$
Berechnete Dichte:	2.669 g/cm ³
μ:	9.562 mm ⁻¹
<i>F</i> (000):	3847
Gemessener 2θ Bereich:	5.0° bis 43.2°
Indexbereich:	$-17 \le h \le 19, -19 \le k \le 19, -19 \le l \le 19$
Gemessene (unabhängige) Reflexe:	5859 (444)
Diffraktometer:	STOE IPDS I
Strukturverfeinerung:	SHELX-97
Daten, Parameter, GooF an F^2	444, 29, 1.04
R _{int} :	0.26
<i>R</i> 1, <i>wR</i> 2 [$I > 2\sigma(I)$]:	0.062, 0.13
<i>R</i> 1, <i>wR</i> 2 (alle Daten):	0.11, 0.14
Wichtung (<i>a</i>):	0.047
$\Delta \rho(\max), \Delta \rho(\min)$:	$1.91 \text{ e}^{-}/\text{\AA}^{3}, -1.21 \text{ e}^{-}/\text{\AA}^{3}$
Hinterlegungsnummer: ^a	CSD-418455

Tabelle 10.44Kristalldaten und Strukturverfeinerung von Li4Na11Ba14LiN6

	-				
Atom	Position	x	У	Ζ	$U_{ m eq/iso},{ m \AA}^2$
Ba1	16e	0.1035(1)	0.1035(1)	0.1035(1)	0.0406(7)
Ba2	16e	0.8973(1)	0.8973(1)	0.8973(1)	0.0448(9)
Ba3	24 <i>f</i>	0.2854(1)	0	0	0.0619(6)
Nal	4 <i>b</i>	0.5	0.5	0.5	0.059(8)
Na2	16e	0.6701(6)	0.6701(6)	0.6701(6)	0.035(4)
Na3	24g	0.0101(8)	0.25	0.25	0.049(4)
Ν	24 <i>f</i>	0.144(1)	0	0	0.058(8)
Li1	4 <i>a</i>	0	0	0	0.01(1)
Li2	16e	0.361(3)	0.361(3)	0.361(3)	0.04(2)

 Tabelle 10.45
 Atomkoordinaten und äquivalente Auslenkungsparameter in Li4Na11Ba14LiN6

Tabelle 10.46

Anisotrope Auslenkungsparameter [Å²] in Li₄Na₁₁Ba₁₄LiN₆

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Ba1	0.0406(7)	U_{11}	U_{11}	-0.003(1)	U_{23}	U_{23}
Ba2	0.0448(9)	U_{11}	U_{11}	-0.001(1)	U_{23}	U_{23}
Ba3	0.051(1)	0.0676(8)	U_{22}	0.013(5)	0	0
Na1	0.059(8)	U_{11}	U_{11}	0	0	0
Na2	0.035(4)	U_{11}	U_{11}	0.003(5)	U_{23}	U_{23}
Na3	0.010(8)	0.068(5)	U_{22}	-0.040(6)	0	0
Ν	0.05(1)	0.06(1)	U_{22}	-0.05(3)	0	0

Tabelle 10.47 Interatomare Abstände [Å] in Li₄Na₁₁Ba₁₄LiN₆

Ba1	N	2.717(7)	Ba3	Ν	2.52(2)
Ba1	Li1	3.206(3)	Ba3	Li2	3.77(5)
Ba1	Na3	4.061(6)	Ba3	Na1	3.835(2)
Ba1	Ba2	3.687(2)	Ba3	Na2	4.37(1)
Ba1	Ba3	4.174(2)	Ba3	Na3	4.5168(8)
Ba2	Ν	2.701(7)	Na2	Na2	4.04(3)
Ba2	Li1	3.180(4)	Na2	Na3	3.80(1)
Ba2	Na2	4.404(5)	Na3	Li2	3.63(3)
Ba2	Na3	4.234(7)	Li1	Ν	2.58(2)
Ba2	Ba3	4.172(2)			

10.14 Li₅Na₁₀Ba₁₄LiN₆

Summenformel:	$Li_5Na_{10}Ba_{14}LiN_6$
Molmasse:	2278.2 g/mol
Temperatur:	20 °C
Wellenlänge:	0.56086 Å
Kristallsystem:	kubisch
Raumgruppe:	$F\overline{4}3m$
Gitterparameter:	<i>a</i> = 17.799(1), Å
Zellvolumen:	5638.7(6) Å ³
Formeleinheiten pro Zelle:	4
Kristallgröße:	$0.14~mm \times 0.20~mm \times 0.18~mm$
Berechnete Dichte:	2.684 g/cm^3
μ:	5.123 mm ⁻¹
<i>F</i> (000):	3816
Gemessener 2θ Bereich:	5.8° bis 39.1°
Indexbereich:	$-26 \le h \le 26, -26 \le k \le 26, -26 \le l \le 26$
Gemessene (unabhängige) Reflexe:	22704 (1042)
Diffraktometer:	STOE IPDS I
Strukturverfeinerung:	SHELX-97
Daten, Parameter, GooF an F^2	1042, 29, 1.02
<i>R</i> _{int} :	0.088
<i>R</i> 1, <i>wR</i> 2 [$I \ge 2\sigma(I)$]:	0.039, 0.12
<i>R</i> 1, <i>wR</i> 2 (alle Daten):	0.048, 0.14
Wichtung (<i>a</i> , <i>b</i>):	0.0778, 200.29
$\Delta \rho(\max), \Delta \rho(\min)$:	$2.11 \text{ e}^{-1}/\text{\AA}^3$, $-1.94 \text{ e}^{-1}/\text{\AA}^3$
Hinterlegungsnummer: ^a	CSD-418456

