
Institute of Software Technology

University of Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis Nr. 60

Improving Automatic Software

Repair with Probabilistic Symbolic

Execution

Tobias Rudolph

Course of Study: Softwaretechnik

Examiner: Dr. rer. nat. Antonio Filieri

Supervisor: Dr. rer. nat. Antonio Filieri

Commenced: 2016/10/28

Completed: 2015/04/28

CR-Classification: D.2.5 D.2.8





Abstract

Automatic software repair techniques aim at repairing error-prone code automatically.
In particular, test-based automatic software repair approaches use test cases to locate a
bug and evaluate the automatically created repair code. However, this evaluation is only
based on the successful or failing execution of the test cases but ignore the behavior of
the software under the majority of of usage scenarios, which are not covered by the given
test cases. Despite a variety of test-based program repair approaches have appeared in
literature, the problem of a repair code altering the behavior of the program for uncovered
scenarios has not addressed.
This thesis introduces a new metric to quantify the discrepancy in the set of possible
execution paths introduced by different repair candidates, and computes it from the source
code of the program using probabilistic symbolic execution. This allows for an exhaustive
analysis that takes into account also the behaviors not covered by the available test cases.
The approach has been implemented extending Nopol, an opensource tool for test-based
automatic software repair. The new approach has been evaluate on a set of Java benchmarks,
demonstrating an improved quality of the computed program repairs, which do not only
pass the tests but also limit as much as possible the alteration of the uncovered program
behaviors.
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Zusammenfassung

Die automatische Softwarereparatur ist eine Technik, die entwickelt wurde, um das Finden
und Beheben von Softwarefehlern zu automatisieren. Oft werden bei solchen Techniken
Tests verwendet um Softwarefehler automatisch zu lokalisieren und eine generierte Repa-
ratur zu evaluieren. Allerdings haben solche Verfahren nur Kenntnis darüber, wie sich eine
Software unter genau diesen Testfällen verhält. Darauf, wie sich die Software unter den
nicht durch Testfällen abgedeckten Anwendungsfällen verhält, wurde in keinem der bisher
veröffentlichen Verfahren eingegangen.
In dieser Masterarbeit wird eine neue Metrik eingeführt, mit der die Diskrepanz hinsichtlich
der gesamten möglichen Programmpfade von verschieden Softwarereparatur-Ergebnissen
bestimmt werden kann. Diese Metrik ermöglicht eine Analyse, die über die Informationen
hinausgeht, die aus den Testfällen generiert werden, und auch das Verhalten der Szenarien,
die nicht Bestandteil der Testfällen sind, beachtet. Die Open Source Reparatursoftware
Nopol wurde in dieser Thesis für die neu eingeführten Metrik angepasst. Während der
Evaluation der Erweiterung wurde gezeigt, dass die Qualität der generierten Reparatu-
ren verbessert wurde, indem die generierten Reparaturen nicht nur die Testfälle erfüllen,
sondern auch die Beeinflussung der nicht in den Testfällen enthalten Szenarien möglichst
gering gehalten wird.
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Chapter 1

Introduction

1.1 Motivation

Developers spend about 90 % [Seacord et al., 2003] of the lifetime of a software fixing bugs,
with significant costs for the whole project. In order to help developer to find and repair
bugs, several automatic software repair tools have been introduced. The goal of automatic
software repair is to find possible errors automatically and to propose a change in the code
to fix these errors. Some promising approaches like Nopol [Xuan et al., 2016] or GenProg
[Forrest et al., 2009] have been presented to automatically create repairs. But the study
reported in [Qi et al., 2015] showed that these and the others tools produced so far do
not provide effective solutions for fixing the detected bugs. In particular, most solutions
alter the code to make the parts failing one or more tests or assertions unreachable; hence,
ultimately, in most of the cases they fail to fix the program. Finally, the proposed repair are
often very different from corresponding fixes produced by human developers, and their
rational is hard to understand.

Most of automatic software repair approaches use a set of provided test cases to both
find errors and evaluate candidate repairs. However, test cases do not provide, in general,
a complete specification of the program, covering only a limited set of a program behaviors.
Passing all the tests may indeed not be a sufficient condition to determine a repair actually
fixed the bug. Furthermore, basing the synthesis of the repair only on the satisfaction of
the available test case may ignore the alteration such repairs could introduced on behaviors
of the software not covered by any the test case. This could not only fail to repair possible
errors, but may also alter or disable other functionalities of the software.

In [Filieri et al., 2015] the use of probabilistic symbolic execution is proposed to evaluate
and improve the quality of automatically created repair candidates. Probabilistic symbolic
execution is a technique that allows the computation of quantitative information about the
behaviors of a program. In particular, it can be used to quantify the fraction of the input
domain that follows each execution path of the program. This information can be used
to analyze and evaluate differente repair candidates generated by an automatic program
repair tool against the original version of the program in order to quantify the discrepancy
in the execution flow introduced by each of them. The candidate passing all the tests and
introducing the lowest discrepancy with respect to the original behaviors of the program is
then proposed to the developer.
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1. Introduction

In this thesis, a discrepancy metric computable via probabilistic symbolic execution is
defined and used to extend the automatic software repair tool Nopol. The implemented
tool is then evaluated on a set of benchmarks, demonstrating the effectiveness of the
metric in quantifying the discrepancy introduced by a repair candidate, in turn driving the
elicitation of the best solution among the candidates generated by Nopol.

1.2 Goals

In order to investigate the possibility of improving automatic software repair based on the
quantification of the discrepancy between the original program and the repaired version,
this thesis will pursue the following goals:

Ź Survey the state of the art in automatic software repair

Ź Define a metric of discrepancy between the original version of a program and a proposed
repair candidate

Ź Implement a discrepancy quantification procedure using probabilistic symbolic execu-
tion on top of the opensource automatic software repair Nopol

Ź Evaluate on a set of benchmarks the effectiveness of the proposed metrics in reducing
the behavioral discrepancy between the original and the repaired version of the program

1.3 Document Structure

The remaining thesis is structured as follows:

Ź Chapter 2 provides an overview of previous work that focuses on the analysis of software
evolution and automatic software repair approaches.

Ź Chapter 3 introduces a new metric which can be used to compare the quality of repair
candidates.

Ź Chapter 4 presents an implementation of ProRepair an enhancement of Nopol which
benefits form the newly defined metric

Ź Chapter 5 evaluates the new metric and the enhancement of Nopol

Ź Chapter 6 presents a conclusion of the thesis and future work

2



Chapter 2

Foundations and Technologies

2.1 Automatic Software Repair

The first goal of this thesis is to provide an overview over the state of the art of automatic
software repair approaches. In this chapter a definition of automatic software repair will
be introduced, state of the art automatic software repair approaches are described and
the approach which is used within this project is chosen. This chapter is based on test
case based automatic software repair approaches because this is the technique which is
used in nearly all state of the art approaches. Other techniques like the use of assertions
[Elkarablieh et al., 2007] or pre- and postcondition [Wei et al., 2010] are not subject of this
thesis.

2.1.1 Test Case Based Automatic Software Repair

The goal of automatic software repair is to transfer source code, which is error-prone, into
an error free state. During the last years, especially since 2009, different automatic software
repair approaches have been published to achieve this goal. Most of the state of the art
automatic software repair approaches are based on test cases. Those approaches use test
cases to determine if a project is bug free and to verify that a correct repair candidate
is created. The benefit of this technique is that the code of the error-prone project does
not have to be prepared. The only thing which is needed for test case based automatic
software repair is the project itself and test cases. The use of test cases is common practice
in state of the art software development. Most of the published automatic software repair
approaches are based on test cases. The general process of repairing a bugged code using
test cases based automatic software repairing approach is shown in figure 2.1. The process
can be compared with a control loop in the area of control engineering. First of all the
error prone code is analysed by the automatic software repair tool. After this step, the
project is manipulated, respectively repair candidates are created. These repair candidates
or the manipulated code is tested against the given test suite. If all test cases within the test
suite passes, a correct patch has been created, the repair process is successful. Otherwise
the project is manipulated and repair candidates created until the test cases pass or all
possibilities of the approach are exploited and the approach is not able to find a repair.
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2. Foundations and Technologies

.

Figure 2.1. Test based automatic software repair

2.1.2 Survey approaches

To determine which automatic software repair approach can be improved with probabilistic
symbolic a survey of the major test based automatic software repair approaches is given in
this section. Through the big amount of automatic software repair approaches published,
there will be some approaches which are not covered in the following survey. An overview
of all can be found at [Monperrus, 2015].

JAFF

The approach of JAFF (Java Automatic Fault Fixer)[Arcuri, 2011] use evolutionary al-
gorithms to create fixes in order to repair buggy source code. JAFF is one of the first
approaches which was published with the possibility to repair code with only limited re-
striction. In order to fix an error prone code, JAFF combines different software engineering
techniques.
Like all automatic software approaches discussed in this chapter JAFF is based on test
cases which are used to evaluate the correctness of a created repair. As first step JAFF
searches for the cause of the bug in the code. To find a possible cause of an error, all test
cases are executed and every line gets ranked after its suspiciousness. The suspiciousness
of a line of code is the ratio of a line passed by executing test cases which fail and test cases
which pass. A statement with a high suspiciousness is often passed by failing test cases
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and therefore more likely causing the error. The exact equation which is used within JAFF
is shown in equation 2.1

susp(s) =
f ailed(s)/total f ailed

passed(s)/totalpassed + f ailed(s)/total f ailed
(2.1)

After ranking the statements of the code, evolutionary programming is used to create a fix
which lets all test cases pass. There are seven different operations which can be used by
JAFF to create a repair. The statement where the repair is applied is randomly chosen out
of the statements which are ranked the highest. The modifications done by these operations
are ranked with a fitness function. With the result of this function the repair is chosen
which passes the most test cases. On this solution the evolutionary algorithm is applied
until a repair is found.
JAFF can only deal with a subset of the JAVA language. Therefore JAFF was only evalu-
ated by the developer with bugged programs which are suitable to this limitations. An
evaluation of real world project which would make the results of JAFF comparable to other
automatic software repair program is not available.

