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Abstract

Recent years have shown an increasing trend to move applications and services into cloud in-
frastructures. Cloud-based applications typically consist of distributed components which are
connected and communicate with each other. Automating the deployment and management
of these components is one of the major challenges in IT world. The OASIS Topology and
Orchestration Specification for Cloud Applications (TOSCA) standard provides a meta-model
for describing the structure of composite cloud-based applications, which provides automa-
tion for deployment and management of these applications. TOSCA-based applications may
be executed via the OpenTOSCA (a run-time environment for TOSCA-based applications)
environment, which has been developed by the University of Stuttgart.

Simulation applications deal with heterogeneous and huge data sources. Adequate data man-
agement and data provisioning for these applications are some of the most significant chal-
lenges for simulation applications. SimTech – Information Management, Processes, and Lan-
guages (SIMPL) is a framework which provides a generic approach for data management and
data provisioning in simulation applications. SIMPL frees users to deal with any low-level de-
tails of data sources and corresponding data management operations.

Both the TOSCA standard and the SIMPL framework are based on workflows. The first goal
of this master’s thesis is to combine the TOSCA standard with the SIMPL framework in order
to enable the generic data provisioning and data management approach offered by SIMPL as
an integral part of the TOSCA standard.

A further and main part of this work is to design and implement TOSCA Service Templates
for provisioning and executing bone simulations in cloud environments. Different variants of
a TOSCA Service Template realizing a bone simulation in a cloud-native way have to be
developed and implemented. In other words, a Software as a Service (SaaS) solution for
PANDAS bone simulation is provided in the scope of this master’s thesis with the help of
TOSCA and SIMPL technologies.
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Chapter 1

Introduction

This chapter provides an overview for the motivations and goals behind the present research.
Furthermore, the problem statement, scope of work as well as the structure of this master’s
thesis are introduced in the following sections.

1.1 Motivation and problem statement

Recent researches in science and technology have explored a number of reasons why cloud
computing is widely used in today’s enterprises. Many organizations are continuously moving
their legacy applications to the cloud in order to benefit from significant efficiency and cost
advantages which are provided by cloud infrastructures. Using cloud infrastructures within
organizations, enables business applications to become more mobile and collaborative. Draw-
backs of traditional and on-premise solutions, such as costly infrastructures, lack of flexibility
in system performance and accessibility, deployment speed, etc., derive IT enterprises to think
about cloud-based solutions instead. There are many developed solutions and approaches for
moving traditional and on-premise applications into cloud infrastructures. In other words, a
large number of solutions have been discovered in the state of the art for mapping traditional
applications into cloud infrastructures regarding provisioning and managing software compo-
nents as well as required data in cloud environments. The main contribution of this work is to
move a legacy bone simulation software, so-called PANDAS1, into cloud infrastructures and
turn the PANDAS software into a fully integrated SaaS solution[2].

Rapidly changing business and IT environments make systems and applications more complex
and distributed. The past few years have seen increasing technological advances in IT appli-
cations and solutions. Composite applications, built by combining pieces of other applications
and components, are the solution for today’s enterprises. Software deployment processes as
well as setting up and managing cloud resources in composite applications are problematic
and burdensome. Automating the deployment and management of the various components of
cloud-based applications is one of the key aspects of moving applications into the cloud. By
automation, the provisioning of new software instances for new customers becomes cheaper
and faster in terms of money and time. Cloud computing characteristics, such as elastic-
ity, pay per use, rapid provisioning, etc., are highly dependant on the degree of automation
in deployment and management of applications. Finding an efficient solution for automat-

1http://www.mechbau.uni-stuttgart.de/pandas/index.html
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1. Introduction

ing the deployment and management of cloud-based applications, such as OASIS2 TOSCA
standard3, which is an Extensible Markup Language (XML)-based4 language, is beneficial.
The TOSCA standard addresses three main problems which cannot be solved all together in
other approaches as follows: (1) automation in deployment and management of cloud-based
applications, (2) portability of applications, and (3) reusability and interoperability of com-
ponents in composite applications. The TOSCA standard is based on XML language, which
is a well-known and easy language. In fact, using TOSCA for cloud-based applications is an
efficient and easy approach. For orchestration and automation processes in the scope of this
master’s thesis, different variants of a TOSCA Service Template realizing a bone simulation
via PANDAS in a cloud-native way are provided[26].