Tabelle 10.48Kristalldaten und Strukturverfeinerung von Li5Na10Ba14LiN6

Atom	Position	x	У	Ζ	$U_{ m eq}$, Å ²
Ba1	16e	0.10315(9)	0.10315(9)	0.10315(9)	0.0273(6)
Ba2	16e	0.89715(9)	0.89715(9)	0.89715(9)	0.0280(7)
Ba3	24 <i>f</i>	0.28650(5)	0	0	0.0397(3)
Nal	16e	0.6691(8)	0.6691(8)	0.6691(8)	0.043(5)
Na2	24g	0.008(1)	0.25	0.25	0.050(3)
Ν	24 <i>f</i>	0.1468(6)	0	0	0.033(3)
Li1	4 <i>a</i>	0	0	0	0.023(8)
Li2	4 <i>b</i>	0.5	0.5	0.5	0.026(9)
Li3	16e	0.325(2)	0.325(2)	0.325(2)	0.023(8)

Tabelle 10.49Atomkoordinaten und äquivalente Auslenkungsparameter in
Li5Na10Ba14LiN6

Tabelle 10.50

Anisotrope Auslenkungsparameter $[\text{\AA}^2]$ in Li₅Na₁₀Ba₁₄LiN₆

Atom	U_{11}	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Ba1	0.0273(6)	U_{11}	U_{11}	-0.0026(6)	U_{23}	U_{23}
Ba2	0.0280(7)	U_{11}	U_{11}	-0.0024(7)	U_{23}	U_{23}
Ba3	0.0287(4)	0.0452(3)	U_{22}	0.004(1)	0	0
Na1	0.043(5)	U_{11}	U_{11}	0.014(5)	U_{23}	U_{23}
Na2	0.036(9)	0.057(3)	U_{22}	-0.021(3)	0	0
Ν	0.027(4)	0.036(4)	U_{22}	0.029(9)	0	0
Li1	0.023(8)	U_{11}	U_{11}	0	0	0
Li2	0.026(9)	U_{11}	U_{11}	0	0	0
Li3	0.023(8)	U_{11}	U_{11}	-0.004(7)	U_{23}	U_{23}

Tabelle 10.51

1 Interatomare Abstände [Å] in Li₅Na₁₀Ba₁₄LiN₆

Bal	Ν	2.711(3)	Ba2	Li1	3.170(3)	Ba3	Nal	4.33(2)
Bal	Li1	3.180(3)	Ba2	Nal	4.387(6)	Ba3	Na2	4.4992(8)
Ba1	Na2	4.065(9)	Ba2	Na2	4.20(1)	Nal	Nal	4.08(4)
Ba1	Ba2	3.6666(7)	Ba2	Ba3	4.1696(7)	Nal	Na2	3.75(2)
Ba1	Ba3	4.1705(7)	Ba3	N1	2.49(1)	Na2	Li3	3.53(2)
Ba2	Ν	2.704(3)	Ba3	Li2	3.8000(9)	Li1	Ν	2.61(1)
Ba1	Ν	2.711(3)	Ba2	Li1	3.170(3)	Ba3	Na1	4.33(2)

Tubene 10.52 Infistantiaten ana Stra	Ken vertemet ung von Enzor (ussebusser)
Summenformel:	Li ₂₆ Na ₅₈ Ba ₃₈ N
Molmasse:	6746.78 g/mol
Temperatur:	20 °C
Wellenlange:	0.56086 Å
Kristallsystem:	kubisch
Raumgruppe:	$F\overline{4} 3m$
<i>a</i> :	27.528(2) Å
Zellvolumen:	20860(2) Å ³
<i>Z</i> :	4
Berechnete Dichte:	2.148 g/cm ³
Kristallgröße:	$0.18 \text{ mm} \times 0.11 \text{ mm} \times 0.12 \text{ mm}$
<i>F</i> (000) :	11400
Indexbereich:	$-35 \le h \le 35$
	$-35 \le k \le 35$
	$-35 \le l \le 35$
Gemessene Reflexe:	48039
Unabhängige Reflexe:	1919
Strukturverfeinerung:	SHELX-97
Daten/Parameter:	1919/74
R _{int} :	0.130
R_{σ} :	0.034
GOF an F^2 :	0.99
$R\left[I > 2\sigma(I)\right]^a$:	<i>R</i> 1=0.043, <i>wR</i> 2=0.108
<i>R</i> (alle Daten):	<i>R</i> 1=0.060, <i>wR</i> 2=0.115
$\Delta \rho(\max), \Delta \rho(\min)$:	1.61 and $-1.66 \text{ e}^{-}/\text{Å}^{3}$

10.15 $Li_{26}Na_{58}Ba_{38}E_x$ (E = N, H; x = 0–1)

