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1 Introduction

Finding synonyms is a very interesting and important task in natural lan-

guage processing (NLP). Synonyms possess a number of different application

areas. The creation of Thesauri (Lin et al. (2003)) springs to mind. Synonyms

are also useful in automatic machine translation (Carbonell et al. (2006)).

Furthermore they are not only useful in the creation but also in the evalua-

tion process of automatic machine translations since they can help recognize

different, equally correct, translations of a given word or sentence like for

example ”to drive” and ”to ride” for the German word ”fahren” (Lavie and

Denkowski (2009)).

This thesis will focus on the extraction of synonyms for German nouns, ad-

jectives and verbs. The presented method is based on Bannard and Callison-

Burch (2005). The basic idea is to take a set of German words and first

translate them into English pivots. In a second step the English pivots found

in the earlier step are then re-translated into German words. The words re-

trieved in this second step are synonym candidates for the initial German

word. During the steps a translation probability count is kept between the

original word, the pivots and the synonym candidates. These probabilities

are used to calculate a synonym probability in order to allow the candidates

to be ranked. In a last step, the obtained synonym candidates are re-ranked

using two different distributional semantic measures, one, using a new ap-

proach, by trying to filter out hypernyms, the other trying to measure the

similarity of the synonym candidate and the target word. The results are

then checked against a gold standard obtained by the German Dictionary’s

website Duden1.

1 http://www.duden.de
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2 Related Work

The underlying idea in this thesis is mainly based on Bannard and Callison-

Burch (2005). They were the first ones trying to extract synonym candidates

using a multilingual parallel corpus and SMT-techniques. Their idea is to

translate a target word into different pivots of another language and then

re-translate those pivots into synonym candidates for the target word. Other

papers dealing with this topic include Wittmann et al. (2014). They also

use the approach of Bannard and Callison-Burch (2005) however they fo-

cus on particle verbs in particular. Furthermore they try to improve their

results using different re-ranking strategies, which will also be done in this

thesis. Other work regarding the automatic extraction of synonyms mainly

focuses on using monolingual corpora. For example Barzilay and Lee (2003)

use comparable monolingual corpora, in their case articles, written by differ-

ent newswire agencies, about the same topic. Barzilay and McKeown (2001)

use a monolingual parallel corpus, specifically various English translations of

a foreign text.

Another field of research which is of interest for this thesis is distributional

semantics, especially the recognition of hypernyms in contrast to synonyms.

A lot of research has been done on the field of hypernym identification using

distributional semantics. Lenci and Benotto (2012) have tested several direc-

tional similarity measures in order to identify hypernyms. These methods rely

on the asymmetrical relationship between a hypernym and the hyponyms.

The hypernym possesses an overall broader meaning semantically, which is

not included in the hyponym. Among the methods investigated by them

is the one used in this thesis which has been created by Weeds and Weir

(2003), the so called ”weedsPrecision value”, which measures the inclusion

of the features of one term t1 within another term t2.
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3 Data

In order to obtain satisfying synonym candidates it is important to use the

right datasets, meaning a suitable multilingual parallel corpus and sets of

target words. The goal of this thesis is the extraction of synonyms of a variety

of different word classes (see 3.2). Since, in this case, the objective is to

retrieve general language synonyms, the context, language and words used

in the parallel corpus should preferably be very general and not use special

terminology. If the context of a dataset is too specialized this could lead to

a distortion of the extracted synonyms towards this topic. For example in

a medical context the word ”heart” will most likely be linked to an organ

whereas in a lyrical context the same word might also be interpreted as a

symbol of love. Clearly these two different interpretations will lead to different

synonyms which is why the parallel corpus should be as general as possible

in order to not alter the results.

3.1 Parallel Corpus

The bilingual parallel corpus used in this thesis consists of the Europarl

corpus v7 (Koehn (2005)) extracted from the proceedings of the European

Parliament. In its newest version the corpus consists of over 60 million words

in each language. Besides the two languages, German and English, used in

this case, the corpus also contains the translations of 19 other languages.

(French, Italian, Spanish, Portuguese, Romanian, Dutch, Danish, Swedish,

Bulgarian, Czech, Polish, Slovak, Slovene, Finnish, Hungarian, Estonian, Lat-

vian, Lithuanian and Greek). Other parts of the corpus used in the thesis

consist of the News Commentary v10 corpus and the Common Crawl Corpus,

consisting of crawled webpages. The corpus meets the requirements as it offers

bilingual sentence-aligned translations in German and English. Furthermore

the nature of the European Parliament, news and webcrawling suggests that

the texts used will not all be specialized toward one context. While overall
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Figure 1: Top 20 Tokens nouns, adjectives, verbs from left to right

the political and European nature of part of the corpus’ origin is quite obvi-

ous, for example ”European”, ”political”, ”parliament” or ”commission” are

amongst the most common words, the overall bandwidth and comprehen-

siveness discussed in the European Parliament mixed with the other corpora

leads to a rather mixed use of language. Therefore it can be concluded that

overall the corpus represents a language general enough to achieve satisfy-

ing results. Furthermore the corpus offers the sentence alignment required

to apply the SMT-methods required to create English pivots and German

re-translations.