Data and information explosion in most of simulation applications is one of the biggest issues
that scientists and engineers are now dealing with. Data management and data provisioning in
cloud infrastructures is one of the most challenging aspects regarding to data and information
explosion in simulation applications. In other words, simulation applications work with hetero-
geneous and huge data in various formats. These huge data need to be queried, transferred,
maintained or stored as the result. Most of approaches in this field require lots of effort in
order to find appropriate data sources, and to prepare these data in order that simulation
applications can properly use them. Most of scientists do not have the necessary skills to
provide and prepare appropriate data sources for the PANDAS bone simulation software. Ac-
cordingly, provisioning and managing all required data sources for the PANDAS tool with the
SIMPL technology removes the burden from scientists to worry about this deficiency and com-
plexity. The PANDAS bone simulation software deals with heterogeneous data sources such
as text files, XML databases, Comma-Separated Values (CSV) files and Structured Query
Language (SQL) databases, respectively. The SIMPL framework[16], which is an efficient ap-
proach that eliminates lots of effort to locate adequate data sources and find appropriate
solutions for data transformations is used in this master’s thesis. SIMPL extends workflow
languages, such as Business Process Execution Language (BPEL)5, by a small set of Data
Management (DM) activities and DM patterns which provide a generic and uniform approach
to access any kind of data sources. Similar to TOSCA, the SIMPL framework is also based on
workflow languages. To the extent of our knowledge, there is no approach like SIMPL which
can provide this level of abstraction in accessing heterogeneous data sources. In other words,
all other approaches require to specify low-level details of data sources for managing and pro-
visioning data, and impose a burden on scientists and engineers[16]. Implementing different
variants of workflows with SIMPL for provisioning data as well as returning the calculation
results to the users is another important goal in this master’s thesis.

Both TOSCA standard and SIMPL framework are based on workflow technology. Integration
of these two approaches can benefit users to have an integrated support for automating the
application deployment as well as provisioning heterogeneous data in cloud-native applications.
In the scope of this research, an approach for integrating the SIMPL framework to the workflow
engine of OpenTOSCA (a run-time environment for TOSCA-based applications)6, in order
to make the SIMPL generic access for data provisioning and data management an integral

2Advancing Open Standards for the Information Society
3https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
4http://www.w3schools.com/xml/
5https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
6http://www.iaas.uni-stuttgart.de/OpenTOSCA/
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part of the TOSCA standard definition, is developed and implemented. Consequently, data
management and data provisioning techniques offered by SIMPL can be a constituent part
of the TOSCA specifications. In conclusion, moving traditional and on-premise PANDAS
bone simulation software into cloud infrastructures by using all above-mentioned technologies
enables users to benefit in different aspects and solves all the obstacles which existed before
this work[18].

1.2 Scope of work

In the scope of this research, different variants of a TOSCA Service Template for provisioning
and executing PANDAS bone simulation software in cloud environments are designed and
implemented. To address this goal, the main objectives of this research are divided into two
parts. First, the SIMPL framework is integrated with the TOSCA standard in order to offer a
full-fledged and integrated support for deploying and managing cloud-native simulation appli-
cations as well as for data provisioning regarding their input and result data. In other words,
the prototype for SIMPL is integrated with the OpenTOSCA engine in order to provide the
abstract data provisioning and data management offered by SIMPL as an integral part of the
TOSCA definitions. For this purpose, a TOSCA-based Implementation Artifact (IA) was im-
plemented, so-called ODE-Service, as shown in Figure 1.1. This IA is mainly based on Apache
Orchestration Director Engine (ODE) deployment Application Program Interface (API)7 in
order to deploy and undeploy BPEL processes to and from the Apache ODE engine remotely.

As Figure 1.1 illustrates, the second and main contribution of this master’s thesis is to elab-
orate, develop, and implement different variants of a TOSCA Service Template realizing a
bone simulation in a cloud-native way. The Service Template should provide corresponding
service topologies, as well as the following plans which turn the bone simulation into a fully
integrated SaaS solution:

• Provisioning plan which instantiates Virtual Machine (VM)s and prepares the infras-
tructures for installing the PANDAS software components and related resources.

• PANDAS software provisioning plan which sets up the necessary simulation software
components, in particular the PANDAS calculation tool and different kinds as well as
configurations of database systems that store the result data of PANDAS.

• Different variants of management plans that provide and prepare heterogeneous input
data of the simulation in order that PANDAS can properly ingest these data.