Tabelle 10.52Kristalldaten und Strukturverfeinerung von Li26Na58Ba38N

Atom	Position	x	У	Ζ	$U_{ m eq}$, Å ²
Ba1	4 <i>a</i>	0	0	0	0.0331(5)
Ba2	16e	0.65588(3)	0.34412(3)	0.84412(3)	0.0337(2)
Ba3	4 <i>c</i>	0.75	0.25	0.75	0.0383(6)
Ba4	48 <i>h</i>	0.45864(3)	0.15761(2)	0.84239(2)	0.0348(2)
Ba5	16e	0.90698(4)	0.40698(4)	0.90698(4)	0.0602(4)
Ba6	48 <i>h</i>	0.68823(2)	0.31177(2)	0.00227(3)	0.0331(2)
Ba7	16e	0.59400(3)	0.40600(3)	0.09400(3)	0.0336(3)
Na1	48 <i>h</i>	0,5471(2)	0.4529(2)	0.8601(2)	0.052(1)
Na2	48 <i>h</i>	0.6052(2)	0.2040(2)	0.7960(2)	0.049(1)
Na3	48 <i>h</i>	0.5783(2)	0.0783(2)	0.7643(2)	0.055(2)
Na4	16e	0.4504(2)	0.0496(2)	0.9504(2)	0.048(2)
Na5	24 <i>f</i>	0.5	0.1595(3)	0	0.061(2)
Na6	48 <i>h</i>	0.4502(2)	0.4502(2)	0.7679(2)	0.054(2)
Li1	24g	0.75	0.25	0.111(1)	0.039(7)
Li2	48 <i>h</i>	0.3654(4)	0.3654(4)	0.7744(7)	0.026(4)
Li3	16 <i>e</i>	0.319(1)	0.181(1)	0.819(1)	0.048(9)
Li4	16 <i>e</i>	0.2903(8)	0.2903(8)	0.7903(8)	0.05(1)
Ν	4 <i>d</i>	0.25	0.25	0.75	0.020(6)

 Tabelle 10.53
 Atomkoordinaten und äquivalente/isotrope Auslenkungsparameter in Li₂₆Na₅₈Ba₃₈N

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	<i>U</i> ₁₂
Bal	0.0331(5)	U_{11}	U_{11}	0	0	0
Ba2	0.0337(2)	U_{11}	U_{11}	0.0009(3)	- <i>U</i> ₂₃	- <i>U</i> ₂₃
Ba3	0.0383(6)	U_{11}	U_{11}	0	0	0
Ba4	0.0347(3)	0.0348(2)	U_{22}	0.0016(3)	0.0029(2)	- <i>U</i> ₁₃
Ba5	0.0602(4)	U_{11}	U_{11}	0.0019(5)	U_{23}	U_{23}
Ba6	0.0326(2)	U_{11}	0.0340(3)	-0.0001(2)	- <i>U</i> ₂₃	0.0012(3)
Ba7	0.0336(3)	U_{11}	U_{11}	-0.0008(3)	- <i>U</i> ₂₃	U_{23}
Na1	0.052(2)	U_{11}	0.053(3)	-0.000(2)	- <i>U</i> ₂₃	0.000(3)
Na2	0.058(3)	0.044(2)	U_{22}	-0.004(2)	-0.0016(19)	<i>-U</i> ₁₃
Na3	0.058(2)	U_{11}	0.049(3)	0.0020(19)	U_{23}	-0.004(3)
Na4	0.048(2)	U_{11}	U_{11}	0.003(2)	- <i>U</i> ₂₃	U_{23}
Na5	0.066(3)	0.052(4)	U_{11}	0	0.003(5)	0
Na6	0.057(2)	U_{11}	0.050(3)	0.005(2)	U_{23}	0.004(3)
Li1	0.039(9)	U_{11}	0.04(2)	0	0	-0.02(1)
Li2	0.026(5)	U_{11}	0.027(8)	-0.003(5)	U_{23}	-0.009(7)
Li3	0.048(9)	U_{11}	U_{11}	-0.02(1)	- <i>U</i> ₂₃	U_{23}
Li4	0.054(10)	U_{11}	U_{11}	-0.02(1)	U_{23}	U_{23}
Ν	0.020(6)	U_{11}	U_{11}	0	0	0

Tabelle 10.54Anisotrope Auslenkungsparameter [Ų] in Li26Na58Ba38N

Summenformel:	$Li_{26}Na_{58}Ba_{38}N_x$
Molmasse:	(6732.78+14x) g/mol
Temperatur:	20 °C
Wellenlange:	0.56086
Kristallsystem:	kubisch
Raumgruppe:	$F\overline{4} 3m$
<i>a</i> :	27.415(3) Å
Zellvolumen:	20604(4) Å ³
<i>Z</i> :	4
Berechnete Dichte:	2.147 g/cm^3
Kristallgröße:	0.04 mm ×0.08 mm ×0.06 mm
<i>F</i> (000):	11380
Indexbereich:	$-39 \le h \le 39$
	$-39 \le k \le 39$
	$-39 \le l \le 39$
Gemessene Reflexe:	63911
Unabhängige Reflexe:	3251
Strukturverfeinerung:	SHELX-97
Daten/Parameter:	3251/72
R _{int} :	0.180
R_{σ} :	0.034
GOF an F^2 :	1.02
$R\left[I \ge 2\sigma(I)\right]^a$:	<i>R</i> 1=0.054, <i>wR</i> 2=0.133
<i>R</i> (alle Daten):	<i>R</i> 1=0.078, <i>wR</i> 2=0.150
$\Delta \rho(\max), \Delta \rho(\min)$:	$3.48 \text{ and } -2.99 \text{ e}^{-}/\text{Å}^{3}$