GenProg

The award winning automatic software approach GenProg [Goues et al., 2012] is one of the
most important contributions in the area of automatic software repairing. The foundations
of GenProg have been published in 2009 [Forrest et al., 2009] and the approach is based on
generic programming.
In order to start the repair process, GenProg generates an AST (abstract syntax tree). On
this AST three different operations are used to manipulate the source code in order to
create a bug free program code:

Ź deletion

Ź addition

Ź replacement

Trough the manipulations GenPorg generates different manipulation of the AST. All of
these manipulated AST are ranked according to a fitness level. A fitness function ranks
those candidates which are closest to the desired outcome, an error free software. To find
such a result, GenProg uses test cases. Repair candidates with test cases which outcomes
are closer to the desired outcomes are ranked with a higher fitness level. The patches with
a high fitness are used for further manipulation in order to find a valid repair. GenProg
repeats this process: manipulating the AST and choosing the best results according to the
fitness value until a valid repair has been found which passes all test cases.

Statements which are visited during the execution of passing test cases are not manipu-
lated by GenProg to ensure that these test cases do not fail after executing the manipulation.

5



2. Foundations and Technologies

GenProg is evaluated on real world projects. The results of GenProg are used as
a benchmark for most of the automatic software repair approaches which have been
developed since.

RsRepair

RsRepair [Qi et al., 2014] is an automatic software repair approach which is based on
GenProg. The major innovation of RsRepair is the use of randomized search for automatic
software repair. It has been shown that random search outperforms the GenProg mechanism
on average. Analyses of GenProg suggest that most of the found patches are generated not
during the generic programming part of the algorithm but on the initialization process of
the generic programming. The initialization process of GenProg is based on randomized
search. But RsRepir only uses random search as technique to find a valid patch in order to
save the overhead generated through generic programming. Instead of the use of a fitness
function to find a correct patch that let given test cases pass, test case prioritization is used
by RsRepair. Test case prioritization ranks test cases according to their probability to fail
during the evaluation of the project candidates. Test cases which seem to fail more often
are applied before test cases which fail less. If a test case fails during the evaluation, the
evaluation is aborted and a new repair candidate is searched. This leads to a more efficient
execution compared to GenProg. Due to the absence of a fitness function RsRpair performs
with a higher effectiveness level compared to GenProg caused by a lower amount of created
repair candidates. The amount of successful crated repairs by GenProg is slightly better
because RsRepair can only create a subset of the repairs created by GenProg.

AE

AE [Weimer et al., 2013] is focused on reducing the costs which are generated by test based
automatic software repair approaches like GenProg. Similar GenProg or RsRepair, AE is
based on a generate and validate mechanism. Multiple possible patches are generated
trough generic programming and validated with test cases. When all test cases pass the
patch is correct, otherwise more possible patches are generated. The major difference
between AE and GenProg is, that semantically equal creation of repair candidates are not
evaluated by the fitness function. The results of running test cases against the manipulated
code are the same as the outcome of semantically equal code. This leads to significant cost
savings. According to their calculation GenProg is three times more expensive compared
to AE in terms of costs in dollars by executing on an amazon cloud environment in 2013.
In terms of success, AE is almost as good as GenProg. Since the created patches of AE are
a subset of patches created by GenProg, AE can not outperform GenProg in this area.

6



2.1. Automatic Software Repair

Kali

In order to improve the quality of test based automatic software repair tools, especially
RSRepair and GenProg, the automatic software repair tool Kali [Qi et al., 2015] has been
introduced.

Kali can apply the following three types of modifications:

Ź Setting an if statement to true or false in order just to execute always one branch of an if
clause

Ź Insert a return statement before the statement where the error occurs

Ź Remove one or more statements

On the one hand, these manipulations are easy to evaluate since they are simple to read
and understand by a developer. But on the other hand the search space of finding a repair
is limited with only these three manipulation types are available. In an evolution with
a benchmark set of error prone software created by GenProg developers, Kali achieves a
similar success rate compared to AE but creates patches faster and easier to understand.

PAR

PAR [Kim et al., 2013] is an automatic software repairing tool based on the use of predefined
patterns. The aim of PAR is to improve the readability of patches. The developers of PAR
analysed repairs created by human developers and transferred the most often and easy
to use techniques into eight different patterns. These patterns are used during the repair
process of PAR after the statements are ranked according to their suspiciousness. These
patterns are used to manipulate the code until the error is repaired. With the use of these
patterns the created patches are similar to fixes created by human developer. Therefore the
created patches are meaningful and easy to read.

MutRepair

[Debroy and Wong, 2010] describes a technique which uses mutation in order to repair
automatically faulty programs. The technique of mutation testing is adapted. First of
all the statements get ranked after their suspiciousness. The statement with the highest
suspiciousness is mutated. If a mutation passes all test cases, a repair is successful
generated.

ASTOR

Astor [Martinez and Monperrus, 2014] is a framework which contains different automatic
software repair approaches. This framework was published to solve the problem that the
software of some automatic software approaches is not published by their developers. The
framework contains the approach GenProg, MutRepair and a subset of PAR.

7



2. Foundations and Technologies

SemFix

An other approach for repairing a bug automatically was introduced with SemFix [Nguyen
et al., 2013]. Like the approaches described in this section, SemFix is based on find and
evaluate a patch with test cases.

The novelty of SemFix is to use symbolic execution in order to create a repair. First the
statements of the project are ranked by their suspiciousness. Again the most suspicious
statement is going to be replaced by an newly created statement. Symbolic execution is
used to create a repair. Other than normal symbolic execution, SemFix uses this technique
not from the beginning of the project but starts the execution of symbolic analyses at the
suspiciousness line of code. Assuming within this line a variable is an assignment, this
variable value is transferred into a symbolic value and it is analysed which values the
variable has to be assigned in order to let all test cases pass. Out of these information
the SMT (Satisfiability Modulo Theories) solver calculates a solution which leads to a repair.

SemFix was improved by the enhancement DirectFix [Mechtaev et al., 2015]. The main
improvement compared to SemFix is that DirectFix searches for the most simplistic possible
repair. A simple repair enhances the readability of the repair and is in most of the cases
closer to the repair a human developer would have created.

Nopol

Nopol [DeMarco et al., 2014] [Xuan et al., 2016] is an automatic software repair approach
focused on fixing broken branch conditions and missing preconditions. Like many auto-
matic software repair approaches Nopol is based on test cases. The approach is divided
into two steps: finding a suspicious line and generate a fix.
In order to find the cause of a bug, the lines of code are bases on their suspiciousness. The
suspiciousness of a line is calculated considering the ratio of visited passed and missed
test cases like described in Equation 2.1. After the possible cause of a bug is found, Nopol
tries to fix the possible broken line of code. Therefore a novel technique called angelic has
been introduced. For a broken branch condition this approach sets the condition to true
respectively to false.

If all test cases pass with either of both settings Nopol tries to generate a repair. The
parameters which are available at that point where the repair is applied are combined
due to a combination which leads the branch condition to true respectively for all given
test cases. If such a combination can be created, the created equation is the repair for the
broken branch condition.
Recently Nopol was extended with symbolic execution with Java Pathfinder to integrate
the approach similar to the approach introduced SemFix.

8



2.1. Automatic Software Repair

SPR

An other technique which is focused in repairing branch condition is SPR [Long and Rinard,
2015]. SPR adds disjunction or conjunction to a branch condition to let all test cases pass.
Unlike Nopol which generates repair with solving an equation which contains knowledge,
SPR uses the generate and validate mechanism in order to find a correct repair. Additional
SPR inserts if statements or inject control flow statements like return or break to let all test
cases pass.

2.1.3 Limitations of automatic software repair approaches

In the previous section an overview of the major state of the art test based automatic
software repair approaches has been provided. In this section the limitations of those
approaches will be discussed.
To be able to describe the limitations, criteria have to be defined to measure the quality of
automatic software repair approaches. In []three attributes are defined to rate repair tools:

1. scalability: ability to repair large real world programs

2. repair ability: handling a variety of different bugs

3. quality of repair: repair makes minor changes to the code, repairs are comparable to
repairs done by a human developer etc.

The most important aspect of automatic software repair approaches is the ability to
create valid repairs. Independently of which approach is used to automatically repair an
error prone software, the success rate is very low. This was shown within two studies
which present benchmarking results of automatic software repair approaches applied on
real world projects.
In [Qi et al., 2015] four test based automatic software repair approaches written with
the ability to repair C programs: GenProg, RsRepair, Kali and AE are compared. This
benchmark consists of 8 eight program with 105 bugs. These bugs are part of the original
evaluation of GenProg. GenProg creates 18, RsRepair 20 and both AE and Kali 27 RsRepair
repairs. Out of these plausible repairs, 2 repairs by both GenProg as well as by RsRepair
are correct. A correct patch is a plausible patch which can be verified to be correct. AE and
Kali created 3 correct repair each. Only a maximum of 27 % have been repaired. But 2%
respectively 3% of all bugs are correctly repaired.

The other study [Durieux et al., 2015] used the framework Defect4J to compare the
effectiveness of Nopol, Kali and GenProg. Defect4J [Just et al., 2014] is a framework of
error prone Java projects. The framework contains four projects with 224 bugs and 12182
test cases. Kali and GenProg are originally written in C and only able repair C code.
While Nopol is written in Java and is only able to repair Java code. To make these projects
comparable, Kali and GenProg have been transformed to Java.

9
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Out of 224 bugs, Nopol generates 34 patches, Kali 9 patches and GenProg 16 patches. The
amount of repairs which could been verified to be correct are even smaller. Only four
repairs created by GenProg, three created by Nopol and one repair created by Kale are
verified as correct This study was done by the developers of Nopol, Defect4J has been
provided by an other team.

The results of these two studies show how good state of the art automatic software
repair approaches are considering the three attributes: scalability, repair-ability and quality
of repair. All approaches which have been analysed during the two benchmarks are able to
deal with large projects. Therefore the scalability is satisfying.
The repair ability of state of the art automatic state repair approaches is not satisfying.
The success rate of creating repairs is between 25% to 4% dependent on approach and
benchmark.