• A management plan that orchestrates the simulation calculation in PANDAS.

• Different variants of management plans that return the result data of PANDAS back to
the user with respect to the data formats and granularity this user requires.

• A termination plan which terminates the installed VMs and undeploys all other software
components.

Moreover, Chapter 6 of this master’s thesis compares the corresponding approaches using the
TOSCA standard and the SIMPL framework for moving the traditional and on-premise applica-
tions into cloud infrastructures with the other existing approaches, in terms of advantages and
limitations. This chapter evaluates the generalization capabilities of the proposed approaches

7http://ode.apache.org/management-api.html
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to other simulation examples, other simulation software and for developing other variants of
a TOSCA Service Template. As shown in Figure 1.1, the above-mentioned discussions and
evaluations are in the scope of this master’s thesis.

Figure 1.1: Scope of thesis

As Figure 1.1 depicts, the SIMPL framework, TOSCA standard, PANDAS web service, and
two IAs are not in the scope of this master’s thesis. They are already implemented and only
used in this work. The TOSCA standard and the SIMPL framework are discussed in Sec-
tions 2.2 and 2.5, respectively. The first IA is InstallOpenStackVM, which is a Java-based
implementation and contains several operations, such as InstallVMwithCustomKeypair,
InstallVMwithGeneratedKey, InstallVMwithCustomFlavor, etc., for installing a new
VM on the OpenStack8 cloud provider. This IA contains the termination function as well,
which terminates VMs. The actual implementation of this IA can be found on the GitHub9.
SSH-IA is another already implemented IA, which is used to send some shell commands to a
remote server.

1.3 Outline

This section specifies the structure of chapters which is used in this master’s thesis. This
thesis contains all the following chapters:

Chapter 1 - "Introduction" covers a brief introduction to the topic of this master’s thesis.
This chapter discusses the motivation scenario, problem statement as well as the scope of this
work.

Chapter 2 - "Background" explains all required background information and technologies
related to this master’s thesis. This chapter includes an introduction to cloud computing, OA-
SIS TOSCA specification, workflow technology, SIMPL framework and all other technologies
and tools which are used for realizing the goals and motivations behind this thesis.

Chapter 3 - "Related Work" discusses preliminary and ongoing related work to the scope

8https://www.openstack.org/
9https://github.com/tosca-types/openstack
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of this master’s thesis. This chapter evaluates related work in running simulation applica-
tions in cloud infrastructures. Furthermore, similar approaches to the TOSCA standard for
automating the deployment and management of composite applications are discussed. Var-
ious approaches similar to SIMPL, to manage and provision heterogeneous data sources in
simulation applications, are discussed as well.

Chapter 4 - "Mapping PANDAS into cloud" discusses the main concepts developed in the
course of this master’s thesis for mapping PANDAS into cloud environments regarding soft-
ware provisioning as well as data provisioning. Besides, different variants of a PANDAS Service
Template in the TOSCA standard, which includes an application topology and several man-
agement plans, are discussed from a conceptual point of view. Following that, the method
which is used in this master’s thesis for integrating the TOSCA standard with the SIMPL
framework is explained.

Chapter 5 - "Implementation" lists all the libraries and techniques which are used for im-
plementing different variants of a PANDAS Service Template. In other words, the proposed
approach for moving an on-premise PANDAS bone simulation software into cloud infrastruc-
tures is implemented in detail. Moreover, an approach for the first contribution of this master’s
thesis which is integration of the SIMPL framework with the TOSCA standard is discussed.
Besides, this chapter also discusses challenges the author faced during design and implemen-
tation phases.

Chapter 6 - "Discussion" restates general goals and motivations of this master’s thesis, which
is followed by a statement about whether or not, and to what extent, our findings address
these goals. Furthermore, the lessons which were learned in this master’s thesis with respect
to the approaches and contributions are discussed in this chapter. This chapter also evaluates
whether and how the approach which is used in this work for the PANDAS bone simulation
software can be generalized to other simulation examples, other simulation software and for
developing other variants of a TOSCA Service Template. Besides, this chapter discusses briefly
about using other cloud providers for the PANDAS Service Template instead of the OpenStack
cloud provider, which is used in this master’s thesis.

