
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Optimizing the efficiency of
data-intensive Data Mashups

using Map-Reduce

Sunayana Sarangi

Course of Study: Technikpädagogik

Examiner: Prof. Dr.-Ing habil. Bernhard Mitschang

Supervisor: Dipl.-Inf. Pascal Hirmer

Commenced: December 1, 2016

Completed: June 1, 2017

CR-Classification: C.2.4, H.3.4

Abstract

In order to derive knowledge and information from data through data processing, data
integration and data analysis, a variety of Data Mashup tools have been developed in
the past. Data Mashups are pipelines that process and integrate data based on different
interconnected operators that realize data operations such as filter, join, extraction,
alteration or integration. The overall goal is to integrate data from different sources into
a single one. Most of these Mashup tools offer a grahical modeling platform, enabling
the users to model the data sources, data operations and the data flow, thus, creating a
so called Mashup Plan. This enables non-IT experts to perform data operations without
having to deal with their technical details. Further, by allowing easy re-modeling and
re-execution of the Mashup Plan, it also allows an iterative and explorative trial-an-error
integration to enable real time insights into the data. These existing Data Mashup tools
are efficient in executing small size data sets, however, they do not emphasize on the
run-time efficiency of the data operations. This work is motivated by the limitations of
current Data Mashup approaches with regard to data-intensive operations. The run-time
of a data operation majorly varies depending on the size of the input data. Hence, in
scenarios where one data operation expects inputs from multiple Data Mashup pipelines,
which are executed in parallel, a data intensive operation in one of the Data Mashup
pipelines leads to a bottleneck, thereby delaying the entire process. The efficiency of
such scenarios can be greatly improved by executing the data-intensive operations in
a distributed manner. This master thesis copes with this issue through an efficiency
optimization of pipeline operators based on Map-Reduce. The Map-Reduce approach
enables distributed processing of data to improve the run-time. Map-Reduce is divided
into two main steps: (i) the Map step divides a data set into multiple smaller data
sets, on which the data operations can be applied in parallel, and (ii) the Reduce step
aggregates the results into one data set. The goal of this thesis is to enable a dynamic
decision making while selecting suitable implementations for the data operations. This
mechanism should be able to dynamically decide, which pipeline operators should
be processed in a distributed manner, such as using a Map-Reduce implementation,
and which operators should be processed by existing technologies, such as in-memory
processing by Web Services. This decision is important because Map-Reduce itself can
lead to a significant overhead while processing small data sets. Once it is decided that an
operation should be processed using Map-Reduce, corresponding Map-Reduce jobs are
invoked that process the data. This dynamic decision making can be achieved through
WS-Policies. Web Services use policies to declare in a consistent and standardized manner
what they are capable of supporting and which constraints and requirements they impose
on their potential requestors. By comparing the capabilities of the Web Service with the
requirements of the service requestor, it can be decided if the implementation is suitable
for executing the data operation.

3

Kurzfassung

In den letzten Jahren lässt sich eine zunehmende Entwicklung von Data Mashup-
Ansätzen und -Werkzeugen beobachten. Diese bieten einen einfachen und schnellen
Weg, um Daten zu verarbeiten und analysieren. Data Mashups bestehen aus Daten-
quellen sowie einer Reihenfolge von Datenoperationen, wie Filter, Extraktoren usw. und
ermöglichen eine Integration der Datenquellen. Dadurch können aus Daten wichtige
Informationen und Wissen generiert werden. Diese Werkzeuge bieten meistens eine
grafische Oberfläche und ermöglicht dabei eine einfache Bedienbarkeit durch Domänen-
nutzer sowie eine explorative Vorgehensweise. Allerdings legen die vorhandene Ansätze
keinen Wert auf die Effizienz der Ausführung. Dies kann daran liegen, dass durch Data
Mashups in der Regel kleine Datenmengen verarbeitet werden. In der heutigen Zeit
steigt die Datenmenge immer weiter an und die Data Mashup-Ansätze müssen sich
anpassen, um die Verarbeitung bzw. Integration von größeren Mengen an Daten zu
ermöglichen. Dabei spielt auch die Effizienz der Ausführung eine sehr wichtige Rolle.
Bei Data Mashup kann es auch dazu kommen, dass sowohl kleine als auch große Daten
gleichzeitig verarbeitet bzw. intiegriert werden müssen. In solchen Fällen führen die
daten-intensiven Operationen zum Engpass und der gesamte Prozess muss auf den Eng-
pass warten. Um mit diesem Problem umzugehen muss die Datenverarbeitung, abhängig
von Parametern wie Datengröße, Komplexität der Operation bzw. Daten, entsprechend
unterschiedlich durchgeführt werden. D.h., es müss unterschiedliche Implementierun-
gen für unterschiedliche Datengröße sowie Komplexität der Operation bzw. Daten geben.
Durch solche selektive Verfahren kann die Effizienz des Data Mashups gewährleistet wer-
den. Die Auswahl der Implementierungen muss dynamisch geschehen. In dieser Arbeit
wird eine Konzept entwickelt, wodurch die oben genannten Probleme behandelt und
eine Optimierung der Ausführung erzielt werden kann. Die daten-intensive Operationen
werden anhand einer Map-Reduce Implementierung ausgeführt und die Verarbeitung der
kleinen Datenmenge wird durch Web Services im Hauptspeicher durchgeführt. Dieses
selektive Verfahren ist wichtig, weil es zu hohem Aufwand kommen kann, wenn kleine
Datenmenge durch Map-Reduce verarbeitet werden. Die Map-Reduce ermöglicht eine
parallelität der Operation, somit wird die Ausführungsdauer verkürzt. Die vorhandenen
Implementierungen verarbeiten die Daten als Ganzes und sind daher ungeeignet größere
Datenmenge zu verarbeiten. Dagegen ermöglicht der Map-Reduce-Ansatz eine paral-
lele Verarbeitung, was zu einer Effizienzoptimierung führt. Die dynamische Auswahl
der Implementierung wird anhand von Web Service – Policies gemacht. WS-Policies
beschreiben was der Web Service kann und was er von dem Servicenehmer erwartet. An-
hand eines Vergleiches zwischen den Leistungen des Web Services und den Erwartungen
des Service-Konsumenten kann entschieden werden, ob der Web Service sich eignet, um
die Operation durchzuführen.

5

Contents

1 Introduction 15

2 Basic Concepts 19
2.1 Data Mashups . 19
2.2 Transformation Patterns . 20
2.3 Motivation for WS-Policy . 24
2.4 Map-Reduce Framework . 25

3 Related Work 29

4 Efficiency Optimization of data-intensive Data Mashups 33

5 Prototypical Implementation and Evaluation 41

6 Summary 57

7 Future Works 59

Bibliography 61

7

List of Figures

1.1 Example Scenario . 16

2.1 Point-to-Point Data Mashup Architecture [DM14] 20
2.2 Centrally Mediated Data Mashup Architecture [DM14] 21
2.3 Data Mashup with External Data Processing Logic [DM14] 22
2.4 Robust Mashup Pattern [HB17] . 23
2.5 Time-Critical Mashup Pattern [HB17] . 23
2.6 Hadoop Architecture [LLC+12] . 26

3.1 Extended Mashup Approach [HRWM15] 29
3.2 Overview of the Modeling Level [HRWM15] 30

4.1 FlexMash Current Architecture [HRWM15] 33
4.2 Extended FlexMash Architecture [Hir17] 34
4.3 Annotating Web Services with Policies [Hir17] 35
4.4 SelectService for Big Data Robust Mashup Transformation Pattern 40

5.1 Execution run-time of Extract operation 48
5.2 Execution run-time of Filter operation 49
5.3 Impact of Cluster scaling on 2 GB File 50
5.4 Impact of Cluster scaling on 500 MB File 51
5.5 Impact of Cluster scaling on 700 MB File 52
5.6 Impact of Cluster scaling on 200 MB File 53
5.7 Impact of Cluster scaling on 300 MB File 54
5.8 Impact of Cluster scaling on 400 MB File 55

9

List of Tables

5.1 Run-time of extract operation with and without Map-Reduce 42
5.2 Run-time of filter operation with and without Map-Reduce 43
5.3 Impact of cluster size on 2 GB File . 50
5.4 Impact of cluster size on 500 MB File . 50
5.5 Impact of cluster size on 700 MB File . 51
5.6 Impact of cluster size on 200 MB File . 51
5.7 Impact of cluster size on 300 MB File . 52
5.8 Impact of cluster size on 400 MB File . 52

11

List of Listings

4.1 XML Schema to create a WS-Policy defining run-time parameters 36
4.2 Sample WS-Policy suitable for Map-Reduce 37
4.3 Sample WS-Policy unsuitable for Map-Reduce 37
4.4 Sample WS-Policy attachment . 38

5.1 In-Memory processing by Extract Operation 42
5.2 In-Memory processing by Filter Operation 43
5.3 Map-Reduce implementation of Extract Operation 44
5.4 Map-Reduce implementation of Filter Operation 44
5.5 SelectService Implementation . 45
5.6 Query Service Repository . 45
5.7 Inspect matched WSDLs . 46
5.8 Extract Service Capabilities from WS-Policy 47

13

1 Introduction

In today’s world, IT applications are highly interconnected, thereby producing and
consuming huge amounts of highly complex and heterogeneous data [HRWM15]. The
amount as well as the complexity of data is expected to dramatically increase in the
coming years [HRWM15]. In order to derive information and insights from Big Data1

using analysis, visualization or similar other value-adding operations, it is necessary to
integrate relevant parts of data in to a common source [HRWM15]. These integration
solutions should support ad-hoc and flexible data processing capabilities to cope with the
dynamic real time environment. In addition, these solutions should allow an iterative
and explorative trial-an-error integration to enable real time insights into the Big Data
[HRWM15]. Several Data Mashup platforms have been developed in the past to provide
data integration solutions. Data Mashups are defined as pipelines that process and
integrate data based on different interconnected operators that realize data operations
such as filter, join, extraction, alteration or integration. The overall goal is to integrate
data from different sources into a single one. Implementation of complex data processing
and data integration solutions pose technical challenges to the domain-specific users,
who more often than not, are non-IT experts, thus resulting in higher costs and greater
communication effort between domain-specific users and IT experts. To cope with this
problem, the domain-users need to be equipped with tools which abstract from technical
details of the data operations, allowing them to use their domain specific means to
perform these data operations. The existing Data Mashup solutions offer graphical
user interfaces enabling the domain users to model data sources, data operations and
data flow without having to acquire technical know-how of the data operations. For
example, the extended Data Mashup approach, FlexMash2 (Flexible Data Mashups
Based on Pattern-based Model Transformation), developed at the University of Stuttgart,
introduces the concept of patterns to abstract from implementation details, thereby
enabling non-IT experts to perform data operations without having to acquire technical
know-how of the data operations.