3.2 Target Sets

To extract synonym candidates, appropriate target word sets have to be

created. To ensure precision comparability and evaluability several target

sets are built. Each set contains a predetermined, fixed amount of words. The

words in the target sets are the German target words which will later be used

to extract synonym candidates. This thesis focuses on synonyms for German
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nouns (e.g. ”Tisch - table”), attributive adjectives (e.g. ”das große Haus -

the big house”), and full verbs (e.g. ”komm! - come!”, ”gehen - to go”, ”wir

kommen an - we are arriving”) (Schiller et al. (1995)). Overall three target

synonym sets are created with each set only containing either lemmatized

nouns (NN), lemmatized attributive adjectives (ADJA) or lemmatized full

verbs (VV). Each set contains 300 words evenly distributed between 100

high, 100 medium and 100 low frequency words regarding the number of

their appearances in the original text. In this case words will be considered

highly frequent if their token count is within the top 25% of the word class,

medium appearing if their word count is in the top 50-25% and as low if

the word count is below the top 50%. In order to avoid very uncommon or

nonsensical words, the low frequency words are also required to appear at

least twelve times in the text. Figure 1 shows the 20 tokens with highest

frequency count found in the German Europarl corpus used to create the

test sets.

As shown in Table 1 there are far more different nouns than full verbs or

attributive adjectives with roughly 40000 eligible nouns and less than 25%

of that amount for verbs and adjectives. Regarding the distribution though,

there appear to be far more nouns with a lower token count thus lowering the

25% and 50% frequency threshold significantly in comparison to the verbs

and adjectives. Another aspect regarded in the creation of the test sets is

to ensure to have a reliable way to later compare the extracted synonym

candidates. For the sake of achieving this comparability all words in the

target sets are required to have at least a certain amount (one test set with

at least two ”Duden synonyms” and one with at least ten ”Duden synonyms”)

of synonyms on Duden, the source used to find the gold standard synonyms

the results will later be checked against in this thesis. The different test

sets regarding the minimum amount of ”Duden synonyms” are created in

the hope of observing differences in the precision rate of the highest ranked

synonym candidate when checked against the gold standard.

Overall this leads to six different test sets all containing 300 target words
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Token count Token count >12 Max. Token count >25% Threshold >50% Threshold

NN 145,972 42,732 179,830 1,747 131

VV 10,026 5,708 167,013 6,266 775

ADJA 20,801 9,229 290,700 2,858 2,292

Table 1: The amount and distribution of the token counts of the German

Europarl corpus

for synonym extraction ordered by word class to ensure comparability of the

differences between word classes in synonym extraction.

4 Statistical Machine Translation

Since the basic idea of synonym extraction in this thesis requires a word to

be translated from its source language (in this case German) into a target

language (here English) and to then re-translate the pivots found in the

first translation step, it is crucial to use a reliable and accurate method of

translating words into different languages.

Already in 1949, Warren Weaver, an American mathematican, proposed to

use cryptoanalytic and statistical methods from communication theory in

order to solve the problem of computer based text translation (Brown et al.

(1993)). Warren’s idea proved to be too complex for the computational power

of the 1950s and 60s but the significance of translation problems in NLP and

the ongoing development of computer power lead to further research on the

topic. One result of this research is Statistical Machine Translation (SMT),

which treats translations as a machine learning problem using large parallel

corpora (as the one described in chapter 3) to create translations (Lopez

(2008)).

4.1 Definition

We are given a string f in the source language F with vocabulary VF . We

now transform f into another string e of the target language E with vocab-
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Figure 2: Translationally equivalent sentences in German and English

Figure 3: Translationally equivalent sentences in German and English with

word alignment

ulary VE. In order to be able to translate sentences from language F into

language E our goal is to transform a string f = f1, f2, f3, . . . , fm; fx ∈ VF

into e = e1, e2, e3, . . . , el; ex ∈ VE with f and e being translationally equiva-

lent (Lopez (2008)).

Figure 2 shows a German sentence and a translationally equal English sen-

tence. As depicted in Figure 3 it is possible to form pairs of German and

English words which are translations of each other. These words within the

sentences are called aligned words. This allows us to break down transla-

tional equivalence into a number of smaller word equivalence problems (Lopez

(2008); Koehn (2009)).

4.2 Alignment

Brown et al. (1993) introduced five different models (IBM Model 1-5), each

of them assigning a probability to all of the possible word alignments be-

tween two translationally equivalent sentences. Equivalent to the description

in section 4.1 the overall goal in this paper is to assign a probability to each
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Figure 4: Example of a word alignment with independent English words used

by Brown et al. (1993)

Figure 5: Example of a word alignment with independent French words used

by Brown et al. (1993)

Figure 6: Example of a general word alignment used by Brown et al. (1993)
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pair of strings (f, e) consisting of a given string f in source language F (here

French) and all possible strings e in target language E (here English). Brown

et al. (1993) define Pr(e|f) as the likelihood of e being a correct translation

of f . Now the goal is to find ê with Pr(ê|f) = max. Using Bayes’ Theorem:

Pr(e|f) =
Pr(e) · Pr(f |e)

Pr(f)

Since Pr(f) is independent of e in order to maximize Pr(e|f) it is sufficient

to maximize the numerator of the fraction to find ê:

ê = argmax
e

Pr(e) · Pr(f |e)

Brown et al. (1993) state that computing the language model probability

Pr(e) has been dealt with in other contexts (for example by Maltese and

Mancini (1992)) so they focus on computing Pr(f |e) the so called translation

model probability. To calculate this probability word alignments as described

in section 4.1 are used. Brown et al. (1993) describe three different possible

alignment types. Type one is shown in Figure 4. Here every word in f of the

source language French is connected to exactly one word in e of the target

language English. In Figure 5 at least one word in f is linked to more than

one word in e. Figure 6 shows a more general case in which several words in

f are connected to several words in f .