Chapter 7 - "Summary, conclusion and future work" summarizes briefly the main contri-
butions of this master’s thesis and brings this work to conclusions. This chapter discusses the
possible future use and extensions for the resulting system. Furthermore, some opportunities
and future work for extending the application scope of the results of this thesis are realized
as well.
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Chapter 2

Background

This chapter provides the basic background knowledge necessary for this thesis. In Section 2.1
a brief introduction to cloud computing is provided. The OASIS TOSCA standard is discussed
in Section 2.2 as an OASIS standard to define composite1 cloud-based applications and their
management functionalities. Section 2.3 presents the concept of Workflows in web services as
well as the most common language, BPEL, for defining business processes and workflows. Sec-
tion 2.4 argues about simulation applications as well as an example of a simulation workflow
for structure changes within a human bone. This section provides an overview about the con-
cepts which are related to data management and data provisioning in simulation applications.
Section 2.5 emphasizes on a generic framework for data management and data provisioning
in simulation applications, so-called SIMPL. Following that, a brief overview of technologies
and tools which are used in this master’s thesis is the main goal of Section 2.6.

2.1 Cloud Computing

According to National Institute of Standards and Technology (NIST), cloud computing is "a
model for enabling convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications and services) that can be
rapidly provisioned and released with minimal management effort or service provider interac-
tion". The cloud computing paradigm consists of five crucial characteristics, as well as four
deployment models and three service models, which are described as follows[50].

Characteristics of cloud computing:
The five fundamental characteristics of cloud computing are: (1) On-demand self-service,
(2) Broad network access, (3) Resource pooling, (4) Rapid elasticity and (5) Measured ser-
vice. On-demand self-service refers to the provision of cloud resources, such as data storage,
whenever they are required by a customer. The customer can access the resources through
the Internet. In other words, services and resources are accessible over the network through
different client devices such as mobile phones, tablets and laptops (Broad network access).
Resource pooling describes a situation in which multiple clients, customers or tenants can
be served by a single provider. The service can be distributed over clients based on their
needs. Rapid elasticity is defined as the ability to scale provisioning and deprovisioning of the
resources. To put it another way, customers can request more or less resources in the cloud
whenever it is demanded. Lastly, Measured Service refers to measuring and monitoring the

1Applications which consist of heterogeneous distributed component
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provision of services in cloud infrastructures by cloud providers. This measurement deals with
multiple reasons, such as billing or efficient use of services[50].

Service Models of cloud computing:
In agreement with NIST, there exist three cloud service models: (1) Infrastructure as a Ser-
vice (IaaS), (2) Platform as a Service (PaaS) and (3) SaaS. With these cloud computing
service models, customers can access computing resources in a virtualized environment over
a public network. In IaaS, the computing resources are virtualized hardware, such as virtual
server spaces, networks and storage. PaaS is a cloud computing model which provides a plat-
form for the users to develop, run and manage web applications. In other words, customers
can benefit from hardware and software tools as a service which are needed for application
development. Therefore, customers do not need to install their own hardware and software
to develop a new application. SaaS refers to delivering of applications to the customers as a
service over the Internet. SaaS applications are on the service provider’s servers. This model
frees customers from installing and managing software on their own local machines[50].

Deployment Models of cloud computing:
According to NIST, four primary deployment models for cloud services are: Private cloud,
Community cloud, Public cloud and Hybrid cloud. Private cloud is a particular model of cloud
computing which computing power within a virtualized environment is only accessible by a
single organization. This model provides a secure cloud-based environment for the customers of
that organization. Community cloud describes a multi-tenant infrastructure2 which is shared
between multiple but still defined organizations with common computing concerns. Public
cloud is a model in which cloud providers provide computing power, such as storage and
applications, to general public over the Internet. Last but not least, Hybrid cloud is the
combination of two or more of the above-mentioned cloud deployment models. Accordingly,
an organization can maximize its efficiency by using public cloud for unimportant operations
in the organization and using private and secure cloud for sensitive operations on the other
hand[50].

2.1.1 Web Service

The term Web Service describes a standardized way of integrating applications by using
different technologies such as XML, Simple Object Access Protocol (SOAP)3, Web Services
Description Language (WSDL)4 and Universal Description, Discovery and Integration (UDDI)5

over the Internet Protocol (IP). XML is a language that specifies how web documents should
be formatted. Designers use XML to validate and interpret data which is transferred between
applications and organizations over the Internet[15]. Listing 2.1 shows the overall structure of
a XML-based document.

