
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis

Dynamic Cloud Provisioning
based on TOSCA

Anshuman Dash

Course of Study: INFOTECH

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: M.Sc. Kálmán Képes

Commenced: May 24, 2017

Completed: October 24, 2017

CR-Classification: D.2.11, D.2.9, D.2.12, D.2.13

Abstract

Cloud computing, today, is a ubiquitous paradigm. Its features such as availability of a
practically infinite pool of computing resources, on demand, by using a pay-per-use model
has resulted in its adoption by the industry for the realization of modern, sophisticated,
and highly scalable IT applications. Such applications are often comprised of various
components and services offered by different cloud service providers. This, in turn, raises
two significant challenges- (i) automated provisioning and management, and (ii) inter-
operability and portability of the applications in a multi-cloud environment. As a result,
the Topology and Orchestration Specification for Cloud Applications (TOSCA) standard
was introduced by OASIS. This standard provides a metamodel to describe the topology
of complex applications along with all the components, artifacts, and services in a single
template that allows deploying the application in an interoperable and portable manner.
In this Master thesis, we propose a concept that generates small and reusable TOSCA
provisioning plans which can be orchestrated to deploy the overall application as opposed
to using a monolithic provisioning plan. This goal is achieved in three steps - (i) splitting
the application topology into a set of smaller sub-topologies, (ii) generating smaller plans
called partial plans for each sub-topology, (iii) and finally orchestrating the partial plans
to provision an instance of the application. Additionally, this concept enables the reuse of
these plans for tasks such as scaling out individual components of the application. Finally,
the feasibility of the proposed concept is demonstrated by a prototypical implementation
developed using the OpenTOSCA framework.

3

Contents

1 Introduction 13
1.1 Problem Statement . 15
1.2 Motivating Scenario . 16
1.3 Scope of Work . 17
1.4 Thesis Outline . 18

2 Fundamentals 19
2.1 Important Terms . 19
2.2 Cloud Computing . 20
2.3 OASIS TOSCA . 23
2.4 OpenTOSCA . 28
2.5 OASIS WS-BPEL 2.0 . 31
2.6 Topology Splitting . 34

3 Related Work 37
3.1 Model Based Provisioning and Management of Cloud Applications 37
3.2 Pattern Based Provisioning and Management of Cloud Applications 39
3.3 Provisioning and Management of Cloud Applications in TOSCA 42
3.4 Topology Splitting and Matching of Cloud Applications 46

4 Concept and Specification 49
4.1 Concept Overview . 49
4.2 System Overview . 50
4.3 Metamodel . 53
4.4 Running Example . 58
4.5 Topology Splitting . 59
4.6 Partial Plan Generation . 68
4.7 Partial Plan Orchestration . 69

5 Design and Implementation 73
5.1 Design Overview . 73
5.2 Implementation . 76

6 Conclusion and Future Work 83

Bibliography 85

5

List of Figures

1.1 Illustration to demonstrate the motivation for the problem statement by com-
paring the current approach for Application Provisioning using OpenTOSCA
with the proposed approach . 15

1.2 Illustration to demonstrate a sample use case using an application deploy-
ment scenario in a multi-cloud environment 17

2.1 Illustration of the components of the NIST Cloud Model (Based on the
illustration in [SAMT14]) . 21

2.2 Structural Elements of a Service Template and their Relation (Based on the
illustration in [TOSCAb13] . 24

2.3 Sample Architecture and Processing Flow of the TOSCA Environment (Based
on the illustration in [TOSCAb13] . 27

2.4 Architecture and Control Flow of the OpenTOSCA Ecosystem (Based on the
illustration in [OTOSCa] . 29

2.5 Structural components of an Executable BPEL Process Document 32
2.6 Illustration showing the Lifecycle of an Executable BPEL Process 33
2.7 Illustration depicting the classification of Topology Splits 35
2.8 Illustration showing the difference between Vertical and Horizontal Topology

Splits . 35

3.1 Illustration showing the steps of Plan generation as discussed in [BBK+14] . 43
3.2 Illustration showing the steps of Scale-Out Plan generation as discussed in

[KBL17] . 45

4.1 Illustration depicting the High Level Concept proposed in the thesis for
Dynamic Provisioning of Cloud Applications 49

4.2 Illustration depicting the High Level System Architecture for the concept
introduced in Section 4.1 . 50

4.3 Syntactic consistency between property and parameter names for a simple
topology that deploys a Docker Container on a pre-configured Docker Engine 52

4.4 Illustration showing an Application Template and its components - Topology,
Split Definitions, Partial Plans, and Orchestration Map 58

4.5 Illustration showing high-level steps in the Topology Splitting algorithm. . . 59
4.6 Illustration showing the stages involved in the second step of the Topology

Splitting algorithm - "Split Topology Vertically" 61
4.7 Illustration showing the stages involved in the third step of the Topology

Splitting algorithm - "Split Topology Horizontally" 63

7

4.8 Illustration showing the steps involved in Partial Plan Generation from a
Split Topology . 68

4.9 Illustration showing an Orchestration Map that contains the mapping be-
tween Nodes, Split Definitions, and Partial Plans 70

4.10 Illustration showing the different stages of the Partial Plan Orchestration
Algorithm. 70

5.1 Illustration showing the sample application topology considered for the
prototype . 73

5.2 Illustration showing the Low-Level Architecture for the concepts based on
OpenTOSCA as discussed in [KEP13][KBL17] 75

5.3 Illustration showing the UML class diagram for the CSAR model and Topol-
ogy model used in the prototype implementation (based on the data model
in [KEP13]) . 77

5.4 Illustration showing the Low-Level Architecture for the concepts based on
OpenTOSCA as discussed in [KEP13][KBL17] 78

5.5 Illustration showing the Low-Level Architecture for the concepts based on
OpenTOSCA as discussed in [KEP13][KBL17] 80

5.6 Illustration showing the Low-Level Architecture for the concepts based on
OpenTOSCA as discussed in [KEP13][KBL17] 80

8

List of Algorithms

4.1 Check Topology For User Defined Splits . 60
4.2 Split Topology Vertically . 62
4.3 Extract Vertical Splits . 64
4.4 Check Node Dependency . 65
4.5 Check Property Dependency . 65
4.6 Generate Split Definition . 66
4.7 Remove Duplicate Split Definitions . 66
4.8 Split Topology Horizontally . 67
4.9 Generate Partial Plans . 69
4.10 Orchestrate Partial Plans . 72

9

List of Abbreviations

BPEL Business Process Execution Language. 14

BPMN Business Process Model and Notation. 14

CSAR Cloud Service Archive. 14

DSL domain specific language. 14

EPP Executable Provisioning Plan. 43

EPR Endpoint Reference. 31

IA Implementation Artifact. 30

IaaS Infrastructure as a Service. 13

MDD Model Driven Development. 19

OS operating system. 13

PaaS Platform as a Service. 13

PBD Pattern Based Development. 20

POG Provisioning Order Graph. 43

PPS Provisioning Plan Skeleton. 43

QoS quality of service. 13

SaaS Software as a Service. 13

TOSCA Topology and Orchestration Specification for Cloud Applications. 14

VM virtual machine. 13

WAR web archive file. 13

11

1 Introduction

Cloud Computing, in recent years, has gained widespread popularity within the IT industry
because of the lucrative economic benefits it has to offer and the technical ease and
flexibility it provides for IT operations and management. Features of the paradigm such
as high scalability, high availability, and pay-as-you-go pricing models [MG11] have led
to a significant shift in the way today applications are developed and deployed. To add
to that, the various service models of the cloud paradigm like Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [MG11] have further
enabled the ease of development and deployment of complex applications within a short
span of time. Thereby, providing companies a competitive edge by significantly reducing
the time to value and time to market for their products.

As a result of the increasing adoption of the cloud computing paradigm and the ever-
growing scale and complexity of the applications that it supports, it has become imperative
to automate their provisioning and management processes. Provisioning, in the present
context, means providing requested cloud resources to the user on demand. Under the
hood, this may involve orchestrating several complex executable steps and managing
different files to provision the resource successfully. E.g., provisioning an instance of a
simple cloud-based java web-application in an IaaS scenario may involve the following
steps - (i) create a virtual machine (VM), (ii) install an operating system (OS), (iii) setup
the necessary Java Runtime Environment, and (iv) deploy the web archive file (WAR) file.
Manually handling these steps would be not only time-consuming but also prone to human
errors. Therefore, automatic provisioning of cloud applications has been one of the focus
areas for research in academia as well as the industry.

Traditionally, mostly the cloud providers needed to automate their internal management
processes to achieve the necessary quality of service (QoS) for their offerings [BBK+13].
E.g., provisioning a new VM or setting up a PaaS environment like Amazon Beanstalk1.
However, today, automation of provisioning is a necessity in modern-day applications
built for the cloud owing to their ever-growing scale and complexity. These applications
are typically comprised of several components and may consume services from different
cloud providers. Moreover, the deployment strategies of these applications may vary based
on business requirements. E.g., the front-end of a web application may be outsourced
on to a Public Cloud like Amazon AWS2, whereas the backend is deployed on a Private
Cloud within the premises of the company. These factors further add to the complexity

1https://aws.amazon.com/elasticbeanstalk/
2https://aws.amazon.com/

13

1 Introduction

of the provisioning process. An attempt to manually deploy such applications would
require extensive technical know-how of the various proprietary interfaces exposed by
cloud vendors and their corresponding data exchange formats [BBK+13]. Moreover, the
tight coupling between the application and the cloud service providers may further result
in the so-called vendor lock-in problem that affects the portability of the application in
a multi-cloud environment [OST16]. A multi-cloud environment provides the possibility
of provisioning an application across multiple cloud service providers and multiple cloud
offering e.g., Private clouds and Public clouds.

Several configuration management tools have been developed, in recent years, to tackle
the problem of automatic application provisioning and deployment, like CHEF3, Puppet4,
Ansible5, and Saltstack6. These tools use proprietary domain specific languages (DSLs) to
specify the provisioning and management steps for the applications declaratively. These
steps are then converted into executable code that are orchestrated (e.g., using workflows)
to provision the application successfully. Additionally, AWS Cloud Formation7 is a propri-
etary orchestration based cloud application provisioning service offered by Amazon. It
works similarly as the configuration management tools discussed above, but it lets the
users define only AWS resources (EC28, or S39 Buckets) using its JSON compliant DSL.
Although these tools solve a part of the problem by automating the provisioning process,
they do not address the issue of application portability in a multi-cloud environment or the
interoperability of the provisioning specifications that are represented by the proprietary
domain specific languages.

Therefore, to address the issues mentioned above, the Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA) [TCATTC] standard was introduced. "TOSCA
is an OASIS open standard that defines the interoperable description of services and ap-
plications hosted on the cloud and elsewhere; including their components, relationships,
dependencies, requirements, and capabilities, thereby enabling portability and automated
management across cloud providers regardless of underlying platform or infrastructure;
thus expanding customer choice, improving reliability, and reducing cost and time-to-value"
[OTTC]. TOSCA enables the description of cloud applications as XML [BPS+08] based
definition files. These definition files define the overall structure and dependencies between
the various components of the application. The structure of the application is defined by a
so-called Topology. The definition files also contain information regarding the artifacts e.g.,
WAR files, VM images, and shell scripts that are required to install the various components
of the application. The provisioning logic in TOSCA is specified in the form of so-called
Plans that can be workflows implemented using Business Process Execution Language
(BPEL) (2.5) or Business Process Model and Notation (BPMN) [OMG11]. All the definition

3https://www.chef.io/chef/
4https://puppet.com/
5https://www.ansible.com/
6https://saltstack.com/
7https://aws.amazon.com/cloudformation/
8https://aws.amazon.com/ec2/
9https://aws.amazon.com/s3/

14

1.1 Problem Statement

files, the artifacts, and the plans are then packaged into an archive file called Cloud Service
Archive (CSAR). The CSAR file can then be deployed to any environment that supports
a TOSCA compliant run-time engine, thereby making the application portable as well as
inter-operable.

Since its introduction, many TOSCA based solutions have been developed for cloud apli-
cation provisioning and management. One such implementation is OpenTOSCA10. Open-
TOSCA is an open source TOSCA compliant ecosystem that provides the end-to-end tools
chain to model, provision, and manage cloud applications. The OpenTOSCA runtime
supports both Imperative and Declarative processing of application management logic
[BBK+14]. For the scope of this thesis, we will limit our discussion to the later. Declarative
processing, in the context of the TOSCA standard, refers to the automatic provisioning
by interpreting the topology of the application embedded in one the definition files that
are packaged in the CSAR. Declarative processing, in OpenTOSCA is supported by the
Plan Generator component of the runtime environment that generates BPEL plans for the
provisioning and management of the application.

1.1 Problem Statement

Figure 1.1: Illustration to demonstrate the motivation for the problem statement by com-
paring the current approach for Application Provisioning using OpenTOSCA
with the proposed approach

10http://www.opentosca.org/

15

1 Introduction

As mentioned in the previous section, the Plan Builder component of the OpenTOSCA
runtime automatically generates BPEL plans by interpreting the application structure and
its dependencies from the definition files packaged in the CSAR. Although, this approach
aids in solving the problem of automatic provisioning of cloud applications, in its current
form, it suffers from a few drawbacks highlighted next.

• Firstly, the BPEL plans generated are monolithic, i.e., the plan builder creates a single
plan to provision the entire application including all of its components. As a result
of which, with the increase in complexity and size of the cloud application, the
complexity and size of the BPEL plan also increases significantly.

• Secondly, execution of BPEL plans in a compliant execution engine like Apache ODE,
or WSO2 BPS can be a time and resource-intensive process. Therefore, having large
and complex plans may further result in performance overload in situations where
the available computing resources are limited, e.g., in IoT devices like Raspberry Pi.

• Thirdly, the plans generated by the plan builder are tightly coupled to the application,
i.e., the plans are not generic and therefore cannot be reused for provisioning other
applications [BBK+14].

• Finally, OpenTOSCA, in its current form, does not support dynamic provisioning.
Dynamic provisioning refers to the ability of the service/application provider to
provide resources to the user at runtime. The plans generated by the plan builder
only allow for provisioning instances of the complete application. They do not support
provisioning parts of the application during runtime which affects the flexibility of
the system in a dynamic and scalable environment.

The purpose of this thesis is to explore the possibility of provisioning an application using
multiple modular plans instead of a single monolithic plan. This in turn would provide
a possible approach to alleviate some of the problems mentioned above that are related
to monolithic plans while also acting as a proof of concept for the more complex issue of
dynamic provisioning in OpenTOSCA.

1.2 Motivating Scenario

In order to motivate the problem statement, let us consider a simple cloud application as
depicted by the Topology in Figure 1.2. The application comprises a PHP Web Application
deployed on an Ubuntu VM with an Apache Web Server installed on it. The PHP Application
in turn connects to a MySQL DB that is deployed on an Ubuntu VM with a MySQL RDBMS
installed on it. Based on the business requirements, it is assumed that the PHP Web
Application will be deployed on a Public Cloud, while the database will be deployed on a
Private Cloud for data security. Moreover, the provisioning of the application is handled by
a TOSCA run-time environment (e.g. OpenTOSCA) managed by a third party as shown in
the figure.

16

1.3 Scope of Work

Figure 1.2: Illustration to demonstrate a sample use case using an application deployment
scenario in a multi-cloud environment

Traditionally, the TOSCA run-time environment would generate a single plan for the
application topology. The plan would then be deployed on the local plan engine (PE1,
Figure 1.2) and the tasks will be orchestrated to provision the complete application. But the
drawbacks of such an approach has already been detailed in the previous section (1.1). In
this example, we consider that the run-time engine is capable of generating modular plans
as labeled 1-3 in the figure. These plans are then deployed to the respective environments,
e.g. Plan-1, that installs a database on a VM is deployed to PE-3 on the private cloud.
Whereas, Plan-2, that installs an Apache Web Server on a VM is deployed to the plan engine
(PE-2) of the public cloud. A third plan (P3) that installs a PHP Web Application and
connects it to the installed Database instance, is deployed locally at PE1. Then, the Plan
Coordinator component of the TOSCA run-time engine orchestrates the modular plans in
order to create an instance of the complete application.

