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Zusammenfassung 

In der Synthetischen Biologie wird versucht, lebende Zellen genetisch so zu 

programmieren, dass sie gewünschte Aufgaben ausführen. Beispiele sind die 

Produktion von Brenn- oder Treibstoffen, das Töten von Krebszellen oder das 

Reagieren auf einen bestimmten Umweltstimulus mit einer spezifische biologischen 

Antwort. In den letzten 30 Jahren sind schnelle und kostengünstige 

Klonierungsverfahren und Sequenziermethoden entwickelt worden, die grundlegend 

zum Aufkommen dieses Wissenschaftsfelds beigetragen haben. Auch hatten 

Wissenschaftler, die aus dem Ingenieurbereich kamen, einen wesentlichen Einfluss 

auf die Entwicklung des Forschungsgebiets. So wird versucht, mit Komponenten, die 

in ihrem Verhalten elektrotechnischen Bauteilen ähneln, modulare komplexe Systeme 

zu bauen. Zur Umsetzung dieser Arbeitsweise ist es wichtig, die einzelnen 

grundlegenden Komponenten möglichst genau zu verstehen. In dieser Arbeit wurde 

der epigenetische Mechanismus der DNA Methylierung in einem synthetischen 

Biologie Ansatz genutzt; epigenetische Modifikationen sind vererbbar, beeinflussen 

die zu Grunde liegende genetische Information nicht und sind reversibel.  

In einem Projekt dieser Arbeit wurde die bakterielle Methyltransferase CcrM aus 

Caulobacter crescentus biochemisch und strukturell untersucht. Bisher gab es nur 

wenige Strukturinformationen über das Enzym. Interessanterweise zeigen CcrM und 

homologe DNA-(Adenin N6)-Methyltransferasen die ebenso wie CcrM 5‘-GANTC-3‘ 

Zielsequenzen methylieren, eine konservierte C-terminale Domäne auf, dessen 

Funktion jedoch nicht bekannt war. Hier wurde gezeigt, dass die C-terminale Domäne 

von CcrM essenziell für die DNA Bindung ist. Dieses Ergebnis deutet darauf hin, dass 

CcrM eine Proteinarchitektur aufweist, die theoretisch schon beschriebene wurde, 

jedoch wurde noch keine solche Methyltransferase gefunden. Dies erfordert eine neue 

Einordung von CcrM in der Klassifizierung von DNA-(Adenin N6)-Methyltransferasen. 

CcrM stellt das erste beschriebene Beispiel der δ-Klasse dar. 

In einem weiteren Projekt wurde die CcrM Methyltransferase als Schlüsselenzym zur 

Entwicklung eines synthetisch-epigenetischen Memorysystems verwendet. 

Zusammen mit einem designten Zink Finger Protein, das als methylierungssensitiver 

transkriptioneller Repressor fungiert, wurde ein bistabiles System mit positivem 

Feedback entwickelt. CcrM reguliert hierbei die Transkription seines eigenen Gens 
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durch Methylierung der Promoterregion. Sobald CcrM einmal exprimiert wurde, bleibt 

das System durch die kontinuierliche Methylierung der Promoterregion dauerhaft im 

angeschalteten Zustand. Das System kann durch eine transiente 

Temperaturerhöhung, die transiente Anwesenheit des Zuckers Arabinose oder 

transiente DNA-schädigende Bedingungen vom ausgeschalteten Zustand in den 

angeschalteten Zustand gebracht werden. Die vorübergehenden Signale werden dann 

dauerhaft in sich teilenden Bakterien in Form von DNA Methylierungsmustern 

gespeichert. Das entwickelte System könnte als Biosensor System, Biocontainment 

System oder zum Beispiel als industrielle Proteinexpressionsplattform Anwendung 

finden. Die Entwicklung ähnlicher Systeme, die andere Methyltransferasen mit 

anderen Methylierungsmustern zur Informationsspeicherung nutzen, würde es 

erlauben mehrere Inputsignale gleichzeitig zu speichern und Informationen mit 

Boolescher Logik zu verarbeiten. Dies würde auch die Entwicklung von komplexen 

Biocomputing Systemen ermöglichen. 

In einem weiteren Projekt, wurde ein Bakterium der Citrobacter Gattung entdeckt, das 

in der Lage ist, unter aeroben Kultivierungsbedingungen Wasserstoff zu produzieren. 

Das verantwortliche Enzym wurde als eine Typ 2 Hydrogenase identifiziert und aktiv 

in E. coli exprimiert. Dieses ungewöhnliche Enzym könnte ein Baustein sein, um 

Biowasserstoff gekoppelt an Photosynthese herzustellen. 
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Abstract 

Synthetic biologists aim to program living cells to produce fuels, chemicals or 

pharmaceutical products, accomplish specific tasks, like attacking cancer cells, or 

reacting to certain environmental stimuli. The advent of easy and fast cloning 

techniques and DNA synthesis as well as steadily faster and cheaper DNA sequencing 

allowed for fundamental developments in the field of synthetic biology over the last 30 

years. Engineers have strongly influenced the field of synthetic biology by means of 

applying engineering principles to modify and equip cells to perform desired functions. 

In order to be able to work like an engineer by assembling certain genetic parts and 

thereby creating new biological functions, it is of great importance to have profound 

knowledge of the used biological parts. Here, the epigenetic mechanism of DNA 

methylation was combined with synthetic biology approaches; epigenetic modifications 

are heritable but reversible and do not alter the underlying DNA sequence.  

In this thesis, first, the bacterial DNA methyltransferase CcrM was characterized 

structurally and biochemically. Due to a lack of structural data, little is known about 

DNA binding and sequence recognition of CcrM. CcrM and homologous DNA-(adenine 

N6)-methyltransferases that methylate adenines at 5’-GANTC-3’ sites, exhibit a 

conserved C-terminal domain with unknown function. Here, it was shown that the C-

terminal domain of CcrM is involved in DNA binding. This result suggests that CcrM 

exhibits a protein architecture that has been theoretically described but has not been 

discovered in a bacterial methyltransferase. This demands for a reclassification of 

CcrM to the δ-class of bacterial DNA-(adenine N6)-methyltransferases. 

Next, the methyltransferase CcrM was used as a corner stone together with a designed 

DNA methylation sensitive zinc finger protein in the development of a synthetic 

epigenetic memory device. The zinc finger protein acts as a transcriptional repressor 

and its binding can be modulated by CcrM introduced DNA methylation. Using these 

two building blocks, a bistable system was created in which the zinc finger repressor 

regulates a gene for CcrM. Once CcrM is expressed, the system is durably switched 

on due to the positive feedback. The iteratively developed system was designed to 

react to transient sensory information like heat, presence of arabinose, or DNA 

damaging conditions and stores this information durably but also reversibly in DNA 

methylation patterns in living bacteria. This system can find use in biotechnology 
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applications e.g. as biosensors, biocontainment systems, or as an industrial protein 

induction platform. The development of similar systems using complementary 

methyltransferases will allow for multiplexing and processing of multiple input signals, 

enabling Boolean logic operations and more complex biocomputing applications.  

Additionally, a Citrobacter species expressing an unusual bacterial type 2 hydrogenase 

was discovered that is capable of hydrogen production under aerobic cultivation 

conditions. The unusual enzyme was actively expressed in E. coli and might be a 

valuable biological part for one-step biohydrogen production coupled to 

photosynthesis.  
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1 Introduction 

This work deals with the development of a synthetic epigenetic memory system in 

Escherichia coli that can sense and memorize different transient input signals in form 

of DNA methylation patterns, the biochemical and structural investigation of the 

bacterial DNA-(adenine N6)-methyltransferase CcrM from Caulobacter crescentus, 

and the identification and heterologous expression of the oxygen tolerant type 2 

hydrogenase from Citrobacter freundii. Relevant topics will be introduced in the next 

chapters of this section.  

1.1 Synthetic biology and synthetic circuit design 

1.1.1 An overview of synthetic biology 

In the year 1961, upon their investigations on the lac operon, François Jacob and 

Jacques Monod postulated the existence of regulatory circuits that can respond to 

environmental inputs (Monod and Jacob 1961). They hypothesized the assembly of 

new circuits (Jacob and Monod 1961) and thereby originated the field of synthetic 

biology. 

Today, synthetic biologists desire to rationally program living cells in order to 

understand functional parts, control cellular behavior, and create new biological 

systems and functions, which later could be of technical or industrial use. They apply 

engineering principles to predictively construct new functions by the assembly of 

biological parts in novel ways. Hereby, they use either naturally occurring parts or 

newly engineered bioparts and molecular biology tools. 

The development of synthetic biology is based on the emergence and improvements 

of molecular biology techniques during the 70s, 80s, and 90s of the last century. These 

include molecular cloning techniques, PCR, and automated DNA sequencing. In the 

year 2000, two groups reported the construction and engineering of two synthetic 

genetic circuits, a “toggle switch” and a “repressilator”, that are now often considered 

as the cornerstones of the field of synthetic biology (Elowitz and Leibler 2000; Gardner 
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et al. 2000) (Figure 1). The toggle switch is a gene circuit that exhibits a bistable 

behavior and consists of two repressor genes that negatively regulate each other. 

Switching between the two stable states is achieved by transient signals, like chemical 

compounds or thermal induction. The repressilator is a synthetic gene network 

consisting of three transcriptional repressor genes. Each expressed repressor protein 

represses the transcription of the consecutive repressor gene resulting in an oscillating 

expression profile of a reporter gene. 

 

Figure 1. Seminal synthetic biology gene circuit designs. A) The toggle switch that can 

stably switch between to states. (Picture taken from (Gardner et al. 2000).) B) The 
repressilator exhibits an oscillating protein expression profile of three repressor 
proteins. (Picture taken from (Elowitz and Leibler 2000).) 

In the following years, the engineered systems became more and more diverse and 

versatile and an increasing number of control elements have been used. Additional to 

regulation at the transcriptional level, RNA-based systems that are regulated at the 

level of translation have been developed (Isaacs et al. 2004). Also prokaryotic cell to 

cell communication systems (quorum sensing) have been incorporated into the 

construction of synthetic circuits resulting in intercellular gene circuits. A primary 

example circuit resulted in a 2D pattern formation in E. coli (Basu et al. 2005). Later, 

quorum sensing based circuits have been used to manipulate bacteria to lyse 

synchronously in pulsatile patterns, which was coupled to the release of a therapeutic 

payload and may find application in live drug delivery systems (Danino et al. 2010; Din 

et al. 2016). Among many other synthetic circuits, biological counting devices have 

been devolved that are based on riboregulators or recombinases (Friedland et al. 

2009).  

The introduction of new cloning techniques like Gibson Assembly has leveraged the 

constraints of restriction endonuclease based cloning methods and, together with 
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better and cheaper gene synthesis, it has become easier to build and assemble gene 

circuits from scratch (Gibson et al. 2009). DNA synthesis and assembly methods have 

facilitated the synthesis of whole bacterial genomes, a mouse mitochondrial genome 

and a yeast chromosome (Gibson et al. 2010a; Gibson et al. 2010b; Annaluru et al. 

2014). Furthermore, with the method of multiplex automated genome engineering 

(MAGE) it is now possible to simultaneously modify prokaryotic genomes at multiple 

sites with high efficiency (Wang et al. 2009a). Researchers at the J. Craig Venter 

institute built synthetic minimal genomes (smallest 531 kb) based on the reduction of 

the Mycoplasma mycoides genome, exemplifying the creation of semisynthetic life 

forms (Gibson et al. 2010a; Hutchison et al. 2016). 

The field of synthetic biology is not restricted to bacteria. Synthetic biology approaches 

have also found their way into eukaryotic systems, like mammalian model cell systems 

and plants (Gersbach et al. 2016; Nemhauser and Torii 2016). Especially the 

emergence of programmable DNA binding devices like zinc finger proteins, TALEs 

(transcription activator-like effectors), and the CRISPR Cas9 system (clustered 

regularly interspaced short palindromic repeats, CRISPR associated protein 9) have 

led to a massive progress in the field (Weber and Fussenegger 2012; Lienert et al. 

2014).  

The mentioned examples of synthetic biology devices are mainly proof-of-principle 

studies, however, especially in the field of metabolic engineering, synthetic biology 

along with systems biology intensified progress and now show real industrial 

applications in the production of bulk chemicals, fine chemicals, drugs and fuels 

(Keasling 2010; Lee et al. 2012). The production of the antimalarial drug artesimin is a 

paradigm for the industrial application of synthetic biology approaches (Ro et al. 2006). 

1.1.2 Building blocks for genetic circuit construction 

Using cells as biosensors, input signals can, for example, be inorganic or organic 

chemicals, osmolarity, physical inputs like temperature, ionizing radiation, or light. Any 

desired output signals can be coupled to the input via genetic circuits. Examples are 

the expression of reporters like GFP (green fluorescent protein), the synthesis or 

secretion of a therapeutic compound, triggering of a particular cellular behavior like 
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biofilm formation, or programmed cell death. Input signals can be processed at the 

level of transcription, translation, and via post-translational systems. 

The basic level of circuit regulation and biosensing is transcriptional regulation that 

functions by modifying RNA polymerase access to target promoter sequences or by 

modifying progression of RNA polymerase. Biological parts that influence RNA 

polymerases are, for example, DNA binding proteins (see chapter 1.1.3) or 

recombinases that invert, excite, or insert DNA sequences (Roquet et al. 2016). Most 

of the classical inducible protein expression systems are examples of natural 

transcriptional biosensors that modulate transcription via binding in the promoter 

region of their target genes (Lutz and Bujard 1997). Additionally, synthetic variations 

of theses transcription factors have been developed and used in synthetic biology 

approaches, in which DNA binding domains and regulatory domains have been 

reassembled in novel ways (Meinhardt et al. 2012; Chan et al. 2016). 