FlexMash and other existing Data Mashup approaches however do not emphasize on
the efficient execution of the data operations, rather are focused on the usability of the

1https://www.ibm.com/big-data/us/en/
2https://github.com/hirmerpl/FlexMash

15

1 Introduction

> 5 GB

1 GB

500 MB

Filter

Filter

Filter

Analytics

Analytics

Analytics

Join

Data intensive
operation causing
bottleneck

Figure 1.1: Example Scenario

modeling user interface. Data Mashups, until recent times, have mostly been used to
process small size data sets and are unable to cope with large volumes of data. With
the overwhelming increase in the size and complexity of data, the run-time efficiency
of the data operations is becoming a very important factor. Consider the scenario, as
depicted in Figure 3.1, consisting of multiple Data Mashup pipelines, each executing
data operations on input data sets of varying sizes. Similar input data sets from different
sources have to be filtered, analyzed and integrated. The run-time of each pipeline is
directly proportional to the size of the input data set. The long running analytics node
in the upper pipeline acts as a bottleneck. As a result, the join operation to integrate the
data has to wait until the slowest path has finished execution, i.e., the overall execution
time of Data Mashups will always depend on the slowest path. This work proposes a
possible efficiency optimization of pipeline operators using Map-Reduce3. The Mashup
efficiency will be improved when all the data operations execute efficiently. For this to

3http://hadoop.apache.org/

16

happen, the implementation of a data operation has to take into account the influencing
factors, such as data size, data complexity, computing resources etc. Depending on these
factors, the modeled data operation has to choose an appropriate implementation for the
operation. For example, smaller input data sets can be processed efficiently in-memory
by the existing Web Services but for large data sets, executing the data operations in
a distributed manner, using technologies such as Map-Reduce, can be more efficient.
In FlexMash, this decision making can be achieved by annotating the Web Services
using WS-Policies4. WS-Policy describes the non-functional constraints, capabilities and
requirements of the respective Web Service to which it is attached. Since WS-Policies
are a part of the WSDL, an appropriate implementation can be chosen by comparing the
offered capabilities/constraints with the factors impacting the run-time efficiency of a
data operation.

Structure

The remainder of this paper is structured as follows:

Chapter 2 – Basic Concepts: This section describes the basic concepts that are neces-
sary to comprehend the optimization approach proposed in this work.

Chapter 3 – Related Work: Work related to this project is mentioned and briefly de-
scribed.

Chapter 4 – Efficiency Optimization of data-intensive Data Mashups: This section
describes the main contribution of this paper. The approach for optimizing the
efficiency of pipeline operators based on Map-Reduce is explained in detail.

Chapter 5 – Prototypical Implementation and Evaluation: A prototypical implemen-
tation of the proposed approach is presented and the results are subsequently
evaluated in this section.

Chapter 6 – Summary: The results are summarized and important conclusions are
drawn in this section.

Chapter 7 – Future Works: This section focuses on the scope of future work.

4https://www.w3.org/TR/ws-policy/

17

2 Basic Concepts

In this section, we describe the basic concepts that are necessary to comprehend the
approach presented in this thesis. These are (i) Data Mashups, (ii) Transformation
Patterns, (iii) Web Service Policies and (iv) Map-Reduce Framework.

2.1 Data Mashups

The main purpose of Data Mashups is to enable the composition of disparate sources
of information into a new integrated source of information that can be accessed in-
dependently of the original data providers. This integrated data source is potentially
more valuable for activities such as data analysis. In other words, Data Mashup can be
thought of as a Web-based form of data integration, since the core practice underlying
any Data Mashup is typically integration of data from different sources. There are
various architectural patterns available for Data Mashups, namely (i) Point-to-Point
Data Mashups as illustrated in Figure 2.1, (ii) Centrally Mediated Data Mashups as
illustrated in Figure 2.2 and (iii) Data Mashups with External Data Processing Logic as
illustrated in Figure 2.3. In the Point-to-Point Data Mashup architecture, data integration
is achieved as a result of a direct interplay of data sources with data processing functions
or of one data processing function with another. The Mashup establishes the necessary
direct point-to-point communications. The centrally mediated Data Mashups are very
similar to Point-to-Point Data Mashups, with the exception that data is transformed and
stored in an integrated data source, and all data processing functions operate on this
integrated data store only. This architecture has two new components: the data mediator
and the integrated data source. The data mediator mediates between the data models
of the data sources and that of the integrated data store. The integrated data store
hosts the integrated data for the processing of the Mashup logic. Since there is no data
mediation in Point-to-Point Data Mashup architecture, each data processing function
has to understand two different data models, that is, the data model of the input data
and that of the output data. On the other hand, in the centrally mediated Data Mashup
architecture, the data processing functions must only understand the data model of the
integrated data store. Although the Data Mashup characteristics are essentially the same
in both the above mentioned architectures, in the centrally mediated Data Mashup, there

19

2 Basic Concepts

Web Server
Public Data Access API

Data Mashup

Mashup
Control Logic

Data Format Parser Data Processing
Functions

XML
Parser

JSON
Parser

CSV
Parser

RDF
Parser

Data
Extractor

Filter

Split

Trunc

Merge

Count Sort

Protocol Adapter

RSS Feed

ATOM Feed
XML, JSON, CSV Web Page

Annotated
Web Page

Figure 2.1: Point-to-Point Data Mashup Architecture [DM14]

is no direct data passing between source components and data processing functions or
between functions themselves. Data passing between the source components and the
integrated data source is mediated and the data passing between the data processing
functions is typically based on a shared memory, i.e., the integrated data store. The
third architecture, i.e., Data Mashup with external data processing logic, is essentially
a centrally mediated Data Mashup architecture. The only difference is that, besides
internal data processing functions, it also makes use of Web Services or third-party data
processing capabilities [DM14].

2.2 Transformation Patterns

Patterns are used to document proven solutions to recurring problems in a specific
context. The concept of patterns, initially introduced in the domain of architecture
[AIS78], is now popular in various areas in computer science and information technology.

20

2.2 Transformation Patterns

Web Server
Public Data Access API

Data Mashup

Mashup
Control Logic

Data Format Parser Data Processing
Functions

XML
Parser

JSON
Parser

CSV
Parser

RDF
Parser

Data
Extractor

Filter

Split

Trunc

Merge

Count Sort

Protocol Adapter

RSS Feed

ATOM Feed
XML, JSON, CSV Web Page

Annotated
Web Page

Data Mediator

Integrated Data Store

Figure 2.2: Centrally Mediated Data Mashup Architecture [DM14]

Patterns basically document the solutions in natural text to support human readers and
are specific to a context [FBB+14]. They provide a generic description of the proven
solutions at a conceptual level. To apply this high-level, abstract and conceptual solution
to a concrete problem scenario is often difficult, as it involves immense manual effort to
concretize the solution to suit the individual use case. This, however, contradicts the very
purpose of patterns, since the concept of patterns fundamentally aims at generalization
and abstraction. In order to overcome this problem, Falkenthal et al. [FBB+14] suggest
that patterns should be linked (i) to the original concrete solutions from which they
have been deduced and (ii) to the individual new concrete implementations of the
abstractly described solutions. This will enable users to apply a pattern by using the
already existing implementations, if any, for their use cases, thus, reducing the manual
effort in re-implementing the abstractly described solution.

21

2 Basic Concepts

Web Server
Public Data Access API

Data Mashup

Mashup
control logic

Data format
parser

Protocol Adapter

RSS Feed

ATOM Feed
XML, JSON, CSV Web Page

Annotated
Web Page

Data
Mediator

Integrated
Data Store

Data Format
Parser

Data format
parser

Data Processing
Functions

External data
processing
functions

SOAP Service Restful Service

Figure 2.3: Data Mashup with External Data Processing Logic [DM14]

Figure 2.4 and Figure 2.5 illustrate two patterns that are used in Data Mashup scenarios
in FlexMash1, a Data Mashup tool developed at the University of Stuttgart. In the
context of FlexMash, these patterns are categorized under Transformation Patterns
because the non-executable Mashup Plan modeled by a domain user is transformed into
an executable Mashup Plan on the basis of such patterns. The pattern determines the
manner in which the Mashup should be executed. For example, a Time-Critical Mashup
Pattern enforces a quick execution of the Data Mashup. It is also possible to combine
patterns. But to combine patterns, the user performing the Data Mashup must be aware
of the limitations of the patterns. For example, the patterns illustrated in Figure 2.4 and
Figure 2.5 cannot be combined in the same use case, since a time-critical implementation
cannot be robust at the same time. The illustrated patterns also enable the user to take
reasonable decisions regarding how to apply patterns by providing him with relevant
information. The pattern, typically describing a single transformation criteria, consists

1https://github.com/hirmerpl/FlexMash

22

2.2 Transformation Patterns

Transformation Pattern: Robust Mashup
Problem: Robustness is an important factor for IT systems, especially in enterprise applications and

systems. It stands for many factors such as stability, error tolerance, logging etc. that have to
be fulfilled in a robust environment.

Solution: A robust execution engine that supports error handling, logging as well as data persistence is
used.

Example: An exemplary pattern implementation could, e.g., be realized using a workflow engine such
as Apache ODE, the Oracle workflow engine or the WSO2 engine using BPEL as execution
language. These engines provide all the necessary factors to ensure robustness.

Evaluation: The Robust Mashup pattern can be used in enterprise environments in which, e.g., workflows
are already established. By using this pattern, robustness can be guaranteed which is the
most important factor in enterprises. However, of course there are some setbacks regarding
runtime efficiency.