1 <root>

2 <child>

3 <subchild>.....</subchild>

4 </child>

2Multi-tenant infrastructure is an infrastructure where multiple customers can be served by a single instance of

a software application[2]
3http://www.w3schools.com/webservices/ws_soap_intro.asp
4http://www.w3schools.com/webservices/ws_wsdl_intro.asp
5http://w3schools.sinsixx.com/wsdl/wsdl_uddi.asp.htm
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5 </root>

Listing 2.1: XML syntax [22]

SOAP is a XML-based messaging protocol which allows applications running on different oper-
ating systems, such as Windows or Linux, to communicate with each other by using Hypertext
Transfer Protocol (HTTP) and XML language[15]. Listing 2.2 represents an example of SOAP
envelop message.

1 <?xml version="1.0"?>

2 <soap:Envelope

3 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

4 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

5 ...

6 <!-- Message information goes here -->

7 ...

8 </soap:Envelope>

Listing 2.2: SOAP Envelope syntax [22]

WSDL is another XML-based formatting which is used to describe the functionalities and
interfaces of web services. A WSDL file contains several tags which explain the operations of
a web service, how these operations are to be called, as well as input and output parameters
which are expected by each operation[15]. Listing 2.3 depicts the syntax of elements in a
WSDL file.

1 <definitions>

2

3 <types>

4 data type definitions........

5 </types>

6

7 <message>

8 definition of the data being communicated....

9 </message>

10

11 <portType>

12 set of operations......

13 </portType>

14

15 <binding>

16 protocol and data format specification....

17 </binding>

18

19 </definitions>

Listing 2.3: WSDL file syntax [22]

UDDI is a directory for storing information related to web services. Businesses can register
their own web services in the UDDI directory. Discovering other web services around the world
is another aspect of using UDDI. To illustrate, if there exists a web service for flight rate
checking and reservation in UDDI, travel agencies could search the directory to discover the
specific web service and then communicate with it immediately[15].
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2.1.2 Cloud-based applications

Cloud-based applications (Cloud App) are applications and programs within cloud environ-
ments. These applications can be accessed over the Internet, e.g., through a web browser.
Automating the deployment and management of different components of cloud-based appli-
cations and services is one of the most significant challenges in cloud computing paradigm.
Automated deployment enables the provisioning of new service instances for new customers
cheaper and faster[27]. The subsequent sections describe scalability, elasticity, interoperability
and portability characteristics in cloud environments. Scalability and elasticity in cloud-based
services fulfill the requirements of automated management.

2.1.2.1 Scalability and elasticity in cloud-based services

Elasticity refers to the ability of a system to access and release computing resources whenever
it is actually requested by clients based on the workloads. Scalability is the prerequisite for
elasticity. Scalability is the ability of a system to continue to function well whenever computing
resources are provisioned or deprovisioned according to user needs. In contrast to elasticity,
scalability does not consider how well the resources, which are provisioned or deprovisioned,
satisfy customer needs. In other words, these two properties enable cloud-based applications
to be managed in an automated way[10].

2.1.2.2 Interoperability and portability in cloud computing

According to Institute of Electrical and Electronics Engineers (IEEE)6 and International Or-
ganization for Standardization (ISO)7, interoperability is "the ability for two or more sys-
tems or applications to exchange information and mutually use the information that has
been exchanged". In the context of cloud computing, interoperability provides the capability
of cloud-based applications to understand their interfaces, authentication and authorization
mechanisms, data formats needed to be transferred, etc., for communication and cooperation
with each other. Portability in cloud computing presents the facility to move a component of
a system to another system without significant effort for transformation of the source format
to the one which is compatible to the target system[4].

There are many challenges associated with interoperability and portability in cloud computing.
Interfaces and APIs of cloud services are not standardized. In consequence, interoperability
between services is troublesome. One practical approach to handle interoperability in cloud
computing is providing an isolation layer between customer application interfaces and cloud
service interfaces. Accordingly, the service is not called directly by the customer application.
Technologies such as Enterprise Service Bus (ESB)8 is appropriate for this aspect[4]. OASIS
defines the TOSCA standard which made significant improvements and enhancements to
interoperability and portability of cloud-based applications and services [26]. In the following
sections, a brief overview on the main concepts of TOSCA is provided.