The amount of possible alignments sums up as follows. With |f | = m, |e| = l

there are lm possible connections to be drawn between words in f and in

e. Overall this leads to 2lm different possible alignments of (f |e) = A(e, f).

Brown et al. (1993) describe five different models, each capable of computing

Pr(f |e) more or less precisely. The underlying idea of each of the five models

is to calculate Pr(f |e) as the sum of conditional probabilities Pr(f, a|e)

Pr(f |e) =
∑

a∈A(e,f)

Pr(f, a|e)

Under the restriction of alignments only in the form depicted in Figure 4,

where each French word is linked to either exactly no or exactly one English

13



Parallel Corpus #Tokens IBM Model 4 Log-linear

Chinese-English 17.6M 2.7 0.2

French-English 117M 17.2 1.7

Arabic-English 368M 63.2 6.0

Table 2: The time required (hours) to train alignment models in one direction

according to Dyer et al. (2013)

word the alignment a between fm
1 = f1, f2, f3, . . . , fm and el1 = e1, e2, e3, . . . , el

can be described as am1 = a1, a2, a3, . . . , am; ax ∈ (0, l), ax ∈ N. In this case

for a value ai, i represents the position in f , and ai represents the position

the word is aligned to in e. If ai = 0 the word is not aligned to any word in e

at all. Now, without loss of generality a possible representation of Pr(f, a|e)
is (Brown et al. (1993)):

Pr(f, a|e) = Pr(m|e)
m∏
j=1

Pr(aj|aj−11 , f j−1
1 ,m, e) Pr(fj|aj−11 , f j−1

1 ,m, e)

All five models have different calculation processes of Pr(f, a|e) each factoring

in different factors within f and e. Models 1 and 2 both assume the length of

the French string m to be equally distributed between all reasonable lengths

regarding e and l. Contrary to Model 1, Model 2 assumes the connection

probability between two words in f, e to depend on the positions of the

words within the strings and l,m. This leads to Pr(f |e) being dependent on

the word order in f and e (Brown et al. (1993)). Models 3, 4 and 5 on the

other hand try to estimate m by choosing the number of French words each

English word in e will be connected to. The alignment tool used in this thesis

is based on Model 2.

4.3 Fast Align

In search of a simple, effective and well scaling word alignment model Dyer

et al. (2013) have presented their version of Brown et al. (1993)’s IBM Model

14



Model FR-EN ZH-EN

IBM-Model 1 EM 29.0 56.2

IBM-Model 2 EM 21.4 53.3

IBM-Model 4 EM 10.4 46.5

log-linear EM 18.5 45.4

log-linear ∼Dir 16.6 44.1

IBM-Model 1 ∼ Dir 26.6 53.6

Table 3: The alignment error rate (AER) as described by Dyer et al. (2013).

Lowest is best. EM standing for expectation maximization, ∼Dir for varia-

tional Bayes

Parallel Corpus IBM Model 4 Log-linear

Chinese-English 34.1 34.7

French-English 27.4 27.7

Arabic-English 54.5 55.7

Table 4: Translation quality (BLEU) according to Dyer et al. (2013). Highest

is best.

2. Model 2 was chosen since both IBM Model 1 and 2 support exact inference

in Θ(|f | · |e|) (Dyer et al. (2013)). Thus both Models are still widely used

in task such as rapid large scale experimentation or parallel data mining.

According to Dyer et al. (2013) both IBM Models are suboptimal. As men-

tioned in section 4.2 Model 1 does not pay attention to the word order in f, e

which proves to be a problematic assumption. Model 2 on the other hand

factors in the alignment structures but is overparameterized, which leads to

overfitting. By creating a simple log-linear reparameterization of IBM Model

2 (Dyer et al. (2013)) that outperforms the more sophisticated IBM Model 4

on three large-scale translation tasks, while training the model is consistently

ten times faster, Dyer et al. (2013) have created a highly potent and useful

tool for a lot of different word alignment tasks, like this one. As depicted
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in Table 2 the time required to train the alignment models in one direction

is roughly 10% of the time taken by IBM Model 4. Furthermore Dyer et al.

(2013) use different standards to measure the quality of their model. Table 3

shows the alignment error rate, a combination of precision and recall, re-

quiring a perfect alignment to possess all of the ”required” alignments while

perhaps containing some of the ”possible” ones (Koehn (2009), Mihalcea and

Pedersen (2003)). Here IBM Model 4 and the log-linear Model perform quite

equally with one test-set and evaluation method (French-English, expectation

maximization) favoring Model 4 and the other (Chinese-English, variational

Bayes) favoring the log-linear Model. Another metric used in order to mea-

sure the translation quality is the bilingual evaluation understudy (BLEU).

BLEU compares the machine’s output to that of a human. The closer the

mechanical output, the higher its quality (Papineni et al. (2002)). BLEU uses

a modified precision value, limiting the maximum amount of appearances of

a word in the translation candidate to the number of appearances in the ref-

erence translation. Table 4 shows how Dyer et al. (2013)’s log-linear Model

outscores Brown et al. (1993)’s Model 4 in all three test cases.

5 Synonym Extraction

As already mentioned the essential idea of this thesis is based on the method

described by Bannard and Callison-Burch (2005). The first step is to take

the translations, suggested by word alignment, of a German target word. The

English translations of this word act as pivots. In the second step the pivots

found are re-translated to German via word alignment. The synonym candi-

date set of the initial word now consists of all the re-translations gathered in

the second step. This process is illustrated in Figure 7. In this example the

German verb ”essen” (”to eat”) is translated into three English pivots, ”to

eat”, ”to dine” and ”to consume”. The re-translations of these pivots now

lead to eight different German synonym candidates for the word ”essen”. In a

later step, these synonym candidates will be ranked according to a synonym
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Figure 7: Illustration on how to obtain synonym candidates via translation

and re-translation.

probability (see section 5.4).