Riboswitches can regulate gene expression at transcriptional and translational level 

(Serganov and Nudler 2013). In case of transcriptional regulation, ligand binding 

dependent mRNA conformations can act as terminators or antiterminators by the 

formation of hairpin structures or by preventing them. In case of riboswitches that act 

on the translational level, the regulated mRNA contains a 5’ untranslated region that 

comprises an aptamer sequence that can bind small molecules and change its folding 

(or three-dimensional structure) upon binding. The structural change can then regulate 

ribosomal translation (Waters and Storz 2009). Synthetic design of aptamers allows 

customization of riboswitches (Berens et al. 2015). While riboswitches are regulated in 

cis by RNA-RNA interactions, there are also small RNAs that can act in trans in the 

process of translational regulation (Qi and Arkin 2014). In natural systems, small RNAs 

are involved in gene regulation under low iron conditions or oxidative stress, for 

example (Waters and Storz 2009). Synthetic systems that sense RNAs have also been 

developed (Green et al. 2014). 

Post-translational regulation uses protein receptors to sense signals and start a signal 

cascade that provokes a cellular response (Khalil and Collins 2010). Either this can 

result in solely post-translational circuits (Olson and Tabor 2012 229) or the signal can 

provoke response at transcriptional or translational level (Skerker et al. 2008 233). 
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1.1.3 DNA binding proteins 

DNA binding proteins are one key component of virtually all artificial genetic circuits. 

They can be adapted from natural systems, modified, or repurposed in new settings. 

Examples include, the TetR and homologs (Stanton et al. 2014), the λ phage 

repressors Cro or CI (Oppenheim et al. 2005), the LacI repressor and related 

repressors (Zhan et al. 2010), as well as synthetic chimeric transcription factors of this 

family in which DNA binding domains and regulatory domains were interchanged 

(Meinhardt and Swint‐Kruse 2008; Meinhardt et al. 2012). More recently, catalytically 

inactive Cas9 protein (dCas9) has been shown to be applicable as prokaryotic 

transcriptional repressor by blocking initiation or elongation of RNA synthesis also 

referred to as CRISPR interference (CRSPRi)(Qi et al. 2013). Additionally, 

transcriptional activation using dCas9 fusion proteins was revealed to be possible in 

bacteria and is called CRISPR mediated gene activation (CRISPRa)(Bikard et al. 

2013). In eukaryotic systems, both, gene activation and repression has also been 

shown to be conceivable by different means (Konermann et al. 2014; Dominguez et al. 

2015). Of note, there is a major difference between DNA interaction of conventional 

transcription factors and systems based on CRISPR Cas9 system. Conventional 

bacterial and eukaryotic transcription factors interact with DNA and recognize DNA 

sequence mainly via protein-DNA contacts and bind their target site via DNA binding 

domains like zinc finger domains, helix-turn-helix motifs, leucine zippers, or others 

(Rohs et al. 2010). In contrast, the Cas9 protein binds DNA via a guide RNA and the 

sequence recognition and binding is based on Watson/Crick base pairing between the 

guide RNA and one DNA strand, resulting in an Cas9-gRNA-DNA complex (Nishimasu 

et al. 2014). Hence, DNA modifications like DNA methylation do not play a major role 

in modulation the binding behavior. However, for example zinc finger proteins or 

TALEs form DNA contacts via the major groove of DNA and hence DNA methylation 

can modulate DNA binding (Sasai et al. 2010; Deng et al. 2012; Liu et al. 2012; Liu et 

al. 2014)(Figure 2).  
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Figure 2. DNA binding and sequence recognition by zinc finger proteins. A) Structure 

of zinc finger protein in complex with DNA (PDB ID: 2KMK, (Lee et al. 2010)). In red, 
cyan, and grey individual zinc finger domains are indicated with a complexed zinc ion 
(light grey sphere). Zinc finger proteins make DNA contacts in the major groove of 
DNA. B) Interactions of amino acid side chains of zinc finger proteins with DNA bases 
via H-bonds and hydrophobic interactions. In theory, methylation at the N6 position of 
adenine bases interferes with amino acid base interactions. In contrast, there is also a 
report on a plant GATA zinc finger protein that shows enhanced binding to DNA that 
carries adenine N6 methylation (Sugimoto et al. 2003). (Picture taken from (Sera and 
Uranga 2002).) C) Interaction of asparagine or glutamine residues in zinc finger 
proteins with AT base pairs. This interaction is blocked by adenine-N6 methylation 
(Aggarwal et al. 1988; Wolfe et al. 2000). (Panel C is taken from Supplementary Fig. 
2A from Appendix 2.) 

1.1.4 Limitations and adjustments of synthetic circuits 

Synthetic circuit design can be used to program cells in a rational way. By combination 

of several simple circuits, more complex systems can be implemented, which integrate 

different inputs and apply a kind of Boolean logic (Tamsir et al. 2011; Wang et al. 2011). 

However, there are certain limitations of combining different gene circuits that range 
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from insufficient dynamic ranges, context dependence of certain genetic parts, 

transcriptional read-through to crosstalk of regulators. Additionally, potential 

interactions with host cells have to be considered (Brophy and Voigt 2014). 

Adjustments to circuits can be made e.g. by copy number adaptations of the circuit’s 

plasmids or the genomic integration of the circuit, promoter strength variation, 

ribosomal binding site strength alteration, mRNA lifetime variation, or targeted protein 

degradation. 

During this work, a zinc finger protein has been engineered to bind DNA in an adenine-

N6 methylation dependent manner and was used as an artificial transcriptional 

repressors in Escherichia coli. Applying this repressor in synthetic circuit design 

together with a bacterial methyltransferase, that is able to modulate DNA binding of 

the repressor, a synthetic epigenetic memory system has been established in 

Escherichia coli. 

1.2 DNA methylation and Epigenetics 

DNA methylation is found in both prokaryotes and eukaryotes and adds additional 

information to DNA without altering the DNA sequence (Cheng 1995). In bacteria, three 

types of DNA methylation occur, that do not interfere with base pairing. These are 5-

methylcytosine (5mC), N4-methylcytosine (4mC) and N6-methyladenine (m6A) 

(Jeltsch 2002) (Figure 3). In each case, the methyl group protrudes into the major 

groove of the DNA helix and it can be read by DNA binding proteins (see also 1.1.3). 

In mammals, DNA methylation mainly referrers to methylation of cytosines at the C5 

position in 5’-CG-3’ sequences. However, recently, N6-methyladenine was also 

discovered as a mammalian DNA modification, but its biological role is still unclear 

(Luo et al. 2015; Wu et al. 2016). Cytosine methylation at the C5 position plays crucial 

roles in cell development and differentiation and often is involved in the onset and 

progression of diseases (Bergman and Cedar 2013). In particular, promoter 

methylation leads to gene repression, whereas methylation in gene bodies is observed 

in highly transcribed genes (Baylin and Jones 2011; Jones 2012). Furthermore, DNA 

methylation is involved in genomic imprinting (Smith and Meissner 2013; Horsthemke 

2014), X-chromosome inactivation (Gendrel et al. 2012) and the silencing of 

transposable elements (Smith and Meissner 2013). DNA methylation is one of the best 
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studied epigenetic marks in mammals and is introduced by the two de novo 

methyltransferases Dnmt3a and Dnmt3B and maintained by Dnmt1 (Okano et al. 1999; 

Jeltsch 2006). Histone post-translational modifications (PTMs) and non-coding RNAs 

function in concert with DNA methylation and encode the epigenome of the cell. 

Epigenetic processes convey inherited information for gene expression profiles by 

regulation of chromatin organization (Jaenisch and Bird 2003; Allis and Jenuwein 

2016; Henikoff and Greally 2016). In bacteria, there are certain phenomena that 

resemble epigenetic mechanisms in higher organisms like heritable DNA methylation 

patterns involved in regulation of the pap operon and the agn43 gene, as well as IS10 

and traJ regulation (Wion and Casadesús 2006). 

 

Figure 3. DNA bases with its biological relevant methylated variants. 

1.2.1 DNA methylation in prokaryotes 

In prokaryotes, most of the known DNA methyltransferases (MTases) are part of 

restriction/modification (RM) systems. These systems serve to protect prokaryotes 

from bacteriophage infections. RM systems employ a restriction endonuclease and a 

DNA MTase with both enzymes recognizing the same target DNA sequence. Usually 

these DNA target sites are 4 to 8 base pair palindromic sequences. The restriction 

endonuclease cleaves the DNA at the target sequence only in an unmethylated state, 

as found on incoming phage DNA during the early steps of infection. The host cell 

DNA, however, is kept in a methylated state by the corresponding DNA MTase and 

hence is protected from cleavage (Arber and Dussoix 1962; Bickle and Krüger 1993; 
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Pingoud and Jeltsch 2001). These systems are complemented by the adaptable 

CRISPR-Cas systems that have been discovered only recently as an additional 

defense system of bacteria and archaea against invading phages, independent of DNA 

methylation (Bhaya et al. 2011). 

Aside from MTases of RM systems, there are so called solitary or orphaned MTases 

that do not serve in protection of DNA from cognate endonucleases. The Escherichia 

coli deoxyadenosine DNA methyltransferase (Dam) and the Caulobacter crescentus 

cell-cycle-regulated methyltransferase (CcrM) are two well characterized examples of 

this kind (Jeltsch 2002). E. coli Dam methylates adenine residues in 5’-GATC-3’ 

sequences and is involved in DNA mismatch repair, initiation of chromosome 

replication and regulation of gene expression, including the mentioned pap phase 

variation in uropathogenic E. coli (Marinus and Morris 1973; van der Woude et al. 1996; 

Low et al. 2001; Løbner-Olesen et al. 2005; Marinus and Casadesus 2009). 

Caulobacter crescentus CcrM methylates adenine residues in 5’-GANTC-3’ 

sequences and it is essential for C. crescentus, at least under certain growth conditions 

and plays a central role in regulation of the cell cycle (see chapter 1.2.6) (Reisenauer 

et al. 1999a; Marczynski and Shapiro 2002; Wion and Casadesús 2006; Gonzalez and 

Collier 2013). 

1.2.2 Classification of bacterial DNA MTases 

Bacterial DNA MTases can be classified by the position at which they methylate 

nucleobases. One class methylates pyrimidine ring carbons, resulting in the formation 

of a C-C bond in C5-methylcytosine. The other class methylates exocyclic amino 

nitrogen atoms. They can act on adenine or cytosine bases, resulting either in N6-

methyladenine or N4-methylcytosine (Figure 3) (Malone et al. 1995; Jeltsch 2002).  

Structurally, both classes of bacterial DNA MTases are similar. They contain a catalytic 

domain comprising the active site and an AdoMet-binding region, and they contain a 

target recognition domain (TRD) (Malone et al. 1995; Jeltsch 2002). 

Bacterial cytosine-C5 MTases like M.HhaI and M.HaeIII contain ten conserved motifs 

in the same order in the catalytic domain, N-MTases like M.PvuII or M.TaqI reveal 

different orders of conserved motifs. By means of the position of the TRD and the order 

of the conserved motifs in the catalytic domain, N-MTases were classified into classes 
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called α, β, and γ (Figure 4) (Malone et al. 1995). In this nomenclature, the cytosine-

C5 MTases all fall into group γ. Theoretically, there are also the classes δ, ε, and ζ, 

however, there were no examples found for these classes so far. The different motif 

arrangements are thought to be the result of circular permutations of the genes of the 

methyltransferases (Jeltsch 1999). Of note, motifs I, II, III, and X built up the AdoMet-

binding region, motifs IV, V, VI, VII, and VIII comprise the active site subdomain (Cheng 

et al. 1993; Labahn et al. 1994; Schluckebier et al. 1995).  

 

 

Figure 4. Different arrangements of catalytic domain, AdoMet binding region and TRD 

in bacterial DNA MTases. Arrangements δ, ε, and ζ are hypothetical. (The image is 
taken from (Malone et al. 1995).) 

1.2.3 Mechanisms of DNA recognition 

Binding of specific DNA binding proteins to their target sequences leads to the 

energetically best possible number of contacts between protein and DNA backbone 

and specific base pairs. One can discriminate two mechanisms, both leading to the 

recognition of the specific target sequence (Garvie and Wolberger 2001). Direct read 

out refers to specific protein DNA target sequence interactions and indirect read out 
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refers to the recognition of sequence dependent changes in the shape of DNA (Rohs 

et al. 2010). Structural features of the DNA evoked by the respective DNA target 

sequence are read by DNA binding proteins via the phosphate backbone, independent 

of direct interactions of amino acids with the actual nucleotide sequence (Travers 1989; 

Luscombe et al. 2001). Once the target sequence has been found, specific contacts 

can be formed additionally and the ΔG release can be used for example to aid 

conformational changes in the protein, necessary for catalysis. Indirect read-out has 

been shown to contribute to DNA target site recognition for example for the Trp 

repressor, the EcoRV endonuclease, or M.EcoRV (Otwinowski et al. 1988; Taylor et 

al. 1991; Jurkowski et al. 2007). 

1.2.4 Catalytic mechanism of exocyclic DNA Methyltransferases 

DNA MTases transfer methylgroups from S-adenosyl-L-methionine (AdoMet) (Figure 

5) onto their target base. In order to find their target sequence, DNA Mtases bind 

unspecifically to DNA and diffuse linearly along the DNA until the target sequence has 

been found. For accessing the target base and to perform the methylation reaction, the 

base is flipped out of the DNA helix and as a result intrudes into the catalytic pocket of 

the DNA MTase. Base flipping occurs at the sugar-phosphate backbone and requires 

breaking of the Watson/Crick hydrogen bonds, but no breaking of covalent bonds 

(Jeltsch 2002). Methylation reactions are alkylation reactions and require AdoMet as a 

donor of the methylgroup (Cheng 1995; Jeltsch 2002). AdoMet features a methylthiol 

moiety that reacts easily with polarizable nucleophiles due to its charged sulfur atom 

(Cheng and Roberts 2001). The catalytic mechanism of the AdoMet dependent 

adenine-N6 MTase M.TaqI is shown exemplarily in Figure 6 (Goedecke et al. 2001; 

Jeltsch 2002). M.TaqI methylates the exocyclic N6 of adenine in 5’-TCGA-3’ 

sequences. Once the adenine is flipped out, the target nitrogen gets polarized and 

becomes a nucleophile by formation of hydrogen bonds to aspartate and proline in the 

active site. Aspartate and proline are part of the conserved (D/N/S)PP(Y/F) motif 

present in the active site of adenine-N6 and cytosine-N4 Mtases. Then, the nucleophile 

attacks the methylthiol resulting in N6 methylated adenine and S-adenosyl-L-

homocysteine.  
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Figure 5. S-adenosly-L-methionine (AdoMet). The methylgroup bound to the charged 

sulfur can be transferred by MTases resulting in S-adenosyl-L-homocysteine and a 
methylated DNA base. 