6https://www.ieee.org/index.html
7http://www.iso.org/iso/home.html
8http://www.oracle.com/technetwork/articles/soa/ind-soa-esb-1967705.html
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2.2 OASIS TOSCA

TOSCA is an OASIS standard to define composite cloud-based applications and their manage-
ment functionalities. In other words, by using the TOSCA standard, users are capable to define
the components of an application, relationships between these components as well as their
related management functionalities in a standardized, portable and well-defined structure. A
TOSCA-based application, so-called Service Template, consists of two main concepts: (1)
an application topology, and (2) management plans. The topology defines different compo-
nents of an application and the relationships between these components as a graph. Each
vertex in the graph is a Node Template. Node Templates can be derived from Node Types

and then can be instantiated as Node Instances. Management plans on the other hand, can
be used to create a high-level management task of these components. In other words, man-
agement plans are used to automate the deployment, configuration, as well as management of
various components of applications. They can be executed in an automated manner in order
to deploy, configure, manage and operate the application[5].

Figure 2.1 depicts the main two concepts of the TOSCA standard. As shown in the figure, a
Topology Template consists of several nodes which are connected with relationships. These
nodes and their relationships can have various types. For instance, Node Types can be IA,
Deployment Artifact (DA), script, policy, etc. Implementation and deployment artifacts are
the actual implementation of nodes in the topology. To illustrate, an operating system type in
the topology may have an image hosting the operating system as DA. IAs are small manage-
ment applications which provide management capabilities of a node via Representational State
Transfer (REST), WSDL or script interfaces. In the example of an operating system, an IA
could be a REST-based web service, which has a function to connect via Secure Shell (SSH)
to a virtual server with the defined operating system, in order to run some configuration
commands on the server. Implementation and deployment artifacts are deployed onto the cor-
responding nodes of the topology in a proper time. Similarly, relationships between these nodes
are from different types, such as hosted on9, depends on10 or communicates with11[5].

9An operating system can be hosted on a server
10One component depends on another component
11An application can communicate with its related database
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Figure 2.1: TOSCA Service Template (adapted from OASIS (2012))[5]

Management plans on the other hand, are sequences of activities which can be started and
executed fully automatedly by receiving an external message. The TOSCA standard uses
workflow languages, such as Business Process Model and Notation (BPMN)12 or BPEL, to
define management plans. Figure 2.2 represents a simple management plan which installs a
MySQL13 database on a Linux VM inside the OpenStack cloud provider.

Figure 2.2: A simple TOSCA plan

This plan is started by receiving a message from outside. The first circle represents a start event
which instantiates the plan immediately after receiving a message. The execution continues to
the next activity and installs a Linux VM on the OpenStack cloud provider. The third activity

12http://www.bpmn.org/
13https://www.mysql.com/
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installs a MySQL database on the instantiated VM. The next activity sets an endpoint14

for the database. Endpoint is the point of entry into a database Server. Users and other
applications can connect to a database server via these endpoints. The execution continues
until it reaches the last circle, which is an end event. After the execution of this end event, the
plan is terminated by sending some notifications to other or external partners in the process.
This simple workflow uses BPMN modelling notation as a modeling language.

2.2.1 Challenges addressed by OASIS TOSCA

Three primary challenges can be addressed by using TOSCA-based applications: (1) Auto-
mated management (2) Portability of applications and (3) Interoperability and reusability of
application components[5]. In the following sections, each of these three characteristics are
discussed in detail.

Automated management: defines the capability of management plans, which can be exe-
cuted fully automated, to improve the self-service15 management and elasticity of cloud-based
applications whenever provisioning or deprovisioning is happened. The portability of the man-
agement plans between various environments is another aspect. Workflow languages, such as
BPMN or BPEL, are used to implement management plans (see Section 2.3.1)[5].

Portability of applications: the term vendor lock-in refers to the fact that moving an ap-
plication from one cloud provider to another cloud provider is too expensive and impossible
for customers. In order to reduce the vendor lock-in problem, portability of applications in
cloud infrastructures is essential. Each component in TOSCA-based applications defines its
functionality as well as management in a portable way. Consequently, having portable appli-
cations with TOSCA is another considerable benefit of using this standard[5].

Interoperability and reusability of application components:
TOSCA achieves reusability and interoperability of applications by defining application compo-
nents in a self-contained and reusable manner. These components can be defined, packaged
and combined in order to provide composite applications. The following section provides a
short overview about packaging the TOSCA-based applications[5].