Combination: Secure Mashup Pattern; Big Data Mashup Pattern;

Figure 2.4: Robust Mashup Pattern [HB17]

Transformation Pattern: Time-Critical Mashup
Problem: The scenario the Mashup is executed in is very time-critical, i.e., it is of vital importance that the Mashup is

executed as fast as possible to receive the integrated result. Especially in situation recognition and exception
escalation scenarios, time is the most important factor. That is, the time-critical requirement is above all other
requirements such as robustness, security, data persistence etc.

Solution: A fast execution engine is chosen with a suitable execution language. The Mashup Plan will be mapped onto
this language and execute into the engine.

Example: We use the fast and efficient, however, non-robust execution engine Node-RED which has a lack of robustness regarding
data persistence, error handling etc. However, the time-critical requirement is fulfilled.

Evaluation: Using this pattern enables its advantages especially in time-critical scenarios such as the integration of sensor
 data for situation recognition. However, the disadvantages of this pattern are many. By just including the time-
 critical requirement, no important factors such as error handling, logging or data persistence can be provided.
 This can lead to an unstable Mashup execution. In conclusion, this pattern should be used connected with other
 patterns or in prototypical, non-production environments.

Figure 2.5: Time-Critical Mashup Pattern [HB17]

23

2 Basic Concepts

of the following parts: (i) a description of the problem to which the pattern can be
applied, (ii) the solution that the pattern offers, (iii) an example of how the pattern can
be applied, (iv) an evaluation of the usability of the pattern, thus, enabling the user to
decide if the pattern suits his use case and (v) information about if and how the pattern
can be combined with other patterns [HB17]. The pattern selected while modeling the
Data Mashup influences the manner in which the Data Mashup is executed. In other
words, depending on the pattern selected, a suitable workflow engine and appropriate
execution components for the Data Mashup operations are selected to transform the
modeled Mashup Plan into an executable one.

2.3 Motivation for WS-Policy

In a service-oriented environment, interoperability between Web Services and a standard-
ized representation of non-functional capabilities and requirements of service endpoints
is a very important aspect. When Web Services require requestors to follow a specific
behavior or when they implement certain protocols on the service-side that impacts
requester requirements or expectations, it is essential to communicate these to the
potential requester. Web Service Policies provide an important standard to achieve this
interoperability. Web Services are in general described using the Web Service Description
Language (WSDL). These service descriptions define the meta-data that describe the
functional characteristics of Web Service. This meta-data provides information necessary
to deploy and interact with a Web Service. WSDL is an XML vocabulary having two
parts: (i) a reusable abstract part describing the operational behavior of Web Services,
i.e., what the Web Service does in terms of the messages it consumes and produces
and (ii) a concrete part which allows to describe how and where to access a service
implementation. WSDL limits itself to describing a few key aspects of a service, such as
(i) the message formats, (ii) the message interaction pattern, (iii) the way the messages
should be represented and (iv) where those messages should be sent. WSDL however is
extensible, thereby allowing the inclusion of additional characteristics such as costs to
use the service, security characteristics etc. The author needs to use an appropriate lan-
guage syntax and insert the description at the right place in the WSDL. This extensibility
has enabled WSDL to be as tightly defined as possible. WSDL describes what a service
can do, however, does not provide information about how the service implements the
business interface, the permissions or constraints it expects of or provides to service
requestors and what is expected or provided in a hosting environment. The inherent ex-
tensibility of XML and WSDL can be used to describe this information. However, a better
approach is the WS-Policy, an extensible framework that is intended to specifically deal
with the definition of constraints and conditions. This framework enables constraints
and conditions to be composable and supports valid intersections where multiple options

24

2.4 Map-Reduce Framework

are available. WS-Policy has many advantages over the extension of WSDL. It facilitates
the separation of concerns by avoiding a single monolithic specification, i.e. the WSDL,
to deal with all the diversity of service description information. WSDL focuses on the
functional descriptions and WS-Policy deals with the non-functional descriptions and
quality of service aspects. Further, it may be necessary to add additional capabilities
to an existing service without impacting the application. In this way, services can offer
different qualities of service to different target audiences. Such an incremental updating
of service descriptions is not supported by WSDL and can be achieved through WS-
Policies. WS-Policy Attachments provide support to flexibly add policies to preexisting
services [WCL+05].

Web Service Policies are particularly relevant in the following scenarios: (i) Development
and deployment of service requestors: WS-Policy, together with WSDL, describes any
requirements the service requester has to fulfill to be able to invoke and use the service.
This guides the development and deployment of the service requester. (ii) Service
discovery and selection: WSDL descriptions enable service requestors to locate services
which satisfy their functional requirements. Similarly, WS-Policy descriptions can be
used to locate services which satisfy the non-functional requirements. (iii) Dynamic
update of requester configuration: requester and services can exchange policies using
WS-MetadataExchange port types. When services update their configuration at run-time,
the requestors can consequently reconfigure their run-time by retrieving the updated
policy information from the service provider [WCL+05].

The WS-Policy Framework consists of two specifications: (i) WS-Policy and (ii) WS-
Policy-Attachment. The WS-Policy specification provides a flexible and extensible gram-
mar for expressing the capabilities, constraints and requirements of Web Services as
policies. It also describes basic mechanisms for the merging of multiple policies that
apply to a common subject and the intersection of policies to determine compatibil-
ity. The WS-PolicyAttachment specification describes how to associate policies with a
subject [WCL+05].

2.4 Map-Reduce Framework

Map-Reduce is a scalable and fault-tolerant data processing approach that enables
parallel processing of massive volumes of data using many computing nodes, called a
Cluster. The Map-Reduce Framework is a programming model as well as a framework
that supports the model. The model hides details of parallel execution thus allowing
the users to focus on data processing strategies [LLC+12]. The Map-Reduce model
comprises of two primitive functions: Map() and Reduce() which are functionally based
on the Map() and Reduce() functions of functional programming languages. The logical

25

2 Basic Concepts

Mapper Mapper

Block 1 Block 2 Block 3 Block n

Map

Local sort

Combiner

Intermediate results

Reducer Merge

 Reduce

OutputOutput

Barrier

pull

Figure 2.6: Hadoop Architecture [LLC+12]

implementation of the Map and Reduce steps in the Map-Reduce framework is however
implementation and use case dependent. What is common between the Map and Reduce
steps of the Map-Reduce framework and the map and reduce functions of the functional
programming languages is the input and output formats [12]. The Map-Reduce model
expects as input a list of (key1, value1) pairs and the Map() is applied to each pair to
compute intermediate key-value pairs, (key2, value2). The intermediate key-value pairs
are then grouped together on the key-equality basis, i.e., (key2, list(value2)). For each
key2, Reduce() works on the list of all values and produces aggregated values. The Map()
and Reduce() functions are defined by the user depending on their use case [LLC+12].

Apache Hadoop is an opensource implementation of Map-Reduce and is used as the
infrastructure for the prototypical implementation in this thesis. Hadoop consists of
two layers: a data storage layer called Hadoop Distributed File System or HDFS and a
data processing layer called Hadoop Map-Reduce Framework. HDFS is a block-structured
file system managed by a single master node and each processing job in Hadoop is
broken down to as many Map tasks as input data blocks and one or more Reduce tasks.

26

2.4 Map-Reduce Framework

Figure 2.6 shows an overview of Hadoop architecture. A single Map-Reduce job is
performed in two phases: Map and Reduce. Before starting the Map task, the input file
is loaded on the distributed file system. At loading, the file is partitioned into multiple
data blocks which have the same size, typically 64 MB, and each block is triplicated
to guarantee fault-tolerance. Each block is then assigned to a mapper. A mapper is
a worker node which applies the map function to each record in the data block. The
intermediate outputs produced by the mappers are sorted locally for grouping (key,value)
pairs sharing the same key. After the local sort, a combine function is optionally applied
to perform pre-aggregation on the grouped key-value pairs so that the communication
costs incurred to transfer all the intermediate outputs to reducers is minimized. Then
the mapped outputs are stored in local disks of the mappers, partitioned into R, where R
is the number of reduce tasks in the Map-Reduce job [LLC+12].

When all Map tasks are completed, the Map-Reduce scheduler assigns Reduce tasks to
worker nodes. The intermediate results are assigned to reducers via the HTTPS protocol.
Since all mapped outputs are already partitioned and stored in local disks, each reducer
simply pulls its partition of the mapped outputs from mappers. Basically, each record of
the mapped outputs is assigned to only a single reducer by one-to-one shuffling strategy.
This data transfer is performed by the reducers’ pulling intermediate results. A reducer
reads the intermediate results and merges them by the intermediate keys, i.e., key2, so
that all values of the same key are grouped together. This grouping is done by external
merge-sort. Then each reducer applies the reduce function to the intermediate values for
each key2 it encounters. Finally the output of the reducers are stored and triplicated
in HDFS [LLC+12]. It is to be noted that the number of Map tasks does not depend on
the number of worker nodes, but the number of input blocks. Each block is assigned to a
single Map task. However, all Map tasks do not need to be executed simultaneously and
neither are Reduce tasks. For example, if an input is broken down into 400 blocks and
there are 40 mappers in a cluster, the number of map tasks are 400 and the map tasks
are therefore executed through 10 waves of task runs [LLC+12].

The Map-Reduce framework executes its tasks based on a run-time scheduling scheme.
This means that Map-Reduce does not build any execution plan that specifies which tasks
will run on which nodes before execution. The plan for execution is determined entirely
at run-time. This enables Map-Reduce to achieve fault-tolerance by detecting failures and
reassigning tasks of failed nodes to other healthy nodes in a cluster. Nodes which have
completed their tasks are assigned another input block. This scheme naturally achieves
load balancing in that faster nodes will process more input chunks and slower nodes less
input chunks in the next wave of execution. Furthermore, Map-Reduce scheduler utilizes
a speculative and redundant execution. Tasks on straggling nodes are redundantly
executed on other idle nodes that have finished their assigned tasks, although tasks are
not guaranteed to end earlier on the new assigned nodes than on the straggling nodes.
Also Map and Reduce tasks are executed with no communication with other tasks. Thus,

27

2 Basic Concepts

there is no contention arisen by synchronization and no communication costs between
tasks during a Map-Reduce job execution [LLC+12].