Tabelle 10.55Kristalldaten und Strukturverfeinerung von Li26Na58Ba38Nx

Atom	Position	<i>x</i>	У	Z	$U_{\rm eq}, {\rm \AA}^2$
Bal	4 <i>a</i>	0	0	0	0.0391(5)
Ba2	16e	0.65565(3)	0.34435(3)	0.84435(3)	0.0397(3)
Ba3	4 <i>c</i>	0.75	0.25	0.75	0.0432(6)
Ba4	48 <i>h</i>	0.45817(3)	0.15782(2)	0.84218(2)	0.0395(2)
Ba5	16e	0.90699(4)	0.40699(4)	0.90699(4)	0.0578(4)
Ba6	48 <i>h</i>	0.68799(2)	0.31201(2)	0.00267(3)	0.0384(2)
Ba7	16 <i>e</i>	0.59409(3)	0.40591(3)	0.09409(3)	0.0389(3)
Nal	48 <i>h</i>	0.5467(2)	0.4533(2)	0.8602(3)	0.059(2)
Na2	48 <i>h</i>	0.6046(2)	0.2037(2)	0.7963(2)	0.053(1)
Na3	48 <i>h</i>	0.5775(2)	0.0775(2)	0.7635(3)	0.058(2)
Na4	16 <i>e</i>	0.4500(3)	0.0500(3)	0.9500(3)	0.059(3)
Na5	24 <i>f</i>	0.5	0.1596(4)	0	0.065(2)
Na6	48 <i>h</i>	0.4501(2)	0.4501(2)	0.7680(3)	0.062(2)
Lil	24g	0.75	0.25	0.110(1)	0.042(7)
Li2	48 <i>h</i>	0.3656(5)	0.3656(5)	0.7746(9)	0.042(5)
Li3	16e	0.3189(8)	0.1811(8)	0.8189(8)	0.041(8)
Li4	16e	0.2896(8)	0.2896(8)	0.7896(8)	0.048(9)
N*	4 <i>d</i>	0.25	0.25	0.75	0.05(2)

Tabelle 10.56Atomkoordinaten und äquivalente/isotrope Auslenkungsparameter in
 $Li_{26}Na_{58}Ba_{38}N_x$ (x = 0.5)

*Der Besetzungsfaktor wurde auf 0.5 fixiert.

Tabe	elle 10.57	Anisotrope	Auslenkung	sparameter [A	A^{-}] in Li ₂₆ Na ₅₈	$Ba_{38}N_x (x = 0.5)$
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	<i>U</i> ₁₂
Ba1	0.0391(5)	U_{11}	U_{11}	0	0	0
Ba2	0.0397(3)	U_{11}	U_{11}	0.0003(3)	- <i>U</i> ₂₃	- <i>U</i> ₂₃
Ba3	0.0432(6)	U_{11}	U_{11}	0	0	0
Ba4	0.0386(4)	0.0400(2)	U_{22}	0.0018(3)	0.0022(2)	- <i>U</i> ₁₃
Ba5	0.0578(4)	U_{11}	U_{11}	0.0006(4)	U_{23}	U_{23}
Ba6	0.0383(2)	U_{11}	0.0387(4)	0.0005(2)	- <i>U</i> ₂₃	0.0009(3)
Ba7	0.0389(3)	U_{11}	U_{11}	-0.0003(3)	-U ₂₃	U_{23}
Na1	0.058(2)	U_{11}	0.061(4)	0.002(2)	-U ₂₃	0.000(3)
Na2	0.063(4)	0.048(2)	U_{22}	-0.001(2)	-0.0020(19)	- <i>U</i> ₁₃
Na3	0.059(2)	U_{11}	0.057(4)	0.003(2)	U_{23}	0.004(3)
Na4	0.059(3)	U_{11}	U_{11}	0.002(3)	-U ₂₃	U_{23}
Na5	0.064(3)	0.065(5)	U_{11}	0	0.007(5)	0
Na6	0.062(3)	U_{11}	0.062(4)	0.001(2)	U_{23}	-0.004(3)

г Å ²1 ; ~ == **.** . ът ъ **NT** (A = -.

Summenformel:	Li ₂₆ Na ₅₈ Ba ₃₈ H
Molmasse:	6733.78 g/mol
Temperatur	20 °C
Wellenlange:	0.56086 Å
Kristallsystem:	kubisch
Raumgruppe:	$F\overline{4} 3m$
<i>a</i> :	27.554(3) Å
Zellvolumen:	20919(4) Å ³
<i>Z</i> :	4
Berechnete Dichte:	2.146 g/cm^3
Kristallgröße:	$0.2 \text{ mm} \times 0.16 \text{ mm} \times 0.16 \text{ mm}$
<i>F</i> (000):	17071
Indexbereich:	$-34 \le h \le 34$
	$-34 \le k \le 34$
	$-34 \le l \le 34$
Gemessene Reflexe	38972
Unabhängige Reflexe:	2097
Strukturverfeinerung:	SHELX-97
Daten/Parameter:	2097/72
R _{int} :	0.130
R_{σ} :	0.034
GOF an F^2 :	0.99
$R \left[I > 2\sigma(I)\right]^a$:	<i>R</i> 1=0.056, <i>wR</i> 2=0.106
<i>R</i> (alle Daten):	<i>R</i> 1=0.070, <i>wR</i> 2=0.111
$\Delta \rho(\max), \Delta \rho(\min)$:	0.84 and -2.49