1.3 Scope of Work

This Master Thesis deals with the process of generation of modular plans for a given
application followed by their orchestration for the successful provisioning of the application
in TOSCA. The main contribution of this thesis is the development of an abstract concept for
achieving the above mentioned goal. The feasibility of the concept is also shown with the

17

1 Introduction

help of a prototype developed within the OpenTOSCA framework using the OpenTOSCA
container APIs.

1.4 Thesis Outline

This master thesis is structured as follows:

Chapter 1 – Introduction: The motivation for the thesis is explained with a basic intro-
duction of the TOSCA standard and OpenTOSCA ecosystem. The problem statement
of the thesis is discussed and the scope of the thesis is also outlined.

Chapter 2 – Fundamentals The important terms and technologies are discussed that are
necessary to understand the concepts introduced in the thesis.

Chapter 3 – Related Work The various research work related to cloud application provi-
sioning and management, application topology splitting, and generation of scale-out
plans in TOSCA are discussed.

Chapter 4 – Concept and Specification The high-level concepts behind the thesis are
explained. The general architecture of the approach is outlined and the building
blocks are discussed in detail.

Chapter 5 – Design and Implementation The low-level implementation of the concepts
and the design of each individual components are described.

Chapter 6 – Conclusion and Future Work In this chapter, a summary of the results of
the work is presented as well as an outlook for future work is provided.

18

2 Fundamentals

In this chapter, we discuss the various terms and technologies that are necessary for the
better understanding of the concepts introduced in the thesis. In Section 2.2 we take a
look at the cloud computing paradigm and elaborate on its various features followed by
a brief overview of the OASIS TOSCA standard in Section 2.3. Then in Section 2.4 we
discuss the various components of the OpenTOSCA runtime engine with a focus on the
Plan Generator component that is augmented by the concepts introduced in Chapter 4.
Finally in Section 2.5 we highlight the essential features of WS-BPEL 2.0 that provide a
language for the specification of Executable and Abstract business processes and is used by
the OpenTOSCA runtime to generate executable plans.

2.1 Important Terms

Provisioning Provisioning, in general, can be defined as the process of making some-
thing available. It is the fourth step in the Operations, Administration, Maintenance and
Provisioning (OAMP)1 management framework. Provisioning can be defined as the config-
uration and deployment of heterogeneous IT resources. Specifically, cloud provisioning
can be described as the configuration, management, and deployment of cloud resources to
deliver a cloud application to the user.

Orchestration Orchestration is a term found in close association with Provisioning and
can be defined as the automated arrangement, management, and coordination of complex
software systems. In the context of cloud computing, orchestration can be viewed as
the process of defining the architecture of the service, binding software and hardware
components, and finally automating and coordinating workflows to deliver the service.

Service Bus Service Bus is a software component that implements the communication
between heterogeneous software systems in a Service Oriented Architecture (SOA).

1The OAMP management framework describes the processes, activities, tools, and standards involved in
operating, administering, managing and maintaining any system (Source: https://en.wikipedia.org/)

19

2 Fundamentals

Model Driven Development (MDD) It is a software development paradigm supported
by the Model-driven Architecture (MDA) methodology, a software design approach released
by the Object Management Group (OMG) [OMG14]. MDA provides a set of guidelines for
structuring specifications expressed as models. It starts with a platform-independent model
(PIM), continuing through an appropriate domain-specific language (DSL), and then trans-
forming into one or more platform-specific models (PSMs) for the actual implementation
platform, e.g., Java™ 2 Platform or.Net, implemented in a general programming language
such as Java™, C#, and Python. MDD primarily focuses on Model Transformations and
Code Generation. [Yu06].

Pattern Based Development (PBD) It is a software development paradigm that uses
accepted solutions to recurring problems within a given context (pattern). Patterns encap-
sulate a designer’s time, skill, and knowledge to solve a software problem. By designing
around a particular design pattern, developers have greater flexibility to control the gener-
ated code, which may be a constraint of MDD. [Yu06]

2.2 Cloud Computing

The National Institute of Standards and Technology (NIST) has defined Cloud Computing
as follows, "Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction" [MG11]. As illustrated in
Figure 2.1, The NIST model of Cloud computing is further comprised of (i) five essential
characteristics, (ii) three Service Models, and (iii) four Deployment Models. We will discuss
these in details in the subsequent sections.

2.2.1 Characteristics

The NIST Model defines five essentials characteristics of cloud computing as listed below,

1. On-Demand Self Service: "A consumer can unilaterally provision computing capa-
bilities, such as server time and network storage, as needed automatically without
requiring human interaction with each service provider." [MG11]

2. Broad Network Access: "Capabilities are available over the network and accessed
through standard mechanisms that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, tablets, laptops, and workstations)." [MG11]

3. Resource Pooling: "The provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to consumer demand. There is a sense
of location independence in that the customer generally has no control or knowledge

20

2.2 Cloud Computing

Figure 2.1: Illustration of the components of the NIST Cloud Model (Based on the illustra-
tion in [SAMT14])

over the exact location of the provided resources but may be able to specify location
at a higher level of abstraction (e.g., country, state, or datacenter). Examples of
resources include storage, processing, memory, and network bandwidth." [MG11]

4. Rapid Elasticity: "Capabilities can be elastically provisioned and released, in some
cases automatically, to scale rapidly outward and inward commensurate with de-
mand. To the consumer, the capabilities available for provisioning often appear to be
unlimited and can be appropriated in any quantity at any time." [MG11]

5. Measured Service: "Cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction appropriate to
the type of service (e.g., storage, processing, bandwidth, and active user accounts).
Resource usage can be monitored, controlled, and reported, providing transparency
for both the provider and consumer of the utilized service." [MG11]

21

2 Fundamentals

2.2.2 Service Models

The NIST Model defines three Service Models for cloud computing as described below,

1. Infrastructure as a Service (IaaS): In this service model, the service provider ab-
stracts the management of the underlying cloud resources such as servers, storage,
network through virtualization. The consumers are capable of provisioning funda-
mental resources such as VMs, OS, storage, and networks which they can deploy and
run their applications. Amazon AWS2, Microsoft Azure3, and Google Cloud Platform4

are some of the popular IaaS providers.

2. Platform as a Service (PaaS): Unlike IaaS that provides virtualized infrastructure to
the consumers, this service model provides complete software platforms and runtime
environments. The consumers are capable of deploying applications developed
using different languages, libraries, services, and tools that are supported by the
provider. The consumer has no control over the underlying cloud infrastructure.
Some examples of PaaS solutions are Amazon Beanstalk5, Google App Engine6, and
Heroku7.

3. Software as a Service (SaaS): This is one of the most commonly found service
model in use today for consumer applications. In this service model, the consumers
are capable of using a provider’s application deployed on the provider’s infrastructure.
Some of the commonly found SaaS solutions are Google Docs8, Office 3659 etc.

2.2.3 Deployment Models

The NIST Model defines four Deployment Models for cloud computing as listed below,

1. Private Cloud: In this deployment model, "the cloud infrastructure10 is provisioned
for exclusive use by a single organization comprising multiple consumers (e.g.,
business units). It may be owned, managed, and operated by the organization, a third
party, or some combination of them, and it may exist on or off premises." [MG11]

2https://aws.amazon.com/
3 https://azure.microsoft.com/
4https://cloud.google.com/
5https://aws.amazon.com/elasticbeanstalk/
6https://cloud.google.com/appengine/
7https://www.heroku.com/
8https://www.google.com/docs/about/
9https://www.office.com/

10A cloud infrastructure is the collection of hardware and software that enables the five essential characteristics
of cloud computing. The cloud infrastructure can be viewed as containing both a physical layer and an
abstraction layer. The physical layer consists of the hardware resources that are necessary to support
the cloud services being provided and typically includes server, storage, and network components. The
abstraction layer consists of the software deployed across the physical layer, which manifests the essential
cloud characteristics. Conceptually the abstraction layer sits above the physical layer.[MG11]

22

2.3 OASIS TOSCA

Considering the pool of resources are privately owned by a single organization it
offers higher control, security, as well as data privacy.

2. Public Cloud: This is one of the most commonly found deployment models today. In
this model, "the cloud infrastructure is provisioned for open use by the general public.
It may be owned, managed, and operated by a business, academic, or government
organization, or some combination of them. It exists on the premises of the cloud
provider." [MG11]

3. Community Cloud: In this model, a group of organizations gets exclusive usage
rights on the provisioned cloud infrastructure. These organizations may have shared
concerns like mission, security requirements, policy, and compliance considerations.
It may exist on or off premise and can be owned by one of the organizations of the
community, a third party, or a combination of them.

4. Hybrid Cloud: In this deployment model,"The cloud infrastructure is a composition of
two or more distinct cloud infrastructures (private, community, or public) that remain
unique entities, but are bound together by standardized or proprietary technology
that enables data and application portability (e.g., cloud bursting for load balancing
between clouds)." [MG11]

2.3 OASIS TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA) [TCATTC]
is an official standard introduced by the Organization for the Advancement of Structured
Information Standards (OASIS) consortium. The goal of the standard was to address
the growing complexity of Cloud applications and enable a standardized way to design
and manage the applications in a portable and inter-operable manner [TOSCAa13]. In
the subsequent sections, we discuss the various concepts and components of the TOSCA
specification that are most relevant to the understanding of the concepts presented in the
Chapter 4 and 5

2.3.1 Structure

The TOSCA specification is an XML based meta-model for defining IT services [TOSCAa13].
It defines both the structure of the service as well as the necessary definitions of the
operations for the management of such services [ZBL17]. The structural components
of the metamodel (Figure 2.2) are discussed below. It should be noted that some of
the components, e.g., Capability and Requirement Definitions, have been omitted from
Figure 2.2 for clarity. Moreover, these components are not necessary for the understanding
of the concepts in this thesis.

23

2 Fundamentals

Figure 2.2: Structural Elements of a Service Template and their Relation (Based on the
illustration in [TOSCAb13]

Definitions Document A definition document is the most fundamental unit of the TOSCA
specification. It is an XML file that encapsulates all the elements needed to define the
Service Template for the application e.g. Node Templates, Relationship Templates, Note
Type, Relationship Type, etc. A service template also needs to be defined within a definitions
document.

Service Template A service is defined by definitions document named Service Template.
The service template provides the end to end information that is necessary to create
and manage instances of the service in the cloud. The two primary components of the
Service Template are the Topology Template and Plans. The Topology Template defines the
structure and components of the service, and the Plans define processes that are necessary
to deploy, manage, and terminate the service during its lifetime.

24

2.3 OASIS TOSCA

Topology Template The Topology Template is a directed graph (not necessarily con-
nected) comprising of nodes and edges. The nodes are represented by Node Templates
which in turn represent a component of the application, e.g., a PHP application, a Docker
container, or a virtual machine. The edges in the Topology Template are represented by
Relationship Templates which further represent the dependencies between the various
Node Templates, e.g., hostedOn, dependsOn or connectsTo.

Node Types and Relationship Types Furthermore, the TOSCA standard promotes re-
usability of the Node Templates and Relationship Templates through Node Types and
Relationship Types which are used to define the semantics of the node and relationship
templates respectively [TOSCAa13]. The Node Types define Properties, e.g. credentials for
a database node, and Operations e.g. ‘CreateVM’, ‘StartVM’, ShutdownVM via Interfaces
for a VM node. The same semantics hold for Relationship Types as well.

Implementation Artifacts and Deployment Artifacts The management operations de-
fined within interfaces in the Node and Relationship Types are implemented by artifacts
called Implementation Artifacts (IA). They can either be simple Shell Scripts or may be
packaged into WAR files. Then, there are some artifacts that implement the business logic
of a given node and are represented by Deployment Artifacts (DA). For example, an image
file to instantiate a VM or a Node JS script implementing a simple application.

Plans Additionally, the Topology Templates defined in the Service Templates are instanti-
ated using special plans referred to as build plans. These plans defined within the Service
Template facilitate the automated management of the application. Based on the activity
performed, these plans can broadly be categorized as (i) build plans, (ii) management
plans, and (iii) termination plans. These plans orchestrate the management operations
defined in the node/relationship types and templates to provision, manage, and terminate
instances of the application respectively. TOSCA does not specify a particular process
modeling language for the definition of plans, however, recommends to use a workflow
language such as the Business Process Execution Language (BPEL) for the Advancement
of Structured Information Standards (OASIS) [BPEP07] the Business Process Model and
Notation (BPMN) [OMG11].

CSARs Further, TOSCA ensures the portability of applications by packaging the Ser-
vice Templates, type definitions, artifacts and management plans necessary to provision
the application into a self-contained archive file called Cloud Service Archive (CSAR).
This archive can be executed by all standard-compliant TOSCA Runtime Environments,
e.g., OpenTOSCA (Binz et al.,2013), and, thus, ensures the application’s portability and
interoperability.

25

2 Fundamentals

2.3.2 Processing Environment

A TOSCA environment, offered by a Cloud Provider, may contain a set of features that
are necessary to process the definitions according to the specification [TOSCAb13]. These
features can be grouped into various logical components that in turn are grouped to define
the architecture of the TOSCA environment. Moreover, different service providers may
choose to include some or all the features in their respective offerings thereby resulting
in different TOSCA architectures. A sample architecture is depicted in Figure 2.3 and
its components and processing steps are discussed in the following section for a general
understanding of the TOSCA processing environment.

To begin with, a (graphical) TOSCA Modeling Tool is used to create CSAR files that package
the cloud application to be provisioned. Even though this is an optional component, its use
is recommended.

Once, the CSAR is created, it can either be processed (i) imperatively, or (ii) declaratively.
Imperative Processing requires that the service template contains the complete topology
of the cloud application, and also all of its management behaviors is explicitly defined using
plans. On the other hand, Declarative Processing assumes that it is possible to extract the
management behavior of the cloud application from its topology; this requires that the
semantics of the node types and the relationship types are defined precisely and that the
TOSCA environment is capable of interpreting them correctly.

Further, processing in a TOSCA environment can be broadly divided into two stages - (i)
CSAR Deployment, and (ii) Application Instance Management. These stages are discussed
briefly in the following sections.

CSAR Deployment

In this stage, the CSAR file is processed, all its components are extracted, and the environ-
ment for the management of the cloud application is set up. The process comprises the
following steps,

1. The CSAR file is processed by the CSAR Processor such that it can be initially deployed
into the environment (step 1, Figure 2.3). This component contains the logic to parse
the CSAR file correctly based on the semantics proposed by the TOSCA specification.

2. CSAR Processor interacts with the Model Interpretor (in the case of Declarative Process-
ing) to determine the management behavior of the application (step 2, Figure 2.3).

3. The CSAR Processor extracts all the definition files from the CSAR and passes them
on to the Definition Manager (step 3, Figure 2.3). The definitions manager then stores
all the definition files in the Model Repository to be retrieved and used later (step 4,
Figure 2.3).

26

2.3 OASIS TOSCA

Figure 2.3: Sample Architecture and Processing Flow of the TOSCA Environment (Based
on the illustration in [TOSCAb13]

4. Furthermore, the CSAR processor extracts all the implementation and deployment
artifacts and passes them to the Artifact Manager (step 5, Figure 2.3). The artifact
manager then stores them in the appropriate Artifact Store (step 6, Figure 2.3), e.g,.
storing Virtual Images in virtual image directories, or Docker images in a Docker
Repository, etc.

5. Next, the Deploy Manager deploys all the implementation artifacts into the envi-
ronment thus making the executables for all the operations of the node types and
relationship types available and ready for use (step 7a, Figure 2.3).

6. In case of imperative processing, Step-2 above is skipped, and an additional step is
added at the end. In this step, all the plans available within the CSAR are deployed
into the Process Engine (step 7b, Figure 2.3). Deploying a plan includes binding
the tasks in the plan to the concrete endpoints in the environment which host the
operations of the node and relations via the deployed implementation artifacts.