28

3 Related Work

In the past, many Data Mashup solutions have been developed to enable ad-hoc process-
ing and integration of data. These enterprise ready solutions offer a graphical modelling
tool, enabling the user to define data sources, data operations and the way data is
processed. Some known solutions are Yahoo! Pipes1, Intel MashMaker2 and the IBM
Infosphere Mashuphub3. These solutions, however, offer single and static implementa-
tions, thereby making themselves unsuitable for real-time scenarios. Today, in real-time
business scenarios, aspects like robustness, security, scalability, time-criticality etc. play
a very important role and static solutions are not suitable to cope with heterogenous
user requirements. In addition, most of the existing data operation and data integration
solutions claim to provide abstract, non-technical models for data processing and inte-
gration. However, the abstraction provided is often not sufficient for non-IT experts to
perform data operations.

2
Definition of

Data Operations
(Modeling-Patterns)

1
Definition of
Data Sources

Mashup Plan Modeling
Domain-specific,

Modeling-Pattern-based

Mashup Plan Transformation
Transformation-Pattern-based

Mashup Plan Execution
Automated execution

Time-
Critical

Robust

…
5

Data Extraction and
Execution of

Data Operations

6
Result Storage

R

7
Result Utilization

Optional Repetition

Transformation-
Pattern Selection

?

Mashup Plan

4
Transformation

3

Executable
Mashup Plan

Figure 3.1: Extended Mashup Approach [HRWM15]

The extended Data Mashup approach, FlexMash (Flexible Data Mashups based on
Pattern-based Model Transformation), developed at the University of Stuttgart, addresses
both these issues. The Data Mashup approach proposed by FlexMash is divided into three
abstraction levels: (i) the Mashup Plan Modeling, (ii) the Mashup Plan Transformation

1https://pipes.yahoo.com/pipes/
2http://intel.ly/1BW2crD
3http://ibm.co/1Ghxv27

29

3 Related Work

and (iii) the Mashup Plan Execution, as shown in Figure 3.1. The Mashup Plan Modeling
offers a cloud service to the domain user to define and execute Mashup scenarios
by exclusively using means specific to his/her domain. A domain-specific model is
introduced to define data sources and data operations in a non-technical manner, thus,
making it suitable for domain experts.

As shown in Figure 3.2, the domain expert models a non-executable Mashup Plan by
defining the order of Data Source Descriptions (DSD) and Data Processing Descriptions
(DPD). The Data Source Descriptions describe data sources to be used for the Mashup in
a non-technical manner and the Data Processing Descriptions (DPD) are non-technical
representations of data operations, for e.g., filter, extract, aggregation etc. These DSDs
and DPDs are created and stored in respective repositories by IT experts and the domain
users access these repositories and select appropriate DSDs and DPDs to model the
Mashup Plan. This enables to abstract from implementation details, thereby enabling
non-IT experts to perform data operations without having to acquire technical knowhow
of the data operations.

Domain-Expert

models

Mashup Plan

Data Source
Description

accesses

DSD
Repo.

Endpoint
Node

Data Processing
Descriptions

IT-Expert
DPD
Repo.

creates
Data Source Description (DSD)

Data Processing Descriptions (DPD)

Figure 3.2: Overview of the Modeling Level [HRWM15]

This non-executable Mashup Plan is then transformed into an executable Mashup Plan
by applying transformation patterns. The concept of patterns enables to cope with the
heterogeneous business requirements. The transformation patterns define criteria under
which the execution should be performed, for example, a robust implementation of
the Mashup plan or a time-critical implementation. Depending on the transformation
pattern(s) annotated to a Mashup Plan, an appropriate implementation, e.g., an ap-
propriate execution engine is chosen. In the prototypical implementation of FlexMash,
the Robust Mashup is implemented using a BPEL Workflow engine, in order to ensure
a high availability and the Time-Critical Mashup is implemented using a Node-RED
flow. The robust execution has a high run-time due to the heavy-weight workflow

30

engine that is being used. Additional features such as orchestration, Web Service calls
and exception handling lead to a significant overhead. In contrast, the execution of
the time-critical Mashup enables a very low run-time. This can be explained by the
light-weight, JavaScript and NodeJS4-based implementation, executed in the Node-RED
run-time engine, which enables efficient processing of data flows.

The DSDs and DPDs of the non-executable Mashup Plan are transformed to executable
Data Processing Nodes (eDPNs) that can be executed using a suitable execution engine.
An eDPN represents an implementation, in other words a piece of code, for e.g., a Java
Web Service, that executes data extraction, data processing analytics or data storage
operations. The eDPNs corresponding to the DSDs are data source adapters implement-
ing the extraction of data from a domain specific artifact model, e.g., an enterprise
information system. The domain-specific artifact models are then mapped to technical
data structures such as a database table, a file-based storage, or an unstructured text
file. The eDPNs corresponding to the DPDs are data processing operations implemented
as Java Web Services, e.g., filter or join operations or data storage operations. The
resulting executable Mashup Plan is then executed by a suitable execution engine, which
is scalable and cloud based. The execution engine is a dataflow, workflow or event
processing engine, for example, a BPEL Workflow engine or Node-RED engine that
invokes the eDPNs in the order defined in the executable Mashup Plan.

However, the run-time of data operations depend on various factors such as size of
the input dataset, complexity of data, available computing resources. Therefore, the
DSD/DPD-to-eDPN mapping should take these factors into consideration. This thesis
proposes an approach to dynamically assign appropriate eDPNs to DSDs/DPDs, taking
into consideration factors which impact the run-time efficiency of the data operations.
Further, a Map-Reduce approach is proposed to perform data processing operations on
big input data. In other words, data operations on small input data should be processed
in-memory by the existing Web Services but data operations on big input data should be
processed using Map-Reduce implementations. Map-Reduce is a parallel data processing
tool used widely in areas where massive data is involved, thus, proves suitable for Data
Mashup scenarios involving data intensive operations. The parallel processing of data
leads to improvement in execution run-time, thus, making the Map-Reduce approach
suitable for Data Mashup scenarios involving data intensive operations. Apart from
the parallel processing of data, Map-Reduce has other advantages making it further
suitable for Data Mashups. Some of them, as surveyed and listed in [LLC+12], are listed
below:

4http://nodered.org/

31

3 Related Work

Simple and easy to use: Map-Reduce is simple and easy to use because the programmer
has to define his job with only Map and Reduce functions without having to specify
physical distribution of his job across nodes.

Flexible: Map-Reduce does not have any dependency on data model and schema.
Irregular and unstructured data can also be processed using Map-Reduce.

Independent of the storage: Map-Reduce is basically independent of the underlying
storage layers and hence, can work with different storage layers such as BigTable
[CDG+08], a distributed storage system for structured data, and others.

Fault tolerance: Map-Reduce is highly fault tolerant. For example, it is reported that
Map-Reduce can continue to work in spite of an average of 1.2 failures per analysis job
at Google [DG08].

High scalability: The most important advantage of using Map-Reduce is high scalability.
This feature is very advantageous to achieve efficiency optimization while processing
very big data sets.

32

4 Efficiency Optimization of
data-intensive Data Mashups

This section describes the proposed approach to achieve efficient run-time execution of
Data Mashups, especially in case of Data Mashups executing data-intensive operations.
Operations processing huge amounts of data or data which has high complexity are
referred to as data-intensive operations in this work. The state of the art Data Mashups
fetch data from different sources, process the data using data operations such as filter
and integrate the data using operations such as join, analyse. The aim of Data Mashup is
to enable flexible, ad-hoc integration of heterogeneous data sources into a single output
data source. This composite source of data can be very valuable for activities like data
analysis in order to obtain valuable information [DM14].

However, in order to perform Data Mashups, the user oftentimes needs to posses IT
skills to understand and model the data operations, i.e., the user to some extent has
to understand the technical details of the data operations. This puts the domain-
users/business-users at a disadvantage, since they, more often than not, are no IT
experts. FlexMash with its three abstraction levels as shown in Figure 4.1, namely the
modeling level, the transformation level and the execution level, is able to deal with

Mashup Plan Executable
Mashup Plan

Service
Repo.

?

Pattern
Mapping

Pattern-based
Mashup Plan

Transformation

Trans-
formation

Figure 4.1: FlexMash Current Architecture [HRWM15]

33

4 Efficiency Optimization of data-intensive Data Mashups

Non-executable
dataflow model (1)

Executable
representation of

dataflow model (2)

Runtime environment
of Services (3)

Map-Reduce FrameworkDataprocessing with
Map-Reduce on

Cluster (4)

extract filter join analyze

Figure 4.2: Extended FlexMash Architecture [Hir17]

this limitation. The modeling of a non-executable Mashup Plan using DSDs and the
DPDs, which are domain specific representations of data sources and data operations,
enable the abstraction from implementation details. The transformation patterns which
facilitate the automatic execution of the Mashup Plan on a suitable execution engine
enable the abstraction from the execution details [HRWM15].

However, the existing FlexMash architecture is not efficient in case of Data Mashups
involving data-intensive operations, i.e., in scenarios involving large data sets or complex
data. For example, a Data Mashup using a Big Data Robust Mashup transformation
pattern will not be efficient in the current FlexMash architecture. The Big Data Robust
Mashup transformation pattern requires that the implementation has to support the
processing of huge data sets in reasonable time. But the services that currently implement
the data operations are not scalable, as they process the entire input data set at one go.
For very big data sets, as expected in case of Big Data Robust Mashup, such non-scalable
implementations are inefficient. A distributed processing of the input data can enhance

34

Transformation

Service Repository

Policy
Services

Non-executable Model Executable Model

Figure 4.3: Annotating Web Services with Policies [Hir17]

the run-time efficiency of data operations involving big data. FlexMash therefore should
accommodate services which process data in a parallel manner. In other words, the
existing FlexMash architecture is inefficient in executing Data Mashups comprising of
data-intensive data operations. To deal with this limitation, an additional step in the
existing data processing architecture of the FlexMash is proposed in [Hir17]. As already
mentioned above, the FlexMash data processing architecture currently consists of three
levels: (i) the non-executable Data Mashup plan, (ii) an executable transformation of the
modeled Mashup plan using patterns and (iii) the services executing the data operations.
As shown in Figure 4.2, a fourth level, i.e, processing the data sets in a parallel manner
using technologies such as Map-Reduce, is introduced in order to achieve scalability of
the services. This new level enables the abstraction of the third level, i.e, the services
level. Consequently, the proposed architectural change extends the existing architecture
without needing to dissolve it.