Tabelle 10.58Kristalldaten und Strukturverfeinerung von Li26Na58Ba38H
Atom	Position	x	У	Ζ	$U_{ m eq/iso}$, Å ²
Ba1	4 <i>a</i>	0	0	0	0.0359(9)
Ba2	16e	0.65586(5)	0.34414(5)	0.84414(5)	0.0365(4)
Ba3	4 <i>c</i>	0.75	0.25	0.75	0.037(1)
Ba4	48 <i>h</i>	0.45822(4)	0.15773(3)	0.84227(3)	0.0337(3)
Ba5	16e	0.90696(6)	0.40696(6)	0.90696(6)	0.0603(7)
Ba6	48 <i>h</i>	0.68811(3)	0.31189(3)	0.00246(4)	0.0333(3)
Ba7	16e	0.59403(4)	0.40597(4)	0.09403(4)	0.0346(4)
Na1	48 <i>h</i>	0.5479(2)	0.4521(2)	0.8604(3)	0.055(2)
Na2	48 <i>h</i>	0.6060(3)	0.2039(2)	0.7961(2)	0.049(2)
Na3	48 <i>h</i>	0.5773(2)	0.0773(2)	0.7630(3)	0.050(2)
Na4	16e	0.4499(3)	0.0501(3)	0.9499(3)	0.052(4)
Na5	24 <i>f</i>	0.5	0.1589(4)	0	0.059(3)
Na6	48 <i>h</i>	0.4507(3)	0.4507(3)	0.7674(4)	0.064(2)
Li1	24g	0.75	0.25	0.114(2)	0.04(1)
Li2	48 <i>h</i>	0.3653(7)	0.3653(7)	0.7719(9)	0.023(5)
Li3	16e	0.319(2)	0.181(2)	0.819(2)	0.09(3)
Li4	16e	0.290(1)	0.290(1)	0.790(1)	0.04(1)
H*	4 <i>d</i>	0.25	0.25	0.75	0.020

Tabelle 10.59 Atomkoordinaten und äquivalente/isotrope Auslenkungsparameter in Li₂₆Na₅₈Ba₃₈H

* $U_{\rm iso}$ wurde fixiert.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	<i>U</i> ₁₂
Ba1	0.0359(9)	U_{11}	U_{11}	0	0	0
Ba2	0.0365(4)	U_{11}	U_{11}	0.0023(6)	- <i>U</i> ₂₃	- <i>U</i> ₂₃
Ba3	0.0369(10)	U_{11}	U_{11}	0	0	0
Ba4	0.0316(5)	0.0348(4)	U_{22}	0.0025(5)	0.0025(3)	- <i>U</i> ₁₃
Ba5	0.0603(7)	U_{11}	U_{11}	0.0007(8)	U_{23}	U_{23}
Ba6	0.0333(4)	U_{11}	0.0331(6)	-0.0010(4)	- <i>U</i> ₂₃	0.0018(5)
Ba7	0.0346(4)	U_{11}	U_{11}	-0.0007(5)	- <i>U</i> ₂₃	U_{23}
Na1	0.053(3)	U_{11}	0.059(5)	0.008(3)	- <i>U</i> ₂₃	0.007(4)
Na2	0.052(5)	0.048(3)	U_{22}	0.013(4)	0.002(3)	<i>-U</i> ₁₃
Na3	0.050(3)	U_{11}	0.048(5)	-0.003(3)	U_{23}	-0.011(4)
Na4	0.052(4)	U_{11}	U_{11}	0.007(4)	- <i>U</i> ₂₃	- <i>U</i> ₂₃
Na5	0.065(5)	0.047(7)	U_{11}	0	0.006(7)	0
Na6	0.062(4)	U_{11}	0.066(6)	0.000(3)	U_{23}	-0.003(5)

Tabelle 10.60Anisotrope Auslenkungsparameter [Ų] in Li26Na58Ba38H

10.16 Identifizierte nicht näher charakterisierte Verbindung Li_xNa_yBa_zN

Bei der weiteren Analyse des Systems Li-Na-Ba-N wurde noch eine Verbindung beobachtet und röntgenographisch rein synthetisiert (Abbildung 9.1). Metallisches Barium, Ba(N₃)₂, metallisches Lithium und metallisches Natrium wurden für die Synthesen benutzt. Folgende Mengen der Ausgangssubstanzen wurden in Tantal-Ampullen im Handschuhkasten unter Ar eingewogen. Probe A: 479.2 mg Ba, 76.4 mg Li, 104.7 mg Na, und 33.6 mg Ba(N₃)₂; Probe B: 479.2 mg Ba, 51.0 mg Li, 104.7 mg Na, und 33.6 mg Ba(N₃)₂; Probe B: 479.2 mg Ba, 51.0 mg Li, 104.7 mg Na, und 33.6 mg Ba(N₃)₂; Probe D: 479.2 mg Ba, 25.5 mg Li, 83.7 mg Na, und 33.6 mg Ba(N₃)₂; Probe E: 479.2 mg Ba, 38.2 mg Li, 125.6 mg Na, und 33.6 mg Ba(N₃)₂. Diese Verbindung konnte nicht in den ternären Systemen Li-Na-Ba, Li-Ba-N und Na-Ba-N beobachtet werden. Die Beugungsreflexe der neuen Phase sind in der Tabelle 9.61 zusammengestellt.

Abbildung 10.1 Gemessenes Pulverdiffraktogramm von Li_xNa_yBa_zN. Keine bekannte Phase wurde identifiziert.