27

2 Fundamentals

Application Instance Management

Once the environment is set up after the successful deployment of the CSAR, instances of
the cloud application can be created, updated, and terminated. The possible steps in this
process are listed below,

1. The process of instance creation is handled by the Instance Manager (step A, Fig-
ure 2.3)

2. It can be done by either invoking deployed Build Plans in the Process Engine in
case of imperative processing (step B, Figure 2.3), or by interacting with the Model
Interpreter in case of declarative processing (step B’, Figure 2.3)

3. The instances of the application and its components are stored in the Instance DB.

4. Once the instance of the applications are created, the applications can be managed by
calling the respective Management Plans mentioned in Service Template and deployed
in the Process Engine (step C, Figure 2.3) .

5. Finally, when the application is no longer required, it can be decommissioned by either
execution the respective Termination Plan in the Process Engine, or by interacting
with the Model Interpreter.

2.4 OpenTOSCA

OpenTOSCA is a TOSCA compliant ecosystem for cloud application modeling, deployment,
and management. It is a research prototype developed by the Institute of Architecture
of Application Systems (IAAS)11 and the Institute for Parallel and Distributed Systems
(IPVS)12 of the University of Stuttgart, Germany. OpenTOSCA comprises of three major
components - (i) Modeling Tool (Eclipse Winery), (ii) Runtime Environment (OpenTOSCA
Container), and (iii) Administration and Self-Service Portal (OpenTOSCA UI). Figure 2.4
depicts the architecture and control flow of the ecosystem. It can be seen that OpenTOSCA
architecture builds on top of the sample TOSCA environment architecture in Figure 2.3.
For this thesis an overview of the OpenTOSCA Container is sufficient. However, for the
sake of completeness, we provide a brief overview of the other components as well.

2.4.1 Eclipse Winery

Winery is an open source TOSCA Modeling tool [KBBL13]. It provides a UI for modeling
Topology Templates and packaging them into CSARs. Winery also provides a management

11http://www.iaas.uni-stuttgart.de/
12https://www.ipvs.uni-stuttgart.de/

28

2.4 OpenTOSCA

Figure 2.4: Architecture and Control Flow of the OpenTOSCA Ecosystem (Based on the
illustration in [OTOSCa]

backend to manage types and artifacts. It also facilitates the import and export of CSARs
thereby enabling the creation of new CSARs, and modification of existing ones.

2.4.2 OpenTOSCA UI

The OpenTOSCA UI is a web application developed in NodeJS that combines two features -
(i) the Admin UI, and (ii) the Self-Service Portal (formerly known as Vinothek). The Admin
UI is used to upload and install a CSAR into the runtime environment, and the Self-Service
Portal is used to instantiate, monitor, and manage application instances for the deployed
CSARs. The UI interacts with the container via the OpenTOSCA Container API.

2.4.3 OpenTOSCA Container

"The OpenTOSCA Container is the TOSCA Runtime Environment to deploy and manage
Cloud applications. It enables the automated provisioning of applications that are modeled
using TOSCA and packaged as CSARs" [OTOSCb]. The implementation of the OpenTOSCA
container is based on the OSGi framework [OSG08] thereby ensuring extensibility of its

29

2 Fundamentals

components. As shown in Figure 2.4, Control, IA Engine, Core, Service Invoker, and Plan
Engine form the core components of the OpenTOSCA container. The Container API is used
by external components to interact with the container via well-defined REST endpoints. The
requests to the API are passed to the control component which manages and orchestrates
the other components of the runtime. The Core component offers common services to other
components, e. g., managing data or validating XML.

Similar to the concept discussed in (2.3.2), processing in OpenTOSCA can also be broadly
divided into two stages - (i) CSAR Deployment, and (ii) Application Instance Management,
that are briefly discussed in the following sections.

CSAR Deployment

Once the CSAR is uploaded using the OpenTOSCA UI, the Container API is used to deploy
the application into the OpenTOSCA Environment. The following steps outline the control
flow of the CSAR deployment process [BBH+13],

1. First, the Control component unpacks the CSAR, processes the files, and then store
them into the File Store.

2. Next, all the TOSCA definition documents (XML files) are loaded, validated for proper
semantics, and processed by the Control component. Once verified, these definitions
are stored in the Model repository.

3. The control component then calls the Implementation Artifact (IA) Engine. The IA
engine deploys the implementation artifacts referenced in the definition files, e.g.,
SOAP Web Services implemented as WAR files through a supported plugin into a
compatible runtime. OpenTOSCA uses an Apache Tomcat server as IA Runtime
for WAR files. Once the plugin has successfully deployed the IA and returned the
endpoints of the corresponding management operations, the IA Engine stores them
in the Endpoints database.

4. Next, the Plan Engine checks for available plans within the service template (imper-
ative processing) and processes them. The Plan Engine employs plugins that can
support different workflow languages like BPEL or BPMN and their corresponding
runtime environments. Presently OpenTOSCA supports BPEL workflows and uses
WSO2 BPS13 as its Plan Runtime.

5. In case, no plans were found in step 4, the Plan Engine generates the plans from the
given topology template (declarative processing) and then deploys the generated
plans to the Plan Runtime.

13https://wso2.com/products/business-process-server/

30

2.5 OASIS WS-BPEL 2.0

Application Instance Management

Once the CSAR is deployed and the environment is setup successfully, the life-cycle of the
application can be managed using the OpenTOSCA UI. The following steps outline the
control flow of the process [BBH+13],

1. Upon receiving a request to create an instance of the application, the Container API
passes it to the Control component which in turn forwards the request to the Plan
Engine.

2. The Plan Engine then invokes the respective Build Plan to provision the application
instance. The plans use the Plan Portability API to access the Topology and Instance
values, e.g., node and relationship property values.

3. Application management (e.g., scaling) and decommissioning are handled similarly
by invoking the corresponding Management Plans and Termination Plans respectively.

2.5 OASIS WS-BPEL 2.0

WS-BPEL stands for Web Services Business Process Execution Language. It provides a model
and the semantics for orchestration of Business Processes using web-services [BPEP07].
The basic concepts of WS-BPEL can be applied in one of the two ways - (i) abstract, and
(ii) executable. For the scope thesis, only Executable BPEL Processes will be considered.
Executable Processes can be deployed into a compatible Process Engine (e.g., WSO2 BPS)
where they execute and interact with their partners in a consistent way through Web Service
resources and XML data. For all purposes of discussion, hereon, the terms Plan, BPEL
Process, and Executable Business Process will be used interchangeably. In the following
section, we will briefly discuss the relevant aspects of the (i) structure and (ii) lifecycle of
an executable BPEL Process.

2.5.1 Structure

As depicted in Figure 2.5, a BPEL Process document comprises of the following components
- (i) Partner Links, (ii) Variables, (iii) Correlation Sets, and (iv) Activities. It should be
noted that the list of components is not exhaustive and certain components have been
omitted for clarity.

Partner Links At an abstract level, partner links define the shape of the communication
between the business process and a partner. They are further typed by the so-called Partner
Link Types. Partner link types characterize the relationship between two services by defining

31

2 Fundamentals

Figure 2.5: Structural components of an Executable BPEL Process Document

the roles played by each of them and specifying the portType14 defined by each service to
receive messages within the conversation. However, the concrete services provided by a
partner can be dynamically determined using the notion of an Endpoint Reference (EPR)
[BPES07].

Variables A variable is the persistent data that is required to maintain the state of the
business process, e.g., the messages that are received from the partners, of the messages
that are constructed to be sent to the partners. Variables can also hold data that are needed
for holding state related to the process and are never exchanged with partners.

Activities In WS-BPEL, Activities are the components that perform the processing logic.
They can be broadly categorized into the following two types - (i) Basic Activities, and (ii)
Structured Activities.

• Basic Activities describe the elemental steps of a Business Process behavior. Some of
the relevant basic activities are described below,

– Invoke: This activity is used to invoke an operation exposed by a service. It
contains the inputVariable and outputVariable attributes that carry the input and
the output messages sent to and received from the invoked operation.

14A WSDL portType is a set of abstract operations along with the abstract messages involved, that are exposed
by a service.

32

2.5 OASIS WS-BPEL 2.0

– Receive: A BPEL process can be instantiated only if it contains a receive (or
flow) activity with the createInstance attribute set to true. It contains a variable
attribute that is used to receive the incoming message data. This is a blocking
activity and does not complete unless a matching message is received by the
instance of the business process.

– Reply: This activity is used to send a response to a request that was previously
made using a recieve activity. This activity is only valid in case of a request−
reply interaction between the process and the partner(s).

– Assign: This activity is primarily used for data assignments within a BPEL
process. An assign activity enables copying of data from one variable into
another, as well as constructing and inserting new values.

• Structured Activities describe the order in which a collection of activities is executed.
They describe the creation of a business process by coordinating the control flow,
fault handling, and message exchanges using nested activities. Some of the relevant
structured activities are described below,

– Sequence: This activity contains one or more nested activities that are executed
sequentially. Execution of a sequence activity completes when the last nested
activity is successfully executed.

– Flow: This activity contains one or more nested activities that are executed
concurrently. Execution of a sequence activity completes when all the nested
activities are successfully executed. A flow activity may contain link elements
that are used for synchronization of the nested activities.

Figure 2.6: Illustration showing the Lifecycle of an Executable BPEL Process

33

2 Fundamentals

2.5.2 Lifecycle

As depicted in Figure 2.6, a lifecycle of a BPEL Process comprises of the following steps - (i)
Process Deployment, (ii) Process Instantiation, and (iii) Process Termination. These steps
are discussed below,

Process Deployment In this step, first, the BPEL Process Document is deployed in the
Process Engine. Then the actual binding information about the partner services is deter-
mined dynamically via assignment of endpoint references which contain the information of
the Partner Links defined in the Process Document.

Process Instantiation Once the binding information of services is available, an instance
of the process can be implicitly created by receiving messages via the Port Types defined
for the Partner Role assigned to the process. As discussed in 2.5.1, a Receive activity with
createInstance attribute set to true initiates the instance creation for the process.

Process Termination A BPEL Process can terminate in two ways - (i) Normal Termination
when the root activity completes execution, or (ii) Abnormal Termination when a fault is
encountered or an exit activity is used explicitly.

2.6 Topology Splitting

An application topology can be split in two ways - physically or conceptually. Therefore,
within the context of this thesis, Splits are broadly classified into the following two cate-
gories - Physical Splits and Conceptual Splits. These categories are further classified into
two sub-categories viz. Vertical Splits and Horizontal Splits. This classification is depicted
graphically in Figure 2.8. For the algorithms presented in Section 4.5.2 and for all purposes
of discussion hereon, the term Split would refer to a Conceptual Split unless otherwise men-
tioned.Moreover, a Conceptual Split is formally represented by a Split Definition (Definition
4.3.17, Section 4.3.1). A brief description of each category is provided below.

2.6.1 Physical Split vs. Conceptual Split

Physical Splits as the name suggests, physically alter the given topology. The topology
file is split into multiple smaller topology files, each containing a subset of the original
topology elements. The split topology files are then iteratively provided as input to the
Plan Generator component (4.6) in order to generate the partial plans. These partial plans
can then be orchestrated in the correct order to provision the application.

Conceptual Splits on the other hand preserve the original topology file. Instead of gen-
erating multiple granular topology files, splits are defined in the same topology file by

34

2.6 Topology Splitting

Figure 2.7: Illustration depicting the classification of Topology Splits

annotating topology elements similar to [SBKL17] or by defining Split Definitions (4.3.1).
Split definitions are basically meta-data contain the information about individual splits, e.g,
the nodes and relations contained within the split. The annotated topology is provided
as an input to the the Plan Generator component. The Plan Generator interprets the split
definitions to generate the partial plans that are then orchestrated for provisioning the
application.

2.6.2 Vertical Splits vs. Horizontal Splits

Vertical/Horizontal Splits depend on the relationships within a topology.We primarily
consider two base Relationship Types in this thesis - HostedOn and ConnectsTo.

Vertical Split refers to a split in the topology across a ConnectsTo Relationship Type or its
derivatives. This is depicted in Figure 2.8(b).

Horizontal Split refers to a split in the topology across a HostedOn or DependsOn Relation-
ship Type or their derivatives. This is depicted in Figure 2.8(a).

Figure 2.8: Illustration showing the difference between Vertical and Horizontal Topology
Splits

35

3 Related Work

In this chapter we discuss the related research work done that is relevant to the concepts
presented in this thesis. First, we explore some of the model (3.1) and pattern (3.2) based
approaches for provisioning and management of cloud applications, followed by a look at
some of the work done in the area of provisioning using the TOSCA standard (3.3). Finally,
in Section 3.4 we take a look at a topology splitting and matching technique for deploying
applications in a multi-cloud environment. Also, for each of the work discussed, we will
highlight their limitations, if any, and also underscore their influences on the work done in
this thesis.

3.1 Model Based Provisioning and Management of Cloud
Applications

3.1.1 Pattern-based Composite Application Deployment

Eilam et al. [EEKS11] in the paper titled Pattern-based Composite Application Deploy-
ment propose a model-based approach for cloud application deployment by bridging
the gap between high-level non-executable deployment models and low-level executable
workflows.

Motivation

Deployment methodologies for provisioning composite enterprise applications can be
broadly categorized into workflow-based approaches and model-driven design [EEKS11].
Although the workflow based approach is more popular than model-driven approaches, it
suffers from high sensitivity to topological changes in the application and design complexity.
On the other hand, while the model-driven approach shows promise by providing a high-
level of abstraction, separation of concerns, and strong semantics, they suffer from the
fact that the output of such a model is not directly executable. Therefore, Eilam et al. in
their paper propose a method to integrate both the approaches to provide high flexibility
in modeling complex applications while automatically generating reusable workflows to
deploy them.

37

3 Related Work

Approach

The proposed approach in [EEKS11], on a high level, comprises of defining a deployment
model that represents the desired deployment state of an application and then the auto-
mated transformation of the model into an executable workflow. The conversion involves
two steps - (i) identifying a set of operations which will affect the desired state, and (ii)
determining the partial order in which they can be executed. The operations are repre-
sented as automation signatures which comprise of a model pattern that describes the
effect of the operation on components of the given model, and its requirements on related
components. E.g., an operation to install a docker engine on a VM may require the IP
address of the VM. Automation signatures, therefore, provide the link between the models
and the underlying executable operation logic (implemented as scripts or workflows).

The deployment model consists of a Topology that is used to define the desired state of
the application. The Topology further comprises of typed nodes and edges that represent
resources which are to be installed. Furthermore, the operations declare automation
signatures that define the requirements of their operation and their effects in a semantically
rich manner. An automation signature is represented as a 3-tuple A = (O,P, L) where O
is the Operation, P is a deployment model known as pattern, and L represents the set of
relations between the Operation and the Pattern.

To generate a workflow for a given deployment model, the problem is modeled as a set
cover algorithm. Firstly, all the targeted nodes are obtained from the model. Targeted
nodes are a subset of the deployment model for which initstate ̸= goalstate. This subset
is treated as the universe U. Then, a collection S is obtained which consists of all possible
implementations of automation signatures for the targeted nodes. The algorithm then finds
a sub-family C ⊆ S that covers the Universe U , such that none of the sets in C overlap.
Finally, the partial order of the operations in C is found by analyzing the requirements
expressed in their automation signatures and incorporating available domain knowledge.
Once the partial ordering is obtained, they can be flattened to a total order.

Summary and Influences

The workflow generation algorithms proposed in the paper make use of graph covering
techniques to determine the optimal set of operations to instantiate the deployment model.
This is done by matching the automation signature patterns with the targeted nodes. We
will use a variant of the algorithm in Section 4.5.2 to determine dependencies between
different nodes in a topology to group them into logical units called Split Definition.

38

3.2 Pattern Based Provisioning and Management of Cloud Applications

3.2 Pattern Based Provisioning and Management of Cloud
Applications

3.2.1 Pattern-based Deployment Service for Next Generation Clouds

In the paper Pattern-based Deployment Service for Next Generation Clouds Lu et al.
[LSS+13] provide a service to deploy a multi-cloud application using deployment plans
that are represented in the form of patterns. A pattern represents an abstract view of
the cloud application that in turn represents the logical units of the application and their
corresponding mapping to the actual cloud resources. The service not only instantiates the
pattern but also allows for runtime updates to the deployed application.