In terms of quality the benchmarks showed that most of the created repairs are not
created with a high quality. The created repairs are often not or only hard readable. The
automatic software repair approaches covered by the benchmarks were only able to create
correct repairs with a success rate of 10% to 0%, dependent on approach and benchmark.

2.1.4 Choose of approach to work on

In the previous chapters an overview has been provided in Chapter 2.1.2 and the limita-
tions have been shown in Chapter 2.1.3. In order to choose an automatic software repair
approach which can be improved with probabilistic symbolic execution these findings have
to be considered.

One precondition for the choice of an automatic software repair approach is that it
should be able to repair Java code because the approach has to be compatible to symbolic
analysis software which are described in Chapter 2.2 .

There are some projects available at this time which meet this requirement. The
following list is taken from the homepage of Martin Monperrus, a leading researcher in the
area of automatic software repair, who provides an overview of available automatic software
repair tools (http://www.monperrus.net/martin/automatic-software-repair-tools). This
list contains the available Java based automatic software repair tool.

Ź Astor: Implementation of GenProg, PAR and MutRepair

Ź Kali: Fixes code by applying three simple modifications

Ź Nopol: Specialized in fixing branch conditions and preconditions

Ź JAFF: Evaluationally approach to fix bugs

Ź Java-RSRepair: Java version of RsRepair
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The comparison of Kali, Astor and Nopol with the Defects4J framework shows that
Nopol is able to fix the highest amount of bugs, additionally Nopol produced the highest
number of fixes which are correct. According to this study Astor, Kali and RsRepair have a
lower success rate. JAFF is not evaluated with real world programs. Based on this analyses
of available automatic software repair tools, Nopol is chosen as the automatic software
repair tool which will be extended within this thesis with probabilistic symbolic execution.
An other reason why Nopol is chosen is the way how Nopol creates repairs. As described
in chapter 2.1.2 Nopol changes branch condition in order to create repairs. This leads to
changes of the path flow which could be analysed via symbolic execution.

Nopol

In Chapter 2.1.2 a short introduction into Nopol was given. After choosing Nopol as
approach which is improved with probabilistic symbolic execution a more detailed analyses
of Nopol is needed.
Nopol is an automatic software repair approach which has been developed by the SPIRAL
Group. Nopol includes different modi which can be chosen in order to determine what
kind of errors have to be be repaired.

1. fixing missing precondition

2. fixing branch condition via angelic

3. fixing branch condition via symbolic analyses

4. fixing infinite loops

During this thesis the modus fixing branch condition via angelic is used. Angelic is a
new method of repairing bugs introduced in context with Nopol. Angelic can be used to
create repairs by fixing branch conditions. To be able to repair a new condition, Nopol
sets the original branch condition to false respectively true. If based on this adjustment all
test cases pass, a new condition is created with parameters which are used in this project
setting the condition for all test cases to false respectively true.

The creation of a repair by Nopol is shown in Figure 2.2 and can be split into four
different parts:

1. As first step Nopol ranks the suspicious. of every line of the analysed project. A
statement with a high suspicious. is more likely to be the cause of the bug. In order to
rank the statement the fault localization library GZoltar [Riboira and Abreu, 2010] is
used.

2. In order be able to manipulate the project and in order to insert the fix and be able to
get information out of the project which are needed to create a repair, the project gets
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transformed with SPOON [Long and Rinard, 2015]. SPOON is a library which makes it
possible to transform and analyse Java code.

3. As next step the repair is created. Based on the results of GZoltar the branch condition
with the highest suspiciousness is chosen. On this statement a repair is created with
angelic fixing. To create a repair based on angelic fixing a SMT equation is created. This
equation contains all the information from the test cases and the angelic analysis. If the
SMT solver can create a solution, the result is transformed into Java code. Otherwise the
next branch condition with a lower suspiciousness is analysed

4. Finally the created fix is inserted by using SPOON into the project and transformed back
into Java code. At the end Nopol runs all test cases again to evaluate the created repair.

12
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.

Figure 2.2. Nopol overview
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2.2 Symbolic Execution

Symbolic execution [King, 1976] is a technique which is used to get knowledge about the
overall behaviour of a program. While normal testing uses concrete values and is therefore
only able to cover a small amount of possible input parameters, symbolic execution uses
symbolic values instead of concrete values to be able to cover the whole input variance.

During symbolic execution all branches of a program are executed and the different
branch condition are saved as path condition.(PC). Assuming the code has a branch condi-
tion c with two branches B1 and B2 like shown in listing 2.1. The PC gets split into the
branch condition PCB1 = PC^ c and PCB2 = PC^ c. After this branch both branches are
inspected with symbolic execution. During the execution PC are checked with constraint
checker if every PC is satisfiable.If a PC does not become satisfiable the PC is dropped.

1 ...

2 if (c==true)

3 B1

4 else

5 B2

6 ...

Listing 2.1. Path condition

The benefit of symbolic execution compared with test cases is that symbolic execution
covers the hole range of possible input instead of only a subset of them. Especially errors
in branches which are reached with a low possibility could be discovered.

2.2.1 Probabilistic Symbolic Execution

An enhancement of symbolic execution is probabilistic symbolic execution [Geldenhuys
et al., 2012]. Goal of an probabilistic symbolic execution is to get the probability of each
possible path of a program. The probability of reaching a certain path can be calculate via
model counting as shown in formula 2.3 Where #(c) is the amount of element which passes
a certain PC and #(D) is the size of the domain.

Pr(c) =
#(c)
#(D)

Figure 2.3. Probabilistic Symbolic Execution

Assuming the snippet in listing 2.1 is the first branch condition in the program, then
the branch condition would be B1 = B2 = 50%.
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Probabilistic symbolic execution can be used to optimize testing effort. Depending
on the strategies, branches with a higher or with a lower probability can be focused. An
other use of probabilistic symbolic execution has been shown by [Filieri et al., 2013]. They
performed a reliability studies based probabilistic symbolic execution. Other possible
areas which could benefit from probabilistic symbolic execution are presented in [Filieri
et al., 2015]. One example mentioned in this paper is automatic software repair, which is
investigated within this thesis.

2.2.2 CATG

CATG [Tanno et al., 2015] is a concolic testing tool for Java programs. Concolic testing is
a combination of symbolic and concrete testing. As a result of such a testing techniques,
a test suite can be created which covers all branches of the program which is tested.
Besides the concrete testing with concrete parameters, a symbolic testing is executed. With
this technique limitation of symbolic and concrete technique can be compromised by the
advantage of each other. Concolic testing starts with concrete testing. Random values are
generated as input parameters for the fist execution of the program. During this execution
knowledge about branch condition is collected. Based on this knowledge the symbolic
part of concolic testing is executed. During this part all reachable branch condition are
discovered and collected.

The goal of the second part, symbolic execution is, to generate information which test
cases are needed to cover all possible branches of the project.

1. The class of the analysed function needs a main function.

2. Within the main function the input parameter of the to analysed function have to pre-
pared for the conclolic testing as shown in listing 2.2

1 public static int main(String[ ] args){

2 int x = CATG.readInt(1);

3 boolean b = CATG.readBollean(true);

4 function(x,y);}

Listing 2.2. Initialization of CATG

2.2.3 PathConditionsProbability

A probabilistic symbolic execution tool which is under development by the University
of Stuttgart and the Imperial College London is PathConditionalProbability. PathCondi-
tionalProbability generates out of the the outcome of the concolic analyses of CATG the
probability of every possible path in a program.
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Chapter 3

Comparing Repair Candidates

In state of the art automatic software repair approaches the correctness of a patch is the
only metric which is used to evaluate a patch created by automatic software repair tools. In
this subsection a new metric is introduced to improve the quality of automatically created
patches.

3.1 Comparing Results of Different Automatic Software Re-
pair Approaches

As investigated in Chapter 2.1.2 there are various test based automatic software repair tools
published which are based on different approaches. In this section we want to compare
results of two different approaches repairing the same error prone code.
One example of an error prone code which has been repaired by automatic software
repairing tools is a snippet out of Tcas [Do et al., 2005]. Tcas is a traffic collision avoidance
system, which is taken from the software-artefact infrastructure repository. This snippet
is a part of the evaluation of SemFix as well as Nopol and shown in Listing 3.1. Both
approaches are based on test cases, but use different approaches to generate a repair. The
same test cases and the same Tcas snippet were used for the evaluation of SemFix as well
as for the evaluation of Nopol.

1 int is_upward_preferred(boolean inhibit,int up_sep,int down_sep) {

2
3 int bias;

4 if(inhibit)

5 bias = down_sep; //SemFix fix: bias=up_sep+100

6 else

7 bias = up_sep;

8 if (bias > down_sep) //NOPOL fix : if (up_sep != 0)

9 return 1;

10 else

11 return 0;}

Listing 3.1. Tcas snippet
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3. Comparing Repair Candidates

Five test cases have been used by both approaches to find the cause of the error and
generate a valid repair. As shown in Table 3.1 two of the given five test cases fail. This
implies that the Tcas snippet is not bug free. The test cases could be incorrect, which would
lead to invalid results. But it is assumed that all test cases are correct and expect the correct
output. The code snippet of Tcas is shown in Listing 3.1. The function in the snippet has
three input parameter and the possible output of 0 or 1. Besides the original code the
snippet, the Listing 3.1 shows also the fixes applied by SemFix and Nopol.