Although the parallel execution of the data operations on the distributed data sets
reduce the execution time of the data operations, the network communication occurring
during the distribution of the data in the Map step and the collection of the results
in the Reduce step leads to overhead. Hence, Map-Reduce is only then advantageous,
when the reduction in data processing time is sufficiently more than the communication
overhead incurred. It is therefore to be noted, that not all data operations qualify for
a Map-Reduce approach. Also, it is to be noted, that the same data operation may
not always qualify for Map-Reduce. A typical example could be a data operation with
low run-time complexity. When such an operation is executed on a small data set, a
Map-Reduce implementation will lead to an overhead and will therefore not result in any
efficiency optimization. However, when the same operation is applied on a very big data
set, the Map-Reduce approach will improve the run-time efficiency of the data operation
because of the applied parallelism. This calls for a dynamic decision making depending on
parameters influencing the run-time of the data operation. This decision has to be made
at the time of the transformation of the non-executable Mashup plan into an executable

35

4 Efficiency Optimization of data-intensive Data Mashups

Listing 4.1 XML Schema to create a WS-Policy defining run-time parameters
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" >

<xs:element name="Capability" type="tCapability"/>

<xs:complexType name="tCapability">

<wsp:ExactlyOne>

<wsp:All>

<xs:sequence>

<xs:element name="DataSize" type="tValue" minOccurs="0"

maxOccurs="1"/>

<xs:element name="DataComplexity" type="tValue"

minOccurs="0" maxOccurs="1"/>

<xs:element name="Resources" type="tValue" minOccurs="0"

maxOccurs="1"/>

</xs:sequence>

</wsp:All>

</wsp:ExactlyOne>

</xs:complexType>

<xs:complexType name="tValue">

<xs:sequence>

<xs:element name="value">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="LOW|MEDIUM|HIGH"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:schema>

one, so that the executable representation consists of the appropriate services. In the
context of FlexMash, the dynamic mapping of DSDs/DPDs to eDPNs should be based
on the decision, which pipeline operators should be processed using Map-Reduce and
which operators are to be processed by existing technologies such as Web Services. Once
it is decided that an operation should be processed using Map-Reduce, corresponding
Map-Reduce jobs are invoked that process the data.

This decision making process is enabled by annotating Web-Services with Policies,
as shown in Figure 4.3. Web Services use policies to declare in a consistent and

36

Listing 4.2 Sample WS-Policy suitable for Map-Reduce
<wsp:Policy wsu:Id="ServiceCapability">

<Capabilities xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xsi:noNamespaceSchemaLocation="ws_capability.xsd">

<wsp:ExactlyOne>

<wsp:All>

<DataSize>HIGH</DataSize>

<DataComplexity>LOW</DataComplexity>

<Resources>HIGH</Resources>

</wsp:All>

<wsp:All>

<DataSize>LOW</DataSize>

<DataComplexity>HIGH</DataComplexity>

<Resources>HIGH</Resources>

</wsp:All>

<wsp:ExactlyOne>

</Capabilities>

</wsp:Policy>

Listing 4.3 Sample WS-Policy unsuitable for Map-Reduce
<wsp:Policy wsu:Id="ServiceCapability">

<Capabilities xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xsi:noNamespaceSchemaLocation="ws_capability.xsd">

<wsp:ExactlyOne>

<wsp:All>

<DataSize>LOW</DataSize>

<DataComplexity>LOW</DataComplexity>

<Resources>LOW</Resources>

</wsp:All>

<wsp:ExactlyOne>

</Capabilities>

</wsp:Policy>

37

4 Efficiency Optimization of data-intensive Data Mashups

Listing 4.4 Sample WS-Policy attachment
<wsdl:service name="TwitterFilterService">

<wsp:PolicyReference xmlns:wsp="http://www.w3.org/ns/ws-policy"

URI="#ServiceCapability"/>

<wsdl:port binding="impl:TwitterFilterSoapBinding" name="TwitterFilter">

<wsdlsoap:address

location="http://localhost:8080/Data_Mashup/services/TwitterFilter"/>

</wsdl:port>

</wsdl:service>

standardized manner what they are capable of supporting and which constraints and
requirements they impose on their potential requestors. WS-Policy therefore plays a very
important role in interoperability [Pap08]. A Web Service uses policies to describe its
non-functional capabilities, preferences and requirements in contrast to WSDL, which
describes the functional aspects of a Web Service. Thus, a separation of concerns is
achieved [WCL+05]. A policy is an XML structure which consists of three components,
namely policy assertions, policy expressions and policy operations. Policy assertions
are the building blocks of a policy. Each assertion is an atomic representation of a
requirement, capability, preference or constraint of a Web Service. A collection of such
policy assertions form a policy alternative. Using policy operators, namely <All> and
<ExactlyOne>, policy assertions can be logically combined in order to describe complex
policy requirements. In other words, policy operators group policy assertions into policy
alternatives. A policy expression is an XML representation of a Web Service Policy
[Pap08]. In the context of FlexMash, the policy assertions represent the parameters
which influence the run-time efficiency of the operation implemented by the service,
such as the data complexity, size of the data, cost of available resources to process
the data. An XML schema definition, listed in Listing 4.1, has been defined to enable
correct definition of policy assertions representing the parameters that influence the
run-time. Two exemplary instances of the WS-Policy are shown in Listing 4.2 and
Listing 4.3 respetively. The policy in Listing 4.2 indicates that the service is suitable for
Data Mashups dealing with big data or highly complex data or when there are sufficient
resources at disposal for executing the operations. The policy in Listing 4.3, on the other
hand, indicates that the service is suitable for Data Mashups dealing with small data
or data with low complexity or when there are not enough resources at disposal for
executing the operations. Thus, the WS-Policy can be used by a service requester to
decide whether or not to use the service.

The illustrated Policies in Listing 4.2 and Listing 4.3 are said to be in Normal Form.
The normal form is a straightforward representation of a policy enumerating each of

38

its alternatives that in turn enumerate each of their assertions. Each valid policy is
contained within an <All> element and all of the alternatives are contained under a
single <ExactlyOne> operator [Pap08]. The sample policy in Listing 4.2 has two policy
alternatives, each of which is encapsulated by the <All> operator and contains three
policy assertions. A policy can be identified and reused by using the <wsu:Id> element.
An unnormalized policy is allowed and WS-Policy has normalizing algorithms to convert
unnormalized policies into normal form. However, it is advised to use the normal form
whenever practical [Pap08]. Therefore the normal form is used in this project.

After the policy has been defined, it needs to be associated with a policy subject. Policies
can be attached to any of the WSDL definitions such as Message, Operation, Endpoint
or Service. These are referred to as policy subjects [Pap08]. In FlexMash, the policy is
associated with the Service element, also called service policy subject. This is illustrated
in Listing 4.4. The policy thus applies to all endpoints and all operations associated with
the service. The policy attachment is done using the <wsp:PolicyReference> element
and is called policy inclusion [Pap08]. The policy inclusion strategy defines the policy as
a part of the subject’s definition, in this case as a part of the WSDL service definition.

The decision whether or not to use the Map-Reduce approach has to be made at the
time of transformation of the modeled Mashup plan into the executable plan so that
the executable plan has appropriate implementations corresponding to the modeled
data operations. The SelectService implementation achieves this decision-making by
comparing the parameters it obtains from the user or the service requestor (for example,
the transformation pattern in the context of FlexMash) with the capabilities described by
the services in their policies. This comparison is also called policy intersection [Pap08].
The foremost requirement for a policy comparison/intersection is that the policy needs
to be in normal form, which is already satisfied in case of the policies in FlexMash. The
policy alternative, in other words all the assertions of the chosen policy alternative,
are compared using their qualified names. The intension is to eliminate mismatches
rather than finding matches. Matching policy assertions based on their qualified names,
therefore, do not necessarily mean they are equal. It simply means that these assertions
can be further inspected using domain-specific means to find out if they are compatible
with the requirements of the requestor. Figure 4.4 illustrates the execution of the
SelectService for the Big Data Robust Transformation Pattern. The SelectService searches
for relevant Web services stored in the Service Repository using their qualified names.
The services which are found relevant are further inspected by parsing its WSDL to
obtain the WS-Policy. The policy assertions are then compared to the requirements of
the user/service requestor, in this case the transformation pattern. If more than fifty
percent of the requirements are found to be satisfied, the inspected service is chosen as
the implementation for the respective data operation and thus becomes a part of the
executable Mashup plan. If multiple services qualify for the same data operation, one
of them is arbitrarily chosen, in case of FlexMash the first one is selected. When no

39

4 Efficiency Optimization of data-intensive Data Mashups

Policy
Policy

Transformation Pattern:
Big Data Robust Mashup SelectService

Extract

Extract
<wsp:ExactlyOne>
 <wsp:All>
 <DataSize>HIGH</DataSize>
 <DataComplexity>HIGH</DataComplexity>
 <Resources>HIGH</Resources>
 </wsp:All>
</wsp:ExactlyOne>

<wsp:ExactlyOne>
 <wsp:All>
 <DataSize>LOW</DataSize>
 <DataComplexity>LOW</DataComplexity>
 <Resources>LOW</Resources>
 </wsp:All>
</wsp:ExactlyOne>

Service Repository

Parse WSDL to inspect WS-Policy

selected

Figure 4.4: SelectService for Big Data Robust Mashup Transformation Pattern

services qualify, a default service is chosen and in this case the efficiency optimization is
not guaranteed. Thus, depending on the parameters which influence the run-time of a
data operation, a suitable implementation can be dynamically selected, consequently
leading to efficiency optimization because not the same implementation is best suited
for all kinds of Data Mashup situations.