Motivation

The Pattern Based Deployment Service (PDS) proposed in [LSS+13] tries to overcome
two challenges - (a) automated application deployment on a two-tiered (smart edges and
core) as well as the multi-cloud environment, and (b) dynamic adaptation of the deployed
application.

Approach

On a high level, the PDS takes as an input a System Pattern Description (SPD) file. The
SPD defines the details of the application topology and deployment. Once uploaded, the
SPD is parsed by the service and a graph is generated that represents the abstract steps
required to deploy the application. The generated graph is then dynamically converted
into Chef commands which in turn are executed to instantiate the various nodes of the
application topology.

The pattern-based deployment service defines its own XML based Domain Specific language
(DSL). The DSL identifies the following elements - topology, container, node, and service.
The topology represents the structure and relationship between the various components of
the application to be deployed. The container element represents a collection of nodes. A
node represents a virtual machine instance that has several attributes that, e.g., define the
cloud on which the node will be deployed and the services that should be deployed on the
given node. The service element defines the various software components that should be
installed/deployed on a given node.

Moreover, a topology may have multiple nodes, and a node can have multiple services
(e.g., Database, Web Application, etc.). This, in turn, may result in a scenario where the
deployment of one service may require configuration information from another service
and so on. E.g. The web application service on one node may need the IP address of the
node that hosts the database service to establish a connection. The paper defines such
dependencies as deployment dependencies. The DPS uses two algorithms to detect and

39

3 Related Work

resolve such dependencies. On a conceptual level, the first algorithm iterates through the
topology to extract all the deployment dependencies and the second algorithm defines the
correct ordering of the Chef invocations. Finally, a workflow is defined which makes sure
that the Chef recipes are executed in the correct order with the right attributes to make
sure that the service dependencies are correctly resolved, and the nodes are successfully
deployed.

Summary and Influences

As discussed in the previous section, the PDS converts the system pattern (SPD) represented
in the form of an XML-based DSL into a workflow of actions. These actions are specific
to Chef and their execution in the defined order provisions the application in a multi-
cloud/two-tier cloud environment. But, the approach doesn’t talk about granular and
reusable workflows (Plans). The workflows generated are monolithic and tightly coupled to
the topology defined in the SPD thereby suffering from the drawbacks that were highlighted
in Section 1.1.

3.2.2 Pattern-based Runtime Management of Composite Cloud
Applications

Breitenbücher et al. [BBKL13] in their paper Pattern-based Runtime Management of
Composite Cloud Applications, propose a pattern-based approach to decouple high-level
management of cloud applications from their low-level management operations. This, in
turn, allows for the re-usability of management knowledge in a dynamic and automated
manner for different applications.

Motivation

The paper attempts to tackle the complex task of management of distributed cloud appli-
cations. The challenge with such applications is the unavailability of a mapping between
the high-level tasks such as scaling-out components of the application and the actual
operations that implement the tasks above. As a result, often such management tasks tend
to be tightly coupled to the applications while making is hard to reuse the management
knowledge for other applications. Therefore, the authors in [BBKL13] define a method in
which (i) high level tasks are captured by Management Patterns, (ii) a separate manage-
ment layer, called Management Planlets, provide executable low level Management tasks,
(iii) both the layers are integrated seamlessly to provide the overall Management of the
applications.

40

3.2 Pattern Based Provisioning and Management of Cloud Applications

Approach

On a conceptual level, the approach for execution of management tasks for distributed
cloud applications in an automated manner is divided into three steps - (i) Applying
Management Patterns, (ii) generating Management Plans by orchestrating Management
Planlets, and (iii) execution of the generated plans.

In the first step, high-level management tasks such as scaling-out an application are mapped
to Management Patterns which represent the high-level knowledge required to perform
the desired management tasks. These Management patterns transform the Application
State Models (ASM) of a running application to the so-called Desired Application State
Models (DASM). The ASM reflects the current state of an application. It contains the
Application Topology which is conceptually similar to a SPD (Section 3.2.1) and a Topology
(Section 3.1). The Application topology is a graph that represents the components of
the application and the relationship among them. The components, in turn, may have
arbitrary key-value pairs, e.g., the IP address of a Virtual Machine component, that hold
the runtime information about them. The DASM, on the other hand, represents the desired
state of the application. It is represented by an annotated topology where the annotations
may mean creation, removal of components or execution of domain-specific tasks on the
respective component. Further, Management Patterns comprise of primarily two parts -
(i) Target Topology Fragment, and (ii) Topology Transformation. The Target Topology
Fragment represents a subset of a topology, i.e., components and relationships on which
the Management Tasks of the respective pattern will be applied. This fragment is used
to match the components of an ASM to the pattern. Once a match has been found, the
Topology Transformation is applied to the ASM to generate the DASM.

In the second step, a Management Plan is generated from the DASM obtained from the
previous step by the Plan Generator. The paper describes three levels of Management gran-
ularity viz. Management Plans, Management Planlets, and Management Operations.
Management Plans are Workflows which execute the management tasks in an automated
manner. They represent the highest granularity of the management layer, e.g., Migration
of an application from a private cloud to a public cloud, and are tightly coupled to the
application and its topology. At the second level of granularity is the Management Planlets
that are small single entry single exit workflows which implement low-level management
tasks such as deploying a docker container on a Virtual Machine, or starting a virtual
machine on a public cloud. They provide reusable and self-contained building blocks for
generating Management Plans for different applications. These Management Planlets may
need various input parameters to execute successfully. These input parameters may be pro-
vided by the user or extracted dynamically from the mapped elements of the corresponding
ASM and DASM. At the lowest level, the Management Operations, which is provided by
the components offer concrete functionalities for management tasks, e.g., copy a file to
an operating system. These are the operations that are aggregated by the Management
Planlets and orchestrated to execute the Management Plans.

41

3 Related Work

To summarize, the Management Plan is generated by first, finding a set of Management
Planlets that execute the operations in the DASM, and then employing a Partial Order
Planning (POP) algorithm [POP94] to generate a sequence of execution for the planlets.

In the third step, the generated Management Plan is provided with the required input
parameters and executed to achieve the Desired Application State.

Summary and Influences

The concepts mentioned in this section have a significant influence on the concepts pro-
posed in the thesis. To begin with, a concept similar to the annotation based topology
transformation will be used to mark the so-called Split Definitions. This annotated topology
(identical to a DASM) will then be used by the Plan Engine to generate granular plans from
the available sets of generic planlets. Then, these granular plans will be orchestrated to
determine the optimum sequence of operation to provision the application.

3.3 Provisioning and Management of Cloud Applications in
TOSCA

3.3.1 Combining Declarative and Imperative Cloud Application
Provisioning based on TOSCA

In their paper Breitenbücher et al. [BBK+14] introduce a method of automated provisioning
for cloud applications that combines both the declarative and imperative management
techniques (Section 2.3.2) based on TOSCA topology models. The paper aims to overcome
the drawbacks of both the approaches and benefit from their advantages.

Motivation

As already highlighted in Section 2.3.2, the imperative processing approach enables de-
velopers to explicitly define the steps of the provisioning in the form of custom plans.
This method provides the application developers with a higher degree of control and
facilitates customization of complex management tasks. But, it suffers from two significant
drawbacks. One, the process of generating custom plans is labor intensive, expensive
and error-prone considering heterogeneous management services need to be orchestrated,
and script-centric approaches need to be wrapped, and different data formats need to
be handled [BBK+13][EEKS11]. Moreover, the provisioning plans generated are tightly
coupled with the corresponding application topology. Any changes to the structure of the
topology will require the creation of new plans [EEKS11][BBKL13]. Considering applica-
tion topologies can get complicated, this approach is not suitable for every situation. The
declarative processing approach, on the other hand, alleviates this problem by automating

42

3.3 Provisioning and Management of Cloud Applications in TOSCA

the plan generation process. But it too suffers from the following drawbacks - (i) the TOSCA
runtime environment must be able to interpret the components and management logic to
infer the provisioning logic, and (ii) the degree of customization is lost due to automation.
Therefore, the approach proposed by Breitenbücher et al. combines both the approaches
thereby automating generation process with the help of a Provisioning Plan Generator while
also enabling manual customization and fine tuning of the generated plans.

Approach

Figure 3.1: Illustration showing the steps of Plan generation as discussed in [BBK+14]

On a conceptual level, the plan generation process works in three steps. These steps are
illustrated in Figure 3.1. In the first step, the Topology Template contained in a CSAR
is analyzed and a workflow-language independent Provisioning Order Graph (POG) is
generated. Each vertex in the POG represents a task to provision a component (Node or
Relationship Template) of the topology template. Each directed edge defines the temporal
provisioning order, i.e., the source vertex needs to be processed before the target vertex.
In the second step, a language-specific Provisioning Plan Skeleton (PPS) is built based on
the POG. The PPS contains Empty Provisioning Activities and therefore is not executable.
The vertices in the POG are transformed into Empty Provisioning Activities, and the edges
define the control flow between the activities. In the final step, the non-executable PPS
is converted into an Executable Provisioning Plan (EPP) by injecting language specific
Provisioning Subprocess Templates for individual node and relationship templates.

Summary and Influences

The concepts presented in the previous section for the foundation of the Plan Builder
component of OpenTOSCA. Further, a modified version of the Plan Builder component will
be used to generate scale-out plans in Section 3.3.2 which in turn will be reused in this
thesis for creating modular plans.

43

3 Related Work

3.3.2 Integrating IoT Devices based on Automatically Generated Scale-Out
Plans

Képes, Breitenbücher, and Leymann [KBL17] in their paper propose a method to automat-
ically generate scale-out plans, based on the TOSCA model, that are capable of adding
instances of new elements to the existing topology at run-time.

Motivation

The pervasiveness of IoT applications, today, and their data-intensive nature has led to the
use of Cloud Computing resources to design middleware and backend solutions to provide
scalability. Moreover, the growing complexity and heterogeneity of IoT devices leads to
the complexity of installation, configuration, management, and thus binding of the device
to an application. Therefore, to reduce the effort of automatic binding of IoT devices to
software, Képes, Breitenbücher, and Leymann propose a TOSCA based approach to mark
Scale-Out Regions in an application topology. These Scale-Out regions are further converted
into Scale-Out Plans that create instances of the components inside the marked regions and
thereby enabling the automatic installation and configuration of IoT devices.

Approach

Automated plan generation in this context is broadly divided into two steps - (i) defining
Scale-Out Regions for the topology, and (ii) Scale-Out Plan generation.

A Scale-Out Region is defined as a connected subset of Node- and Relationship Templates
of a given Topology Template, that needs to scaled-out at run-time. The boundary of a scale-
out region is defined by the Node Templates annotated with a so-called Selection Strategy. A
selection strategy defines how a single instance of a Node Template is selected at run-time.
Three different selection strategies have been defined in [KBL17] viz. First Instance , User
Provided and Workload-based Selection Strategies. In First Instance Selection strategy, as
the name suggests, selects the first found instance of a Node Template. Workload-based
selection strategy selects a Node Template instance based on workload. Finally, the User
Provided selection strategy selects a Node Template instance that is manually provided by
the user.

A Scale-Out Plan creates a single instance of the Node- and Relationship Templates
circumscribed by the Scale-Out Region, and connects them to the selected instances at
the boundary of the scale-out region based on the annotated scaling strategies. Further,
Scale-Out Plan Generation is divided into three steps (similar to 3.3.1) - (i) Scale-Out
Order Graph Generation, (ii) Scale-Out Plan Skeleton Transformation, (iii) Scale-Out Plan
Completion.

44

3.3 Provisioning and Management of Cloud Applications in TOSCA

Figure 3.2: Illustration showing the steps of Scale-Out Plan generation as discussed in
[KBL17]

1. Scale-Out Order Graph Generation: In this step, a Scale-Out Order Graph (SOG) is
generated from the Topology Template that is annotated with the Scale-Out Region
and Selection Strategies (Figure 3.2(b)). This step is carried out in two phases.
In the first phase, the Provisioning Order Graph Generation algorithm is reused
from Section 3.3.1. For each Node and Relationship template marked in the region,
an abstract Provisioning Activity is added to the SOG. In the next phase, Recursive
Selection Activities and Strategic Selection Activities are added. A Strategic Selection
Activity represents the fact that a Node Template instance has to be selected based on
the annotated Selection Strategy. Whereas, a Recursive Selection Strategy represents
the fact that instances are selected for Node Templates that aren’t marked with a
selection strategy but are connected to a marked Node Template.

2. Scale-Out Plan Skeleton Generation: This step is similar to the Provisioning Plan
Skeleton Generation algorithm described in Section 3.3.2 where the abstract activities
of the POG are replaced with language-specific placeholders.

3. Scale-Out Plan Skeleton Completion: In this step, a set of Provisioning Logic
Providers and Instance Selection Logic Providers are used to inject executable code into
the placeholders to generate an executable plan.

Summary and Influences

The work in the thesis is built on the concepts of this paper. The modular Plans are simply
scale-out plans that are generated by first annotating the topology. The Scale-Out Regions
and User Defined Selection Strategy are used to define the splits in the topology. Then the
scale-out plans created for the marked regions are orchestrated to provision the complete
application.

45

3 Related Work

3.4 Topology Splitting and Matching of Cloud Applications

3.4.1 Topology Splitting and Matching for Multi-Cloud Deployments

In the paper Topology Splitting and Matching for Multi-Cloud Deployments, Saatkamp et al.
[SBKL17] propose a method to automate the deployment of a cloud application model by
splitting the topology following a manually specified distribution in the Business layer. The
distribution reflects the changes to the existing topology due to strategic decisions within a
company’s IT.

Motivation

As we have seen in sections 3.1 and 3.2 cloud applications can be modeled using deployment
models. To be more specific, as discussed in 3.2.2 applications are represented on a
high-level using topology models. A topology is a directed graph that consists of nodes
which represent a particular component of the application, and the edges represent the
relationship between them. Although such a model-driven approach makes it easier to
design deployment strategies while abstracting low-level deployment logic, a strategic
decision on the business layer, e.g., outsourcing a part of the application from on-premise to
a public cloud could make things more complex. The process of adaptation of the topology
to such changes if done manually may be not only time-consuming but also error-prone.
The solution proposed in [SBKL17] therefore automates the process of splitting the topology
to reflect the changes followed by automated deployment of the updated topology.

Approach

In order to achieve the claims discussed in the previous sub-section, Saatkamp et al.
introduce the Split and Match Method. The method consists of six steps as follows,

In the first step, the topology model for the application is designed including all the
components and the relationships between them. In the second step, target labels are added
to the application-specific components (nodes). The target labels represent the target on
which the corresponding component will be deployed, e.g., onPrem for deploying on an on-
premise cloud infrastructure, or AWSPaaS to deploy the component on a public cloud PaaS
offering like AWS Beanstalk. In the third step, the topology model along with the labeled
components is checked for whether a splitting is possible. In the fourth step, the topology is
split based on the labels. This may result in the duplication of middleware and infrastructure
components and corresponding relations of the original topology. Additionally, the target
labels of application-specific components are also propagated down to the middleware and
infrastructure components. In the fifth step, the split topology is matched against Provider
Repositories based on their respective labels. The Provider Repositories store information
about various components that a provider supports, e.g., an AWSPaaS provider repository
might contain information about components like Elastic Beanstalk and Amazon RDS. These

46

3.4 Topology Splitting and Matching of Cloud Applications

supported components are stored as component templates. The labeled components in the
split topology are then iterated from bottom to top and are either removed or replaced by a
component template based on whether a matching component is found in the repository. In
the final step, the resulting topology from step-5 is deployed using a deployment system.

Summary and Influences

The above approach splits the topology vertically which eventually will generate a single
monolithic deployment plan. Therefore we reuse the concepts with minor modifications to
split the topology vertically as a pre-requisite to Horizontal Splitting. Moreover, the formal
definition introduced in the paper will be reused and built upon to formalize the algorithms
presented in this thesis.