Table 3.1. Test Cases for Tcas snippet

Test
Case

Input Expected
output

Observed
output

Status
inhibit up_sep down_sep

1 true 0 100 0 0 pass
2 true 11 110 1 0 false
3 false 100 50 1 1 pass
4 true 20 60 1 0 false
5 false 0 10 0 0 pass

Obviously Semfix and Nopol create different repairs because they are using different
techniques to repair a bug. The results of fixing Tcas are taken from the published papers
about these tools [DeMarco et al., 2014] [Nguyen et al., 2013]. We could evaluate the results
which have been produced by Nopol. SemFix’s approach is not available, therefore we
could not evaluate SemFix’s results.
Through different approaches which line is to change in order to let all test cases pass,
SemFix finds line 5 as the line which is most likely the line which repair makes all test
cases pass, Nopol finds line 4 and line 8 both equally likely to be the cause of failing the
two test cases.
SemFix’s repair approach is to replace line 5 statement change bias = down_sep to
bias = upsep + 100. The repair approach of Nopol changes the statement at line 8
i f (bias ą downsep) to i f (upsep! = 0). Both approaches are able to change the code
snippet to let all test cases pass. According to the definition given that a code is repaired if
all test cases passed, both were able to repair the program, too. Never the less both fixes
are obviously quite different. SemFix changes a statement, Nopol changes an if condition.
This leads to the question whether the quality of these both fixes is the same and which fix
should be preferred.

Even if the result of these two automatic program repair tools seems to be correct, the
repairs are only based on five test cases. With this limited knowledge these fixes are created.
This means that most of the input variants which are possible are not covered with these
test cases. Even if the code would have a high test case coverage, it is almost impossible
to cover all possible inputs with test cases. But test based automatic software repair tools
can only consider defined test cases, all other possible scenarios are not considered. The
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repair which is implemented by an automatic software repair tool, or implemented by a
developer on his own could change the behaviour of these uncovered scenarios and turn a
correct behaviour into a wrong one. Whenever this happens, the goal of fixing an error in
the code would not be achieved and maybe a even create a worse error has been created.

Table 3.2. Test suite with an additional test case

Test
Case

Input Expected
output

Observed
output

Nopol
Status

SemFix
Statusinhibit up_sep down_sep

1 true 0 100 0 0 pass pass
2 true 11 110 1 1 pass pass
3 false 100 50 1 1 pass pass
4 true 20 60 1 1 pass pass
5 false 0 10 0 0 pass pass
6 false 400 300 0 1 fail pass

In order to show that such a creation of a false positive repair is possible, a new scenario
is added to the existing five test case. This new scenario is shown in Table 3.2 as test case
number 6. The table shows the test cases and the results of the test cases after the bug
is fixed by the approaches Nopol and SemFix. The new test case fails with the program
repaired by Nopol. But the test case number six is a scenario which should pass. With the
program being repaired by SemFix the new test case passes. In this specific case, the fix
of SemFix seems to be better, compared to the fix that Nopol created. But as mentioned
before this is just based on a low amount of scenarios. Therefore the question which repair
is better is still not answered. To be able to answer this section a new metric is introduced
in this thesis, which considers the program flow of all possible inputs in order to be able to
rank different repair candidates.
As discussed before a major disadvantage of using test cases to find a repair is the lack of a
complete coverage over all possible inputs.

A combination of test based automatic software repair approaches and probabilistic
symbolic execution might help to overcome this problem. Test cases are still used to evalu-
ate a repair. Additionally the behaviour of the original program and the repaired program
are compared. The probability of reaching every branch is measured via probabilistic
symbolic execution. Repairs which influences a lower amount of scenarios should have
similar results of a probabilistic symbolic analysis compared to the results of a probabilistic
symbolic analysis of the original program. A repaired program which changes the be-
haviour of many scenarios should have an unlike result compare to the original program.
Definition 1 introduces the LoC probability which is similar to branch probabilities in
probabilistic symbolic execution.
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Definition 1. LoC probability is the probability of using a certain line of code over all possible
inputs

LoCPr(P) =
∑

i=#passingP
i=0

∑
i=#possibleInputs
i=0

.

In order to be able to compare the program flow of two programs the path flow of
every program has to be determined. With the defined LoC probability, the probability of
a line can be calculated. To be able to compare the difference in terms of the probability
considering a whole program a new metric is introduced.

Definition 2. Path Probability Delta(PPD) is the difference of the LoC probability of every line
of a code between two similar programs. The smaller this value is, the similar are the program flows
of these two programs.

As proposed in this thesis the new defined path probability delta metric can be used
as a new metric in the area of test case based software repair. Valid repair candidate
which satisfies the most important metric, passing all available test cases, can be ranked
according to their PPD. The PPD should be calculated between the original program and
every repaired version based on created repair candidates. The candidate with the lowest
PPD is the repair candidate which affects the least of all possible scenarios which are not
covered by the given test cases.

By calculating the PPD metric of the original snippet and the snippet modified by
SemFix as well as the original snippet and Nopol, the question which repair approach
generates the better repair can be answered by comparing the PPD of both repairs. The
automatic software repair approach with the lower PPD creates the better fix for the Tcas
snippet.

3.2 Measurement of the Path Probability Delta

After having the PPD defined as a new metric in comparing the program flow of a original
code and a modification of the original code, this subsection describes how this new metric
can be measured before the question about the best repair candidate can be answered.
In order to calculate the PPD of a repair, the probability of reaching every line of the
modified and the original code has to be compared. To calculate the metric, the LoC
probability of every line has to be measured. In this thesis we assume that every possible
input has the same probability, all possible inputs have the same weight.
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PPD =
i=#lines

∑
i=0

LoCProriginal(i)´ LoCPrmodi f ied(i)

Figure 3.1. First draft of calculating path probability delta

The calculation of the PPD is shown in Figure 3.1. For every line of the code within the
original project the LoC probability is measured and compared with the LoC probability
of the same line measured within the modified program. Every difference between these
LoC probabilities are summed up to the PPD. The smaller this sum is, the smaller is the
difference of the overall behaviour of the compared programs.

3.2.1 Reducing the Amount of Measurement Points

An analysis of the measurement of the PPD accorfing to Figure 3.1 shows several problems
which are discussed and resolved within this section.

.

Figure 3.2. Measurement of LoC Probability

By looking into the LoC probabilities of every line of a program it seems that most of the
LoC probabilities are the same. Only after an element which changes the program flow, like
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a branch condition, the probability is changed. This is shown in Figure 3.2, where program
flow diagrams of a slightly different programs are shown. The LoC probability only
changes in that example after the branch condition. Only the branch condition changes the
LoC probability. An improvement of measuring the PPD would be to set only a measuring
point after each statements which change the LoC probability. A formula which describes
an improved calculation of the PPD is shown in Figure 3.3 This improvement speeds up
the measurement and calculation of the PPD.

PPD =
i=#Branches

∑
i=0

|LoCProriginal(i)´ LoCPrrepair(i)|

Figure 3.3. Improved calculation of the PPD

An other problem which is addressed by the improved calculation of the PPD is that it
prevents different weight of branches through a different amount of measurement points.
The formula as in Figure 3.1 uses the LoC probability of every line of a program to cal-
culate the PPD. Different amount of measurement points can occur, if for example the
then and else branch of an i f statement contains a different amount of statements. Figure
3.4 shows a similar program as shown in Figure 3.2. The only different is that the left
branch contains a additional measurement point. In both variations, the probability for
reaching the left branch is reduced by 0.3, and the probability of reach the other branch’s
probability enhanced by 0.3. But even if the probability of reaching the branches is the
same for both examples the resulting PPD is different. The measurement with the old
formula would result into in PPD of 0.6 for the first example and 0.9 for the second example.
These unequal PPDs are caused by the different amount of measurement points within the
different branches. The branches in Figure 3.2 consist out of one statement and therefore
the LoC probability is measured once within every branch. The left branch of the second
example consists out of two statements. Therefore the LoC probability gets measured
twice within this branch. This results into an unequal weight of the different branches. By
measuring the LoC probability only once within every branch, every branch has the same
amount of LoC measurements and therefore has the same weight.
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.

Figure 3.4. Different amount of measurement points in different branches

3.2.2 Dealing with nested if statements

With this improved equation it is possible to calculate the PPD in most of the cases. One
remaining problem is similar to the problem of different weighted paths as discussed
before. Nested if statements lead to the problem, that some branches could include more
measurements of the LoC probability compared to other branches. This leads to an unequal
weight of branches. On the left side of Figure 3.5 a program with an i f statement which
includes an then, an else i f and an else branch is shown. The else i f branch consists out
of a nested i f statement. On the left side of Figure 3.6 the same program is shown. The
difference of the two figures is that the probability of executing the branches in version 2. In
Figure 3.5 the probability of reaching the branch with the nested i f is not changed, but the
the probability of reaching the other two branches is changed. The changed probability of
version 2 of Figure 3.6 is similar. But instead of changing the probability of the first branch,
the branch of reaching the nested i f branch is changed. In both variations, the probability
of one branch is reduced by 1

6 and an other branch’s probability is enhanced by 1
6 . The

third branch’s probability stays the same. The PPD of the two programs in Figure 3.5 is
2
6 . The second mutation changed the probability of using the branch which includes the
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nested i f statement. As result the PPD is 3
6 , but should be the same as the previous PPD.

This is caused by a three time measurement of the LoC probability within the branch with
the nested if statement. Since the LoC probability is additional measurement at the two
branches of the nested i f statement the branch consists out of two additional measurement
points. Each of the other branches contains only one measurement point each. This leads
to an unequal weight of the different branches.The solution of this problem is, only to
measure the LoC probability on the innermost i f , i f else or else branches if an i f statement
is nested. This solves the problem of different weighted paths and again saves costs trough
measure and calculate less LoC probabilities.

.

Figure 3.5. First version of the nested if statements
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.

Figure 3.6. Second version of the nested if statements

PPD =
i=#InnerBranches

∑
i=0

|LoCProriginal(i)´ LoCmodi f icated(i)|

Figure 3.7. Final calculation of the PPD

After applying these adjustments on the formula defined before in Figure 3.1 changes
to the formula shown in Figure 3.7. Only the LoC probability of the branches are measured
and compared between the original program and the slightly different program. If there are
nested branches in the program, only the branches of the innermost branches are measured.
With these improvements the PPD can calculated correctly and the calculation effort which
is needed is reduced compared to the first draft of this formula.
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normPPD =
∑i=#InnerBranches

i=0 |LoCProriginal(i)´ LoCPrmodi f icated(i)|
#InnerBranches

Figure 3.8. Normalized PPD

In order to be able to compare the PPD between different projects the metric has to be
normalized. Right now the metric depends on the number of measurement points. The
more measurement points are within the analysed project, the higher is the PPD. As shown
in Figure 3.8 the PPD is normalized by dividing trough the amount of measurement points.