In the following section, the run-time results of two different implementations, a Map-
Reduce implementation of extract and filter operations and a regular java web implemen-
tation of extract and filter, are evaluated to show how they perform best when selected
for appropriate data operations. The size of the input data is the differentiating factor
and is considered for the prototypical implementation because the run-time of extract
and filter operations directly depends on the size of input data. Also the Map-Reduce
framework is best suited for big data and hence makes a very good implementation
choice in this scenario. However, there are many different aspects which influence the
run-time efficiency of data operations and suitable implementations can be created for
different scenarios to improve the Mashup efficiency.

40

5 Prototypical Implementation and
Evaluation

In the FlexMash project, the proposed approach of executing data intensive data op-
erations using Map-Reduce is implemented for the data operations Extract and Filter.
One set of Extract and Filter operations are implemented as Web Services without the
Map-Reduce approach, as shown in Listing 5.1 and Listing 5.2. Currently in FlexMash,
the in-memory processing of data is used for all situations irrespective of the size of the
input file, complexity of the data to be processed, available resources to process the data
etc. This approach is static and non-scalable leading to low performance in case of data
intensive operations.

To avoid the above mentioned limitations, another set of Extract and Filter operations
have been implemented using a Map-Reduce framework, as shown in Listing 5.3 and
Listing 5.4. This implementation processes the data in a parallel manner using a Map
and Reduce logic, thereby improving the run-time efficiency. Thus, depending on
factors influencing the run-time, a decision has to be taken to either process the data
using the existing implementation or using the Map-Reduce implementation. To enable
this decision making, a SelectService service has been implemented, which is another
java implementation, as shown in Listing 5.5. The SelectService gets the run-time
requirements from the user or from any other service requester and compares them with
the capabilities offered by the Web Service. These capabilities are a part of the WSDL
document of the Web Service and are identified as WS-Policies. The SelectService parses
the WSDL documents which are stored in a repository and compares the requirements
obtained from the user/service requester with the Web Service policies mentioned in
the WSDL documents, as shown in Listing 5.6, Listing 5.7 and Listing 5.8. A Web
Service is selected when more than 50 percent of the capabilities match with the
requirements. If multiple WSDLs satisfied the requirements, an arbitrary selection is
made, i.e., the first in the search list is chosen. In a situation, when no Web Service
satisfied the requirements, the default WSDL is selected and the input file is processed
using the respective Web Service. This way a suitable execution is selected depending
on the factors which impact the run-time capability of a data operation. Thus, the
non-executable mashup plan is transformed into an executable one by dynamically
choosing appropriate implementations from the repository.

41

5 Prototypical Implementation and Evaluation

Listing 5.1 In-Memory processing by Extract Operation
@WebService(name = "CSVExtractor")

public class CSVExtractor {

String csvFilePath = null;

String separator = ",";

String line = "";

@WebMethod(operationName = "extract")

public String extract (@WebParam(name = "filePath") String csvFilePath) {

JSONArray resultSet = new JSONArray();

File file = new File(csvFilePath);

try (BufferedReader br = new BufferedReader(new FileReader(file))) {

String[] metaData = br.readLine().split(separator);

while ((line = br.readLine()) != null) {

String[] data = line.split(separator);

JSONObject result = new JSONObject();

for (int i = 0; i < metaData.length; i++) {

result.put(metaData[i], data[i]);

}

resultSet.add(result);

}

return resultSet.toJSONString();

} catch (IOException ioe) {

ioe.printStackTrace();

}

return null;

}

}

File Size in MB

Extract 25 50 100 200 300 400 500 700

without MR 4.15 8.90 17.74 40.56 79.15 107.72 129.80 191.33
with MR 17.60 18.65 19.72 25.20 27.66 35.21 41.30 54.42

Table 5.1: Run-time of extract operation with and without Map-Reduce

42

Listing 5.2 In-Memory processing by Filter Operation
@WebService(name = "Filter")

public class Filter {

@WebMethod(operationName = "filter")

public String filter (@WebParam(name = "extractedData") String inputJSONData,

@WebParam(name = "criteria") String criteria) {

JSONArray resultJSONArray = new JSONArray();

JSONParser parser = new JSONParser();

try {

JSONArray jsonArray = (JSONArray) parser.parse(inputJSONData);

for (int i = 0; i < jsonArray.size(); i++) {

JSONObject currColumn = (JSONObject) jsonArray.get(i);

Object[] keys = currColumn.keySet().toArray();

for (int j = 0; j < keys.length; j++) {

if (currColumn.get(keys[j]).equals(criteria)) {

resultJSONArray.add(currColumn);

}

}

}

return resultJSONArray.toJSONString();

} catch (ParseException e) {

e.printStackTrace();

}

return null;

}

}

File Size in MB

Filter 25 50 100 200 300 400 500 700

without MR 4.92 6.60 15.75 43.54 82.91 115.49 157.14 239.27
with MR 21.45 23.72 25.82 34.73 45.95 52.74 62.35 83.83

Table 5.2: Run-time of filter operation with and without Map-Reduce

43

5 Prototypical Implementation and Evaluation

Listing 5.3 Map-Reduce implementation of Extract Operation
public class CSVExtractorSpark implements Serializable{

private static final long serialVersionUID = 1L;

String separator = ",";

String line = "";

List<JSONObject> resultSet = new ArrayList<JSONObject>();

JSONArray jsonResultSet = new JSONArray();

List<String> data = new ArrayList<String>();

public void extract (String csvFilePath, String jsonFilePath) throws IOException {

SparkConf conf = new SparkConf().setAppName("sparkExtract");

JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD<String> data = sc.textFile(csvFilePath);

final String[] header = data.first().split(separator);

JavaRDD<JSONObject> rdd_extract_json = data.map(

new Function<String, JSONObject>() {

public JSONObject call(String line) {

JSONObject result = new JSONObject();

String[] fields = line.split(",");

for (int i = 0; i < header.length; i++) {

result.put(header[i], fields[i]);

}

return result;

}

});

rdd_extract_json.saveAsTextFile(jsonFilePath);

}

}

Listing 5.4 Map-Reduce implementation of Filter Operation
public class FilterSpark {

public void filter (String extractJSONOutputPath, String[] criteria) throws

IOException {

SparkConf conf = new SparkConf().setAppName("sparkFilter");

JavaSparkContext sc = new JavaSparkContext(conf);

SQLContext sql = new SQLContext(sc);

DataFrame jsonRecordsDF = sql.jsonFile(extractJSONOutputPath);

long count =

jsonRecordsDF.filter(col(criteria[0]).contains((criteria[1]))).count();

System.out.println(count);

}

}

44

Listing 5.5 SelectService Implementation

public class SelectService {

int matchedCount;

private String dataOperation = null;

private List<String[]> requiredCapabilities = new ArrayList<String[]>();

// Class Constructor

public SelectService (String dataOperation, List<String[]> requiredCapabilities) {

this.dataOperation = dataOperation;

this.requiredCapabilities = requiredCapabilities;

}

//Method to return the appropriate service

public String selectService () {

List<File> matchedWsdls = queryRepository(dataOperation);

String selectedService = inspectMatchedWsdls(matchedWsdls);

return selectedService;

}

Listing 5.6 Query Service Repository

/* Method to query the ServiceRepository

* Service Respository is queried for the dataoperation related services.

* We are quering a local repository here for the sake of simplicity

* A list of all related wsdls is returned by Service Repository

*/

private List<File> queryRepository (String dataOperation) {

List<File> repositoryResponses = null;

repositoryResponses = new ArrayList<File>();

File[] files = new File("src/ServiceRepository").listFiles();

for (File file : files) {

if (file.isFile()) {

if (file.getName().contains(dataOperation)) {

repositoryResponses.add(file);

}

}

}

return repositoryResponses;

}

45

5 Prototypical Implementation and Evaluation

Listing 5.7 Inspect matched WSDLs

/* Method to inspect all the wsdls returned by the ServiceRepository

* to find the service that fulfills the required capabilities.

*/

private String inspectMatchedWsdls (List<File> matchedWsdls) {

String matchedService = null;

List<String> fullyMatched = new ArrayList<String>();

List<String> partiallyMatched = new ArrayList<String>();

for (File wsdl : matchedWsdls) {

List<String[]> serviceCapabilities = extractServiceCapabilities(wsdl);

//Logic to compare the requiredCapabilities and serviceCapabilities

matchedCount = 0;

for (String[] requirement : requiredCapabilities) {

for (String[] capability : serviceCapabilities) {

if (requirement[0].equals(capability[0])) {

if (requirement[1].equals(capability[1])) {

matchedCount ++;

}

}

}

}

if (matchedCount == requiredCapabilities.size()) {

fullyMatched.add(wsdl.getName());

} else if (matchedCount >= requiredCapabilities.size()/2) {

partiallyMatched.add(wsdl.getName());

}

}

if (!fullyMatched.isEmpty()) {

matchedService = fullyMatched.get(0);

} else if (!partiallyMatched.isEmpty()) {

matchedService = partiallyMatched.get(0);

} else {

matchedService = "DefaultFilter.wsdl";

}

return matchedService;

}

46

Listing 5.8 Extract Service Capabilities from WS-Policy

/* Method to extract the service capabilities in the policy segment of wsdl.