 

Figure 6. Catalytic mechanism derived from M.TaqI crystal structure. Aspartate and 

proline sidechains form hydrogen bonds with the nitrogen at the exocyclic N6 position. 
This leads to a transition from sp2 to sp3 hybridization of the nitrogen resulting in a 
nucleophile, which can attack the methyl group of SAM in a SN2 reaction. (The image 
is taken from (Jeltsch 2002).) 

1.2.5 Caulobacter crescentus cell cycle regulated methyltransferase (CcrM) 

The cell cycle regulated methyltransferase (CcrM) from Caulobacter crescentus is a 

solitary MTase and plays a crucial role in the C. crescentus cell cycle (see Chapter 

1.2.6). The adenine-N6 methyltransferase methylates 5’-GANTC-3’ sequences in a 

distributive manner, meaning that CcrM dissociates from the DNA after one 

methylation reaction (Albu et al. 2012a). In contrast, processive enzymes stay bound 

to the DNA after a methyl group transfer and slide along the DNA until they find another 

target site. Moreover, CcrM shows a slight for hemimethylated substrates compared to 

unmethylated substrates (Albu et al. 2012a). There is evidence that CcrM can form 

dimers (Shier et al. 2001), however, due to the lack of a structural data, it is unclear 

how this dimerization is accomplished and where intermolecular interactions might 
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appear. Until recently, CcrM had been classified as a β-class MTase (Gonzalez et al. 

2014). CcrM reveals an additional C-terminal domain with unknown function that is not 

part of the consensus MTase fold, but conserved among CcrM homologs. 

1.2.6 The cell cycle of Caulobacter crescentus 

Caulobacter crescentus is an aquatic Gram-negative alpha-proteobacterium that 

divides into two morphologically distinct daughter cells, one stalked sessile cell and 

one mobile swarmer cell (Curtis and Brun 2010). Only the stalked cell can initiate DNA 

replication followed by cell division. The swarmer cell first has to attach to a substrate 

and differentiate into a stalked cell in order to start replication of the chromosome and 

to divide (Marczynski and Shapiro 2002; Collier 2012). In contrast to Escherichia coli, 

Caulobacter crescentus replicates its chromosome exactly once per cell cycle (Roberts 

and Shapiro 1997; Marczynski 1999). The cell cycle of Caulobacter crescentus is 

tightly controlled by three transcription factors (DnaA, GcrA and CtrA) and the cell cycle 

regulated methyltransferase CcrM (Curtis and Brun 2010). 

In the stalked cell, DNA replication starts with binding of DnaA to the Caulobacter 

chromosomal origin (Cori), which is fully methylated at 5’-GANTC-3’ sites that are 

located there. DnaA starts to unwind DNA in an ATP dependent manner (Skarstad and 

Boye 1994). Additionally, DnaA acts as a transcription factor and stimulates the 

transcription of gcrA. GcrA in turn regulates many cell cycle regulated genes, such as 

genes involved in DNA replication (Collier et al. 2006; Collier 2012). 

During DNA replication the Caulobacter chromosome becomes hemimethylated and 

the duration of this state is dependent on the individual location of the respective 5’-

GANTC-3’ site (Zweiger et al. 1994; Kozdon et al. 2013). The dnaA gene’s promoter 

region becomes hemimethylated immediately after replication initiation, as it is located 

close to the Cori on the chromosome. The activity of the dnaA promoter is 

epigenetically regulated by its methylation state; it is active in the methylated state and 

inactive in hemimethylated state. Hence, dnaA transcription diminishes, once the DNA 

replication fork has passed the dnaA promoter (Collier et al. 2007). However, it should 

be noted that there are conflicting reports claiming, that dnaA regulation could also 

occur independent of the methylation state of 5’-GANTC-3’ sites in the promoter of 

dnaA (Cheng and Keiler 2009; Jonas et al. 2011; Gonzalez et al. 2014). Afterwards, 
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the protein HdaA inactivates existing DnaA and DnaA is degraded by the protease 

ClpP (Gorbatyuk and Marczynski 2005; Collier and Shapiro 2009). This contributes to 

the prevention of multiple initiations of chromosomal replication. 

Furthermore, DNA replication is negatively regulated by the phosphorylated cell cycle 

transcriptional regulator A (CtrA) through competitive binding to the Cori (Collier 2012). 

Once the promoter of the ctrA gene has been replicated and converted into the 

hemimethylated state, ctrA transcription is activated by GcrA binding to one of the two 

promoters of the ctrA gene (Reisenauer and Shapiro 2002). Subsequently, expressed 

CtrA activates its own transcription via the strong second promoter, resulting in high 

CtrA levels (Domian et al. 1999). CtrA in turn represses gcrA transcription (Holtzendorff 

et al. 2004). CtrA in its activated form is present in swarmer and pre-divisional cells 

and is involved in the regulation of many additionally cell cycle regulated genes, such 

as ccrM (Laub et al. 2002). ccrM transcription is activated on the one hand by CtrA, on 

the other hand by hemimethylation of two 5’-GANTC-3’ sites in its promoter 

(Reisenauer et al. 1999b; Collier et al. 2007). Via this regulation, CcrM is only 

expressed and active at the end of S-phase prior to cell division and and then 

reestablishes full methylation at 5’-GANTC-3’ sites (Zweiger et al. 1994). Methylation 

of its own promoter and degradation of CcrM by the Lon protease restricts the activity 

to this narrow time window (Wright et al. 1996). 

During this work, the DNA-(adenine N6)-methyltransferase CcrM from Caulobacter 

crescentus was investigated biochemically and structurally. It was found that the C-

terminal tail of CcrM plays a role in DNA binding and thus a re-classification of CcrM 

to the δ-type DNA-(adenine N6)-methyltransferase has been proposed. 
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Figure 7. Schematic cell cycle of Caulobacter crescentus resulting in a swarmer and 

a stalked cell. CcrM, CtrA, GcrA and DnaA expression in different phases of the cell 
cycle is depicted in colored bars. Methylation of the chromosome is illustrated by filled 
double squares, hemimethylated sites after DNA replication are shown in one filled and 
one empty square. (Picture taken from (Mohapatra et al. 2014).) 

 

 

Figure 8. Regulatory circuit of transcription regulators and DNA methyltransferase 

CcrM. Red arrows indicate transcriptional activation; red dead end signs indicate 
transcriptional repression and dashed lines indicate regulation under debate. The 
arrow with question mark represents an unknown regulatory mechanism. Black errors 
indicate promoters. (Picture taken from (Panis et al. 2014).) 
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1.3 Microbial hydrogen production 

Hydrogen (H2) is considered to be one of the major energy carriers of the future. This 

is due to its versatile applications and the lack of environmentally adverse combustion 

products. H2 can be burnt with oxygen for heat production, used for electricity 

generation in fuel cells and has other industrial applications. H2 has a roughly three 

times higher energy content per mass than hydrocarbon fuels (Schlapbach and Züttel 

2001) and ideal H2 combustion with oxygen produces only heat and water as final 

product. Still, it is difficult to store molecular hydrogen due to its chemical and physical 

properties but constant progress is made in the field (Barthelemy et al. 2016). At the 

moment, H2 is produced mainly in an unsustainable manner using fossil fuels (Serban 

et al. 2003; Dincer and Acar 2015). Other routes for molecular hydrogen production 

are electrolysis of water (Armaroli and Balzani 2011) or biological hydrogen production 

(Hallenbeck et al. 2012).  

In nature, nitrogenases and hydrogenases are capable of H2 production (Hallenbeck 

and Benemann 2002). However, both enzymes classes are generally sensitive to 

oxygen and the enzymes are either destroyed or inhibited by its presence (Meyer et 

al. 1978; Colbeau et al. 1980; Vincent et al. 2005; Boyd and Peters 2013). 

Biotechnologically, current H2 production attempts include biophotolysis, 

photofermentation and dark fermentation (Kapdan and Kargi 2006).  

In biophotolysis, H2 is produced by water splitting conducted by cyanobacteria or 

microalgae. The main problem lies in the necessity for anaerobic conditions for 

hydrogen production, whereas the capturing of light energy by photosystem II results 

in oxygen production (Nield et al. 2000). Therefore, a couple of approaches have been 

applied to reduce oxygen levels, including heavy perfusion of culturing media with inert 

gas or sulfur depletion in order to reduce photosystem II activity to keep oxygen levels 

low. However, these approaches all come with the price of low yields (Antal et al. 

2003).  

In case of photofermentation, purple non-sulfur bacteria use light energy to produce 

H2 and carbon dioxide in the process of nitrogen fixation by oxidizing organic acids 

(Kapdan and Kargi 2006). These bacteria contain only one photosystem and are 

unable to perform water splitting, omitting the oxygen problem. However, organic 

substrates are used as a primary energy source and the nitrogen fixation process is 
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highly energy intensive, making photofermentation not efficient in terms of industrial 

H2 production (Hallenbeck and Benemann 2002; Basak and Das 2007). 

In dark fermentation processes, organic substrates are oxidized and protons are used 

as final electron acceptors in order to produce molecular hydrogen by hydrogenases 

(Kothari et al. 2012). Again, biomass is needed as an energy source, making the 

process less attractive than direct conversion of sunlight into hydrogen. 

The most appealing strategy would be direct H2 production from water by using sunlight 

as the main energy source and only having oxygen as side product. Therefore, 

scientists are actively seeking for enzymes that can catalyze H2 production and are not 

sensitive to ambient oxygen levels or new materials that can catalyze hydrogen 

production from water exploiting solar energy (Wang et al. 2009b; Friedrich et al. 2011). 

1.3.1 Classification of hydrogenases 

Natural hydrogenases are metalloenzymes that catalyze the reversible oxidation of 

hydrogen and occur in archaea, bacteria and some eukaryotes (Vignais and Billoud 

2007). They can be classified by their cellular localization; there are cytoplasmic 

hydrogenases that use NADH or NADPH as cofactor, or membrane associated 

hydrogenases that are coupled to the respiratory electron chain system (Vignais and 

Billoud 2007). The more common classification system, however, relates to the metal 

composition of the active site of the hydrogenases. There are [NiFe], [FeFe], and [Fe] 

hydrogenases with the [NiFe] hydrogenases being the most intensively studied group 

(Vignais and Billoud 2007). [Fe] hydrogenases are distinct as they need the additional 

substrate methenyltetrahydromethanopterin and have been found only in 

methanogenic archaea so far, where they are involved in the conversion of hydrogen 

and carbon dioxide to methane and water (Thauer et al. 2010).  

Under physiological conditions, [FeFe] hydrogenases are predominantly involved in 

hydrogen production in a strictly anaerobic manner during fermentation processes 

(Vincent et al. 2007). They occur in bacteria, archaea and some lower eukaryotes and 

are very sensitive to oxygen and become irreversible inhibited (Vignais and Billoud 

2007; Stripp et al. 2009). [NiFe] hydrogenases mainly play a role in hydrogen uptake 

and hydrogen oxidation (Lubitz et al. 2014). They are found in archaea and bacteria 

and are generally sensitive to oxygen, however, in contrast to [FeFe] hydrogenases, 
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inhibition is typically reversible and enzymatic activity can be restored upon reducing 

conditions (Lenz et al. 2010). 

[NiFe] and [FeFe] hydrogenases are phylogenetically unrelated but both comprise a 

small and a large subunit. The large subunit contains the active site, harboring the 

diatomic [NiFe] or [FeFe] cluster, respectively. In [NiFe] hydrogenases, the [NiFe] 

center is coordinated by four cysteine residues and additionally the iron is coordinated 

by two CN and one CO ligands (Figure 9) (Lubitz et al. 2014). Electrons are transferred 

to or from the active site via iron sulfur clusters located in the small subunit of the 

hydrogenases (Figure 9) (Forzi and Sawers 2007). 

1.3.2 Genomic organization of hydrogenases and hydrogenase maturation 

Hydrogenase genes are organized in operons that contain the genes for the subunits 

of the hydrogenases, and genes for their maturation. Additional mandatory maturation 

proteins for [NiFe] hydrogenases are encoded by the hyp operon (Blokesch et al. 2002; 

Forzi and Sawers 2007; Watanabe et al. 2012). The maturation process of 

hydrogenases includes active site maturation by insertion of the metal ions and CN 

and CO ligands, proteolytic maturation of the large subunit, insertion of iron sulfur 

clusters into the small subunit and localization of the hydrogenase complex (Böck et 

al. 2006).  

1.3.3 Escherichia coli hydrogenases 

In Escherichia coli three active [NiFe] hydrogenases have been identified, namely, 

EcHyd-1, EcHyd-2 and EcHyd-3 (Sawers 1994). EcHyd-1 is reported to be a 

membrane bound oxygen tolerant hydrogenase. Oxygen tolerance results mainly from 

an unusual [4Fe-3S] cluster located in the small subunit proximal to the [NiFe] active 

site in the large subunit. This unusual [4Fe-3S] cluster is coordinated by additional 

cysteine residues (Fontecilla-Camps et al. 2007; Goris et al. 2011). Oxygen tolerance 

means, that these hydrogenases can be reactivated quickly after their inactivation by 

oxygen (Goris et al. 2011) (see also chapter 1.3.4). Closely related membrane bound 

oxygen tolerant hydrogenases are present in Ralstonia eutropha and Hydrogenvirbio 

marinus and show the same mechanism involved in oxygen tolerance (Goris et al. 