47

4 Concept and Specification

The following chapter outlines the concepts presented in this thesis. In Section 4.1 we
provide an overview of the core concept followed by the high-level system architecture in
Section 4.2. We then introduce a metamodel in Section 4.3 that will be used to formalize
the algorithms introduced in the subsequent sections. Then, in Section 4.4 we present a
sample application that is used as a running example. For the rest of the chapter we take a
closer look at the core components introduced in the System Architecture (4.2) - Topology
Splitter (4.5), Plan Generator (4.6), and the Plan Orchestrator (4.7).

4.1 Concept Overview

Figure 4.1: Illustration depicting the High Level Concept proposed in the thesis for Dynamic
Provisioning of Cloud Applications

As already highlighted in Section 1.3, the primary objective of this thesis is the proposal
of a concept to declaratively generate granular plans instead of a single large plan for
provisioning a cloud application. The concept can be broadly divided into four steps as
illustrated in Figure 4.1. In the first step, the topology of the cloud application is split into

49

4 Concept and Specification

a set of sub-topologies by annotating the elements with a so-called Split Definition. Each
sub-topology, defined by a Split Definition, contains a set of logically grouped nodes and
their corresponding relationships. The process of generation of split definitions from a
given topology is referred to as Topology Splitting (1, Figure 4.1). In the second step, the
split definitions are parsed, interpreted and converted into Partial Plans. There is a strict
one-to-one correlation between split definitions and partial plans, i.e., only one partial
plan is generated for every split definition. Each partial plan is responsible for provisioning
the sub-topology within the corresponding split definition. The process of generating
partial plans from the corresponding split definition is termed as Partial Plan Generation (2,
Figure 4.1) and is discussed in details in Section 4.6. In the third step, the partial plans are
coordinated in the correct order to define the provisioning logic for the cloud application.
Each partial plan may take some parameters necessary for provisioning the corresponding
components and generate a reference to the instance of the provisioned component(s) as
output.This instance reference is used by the next partial plan in the overall provisioning
order as an input to access the already provisioned resources. This step is referred to as
Partial Plan Orchestration (3, Figure 4.1). In the fourth step, the overall provisioning order
derived from orchestrating the partial plans is executed to provision an instance of the
application. This step is referred to as application instance provisioning (4, Figure 4.1).

For the scope of this thesis, only steps 1-3 will be discussed in detail along with the
corresponding algorithms in the subsequent sections. In the following section (4.2) we
present the high-level system architecture and define the components responsible for
executing the processing steps discussed above.

4.2 System Overview

Figure 4.2: Illustration depicting the High Level System Architecture for the concept intro-
duced in Section 4.1

The overall system architecture, as illustrated in Figure 4.2 comprises of three primary
components - (i) Topology Splitter, (ii) Plan Generator, and (iii) Plan Orchestrator. The

50

4.2 System Overview

Topology Splitter component takes as input the topology template of a cloud application and
generates a set of split definitions. This component abstracts a sequence of well-defined
steps, as discussed in Section 4.5.2, that interpret the topology, finds logical groups of
dependent components (nodes and relationships) based on well-defined semantics, and
finally annotates the components to define the split definitions. The topology splitter can
be mapped to step-1 in Figure 4.1. Then, the Plan Generator component takes as input
the annotated topology generated by the topology splitter and creates a set of executable
partial plans. This component abstracts a sequence of well-defined steps, as discussed
in Section 4.6.2, that parses, interprets and processes the split definitions defined in the
topology to generate the partial plans (step 2, Figure 4.1). Finally, the Plan Orchestrator
component derives the order of partial plan execution from metadata embedded within
the split definitions and orchestrates them to create an instance of the application (step 3,
Figure 4.1).

The three components described above interact with an existing TOSCA run-time environ-
ment for all the low-level TOSCA specific tasks like storage and processing of topology
templates, plans, and associated resources (e.g., IAs and DAs), etc. For this thesis, we will
use the OpenTOSCA runtime environment as discussed in Section 2.4.

4.2.1 Prerequisites

In the following section, we list a set of prerequisites in the form of assumptions and
requirements that are necessary for the concepts introduced in this chapter to work success-
fully. These prerequisites are required to formally define the scope of the thesis as outlined
in Section 1.3.

Assumptions

Assumption - 1: Only a subset of Node Types are considered It is assumed that only a
limited set of Node Types are sufficient to explain concepts introduced in this chapter. The
algorithms can further be extended to other Node Types without any modification. The set
of used Node Types are depicted in Figure 4.4.

Assumption - 2: Only a subset of Relation Types are considered It is assumed that
only a limited set of Relationship Types are considered to explain concepts introduced in
this chapter.The algorithms can further be extended to other Relation Types without any
modification. A collection of Relation Types relevant within the scope of this thesis are
depicted in Figure 4.4.

Assumption - 3: Syntactic consistency between Property and Parameter names for
this thesis, it is assumed that the names of Plan Input Parameters, Node Properties, and
Operation Parameters are syntactically same if they represent the same value. As an
example, a simple application topology is depicted in Figure 4.3 that deploys a Docker
Container on a pre-configured Docker Engine. It can be seen that the names of the

51

4 Concept and Specification

input parameters of the provisioning plan, the node properties, and the node operation
parameters are consistent. The mapping is depicted with dotted arrows. This assumption is
a prerequisite to find dependencies between nodes in a topology as a part of the Topology
Splitting algorithm discussed in Section 4.5.2.

Figure 4.3: Syntactic consistency between property and parameter names for a simple
topology that deploys a Docker Container on a pre-configured Docker Engine

Requirements

In their paper titled Merging Models Based on Given Correspondences [PB03] Pottinger
and Bernstein define a set of Generic Merge Requirements (GMRs). We will extend and adopt
a subset of these requirements similar to [AWMT12] to establish the requirements for the
concepts proposed in this thesis.

Requirement - 1: Element Preservation Each element (in this case a Node) in the
input (Topology Template), must have at least one corresponding element in the output
(Topology Splits). In other words, no node from the input topology is discarded in the
splitting process.

Requirement - 2: Relationship Preservation Similar to requirement-1, each relationship
between two nodes in the input topology template must have a corresponding relationship
between the same nodes in at least one of the topology splits. In other words, no relationship
between nodes is discarded in the splitting process.

Requirement - 3: Property Preservation All the nodes in the Split Templates must pre-
serve their properties. In other words, no properties must be discarded, or their semantics
altered in the splitting process.

52

4.3 Metamodel

Requirement - 4: Extraneous item prohibition No additional nodes, relationship or
parameters must be introduced in the Splitting or Orchestration process that was not part
of the original Topology

In the following section, we list a set of formal definitions that will be used to present the
algorithms in this chapter.

4.3 Metamodel

In this section, the metamodel introduced by Saatkamp et al. [SBKL17] is extended and
reused to define the concepts presented in this thesis. Formal definitions for the various
components of an application topology that are relevant in the context of the thesis are
given. These formalizations can then mapped to a standard that supports similar semantics
for the elements (e.g., TOSCA) and the algorithms can be implemented in any programming
language supported by the corresponding run-time engine (e.g., JAVA for OpenTOSCA) .

4.3.1 Definition of Application Templates

• Definition 4.3.1 (Property) A Property is a simple (key, value) pair that can represent
different values based on the context. E.g., it can describe the runtime instance value
for a Node (Node Property) or a Relation (Relation Property) in a given Topology,
or the parameters consumed or generated by an Operation (Operation Input/Output
Parameters) or a Plan (Plan Input/Output Parameter) in an Application Template.

Let Prop represent the set of all key-value pairs, then ρ ∈ Prop can be defined by the
following tuple:

ρ = (key, val) | key, val ∈ Σ+ (4.1)

• Definition 4.3.2 (Application Template) An Application Template is defined as a file
that comprises the following components - Topology, Partial Plans, Split Definitions, and
an Orchestration Map.

Let A represent the set of all application templates, then a ∈ A can be defined by the
following tuple:

a = (ta, Pa, Sa,Ma) (4.2)

Where, ta, Pa, Sa,Ma represent the topology, partial plans, split definitions, and
orchestration map contained in the application template a respectively.

– Definition 4.3.3 (Topology) Topology can be defined as a directed and possibly
disconnected graph that comprises of Nodes and Relations. The topology represents
the structure of an application where the components are represented by the nodes,
and the relationship between the components is depicted by the relations. Each

53

4 Concept and Specification

Node and Relation within a Topology are typed where the Node Type and Relation
Type provide the semantics for the respective nodes and relations.

Let T represent the set of all Topologies, then ta ∈ T can be defined by the
following tuple:

ta = (Nta , Rta , NTta , RTta , Lta , typeta , labelta ,

sourceRel, targetRel, sourceNode, targetNode)
(4.3)

Where, Nta , Rta , NTta , RTta represent the set of all nodes, relations, node types
and relation types defined within the topology ta respectively.

* Definition 4.3.4 (Node) A node represents a single component of a topology,
e.g., Virtual Machine, Web Server, etc. Each node may further comprise of
Node Properties, which are key-value pairs and store the runtime instance
values for each node. These Node Properties can either be mapped to manually
provided parameters or dynamically generated at run time. Nodes can also
contain Node Operations which can be executed for provisioning/management
of the nodes. Node Operations may belong to a given Node or inherited from
the respective Node Type.

Let Nta represent the set of all Nodes in ta, then n ∈ Nta can be defined by
the following tuple:

n = (Ψn,Θn) (4.4)

Where,

· Ψn: {ρ | ρ ∈ Prop}, i.e set of all key-value pairs that define valid Node
Properties for n

· Θn: {θ | θ ∈ Ops}, i.e. set of all valid Node Operations for n and also
inherited from the Node Type of n.

* Definition 4.3.5 (Relation) A relation represents the relationship between
any two nodes of a topology, e.g., a node maybe ’hostedOn’ or ’connectesTo’
another node. Each relation may further comprise of Relation Properties that
are key-value pairs and store the runtime instance values for each relation.
Relations can also contain Relation Operations which can be executed for
provisioning/management of the relations. Relation Operations may belong to
a given Relation or inherited from the corresponding Relation Type.

Let Rta ⊆ NtaXNta represent the set of all Relations in ta, then r ∈ Rta can
be defined by the following tuple:

r = (Ψr,Θr) (4.5)

Where,

54

4.3 Metamodel

· Ψr: {ρ | ρ ∈ Prop}, i.e set of all key-value pairs that define valid
Relation Properties for r

· Θr: {θ | θ ∈ Ops}, i.e. set of all valid Relation Operations for r and also
inherited from the Relation Type of r

* Definition 4.3.6 (SourceNode) ’sourceNode’ represents the mapping which
defines the source node n for each relation r in ta.

sourceNode : Nta → Rta , nta → rta

* Definition 4.3.7 (T argetNode) ’targetNode’ represents the mapping which
defines the target node n for each relation r in ta.

targetNode : Rta → Nta , rta → nta

* Definition 4.3.8 (SourceRel) ’sourceRel’ represents the mapping which de-
fines the incoming relation r for each node n for each in ta.

sourceRel : Rta → Nta , rta → nta

* Definition 4.3.9 (T argetRel) ’targetRel’ represents the mapping which de-
fines the outgoing relation r for each node n for each in ta.

targetRel : Nta → Rta , rta → nta

* Definition 4.3.10 (Node Type) A Node Type provides extensibility to nodes.
They define the semantics of all the nodes that inherit from the given Node
Type.

Let NTta represent the set of all Node Types in ta, then nt ∈ NTta defines
the semantics of a node that derives from this node type.

* Definition 4.3.11 (Relation Type) A Relation Type provides extensibility to
relations. They define the semantics of all the relations that inherit from the
given Relation Type.

Let RTta represent the set of all Relation Types, then rt ∈ RTta defines the
semantics of a relation that derives from this relation type.

* Definition 4.3.12 (Target Label) A target label is a string value that speci-
fies the vertical split that a node in the topology is part of.

Let Lta represent the set of all Target Labels in ta, then l ∈ Lta specifies the
vertical split a node is part of.

55

4 Concept and Specification

* Definition 4.3.13 (Type) ’type’ represents the mapping which assigns to each
Node and Relation in ta its Node Type and Relation Type.

typeta : NTta ∪RTta → Nta ∪Rta

* Definition 4.3.14 (Label) ’label’ represents the mapping which assigns each
Node in ta to a Target Label l.

labelta = {(n, l)|n ∈ Nta , l ∈ Σ+ ∪ {⊥}}

* Definition 4.3.15 (Operation) An Operation represents the semantics of an
executable function that can be that can be used for provisioning/management
of the respective Node (Node Operation) or Relation (Relation Operation).

Let Ops represent the set of all Operations, then θ ∈ Ops can be defined by
the following tuple:

θ = (Φinθ
,Φoutθ

) (4.6)

Where,

· Φinθ
: {ρ | ρ ∈ Prop}, i.e., the set of all Operation Input Parameters for

θ.

· Φoutθ
: {ρ | ρ ∈ Prop}, i.e., the set of all Operation Output Parameters

for θ.

– Definition 4.3.16 (Partial Plan) A Partial Plan can be defined as a set of opera-
tions that are executed automatically in a specific order to instantiate a part of the
complete application. The partial plans consume a set of Plan Input Parameters
and on successful completion generate a set of Plan Output Parameters

Let Pa represent the set of all Partial Plans in application template a, then p ∈
Pa can be defined by the following tuple:

p = (Φinp ,Φoutp) (4.7)

Where,

* Φinp: {ρ | ρ ∈ Prop}, i.e., the set of all Plan Input Parameters for p

* Φoutp: {ρ | ρ ∈ Prop}, i.e., the set of all Plan Output Parameters for p

56

4.3 Metamodel

– Definition 4.3.17 (Split Definition) A Split Definition is semantically equivalent
to a ’Scale-Out Region’ [KBL17] discussed in Section 3.3.2. Additionally, only ’User
Provided Selection Strategy’ is used for marking the boundary of a split definition.

Let Sa represent the set of all Split Definitions in application template a, then
s ∈ Sa can be defined by the following tuple:

s = (Nsplit, Rsplit, Nstrat)

Where,

* Nsplit ⊆ Nta , is the set of all nodes in split that need to be provisioned.

* Rsplit ⊆ Rta , is the set of all relations in the split that need to be provisioned.

* Nstrat ⊂ Nta | Nsplit∩Nstrat = ∅, is the set of nodes that define the boundary
of the split. These nodes are assumed to be provisioned before the other
nodes in Nsplit. Additionally, their instance information is used as an input
for the partial plan generated for the split definition s, to provision the
nodes in Nsplit

– Definition 4.3.18 (Orchestration Map) An Orchestration Map represents a set
of tuples that store the mapping information between Nodes, the Split Definition
the nodes belong to, and the corresponding Plan generated for the Split Definition.

Let Ma represent an Orchestration Map in the application template a, then
m ∈Ma it can be formally represented by the following expression:

m = (n, s, p) | n ∈ Nta , s ∈ Sa, p ∈ Pa (4.8)

57

4 Concept and Specification

4.4 Running Example

Figure 4.4: Illustration showing an Application Template and its components - Topology,
Split Definitions, Partial Plans, and Orchestration Map

A sample Application Template is depicted in Figure 4.4 that will be used as a running
example for the algorithms discussed in the subsequent sections of this chapter. The
Topology within the application template depicts a simple stateless PHP Web Application
deployed on an Apache Web Server. The application connects to a MySQL Database
deployed on a MySQL Database Management System. Finally, all the components are
deployed on an Ubuntu Virtual Machine hosted on OpenStack Liberty that forms the
infrastructure layer. Additionally, the Split Definitions (S1,S2, ...,Sn) and Partial Plans (P1,
P2,...,Pn), and the Orchestration Map are also depicted.

For clarity, we will use the letters A-F, as shown in the diagram, to represent the nodes of
the given topology for the rest of the chapter.