* Converts the byte[] input to text file and reads the policy segment

* Returns a 2 dimensional array of (capability-name,capability-value) pairs

*/

private List<String[]> extractServiceCapabilities(File wsdl) {

List<String[]> serviceCapabilities = new ArrayList<String[]>();

try {

File inputFile = new File(wsdl.getPath());

DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

Document doc = dBuilder.parse(inputFile);

doc.getDocumentElement().normalize();

Element root = doc.getDocumentElement();

NodeList childNodes = root.getChildNodes();

for (int temp=0; temp < childNodes.getLength(); temp++) {

Node node = childNodes.item(temp);

if (node.getNodeName() == "wsp:Policy") {

NodeList capaNodes = node.getChildNodes();

for (int idx=0; idx < capaNodes.getLength(); idx++) {

Node capaNode = capaNodes.item(idx);

if (capaNode.getNodeName() == "Capabilities") {

NodeList capabilities = capaNode.getChildNodes();

for (int id=0; id < capabilities.getLength(); id++) {

Node capability = capabilities.item(id);

if (capability.getNodeType() == Node.ELEMENT_NODE) {

serviceCapabilities.add(new String[]

{capability.getNodeName(),

capability.getTextContent()});

}

}

}

}

}

}

} catch (Exception e) {

e.printStackTrace();

}

return serviceCapabilities;

}

}

47

5 Prototypical Implementation and Evaluation

150

200

250

Ru
nt

im
e

 (S
ec

s)

Runtime of Extract operation

0

50

100

150

0 200 400 600 800

Ru
nt

im
e

 (S
ec

s)

File size (MB)

Extract without MR (sec)

Extract with MR (sec)

Figure 5.1: Execution run-time of Extract operation

The extract and filter operations are executed on input files of different sizes ranging from
25 MB to 2 GB. The aim is to inspect if the Map-Reduce approach leads to an efficiency
improvement. Openstack provides the required infrastructure to execute the Map-Reduce
jobs in the cluster. Table 5.1 lists the execution duration of the Extract operation and
Table 5.2 lists the execution duration of the Filter operation on input files of different
sizes. Each table lists the execution duration of both the implementations, i.e., the
already existing Web Service implementation as well as the Map-Reduce implementation
to enable a comparative study. For this set of results a minimum size cluster with
just two nodes is used. As it is quite evident from both the tables, the in-memory
implementations of extract and the filter operations are very inefficient for files larger
than 200 MB. At the same time the Map-Reduce approach is very inefficient for smaller
files, such as 25 MB or 50 MB. Such files must be processed using the existing Web
Service implementations and the files bigger than 200 MB can be considered for the
Map-Reduce implementation. In case of the Map-Reduce approach, there are two other
overheads incurred apart from the communication overhead: (i) The input files need to
be stored in HDFS (Hadoop Distributed File System) to be processed by Map-Reduce,

48

150

200

250

300

Ru
nt

im
e

 (S
ec

s)

Runtime of Filter operation

0

50

100

150

0 200 400 600 800

Ru
nt

im
e

 (S
ec

s)

File Size (MB)

Filter without MR (sec)

Filter with MR (sec)

Figure 5.2: Execution run-time of Filter operation

which means that moving the files into HDFS adds to the execution overhead of the
overall process. In this prototypical implementation, the moving of input files was
done manually and hence the overhead is not logged. (ii) Launching the Map-Reduce
jobs on the cluster needs some preparation. In this prototypical implementation, the
Openstack Api (openstack4j1) is used to launch the Map-Reduce jobs on the cluster,
thereby incurring an average overhead of 1.5 seconds. This overhead is included in the
total process execution time listed in the tables above.

Figure 5.1 clearly shows that the run-time of extract operation without the Map-Reduce
implementation exponentially increases as the file size increases. However the Map-
Reduce implementation has more or less a linear increase in the run-time. Hence it can
be concluded that for files bigger than 200 MB, the Map-Reduce approach will result in
efficiency optimization. The same can also be argued for the filter operation, as shown
in Figure 5.2

1http://openstack4j.com/

49

5 Prototypical Implementation and Evaluation

Cluster Nodes

Operation 2 3 4 5 6 7 8

Extract (sec) 164.90 131.90 121.40 115.40 112.10 107.00 103.25
Filter (sec) 254.00 213.60 166.30 126.10 114.20 103.89 92.35

Table 5.3: Impact of cluster size on 2 GB File

200

250

300

Ru
nt

im
e

 (S
ec

s)

Impact of cluster-scaling on execution time
(File Size > 2GB)

0

50

100

150

200

0 2 4 6 8 10

Ru
nt

im
e

 (S
ec

s)

Cluster Size (# of Nodes)

Extract

Filter

Figure 5.3: Impact of Cluster scaling on 2 GB File

Cluster Nodes

Operations 2 3 4 5 6 7 8

Extract (sec) 39.99 38.35 36.91 36.58 35.06 33.96 31.24
Filter (sec) 61.12 58.28 52.94 50.79 47.5 38.89 37.70

Table 5.4: Impact of cluster size on 500 MB File

50

50

60

70

Ru
nt

im
e

 (S
ec

s)

Impact of cluster-scaling on execution time
(File Size = 500MB)

Breakeven point

0

10

20

30

40

0 2 4 6 8 10

Ru
nt

im
e

 (S
ec

s)

Cluster Size (# of Nodes)

Extract

Filter

Figure 5.4: Impact of Cluster scaling on 500 MB File

Cluster Nodes

Operations 2 3 4 5 6 7 8

Extract (sec) 54.37 50.62 46.80 42.44 42.03 41.75 39.27
Filter (sec) 82.92 74.31 65.80 57.44 53.01 51.55 46.92

Table 5.5: Impact of cluster size on 700 MB File

Cluster Nodes

Operations 2 3 4 5 6 7 8

Extract (sec) 24.35 27.73 28.52 30.26 29.78 30.28 27.87
Filter (sec) 33.39 35.71 36.01 37.11 39.15 39.42 38.49

Table 5.6: Impact of cluster size on 200 MB File

51

5 Prototypical Implementation and Evaluation

60
70
80
90

Ru
nt

im
e

 (S
ec

)

Impact of cluster-scaling on execution time
(File Size = 700MB)

0
10
20
30
40
50
60

0 2 4 6 8 10

Ru
nt

im
e

 (S
ec

)

Cluster Size (# of Nodes)

Extract

Filter

Figure 5.5: Impact of Cluster scaling on 700 MB File

Cluster Nodes

Operations 2 3 4 5 6 7 8

Extract (sec) 27.56 29.45 30.90 29.89 29.25 29.25 27.70
Filter (sec) 45.03 45.29 37.75 36.18 36.85 35.64 35.80

Table 5.7: Impact of cluster size on 300 MB File

Cluster Nodes

Operations 2 3 4 5 6 7 8

Extract (sec) 34.06 34.65 33.72 33.25 34.14 33.24 33.20
Filter (sec) 51.55 51.72 50.44 42.49 41.08 37.87 34.96

Table 5.8: Impact of cluster size on 400 MB File

52

30
35
40
45

Ru
nt

im
e

 (S
ec

s)

Impact of cluster-scaling on execution time
(File Size = 200MB)

0
5
10
15
20
25
30

0 2 4 6 8 10

Ru
nt

im
e

 (S
ec

s)

Cluster Size (# of Nodes)

Extract

Filter

Figure 5.6: Impact of Cluster scaling on 200 MB File

The Map-Reduce implementation is further evaluated by scaling up the cluster and
inspecting what impact it has on the run-time efficiency of the operations. The extract
and filter operations are executed using an input file of size greater than 2 GB and
the run-time durations are documented in Table 5.3. The Figure 5.3 clearly illustrates
that the run-time duration of extract as well as filter operation constantly decreases
as the cluster is scaled up, i.e., as the nodes in the cluster are increased, the run-time
efficiency of the extract and filter operations improve. Since Map-Reduce is very suitable
for processing big data sets, it can be concluded that data sets larger than 2 GB should
also exhibit such efficiency improvements as in the case of the tested 2 GB file.

It is further evaluated if this trend holds for smaller data sets. As already discussed
above, processing files less than 200 MB using Map-Reduce results in lower run time
efficiency and hence should be processed using existing Web Services. Therefore, files
greater than 200 MB were tested to find if the increase in the cluster size results in
any interesting trends. As illustrated in Figure 5.4 and Figure 5.5, the 500 MB and
700 MB files show a constant improvement in execution duration when the cluster
size is increased. The Table 5.4 and Table 5.5 lists the execution durations of both the

53

5 Prototypical Implementation and Evaluation

40

50

Ru
nt

im
e

 (S
ec

s)

Impact of cluster-scaling on execution time
(File Size = 300MB)

0

10

20

30

0 2 4 6 8 10

Ru
nt

im
e

 (S
ec

s)

Cluster Size (# of Nodes)

Extract

FilterBreakeven point

Figure 5.7: Impact of Cluster scaling on 300 MB File

operations for various cluster sizes. It can further be concluded, that for files larger than
500 MB, the execution efficiency can be further optimized by increasing the size of the
cluster. A higher number of nodes result in a higher degree of parallelism, thus leading
to reduction in data operation execution time. By increasing the size of a cluster the
network overhead is increased. But in case of files larger than 500 MB, the increase in
the communication overhead is being compensated by the reduction in execution time.
However, after a certain increase in cluster size, the reduction in execution duration
cannot further compensate the increase in communication overhead. Thus a negative
breakeven point will be attained, after which any increase in cluster size will not lead
to any further efficiency improvement. The seventh node in the cluster is a negative
breakeven point in case of the filter operation in case of the 500 MB file.

On the other hand, the increase in cluster size degrades the data operation efficiency
in case of low size data sets. This is because the reduction in execution time is less
than the increase in communication overhead and hence unable to compensate it. As
shown in Figure 5.6, the efficiency of extract and filter operations on a 200 MB input

54

40

50

60

Ru
nt

im
e

 (S
ec

s)

Impact of cluster-scaling on execution time
(File Size = 400MB)

Breakeven point

0

10

20

30

40

0 2 4 6 8 10

Ru
nt

im
e

 (S
ec

s)

Cluster Size (# of Nodes)

Extract

Filter

Figure 5.8: Impact of Cluster scaling on 400 MB File

file decreases when the cluster size increases. Table 5.6 lists the respective execution
run time durations for both the operations.

In case of 300 MB and 400 MB files, as can be seen in Figure 5.7 and Figure 5.8, an
increase in cluster size leads to neither any significant improvement nor any significant
deterioration in the execution efficiency of the extract operation. The filter operation,
however, shows an interesting trend. The execution efficiency initially does not show
any significant change with the increase in the cluster size. However, after a breakeven
point (third node in case of the 300 MB file and fourth node in case of the 400 MB
file), the execution efficiency improves. This breakeven point can be referred to as a
positive breakeven point after which an increase in cluster size leads to an efficiency
improvement. Table 5.7 and Table 5.8 list the execution durations of both the operations
for various cluster sizes.