2011). 
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EcHyd-2 is an oxygen sensitive membrane bound H2 uptake hydrogenase. E. coli uses 

it in order to utilize H2 as an electron donor when no fermentable carbon compounds 

are available (Lukey et al. 2010). Electrons are being eventually transferred via the 

quinone pool to fumarate in the process of fumarate respiration (Pinske et al. 2015). 

EcHyd-3 is associated with the membrane bound formate-hydrogenlyase complex and 

contributes to hydrogen production under fermentative conditions (Leonhartsberger et 

al. 2002). 

 

Figure 9. Structure of exemplarily [NiFe] hydrogenase from Desulfovibrio vulgaris 

Miyazaki F with iron sulfur clusters and active site with ligands. (The image is taken 
from (Lubitz et al. 2014).) 

1.3.4 Oxygen tolerant hydrogenases 

One key feature of oxygen tolerant hydrogenases is the rapid and complete reduction 

of oxygen by the transfer of 4 electrons, what subsequently results in water formation. 

Most described oxygen tolerant hydrogenases contain an unusual [4Fe3S] cluster in 

the small subunit proximal to the active site (Fritsch et al. 2011; Shomura et al. 2011; 

Volbeda et al. 2012). In comparison, standard [NiFe] hydrogenases contain a [4Fe4S] 
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cluster. The [4Fe3S] cluster is coordinated by 6 cysteine residues (instead of 4 in 

standard hydrogenases) and can store 2 additional electrons in the reduced state that 

are crucial for rapid oxygen reduction (Lukey et al. 2011). 

There are also other mechanisms that might improve oxygen tolerance of 

hydrogenases. One example are water transfer cavities that aid the release of water 

molecules after reduction of oxygen (Fritsch et al. 2013). Properties of the gas channel 

through which H2 is transported to or away from the active site might also influence 

oxygen tolerance by precluding oxygen to reach the [NiFe] cluster (Buhrke et al. 2005; 

Duché et al. 2005). Another mechanism is multimerization of hydrogenases into 

supercomplexes that exhibit intermolecular electron transfer supporting rapid oxygen 

reduction in individual oxidized complex partners (Frielingsdorf et al. 2011; Fritsch et 

al. 2013).  

During this work, we identified a bacterial strain that is able to produce considerable 

amounts of H2 under aerobic cultivation. The bacterium responsible for hydrogen 

production belongs to the Citrobacter species, and the active hydrogenase was 

identified to be a [NiFe] type 2 hydrogenase. 
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2 Principal aims of the study 

In the field synthetic biology, scientists use engineering principles to create or modify 

biological systems. For assembling biological parts in new ways and thereby create 

systems with new functions or behaviors, the building blocks have to be understood 

properly to be able to successfully build functional systems.  

The cell cycle regulated DNA-(adenine N6)-methyltransferase CcrM from Caulobacter 

crescentus plays a pivotal role in the complex cell cycle of C. crescentus. On a 

biological basis, CcrM is well understood, structurally, however, the available data is 

limited. CcrM exhibits a C-terminal domain, with unknown function that is conserved in 

5’-GANTC-3’ targeting homologous enzymes. In this study, it was aimed, to elucidate 

the potential involvement of the C-terminal domain in DNA binding and target 

sequence recognition and thereby extend the understanding of the enzyme. 

In a second project, it was aimed to use CcrM to artificially and epigenetically regulate 

gene expression by DNA methylation in a heterologous setup in Escherichia coli. 

Designed zinc finger proteins that bind DNA in a methylation dependent manner were 

aimed to be used as methylation sensitive transcriptional repressors. It was planned 

to install a positive feedback system by using CcrM to regulate the expression of its 

own gene for the construction of a system that would feature synthetic epigenetic 

memory in E. coli. 

Synthetic biology approaches are also applied in the field of sustainable energy 

production. In previous work, a bacterium was discovered that produced molecular 

hydrogen under aerobic cultivation conditions. In the scope of this thesis, it was aimed 

to identify this bacterium, to determine the responsible hydrogen producing enzyme, 

and to investigate its potential applications. 
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3 Results 

One major aim of synthetic biology is the development of new biological functions and 

their application in biotechnological or medical settings. In order to be able to construct 

new systems, it is of great importance to describe and understand the behavior and 

characteristics of the used parts and modules, be it functional modules or regulatory 

systems. 

With the aim of developing the necessary understanding of potential biological 

components for synthetic circuit construction, the bacterial DNA-(adenine N6)-

methyltransferase CcrM from Caulobacter crescentus was investigated structurally 

and biochemically (3.1). Using CcrM in a heterologous set up together with an 

engineered zinc finger protein, epigenetic regulatory systems with memory function 

have been designed and developed. The developed system was coupled to different 

sensor devices, and it was shown that the systems is capable of recording certain 

transient stimuli and memorize these events even after cessation of the trigger signal 

for many bacterial generations (3.2). 

Additionally, an unusual oxygen tolerant hydrogenase was isolated and identified from 

a Citrobacter species. Heterologous expression and activity measurements suggest 

potential applications of this novel enzyme as a building block for synthetic biology 

applications in the field of industrial hydrogen production (3.3). 

3.1 Investigation of the cell cycle regulated DNA-(adenine N6)-

methyltransferase from Caulobacter crescentus 

The cell cycle regulated DNA-(adenine N6)-methyltransferase plays a critical role in 

the complex cell cycle of Caulobacter crescentus. The biological role of CcrM is well 

studied (Gonzalez et al. 2014) and there are several biochemical reports on CcrM 

(Shier et al. 2001; Albu et al. 2012a; Albu et al. 2012b). However, structural information 

of the enzyme is limited. Interestingly, sequence alignments of CcrM from Caulobacter 

and homologs revealed a conserved C-terminal domain with unknown function (Figure 

1 B from Appendix 1). During this study, the C-terminal domain of Caulobacter 

crescentus CcrM was investigated and showed an involvement in target sequence 

recognition. Thus a reclassification of CcrM into the δ-class of DNA-(adenine N6)-
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methyltransferases has been proposed. The results below have been published in 

Biochimie and will be only briefly summarized here. For more details, see (Maier et al. 

2015a) in Appendix 1. 

3.1.1 The CTD of CcrM is essential for catalytic activity 

The primary protein structure of CcrM from Caulobacter crescentus and homologous 

DNA-(adenine N6)-methyltransferases that show specificity for 5’-GANTC-3’ target 

sites were analyzed. By applying a multiple sequence alignment, a conserved  

C-terminal domain was identified, only present in 5’-GANTC-3’ specific prokaryotic 

DNA MTases (Supplementary Figure 1 from Appendix 1). Deletion of the C-terminal 

domain of Caulobacter crescentus CcrM led to loss of its catalytic activity and loss of 

DNA binding. The C-terminal domain alone did also not show DNA binding (Figure 4 

from Appendix 1). Next, 13 conserved amino acids in the C-terminal domain of 

Caulobacter crescentus CcrM were mutated to alanine (Figure 1 from Appendix 1). 

Individual mutant proteins were heterologously expressed in E. coli cells and purified 

by affinity chromatography (Figure 2A from Appendix 1). Catalytic activities of the 

individual mutant proteins were determined on a 23 bp DNA substrate with one hemi-

methylated 5’-GANTC-3’ site. Six of the 13 mutant proteins showed wild type-like 

activity and seven mutant proteins showed reduced methylation activity 

(Supplementary Figure 4 from Appendix 1). In order to rule out secondary structural 

changes as cause for the reduced catalytic activity, circular dichroism measurements 

were employed and no significant differences between wild type and mutant proteins 

were found (Figure 4D from Appendix 1). 

3.1.2 CTD of CcrM is not involved in AdoMet binding 

In DNA-(adenine N6)-MTases Sequence Motifs I, II, III, and X form the AdoMet binding 

site. These motifs can be easily identified by characteristic conserved amino acid 

sequences and in CcrM, these are not located in the C-terminal domain 

(Supplementary Figure 1 from Appendix 1) (Cheng 1995; Malone et al. 1995; Jeltsch 

2002). In order to preclude an involvement of the C-terminal domain in cofactor 

(AdoMet) binding experimentally nevertheless, an AdoMet binding assay was 

performed and AdoMet binding of CcrM wild type was compared with the mutant 
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proteins that showed decreased catalytic activity. However, AdoMet binding was not 

impaired significantly in any of the mutant proteins (Figure 3 from Appendix 1). 

 

Figure 10. DNA binding of CcrM wild type and mutants. A) Examples of EMSA 

experiments, which were carried out using 15 nM DNA (a Cy-5 labelled 152-base pair 
PCR product) and varying CcrM concentrations (0.5 µM, 1 µM, 2 µM, and 3 µM). B) 
Examples of titration curves obtained after densitometric analyses of EMSA gels with 
CcrM wild type and mutants. C) Calculated KAss values of different CcrM mutants. Error 
bars indicate standard deviations of at least two independent experiments. (The image 
and figure legend are taken from Appendix 1)  
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3.1.3 C-terminal domain of CcrM is involved in DNA binding 

Next, the DNA binding behavior of the CcrM mutant proteins with decreased catalytic 

activity was studies by using an EMSA assay. Interestingly, several of the mutant 

proteins showed altered DNA binding behavior compared to wild type CcrM protein 

(Figure 10). Mutants R272A, R302A and R350A showed approximately three times 

decreased DNA binding and mutants S315A, H317A, N330A, and H336A showed 

increased DNA binding in the range of five to 14 times. In conclusion, the experimental 

data reveal that the C-terminal domain of Caulobacter crescentus is involved in DNA 

binding. The consequences of this finding will be discussed below. 
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3.2 Design of synthetic epigenetic circuits 

Utilizing the CcrM methyltransferase and a designed zinc finger (ZnF) protein 

repressor, a synthetic epigenetic memory system was developed in an iterative design 

process in Escherichia coli. The system is able to store transient sensory information 

in form of stably maintained DNA methylation patterns in living bacteria for many cell 

generations. The results shown here are only a succinct summary. For a more detailed 

description of all experiments, refer to (Maier et al. 2017) in Appendix 2. 

At first, ZnF proteins were designed to bind DNA sensitive to DNA-(adenine N6)-

methylation and analyzed with a bacterial two-hybrid system (Supplementary Figure 2, 

3, 4, 5 from Appendix 2) (Wright et al. 2006). In the next step, one of these engineered 

ZnF proteins was used and repurposed to act as a transcriptional repressor and a 

promoter/repressor system that can be induced by adenine-N6 methylation in 5’-

GANTC-3’ sites was created (Supplementary Figure 6 from Appendix 2).  

 

Figure 11. Scheme of the synthetic epigenetic system featuring positive feedback. In 

the off-state, the synthetic ZnF repressor binds the promoter region of a 
methyltransferase (MTase) gene. In the on-state, the promoter region is methylated, 
repressor binding is hindered and the MTase gene is transcribed resulting in a positive 
feedback loop. Filled and open lollipops represent methylated and unmethylated 
5’-GANTC-3’ sites. (The image is taken from Appendix 2. The figure legend is modified 
from Appendix 2.) 

Next, this methylation sensitive promoter repressor system was used to regulate the 

expression of a ccrM gene and thereby an epigenetic system with positive feedback 

was created (Figure 11). This system exhibits two stable states, an off-state and an 

on-state (Figure 12, Figure 1 from Appendix 2, Supplementary Figure 8 from Appendix 

2). The off-state is maintained by the engineered ZnF repressor and the on-state by 

constant promoter methylation by CcrM, which hinders ZnF DNA binding. An egfp 
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(enhanced green fluorescent protein) gene was cloned as a reporter in front of the 

ccrM gene and this set up was called reporter-maintenance operon. 

The design process of the epigenetic memory system included multimerization of the 

ZnF protein and the introduction of multiple ZnF binding sites in the promoter region of 

the system in order to reach a stable off-state (Supplementary Figure 6 and 8 from 

Appendix 2). Autoregulation of the ZnF repressor was shown to be necessary for a low 

and constant expression, allowing a stable on-state (Supplementary Figure 10 from 

Appendix 2). 

 

Figure 12. Schematic circuit design of the synthetic epigenetic memory system with 
ZnF repressor (ZnF4) and reporter-maintenance operon, consisting of an egfp gene 
and a ccrM gene. In the off-state, the ZnF repressor inhibits transcription of the 
reporter-maintenance operon by binding to the unmelthylated promoter region (empty 
lollipops). Once the system is switched to the on-state, EGFP and CcrM are expressed 
and binding of the ZnF repressor to the promoter region of the reporter-maintenance 
operon is prevented by methylation (filled lollipops). CcrM constantly re-methylates the 
operator ZnF binding sites and keeps the system in the on-state. The ZnF repressor 
regulates its own expression in a manner not affected by methylation (indicated 
negative feedback with dashed lines). (The image is adapted from Appendix 2, the 
figure legend is modified from Appendix 2.) 

Upon different trigger signals, the expression of the reporter-maintenance operon can 

be initiated, either by loss of the ZnF protein binding due to thermal instability or by 

introduction of initial DNA methylation at the ZnF binding site that interferes with ZnF 

protein binding. Subsequently, the maintenance CcrM methyltransferase methylates 

the promoter region of the reporter-maintenance operon and keeps the system in the 
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on-state (Figure 1 D from Appendix 2). We coupled the input signals heat, nutrients 

(arabinose), and DNA damage (ultraviolet (UV) light or cisplatin) to the 

reporter-maintenance module to switch from the off- to the on-state (Figure 12, Figure 

1 and 3 from Appendix 2).  

For switching the system by arabinose, a trigger operon was used that consists of a 

gene coding for CcrM (trigger CcrM) and a mCherry reporter gene under the control of 

a pBAD promoter (Figure 12A). Upon induction of the system with arabinose, the 

trigger CcrM and mCherry are expressed. The trigger CcrM can methylate the 

promoter of the reporter-maintenance operon and hence switch the memory system to 

the on-state. Acute induction of the system could be observed by tracking the mCherry 

fluorescence signal (Figure 12B). After removal of arabinose from the medium, 

mCherry fluorescence went back to background levels. EGFP levels increased during 

induction of the system to on-state levels and after removal of arabinose remained in 

this state for at least 96 h (roughly 48 cell generations) (Figure 12C). As a negative 

control, the same system was cloned with an inactive maintenance CcrM. With this 

control system, on-state EGFP levels could be only observed during acute induction 

of the system with arabinose. After removal of arabinose, EGFP fluorescence levels 

went back to background levels indicating that no stable on-state was reached (Figure 

12C). Additionally to the standard analysis of fluorescence intensities by fluorescence 

spectroscopy, cells in the on- and off-state were analyzed by flow cytometry and 

confocal laser scanning microscopy (Figure 12D, 12E, and 12F). 