5.1 Data Preprocessing

Using the word-alignment tools described in section 4 it is important to pre-

process the input data in order to improve the alignment quality. Wittmann

et al. (2014) propose to preprocess the input data in order to achieve the high-

est precision rates for synonym candidates. The best combinations achieved

by Wittmann et al. (2014) consist of (partially) lemmatized German words

and inflected English words. They conclude that in English the information,

for example number on nouns and third-person marking on verbs, provided

by inflection are useful for the overall quality of the alignment. This is not the

17



Figure 8: German and its corresponding English sentence taken from the

Europarl data set.

case for the morphologically more complex German with information such as

number, gender, case, strong/weak inflection on nominal phrases and richer

verbal inflection (Wittmann et al. (2014)). Since they are only interested in

the extraction of synonyms for particle verbs they have also tested the effect

of only lemmatizing the German particle verbs, especially trying to combine

multi-word particle verbs into single word particle verbs, with good results.

However since this thesis focuses on a broader spectrum of words the whole

German part of the parallel corpus is lemmatized.

The tool used for lemmatization and tagging is the tree tagger. The tree

tagger is a tagger based on decision trees rather than on Markov models,

leading to very exact results (Schmid (1994), Schmid (1999)).

5.2 Dictionary Creation

At first, two word dictionaries, German-English and English-German, are

created using the alignment file output by the fast align tool. The alignment

file consists of rows of data pairs. The i-th row contains the word alignment

pairs for the i-th sentence in the source and target language. Figure 8 depicts

the 13th sentences of the parallel corpus. Each word alignment is represented

by two numbers (n − m), with n indicating the n-th word in the sentence

of the source language and m the m-th word in the sentence of the target

language. An example is depicted in Figure 9. Figure 10 illustrates the word

alignments shown in Figure 8 and Figure 9.

The creation of the German-English dictionary proceeds as follows. First,

18



Figure 9: The alignment created for Figure 8 by fast-align.

Figure 10: Illustration of the allignment shown in Figure 9.

all words within the German part of the text are linked to their appear-

ances within each sentence. For example if the string s appears a total

amount of four times in the parallel corpus in sentences i, j, k, l and within

each of these four sentences s is the (zero based) si, sj, sk, sl word then

s→ {(i, si), (j, sj), (k, sk), (l, sl)}.
Now, using the word appearance map s→ {(x1, sx1), (x2, sx2), . . . , (xn, sxn)}
the rows x1, x2, . . . , xn of the alignment file are searched for pairs (sxk

−m).

These pairs indicate that the m-th word in the English sentence xk is a

translation, or part of a translation of s. To prevent nonsense or overly long

translations the amount of appearances of sxk
within the alignment file in

row xk is limited to a maximum of three in the German-English dictionary.

In the English-German dictionary, in order to only obtain single word syn-

onym candidates, the maximum is limited to one. Furthermore a given set of

stop words is filtered out of the dictionary in this step. The English-German

dictionary is created in the same fashion. This now leaves us with two dic-

tionaries each containing all German or English words within the Europarl

dataset and their respective translations into the other language according to

the word alignment. A depiction of the whole process is shown in Figure 11.
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Figure 11: Illustration of the dictionary creation process.

5.3 Extraction

In order to keep the file size within reasonable boundaries (about 1 GB)

both dictionaries are not combined into one large German-German ”syn-

onym candidate dictionary” but are kept apart and then used to extract

only the synonym candidates required. As already mentioned, overall this

leads to six different extraction processes due to the six target lists created.

The extraction process works in a linear fashion. First the target list is read.

Then, looking at the German-English dictionary all English translations of

the words are gathered (see pivots). In a second step, the pivots are in-

serted into the English-German dictionary. The respective translations are

now mapped to the original target words, resulting in a (long) list of synonym

candidates.

5.4 Probabilities and Ranking

Being presented a large amount of synonym candidates for each target word

it is necessary to rank them according to their likelihood of actually being
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Figure 12: (Partial) extension of Figure 7 showing the calculation of the

synonym probability. If a candidate word appears more than once, its part

of the whole synonym probability sum is highlighted in red.

a valid synonym. Using the same method as Bannard and Callison-Burch

(2005) the synonym probability p(e2|e1), e1 6= e2 of a synonym candidate e2

given a target word e1 is defined as follows.

p(e2|e1) =
n∑

i=1

p(fi|e1) · p(e2|fi)

With fi representing an English pivot. Therefore the synonym probability is

the sum over all pivots f1, f2, . . . , fn with each summand consisting of two

probabilities. The first one is the pivot probability p(fi|e1) representing the

likelihood of a pivot fi being a translation of the German target word e1.

The second probability is the so called return probability p(e2|fi), describing

the chance of the German phrase e2 being a translation of the English pivot

fi. To calculate the translation probabilities relative frequencies obtained

from the word alignment within the parallel corpus are used. An example

illustrating the process of calculating the synonym probability is shown in

Figure 12. Here the translation probabilities of the English pivots ”to eat”
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and ”to dine” of the German word ”essen (to eat)” are multiplied with the

re-translation probabilities of their respective re-translations into German.

The obtained values of same words, in this case of ”speisen (to dine)” are

added. This leads to three synonym probability values for the three synonym

candidates.