Der Anteil der Verbindung in der Probe ist stark abhängig vom Li-Überschuss (Tabelle 9.62). Auf der anderen Seite macht Li die Probe sehr duktil, und es konnten keine Kristalle in guter Qualität aus der Li-Matrix entnommen werden. Gemäß der DTA- und Guinier-Analysen zersetzt sich diese Verbindung bei 112(2) °C in Schmelze und Na₁₅Li₈Ba₁₂N₆. Der Wert ist deutlich niedriger als der Schmelzpunkt von Lithium und ein wenig höher als der von Natrium. Durch thermischen Abbau dieser Phase bei 120 °C konnten zwei früher untersuchte Subnitride, Na₁₅Li₈Ba₁₂N₆ und Li₂₆Na₅₈Ba₃₈N, erhalten werden.

3.686 11.050 62.3 12.693 3.215 29.4 4.202 9.693 15.0 12.806 3.187 49.8 4.482 9.088 12.6 13.228 3.085 100 4.800 8.486 23.1 13.863 2.945 11.1 5.087 8.001 39.4 14.286 2.858 8.0 5.316 7.663 4.0 14.768 2.765 7.7 5.644 7.218 9.5 14.992 2.724 6.0 6.141 6.634 5.1 15.378 2.656 6.4 6.382 6.384 9.6 15.601 2.618 13.0 6.878 5.924 6.5 16.548 2.469 25.2 7.423 5.490 13.0 16.878 2.421 8.1 7.641 5.333 51.1 17.366 2.354 13.6 8.151 5.000 28.6 17.861 2.289 10.3 8.464 4.816 53.5 18.079 2.262 10.2 8.967 4.546 19.9 18.474 2.144 7.3 9.834 4.146 50.0 18.762 2.180 5.8 10.162 4.013 21.3 18.951 2.159 4.3 10.488 3.888 18.9 19.141 2.137 6.4 11.026 3.699 15.3 19.247 2.126 15.5 11.311 3.606 8.1 19.558	20	Ι	<i>d</i> [Å]	20	d [Å]	Ι
4.2029.69315.012.8063.18749.84.4829.08812.613.2283.0851004.8008.48623.113.8632.94511.15.0878.00139.414.2862.8588.05.3167.6634.014.7682.7657.75.6447.2189.514.9922.7246.06.1416.6345.115.3782.6566.46.3826.3849.615.6012.61813.06.8785.9246.516.5482.46925.27.4235.49013.016.8782.4218.17.6415.33351.117.3662.35413.68.1515.00028.617.8612.28910.38.4644.81653.518.0792.26210.28.9674.54619.918.4742.2147.39.8344.14650.018.7622.1805.810.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	3.686	11.050	62.3	12.693	3.215	29.4
4.4829.08812.613.2283.0851004.8008.48623.113.8632.94511.15.0878.00139.414.2862.8588.05.3167.6634.014.7682.7657.75.6447.2189.514.9922.7246.06.1416.6345.115.3782.6566.46.3826.3849.615.6012.61813.06.8785.9246.516.5482.46925.27.4235.49013.016.8782.4218.17.6415.33351.117.3662.35413.68.1515.00028.617.8612.28910.38.4644.81653.518.0792.26210.28.9674.54619.918.4742.2147.39.8344.14650.018.7622.1805.810.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	4.202	9.693	15.0	12.806	3.187	49.8
4.8008.48623.113.8632.94511.15.0878.00139.414.2862.8588.05.3167.6634.014.7682.7657.75.6447.2189.514.9922.7246.06.1416.6345.115.3782.6566.46.3826.3849.615.6012.61813.06.8785.9246.516.5482.46925.27.4235.49013.016.8782.4218.17.6415.33351.117.3662.35413.68.1515.00028.617.8612.28910.38.4644.81653.518.0792.26210.28.9674.54619.918.4742.2147.39.8344.14650.018.7622.1805.810.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	4.482	9.088	12.6	13.228	3.085	100
5.087 8.001 39.4 14.286 2.858 8.0 5.316 7.663 4.0 14.768 2.765 7.7 5.644 7.218 9.5 14.992 2.724 6.0 6.141 6.634 5.1 15.378 2.656 6.4 6.382 6.384 9.6 15.601 2.618 13.0 6.878 5.924 6.5 16.548 2.469 25.2 7.423 5.490 13.0 16.878 2.421 8.1 7.641 5.333 51.1 17.366 2.354 13.6 8.151 5.000 28.6 17.861 2.289 10.3 8.464 4.816 53.5 18.079 2.262 10.2 8.967 4.546 19.9 18.474 2.214 7.3 9.834 4.146 50.0 18.762 2.180 5.8 10.162 4.013 21.3 18.951 2.159 4.3 10.488 3.888 18.9 19.141 2.137 6.4 11.026 3.699 15.3 19.247 2.126 15.5 11.311 3.606 8.1 19.558 2.092 8.1	4.800	8.486	23.1	13.863	2.945	11.1
5.316 7.663 4.0 14.768 2.765 7.7 5.644 7.218 9.5 14.992 2.724 6.0 6.141 6.634 5.1 15.378 2.656 6.4 6.382 6.384 9.6 15.601 2.618 13.0 6.878 5.924 6.5 16.548 2.469 25.2 7.423 5.490 13.0 16.878 2.421 8.1 7.641 5.333 51.1 17.366 2.354 13.6 8.151 5.000 28.6 17.861 2.289 10.3 8.464 4.816 53.5 18.079 2.262 10.2 8.967 4.546 19.9 18.474 2.214 7.3 9.834 4.146 50.0 18.762 2.180 5.8 10.162 4.013 21.3 18.951 2.159 4.3 10.488 3.888 18.9 19.141 2.137 6.4 11.026 3.699 15.3 19.247 2.126 15.5 11.311 3.606 8.1 19.558 2.092 8.1	5.087	8.001	39.4	14.286	2.858	8.0