It is therefore important to note, that an increase in the size of the cluster need not always
lead to inprovement in execution efficiency. Though the parallelism in data processing
is increased by adding more nodes to the cluster, but there is also an increase in the

55

5 Prototypical Implementation and Evaluation

communication overhead occuring in the Map and Reduce phases. Thus determining an
appropriate size of the cluster for achieving the most efficient run-time duration is very
critical and must be judiciously met.

56

6 Summary

Data Mashups aim at integrating disparate sources of information into a potentially
more valuable composite source of information which other applications, services and
processes can access and use [DM14]. The existing Data Mashup tools such as Yahoo
Pipes1, Intel MashMaker2, IBM Infosphere Mashuphub3, FlexMash4, focus mainly on the
usability but not on the execution efficiency. In case of FlexMash, the data processing
operators, which are static and non-scalable, process the entire data set in-memory.
This sort of processing is very inefficient while processing large amounts of data. A
parallel processing of large data sets, for example by using Map-Reduce5, can improve
the run-time efficiency of the data operators. On the other hand, small data sets should
be processed using the already existing Web Services, such as Java implementations.
This selection is important because processing small data sets using Map-Reduce can
lead to large communication overheads, resulting in an inefficient execution. Hence,
the data operators must dynamically choose a suitable implementation depending
on parameters which impact the run-time efficiency [Hir17]. The SelectService java
implementation facilitates this dynamic decision making by inspecting the WS-Policies
and comparing them with the requirements of the service requester. In the context of
FlexMash, these requirements are the parameters which impact the execution run-time of
the data operation. WS-Policy6 is a composeable and reusable specification to deal with
non-functional descriptions and quality of service aspects of Web Services [WCL+05].

In FlexMash, WS-Policies are used to define in a descriptive manner the capabilities of
the Web Services, for example, if the implementation is suitable for processing large size
data sets. Thus, by comparing the WS-Policies with the service requester requirements,
the SelectService chooses appropriate implementations for the data operators of the
Mashup. When a Map-Reduce implementation is chosen, the respective Map-Reduce jobs
are triggered. Map-Reduce is a programming model and an associated implementation
for processing and generating large datasets. Users specify the computation in terms

1https://pipes.yahoo.com/pipes/
2http://intel.ly/1BW2crD
3http://ibm.co/1Ghxv27
4https://github.com/hirmerpl/FlexMash
5http://hadoop.apache.org/
6https://www.w3.org/TR/ws-policy/

57

6 Summary

of a map and a reduce function, and the underlying run-time system automatically
parallelizes the computation across large-scale clusters of machines, handles machine
failures, and schedules inter-machine communication to make efficient use of network
and disks [DG08].

Map-Reduce implementations of extract and filter operations on datasets smaller than
200 MB are inefficient when compared to the existing java implementations. On the
other hand, for files larger than 200 MB, the execution durations of the existing java
implementations increase exponentially where as the Map-Reduce implementations
exhibit a linear increase. This shows that choosing an appropriate implementation for
the data operators can lead to efficiency optimization. Increasing the cluster size also
impacts the execution efficiency. However it does not always lead to improvement.
For example, while processing the 200 MB file, increasing the cluster size beyond two
nodes leads to a constant increase in run-time duration. On the other hand, a 2 GB file
exhibits a constant improvement in the execution efficiency when additional nodes are
added to the cluster. In case of files of intermediate size, for example 300 MB or 400
MB, interesting trends can be observed. The execution efficiency deteriorates with the
increase in cluster size until a positive breakeven point is attained at the third and fourth
node respectively, after which the execution efficiency improves. On the other hand, in
case of the 500 MB file, especially in case of the filter operation, the execution efficiency
improves with the increase in the cluster size until a negative breakeven point is attained
at the seventh node, after which it does not improve any further. Thus, varying the
cluster size in order to improve the execution efficiency is a critical decision and must
be taken judiciously. Further research work is needed to establish a mathematical model
which can enable this decision making.

58

7 Future Works

It is evident from the current test results that parallel processing of data sets leads to a
definite optimization of run-time efficiency in case of files larger than 200 MB. Hence
in this thesis, it is concluded, that files larger than 200 MB should be considered for
processing using technologies such as Map-Reduce. Further testing can be carried out
using files ranging between 100 and 200 MB to more precisely determine the lower
limit, beyond which the Map-Reduce approach leads to efficient run-time. It is also
interesting to find if there exists an upper cutoff limit. In other words, more rigorous
testing can be carried out to find out if the parallel processing does not lead to any
efficiency optimization beyond a certain file size.

An increase in cluster size exhibits interesting and different trends for different file
sizes. Further rigorous testing with multiple files of varying sizes can help in discover-
ing interesting patterns, which can facilitate deeper analysis and precise conclusions
regarding the impact of cluster size on the data processing efficiency. Breakeven points
must also be further analyzed using more test results to find patterns which can provide
insights regarding the impact of cluster size on execution efficiency. These trends also
vary for different data operations. More data operations should be implemented using
Map-Reduce and consequently tested to analyze the reasons behind this difference.
Further analysis must be done to establish a mathematical model for determining the
most appropriate cluster size for a particular data operation.

59

Bibliography

[12] Fachstudie MapReduce: eine vergleichende Analyse aktueller Implementierun-
gen. 2012, Online–Ressource. URL: http://nbn-resolving.de/urn:nbn:de:
bsz:93-opus-78113 (cit. on p. 26).

[AIS78] C. Alexander, S. Ishikawa, M. Silverstein. A Pattern Language: Towns,
Buildings, Construction. Center for Environmental Structure Berkeley, Calif:
Center for Environmental Structure series. Oxford University Press, 1978.
URL: https://books.google.de/books?id=lIF3mwEACAAJ (cit. on p. 20).

[CDG+08] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, R. E. Gruber. “Bigtable: A Distributed Storage System
for Structured Data.” In: ACM Trans. Comput. Syst. 26.2 (June 2008),
4:1–4:26. ISSN: 0734-2071. DOI: 10.1145/1365815.1365816. URL: http:
//doi.acm.org/10.1145/1365815.1365816 (cit. on p. 32).

[DG08] J. Dean, S. Ghemawat. “MapReduce: Simplified Data Processing on Large
Clusters.” In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. ISSN: 0001-
0782. DOI: 10.1145/1327452.1327492. URL: http://doi.acm.org/10.
1145/1327452.1327492 (cit. on pp. 32, 58).

[DM14] F. Daniel, M. Matera. Mashups - Concepts, Models and Architectures. Data-
Centric Systems and Applications. Springer Heidelberg, 2014. ISBN: 978-3-
642-55048-5. DOI: 10.1007/978-3-642-55049-2 (cit. on pp. 20–22, 33,
57).

[FBB+14] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, F. Leymann. “From
Pattern Languages to Solution Implementations.” In: Proceedings of the
6th International Conference on Pervasive Patterns and Applications. Xpert
Publishing Services (XPS), 2014, pp. 12–21 (cit. on p. 21).

[HB17] P. Hirmer, M. Behringer. “FlexMash 2.0 – Flexible Modeling and Execution
of Data Mashups.” Englisch. In: vol. 696. Communications in Computer
and Information Science. Springer International Publishing, Jan. 2017,
pp. 10–29. ISBN: 978-3-319-53174-8. DOI: 10.1007/978-3-319-53174-8.
URL: http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INBOOK-2017-01&engl=0 (cit. on pp. 23, 24).

61

http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-78113
http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-78113
https://books.google.de/books?id=lIF3mwEACAAJ
https://doi.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/1365815.1365816
https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
https://doi.org/10.1007/978-3-642-55049-2
https://doi.org/10.1007/978-3-319-53174-8
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2017-01&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2017-01&engl=0

[Hir17] P. Hirmer. “Effizienz-Optimierung daten-intensiver Data Mashups am
Beispiel von Map-Reduce.” Deutsch. In: Proceedings der Datenbanksys-
teme für Business, Technologie und Web (BTW), 17. Fachtagung des GI-
Fachbereichs, Workshopband. Ed. by B. Mitschang, N. Ritter, H. Schwarz,
M. Klettke, A. Thor, O. Kopp, M. Wieland. Vol. P-266. LNI. Stuttgart:
Gesellschaft für Informatik (GI), Mar. 2017, pp. 111–116. ISBN: 978-
3-88579-660-2. URL: http://www2. informatik .uni - stuttgart .de/cgi -
bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-11&engl=0 (cit. on
pp. 34, 35, 57).

[HRWM15] P. Hirmer, P. Reimann, M. Wieland, B. Mitschang. “Extended Techniques
for Flexible Modeling and Execution of Data Mashups.” Englisch. In:
Proceedings of the 4th International Conference on Data Management Tech-
nologies and Applications (DATA). Ed. by M. Helfert, A. Holzinger, O. Belo,
C. Francalanci. Colmar: SciTePress, July 2015, pp. 111–122. ISBN: 978-
989-758-103-8. URL: http://www2. informatik .uni - stuttgart .de/cgi -
bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-33&engl=0 (cit. on
pp. 15, 29, 30, 33, 34).

[LLC+12] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, B. Moon. “Parallel Data Pro-
cessing with MapReduce: A Survey.” In: SIGMOD Rec. 40.4 (Jan. 2012),
pp. 11–20. ISSN: 0163-5808. DOI: 10 .1145/2094114 .2094118. URL:
http://doi.acm.org/10.1145/2094114.2094118 (cit. on pp. 25–28, 31).

[Pap08] M. P. Papazoglou. Web Services Principles and Technology. Pearson Educa-
tion Limited, 2008. ISBN: 978-0-321-15555-9 (cit. on pp. 38, 39).

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web
Services Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, 2005. ISBN:
0131488740. DOI: 10.1.1/jpb001 (cit. on pp. 25, 38, 57).

All links were last followed on May 21, 2017.

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-11&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-11&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-33&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-33&engl=0
https://doi.org/10.1145/2094114.2094118
http://doi.acm.org/10.1145/2094114.2094118
https://doi.org/10.1.1/jpb001

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Basic Concepts
	2.1 Data Mashups
	2.2 Transformation Patterns
	2.3 Motivation for WS-Policy
	2.4 Map-Reduce Framework

	3 Related Work
	4 Efficiency Optimization of data-intensive Data Mashups
	5 Prototypical Implementation and Evaluation
	6 Summary
	7 Future Works
	Bibliography