3.3 Applying the Path Probability Delta on the Tcas Snip-
pet

In this section the above defined new metric, the PPD, is applied on the introducing Tcas
snipped example. Finally the repairs suggested by Nopol and SemFix are ranked after
the PPD and it is discussed which repair is the better one. Listing 3.2 shows the original
Tcas snippet. The if condition has been changed to a path condition, which shows in detail
at which input the condition is fulfilled. For every line which is required to calculate
the PPD, the LoC probability is shown in Listing 3.2. The range for integer is between
´2147483648 ď x ď 2147483647. Boolean can set to either to true or f alse.

1 int is_upward_preferred(boolean inhibit,int up_sep,int down_sep) {

2 int bias;

3 if(inhibit)

4 bias = down_sep; 50%

5 else

6 bias = up_sep; 50%

7 if(inhibit^ down_sep ą down_sep_ bias^ up_sep ą down_sep)
8 return 1; 24.999999997089616954326629638671875%

9 else

10 return 0;} 75.000000002910383045673370361328125%

Listing 3.2. Tcas snippet with LoC probability

An analysis of the snippet with focus on the LoC probability shows that the first branch
condition separates the LoC probability for line 5 and line 7 to 50% and 50%, since the
branch condition can be set to either true or false. The path condition of the second if
clauses is more complicated. The first part of the condition a^ c ą c is not satisfiable,
because c can not be smaller than c. The second part  inhibit^ up_sep ą down_sep is
satisfiable. The fist part of this formula  inhibit is to 50% satisfiable because inhibit is
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a boolean. The second part of the formula up_sep ą down_sep is with probability of
49.99999999417923390865325927734374% satisfiable. This leads to a probability of 0.5 ˚
0.4999999999417923390865325927734374 = 24.99999999708961695432662963867187%.The
else branch is executed with a probability of 75.000000002910383045673370361328125%.
These LoC probabilities are used to calculate the PPD of the Tcas snippet repaired by
SemFix and Nopol.

1 int is_upward_preferred(boolean inhibit,int up_sep,int down_sep) {

2
3 int bias;

4 if(inhibit)

5 bias=up_sep+100; 50%

6 else

7 bias = up_sep; 50%

8 if(inhibit^ up_sep + 100 ą down_sep_ inhibit^ up_sep ą down_sep)
9 return 1; 49.9999999941792339086532592773437455%

10 else

11 return 0;} 50.0000000058207660913467407226562545%

Listing 3.3. Tcas snippet repaired by SemFix

In Listing 3.3 the Tcas snippet with the repair done by SemFix is shown. Like in the
previous listing, the probabilities of using the i f and else branches as well as the path
condition is shown in detailed. Since the change made by SemFix is done in line 5, the first
if clauses and the LoC probability of line 5 and line 7 are not affected by the manipulation.
The condition of the second if clause changes after applying the repair. To enter the then
branch the condition a^ b + 100 ą c_ a^ b ą c has to be fulfilled. Because b is an integer
with the range of´2147483648 ă= x ă= 2147483647, b+100 can be seen as b, since 100
can be negligible. This results to a condition of a^ b ą c_ a^ b ą c =ą b ą c. This
leads to 50% probability of entering the then branch what result to a LoC probability of
49.99999999417923390865325% for line 9 and 50.000000005820766091% for line 11.

PPD = |0.5´ 0.5|+ |0.5´ 0.5|+ |0.24999´ 0.4999|+ |0.75000´ 0.50000| = 0.49999

Figure 3.9. Calculating the PPD for SemFix’s repair

The PPD between the original program and the program repaired by SemFix is 0.49999.
As shown in Figure 3.9 the results are rounded to guarantee a better readability . This result
has to be compared to the PPD of the repair created by Nopol. This allows to compare the
two repair candidates of both approaches and answer the question which repair effects the
less of all possible scenario not covered by the test cases and is the better repair.
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1 int is_upward_preferred(boolean a,int b,int c) {

2
3 int bias;

4 if(a)
5 bias = c; // 50%

6 else

7 bias = b; // 50%

8 if(b! = 0)
9 return 1; // 99.999999976716935634613037109375%

10 else

11 return 0;} // 2.328306436538696289062510´8%

Listing 3.4. Tcas snippet repaired by Nopol

In Listing 3.4 the Tcas snippet repaired by Nopol is shown. Again with the results of
the LoC probability for every line which is needed to calculate the PPD. Since the change
which is made by Nopol is done in line 8, the LoC properties of line 5 and line 7 are not
affected by the manipulation and stays with 50% each. The second if condition is changed
by Nopol in order to repair the Tcas snippet. The path condition which has to be satisfied
to enter the i f clause is b! = 0. This results in massive changes of the LoC probability of
line 9 and line 11. The LoC probability of line 9 is 99.999999976716935634613037109375%.
This leaves the LoC probability of Line 11 to 2.3283064365386962890625 × 10-̂8%.

PPD = |0, 5´ 0, 5|+ |0, 5´ 0, 5|+ |0.24999´ 0.99999|+ |0.75000´ 0.00001| = 1.49999

Figure 3.10. Calculating the PPD of the repair done by Nopol

The PPD of the original snippet and the snippet repaired by Nopol is 1.49999. The
calcualtion in Figure 3.10 uses rounded numbers to provide a better readability.

By calculating PPD of the repair done by SemFix and the repair done by Nopol the
question which repair is better can be answered. Comparing the PPD of the SemFix repair
shows that Nopol has a PPD of 0.5, and the snippet manipulated by Nopol has a PPD
of 1.49999. SemFix repair results in a smaller PPD. Therefore the manipulation done by
SemFix has a smaller impact in changing the behaviour of all possible scenarios compared
to Nopol. This leads to the answer that the repair done by SemFix is the better repair in
terms of fixing the Tcas snippet.
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Chapter 4

Implementing Improved Automatic
Software Repair Approach

One scenario where the PPD metric could be used is improving the quality of patches
created by automatic software repair approaches. In this chapter Nopol, an automatic
software repair approach is extended with the PPD metric. Goal of this improvement is to
improve the quality of created repairs. The repairs created with the new approach should
affect the behaviour of scenarios which are not covered by the test suite the less as possible.
The extension of Nopol which is developed in this thesis is called ProRepair.

4.1 ProRepair

ProRepair is an extension for Nopol and uses probabilistic symbolic execution in order
to find a patch which changes the behaviour of the code as less as possible. The new
extension consists of several components. An overview is given in Figure 4.1. In order to
be able to create repairs for an error prone project the automatic software repair tool Nopol
is used. The reasons why Nopol is used are discussed in Chapter 2.1.4. Nopol has several
different modi for fixing bugs implemented. The mode which is used and adapted within
ProRepair, is the technique of manipulating branch conditions to pass all test cases and
create a repair. In order to be able to create repairs, Nopol needs a the project which is to
be repaired and on test cases. Some of these test cases should not pass, otherwise no error
can be found and no repair can be created.
The adapted Nopol creates several repair candidates. Everyone of these repair candidates
leads to a repaired program which let all test cases of the test suite pass. In order to choose
the candidate which affects scenarios which are not covered by the test suite the less as
possible the PPD of all repair candidate is calculated. For such a calculation the LoC
probability of certain points in the project is needed. To measure the LoC probabilities,
probabilistic symbolic execution used. With the LoC probabilities of certain points of the
original code and of the same points in the code repaired by the repair candidates the PPD
for every repair candidate is calculated. According to the results of their PPD the repair
candidates are ranked. The candidate with the lowest PPD is considered the best repair
and chosen as fix for the error prone project.
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.

Figure 4.1. Overview ProRepair
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4.2 Adapting Nopol

Nopol is used as foundation for ProRepair to generate automatic repairs from an error
prone project under the consideration of given test cases. In order to be able to benefit
from probabilistic symbolic execution and get the best possible repair according to the PPD
some adjustments within Nopol have been done.
The main adjustment which has been done within the mechanisms of Nopol is enhancing
the amount of created repairs. Nopol creates only one repair and uses this repair to fix
a bug. Since ProRepair needs multiple repair candidates to rank these candidates after
their PPD, the amount of created repair candidates is enhanced. A high amount of repair
candidates ensures a better repair since more valid candidates are analysed according to
their PPD. On the other hand the creation of more repair candidates leads to a higher effort
in calculation these candidates. Therefore a trade-off has to be done to get the best number
of repair candidates. The amount of created repairs can be assigned manually.

Nopol creates the repair candidates by calculating how to replace a branch condition by
using a SMT solver. It could happen that the SMT solver crates solutions which results to
branch conditions which are syntactically equal. Syntactically duplicate branch conditions
are filtered by ProRepair. This could result into a lower amount of created repair. Solutions
which are syntactically different but are logical the same are not filtered yet.
After creating those repair candidates the LoC probability of every branch is calculated
and the PPD between repaired projects with these candidates and the original project is
calculated, before choosing the repair with the best quality and finally creating a repair.

4.3 Measurement of LoC Probability and Calculation of the
Path Probability Delta

As defined in Definition 1 the LoC probability is the probability of a line to get passed
during all possible executions of a method. To measure the LoC probability probabilis-
tic symbolic execution is used. The symbolic probabilistic analysis is executing within
ProRepeir through a combination of CATG and PCP. CATG is used to cover all possible
paths, PCP to calculate the probability of every possible path.

As explained in Chapter 2.2.2 some preparation is needed to be able to instrument
CATG. In order to be able to start such an analyses a main method within the class of the
analysed method has to be added. As shown in Listing 4.1 such a main method has to
include a method call of the method which is the starting point of the symbolic analysis
and all input parameter of this method marked as symbolic parameter. The main method
is automatically injected by ProRepair into the class during execution. The SPOON library
is used to insert the main method into the project. At this development state, an other
main function is not allowed within the class of the tested function.
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1 public static void main(String[] args){

2 System.out.println("$$TARGET$$");

3 int a= catg.CATG.readInt(0);

4 functioncall(a); }

Listing 4.1. Preperation of symbolic analysis

After running a probabilistic symbolic execution on the project, the probability of every
possible path is given as shown in Listing 4.2.