58

4.5 Topology Splitting

4.5 Topology Splitting

In this section, we will first discuss the high-level steps involved in the topology splitting
process (4.5.1). Next, in Section 4.5.2, the detailed algorithm(s) for each of the steps will
be presented while adhering to the defined assumptions (4.2.1) and requirements (4.2.1).

4.5.1 Overview

Topology Splitting is the first step in the process of generating granular plans that can be
used for dynamic provisioning of the application. The process can be broadly divided into
three steps as shown in Figure 4.5.

Figure 4.5: Illustration showing high-level steps in the Topology Splitting algorithm.

Check Topology For User Defined Splits In this step, the topology is checked for any
existing user-defined splits that were added manually. In case splits already exist, the
topology is discarded, and the process exits. Otherwise, the topology is passed to the next
step.

Split Topology Vertically In this step, the topology is split vertically using the concepts
discussed in Section 3.4.1 [SBKL17]. This step acts as a precursor to the next step in the
sense that it generates a topology with clearly defined boundaries that makes it easier
for generating horizontal splits. In other words, it generates separate branches for nodes
connected via the connectsTo relation.

59

4 Concept and Specification

Split Topology Horizontally In this step, the vertically split topology generated in the
previous step is used to create Split Definitions. As already discussed previously, split
definitions represent horizontal splits in the topology and are used by the plan generator
component to generate partial plans.

4.5.2 Algorithm

In this section, we take a deeper look into each of the steps mentioned in previous section
(4.5.1) and take a look at the corresponding algorithms.

1. Check Topology For User Defined Splits

This step takes an Application Template a ∈ A as an input and returns an empty set ∅ if the
topology has existing splits. If no splits were discovered, then the Application Template a is
returned as is. A Topology ta in a is said to be split if any of the sets - Partial Plans, Split
Definitions, or Orchestration Map are non-empty (Line-5, Algorithm 4.1).

Algorithmus 4.1 Check Topology For User Defined Splits

1: procedure CHECKTOPOLOGYFORUSERDEFINEDSPLITS(a ∈ A)
2: Pa ← π2(a) //Partial Plans in a
3: Sa ← π3(a) //Split Definitions in a
4: Ma ← π4(a) //Orchestration Map in a
5: if (Pa ̸= ∅ ∨ Sa ̸= ∅ ∨ Ma ̸= ∅) then
6: return ∅
7: else
8: return a
9: end if

10: end procedure

60

4.5 Topology Splitting

2. Split Topology Vertically

This step is based on the Split Topology algorithm introduced by Saatkamp et al. [SBKL17]
in their paper titled Topology Splitting and Matching for Multi-Cloud Deployments. This step
takes as input the Application Template a ∈ A that is returned by the previous step and
returns a vertically split topology. This is achieved in two stages as shown in Figure 4.6.

Figure 4.6: Illustration showing the stages involved in the second step of the Topology
Splitting algorithm - "Split Topology Vertically"

2.1. Add Target Labels To Root Nodes

This stage is equivalent to the ’Add Target Labels’ step in the ’Split and Match’ method
(Saatkamp et al.) discussed in Section 3.4.1. But, unlike the manual approach followed
in the paper, we use an automated approach to add labels to nodes (Lines 4-10, Algo-
rithm 4.2). In this approach, first we determine the Root Nodes (application-specific nodes)
of the topology ta and then assign a Target Label to them. Root Nodes, in a topology, are
the nodes that do not have any incoming hostedOn relation and Target Labels are simply
unique string values that represent vertical splits.

It should be noted that, just adding Target Labels to the root nodes satisfies the conditions
for a valid split [SBKL17] which is a pre-requisite for the Split Topology algorithm.

2.2. Split Topology

This stage is equivalent to the ’Split Topology’ step in the ’Split and Match’ method (Saatkamp
et al.) discussed in Section 3.4.1. We re-use the algorithm from the paper [SBKL17] and
therefore omit the details in the following discussion.The algorithm is abstracted by the

61

4 Concept and Specification

Splitting() method (Line 12, Algorithm 4.2) that takes the annotated topology ta from the
previous step as input, and generates a vertically split topology ts.

Algorithmus 4.2 Split Topology Vertically

1: procedure SPLITTOPOLOGYVERTICALLY(a ∈ A)
2: ta ← π1(a) //The Topology in a
3: Nta ← π1(ta) //The set of all Nodes in ta
4: //Step-2.1: Add Target Labels To Root Nodes
5: for all (ni ∈ Nta) do
6: //Check if node ni is a root node in the topology ta
7: if (sourceRel(ni) = ∅ ∨ ∀ri ∈ sourceRel(ni), type(ri) ∈ RTta − {HostedOn})

then
8: //Add a unique label to the node ni that doesn’t already exist in labelta

9: labelta ← labelta ∪ (ni, l
′) | l′ ∈ Σ+ − L,L = {π2(n, l) | (n, l) ∈ labelta}

10: end if
11: end for
12: //Step-2.2: Split Topology (Saatkamp et al. [SBKL17])
13: return ts ← SPLITTING(ta)
14: end procedure

3. Split Topology Horizontally

This step takes two inputs - (i) the Application Template a that is returned in Step-1: Check
Topology For Splits, and (ii) the Vertically Split Topology ts generated in Step-2: Split Topology
Vertically. It then iteratively extracts Vertical Splits from ts, find Node Dependencies within
each vertical split, and generates Split Definitions based on the node dependencies. Finally,
it removes duplicate split definitions generated, if any, and then returns the updated
application template. This is achieved in four stages as shown in Figure 4.6. In the
following sections, we describe the individual steps of the process and at the end provide
the overall algorithm.

62

4.5 Topology Splitting

Figure 4.7: Illustration showing the stages involved in the third step of the Topology
Splitting algorithm - "Split Topology Horizontally"

3.1. Extract Vertical Split

This stage is represented by the procedure defined in Algorithm 4.3. It takes as in-
put a root node of a vertical split in the topology ts and returns an ordered set of all nodes
in the split. This is achieved by recursively traversing the vertical split by following the
outgoing infrastructure edge (hostedOn) for each node (Line-6, Algorithm 4.3) and adding
them to an ordered set. The algorithm terminates when the leaf node is reached, i.e., a
node with no outgoing relations (Line-3, Algorithm 4.3). The ordered set is represented by
Nvert.

63

4 Concept and Specification

Algorithmus 4.3 Extract Vertical Splits

1: procedure EXTRACTVERTICALSPLIT(n ∈ Nts) //n is a root node in the vertically split
topology

2: Nvert
[
0
]
← n //Array of nodes in a vertical split (index starts at 0)

3: i← 1
4: while (targetRel(n) ̸= ∅ ∧ ∀ri ∈ targetRel(n), type(ri) ∈ {HostedOn}) do
5: n← targetNode(targetRel(n))
6: Nvert

[
i
]
← n

7: i← i+ 1
8: end while
9: return Nvert

10: end procedure

3.2. Get Node Dependencies

22nce the ordered list of nodes Nvert is obtained, it is iterated recursively (Lines 10-
30, Algorithm 4.8) and the nodes are checked for dependencies. The Node dependencies
can be of the following two types - Artifact Dependency and Property Dependency. Two nodes
are said to have an Artifact Dependency when the first node needs to transfer/deploy a
specific artifact to/on the second node, e.g., A web application node may deploy a WAR

file on a VM node as a part of the provisioning process. Property Dependency, on the
other hand, determines if any Node Properties of the first node that are required for its
provisioning are dependent on the output parameters of one or more Node Operations of
the second node. In other words, if the provisioning of the first node is dependent on the
Node Operation(s) of the second node they are said to have a Property Dependency.

The logic for checking Node Dependencies is represented by the procedure in Algorithm 4.4.
First, artifact dependency is checked (Line-3, Algorithm 4.4) followed by the property
dependency (Lines 7-11, Algorithm 4.4). The implementation logic for checking Artifact
Dependency has been omitted intentionally and can be handled based on the specific
implementation used (e.g., OpenTOSCA). On the other hand, the implementation logic for
checking Property Dependency is represented by the procedure in Algorithm 4.5. If a single
match is found between any property of the source node and an output parameter of an
operation of the target node (Lines 2-8, Algorithm 4.5), then a boolean true is returned.

Note: Once a node dependency is determined between a source node and a target node,
the target node is added to a Node Dependency List Ndependency (Line 13, Algorithm 4.8).

64

4.5 Topology Splitting

Algorithmus 4.4 Check Node Dependency

1: procedure CHECKNODEDEPENDENCY(ni, nj ∈ Nvert)
2: //Check Artifact Dependency
3: if (HASARTIFACTDEPENDECY(ni, nj)) then
4: return true
5: end if
6: //Check Property Dependency
7: for all (θ ∈ Θnj) do
8: if (HASPROPERTYDEPENDECY(Ψni ,Φoutθ

)) then
9: return true

10: end if
11: end for
12: end procedure

Algorithmus 4.5 Check Property Dependency

1: procedure HASPROPERTYDEPENDENCY(Ψn,Φoutθ
)

2: for all (ψ ∈ Ψn) do
3: for all (ϕ ∈ Φoutθ

) do
4: if (ψ.key = ϕ.key) then
5: return true
6: end if
7: end for
8: end for
9: return false

10: end procedure

3.3. Generate Split Definitions

The implementation logic for this step is represented in Algorithm 4.6. It takes as in-
put a dependency list Ndependency for a node n ∈ Nvert and returns a split definition, s.
First, all the nodes (except the leaf node) n ∈ Ndependency are iteratively added to the Nsplit.
Then, for each node in Ndependency the corresponding outgoing relation Rout is added to
Rsplit. Finally, the leaf node is added to the Nstrat component of the split definition s.

65

4 Concept and Specification

Algorithmus 4.6 Generate Split Definition

1: procedure GENERATESLITDEFINITION(Ndependency)
2: Nsplit ← ∅
3: Rsplit ← ∅
4: Nstrat ← ∅
5: for all (ni ∈ Ndependency) do
6: if (targetRel(ni) ̸= ∅) then
7: Nsplit ← Nsplit ∪ {ni}
8: Rsplit ← Rsplit ∪ targetRel(ni)
9: else

10: Nstrat ← Nstrat ∪ {ni}
11: end if
12: end for
13: return s← (Nsplit, Rsplit, Nstrat)
14: end procedure

3.4. Remove Duplicate Split Definitions

This is simply a cleanup step in the process of topology splitting. Because certain nodes
might have been duplicated to generate the vertical splits [SBKL17], there is a possibility
of generation of duplicate Split Definitions. Two split definitions are said to be equal
if they have the same elements in Nsplit, Rsplit, and Nstrat respectively. Therefore, the
duplicate definitions are removed to avoid generation of duplicate partial plans. This step
is represented by the RemoveDuplicateSplitDefinitions() method (Algorithm 4.7).

Algorithmus 4.7 Remove Duplicate Split Definitions

1: procedure REMOVEDUPLICATESLITDEFINITIONS(Sa)
2: for all (si ∈ Sa) do
3: for all (sj ∈ Sa − {si}) do
4: if (π1(si) = π1(sj) ∧ π2(si) = π2(sj) ∧ π3(si) = π3(sj)) then
5: Sa ← Sa − {sj}
6: end if
7: end for
8: end for
9: return Sa

10: end procedure

The overall algorithm for splitting the topology horizontally is now presented below,

66

4.5 Topology Splitting

Algorithmus 4.8 Split Topology Horizontally

1: procedure SPLITTOPOLOGYHORIZONTALLY(a, ts)
2: S ← ∅
3: Nts ← π1(ts)
4: for all (nk ∈ Nts) do
5: Nvert ← ∅ //Array of nodes in a vertical split
6: //Check if node nk is a root node in the topology ts
7: if (sourceRel(ni) = ∅ ∨ ∀ri ∈ sourceRel(ni), type(ri) ∈ RTta − {HostedOn})

then
8: Nvert ← EXTRACTVERTICALSPLIT(nk)
9: splitDepth← |Nvert|

10: for (i← 0; i < splitDepth;) do
11: Ndependency ← ∅
12: for (j ← i; j < splitDepth; j ← j + 1) do
13: Ndependency = Ndependency ∪Nvert

[
j
]

14: if (CHECKNODEDEPENDENCY(Nvert
[
i
]
, Nvert

[
j
]
)) then

15: break
16: end if
17: end for
18: //Create Split Definition for hostedOn relation
19: ShostedOn ← GENERATESPLITDEFINITION(Ndependency)
20: S ← S ∪ ShostedOn

21: i← i+ |Ndependency|
22: end for
23: //Create Split Definition for connectsTo relation
24: Ndependency = {nk, targetNode(targetRel(nk) | ∀ri ∈

targetRel(nk), type(ri) ∈ {ConnectsTo}}
25: SconnectsT o ← GENERATESPLITDEFINITION(Ndependency)
26: S ← S ∪ SconnectsT o

27: else
28: continue
29: end if
30: end for
31: S ← REMOVEDUPLICATESPLITDEFINITIONS(S)
32: π3(a)← S

33: return a
34: end procedure

67

4 Concept and Specification

4.6 Partial Plan Generation

In this section, we first provide an overview of the Plan Generator component (4.6.1)
and compare it with the concepts for generating scale-out plans discussed in Chapter 3,
Section 3.3.2. Next, in Section 4.6.2, the detailed algorithm for the plan generation step
will be presented while adhering to the defined assumptions (4.2.1) and requirements
(4.2.1).

4.6.1 Overview

As discussed in Section 4.2, the Plan Generator component takes an annotated topology as
input and generates a set of executable partial plans. Annotated topology, in this context,
refers to an application topology for which Split Definitions were generated by the Topology
Splitter component (4.5). These split definitions are parsed, interpreted, and processed by
the plan generator component, and a single partial plan is generated per split definition.

The concepts highlighted in Chapter 3, Section 3.3.2 (Képes, Breitenbücher, and Leymann
[KBL17]) for scale-out plan generation are reused for the Plan Generator component. As
already discussed, the process of scale-out plan generation consists of two main steps -
(i) defining Scale-Out Regions for the topology, and (ii) Scale-Out Plan generation. The
first step is similar to the Topology Splitting discussed in the previous section, where a
Split Definition can be considered as a special case of a Scale-Out Region. In case of a Split
Definition, only the User Provided Selection Strategy will be used to define the boundary of
the scale-out region. Furthermore, the concepts for partial plan generation is the same as
the concepts for scale-out plan generation (3.3.2).

Figure 4.8: Illustration showing the steps involved in Partial Plan Generation from a Split
Topology

68

4.7 Partial Plan Orchestration

4.6.2 Algorithm

Algorithm 4.9 provides a high level method for partial plan generation based on the
formalizations introduced in Section 4.3.1. The method takes an Application Template as
input and returns an updated Application Template with the generated Partial Plans. For
each split definition in the application template a partial plan is generated by calling the
GeneratePlan() method (Line 9, Algorithm 4.9). This method takes a split definition and
the application topology as input. The GeneratePlan() method abstracts the sale-out plan
generation algorithm presented in [KBL17] and therefore the details are omitted for brevity.
Finally, the set of all partial plans is added to the application template, and the updated
template is returned.

Algorithmus 4.9 Generate Partial Plans

1: procedure GENERATEPARTIALPLANS(a)
2: P ← ∅
3: Sa ← π3(a)
4: for all (si ∈ Sa) do
5: ta ← π1(a)
6: p←GENERATEPLAN(si, ta) //According to [KBL17]
7: P ← P ∪ {p}
8: end for
9: π2(a)← P

10: return a
11: end procedure

4.7 Partial Plan Orchestration

In this section, we first provide an overview of the Plan Orchestrator component (4.7.1).
Next, in Section 4.7.2, the detailed algorithm for the plan orchestration step will be
presented while adhering to the defined assumptions (4.2.1) and requirements (4.2.1).

4.7.1 Overview

As discussed in Section 4.2, the Plan Orchestrator component derives the order of partial
plan execution and orchestrates them to create an instance of the application. This step
makes use of an Orchestration Map (Figure 4.9) that holds the mapping between the Nodes,
Split Definitions and the corresponding Partial Plans. In order to determine the order of
partial plan execution we use a modified version of the Provisioning Order Graph (POG)
generation algorithm discussed in Section 3.3.1 (Breitenbücher et al. [BBK+14]). The
orchestration process is carried out in five steps as depicted in Figure 4.10.