6 Re-ranking

In the hope of improving the synonym extraction two re-ranking methods

are implemented and investigated. Both re-ranking features rely on a vec-

tor space model in order to calculate the connections between the target

words and their synonym candidates. In this case the data needed to create

a reliable vector space model is taken from the DECOW 14ax web corpus

(Schaefer and Bildhauer (2012), Schaefer (2015)). This corpus consists of over

11,660,000,000 tokens extracted mainly from websites with top-level domains

de, at or ch. If a target word is not contained within the DECOW corpus, the

word will be dropped and not be taken into consideration when calculating

the precision values. If however a synonym candidate does not appear in the

corpus, the corresponding target word will still remain in the calculation, but

the synonym candidate will be dropped from the candidate list.

6.1 Weeds Precision

The first re-ranking feature relies on identifying hypernyms and ranking them

lower in the candidates list, since hypernyms obviously are no synonyms and

are regularly produced as synonym candidates using SMT-based synonym

extraction methods. The hypernym identification method used here relies on

using a directional (or asymmetrical) similarity measure, since hypernymy is

an asymmetrical relation between words, with the hypernym beeing semanti-

cally broader than its hyponym (Lenci and Benotto (2012)). The directional

similarity measure used in this thesis is called ”weedsPrecision” (Weeds and
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Weir (2003), Weeds et al. (2004) and Kotlerman et al. (2010)). In order to

calculate ”weedsPrecision” we are given two terms u, v. Fu, Fv are the sets

of distributional features in their vector space model representation with

wu(fu), wv(fv); fu ∈ Fu, fv ∈ Fv being the weights of the features. The pre-

cision is now defined as follows:

weedsPrecision(u, v) =

∑
f∈(Fu∩Fv)

wu(f)∑
f∈Fu

wu(f)

Since the goal is to decrease the likelihood of a hypernym being regarded

as a synonym candidate, the list of synonym candidates is re-ranked in the

following way. The top 100 synonym candidates according to synonym prob-

ability are extracted as described in section 5. Each synonym probability

value p(e2|e1) of a pair of target word e1 and synonym candidate e2 is now

multiplied by 1−weedsPrec(e1, e2) which leads to a new synonym probability.

pweeds(e2, e1) = p(e2|e1) · (1− weedsPrec(e1, e2))

For example, looking again at Figure 12, if weedsPrec(speisen, essen) = 0.8

and weedsPrec(fressen, essen) = 0.1 the synonym probability p(speisen|essen) =

0.75·0.75+0.5·0.25 = 0.6875 will now be changed to pweeds(speisen, essen) =

0.6875·(1−0.8) = 0.1375 whereas pweeds(fressen, essen) = 0.75·0.25·(1−0.1) =

0.16875. This would then result in an actual re-ranking of the synonym can-

didate list, with ”fressen” now being a higher ranked synonym candidate

than ”speisen”.

6.2 Cosine Similarity

The second re-ranking feature implemented tries to re-rank the list according

to the similarity of the two vectors representing a pair of target word and

synonym candidate. This is possible due to the high semantical similarity

between synonyms, resulting in high similarity of the vectors. To calculate

the similarity of the two vectors the angle between both vectors using the

cosine similarity value is calculated. Two terms, represented by their vectors,
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are considered as equal if their angle is close to 0◦, and thus their cosine value

is close to one. On the other hand two vectors are considered semantically

different if their angle is close to 90◦, leading to a cosine value close to zero.

The cosine value of two terms u, v with their sets of distributional features

Fu, Fv and their weights wu(fu), wv(fv), fu ∈ Fu, fv ∈ Fv is calculated as

follows:

cosineSimilarity(u, v) =

∑
f∈(Fu∩Fv)

wu(f) · wv(f)√∑
f∈Fu

wu(f)2 ·
√∑

f∈Fv
wv(f)2

In this case the goal is to rank synonym candidates higher, if their ”cosi-

neSimilarity” value with the target word is high. Therefore the synonym

probability value is multiplied by the cosine similarity value, leaving us with

the new synonym probability:

pcosine(e2, e1) = p(e2|e1) · cosineSimilarity(e1, e2)

Again, the top 100 candidates are re-ranked in the following manner. Given

a target word e1 and a synonym candidate e2 with cosineSimilarity(e1, e2)

and a synonym probability p(e2|e1) the new probability calculates as follows:

pcosine(e2, e1) = p(e2|e1) · cosineSimilarity(e1, e2). Exemplary (see Figure 12

again), for cosineValue(essen, speisen) = 0.9 and cosineValue(essen, fressen) =

0.7 both original synonym probabilities would be changed in the following

way. pcosineSimiliarity(speisen, essen) = 0.6875·0.9 = 0.61875 and pcosineSimiliarity(fressen, essen) =

0.75 · 0.25 · 0.7 = 0.13125. In this case ”speisen” still would be the higher

ranked synonym candidate compared to ”fressen”.

7 Results

The results, both unfiltered and re-ranked, are investigated regarding the

precision of valid synonyms extracted (see section 7.1).
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2 Synonyms 10 Synonyms

Precision at 1 Precision at 1 Precision at 5 Precision at 10 highest Precision at 5 highest Precision at 10

ADJA 57% 62% 42% 33% 100% 90%

NN 37% 48% 33% 25% 100% 80%

VV 44% 44% 32% 25% 100% 90%

Table 5: Average precision rates of the different word categories when com-

pared to the gold standard.