1 [quantolic] domain coverage for this path: 0.75000000005820766 at 1459368093571

2 [quantolic] domain coverage for this path: 0.24999999994179234 at 1459368094793

Listing 4.2. Output without measurement points

The output of CATG/PCP contains the probability of every path, but does not contain
information about the probability of reaching a certain line of code. In order to be able to
get the probability of reaching a certain line of code some adjustment have to be made in
the analysed project. ProRepair insert at every line where the LoC probability is measured
a measurement. The measurement point indicates if the specific line of code is part of
the path which is covered by a probabilistic symbolic analyses. A measurement point is a
print method which prints a specific ID which appears in the output of the analyses if the
measurement point is passed during the execution of a path. To generate an unique ID, the
ID consists of the identifier $$P : which contains the information that this ID is part of a
measurement point, the class name and the line which is to be analysed via probabilistic
symbolic execution. An example of such a measurement point is shown in listing 4.3.
Whenever such a measurement point is covered during probabilistic symbolic execution
this ID is shown in the results of CATG/PCP. The SPOON library is used to insert such a
measurement point.

Measurement points are inserted at every branch of the project, considering some
exception which a discussed in Chapter 3. The project is scanned with the SPOON library
and scanned after each if respectively else statement a measurement point is inserted.

1 if()

2 System.out.println("$$P:TestClass6") ;

3 else

4 System.out.println("$$P:TestClass8") ;

Listing 4.3. Inserting measurement points in the program code

Whenever a measurement point is passed during the probabilistic symbolic execution
the ID of the measurement point occurs at the output of the analyses. To get the overall
probability of passing a specific measurement point, all results where the ID occurs have
to be summed up. An example of a results which include measurement points is shown
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in listing 4.4. In this example two measurement points are recognized during execution.
The measurement point with the ID $$P : TestClass8 occurs at all discovered branches
during probabilistic symbolic execution and has a probability of 100%. The measurement
point $$P : TestClass6 only occurs in the second execution which has a probability of
75.000000005820766%

1 $$P:TestClass6

2 $$P:TestClass8

3 [quantolic] domain coverage for this path: 0.75000000005820766 at 1459368093571

4 $$P:TestClass8

5 [quantolic] domain coverage for this path: 0.24999999994179234 at 1459368094793

Listing 4.4. Output with measurment points

It could happen that an if statement does not contain an else branch like shown in
Listing 4.5. With the technique presented above the probability of the else branch would
not be covered. To be able to cover the probability of the missing else branch as well an
else branch is added to the if statement. In order to add a else statement which includes an
measurement point the SPOON framework is used.

1 if {

2 if {

3 $$P:TestClass6

4 }

5 new : else{

6 $$P:TestClass6

7 }

8 }

9 else{

10 $$P:TestClass10

11 }

Listing 4.5. Inserting else branch

4.4 Limitations

The extension of Nopol, ProRepair, has some limitations which are mostly caused by Nopol,
CATG and PCP.

Nopol is the automatic software repair approach which is used within ProRepair. All
limitations which apply to Nopol are also limitations of our approach.

Ź Nopol can only repair bugs by changing one line of code. Repairs over multiple lines
are not possible. Other automatic software repair approaches like GenProg are able
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to change through the generic programming approach to manipulate multiple lines of
code,

Ź Condition which include a method which has one or more input parameters as can not
be repaired with Nopol.

Ź Limitation are caused by the quality of test cases which are used to find the course of
a bug and evaluate a repair candidate. Like all automatic software repair tools which
are based on test cases, Nopol is probably not able to repair all bugs in a code. As
described earlier, Nopol tries to make all test cases pass. If Nopol is successful, all test
cases pass. But this does not necessary imply that the code Nopol was applied is error
free. Therefore Nopol’s power is dependent on the quality of test coverage.

Besides the limitations of Nopol, there are also some limitations caused by CATG/PCP

Ź The internal counting is done with integer values. Therefore double values can not be
used for the counting engine.

Ź Because of the same reasons as the limitation of double, character and string data types
are not supported by the counting engine.

Ź An other limitation is that the modulo operator is not supported by PCP.

Limitations which have been added during the development of ProRepair:

Ź Ternary operator like x?y : z can not be recognized as a branch condition. To be
recognized as a branch condition, it has to be changed to a regular Java if/else statement
as shown in Listing 4.6.

1 if (x)

2 return y;

3 else

4 return z;

Listing 4.6. Acceptable if statement

Ź Within the class of the function which is to be repaired should not contain a main
function.
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Chapter 5

Evaluation

In this chapter the evaluation of ProRepair and the newly defined PPD metric is described.
As shown in chapter 4.4 limitations of ProRepair, currently an evaluation against real world
programs is difficult. The best way to evaluate ProRepair would be using the bugs of the
Defects4J framework which have been fixed by Nopol. Nopol is able to repair 34 bugs,
with four repairs being correct [Durieux et al., 2015]. Unfortunately these results can not
be used with ProRepair mainly due to the limitation of PCP not being able to count double
values. In order to evaluate the correctness of ProRepair the example of Chapter 3.3 is used.
Two case studies have been created in order to show that ProRepair rank repair candidates
according to the PPD and choices the candidate which violate the behaviour of the smallest
amount of possible scenarios. Finally within a real project, errors are injected and repaired
by ProRepair.

5.1 Evaluation of the Correct Calculation of the Path Proba-
bility Delta by ProRepair

The key novelty of ProRepair is ranking repair candidates after their PPD to determine the
repair candidate with the best quality. In order to evaluate the correct measurement of LoC
probability and the correct calculation of the PPD the Tcas snippet which is know from
chapter 3.3 is repaired with ProRepair. The goal of this evaluation is to investigate whether
the measurement of the LoC probability of every important branch is done correctly as
well as the correct calculation of the PPD.

The project and the test case of the Tcas snippet which are used within this evaluation
are the same as shown in Chapter 3.3. The repairs which have been found with ProRepair
((0)! = (upsep)) and ((upsep)! = (0)). Trough the strictness of the given test cases ProRe-
pair is not able to create more than these two repair candidates. The repair candidates are
obviously not semantically but logically equal.

Listing 5.1 shows the instrumented Tcas snippet which had done been prepare by
ProRepair for the symbolic analyses. Within every i f and else branch a marker has been
added. This is needed to calculate the LoC probability at this line of the code. Also a main
method consisting of a function call and input parameters prepared for symbolic analysis

35



5. Evaluation

have been added within the instrumented Tcas snippet.

1 public static void main(String[] args){

2
3 boolean inhibit0 = inhibit0= janala.Main.readBool(true);

4 janala.Main.MakeSymbolicBool(inhibit0);

5 int up_sep1 = up_sep1= catg.CATG.readInt(0);

6 int down_sep2 = down_sep2= catg.CATG.readInt(0);

7 is_upward_preferred(inhibit0, up_sep1, down_sep2);

8 }

9 static int is_upward_preferred(boolean inhibit, int up_sep, int down_sep) {

10 int bias;

11 if (inhibit) {

12 System.out.println("$$P: 10") ;

13 bias = up_sep;

14 } else {

15 System.out.println("$$P: 12") ;

16 bias = up_sep;

17 }

18 if ((0) != (up_sep)) {

19 System.out.println("$$P: 14") ;

20 return 1;

21 } else {

22 System.out.println("$$P: 16") ;

23 return 0;

24 }

25 }

Listing 5.1. Instrumented Tcas snippet

The results which are produced by ProRepair are shown in Table 5.1. These results
are compared with the results calculated in chapter 3 are shown in Table 5.2. Within both
calculation the range of integers was set to ´2147483648 ď x ď 2147483647 and the range
for boolean is true, f alse. The results shown in both tables are almost identical. The small
difference of these results is caused by a different amount of floating points. If the results
of Chapter 3.3 are rounded up to the next floating point, the results are the same. The LoC
probability of all four measured branches are identical compared to the results reported by
ProRepair. Also the calculation of the PPD is the same. With these results the correctness
of the measurement of the LoC probability as well as the correctness of calculating the PPD
is shown.
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Table 5.1. Results of Tcas Snippet calculated by ProRepair

Results by ProRepair
LoC original repaired delta
10 0.5 0.5 0
12 0.5 0.5 0
14 0.2499999999417923 0.9999999997671694 0.7499999998253771
16 0.75000000005820766 2.328306E-10 0.74999999982537706

PPD: 1.49999999965075416

Table 5.2. Results of Tcas Snippet from chapter 3

Results calculated manualy
LoC original repaired delta
10 0.5 0.5 0
12 0.5 0.5 0
14 0.24999999994179234 0.99999999976716935 0.74999999982537701
16 0.750000000058207661 2.3283065E-10 0.74999999982537701

PPD: 1.49999999965075402
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5.2 Choosing the Best Repair Candidate

In the previous section the correctness of the calculation of ProRepair has been evaluated.
In this section ProRepair choice of the best repair candidate according to the PPD is
discussed. For this evaluation projects of the benchmark IntroClass [] are used. IntroClass
is a collection of projects which are used to evaluate automatic program repair approaches
for C written code. For the evaluation of ProRepair some projects of the benchmark are
transformed to Java to be able to get repaired by ProRepair.

5.2.1 Repairing: Finding the Smallest Number

The first project, shown in Listing 5.2 which is taken from IntroClass [Le Goues et al., 2015]
is a small function which searches the smallest number out of four integers. The test cases
which are used for the repair process are also taken from IntroClass are shown in Table 5.3.

1 public static int smallest(int A, int B, int C, int D)

2 {

3 int smallest = A;

4 if (A > B)

5 smallest = B;

6 if (B > C)

7 smallest = C;

8 if (C > D)

9 smallest = D;

10 else if (A > D)

11 smallest = D;

12 return smallest;

13 }

14 }

Listing 5.2. Choosing the smallest integer
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Table 5.3. Test cases for program smallest

#
IN OUT

A B C D Expected Observed
1 0 0 0 0 0 0
2 0 0 1 2 0 0
3 0 0 1 0 0 0
4 0 0 3 1 0 1
5 0 1 0 0 0 0
6 0 1 1 1 0 0
7 0 1 1 0 0 0

The amount of created repair candidate is set to eight. During the repair process line 8
of the median function is manipulated in order to repair the bug. The eight created repair
candidates are shown in Table 5.4. Besides the repair candidate the normalized PPD of
every candidate is shown in this table.