69

4 Concept and Specification

Figure 4.9: Illustration showing an Orchestration Map that contains the mapping between
Nodes, Split Definitions, and Partial Plans

Figure 4.10: Illustration showing the different stages of the Partial Plan Orchestration
Algorithm.

4.7.2 Algorithm

Algorithm 4.10 provides the method for partial plan orchestration. It takes as input, the
updated Application Template obtained from the previous step and generates a workflow for
execution of the Partial Plans contained in the template.The steps involved in the process
(Figure 4.10) are discussed next.

70

4.7 Partial Plan Orchestration

1. Generate POG

In this step, an abstract Provisioning Order Graph (POG) [BBK+14] is generated from the
given topology t. To generate the POG, an abstract activity is inserted into the graph for each
Node and Relation in the Topology. Then, the control flow is determined by the semantics
of the Relation. E.g., In case of a hostedOn relation, the target node is provisioned first
and then the source node. Whereas, in case of a connectsTo relation, both the source and
target nodes need to be provisioned first before the relation between them can be made.
Therefore, a POG represents a partial order of provisioning for the nodes and relations in
the topology.

To generate a POG from a given Topology we reuse the algorithm proposed by Breitenbücher
et al. [BBK+14]. The details of the algorithm are omitted for brevity and are abstracted by
the GeneratePOG() method (Line 5, Algorithm 4.10).

Note: The abstract activities for Relations have been omitted in the figure for clarity and
are handled in the same way as the nodes.

2. Get Split Definition For Node

In this step, the POG is traversed recursively and a mapping is created between each
vertex and the corresponding Split Definition using the Orchestration Map (Lines 6-10,
Algorithm 4.10). This step is based on the assumption that an Orchestration Map is
available and maintained throughout the lifecycle of the topology splitting process.

3. Clean POG

As already discussed in Algorithm 4.8 (Line 23), a split definition may contain multiple
nodes based on the elements in the Node Dependency List, Ndependency. Therefore, multiple
nodes maybe mapped to the same split definition in the orchestration map. As a result
of which, multiple consecutive edges in the POG may also be mapped to the same split
definition (2, Figure 4.10). Therefore, in this step, duplicate mappings are removed from
the POG. This is achieved by recursively iterating the POG from the source towards the sink,
and keeping only the first vertex from the set of duplicate vertices intact while deleting
the rest (3, Figure 4.10). This step is abstracted by the CleanPOG() method (Line 11,
Algorithm 4.10).

4. Get Plan For Split Definition

In this step, the clean POG is traversed, and a mapping is created between each vertex and
the corresponding Partial Plan using the Orchestrtaion Map (Lines 13-17, Algorithm 4.10).

71

4 Concept and Specification

5. Execute Plans In POG

In this step, the POG is traversed from source to sink, and each mapped partial plan is
executed. This can either be achieved programmatically through code written in any
programming language, e.g., JAVA or automatically using workflows. In each step of the
execution a Partial Plan is executed, and the output of the execution (which includes
the instance id of the provisioned elements) is passed as input parameters to the next
Partial Plan. These steps are abstracted by the ExecuteP lansInPOG() method (Line 12,
Algorithm 4.10).

Algorithmus 4.10 Orchestrate Partial Plans

1: procedure ORCHESTRATEPARTIALPLANS(a)
2: ta ← π1(a)
3: Ma ← π4(a)
4: //Step-1: Generate POG
5: GP OG ← GENERATEPOG(ta) //Breitenbücher et al. [BBK+14]
6: mapη→s ← {(η, s) | η ∈ GP OG, s ∈ Sa}
7: mapη→p ← {(η, p) | η ∈ GP OG, p ∈ Pa}
8: for all (ηi ∈ GP OG) do
9: //Step-2: Get Split Definition For Node

10: s← {s′ = π2(m) | m ∈Ma, π1(m) = ηi}
11: //Create a mapping between the vertex and the split definition
12: mapη→s ← mapη→s ∪ (ηi, s)
13: end for
14: //Step-3: Clean POG
15: CLEANPOG(GP OG)
16: for all (λ ∈ mapη→s) do
17: //Step-4: Get Plan For Split Definition
18: p← {p′ = π3(m) | m ∈Ma, π2(m) = π2(λ)}
19: //Create a mapping between the vertex and the partial plan
20: mapη→p ← mapη→p ∪ (π1(λ), p)
21: end for
22: //Step-5: Execute Plans in POG
23: EXECUTEPLANSINPOG(GP OG)
24: end procedure

72

5 Design and Implementation

5.1 Design Overview

In this section, we discuss the prototype that was used to test the feasibility of the concepts
introduced in Chapter 3 and provide the low-level architecture for its implementation.

5.1.1 Prototype

The prototype was developed using the OpenTOSCA framework discussed in Section 2.4.
The Topology Splitter and Plan Orchestrator components were developed and integrated
with the existing framework, while the Plan Generator component of the OpenTOSCA
container was reused as is for partial plan generation. A simple application topology was
used (Figure 5.1) for the POC. The topology was designed with the Winery Topology
Modeler, and then packaged and exported into a CSAR using the functionality provided by
the tool. The CSAR was then imported into the OpenTOSCA container with the help of the
OpenTOSCA UI web interface.

Once the CSAR is successfully imported, the Topology Splitter component gets a reference
of the Service Template contained in the CSAR and processes the topology embedded in it
to generate the Split Definitions. The semantics of Scale-Out Region [KBL17] are reused to
embed the split definitions within the Service Template (see Section 5.2.2). Once the split
definitions are generated, the Service Template is repackaged into the CSAR and passed to
the Plan Generator component.

Figure 5.1: Illustration showing the sample application topology considered for the proto-
type

73

5 Design and Implementation

The Plan Generator component then imports the CSAR, parses the Service Template for
the Split Definitions (scale-out regions), generates BPEL based partial plans (scale-out
plans) [KBL17] based on the Split Definitions, and adds them to the CSAR. The CSAR is
then repackaged and exported back into the OpenTOSCA container. The container is then
responsible for deploying the plans into the compatible plan engine (WSO2 BPS) integrated
within the runtime environment.

The Plan Orchestrator component that is developed external to the OpenTOSCA container
using the OpenTOSCA client API is the used to get a reference to the deployed application.
The metadata related to the partial plans is obtained, and their execution order is derived.
For the POC, the execution order of the plans was embedded within the plan names, e.g.,
Plan01, Plan02, etc., i.e., Plan01 is executed before Plan02 and so on. Once the execution
order is obtained, the plans are executed iteratively using the client API. At each step of
the iteration, the output of the execution of a plan is provided as input to the next partial
plan. This is done until all the partial plans are executed, and an instance of the application
is created, thereby proving the possibility of the creation of an application instance by
orchestrating smaller partial plans instead of a single monolithic plan.

5.1.2 Architecture

The low-level architecture for the implementation of the prototype is depicted in Figure 5.2
and the three components of the prototype - Topology Splitter, Partial Plan Generator, and
Partial Plan Orchestrator are highlighted. It can be seen that the architecture is divided into
two parts - (i) Internal, and (ii) External. Internal, in this case, refers to the OpenTOSCA
container where all the components directly interact with the OpenTOSCA core. On the
other hand, External components interact with the OpenTOSCA Core via the OpenTOSCA
Client API that uses a set of well-defined REST endpoints exposed by OpenTOSCA container
for communication. For the prototype, the Topology Splitter, and Partial Plan Generator are
developed as internal components, whereas the Plan Orchestrator is built as an external
component.

Internal Component

The architecture of the OpenTOSCA Plan Generator [KEP13] was reused for the design of
the Internal component of the prototype. The OpenTOSCA Plan Generator is implemented
as an OSGi bundle that can be plugged into the OpenTOSCA container. The relevant
components of the architecture are discussed briefly in the following section.

Topology Splitter The Topology Splitter component interacts with the OpenTOSCA core
via the Integration layer to import/export CSAR files. It further, consumes the components
of the CSAR using a CSAR Model via the Facade.

74

5.1 Design Overview

Figure 5.2: Illustration showing the Low-Level Architecture for the concepts based on
OpenTOSCA as discussed in [KEP13][KBL17]

Partial Plan Generator The Partial Plan Generator component is the same as the Plan
Builder component [KEP13]. This component implements the provisioning plan generation
algorithm described in Breitenbücher et al. [BBK+14] and the scale-out plan generation
algorithm in [KBL17].

Integration Layer The integration layer [KEP13] is used to make the OpenTOSCA Plan
Generator component generic and pluggable. The Importer and Exporter components of the
Integration layer can be used to provide the logic for integrating the plan generator with
different implementations of TOSCA runtime.

Facade The Facade [KEP13] encapsulates the low-level operations on the various models
used in the implementation. E.g. The CSAR model replicates a CSAR file and provides
access to its components like the Service Templates, Node Types, Node Templates, etc.

75

5 Design and Implementation

External Component

The OpenTOSCA Client [] is reused to design the external component of the prototype.
The client is developed in JAVA and provides an abstraction for the low-level REST APIs
exposed by the OpenTOSCA container.

Partial Plan Orchestrator The Partial Plan Orchestrator uses the API exposed by the
OpenTOSCA Client to access an application and all its components (e.g., Service Template,
Plans, etc.) deployed within the OpenTOSCA container. It then orchestrates and executes
the partial plans via the APIs.

OpenTOSCA Client The OpenTOSCA Client abstracts the low-level REST APIs exposed
by the OpenTOSCA container by providing a strongly typed data model and a JSON API
Client. It comprises of models for different components, e.g., the Application (CSAR),
Service Instance, Node Instance and Relationship Instance. It also provides APIs to execute
plans embedded in the Service Template that is used by the Partial Plan Orchestrator
component.

5.2 Implementation

In the following section, the low-level implementation of the prototype is discussed. As
already highlighted previously, the OpenTOSCA container is used as the preferred TOSCA
runtime environment for the development of the prototype. In Section 5.2.1 we first high-
light the abstract data model used to access the various TOSCA elements programmatically
followed by the implementation details of the Topology Splitter component in Section 5.2.2.
In Section 5.2.3 we briefly discuss the relevant parts of the OpenTOSCA Plan Generator
(Partial Plan Generator) component in the context of the POC, and finally take a look at
the OpenTOSCA Client API and its usage in developing the Partial Plan Orchestrator in
Section 5.2.4.

5.2.1 TOSCA Data Model

Figure 5.3 represents the UML diagram for the CSAR model and the Topology model used
for the prototype. The AbstractDefinition class is the parent class for all the definition files
contained within a CSAR that are imported by the Importer component of the Integration
Layer (5.1.2). The choice of such an abstract model instead of using JAXB was deliberate
to enable the importer to adapt it to different environments [KEP13]. Additionally, such an
abstract model allows for easy traversal through the topology that is essential to identifying
the Infrastructure Nodes and Infrastructure Edges and thereby defining the Split Definitions.
It must be noted that only a part of the data model is shown in the figure as the complete
TOSCA data model is out of the scope of this implementation.

76

5.2 Implementation

Figure 5.3: Illustration showing the UML class diagram for the CSAR model and Topology
model used in the prototype implementation (based on the data model in
[KEP13])

5.2.2 Topology Splitter

As already discussed in Section 5.1.2, the Topology Splitter is implemented as an Internal
Component of OpenTOSCA and is a part of the Plan Generator component. The Topology
Splitter directly interacts with the Integration Layer to import the CSAR file from the
runtime environment and then uses the CSAR model to access the elements within it.
Figure 5.4 represents the UML class diagram for the Topology Splitter. The Abstract Topology
Splitter supports extensibility by providing the option for different implementations of the
class. Furthermore, the TopologySplitDefinition class models a scale-out region [KBL17].
As already discussed, we extend the concept of scale-out regions to implement Split
Definitions. Listing 5.1 shows the Split Definitions for the sample application shown in
Figure 5.1 implemented using the Tag element of a TOSCA Service Template similar to
scale-out regions in [KBL17]. The set of all split definitions is defined by the key-value
pair in Line 3, Listing 5.1 where they are listed as comma separated values. Furthermore,
each Split Definition is also represented by a key-value pair (Lines 5-6, Listing 5.1) where
the key/name represents the name/id of the Split Definition, and the value represents the
Nodes and Relations that are part of the split, and also the Nodes that are to be strategically
selected at runtime by using the User Provided Selection Strategy [KBL17].

77

5 Design and Implementation

1 <tosca:ServiceTemplate name="MyTinyToDo_Bare_Docker" id="MyTinyToDo_Bare_Docker">

2 <tosca:Tags>

3 <tosca:Tag name="splitdefinitions" value="split01,split02"/>

4 <tosca:Tag name="split01" value="DockerEngine;na;na"/>

5 <tosca:Tag name="split02"

value="MyTinyToDoDockerContainer;HostedOn;UserProvided[DockerEngine]"/>

6 </tosca:Tags>

Listing 5.1: Snippet of a TOSCA Service Template with marked regions defining the
Split Definitions for the prototype

Finally, the SplitTopology() method of the TopologySplitter class, takes the name of the
CSAR file and its Root Definition as input and generates a Service Template with the Split
Definitions embedded in the Tags element. The Service Template is then repackaged into
the CSAR and exported back to the runtime environment.

Figure 5.4: Illustration showing the Low-Level Architecture for the concepts based on
OpenTOSCA as discussed in [KEP13][KBL17]

5.2.3 Partial Plan Generator

As already highlighted previously, we reuse the OpenTOSCA Plan Generator [KEP13]
component in this prototype. The Plan Generator component is capable of generating
Partial Plans by parsing the Split Definitions embedded in the Service Template similar to
scale-out plans from scale-out regions [KBL17]. The implementation details are therefore
omitted for brevity.

Listing 5.2 shows the snippet of the Service Template with details of the Plans Generated
by the Partial Plan Generator. It can be seen that one Partial Plan is created for each Split
Definition. Furthermore, each Partial Plan has an Output Parameter that maps to the Instan-
ceID of the element(Node/Relation) provisioned by it (Lines 13 and 30, Listing 5.2). Also,
as a result of using User Provided Selection Strategy for the Docker Engine Node in ’split02’

78

5.2 Implementation

(Line 5, Listing 5.1), the Partial Plan ′MyTinyToDo_Bare_Docker_PartialP lan_split02′
corresponding to the Split Definition expects the InstanceID of the Docker Engine Node
as an input (Line 25, Listing 5.2). This feature enables the orchestration of the partial plans.