Exploiting the epigenetic nature of the memory system, a reset function was 

implemented in order to switch back from the on- to the off-state. To achieve this back-

switching, the maintenance CcrM was fused with an mf-Lon specific degradation tag, 

allowing a selective and inducible degradation of the methyltransferase and hence 

enforced a reset of the system to the off-state (Figure 4 from Appendix 2, 

Supplementary Figure 19 and 20 from Appendix 2). 

In summary, synthetic epigenetic circuits that can sense different transient stimuli and 

store this information in form of DNA methylation patterns for many cellular generations 

in Escherichia coli have been constructed. Further, the epigenetic nature of the 

developed system was exploited and it was shown that the system is resettable. 

Potential applications and extensions of the system are discussed below. 
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Figure 13. Chemical induction of memory system by arabinose. A) Circuit design of 

memory system. In the initial off-state, glucose represses the trigger CcrM expression. 
The on-state can be induced by arabinose supplementation, which induces CcrM and 
mCherry expression from the trigger plasmid. After removal of arabinose, the on-state 
is maintained by expression of the reporter-maintenance operon via a positive 
feedback loop. B) Red fluorescent protein (mCherry) fluorescence measured in total 
cell lysate. Red bars: WT CcrM in the reporter-maintenance operon; orange bars: 
active site mutant CcrM in the reporter-maintenance operon. (BI: before induction, i.e. 
in glucose containing media; AI: after induction, i.e. cultivation for 12 h in presence of 
arabinose; 24 h AI, 48 h AI, 72 h AI, 96 h AI, i.e. cultivation in glucose containing media 
for the indicated time period after cultivation for 12 h in arabinose containing media) 
(error bars indicate SD, n=3). mCherry signal can only be detected in the presence of 
arabinose. C) EGFP signal measured in total cell lysate. Upon induction with 
arabinose, green fluorescence levels rise above the threshold level and stay in the on-
state range for at least 96 h after induction (green bars). If the catalytically inactive 
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CcrM is present in the reporter-maintenance operon, EGFP fluorescence disappears 
24 h after induction and no memory function can be observed (orange bars) (error bars 
indicate SD, n=3). D) EGFP signal measured by flow cytometry. Cells with functional 
reporter-maintenance operon (i.e. wildtype CcrM) were analysed. Histograms depict 
homogeneous populations in the off- and on-state. 20,000 events were collected for 
each measurement. E) Confocal laser scanning microscopy pictures and differential 
interference contrast (DIC) microscopy pictures of cells with functional reporter-
maintenance operon in the on-state (24 h AI) and cells in the off-state (BI). F) 
Quantification of fluorescence intensities of cells in the on-state and in the off-state 
recorded by confocal laser scanning microscopy (n=87, per state). (The image and the 
figure legend (modified) are taken from the manuscript attached as Appendix 2.) 
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3.3 Identification, cloning and heterologous expression of 

Citrobacter sp. SG hydrogenase 2 

Molecular hydrogen (H2) can be used as a pollution free energy carrier, as the 

combustion products under ideal conditions are only water and heat. However, today, 

H2 is mainly produced by steam reforming of hydrocarbons (Dincer and Acar 2015). 

Biological hydrogen production would be more environmentally friendly and 

sustainable. Ideally, biological hydrogen production would be performed by 

photoautotrophic organisms without the need of intermediate accumulation of biomass. 

Known enzymes capable of hydrogen production (hydrogenases) are very sensitive to 

molecular oxygen what makes it difficult to work with in biotechnological and synthetic 

biology approaches. Therefore, the field is looking for oxygen tolerant enzymes that 

would ease applications and development of synthetic systems for biological hydrogen 

production. Additionally, hydrogen detection demands for high-end instruments like 

gas chromatographs. Here, an easy to use and quantitatively operating 

semiconducting device for the reliable detection and measurement of molecular 

hydrogen in the gas phase was introduced. Using this device, a bacterial strain was 

identified, naturally producing considerable amounts of hydrogen under aerobic 

conditions. The responsible enzyme was identified and it was shown that it is also 

active when heterologously expressed in Escherichia coli. The results below have 

been published in Journal of Biotechnology and will be only briefly summarized. For 

more details, refer to (Maier et al. 2015b) in Appendix 3. 

3.3.1 Easy-to-use hydrogen detector 

A semi-conducting device (Hydrogen Leak Detector H2000 (Sensistor)) was used for 

the detection of molecular hydrogen, produced by microorganisms and the specificity 

of the detection system was confirmed by gas chromatography (Figure 1 from 

Appendix 3). The dynamic range of the device ranges from below 10 parts per million 

(ppm) up to 4-digit ppm values. 
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3.3.2 Identification of hydrogen producing bacterium Citrobacter sp. SG and 

the active hydrogenase 

A hydrogen producing bacterium that generates considerable amounts of molecular 

hydrogen during aerobic culturing was discovered. Identification by 16S rDNA 

sequencing revealed that a close relationship to Citrobacter freundii and the new 

isolate was called Citrobacter sp. SG (for Stuttgart Germany) (Figure 3A from Appendix 

3, GenBank: AF025365.1). Hydrogen production of Citrobacter sp. SG from glucose 

was analyzed under multiple conditions including a 1 L culture with a constant airflow 

of 75 mL/min (Figure 2 from Appendix 3). Next, the active hydrogen producing enzyme 

was identified by consecutively applying different protein purification steps. A 1 liter 

overnight shaking flask culture of Citrobacter sp. SG was grown in a 5 L baffled flask 

and was used as starting material for the protein enrichment. Cells were pelleted and 

lysed by sonication, the membrane fraction was isolated and three chromatographic 

protein purification steps were applied (mixed mode ion exchange, strong anion 

exchange, gelfiltration). Hydrogenase activity could be enriched approximately 120 

fold. Hydrogenase containing fractions were analyzed by SDS-PAGE and dominant 

visible protein bands were applied to mass spectroscopy. Small and large subunits of 

hydrogenase 2 could be detected by peptide mass fingerprinting (Figure 3B from 

Appendix 3). 

3.3.3 Cloning and heterologous expression of Citrobacter sp. SG 

[NiFe]-hydrogenase 2 

The hydrogenase 2 operon from Citrobacter sp. SG was sequenced (GenBank: 

KP704659) and cloned into an inducible pET28a (+) vector for heterologous 

overexpression in Escherichia coli BL21-CodonPlus™ (DE3) cells. Protein expression 

via induction by IPTG supplementation showed hydrogenase activity in a Ni2+ 

dependent manner (Figure 4 from Appendix 3). 

3.3.4 Multiple sequence alignment of hydrogenase 2 large and small subuits 

There have been recent reports of a Citrobacter species (Citrobacter sp. S-77) that 

expresses an oxygen tolerant membrane bound hydrogenase (Eguchi et al. 2012; 

Matsumoto et al. 2014). Later, it turned out that the enzyme identified in these papers 
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is also a type 2 hydrogenase (Muhd Noor et al. 2016). Multiple sequence alignments 

of small and large subunits of hydrogenase 2 from Citrobacter sp.77, Citrobacter 

freundii, Citrobacter sp. SG and Escherichia coli and hydrogenase 1 form Escherichia 

coli revealed that sequences of all three Citrobacter species are highly similar, at least 

in the primary protein structure (Appendix 4 and 5).  

There are crystal structures available for the oxygen tolerant hydrogenase 1 from 

Escherichia coli and the membrane bound [NiFe] hydrogenase from Ralstonia 

eutropha. These data suggest that the proximal unusual [4Fe3S] cluster present in 

these enzymes is responsible for their oxygen tolerance (Volbeda et al. 2012; 

Frielingsdorf et al. 2014; Evans et al. 2016). The unusual [4Fe3S] cluster is coordinated 

by two additional cysteine residues in comparison to standard membrane bound 

hydrogenases which carry a [4Fe4S] proximal cluster (Figure 14). These two additional 

cysteine residues are not present in the small subunit of type 2 hydrogenases from 

either Escherichia coli or Citrobacter sp. (Appendix 4). Interestingly, there are two 

additional cysteine residues present in the large subunit of the Citrobacter sp. 

hydrogenases 2, which are absent in Escherichia coli hydrogens 2. However, 

alignments of amino acid sequences and structural comparison reveled, that the 2 

additional cysteine residues in the Citrobacter sp. hydrogenases 2 are not in spacial 

proximity to the iron sulfur clusters of the small subunit. According to a comparison 

with the crystal structure of hydrogenase 1 from Escherichia coli, they are rather 

located at the surface of the hydrogenase large subunits (Figure 14). 

In conclusion, a hydrogen producing bacterium was identified as a Citrobacter sp. and 

the active enzyme to be a type 2 hydrogenase. It was also possible to actively express 

the hydrogenase 2 from Citrobacter sp. SG in Escherichia coli. The detailed 

mechanism of its oxygen tolerance is yet unknown. 
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Figure 14. Crystal structure of small (cyan) and large (orange) subunit of the oxygen 
tolerant hydrogenase 1 from Escherichia coli in cartoon representation. (PDB ID: 5A4F 
(Evans et al. 2016)) [NiFe] active site with CN and CO ligands in sphere representation. 
The three iron sulfur clusters in the small subunit responsible for electron transfer to, 
or away from the active site are represented as sticks. Characteristic cysteine residues 
for oxygen tolerant hydrogenases, necessary for the coordination of the proximal 
[4Fe3S] cluster are indicated as magenta sticks. Anticipated positions of additional 
cysteine residues present in the large subunit of hydrogenase 2 of Citrobacter sp. are 
indicated as blue sticks. Their position indicates no proximity to the iron sulfur clusters 
of the small subunit.  
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4 Materials and Methods 

4.1 Investigation of the cell cycle regulated DNA-(adenine N6)-

methyltransferase from Caulobacter crescentus 

4.1.1 Multiple sequence alignment 

Multiple sequence alignment of DNA-(adenine N6)-methyltransferases targeting 

5’-GANTC-3’ sites and other β-class DNA-(adenine N6)-methyltransferases was 

generated with ClustalW (Thompson et al. 2002) using default parameter settings. For 

visualization, the BioEdit software was used (Hall 1999). 

4.1.2 Site-directed mutagenesis, heterologous protein expression and protein 

purification  

Site-directed mutagenesis was conducted by PCR based megaprimer method (Jeltsch 

and Lanio 2002). CcrM proteins were overexpressed in E. coli ER2566 (NEB) cells and 

purified by affinity chromatography as described in more detail in the methods section 

of the manuscript, which is attached as Appendix 1. 

4.1.3 Methylation activity assay, secondary structure analysis and AdoMet 

binding 

For catalytic activity measurements of CcrM mutant proteins, a biotin-avidin microplate 

assay (Roth and Jeltsch 2000) was used that deploys 3H-labeled AdoMet and the 

transfer of radioactively labeled methyl groups is measured. Potential secondary 

structure differences between mutant proteins and wild type CcrM were investigated 

by circular dichroism spectrophotometry. Binding of AdoMet by mutant proteins and 

wild type CcrM was examined by a fluorescence based competition assay 

(Schluckebier et al. 1997; Jurkowski et al. 2012). For a more detailed description of the 

methods mentioned above, refer to the method section in the manuscript attached as 

Appendix 1. 
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4.1.4 DNA binding assays 

DNA binding of N-terminal and C-terminal domains of Caulobacter crescentus CcrM 

was investigated by a radioactive filter binding assay. DNA binding of CcrM wild type 

and mutant proteins was studied with an electrophoretic mobility shift assay. Both 

methods are described in more detail in the methods section in the attached 

manuscript in Appendix 1. 

 

4.2 Design of synthetic epigenetic circuits 

Escherichia coli XL-1 Blue cells were used to test all designed synthetic epigenetic 

constructs and circuits. Cells were grown at 30°C in test tubes with a culture volume 

of 5 mL, unless stated otherwise in the more detailed description of the methods in the 

attached manuscript in Appendix 2. 

4.2.1 Molecular biology work 

Gibson assembly was used for all cloning procedures (Gibson et al. 2009; Gibson et 

al. 2010b). Q5® High-Fidelity DNA Polymerase was used for PCRs (NEB). For more 

details and exceptions, refer to the methods in the manuscript attached in Appendix 2. 

4.2.2 Zinc finger binding assays 

4.2.2.1 Zinc finger array DNA binding assay 

Zinc finger proteins consisting of an array of three concatenated zinc finger domains 

were tested for binding to their anticipated 9 bp target sites by using a bacterial two-

hybrid reporter system (Wright et al. 2006). In this assay DNA binding is indicated via 

the expression of a reporter gene (lacZ). The zinc finger protein is fused to Gal11P, 

which can interact with Gal4, which in turn is fused to RNA polymerase. As the 

anticipated DNA binding site is placed upstream of the lacZ gene, DNA binding of the 

zinc finger protein triggers transcription of the lacZ reporter gene. The assay was 

modified to test DNA binding of methylated binding sites, by coexpression of CcrM. For 

a more detailed description of the assay, see the attached manuscript in Appendix 2. 
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4.2.2.2 ZnF4 binding assay 

DNA binding preference for unmethylated DNA compared to methylated DNA of the 

engineered zinc finger protein used as a methylation sensitive transcriptional repressor 

(ZnF4) was analyzed by an electromobility shift assay (EMSA). For more details, refer 

to the methods described in Appendix 2.  

4.2.3 Cloning, overexpression and purification of ZnF4 

ZnF4 was cloned in pMAL-c2X (NEB) vector resulting in a MBP-ZnF4 fusion protein. 