Table 5.4. Repair candidates of program smallest and their PPD

# repair candidate line
normalized
PPD

1 (C >D) && ((D == -1) || (!((C) != (1)))) 0.14283839366078124
2 (C >D) && (!((1 == D) || (1 == D))) 7.141428696451545E-6
3 (1 == -1) || ((C >D) && (C <= 1)) 0.1071285718749911
4 (!(D == 1)) && (C >D) 7.141428696439649E-6
5 (C >D) && (!(1 <= D)) 0.03570714348209823
6 (smallest == D) && (C >D) 0.14284285785712503
7 (A <C) && (D == smallest) 0.14284285821421427
8 !((C <= D) || (((1) != (C)) && (C >D))) 0.1428428575

The best repair which is chosen by ProRepair out of the eight suggested repair can-
didates is ((b ą c))&&(b == 0))||(((b ą a)&&(b ă c))||((b ă a)&&(b ą c)). This repair
candidate has the lowest PPD compared to the other repair candidates. This repair candi-
date should affect the lowest amount of scenarios which are not covered by the test cases
shown in Table 5.3. The other repair candidates except repair candidate number two which
has a similar PPD have a significant higher normalized PPD.
In order to evaluate that the chosen candidate has the lowest effect of scenarios which
are not covered by the seven test cases, 5000 random test cases have been created. All
these test cases pass for the original function. The goal of using the PPD metric as a
quality metric is to ensure that the behaviour of less as possible scenarios are affected by a
repair. The repair which is chosen by ProRepair should pass more test cases than the other
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repair candidates would. The result of this experiment is shown in Table 5.5. The repair
candidate 4 which is chosen by ProRepair validates none of the 5000 randomly created test
cases. This is obviously the smallest amount of validation within the 8 repair candidates.
Repair candidate 2 has the same amount of failing test cases as repair candidate 4, because
the difference of the PPD of those two repair candidates is very small. Also the repair
candidates 1, 6, 7, 8 have the same amount of failing test cases due to their small differences
of their PPD.

Table 5.5. Comparing the results of table 5.4 with 1000 random scenarios

#
failing random

generated test cases
normalized

PPD
1 841 0.14283839366078124
2 0 7.141428696451545E-6
3 744 0.1071285718749911
4 25 7.141428696439649E-6
5 440 0.03570714348209823
6 841 0.14284285785712503
7 841 0.14284285821421427
8 841 0.1428428575

5.2.2 Repairing: Finding the Median

The second example is taken from the same benchmark as the function median. The
function searches the median out of three integers. The function shown in Listing 5.3 is
taken from the same framework like the example above. Most of the test cases are taken
from the benchmark InnerClass. In order to get a better test case coverage, some test cases
are added for this evaluation to the test cases provided by InnerClass. The whole test suite
is shown in Table 5.6. Applying these test cases on this function show that some of these
test cases fail. This leads to the assumption that the median function is not error free.
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1 public static int median (int a, int b, int c)

2 { if(((a>b)&&(a<c))||((a<b)&&(a>c)))

3 return a;

4 else if(((b>a)&&(b<c))||((b<a)&&(b>c)))

5 return b;

6 else

7 return c;

8 }

9 }

Listing 5.3. Calculating the median of three integer

Table 5.6. Test cases for median program

#
IN OUT

a b c Expected Observed
1 2 6 8 6 6
2 2 8 6 6 6
3 6 2 8 6 6
4 6 8 2 6 6
5 8 2 6 6 6
6 8 6 2 6 6
7 8 8 8 8 8
8 6 -6 2 2 2
9 0 0 -2 0 -2
10 700 0 600 600 600

The amount of the created repair candidate is set to eight. During the repair process
of Nopol line 4 of the median function is manipulated in order to repair the bug. These
crated repair candidates are shown in Table 5.7. Besides the repair candidate the PPD of
every created repair candidate is shown in this table.
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Table 5.7. Repair candidates of program median and their PPD

repair candidate normalized PPD
(((b >a) && (b <c)) || ((b <a) && (b >c))) || (a == 0) 9.378280781305315E-6
((((b >a) && (b <c)) || ((b <a) && (b >c))) || (0 == a)) && (-1 <0) 9.378280781305315E-6
(((b >a) && (b <c)) || ((b <a) && (b >c))) || (!(1 <a)) 0.12505156429648437
(a <1) || (((b >a) && (b <c)) || ((b <a) && (b >c))) 0.12504218601560935
(((b >c)) && (!((b >a)))) || (((b >a) && (b <c)) || ((b <a) && (b >c))) 1.8748125140577443E-5
(((b >c)) && (c <= 0)) || (((b >a) && (b <c)) || ((b <a) && (b >c))) 0.0625234361718906
(((b >c)) && (b == 0)) || (((b >a) && (b <c)) || ((b <a) && (b >c))) 4.688202984381995E-6
(((b >a) && (b <c)) || ((b <a) && (b >c))) || (a <= 0) 0.12504218601560935-5

The results of the calculation of the PPD in Table 5.7 show that the first two condition
terms of every repair candidates are the same. Only the last terms are different. Out
of the eight repair candidate the best repair candidate which is chosen by ProRepair is
((b ą c))&&(b == 0))||(((b ą a)&&(b ă c))||((b ă a)&&(b ą c)). This repair candidate
has the lowest PPD compared to the other repair candidates. This repair candidate should
affect the lowest amount of scenarios which are not covered by the test cases shown in
Table 5.6.

In order to evaluate that the chosen candidate affects the less of scenarios which are not
covered by the seven test cases with which the repair was created, 5000 random test cases
have been created for the original function. The result of this experiment is shown in Table
5.8. The repair candidate 7 which is chosen by ProRepair violates only 2 test cases. This is
the smallest amount of violations within the 8 repair candidates.

Table 5.8. Comparing the results of table 5.7 with 1000 random scenarios

#
failing random

generated test cases
normalized

PPD
1 0 1.1641532182693481E-10
2 0 1.1641532182693481E-10
3 792 0.1111569460413195
4 792 0.1111486097916528
5 0 1.66650001249824E-5
6 368 0.0555763877083472
7 0 4.16729154171606E-6
8 792 0.1111486097916528

In this section two small projects have been repaired with ProRepair. For every project
eight repair candidate has been created. The best candidate have been chosen by ProRepair

42



5.3. Repairing a Lager Version of TCAS

according to PPD. It has been shown that the repair candidate with the lowest PPD changes
the outcome of the lowest scenarios which there not covered by the test suite which had
been used during the repairing process. This has been evaluate through random 5000 test
cases which outcome were compared.

5.3 Repairing a Lager Version of TCAS

In order to evaluate ProRepair with a real life project, the whole project of Tcas is to
be repaired with ProRepair. For this evaluation the version zero of Tcas has been taken
from the SIR project. As first step some test cases are created. For creating test cases the
Symbolic Java Pathfinder [Anand et al., 2007] has been used. Symbolic Java Pathfinder uses
symbolic execution to find all possible paths through the analysed project. Instrumenting
Java Pathfinder with Tcas, 69 different paths have been found. Out of these output we
generate 69 test cases which cover every possible path of Tcas.

Obviously Tcas let all of these 69 test cases pass. In order to be able to repair Tcas, some
errors has been inserted. The insertion of bugs has been done with the major mutation
framework [Just, 2014]. Major manipulates condition and operator of a project. After
applying Majors manipulation on Tcas, 141 different mutations has been produced, with
one manipulation per mutation. All those manipulated versions are applied on ProRepair.
Out of theses 141 versions ProRepair/Nopol was able to generate for 38 repairs. This is a
coverage of 26.95%. The amount of generated repair candidates was set to eight. In this
thesis two out of those 38 repairs are investigated in detail. The focus of the investigation
will be the PPD and if using this metric helps to get the best possible repair in terms of the
change the code.

First Example repair of a Tcas manipulation

The fist repair process which was investigated is the repair of a manipulation of setting a
return value of a function always to false within Tcas. This results into the manipulation
shown in Listing 5.4. By running the 69 test cases at the major manipulation tool manipu-
lated code, 8 out of the 69 test cases fail.
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1 private static boolean Non_Crossing_Biased_Descend() {

2 static int alt_sep_test(){

3 boolean enabled, tcas_equipped, intent_not_known;

4 boolean need_upward_RA, need_downward_RA;

5 int alt_sep;

6
7 enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) &&

8 (Cur_Vertical_Sep > MAXALTDIFF);

9 tcas_equipped = Other_Capability == TCAS_TA;

10 intent_not_known = Two_of_Three_Reports_Valid && Other_RAC == NO_INTENT;

11
12 alt_sep = UNRESOLVED;

13
14 if (enabled && ((tcas_equipped && intent_not_known) ||

15 !tcas_equipped)){

16 need_upward_RA = Non_Crossing_Biased_Climb() &&

17 Own_Below_Threat();

18 need_downward_RA = Non_Crossing_Biased_Descend() &&

19 Own_Above_Threat();

20 Modification: need_downward_RA = false;

21 if (need_upward_RA && need_downward_RA)

22 alt_sep = UNRESOLVED;

23 else if (need_upward_RA)

24 alt_sep = UPWARD_RA;

25 else if(need_upward_RA)

26
27 alt_sep = DOWNWARD_RA;

28 else

29 alt_sep = UNRESOLVED;

30 }

31
32 return alt_sep;

33 }

Listing 5.4. First repair for Tcas

The eight repair candidates are shown in Table 5.9. All of these repair candidates
replaces the bold line in Listing 5.4. The PPD of all these results are small and quite similar.
This shows that most all possible scenarios outcome stays the same for all repair candidates.
The best repair candidate seems to be repair candidate 3. Unfortunately the results can not
be evaluated like the case studies before. Like the evaluation before 5000 random test cases
have been created which pass the original project. But for every repair candidate these

44



5.3. Repairing a Lager Version of TCAS

5000 random test cases pass, too. The same results by crating 10000 random test cases.
Though to the fact that Tcas is a safety function which seldom gives an other return value
as 0, almost all of the possible scenarios return 0.