5.644 7.218 9.5 14.992 2.724 6.0 6.141 6.634 5.1 15.378 2.656 6.4 6.382 6.384 9.6 15.601 2.618 13.0 6.878 5.924 6.5 16.548 2.469 25.2 7.423 5.490 13.0 16.878 2.421 8.1 7.641 5.333 51.1 17.366 2.354 13.6 8.151 5.000 28.6 17.861 2.289 10.3 8.464 4.816 53.5 18.079 2.262 10.2 8.967 4.546 19.9 18.474 2.214 7.3 9.834 4.146 50.0 18.762 2.180 5.8 10.162 4.013 21.3 18.951 2.159 4.3 10.488 3.888 18.9 19.141 2.137 6.4 11.026 3.699 15.3 19.247 2.126 15.5 11.311 3.606 8.1 19.558 2.092 8.1	5.316	7.663	4.0	14.768	2.765	7.7
6.1416.6345.115.3782.6566.46.3826.3849.615.6012.61813.06.8785.9246.516.5482.46925.27.4235.49013.016.8782.4218.17.6415.33351.117.3662.35413.68.1515.00028.617.8612.28910.38.4644.81653.518.0792.26210.28.9674.54619.918.4742.2147.39.8344.14650.018.7622.1805.810.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	5.644	7.218	9.5	14.992	2.724	6.0
6.3826.3849.615.6012.61813.06.8785.9246.516.5482.46925.27.4235.49013.016.8782.4218.17.6415.33351.117.3662.35413.68.1515.00028.617.8612.28910.38.4644.81653.518.0792.26210.28.9674.54619.918.4742.2147.39.8344.14650.018.7622.1805.810.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	6.141	6.634	5.1	15.378	2.656	6.4
6.8785.9246.516.5482.46925.27.4235.49013.016.8782.4218.17.6415.33351.117.3662.35413.68.1515.00028.617.8612.28910.38.4644.81653.518.0792.26210.28.9674.54619.918.4742.2147.39.8344.14650.018.7622.1805.810.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	6.382	6.384	9.6	15.601	2.618	13.0
7.423 5.490 13.0 16.878 2.421 8.1 7.641 5.333 51.1 17.366 2.354 13.6 8.151 5.000 28.6 17.861 2.289 10.3 8.464 4.816 53.5 18.079 2.262 10.2 8.967 4.546 19.9 18.474 2.214 7.3 9.834 4.146 50.0 18.762 2.180 5.8 10.162 4.013 21.3 18.951 2.159 4.3 10.488 3.888 18.9 19.141 2.137 6.4 11.026 3.699 15.3 19.247 2.126 15.5 11.311 3.606 8.1 19.558 2.092 8.1 11.630 3.507 12.2 19.805 2.066 9.2	6.878	5.924	6.5	16.548	2.469	25.2
7.641 5.333 51.1 17.366 2.354 13.6 8.151 5.000 28.6 17.861 2.289 10.3 8.464 4.816 53.5 18.079 2.262 10.2 8.967 4.546 19.9 18.474 2.214 7.3 9.834 4.146 50.0 18.762 2.180 5.8 10.162 4.013 21.3 18.951 2.159 4.3 10.488 3.888 18.9 19.141 2.137 6.4 11.026 3.699 15.3 19.247 2.126 15.5 11.311 3.606 8.1 19.558 2.092 8.1 11.630 3.507 12.2 19.805 2.066 9.2	7.423	5.490	13.0	16.878	2.421	8.1
8.1515.00028.617.8612.28910.38.4644.81653.518.0792.26210.28.9674.54619.918.4742.2147.39.8344.14650.018.7622.1805.810.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	7.641	5.333	51.1	17.366	2.354	13.6
8.4644.81653.518.0792.26210.28.9674.54619.918.4742.2147.39.8344.14650.018.7622.1805.810.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	8.151	5.000	28.6	17.861	2.289	10.3
8.9674.54619.918.4742.2147.39.8344.14650.018.7622.1805.810.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	8.464	4.816	53.5	18.079	2.262	10.2
9.8344.14650.018.7622.1805.810.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	8.967	4.546	19.9	18.474	2.214	7.3
10.1624.01321.318.9512.1594.310.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	9.834	4.146	50.0	18.762	2.180	5.8
10.4883.88818.919.1412.1376.411.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	10.162	4.013	21.3	18.951	2.159	4.3
11.0263.69915.319.2472.12615.511.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	10.488	3.888	18.9	19.141	2.137	6.4
11.3113.6068.119.5582.0928.111.6303.50712.219.8052.0669.2	11.026	3.699	15.3	19.247	2.126	15.5
11.630 3.507 12.2 19.805 2.066 9.2	11.311	3.606	8.1	19.558	2.092	8.1
	11.630	3.507	12.2	19.805	2.066	9.2

Tabelle 10.61 Beugungsreflexe der neuen Verbindung Li_xNa_yBa_zN (Mo K_{α1})