7.1 Gold Standard

In order to calculate the precision values a reliable gold standard containing

reasonable synonyms for the selected target words is required. As already

mentioned, in this case the online dictionary of Duden is used to determine

the validity of a given synonym candidate. A candidate will be regarded as

a valid synonym only if it also appears in the synonym section of the target

word at Duden. Furthermore the gold standard is already used in the creation

process of the target lists (see section 3.2) since valid target words within each

test set are required to contain at least two respectively ten synonyms in the

gold standard.

7.2 Unfiltered

Table 5 shows the average precision values when comparing the top unfil-

tered synonym candidates. To ensure a sufficient number of (gold standard)

”Duden synonyms” is available for each target word, a distinction is made

between the target sets requiring a minimum of two ”Duden synonyms” and

the ones containing target words with at least ten ”Duden synonyms”. Tar-

get words contained in the minimum two ”Duden synonym” sets are only

checked for the precision at one. This means only the highest rated synonym

candidate (with regard to synonym probability) is taken into account. This

leads to a precision value of either zero, if the top candidate is not contained

in the gold standard or one, if the candidate is in the gold standard. Target

words contained in the at least ten ”Duden synonyms” sets are furthermore
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2 Synonyms 10 Synonyms

Precision at 1 Precision at 1 Precision at 5 Precision at 10

ADJA low 51% 56% 38% 27%

ADJA medium 62% 71% 45% 36%

ADJA high 57% 59% 45% 37%

NN low 24% 40% 22% 15%

NN medium 40% 52% 36% 27%

NN high 46% 53% 40% 32%

VV low 33% 37% 20% 16%

VV medium 54% 49% 34% 26%

VV high 44% 50% 41% 33%

Table 6: Average precision rates of the different word categories, subdivided

by the different frequences of the target words. Highest values in red.

checked for their precision at five and precision at ten. The overall average

precision values for the two ”Duden synonym” target sets range from 37%

for nouns (NN) over 44% for full verbs (VV) to 57% for attributive adjectives

(ADJA). When comparing these values to the precision at one values of the

target sets with at least ten ”Duden Synonyms” the values for ADJA (62%)

and VV (44%) have a rather small difference within a range of 5 percentage

points. However the difference between both NN values (49% for the ”at least

ten set”) is larger with 11 percentage points. Overall the synonym extrac-

tion seems to perform slightly better with words that have a higher overall

synonym count in the gold standard. This could be caused by the simple

fact that words that contain more synonyms in the gold standard are words

with an overall broader meaning and are semantically more likely to possess

synonyms. Furthermore the sheer chance of hitting one of at least ten words

is significantly higher than that of hitting one of at least two words.

When looking at the precision at five and precision at ten values the preci-

sion rates take a drop, however ADJAs still have the highest precision rate

(42% at five, 33% at ten) whereas both NN and VV have lower rates (NN

33%, VV 32% at five, both 25% at 10), indicating that only one fourth of
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the ten highest ranked synonym candidates are actual synonyms, according

to Duden. Overall the results suggest that without any re-ranking strategies

the extraction of attributive adjectives is more accurate than the extraction

of nouns or full verbs.

A further precision rate shown in Table 5 is the highest precision rate achieved

for one target word at five and ten synonyms respectively. While for five syn-

onyms each word category has at least one target word with a precision rate

of 100%, for ten synonyms no category reaches this value. Both ADJA and

VV have a maximum precision rate of 90%, meaning one of the ten highest

ranked synonym candidates according to synonyms probability is not a syn-

onym regarding the gold standard. NN has a maximum rate of 80% therefore

two synonym candidates are invalid synonyms according to Duden.

Table 6 shows the same precision values as described above, however each

word category is divided into three different categories. Each category con-

sists only of words that appear with a certain frequency within the text (see

section 3.2). The highest precision rate for each word category is highlighted

in the table. When having a closer look at the differences in precision rates

with regard to word frequency it seems like words that have a medium (top

25-50%) or high frequency (top 25%) perform significantly better than words

that appear with a low frequency (<50%) within the corpus. This difference

could be caused by the quality of the alignment and therefore the trans-

lation and re-translation process which is improved by a higher amount of

appearances. However the quality is not improved after a certain amount of

appearances, which is why there seems to be no difference between high and

medium frequency precision values. Especially the precision values of nomi-

nal nouns with a low frequency appear to be lower than expected. This could

be caused by the fact that overall there is a high amount of nouns with low

word counts thus lowering the <50% threshold significantly in comparison

to verbs and adjectives (see Table 1).

After manually evaluating the negative results there appear to be five main
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reasons that cause the extraction method to fail.

1. The ambiguous meaning of an English pivot.

The first and probably most common error produced by the synonym

extraction appears to be connected to the ambiguous nature of some of

the English pivots when being re-translated into German as depicted

in Figure 13.

2. Partial translations of compounds.

The second common mistake is illustrated in Figure 14. This kind of

error is caused by only partial translations of German compound words.

3. The context of the corpus leads to very specialized translations and

re-translations.

The third mistake is based on the context of the parallel corpus. As

already mentioned the goal is to extract general synonyms thus the

gold standard also contains general synonyms for the target words.

However the political domain of the corpus sometimes leads to synonym

candidates within a political or law context. This is shown in Figure 15.

4. Words can be considered as synonyms, however they do not appear in

the gold standard.

The fourth mistake observed regularly is the simple possibility of a

synonym candidate being a valid synonym of the target word, however

the word is not contained in the gold standard. Section 7.5 will cover

this problem more closely.

5. Words that share a relationship with the target words however they

are no synonyms (e.g. hypernyms, antonyms).

The fifth and final mistake shown in Figure 17 is created by synonym

candidates that share a semantical relation with the target word, how-

ever they are hypernyms, antonyms etc.
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Figure 13: False synonyms created by the ambiguity of the English pivots.