Table 5.9. Repair candidates for first the mutation with their PPD

# generated repair candidates
normalized
PPD

1

(NO_INTENT == OLEV) || (!(((Up_Separation) !=
(Own_Tracked_Alt_Rate - Down_Separation +
Own_Tracked_Alt_Rate - Down_Separation)) &&
(NOZCROSS <Own_Tracked_Alt_Rate - Down_Separation)))

0.1640624999450768

2
(!((Alt_Layer_Value) != (MINSEP + NOZCROSS - Up_Separation)))
&& (Positive_RA_Alt_Thresh!=null)

0.17013888901146826

3
((Other_Capability == Alt_Layer_Value) ||
(!(Own_Tracked_Alt <= Alt_Layer_Value))) &&
((Up_Separation - MINSEP + Own_Tracked_Alt) != (NOZCROSS))

0.16102430572421675

4 (MINSEP == Up_Separation - NOZCROSS) || (1 <= -1) 0.17013888901146826
5 !(((0) != (Other_Tracked_Alt)) || (Up_Separation <NOZCROSS + MINSEP)) 0.1631944446322301

6
(Cur_Vertical_Sep + NOZCROSS <= TCAS_TA) ||
(!((NOZCROSS) != (Up_Separation - MINSEP)))

0.17013888901146826

7 Up_Separation == NOZCROSS + MINSEP 0.17013888901146826

8
(High_Confidence) && ((Positive_RA_Alt_Thresh.length
<= Own_Tracked_Alt) || (Up_Separation - OLEV + MINSEP == NOZCROSS))

0.1635199654844354

Second Example repair of a Tcas manipulation

The second repair process which is investigated is the repair of a manipulation of a branch
condition to always true as shown in Listing 5.5. By running the 69 test cases at the major
manipulation tool manipulated code, 33 out of the 69 test cases fail.
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1 private static boolean Non_Crossing_Biased_Descend() {

2 static int alt_sep_test(){

3 boolean enabled, tcas_equipped, intent_not_known;

4 boolean need_upward_RA, need_downward_RA;

5 int alt_sep;

6
7 enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) &&

8 (Cur_Vertical_Sep > MAXALTDIFF);

9 tcas_equipped = Other_Capability == TCAS_TA;

10 intent_not_known = Two_of_Three_Reports_Valid && Other_RAC == NO_INTENT;

11
12 alt_sep = UNRESOLVED;

13
14 if (enabled && ((tcas_equipped &&

15 intent_not_known) || !tcas_equipped)) {

16 need_upward_RA = Non_Crossing_Biased_Climb() &&

17 Own_Below_Threat();

18 need_downward_RA = Non_Crossing_Biased_Descend() &&

19 Own_Above_Threat();

20 if (need_upward_RA && need_downward_RA)

21
22 alt_sep = UNRESOLVED;

23 else if (need_upward_RA)

24 alt_sep = UPWARD_RA;

25 else if(need_upward_RA)}

26 MANIPULATION: else if(true)

27 alt_sep = DOWNWARD_RA;

28 else

29 alt_sep = UNRESOLVED;

30 }

31
32 return alt_sep;

33 }

Listing 5.5. Second repair of Tcas

The eight repair candidates which would replace the bold branch condition in Listing
5.5 are shown in Table 5.10. The PPD of all these results are very small and quite similar.
This shows that most all possible scenarios outcome stays the same for all repair candidates.
The best repair candidate seems to be repair candidate number 7 because this candidate
leads to the smallest PPD. Like discussed during the evaluation of the first Tcas repair,
these results can not be evaluated by creating a huge amount of random test cases. But
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trough the evaluation of the PPD in Chapter 5.2 it can be expected that the results are
correct.

Table 5.10. Repair candidates for first the mutation with their PPD

# generated repair candidates
normalized
PPD

1
(NOZCROSS == Up_Separation - MINSEP) || (!((Up_Separation
- MINSEP + NOTPOSSIBLE) != (-1)))

0.16362847233217026

2
(Up_Separation == MINSEP) || (!((Up_Separation) !=
(MINSEP + NOZCROSS)))

0.16362847233217026

3
(Up_Separation == MINSEP) || ((!((Up_Separation) !=
(MINSEP + NOZCROSS))) && (!((Up_Separation) !=
(MINSEP + NOZCROSS))))

0.16362847233217026

4
(!((Up_Separation - MINSEP) != (NOZCROSS))) ||
(MINSEP == Up_Separation)

0.16362847233217026

5
(NOTPOSSIBLE <Up_Separation - MINSEP) &&
((NOZCROSS == Up_Separation - MINSEP) ||
(Up_Separation <= MINSEP))

0.14973958199172768

6
((High_Confidence) &&
(!((NOZCROSS + OLEV - Up_Separation) !=
(MINSEP)))) || (MINSEP == Up_Separation)

0.16362847233904199

7
((Up_Separation <= MINSEP) ||
(Up_Separation - MINSEP == NOZCROSS)) &&
((Other_Tracked_Alt) != (Own_Tracked_Alt))

0.13031683892323714

8
((!((NO_INTENT) != (NOZCROSS - Up_Separation + MINSEP))) &&
(((tcas_equipped && intent_not_known) || (!tcas_equipped)))) ||
(NOZCROSS - Up_Separation + MINSEP == NOZCROSS)

0.16362847233217026

5.4 Quality of Repair

The quality of the repairs which are created at the Tcas example of Chapter 5.3 seems to
be at most of the times not meaningful. This is caused by the problem every test base
automatic program repair approach has to face. The only information which can be used
to create repairs are based on the knowledge available form test cases. The result of test
based automatic software repair approaches is not a repaired project but a project where
the given test cases pass. The approach which is proposed in this thesis does not affect the
creating of repairs but the ranking of repair candidates. Therefore this issue can not be
solved by neither the proposed PPD metric or the implemented extension of Nopol. With
the PPD metric the quality in terms of affecting scenarios which are part of the test suite is
improved. As a next step the quality in terms of meaningful fixes should be address to
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improve automatic software repair.
The quality and amount of the test cases which are used during the automatic repair
process affects directly the quality of the created repair candidates. A low test case coverage
leads to a bad repair because only a low amount of scenarios are covered with such a
test suite. A high amount of test cases leads to restrictions during the creation of repair
candidates which are too strict. This problem was discovered in [Qi et al., 2015] and also
observed during the the evaluation of ProRepair.
With the huge dependencies between the results of test based automatic software repair
and the test cases which are used for finding the bug and evaluating the repair, a good
choice of test cases is important. The use of other test cases could therefore lead to other
results.
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Chapter 6

Conclusions and Future Work

This chapter presents some concluding remarks on the results of this thesis and sketches
some directions for future work.

6.1 Conclusions

The thesis started with an overview over state of the art automatic software repair ap-
proaches. An analysis of those approaches in terms of success rate and quality of the
created repairs has been discussed. Neither of the two criteria is fully satisfied by current
approaches.

Most of the current automatic software repair approaches use a given set of test cases
as oracle to assess the correctness of the program. However, such test cases can provide, in
general, only a partial specification of the program behavior. First, most of the possible
execution paths of the program are usually uncovered; second, they do not provide enough
information to quantify the impact of a repair on the behavior of the program, apart from
checking whether or not all the tests pass.

In this thesis, Path Probability Delta (PPD), a new metric of the behavioral discrepancy
between two software versions, is proposed in order to evaluate the impact a program
repair has on all the possible execution paths of a program. PPD can be quantified
using probabilistic symbolic execution. A repair candidate with a lower PPD is usually
preferable than a repair candidate with a higher PPD because, besides passing all the tests,
it has the minimal impact on the other behaviors of the the program, thus preserving its
functionalities.

PPD is used to improve the test-based automatic software repair tool Nopol. ProRepair,
the proposed extension of Nopol, uses PPD to choose the best repair candidate, therefore
improving the quality of the created repair.

The evaluation performed for this thesis, showed that PPD is effective in quantifying
the discrepancy of between the behaviors of the original program and the repaired one,
allowing ProRepair to produce better repairs than Nopol. The cost of this improved quality
is in terms of execution time, with ProRepair requiring the to quantify the PPD metric for
all the repair candidates produced by Nopol.
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6.2 Future Work

There are several aspect worth to be investigated in the future. The new defined path
probability delta (PPD) metric could be used as a new aspect in benchmarking automatic
software repair approach. This would help to evaluate the quality of the generated repairs.

This thesis implemented PPD quantification on top of Nopol. However, many more
tools for test-based automatic software repair could be improved with the use of PPD.
Furthermore, PPD can be used to define the fitness function employed by evolutionary
approaches for automatic software repair, like GenProg. In this case, the tool may look
directly for solutions that not only pass the available test cases but also induce the smallest
behavioral discrepancy.

In its current version, PPD does not support the deletion of a branch (which is not an
option for the repair candidates generated by Nopol). It would however be straightforward
to extend it to handle deleted branches. For example, if a nested branch is deleted, some
new measurement points can be inserted into the code and used to compare the behavior
of the different (repaired) versions of the program.

ProRepair could be further improved by collecting repair candidates generated by more
than one tool. For example, consider the Tcas snippet reported in Chapter 3. Nopol’s repair
approach is to change the condition bias ą down_sep to up_sep! = 0. As discussed is the
repair created by SemFix is better compared to the Nopol repair. A better fix would be a
condition that includes at least one parameter that is part of the original branch condition
like bias ą up_sep + 100. This repair is similar to the SemFix repair and would affect less
scenarios which are not covered by the test cases .

Finally, being based on probabilistic symbolic execution, the computation of PPD is
currently limited by the ability of this technique of handling complex constraints. The
development of probabilistic symbolic execution will directly extend the applicability of
the proposed approach to more complex software.
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