1 <Plans>

2 <Plan id="MyTinyToDo_Bare_Docker_PartialPlan_split01">

3 <InputParameters>

4 <InputParameter name="instanceDataAPIUrl" type="String" required="yes"/>

5 <InputParameter name="OpenTOSCAContainerAPIServiceInstanceID"

type="String" required="yes"/>

6 <InputParameter name="CorrelationID" type="String" required="yes"/>

7 <InputParameter name="DockerEngineURL" type="String" required="yes"/>

8 <InputParameter name="DockerEngineCertificate" type="String"

required="yes"/>

9 <InputParameter name="ProvisionedInstance_DockerEngine" type="String"

required="yes"/>

10 </InputParameters>

11 <OutputParameters>

12 <OutputParameter name="CorrelationID" type="String" required="yes"/>

13 <OutputParameter name="DockerEngine_InstanceID" type="String"

required="yes"/>

14 </OutputParameters>

15 <PlanModelReference reference=

"Plans/MyTinyToDo_Bare_Docker_PartialPlan_split_scaleout_dockerengine.zip"

/>

16 </Plan>

17 <Plan id="MyTinyToDo_Bare_Docker_PartialPlan_split02">

18 <InputParameters>

19 <InputParameter name="instanceDataAPIUrl" type="String" required="yes"/>

20 <InputParameter name="OpenTOSCAContainerAPIServiceInstanceID"

type="String" required="yes"/>

21 <InputParameter name="CorrelationID" type="String" required="yes"/>

22 <InputParameter name="ApplicationPort" type="String" required="yes"/>

23 <InputParameter name="ContainerSSHPort" type="String" required="yes"/>

24 <InputParameter name="csarEntrypoint" type="String" required="yes"/>

25 <InputParameter name="DockerEngine_InstanceID" type="String"

required="yes"/>

26 <InputParameter name="ProvisionedInstance_MyTinyToDoDockerContainer"

type="String" required="yes"/>

27 </InputParameters>

28 <OutputParameters>

29 <OutputParameter name="CorrelationID" type="String" required="yes"/>

30 <OutputParameter name="DockerContainer_InstanceID" type="String"

required="yes"/>

31 </OutputParameters>

32 <PlanModelReference reference=

"Plans/MyTinyToDo_Bare_Docker_PartialPlan_split_scaleout_dockercontainer.zip"

/>

33 </Plan>

34 </Plans>

Listing 5.2: Snippet of a TOSCA Service Template with the Partial Plans generated for
the Split Definitions in Listing 5.1

79

5 Design and Implementation

5.2.4 Partial Plan Orchestrator

As already discussed in Section 5.1.2, the Partial Plan Orchestrator is implemented as an
External Component of OpenTOSCA and uses the OpenTOSCAContainerAPIClient to interact
with the OpenTOSCA Container. Figure 5.5 shows the Data Model used by the client. The
Application class represents a successfully Deployed CSAR in the OpenTOSCA runtime
environment. Whereas, the ServiceInstance class represents an instance of the Application
comprising of instances of all the Nodes and Relationships within the Topology of the
Application.

Figure 5.5: Illustration showing the Low-Level Architecture for the concepts based on
OpenTOSCA as discussed in [KEP13][KBL17]

Further, the UML class diagram of the Partial Plan Orchestrator is represented by Figure 5.6.
The Abstract Partial Plan Orchestrator supports extensibility by providing the option for
different implementations of the class. The figure also lists some of the methods exposed
by the OpenTOSCA client that is used by the Partial Plan Orchestrator.

Figure 5.6: Illustration showing the Low-Level Architecture for the concepts based on
OpenTOSCA as discussed in [KEP13][KBL17]

The Orchestrator gets an instance of the Application deployed in the OpenTOSCA Con-
tainer along with the generated Partial Plans. Then, it creates an Empty Service Tem-
plate for the Application. An empty service template represents merely a container
with no instantiated Nodes or Relationship, in other words, it is a placeholder for the
instance of the application. Then, the Partial Plans for the Service Instance are exe-
cuted iteratively in the order defined by the integer values embedded in their names,
e.g., MyTinyToDo_Bare_Docker_PartialP lan_split01 is executed first, followed by

80

5.2 Implementation

MyTinyToDo_Bare_Docker_PartialP lan_split02. The input parameters provided for
provisioning the application instance are mapped to the Input Parameters of both the plans.
Upon successful execution of the first plan, its Output Parameters are further assigned to
the Input Parameters of the next Plan and so on. Upon successful execution of both the
plans, we get an instance of the MyTinyToDo application.

81

6 Conclusion and Future Work

In the course of this master thesis, a concept for dynamic provisioning for cloud applications
based on the TOSCA standard was developed. The primary focus was on declaratively
generating granular provisioning plans from the topology template of the application, and
orchestrating these plans to create instances of the complete application. Concepts from
state of the art research were built upon to support and develop the proposed concepts in
this thesis. Moreover, the feasibility of the concepts introduced was shown with the help of
a prototype designed using the OpenTOSCA ecosystem.

Summary

An extensive study of Related Work was introduced in Chapter-3, where several generic
approaches to application provisioning were discussed, and their drawbacks regarding
generation of reusable granular plans were highlighted. Furthermore, research work
related to Topology Splitting [SBKL17] and Scale-Out Plan Generation [KBL17] were also
discussed that laid the foundation for the contributions presented in this thesis.

The first contribution of this thesis is the development of the concepts for Topology Splitting
which is a pre-requisite for generating granular provisioning plans. Different splitting
techniques were highlighted, and the concepts were presented with the help of a sample
application topology. The splits in the topology were defined by Split Definitions which
are a collection of nodes and relations that are dependent on each other based on specific
semantics. These semantics were also highlighted, and a detailed algorithm was presented
for the approach. Next, the application topology annotated with Split Definitions was
used by the Partial Plan Generator to generate a set of granular plans. The Partial Plan
Generator reused the concepts introduced by Képes, Breitenbücher, and Leymann [KBL17]
for scale-out plan generation to create the partial plans.

The second contribution of this thesis is the development of the concepts for Partial Plan
Orchestration that provisions the cloud application. As opposed to the traditional approach
of generating and executing a single provisioning plan, the concept of dynamic provisioning
dealt with generating multiple smaller plans. The challenge was to be able to execute
these plans in the correct order to provide the same output. Therefore, the concept of an
Orchestration Map was introduced to address this challenge. The map consists of the corre-
lation between the Elements in the topology, the Split Definitions, and the corresponding
Partial Plans that provision the elements defined in the split definitions. Next, the order of
execution of the partial plans was determined by generating a POG (Breitenbücher et al.

83

6 Conclusion and Future Work

[BBK+14]) from the application topology and mapping the partial plans to the abstract
activities of the POG using the Orchestration Map. Then, the application was provisioned
by simply executing the POG.

Finally, a prototype was developed based on the OpenTOSCA framework to test the
feasibility of the concepts. The Topology Splitter component was built as a part of the
OpenTOSCA container that reused the well-defined semantics, data models, and rich APIs
of the OpenTOSCA Core. For the Partial Plan Generator component, the OpenTOSCA Plan
Builder which is also a part of the OpenTOSCA container was reused as is. Finally, the
Partial Plan Orchestrator was developed as an external component using the OpenTOSCA
client that interacts with the OpenTOSCA Core with the help of a set of well-defined REST
APIs.

Future Work

Future work includes the complete automation of the Topology Splitting and Partial Plan
Orchestration processes and their seamless integration with a TOSCA run-time engine
like OpenTOSCA. This would also include developing the aforementioned components
as pluggable and reusable entities that can be easily extended to any TOSCA compliant
runtime environment. Secondly, the possibility of increasing the granularity of the topology
splits needs to be researched further. Based on the current approach, the size of the splits is
dependent on the infrastructure dependencies of the nodes in the topology. Increasing the
granularity to a single node would result in smaller and more generic partial plans. Thirdly,
mechanisms to reuse the same set of partial plans for provisioning different applications
need to be defined. Another future work includes extending the provisioning process to
an IoT scenario where the smaller partial plans are run on thin clients such as mobile and
other smart devices.

84

Bibliography

[AWMT12] A. Weiß. Merging of TOSCA Cloud Topology Templates. Oct. 2012 (cit. on
p. 52).

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, S. Wag-
ner. “OpenTOSCA – A Runtime for TOSCA-based Cloud Applications.” In:
11th International Conference on Service-Oriented Computing. LNCS. Springer,
2013 (cit. on pp. 25, 30, 31).

[BBK+13] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, J. Wettinger. Integrated
Cloud Application Provisioning: Interconnecting Service-Centric and Script-
Centric Management Technologies. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2013, pp. 130–148. ISBN: 978-3-642-41030-7. DOI: 10.1007/978-
3-642-41030-7_9. URL: https://doi.org/10.1007/978-3-642-41030-7_9
(cit. on pp. 13, 14, 42).

[BBK+14] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, J. Wettinger.
“Combining Declarative and Imperative Cloud Application Provisioning
based on TOSCA.” In: Proceedings of the IEEE International Conference on
Cloud Engineering (IEEE IC2E 2014). IEEE Computer Society, Mar. 2014,
pp. 87–96. DOI: DOI10.1109/IC2E.2014.56 (cit. on pp. 15, 16, 42, 43, 69,
71, 72, 75, 83).

[BBKL13] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann. “Pattern-based Runtime
Management of Composite Cloud Applications.” In: Proceedings of the 3rd
International Conference on Cloud Computing and Service Science, CLOSER
2013. SciTePress, 2013 (cit. on pp. 40, 42).

[BPEP07] O. for the Advancement of Structured Information Standards (OASIS). Web
Services Business Process Execution Language (WS-BPEL) Version 2.0 Primer.
2007 (cit. on pp. 25, 31).

[BPES07] O. for the Advancement of Structured Information Standards (OASIS). Web
Services Business Process Execution Language Version 2.0 OASIS Standard.
2007 (cit. on p. 32).

[BPS+08] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau. “Extensible
Markup Language (XML) 1.0 (Fifth Edition).” In: (Nov. 2008) (cit. on p. 14).

[EEKS11] T. Eilam, M. Elder, A. V. Konstantinou, E. Snible. “Pattern-based Composite
Application Deployment.” In: 12th IFIP/IEEE International Symposium on
Integrated Network Management 2011 (Aug. 2011). DOI: 10.1109/INM.
2011.5990694 (cit. on pp. 37, 38, 42).

85

http://dx.doi.org/10.1007/978-3-642-41030-7_9
http://dx.doi.org/10.1007/978-3-642-41030-7_9
https://doi.org/10.1007/978-3-642-41030-7_9
http://dx.doi.org/DOI 10.1109/IC2E.2014.56
http://dx.doi.org/10.1109/INM.2011.5990694
http://dx.doi.org/10.1109/INM.2011.5990694

Bibliography

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann. “Winery – Modeling Tool
for TOSCA-based Cloud Applications.” In: 11th International Conference on
Service-Oriented Computing. LNCS. Springer, 2013 (cit. on p. 28).

[KBL17] K. Képes, U. Breitenbücher, F. Leymann. “Integrating IoT Devices based
on Automatically Generated Scale-Out Plans.” In: Proceedings of the IEEE
International Conference on Service-Oriented Computing and Applications
(SOCA), 2017. IEEE, 2017 (cit. on pp. 44, 45, 57, 68, 69, 73–75, 77, 78, 80,
83).

[KEP13] K. Képes. Konzept und Implementierung einer Java-Komponente zur Gener-
ierung von WS-BPEL 2.0 BuildPlans für OpenTOSCA. July 2013 (cit. on
pp. 74–78, 80).

[LSS+13] H. Lu, M. Shtern, B. Simmons, M. Smit, M. Litoiu. “Pattern-Based Deploy-
ment Service for Next Generation Clouds.” In: 2013 IEEE Ninth World
Congress on Services 32.1 (Nov. 2013), pp. 464–471. DOI: 10 . 1109 /
SERVICES.2013.54 (cit. on p. 39).

[MG11] P. Mell, T. Grance. “The NIST Definition of Cloud Computing.” In: (Nov.
2011) (cit. on pp. 13, 20–23).

[OMG11] O. M. G. (OMG). Business Process Model and Notation (BPMN) Version 2.0.
2011 (cit. on pp. 14, 25).

[OMG14] Model Driven Architecture (MDA). 2014. URL: http://www.omg.org/mda/
specs.htm (cit. on p. 20).

[OSG08] O. Alliance. OSGi Service Platform Core Specification. 2008. URL: https :
//www.osgi.org/developer/specifications/ (cit. on p. 29).

[OST16] J. Opara-Martins, R. Sahandi, F. Tian. “Critical analysis of vendor lock-in
and its impact on cloud computing migration: a business perspective.” In:
Journal of Cloud Computing 5.1 (Apr. 2016), p. 4. ISSN: 2192-113X. DOI:
10.1186/s13677-016-0054-z. URL: https://doi.org/10.1186/s13677-016-
0054-z (cit. on p. 14).

[OTOSCa] T. Binz, U. B. O. Kopp, F. Leymann. OpenTOSCA Open Source Ecosystem for
OASIS TOSCA. URL: http://www.opentosca.org/documents/Presentation_
OpenTOSCA.pdf (cit. on p. 29).

[OTOSCb] What is OpenTOSCA. URL: http://www.opentosca.org/index.html (cit. on
p. 29).

[OTTC] O. T. T. Committee. What is TOSCA? - Frequently Asked Questions. URL:
https://www.oasis-open.org/committees/tosca/faq.php (cit. on p. 14).

[PB03] R. Pottinger, P. A. Bernstein. “Merging models based on given correspon-
dences.” In: VLDB ’03 Proceedings of the 29th international conference on
Very large data bases - Volume 29. Vol. 29. VLDB Endowment, Sept. 2003,
pp. 862–873. ISBN: 0-12-722442-4 (cit. on p. 52).

[POP94] D. S. Weld. An introduction to least commitment planning. 1994 (cit. on
p. 42).

86

http://dx.doi.org/10.1109/SERVICES.2013.54
http://dx.doi.org/10.1109/SERVICES.2013.54
http://www.omg.org/mda/specs.htm
http://www.omg.org/mda/specs.htm
https://www.osgi.org/developer/specifications/
https://www.osgi.org/developer/specifications/
http://dx.doi.org/10.1186/s13677-016-0054-z
https://doi.org/10.1186/s13677-016-0054-z
https://doi.org/10.1186/s13677-016-0054-z
http://www.opentosca.org/documents/Presentation_OpenTOSCA.pdf
http://www.opentosca.org/documents/Presentation_OpenTOSCA.pdf
http://www.opentosca.org/index.html
https://www.oasis-open.org/committees/tosca/faq.php

[SAMT14] S. Agarwal. A Service-oriented and Cloud-based Statistical Analysis Frame-
work. Nov. 2014 (cit. on p. 21).

[SBKL17] K. Saatkamp, U. Breitenbücher, O. Kopp, F. Leymann. “Topology Splitting
and Matching for Multi-Cloud Deployments.” In: Proceedings of the 7th
International Conference on Cloud Computing and Services Science (CLOSER
2017). SciTePress, Apr. 2017, pp. 247–258. ISBN: 978-989-758-243-1 (cit.
on pp. 35, 46, 53, 59, 61, 62, 66, 83).

[TCATTC] O. T. T. Committee. OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA) TC. URL: https://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=tosca (cit. on pp. 14, 23).

[TOSCAa13] O. T. T. Committee. Topology and Orchestration Specification for Cloud Ap-
plications Version 1.0. Nov. 2013. URL: http://docs.oasis-open.org/tosca/
TOSCA/v1.0/os/TOSCA-v1.0-os.pdf (cit. on pp. 23, 25).

[TOSCAb13] O. T. T. Committee. Topology and Orchestration Specification for Cloud Ap-
plications (TOSCA) Primer Version 1.0. Jan. 2013. URL: http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf (cit. on pp. 24, 26,
27).

[Yu06] C. Yu. “Model-driven and pattern-based development using Rational Soft-
ware Architect: Part 1. Overview of the model-driven development paradigm
with patterns.” In: (Nov. 206) (cit. on p. 20).

[ZBL17] M. Zimmermann, U. Breitenbücher, F. Leymann. “A TOSCA-based Program-
ming Model for Interacting Components of Automatically Deployed Cloud
and IoT Applications.” In: Proceedings of the 19th International Conference
on Enterprise Information Systems - Volume 2: ICEIS. SciTePress, Apr. 2017,
pp. 121–131 (cit. on p. 23).

All links were last followed on October 24, 2017.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Problem Statement
	1.2 Motivating Scenario
	1.3 Scope of Work
	1.4 Thesis Outline

	2 Fundamentals
	2.1 Important Terms
	2.2 Cloud Computing
	2.3 OASIS TOSCA
	2.4 OpenTOSCA
	2.5 OASIS WS-BPEL 2.0
	2.6 Topology Splitting

	3 Related Work
	3.1 Model Based Provisioning and Management of Cloud Applications
	3.2 Pattern Based Provisioning and Management of Cloud Applications
	3.3 Provisioning and Management of Cloud Applications in TOSCA
	3.4 Topology Splitting and Matching of Cloud Applications

	4 Concept and Specification
	4.1 Concept Overview
	4.2 System Overview
	4.3 Metamodel
	4.4 Running Example
	4.5 Topology Splitting
	4.6 Partial Plan Generation
	4.7 Partial Plan Orchestration

	5 Design and Implementation
	5.1 Design Overview
	5.2 Implementation

	6 Conclusion and Future Work
	Bibliography