E. coli BL21-CodonPlus™ (DE3) cells were used for overexpression of the fusion 

protein. Purification of the ZnF4 fusion protein was performed by affinity 

chromatography (amylose resin). For more details, refer to the methods described in 

Appendix 2. 

4.2.4 Fluorescence measurements 

4.2.4.1 Fluorescence measurements in cell lysates 

For measurements of the expression of reporter genes egfp or mCherry, fluorescence 

was measured in cell lysates with a Jasco FP-8300 Fluorescence Spectrometer. For 

more details, including cell lysis and spectrometer settings, see the method section in 

the attached manuscript in Appendix 2. 

4.2.4.2 Microscopic fluorescence imaging 

Microscopic pictures of whole cells were recorded with a LSM 710 Zeiss confocal 

microscope. Fluorescence intensities were quantified with an image processing 

program (ImageJ). For more details, see the method section in the attached 

manuscript in Appendix 2. 

4.2.4.3 Flow cytometry measurements of EGFP expression 

Flow cytometry was used as an additional method to analyze fluorescence intensities 

of whole cells. A BD FACS Calibur flow cytometer was used and the obtained data 

was analyzed using FCS Express V4 (De Novo Software). For details of sample 

preparation and measurement settings, see the method section in the attached 

manuscript in Appendix 2. 
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4.2.5 Promoter methylation analysis 

To assign the methylation status of the promoter region of the epigenetic memory 

system, an assay was developed, that is based on methylation sensitive restriction 

digest followed by quantification of undigested DNA by qPCR. A CFX96 Connect Real-

Time detection system (Bio-Rad) and SsoFast EvaGreen supermix (Bio-Rad) was 

used. For a detailed method description, see the method section the attached 

manuscript in Appendix 2. 

4.3 Identification, cloning and heterologous expression of 

Citrobacter sp. SG hydrogenase 2 

4.3.1 Hydrogen measurements 

Hydrogen measurements were performed using a semiconducting device (Hydrogen 

Leak Detector H2000, Sensistor). In order to validate the device and exclude cross 

reactivity, selected samples were analyzed by gas chromatography (Agilent 7890 gas 

chromatography system). Hydrogenase activity in cell lysates and partially purified 

extracts was detected via a methyl viologen (MV) / sodium dithionite assay using the 

semiconducting device for detection of evolved hydrogen. For more details of the 

applied methods, refer to the manuscript, which is attached as Appendix 3. 

4.3.2 Bacterial culturing 

Citrobacter sp. SG was cultured in shaking flaks at ambient oxygen conditions at 30°C 

in LB medium supplemented with a mix of various metal ions (described in detail in the 

manuscript in Appendix 3). For hydrogen production measurements with air perfusion, 

overnight cultures were cooled from 30°C to room temperature, transferred to 2 liter 

round bottom flasks and flushed with air. Citrobacter sp. SG and Escherichia coli BL21-

CodonPlus™ (DE3) were treated in the exact same way. Recombinant Escherichia 

coli BL21-CodonPlus™ (DE3) inducibly expressing Citrobacter sp. SG hydrogenase 2 

were cultured at 18°C for protein expression and at room temperature for hydrogen 

production measurements. Recombinant E. coli cells grown in LB medium 

supplemented with the metal ion mix. For more details of the applied methods, refer to 

the manuscript, which is attached as Appendix 3. 
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4.3.3 Genomic DNA preparation and 16S rDNA sequencing 

For identification of the hydrogen producing bacterium (later identified as a Citrobacter 

sp. and then called Citrobacter sp. SG for Stuttgart, Germany), genomic DNA was 

isolated and 16S rDNA sequencing was performed. To isolate the genomic DNA the 

proteinase K/sodium dodecyl sulfate/phenol extraction method was used (Herrmann 

and Frischauf 1987). 16S rDNA was amplified by PCR, cloned by TA cloning 

(StrataClone PCR Cloning Kit, Agilent) and sequenced. For more details, primer 

sequences and GenBank entries, refer to the manuscript, which is attached as 

Appendix 3. 

4.3.4 Hydrogenase enrichment and peptide mass fingerprinting 

For identification of the active enzyme responsible for hydrogen production in 

Citrobacter sp. SG, a 1 L overnight culture of Citrobacter sp. SG grown at 30°C in a 

5 L baffled flask under ambient oxygen levels was used as starting material. After cell 

lysis, the membrane fraction was isolated and solubilized. Chromatographic 

purification steps (hydroxyapatite, anion exchange, gelfiltration) were applied. For 

selection of fractions used in subsequent enrichment steps, the methyl viologen/ 

sodium dithionite assay was used. Hydrogenase containing fractions were separated 

by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 

dominant protein bands were analyzed by peptide mass fingerprinting. For a more 

detailed description of the hydrogenase enrichment procedure and the identification of 

the active hydrogenase, refer to the manuscript, which is attached as Appendix 3. 

4.3.5 Cloning of hydrogenase 2 operon of Citrobacter sp. SG 

The operon coding for hydrogenase 2 from Citrobacter sp. SG was amplified by PCR 

from isolated genomic DNA and cloned into an inducible pET-28(+) vector. For 

GenBank entry of the DNA sequence of hydrogenase 2 from Citrobacter sp. SG and a 

more detailed cloning description, refer to refer to the manuscript, which is attached as 

Appendix 3. 
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4.3.6 Hydrogenase sequence alignment 

Sequences for amino acid alignments of hydrogenases shown in Appendix 4 and 5: 

Large subunits 

GenBank: AOM69335.1 (Hydrogenase 1 large subunit, Escherichia coli) 

GenBank: OJF21604.1 (Hydrogenase 2 large subunit, Escherichia coli) 

GenBank: OIY06664.1 (Hydrogenase 2 large subunit, Citrobacter freundii) 

GenBank: AKJ80129.1 (Hydrogenase 2 large subunit, Citrobacter sp. SG) 

GenBank: GAN52682.1 (hydrogenase 2 large subunit, Citrobacter sp. S-77) 

Small subunits 

GenBank: OJF21607.1 (Hydrogenase 1 small subunit, Escherichia coli) 

GenBank: SCQ06936.1 (Hydrogenase 2 small subunit, Escherichia coli) 

GenBank: ALD78266.1 (Hydrogenase 2 small subunit, Citrobacter freundii) 

GenBank: AKJ80127.1 (Hydrogenase 2 small subunit, Citrobacter sp. SG) 

GenBank: GAN52685.1 (Hydrogenase 2 small subunit, Citrobacter sp. S-77) 

Sequence alignments were performed using ClustalW with standard settings 

(Thompson et al. 2002) and visualized using jalview (Waterhouse et al. 2009) using 

clustalX coloring. 
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5 Discussion 

The work of synthetic biologists resembles partly the work of engineers. Synthetic 

biologists use and assemble biological parts aiming to create new functionality. To be 

effective, it is of great importance to know basic design principles in natural systems 

and to understand the used parts as much as possible. With this knowledge, synthetic 

biologists can program cells or organisms to conduct a large variety of different 

functions or to produce desired compounds. Synthetic biology approaches find their 

way into biotechnological industries, fuel production, agriculture, environmental 

monitoring, waste decontamination and bioremediation, healthcare, biocomputing and 

many more fields (Khalil and Collins 2010; Smanski et al. 2016). Additionally, in the 

long run, synthetic biologist are trying to create fully synthetic life (Gibson et al. 2010a; 

Hutchison et al. 2016). 

In this thesis, scientific work has been conducted that helps to better understand 

biological parts; referring to the Caulobacter crescentus cell cycle regulated 

methyltransferase and the unusual Citrobacter sp. hydrogenase 2. Furthermore, 

knowledge on epigenetics, DNA methyltransferases, bacterial gene regulation and 

protein engineering has been applied to build novel synthetic epigenetic devices in 

bacteria capable of memorizing transient sensory information for many cellular 

generations. 

5.1 Investigation of the C-terminal tail of the cell cycle regulated 

DNA-(adenine N6)-methyltransferase from Caulobacter 

crescentus 

The cell cycle regulated DNA-(adenine N6)-methyltransferase (CcrM) from 

Caulobacter crescentus is a well-studied enzyme in terms of biological function 

(Gonzalez et al. 2014), however, no structural information is available at the moment. 

CcrM is highly conserved in alpha-proteobacteria and essential in some species, for 

example in the plant pathogen Agrobacterium tumefaciens and the animal pathogen 

Brucella abortus. Brucella abortus can be transmitted to humans from sheep, cattle, or 

pigs (Robertson et al. 2000; Kahng and Shapiro 2001) and is a medical relevant 

pathogen, hence, making CcrM a potential drug target.  
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In the work presented here, the C-terminal domain of CcrM from Caulobacter 

crescentus was investigated. The C-terminal domain is conserved among CcrM 

homologs but its function was unknown so far. Deletion of the C-terminal domain lead 

to both, loss of catalytic activity and loss of DNA binding. The C-terminal domain alone 

is also not capable of DNA binding, but alanine mutations of conserved amino acids in 

the C-terminal domain of full length CcrM caused a drastic loss in catalytic activity with 

no changes in the secondary structures or cofactor binding behavior. However, 

dramatic changes in DNA binding of the mutant proteins could be observed, embodied 

either in increased DNA binding or for some mutant proteins in reduced DNA binding 

in vitro. 

These results suggest that the C-terminal domain of Caulobacter crescentus CcrM is 

involved in DNA binding (Figure 15). The observed behavior of both, increased and 

decreased binding strength of different alanine mutants may be explained by different 

roles of the corresponding amino acid residues in the DNA binding process and DNA 

target sequence recognition. Amino acids that lead to a reduced DNA binding, when 

mutated to alanine, may be involved in direct or indirect interactions with DNA via 

hydrogen bonds. Amino acids that lead to an increased binding to DNA, when mutated 

to alanine, however, may be involved in the transmission of conformational changes 

of the CcrM-DNA complex upon target sequence recognition. These amino acid 

residues might be attributed to play a role in the so called indirect readout mechanism 

also described for the TATA box-binding protein (TBT), the trp repressor, the EcoRV 

endonuclease, or M.EcoRV (Otwinowski et al. 1988; Taylor et al. 1991; Bareket-

Samish et al. 2000; Jurkowski et al. 2007). Sequence recognition by an indirect readout 

mechanism is based on the recognition of the DNA structure (bending, curvature, 

helical twist, flexibility) or the recognition of a change of the DNA conformation in the 

DNA-protein complex (Bareket-Samish et al. 2000; Zhang et al. 2004). In the case of 

CcrM, target sequence recognition could be explained by a two-step process. First, 

CcrM binds to DNA in a sequence independent manner and slides along the DNA. 

Then, upon target sequence recognition, a conformational change of the protein-DNA 

complex takes place, leading to an energetically preferred conformation. The ΔG 

release can then be used by the enzyme to undergo a conformational change, 

necessary for catalytic activity. If amino acid residues involved in this process are 
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mutated, this could lead to a very strong binding to DNA but adopting a conformation 

that is unsuitable for catalysis.  

 

 

Figure 15. Hypothetical schematic view of CcrM bound to DNA (black line). The N-

terminal domain (NTD) of CcrM is depicted in pink. The AdoMet binding site and the 
active site are located in the NTD. The C-terminal domain (CTD) is shown in blue. 
According to the experimental results described here, the CTD is involved in DNA 
binding as different mutations in this domain lead to both, increased and decreased 
binding behavior to DNA. (The image is taken from the manuscript attached as 
Appendix 1.) 

Bacterial DNA C-MTases and N-MTases share a common architecture comprising a 

catalytic domain, which includes the active site and AdoMet-binding site and a target 

recognition domain (TRD), involved in the recognition of the specific DNA target sites 

(Malone et al. 1995; Jeltsch 2002). The catalytic region and the AdoMet binding site 

are composed of up to ten conserved motifs (I to X). The occurrence of different orders 

of the motifs in different MTases are a result of circular permutations that emerged 

during molecular evolution. Besides the different orders of the ten conserved motifs 

the location of the target recognition region also differs (Figure 4). Three different 

arrangements have been found so far for adenine N6 MTases (α, β, γ), however, 

theoretically, there are three more arrangements possible (δ, ε, ζ). 
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Figure 16. Different arrangements of the three conserved regions of bacterial DNA 

MTases with examples of α, β, and γ DNA MTases. Re-classification of CcrM from the 
β to the δ-class has been proposed based on the results presented in this thesis. (The 
image is modified from the manuscript attached as Appendix 1. The figure legend has 
been modified from Appendix 1.) 

The involvement of the C-terminal domain of CcrM in DNA binding and target sequence 

recognition suggests that the C-terminal domain of CcrM is the target recognition 

domain. Following the classification of methyltransferases by Malone et al. from 1995, 

CcrM would be the first example of the δ class of methyltransferases (Figure 4) 

(Malone et al. 1995). It will be interesting to see, if this conclusion drawn from the 

discussed biochemical studies can be verified by structural data. Therefore, e.g. a 

protein crystal structure of Caulobacter crescentus CcrM or one of its homologs in 

complex with DNA is eagerly awaited. 
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5.2 Design of synthetic epigenetic circuits in bacteria 

The field of synthetic biology is striving for genetically programming cells or organisms 

to perform a large variety of desired tasks. In this part of the project, the bacterial 

DNA-(adenine N6)-methyltransferase CcrM from Caulobacter crescentus and a 

designed zinc finger protein have been used to create a synthetic epigenetic memory 

system. 