Figure 14: False synonyms created by partial translations of compound words.

Figure 15: False synonyms created by a too specialized context of the corpus.

Figure 16: False synonyms created by an incomplete gold standard.

Figure 17: False synonyms created by a wrong semantic relation. The top

example shows a hypernym, the bottom one an antonym.
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2 Synonyms 10 Synonyms

Precision at 1 Precision at 1 Precision at 5 Precision at 10 highest Precision at 5 highest Precision at 10

weeds 45% 46% 37% 32% 100% 90%
ADJA

unranked 57% 62% 42% 33% 100% 90%

weeds 22% 30% 24% 21% 100% 90%
NN

unranked 37% 48% 33% 25% 100% 80%

weeds 33% 32% 26% 23% 80% 80%
VV

unranked 44% 44% 32% 25% 100% 90%

Table 7: Average precision rates of the different word categories after re-

ranking using ”weedsPrecision value” compared to the unranked values.

7.3 Re-Ranked

In this section, the re-ranked results, both using ”weedsPrecision” and ”cosi-

neSimilarity”, are investigated similar to the unfiltered results. No target

words had to be filtered out since all of them appeared in the DECOW

corpus enabling the calculation of the required re-ranking values.

Table 7 shows the re-ranked precision using the ”weedsPrecision values”.

Obviously, re-ranking the synonym candidates did not have the desired effect

of improving the precision values for the synonym candidates. Even worse,

every single average precision value is significantly lower than its unranked

counterpart. Especially looking at the precision at one and at five values,

each is at least ten percentage points lower. When looking at the precision at

ten values, they are quite similar to the unranked values. This could indicate

that re-ranking using the ”weedsPrecision” value mainly re-orders the highest

ranked words however leaving them close within the top ten range, thus not

changing this precision value as drastically.

When manually evaluating the ”weedsPrecision values” there appear to be

two problems that lead to the unsatisfying results.

1. Valid synonyms achieve very high ”weedsPrecision values”.

2. Synonym candidates do not appear in the DECOW corpus and thus

are dropped from the candidate list.

Likely the first problem is the main issue with this method. When looking at
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2 Synonyms 10 Synonyms

Precision at 1 Precision at 1 Precision at 5 Precision at 10 highest Precision at 5 highest Precision at 10

cosine 56% 62% 42% 34% 100% 90%
ADJA

unranked 57% 62% 42% 33% 100% 90%

cosine 35% 49% 32% 25% 100% 90%
NN

unranked 37% 48% 33% 25% 100% 80%

cosine 40% 41% 30% 24% 100% 80%
VV

unranked 44% 44% 32% 25% 100% 90%

Table 8: Average precision rates of the different word categories after re-

ranking using ”cosineSimilarity value” compared to the unranked values.

the data, rather often valid synonyms appear to score very high ”weedsPreci-

sion values”. This fact leads to valid synonym candidates being down-ranked

and dropping out of the top one, top five or even top ten spot in the synonym

candidate list. To give an example, the target word ”hinreißend (gorgeous)”

has, according to Duden, the synonym ”atemberaubend (breath taking)”.

This word happens to be in the top five of the unranked synonym candidate

list. However it scores a ”weedsPrecision value” of over 0.9. This results in

the word ”atemberaubend” dropping from the third highest ranked synonym

candidate to the ninth highest, therefore dropping out of the top five. The

second problem appears to happen mainly to composite words since most of-

ten these are the words that do not appear in the DECOW corpus. Since each

of these words is filtered out some promising candidates drop out. For ex-

ample the target word ”Bonbon (bonbon)” contains the synonym candidate

”Hartkaramelle (hard caramel)”. However ”Hartkaramelle” does not appear

within the corpus and thus is erased from the list.

Table 8 shows the average precision values produced by re-ranking the syn-

onym candidates using ”cosineSimilarity values”. When comparing these val-

ues to the unranked ones they appear to be quite similar. Most values have

dropped by a few percentage points, while one has improved one point. This

indicates that re-ranking the list with ”cosineSimilarity values” does not seem

to have a big impact on the overall precision. This could be caused by a lack

of difference in the ”cosineSimilarity values” compared to the corresponding

synonym probability. While most high ranked (according to synonym proba-

bility) synonym candidates reach ”cosineSimiliarity values” of over 0.5 their
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Precision at 1 Precision at 5 Precision at 10 highest Precision at 5 highest Precision at 10

VV 44% 32% 25% 100% 90%

particle Verbs 57% 44% 35% 100% 80%

Table 9: Comparison of the full verb target set used in this paper and the

target set of particle verbs used by Wittmann et al. (2014)

synonym probability values often differ by the factor ten or even more. This

leads to less actual re-ranks than expected. Only some synonym candidates

with a very low ”cosineSimilarity value” drop out of the top one, top five or

top ten. However the negative side effects of viable solutions dropping out

due to their non appearance in the corpus described above also occurs here

since the same corpus is used to create the vector space model. Overall this

leads to results similar to the original one.

7.4 Particle Verbs

In this section the particle verbs used by Wittmann et al. (2014) are used to

extract further synonym candidates. By doing so, possibly a statement can be

made about their theory. These particle verbs consist of the top 500 particle

verbs of the DE-EN Europarl corpus regarding their frequency (minimum

frequency 15). Out of those particle verbs the ones with at least 30 synonyms

in Duden are taken into account. Overall this leads to 138 particle verbs.

In their paper, they conclude that extracting synonyms for particle verbs

is especially difficult since particle verbs often possess different meanings.