20	Ι	<i>d</i> [Å]	20	<i>d</i> [Å]	Ι
11.894	3.430	9.6	24.494	1.675	4.4
12.152	3.357	50.9	24.842	1.652	24.3
12.386	3.294	26.1	25.184	1.630	9.1
12.526	3.257	25.8	25.569	1.606	9.4
20.017	2.045	5.6	25.787	1.592	7.8
20.220	2.024	5.6	26.242	1.565	3.2
20.632	1.984	4.4	26.527	1.549	4.3
20.968	1.953	18.7	27.551	1.492	3.8
21.214	1.931	20.1	28.684	1.434	6.8
21.661	1.891	4.1	29.184	1.411	4.5
22.025	1.860	9.2	29.759	1.384	6.1
22.236	1.843	11.2	29.953	1.375	3.0
22.463	1.825	8.0	30.293	1.360	10.7
22.746	1.802	7.6	30.757	1.340	6.7
23.082	1.776	8.6	31.037	1.328	3.9
23.448	1.749	16.9	31.915	1.293	5.2
24.257	1.691	7.1			

Fortsetzung Tabelle 9.61

 $Tabelle \ 10.62 \quad Phase nanteile \ in \ den \ Proben \ f \ddot{u}r \ die \ Synthese \ von \ Li_x Na_y Ba_z N \ (M)$

Probe	Zusammensetzung	Produkte
А	"Li ₁₂ Na ₅ Ba ₄ N"	M, Li(?)
В	"Li ₈ Na ₅ Ba ₄ N"	M (~60%), Li ₂₆ Na ₅₈ Ba ₃₈ N _x
С	"Li ₂ Na ₅ Ba ₃ N"	Li ₂₆ Na ₅₈ Ba ₃₈ N _x , M(~30%)
D	"Li ₄ Na ₄ Ba ₄ N"	Na ₁₅ Li ₈ Ba ₁₂ N ₆ , wenig M
E	"Li ₆ Na ₆ Ba ₄ N"	$Li_{13}Na_{29}Ba_{19}$, $Na_{15}Li_8Ba_{12}N_6$

Danksagung

Meinem Doktorvater, Herrn Prof. Dr. Arndt Simon, danke ich für die Möglichkeit, in seiner Arbeitsgruppe zu promovieren, für die interessante Themenstellung, die ausgezeichneten Arbeitsbedingungen und für seine wohlwollende Unterstützung und Diskussionsbereitschaft. Besonders wollte ich mich für die Erlaubnis bedanken, das Thema der Arbeit ungehindert zu entwickeln.

Herrn Prof. Dr. Thomas Schleid für die Übernahme des Koreferates.

Mein herzlicher Dank gilt den akademischen Lehrern an der Universität Lviv, den Herren Doz. Dr. Stepan Chykhrij und Prof. Dr. Yurij Kuzma für die Grundlagen der Festkörperchemie und der Kristallographie, ohne die die Durchführung dieser Arbeit unmöglich gewesen wäre.

Besonders danke ich Herrn Dr. Volodymyr Babizhetskyy für zahlreiche Diskussionen und Vorschläge, die hilfreich für die Überprüfung und die Entwicklung der Arbeitshypothesen waren.

Mein großer Dank Herrn gilt Dr. Grigori V. Vajenine sowohl für hilfreiche Diskussionen als auch für die Durchführung und Interpretation der theoretischen Untersuchungen.

Ich danke auch den Herren Manuel C. Schaloske und Dr. Constantin Hoch für die freundliche Unterstützung mit der sprachlichen Korrektur des Textes dieser Doktorarbeit.

Weiterhin danke ich herzlich

Herrn Dr. Hansjürgen Mattausch, Frau Claudia Kamella, Herrn Roland
 Eger, Herrn Manuel C. Schaloske und Frau Sanela Göres für das freundliche
 Arbeitsklima im Labor.

 den Herren Dr. Constantin Hoch und Hartmut G\u00e4rttling f\u00fcr Messungen an den Einkristalldiffraktometern

– Frau Claudia Kamella für die EDX-Analysen

- Frau Viola Duppel für die EDX- und TEM-Messungen

- Herrn Roland Eger für die DTA-Messungen

 Herrn Priv.-Doz. Dr. Lorenz Kienle für die Analysen mittels hochauflösender Transmissionselektronenmikroskopie und für die anschließende Diskussion

 den Herren Willi Röthenbach und Willi Hölle für die Guinier-Untersuchungen und die Wartungsarbeiten an den Röntgengeneratoren

- Frau Gisela Siegle für die Leitfähigkeitsmessungen

Der Max-Planck-Gesellschaft zur der Wissenschaften danke ich f
ür die Bewilligung eines Stipendiums.

181

Lebenslauf

3. April 1983	Geburt in Chervonograd, Region Lviv, Ukraine, als Sohn von Bohdan und Anastasija Smetana, geb. Kozytska
09.1990 - 06.2000	Besuch der Mittelschule Nr. 3 Chervonohrad
Juni 2000	Abiturprüfung
09.2000 - 06.2005	Ivan-Franko-Universität Lviv, Fakultät Chemie Spezialisierung: Analytische Chemie
09.2004 - 06.2005	Diplomarbeit bei Doz. Dr. S. I. Chykhrij und Prof. Dr. Yu. B. Kuzma: "Untersuchungen der Wechselwirkungen in den Systemen Pr- {Ni,Co,Fe}-Sb mittels Röntgenbeugungsanalyse"
seit 09.2005	Arbeit an der Dissertation im Arbeitskreis von Prof. Dr. A. Simon im Max-Planck-Institut für Festkörperforschung, Stuttgart