5.2.1 Building synthetic systems featuring DNA methylation  

First, there was the idea to build synthetic biology systems harnessing DNA 

methylation as a control signal to regulate gene expression in Escherichia coli. The 

used CcrM methyltransferase methylates adenine residues in 5’-GANTC-3’ 

sequences. In Escherichia coli, there are no methyltransferases known that methylate 

this target site. Hence, none or only minor burdening of the host was expected upon 

CcrM expression, what was also confirmed experimentally (Supplementary Figure 1A 

and Supplementary Figure 16 from Appendix 2). In contrast to eukaryotic systems, in 

which DNA-(cytosine C5)-methylation of promoter regions is a repressive epigenetic 

mark (Suzuki and Bird 2008), in the herein developed system DNA methylation acts 

as an activating mark, because the methylation of promoter regions is intended to 

interfere with transcriptional repressor binding and leads to gene expression. Zinc 

finger proteins were used as transcriptional repressors due to their programmability to 

bind to freely selectable target sequences and their sensitivity of DNA binding to DNA 

methylation. Zinc finger domains recognize AT base pairs via asparagine or glutamine 

residues and make specific contacts to the adenine base via the N6 and N7 position 

(Seeman et al. 1976; Aggarwal et al. 1988) (Supplementary Figure 2A from 

Appendix 2). Hence, adenine-N6 methylation should impair the recognition of AT base 

pairs. Multiple C2H2 zinc finger proteins consisting of three zinc finger domains with 

target sequences that overlapped with the CcrM target sequence (5’-GANTC-3’) were 

designed and DNA binding was tested with unmethylated and methylated binding sites. 

Reduced DNA binding was observed upon DNA methylation for all tested proteins and 

the most promising zinc finger protein candidate was used for further experimental 

procedures. A synthetic promoter repressor system was constructed and incrementally 

extended into the final epigenetic memory system.  
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As a first system, a GFP reporter gene was set under the control of a constitutive 

promoter. Then, zinc finger binding sites were inserted upstream and downstream of 

the -35 region of the promoter and upon expression of a dimerized version of the zinc 

finger protein, gene repression could be observed. Upon expression of the CcrM 

methyltransferase, and subsequent methylation of the zinc finger binding sites, GFP 

expression could be restored.  

The next step was to regulate the expression of CcrM itself by the methylation 

dependent gene regulation system and thereby implementing a positive feedback 

system. To this end, the gene for CcrM was cloned downstream of the GFP reporter 

gene with an additional ribosomal binding site, resulting in an artificial two-gene 

operon. Theoretically, this system should feature bistability. The system should be 

repressed by the zinc finger protein (off-state) and once the operon gets expressed the 

system should stay in an on-state, due to constant methylation of the promoter region. 

In order to achieve this desired behavior, it was necessary to introduce additional zinc 

finger binding sites to maintain a stable off-state, as spontaneous CcrM expression 

would switch the system to the on-state unintendedly due to the positive feedback. 

Additionally, regulation of the expression of the zinc finger repressor by methylation-

independent autoregulation was necessary to reduce fluctuations of the repressor 

protein levels that would lead to cessation of the positive feedback signal in incidences 

of very high repressor levels. 

The intrinsic problem of spontaneous on switching of systems with positive feedback 

was approached from two sides. Very tight repression of the system was achieved by 

introduction of additional repressor binding sites, as described above. Moreover, the 

reversibility of epigenetic systems was exploited and a reset-switch was developed. 

The reset-switch works by an orthogonal protein degradation system, allowing for 

inducible degradation of CcrM. This leads to passive loss of promoter methylation and 

hence leads to a stable off-state.  

According to literature database search, the developed system described here, 

represents the first report on a synthetic epigenetic memory system based on DNA-

(adenine N6)-methylation. The system can be used in different setups for the detection 

and subsequent memorization of different physical and chemical signals (heat, 

arabinose, cisplatin, UV radiation). 
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5.2.2 Potential biotechnological applications of the synthetic epigenetic 

memory system 

The developed system demonstrates that epigenetic mechanisms can be applied in 

bacterial synthetic biology approaches. Systems using the epigenetic memory system 

could find applications in various fields of biotechnology and a selection of examples 

is described below.  

The described epigenetic memory system is composed of a memory module and a 

trigger module. This modularity offers the opportunity to couple many more trigger 

signals to the memory module. Examples of existing and described sensory parts that 

could be easily coupled to the system are sensors that react on antibiotics like 

tetracycline (TetR) (Korpela et al. 1998) or cellular signals found in communicating 

bacteria by quorum sensing (LuxR) (Wu et al. 2000). Additionally, ribozymes could be 

used for example as fluoride sensors (Baker et al. 2012). Furthermore, there have 

been reports on designed ribozyme functions, e.g. shown for TNT detection (Davidson 

et al. 2012).  

In the current set up of the epigenetic memory system, one single signal can be 

processed and stored at a time. In order to extend the system so that several different 

input signals can be processed and stored at the same time, additional DNA MTases 

could be used simultaneously that store information in distinguishable DNA 

methylation patterns. Additional to CcrM, which is used in the current system, M.HindIII 

and M.XmnI could be used even by employing the same ZnF repressor protein. Protein 

sequences of both methyltransferases are available (GenBank: CBW29751.1 and 

GenBank: AAC44403.1) and genes coding for M.HindIII and M.XmnI could be easily 

synthesized. In the current memory system, the used ZnF protein binds to 

5’-GGAGAAGAA-3’ sequences (the bold adenine base can be methylated and thereby 

modulates the ZnF binding). The ZnF binding site overlaps with the target sequence 

of CcrM (5’-GANTC-3’) resulting in 5’-GGAGAAGAATC̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅-3‘ (the ZnF binding site is 

underlined, the CcrM target site is overlined). In order to use M.HindIII (5’-AAGCTT-

3’), one could create ZnF binding sites that overlap with the MTase target site, resulting 

in 5’-GGAGAAGAAGCTT̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅-3‘. For the MTase M.XmnI (5‘-GAANNNNTTC-3’), the 

combined DNA sequence would be 5’-GGAGAAGAANNNNTTC̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅-3‘. If successful, this 

would allow for storing simultaneously information of three different input signals. In 
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order to use other DNA MTases for signal storage, new DNA methylation sensitive 

repressor modules could be engineered based on zinc finger proteins or TALEs 

(Bultmann et al. 2012; Deng et al. 2012). Examples of potential methyltransferases 

that are likely to work well in E. coli are M.EcoRI and M.EcoRV (Reich and Mashhoon 

1991; Jeltsch et al. 1998). These two enzymes are naturally present in certain E. coli 

strains, hence no adverse effects on the host cells are expected upon using these 

enzymes.  

Once at least two compatible memory systems are established, multi-input systems 

could be created, that would be of value in the field of biological computing and in 

systems that would integrate input signals based on Boolean logic could be created 

(Figure 17). 

Initial data suggests that the epigenetic memory system sensitive to arabinose might 

work already as an OR gate (data not shown). In this setup, the trigger module reacts 

on arabinose and thereby can switch the system to the on-state. Additionally, the 

memory module has the intrinsic property to be switched to the on-state upon heat 

induction due to thermal sensitivity of the zinc finger repressor. Thus, arabinose or 

heat, or both signal can switch the system to the on-state. 

 

Figure 17. Exemplary epigenetic circuits featuring logic gates that integrate two input 

signals. For the depicted AND gate, signals A and B have to be present in order to 

create an output signal (expression of the reporter gene). The illustrated OR gate gives 

an output signal when either signal A, B or both signals are present. 
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Sequencing based readout systems that are able to read DNA methylation patterns, 

independent of reporter genes, would be advantageous especially when using more 

than one methyltransferase in the system. New sequencing techniques based on 

nanopore sequencing or single-molecule real time (SMRT) sequencing could be used 

and thereby would release the restriction to a limited number of reporter proteins 

(Flusberg et al. 2010; Davis et al. 2013; Rand et al. 2017; Simpson et al. 2017). 

Complex methylation patterns could be easily read even at the level of single cells due 

to individual read lengths in the range of several kilo bases. 

Other synthetic biology approaches for storing external information in living bacteria 

described in the literature are mainly built on gene regulation by bacterial transcription 

factors or recombinase based systems. The first of which, ignited the field of synthetic 

biology and uses two transcriptional repressor proteins to establish a toggle switch 

(Gardner et al. 2000) (Figure 1A). In systems developed using recombinases, pieces 

of DNA are inverted upon a trigger signal and thereby generate an output signal (Siuti 

et al. 2013). Memory created by recombinases does not need active maintenance, 

however, using recombinases might have adverse effects on host genome integrity. 

There are natural model systems for both mechanisms, e.g. the phage lambda system, 

with lambda repressor and Cro-protein that negatively affect each other and phase 

variation in Escherichia coli by fim promoter inversion (Klemm 1986; Ptashne 2004). 

Besides the use of additional DNA MTases for storing information in live bacteria, other 

approaches like recombinase based systems may be used as complementary 

information storage units in order to increase complexity of the circuits (Yang et al. 

2014). In fine-tuned systems, that use a multitude of information storage mechanisms, 

a large number of signals could be processed at the same time and complex logical 

operations could be conducted. 

The current epigenetic memory system uses DNA methylation as an activating mark 

for bacterial gene expression via interference with transcriptional repressor binding. 

However, it would be also conceivable to construct synthetic epigenetic systems that 

use DNA methylation as a repressive mark for the regulation of gene expression in 

bacteria. Systems that resemble the described bacterial two-hybrid system used here 

for zinc finger design (Wright et al. 2006) could be constructed. Here, a zinc finger 

fusion protein to Gal11P and a RNA polymerase fusion to Gal4 could be applied in a 
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way that zinc finger binding in a crippled promoter region would recruit RNA 

polymerase and initiate transcription (Figure 18A). Zinc finger binding would be 

disturbed by methylation of the zinc finger binding site and thereby transcription would 

stop. Using a system in which a methyltransferase regulates its own expression by 

promoter methylation, an oscillating expression profile is expected, the frequency of 

which would reflect the cell division rate (Figure 17B). Using three MTases that 

negatively regulate each other, construction of oscillating epigenetic circuits would be 

conceivable, similar to the repressilator described by Elowitz et al. (Elowitz and Leibler 

2000) (Figure 18C and D). 

 

Figure 18. Potential circuit design in which DNA methylation leads to gene repression 

and would allow for the construction of oscillating epigenetic circuits. A) Methylation 
sensitive zinc finger protein fused to Gal11P protein, which can interact with Gal4, 
fused to an RNA polymerase molecule. DNA binding of the zinc finger protein leads to 
recruitment of RNA polymerase and subsequently to gene activation. No gene 
activation would occur upon methylation of the zinc finger binding site. The design idea 
is adapted from a bacterial two-hybrid system (Wright et al. 2006). B) Potential self-
regulating circuit that would oscillate following cell divisions. The MTase would be 
expressed if the zinc finger binding site is unmethylated. Then, the MTase methylates 
the zinc finger binding site and transcription stops. Passive loss of methylation by DNA 
replication then leads again to MTase expression. C) By constructing a circuit that 
would consist of three MTases that negatively regulate each other, another epigenetic 
oscillating system could be constructed. D) Different representation of the oscillating 
epigenetic circuit using three MTases. MTaseI would negatively regulate MTaseII, 
MTaseII would negatively regulate MTaseIII, MTaseIII would negatively regulate 
MTaseI. Upon initial induction of one of the MTases, an oscillating expression pattern 
of the three MTases is expected. 

One near term application goal could be the development of a biological sensor based 

on the existing heat inducible system that can be used for monitoring of cold chains. 
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With the current settings, temperature changes from 30°C to 37°C induce the memory 

system and this information can be stored in the bacterial memory system for many 

cellular generations. To broaden the applicability of the temperature senor, and to 

create sensors that switch at other temperature thresholds, mutant libraries of the zinc 

finger protein could be screened for desired behavior. For industrial applications, 

bacterial cultures could be encapsulated in buffered culture medium and would be 

independent devices without the need for electricity or electronic components. 

Additionally, coupling of the biosensor to a readout system, similar to immunological 

pregnancy tests, would ease the use and would make the readout very simple. The 

feature of reversibility of the epigenetic memory system could be used in order to 

ensure off-state conditions at the beginning of a monitoring period. 

An additional potential biotechnological application would be the use of the epigenetic 

system with positive feedback as a biocontainment system. A biocontainment system 

could be achieved by repressing an operon coding for a maintenance 

methyltransferase and a gene for a toxic product. Toxic gene products could be for 

example restriction endonucleases, lysozyme, or highly reactive proteases. Under 

laboratory conditions, the system would be kept in the off-state, once the bacteria 

harboring this containment system would leave the laboratory conditions unintendedly, 

the system would switch to the on-state and the methyltransferase and the toxic genes 

would be expressed, leading to cell death. Systems described in literature use for 

example synthetic protein design based on non-standard amino acids and demand for 

extensive editing of the E. coli genome but being also very effective (Mandell et al. 

2015; Rovner et al. 2015). Synthetic monostable circuits have been also designed to 

work as a biocontainment system (Chan et al. 2016). However, systems expressing 

toxic gene that kill bacteria upon a certain signal poses evolutionary pressure on the 

bacteria. Therefore, in the setup described by Chan et al., it was necessary to use 

several toxic products in combination to efficiently kill bacterial cells on purpose. 

Possibly this would also apply for a biocontainment system based on the epigenetic 

memory system described here and would demand for a system based on multiple 

toxic gene products acting in concert. 

Another application of the epigenetic memory system could be the use of the system 

as a protein expression platform. In such a setting, the epigenetic memory system 
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would obviate the need for a constant inductor supplementation of the bacterial 

induction strain. Only a transient signal would be needed to induce the system and 

subsequently the protein production would be perpetuated. In this setup, the 

maintenance operon would consist of a methyltransferase and the gene for the protein 

to be expressed. 

The existing CcrM based epigenetic memory system has great potential to be used in 

a range of industrial applications. However, a more detailed characterization of the 

system and the switching behavior is needed before such applied systems can be 

developed. This includes analysis of spontaneous on-switching, behavior of the system 

under a broader set of environmental conditions and the investigation of long-term 

stability of on- and off-states. The thorough characterization of the systems allows then 

also for comparison of the epigenetic system with other existing synthetic memory 

systems popular in the field of synthetic biology for example based on recombinases 

or transcription factors (Kobayashi et al. 2004; Friedland et al. 2009).  