Table 9 shows the average precision of the full verb target list with at least

ten synonym candidates previously used in this thesis in the first row. The

second row shows the average precision values achieved by the 138 particle

verbs of Wittmann et al. (2014). Comparing these values the particle verbs

outscore the regular full verbs by over ten percentage points in precision at

one, at five and at ten. The highest precision values are rather similar, with

highest precision at ten being the only category where the full verbs have a

higher precision rate than the particle verbs.
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Looking at these results does not support Wittmann et al. (2014)’s theory.

However the circumstances under which both target lists have been created

are different. While the list created in this thesis only requires a target word

to have at least ten synonyms, the particle verbs are required to have at least

30. This difference could cause the discrepancy in the precision values, since

words with a high amount of synonyms are, mostly, common words, which as

described in section 7.2 improves the quality of the alignment and therefore

the overall quality of synonym extraction. Furthermore, as also described in

section 7.2, the sheer amount of available synonyms increases the likelihood

of a synonym candidate being valid.

7.5 Manual Evaluation

A possible problem mentioned in section 7.2 is connected to the nature of the

gold standard. Only words listed in the synonym section of Duden are consid-

ered actual synonyms. However due to the multifaceted nature of semantics

overall and synonyms in particular even a reliable source like Duden can not

list every valid synonym for a certain word. Therefore in order to investigate

the degree of this problem four native German speakers were asked to man-

ually evaluate a part of the retrieved results of this thesis. Out of every test

set, 25 synonym - synonym candidate pairs that are regarded as wrong were

chosen at random, equaling 150 overall pairs. Then the four native speakers

were asked to annotate whether, in their opinion, the pair is actually a non-

synonym pair or whether it consists of two synonyms. The annotators were

told to consider the different meanings a word can have regarding the context

it is used in. Table 10 shows the percentage rate each annotator decided to

rate a pair of synonym - synonym candidate as valid. The lowest rate is 19%

by annotator 2, the highest is 38% by annotator 4. This leads to an overall

average of roughly 30%, meaning one third of the pairs not considered valid

by the gold standard were annotated to be a synonym by at least one of four

native German speakers.
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Annotator 1 Annotator 2 Annotator 3 Annotator 4

35% 27% 19% 38%

Table 10: Percentage of synonym - synonym candidate pairs each annotator

considered to be valid synonyms

0 Annotators 1 Annotator 2 Annotators 3 Annotators 4 Annotators

43% 20% 18% 11% 8%

Table 11: Percentage distribution of the amount of annotators considering a

synonym - synonym candidate pair as valid.

Table 11 shows the percentage agreement rate of the annotators. On 43%

of the pairs, no annotator considered them to be actual synonyms, highly

suggesting they are in fact no synonyms whatsoever. Among others, examples

are ”schallend (resounding)” and ”durchschlagend (sweeping) or ”blenden (to

glare)” and ”verstecken (to hide)”. In 20% of the cases exactly one annotator

chose a synonym - synonym candidate pair to be valid, while the other three

annotators rated it as non-synonyms. An example of this category is ”lernen

(to learn)” and ”erfahren (to experience)”. 18% of the time two annotators

decided the given pairs are synonyms while the other two decided they are

not. A pair in this category includes ”typisch (typical)” and ”traditionell

(traditional)”. In 11% of the cases three of the four annotators decided to

rate the given pair as synonyms. An example is ”gleichtlautend (conform)”

and ”identisch (identical)”. 8% of the time all four annotators agreed in their

decision to rate the synonym - synonym candidate pair as valid. Exemplary

one could name ”brauchbar (viable)” and ”nützlich (useful)”. Especially in

the categories of three or four annotators agreeing in their decision to rate

the pairs as valid synonyms one could argue these pairs are synonyms in a

common word sense and thus belong into the gold standard. If only one or

two annotators chose the synonym - synonym candidate pairs to be valid

these words probably are synonyms within a special word context or only to

some (native) speakers. They could be included into the gold standard but

do not necessarily have to. However considering the results of this manual
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evaluation, the gold standard in fact seems to miss synonyms thus lowering

the precision rate of the extracted synonyms candidates.

8 Conclusion

Considering the results produced in the creation of this thesis one can con-

clude the extraction of synonyms using SMT and parallel corpora is a promis-

ing approach. The most important factor is to produce an accurate and high

quality word alignment in order to find reasonable pivots and re-translations.

This is especially important considering the failure of both re-ranking meth-

ods used in this thesis. Regarding the performance of both re-ranking meth-

ods, even though they did not perform as desired, they still can be considered

valid options to improve the extraction. Looking at the differences observed

in the quality of the extracted synonym candidates there appears to be a

difference between adjectives and verbs, nouns. Adjectives perform signifi-

cantly better. In my opinion this is caused by the overall nature of adjectives

and the fact that most of them posses a lot of synonyms for example in Du-

den. Also the rarity of the target words plays an important role since more

common words use to appear more often in a general parallel corpus thus

improving the quality of the word alignment.

Possible and required improvements could include using different corpora to

create the vector space model or using other, probably more sophisticated,

distributional similarity measures in order to improve the distinction of the

different similarity values of the vector pairs.

A further possible point of improvement could be found in the creation of

the gold standard. Maybe combining multiple resources could improve its

overall quality. Another possible change that could be tested is to not only

extract the synonyms of the target word but also extract the synonyms of the

synonym candidate and check them for the appearance of the target word.

As a conclusion one could argue the method investigated in this thesis is

useful, however still some improvements as suggested above can be tried in
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order to improve the automatic synonym extraction using SMT even more.
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