5.2.3 Modelling of the epigenetic memory system 

Examining the developed epigenetic memory system with a systems biology approach 

would aid to shed light on issues like stability of the two states and potential weak 

points of the systems that could be adjusted and improved. For computational 

modelling, certain system parameters have to be experimentally determined that are 

indicated in Figure 19. This includes the protein concentrations, synthesis rates and 

degradation rates of CcrM, EGFP and the zinc finger repressor protein. Protein 

concentrations can be easily determined for example by western blotting (Charette et 

al. 2010). Synthesis and degradation rates can be assessed by ribosome profiling (Li 

et al. 2014) and pulse-chase analysis (Simon and Kornitzer 2014). Additionally, the 

methylation activity of CcrM in vivo has to be determined. This could be derived from 

the global methylation state at 5’-GANTC-3’ sites, at a known CcrM concentration and 

the known cell division rate. The global methylation state could be assessed by a 

methyl acceptance assay (Nephew et al. 2009). Absolute DNA binding strength of the 

zinc finger repressor protein to methylated and unmethylated binding sites have to be 

quantified. In the scope of this thesis, a roughly 70 fold preference for unmethylated 

DNA has been measured (Supplementary Figure 5 from Appendix 2). With the present 
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zinc finger protein purification settings, it was not possible to determine absolute DNA 

binding constants, due to DNA co-purification. Protein purification has to be optimized 

in order to obtain pure zinc finger protein without DNA to determine the binding 

constants. 

 

Figure 19. Scheme of the synthetic epigenetic memory system in the on-state. 

Indicated with numbered red circles are system properties that need to be determined 
for mathematical modelling of the system. 1: CcrM protein concentration in the on- and 
off-state. 2: DNA methylation rate of CcrM. 3: methylation status of the promoter region. 
4: EGFP protein concentration in on- and off-states. 5: ZnF protein concentration. 6: 
cell division rate. Additionally, protein synthesis rates as well as protein degradation 
rates for CcrM and EGFP have to be determined. 

Based on the following differential equations, a basic mathematical model of the 

epigenetic memory system could be compiled. The expression of the zinc finger protein 

with autoregulation could be described by two equations, which describe the change 

of the zinc finger protein concentration over time (1) and the change of zinc finger 

mRNA concentration over time (2). 

𝑑𝑝𝑍𝑛𝐹

𝑑𝑡
= 𝐿 𝑚𝑍𝑛𝐹 −  𝐷𝑝𝑍𝑛𝐹

 𝑝𝑍𝑛𝐹 −
1

2
µ 𝑝𝑍𝑛𝐹 (1) 

𝑑𝑚𝑍𝑛𝐹

𝑑𝑡
= 𝑇 (𝑝𝑍𝑛𝐹) − 𝐷𝑚𝑍𝑛𝐹

 𝑚𝑍𝑛𝐹 −
1

2
µ 𝑚𝑍𝑛𝐹 (2) 

where 𝑝𝑍𝑛𝐹 is the protein concentration of the zinc finger repressor, 𝐿 is the translation 

rate, 𝑚𝑍𝑛𝐹 is the mRNA concentration of the zinc finger repressor transcript, 𝐷𝑝𝑍𝑛𝐹
 is 

the protein degradation rate of the zinc finger repressor protein, µ is the growth rate, T 

is the transcription rate of the zinc finger repressor gene, 𝐷𝑚𝑍𝑛𝐹
 is the degradation rate 

of the zinc finger repressor mRNA transcript. 

The change in zinc finger protein concentration (
𝑑𝑝𝑍𝑛𝐹

𝑑𝑡
) equals the translation (𝐿 𝑚𝑍𝑛𝐹), 

minus the zinc finger protein degradation (𝐷𝑝𝑍𝑛𝐹
 𝑝𝑍𝑛𝐹) and the dilution of the zinc finger 
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protein concentration by cell division (
1

2
µ 𝑝𝑍𝑛𝐹) (Equation 1). The change in zinc finger 

mRNA concentration equals the transcription (𝑇 (𝑝𝑍𝑛𝐹)), which is negatively influenced 

by the zinc finger protein concentration, minus the zinc finger mRNA degradation 

(𝐷𝑚𝑍𝑛𝐹
 𝑚𝑍𝑛𝐹) and the dilution of zinc finger mRNA concentration by cell division 

(
1

2
µ 𝑚𝑍𝑛𝐹) (Equation 2). Due to the negative influence of the zinc finger protein on zinc 

finger transcription, a constant concentration should be attuned. 

A simplified description of the changes in proteins encoded by the 

reporter-maintenance operon and the methylation state of the promoter of the 

reporter-maintenance operon is given by equations (3), (4), and (5).  

𝑑𝑝𝐶𝑐𝑟𝑀

𝑑𝑡
= 𝑇𝐿(𝜃) − 𝐷𝑝𝐶𝑐𝑟𝑀

 𝑝𝐶𝑐𝑟𝑀 −
1

2
µ 𝑝𝐶𝑐𝑟𝑀 (3) 

𝑑𝜃

𝑑𝑡
=  𝑀 𝑝𝐶𝑐𝑟𝑀(1 − 𝜃) −

1

2
µ 𝜃 (4) 

𝑑𝑝𝐸𝐺𝐹𝑃

𝑑𝑡
= 𝑇𝐿(𝜃) − 𝐷𝑝𝐸𝐺𝐹𝑃

 𝑝𝐸𝐺𝐹𝑃 −
1

2
µ 𝑝𝐸𝐺𝐹𝑃 (5) 

where 𝑝𝐶𝑐𝑟𝑀 is the protein concentration of CcrM, 𝑇𝐿(𝜃) is the protein production as a 

function of time dependent on the methylation state status (𝜃), 𝐷𝑝𝐶𝑐𝑟𝑀
is the degradation 

rate of CcrM, µ is the growth rate, M is the methylation rate of CcrM, 𝑝𝐸𝐺𝐹𝑃 is the protein 

concentration of EGFP, and 𝐷𝑝𝐸𝐺𝐹𝑃
 is the degradation rate of EGFP. 

The change of CcrM protein concentration (
𝑑𝑝𝐶𝑐𝑟𝑀

𝑑𝑡
) would equal the protein production 

(𝑇𝐿(𝜃)), which is positively influenced by the methylation status (𝜃), minus CcrM 

degradation (𝐷𝑝𝐶𝑐𝑟𝑀
 𝑝𝐶𝑐𝑟𝑀) and the dilution of CcrM by cell division (

1

2
µ 𝑝𝐶𝑐𝑟𝑀) 

(Equation 3). The change in the methylation state (
𝑑𝜃

𝑑𝑡
) equals the methylation rate of 

CcrM (𝑀 𝑝𝐶𝑐𝑟𝑀(1 − 𝜃)), minus the passive loss of methylation by DNA replication, 

simplified to be dependend on cell division (
1

2
µ 𝜃) (Equation 4). The change in EGFP 

protein concentration over time (
𝑑𝑝𝐸𝐺𝐹𝑃

𝑑𝑡
) equals the formation dependent on the 

methylation status (𝑇𝐿(𝜃)), minus the EGFP degradation (𝐷𝑝𝐸𝐺𝐹𝑃
 𝑝𝐸𝐺𝐹𝑃) and the dilution 

of EGFP concentration by cell division (
1

2
µ 𝑝𝐸𝐺𝐹𝑃) (Equation 5). 
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Mathematical modelling of the epigenetic memory system would lead to a better 

understanding of the system and would aid the construction of more and more complex 

circuits as demonstrated for automated genetic circuit design (Ellis et al. 2009; Nielsen 

et al. 2016). 

5.3 Identification, cloning and heterologous expression of 

Citrobacter sp. SG hydrogenase 2 

Molecular hydrogen is an attractive energy carrier, due to a high energy per mass 

content and combustion products being only water and heat under ideal conditions. 

However, the main route of molecular hydrogen production today is steam reforming 

of natural gas (Abbas and Daud 2010). In order to use hydrogen as a true 

environmentally friendly energy carrier, the need for fossil fuels for hydrogen 

production has to be omitted. Several attempts have been made into this direction. 

Examples are electrolysis of water by using electricity generated from “renewable 

energy” (Wang et al. 2014), polymeric catalysts that produce hydrogen by water 

splitting using sunlight as energy source (Wang et al. 2009b) and progress is made in 

the field of biohydrogen production (Hallenbeck et al. 2012). Using a synthetic biology 

approach, that would couple hydrogen production to photosynthesis and thereby use 

sunlight as primary energy source would be a scalable and attractive approach. This 

approach, however, is limited mainly by the lack of appropriate enzymes capable of 

hydrogen production in the presence of molecular oxygen, which inevitably emerges 

by photosynthesis. 

In the scope of this thesis, a Citrobacter species, which produces considerable 

amounts of molecular hydrogen at ambient culturing conditions was discovered. This 

is of great interest, as most known hydrogen producing enzymes are inactivated or 

destroyed in the presence of molecular oxygen (Vignais and Billoud 2007). 

As the main hydrogen detecting tool, an unconventional and easily operatable 

hydrogen detector was used. The detector is a semiconducting device, usually applied 

in mechanical engineering to detect very small leaks in tubing systems by flushing 

them with a hydrogen containing gas mixture. This device was used as an easy to 

handle, low-cost, quantitative and reliable hydrogen detector. The system was 



56 

 

validated by gas chromatography and could be an interesting tool for biotechnological 

research in the hydrogen research field. 

The hydrogen producing Citrobacter species was fortuitously discovered and was 

named Citrobacter sp. SG (Stuttgart, Germany). Next, the enzyme responsible for 

hydrogen production was identified by applying a set of different protein purification 

steps followed by peptide mass fingerprinting. The enzyme was determined to be a 

type 2 [NiFe] hydrogenase. The hydrogenase 2 operon was cloned into an inducible 

expression vector and it was possible to express the active enzyme in E. coli cells in a 

nickel dependent manner. 

Interestingly, a Japanese group of researchers reported similar findings on an oxygen 

tolerant hydrogenase from another Citrobacter sp. (Citrobacter sp. S-77) (Eguchi et al. 

2012). Later, the group revealed that the hydrogen producing enzyme is a type 2 

hydrogenase and thereby support the results presented here (Muhd Noor et al. 2016). 

Sequence comparison revealed highly similar amino acid composition of 

hydrogenase 2 enzymes of Citrobacter sp. SG, Citrobacter sp. S-77 and Citrobacter 

freundii, leading to the hypothesis that the oxygen tolerance is not only limited to 

Citrobacter sp. SG or Citrobacter sp. S-77 but rather a Citrobacter specific 

characteristic. 

Bioinformatic sequence comparison of small and large subunits of the Citrobacter sp. 

SG enzyme with the known oxygen tolerant hydrogenase 1 from E. coli revealed that 

a novel mechanism has to be responsible for oxygen tolerance of Citrobacter sp. SG 

hydrogenase 2. E. coli hydrogenase 1 and other known oxygen tolerant membrane 

bound hydrogenases comprise an unusual [4Fe3S] cluster that is coordinated by six 

cysteine residues in the small subunit, located proximal to the active site in the large 

subunit. The [4Fe3S] cluster is responsible for the donation of electrons in case of 

inactivation by oxygen (Fritsch et al. 2011; Frielingsdorf et al. 2014)(see chapter 1.3.4). 

In the Citrobacter sp. hydrogenase 2 small subunits, no additional cysteine residues 

can be found that could be attributed to play a role in coordination of the unusual 

[4Fe3S] cluster proximal to the active site. However, there are two additional cysteine 

residues in the large subunits of the Citrobacter sp. (Appendix 5). These cysteine 

residues are most probably not involved in the same mechanism observed in E. coli 

hydrogenase 1 like enzymes. Mapping of the residues to the E. coli hydrogenase 1 
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crystal structure suggests that they are located far away from the small subunit (Figure 

14). Potential involvement of the additional cysteine residues of Citrobacter sp. 

hydrogenase 2 large subunit in the formation of quaternary structure is conceivable. 

Such larger structures may aid to form a microenvironment, in which low oxygen levels 

can be maintained and this may help to keep the hydrogenases active in presence of 

oxygen. Alternatively, intermolecular complexes with other proteins could be formed 

that would help to tolerate oxygen present in the environment, similarly as also 

described for hydrogenase 1 from E. coli (Wulff et al. 2016). 

The discovered Citrobacter sp. SG produces hydrogen at ambient conditions. This 

suggests that the regulation of hydrogenase 2 in Citrobacter sp. might be different from 

the regulation in E. coli, where hydrogenase 2 is only expressed under anaerobic 

conditions. In E. coli, hydrogenase 2 is used for H2 uptake and H2 in turn is used as an 

electron source in anaerobic respiration. In this process, electrons are transferred via 

the quinone pool to fumarate as the final electron acceptor (Kröger et al. 1992; Sawers 

1994; Richard et al. 1999). In contrast, in Citrobacter species, hydrogenase 2 could be 

involved in adaptations to acidic growth conditions and help to maintain less acidic 

intracellular conditions by reducing protons to molecular hydrogen. This process would 

be very efficient, as gaseous H2 is virtually withdrawn from chemical equilibrium. 

Potentially, the discovered enzyme could be applied biotechnologically in the field of 

hydrogen production by coupling of photosynthesis and H2 production. This together 

with the constant progress in technologies related to the storage of hydrogen could 

promote the usability and prevalence of hydrogen as the future energy carrier (Hu et 

al. 2016; Sethia and Sayari 2016; Kothandaraman et al. 2017).  
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Appendix 4 

  



Multiple sequence alignment of small subunits of hydrogenase 1 and 2 from 

Escherichia coli and small subunits of hydrogenases 2 from Citrobacter freundii, 

Citrobacter sp. SG, Citrobacter sp S-77. Indicated by the black arrows are cysteine 

residues responsible for coordination of [4Fe3S] cluster in oxygen tolerant 

hydrogenase 1 and not present in type 2 variants. 

 



Appendix 5 
  



Multiple sequence alignment of large subunits of hydrogenase 1 and 2 from 

Escherichia coli and large subunits of hydrogenases 2 from Citrobacter freundii, 

Citrobacter sp. SG, Citrobacter sp S-77. Indicated by the black arrows are positions of 

cysteine residues present only in hydrogenase 2 large subunits of Citrobacter species. 
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