2.2.2 TOSCA packaging

In TOSCA, topologies as well as management plans together with all other resources that are
needed for deploying or managing the relevant cloud-based application, such as XML schemes,
scripts, etc., are packaged into TOSCA archive, so-called Cloud Service ARchive (CSAR)
(OASIS, 2013, Sect. 16)16. All components of a composite application are packaged into one
single archive and can be considered as the only installable file which should be deployed and
executed on a TOSCA run-time environment, such as OpenTOSCA. OpenTOSCA, which is
an open source ecosystem for OASIS TOSCA, is discussed as follows.

14https://www.simple-talk.com/sql/database-administration/sql-server-endpoints-soup-to-nuts/
15It means that a customer can instantiate, manage and terminate his application instances himself
16http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
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2.2.3 OpenTOSCA

OpenTOSCA17 is an open source environment for TOSCA-based applications which has been
developed at the University of Stuttgart18. OpenTOSCA is an environment for running and
installing the TOSCA packaging format, i.e. CSAR. The OpenTOSCA environment consists
of three main elements as follows[47]:

1. OpenTOSCA container: an open source TOSCA run-time environment

2. Winery19: a graphical web-based environment for modeling the topologies of TOSCA-
based applications

3. Vinothek[6]: a portal for end users to deploy and instantiate CSARs easily

Figure 2.3: Ecosystem structures and relations[48]

Figure 2.3 illustrates the relationship between these three elements inside the OpenTOSCA
environment. Developers can use the Winery tool to model TOSCA-based applications, and
then export the whole application as a CSAR package. A CSAR file which contains all com-
ponents of an application can be deployed and executed in OpenTOSCA container. End users
and the administrator can access the OpenTOSCA container via the Vinothek and Admin
User Interface (UI), respectively[48].

As mentioned already, the TOSCA Service Templates, which consist of application topologies
and management plans, are packaged in a CSAR file format, and then deployed on the Open-
TOSCA container for execution. Management plans are Workflow-based language (e.g. BPEL)
and require a workflow engine, such as Apache ODE or WSO2 Business Process Server20, for
running and execution. Application topoloies on the other hand, consist of various components
connecting to each other as well as the actual implementations of these components. Figure
2.4 depicts the process of deploying a CSAR file on the OpenTOSCA environment. As shown

17http://www.iaas.uni-stuttgart.de/OpenTOSCA/
18http://www.uni-stuttgart.de/home/
19https://projects.eclipse.org/projects/soa.winery
20http://wso2.com/products/business-process-server/
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in the figure, a CSAR file consists of management plans as well as various Web application
ARchive (WAR) files. The WAR files are the actual implementations of the components in-
side the topology. The user can develop a CSAR file with a modeling tool, such as Winery,
and then deploy the CSAR on the OpenTOSCA container. The container of OpenTOSCA
is responsible to deploy different resources to the appropriate locations. To clarify, it deploys
various management plans on a plan engine for running and execution. The container deploys
the WAR files on an application server (like Apache Tomcat21) for execution as well[47].

Figure 2.4: Deployment of a CSAR file

2.3 Workflows

Workflows are used in many fields of science, computing and simulations. Workflows consist
of a sequence of activities which are connected to each other. Like Database Management
Systems (DBMS), Workflow Management Systems (WfMS) are used for managing and ex-
ecuting workflows. WfMS consist of several workflow engines which can be used for process
deployment and execution. The following section illustrates some basic concepts in WfMS.
In general, WfMS consist of two primary environments: (1) Build-time environment and (2)
Run-time environment[14]. Figure 2.5 illustrates the major building blocks of WfMS.

21http://tomcat.apache.org/
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Figure 2.5: Major building blocks of WfMS[14]

WfMS consist of the build-time environment for building or designing the workflows by using
some modelling tools. The run-time environment on the other hand, is used for executing
the workflows. The workflow database, which is shown in Figure 2.5, is a repository which
is shared between the build-time and the run-time environments. This database is used to
store and manage all the workflows during the design and implementation phases. After mod-
eling the workflows inside the build-time environment, they can be imported, i.e. deployed,
to the run-time environment for execution. After deployment, execution is started. The user
can communicate with the WfMS directly or indirectly with the help of some graphical-based
applications and tools[14].

The OASIS TOSCA standard uses workflow languages, such as BPMN or BPEL, to define
management plans of composite applications. Workflows have some properties which provide
portability in cloud-based applications as well as fully automated execution of management
plans. TOSCA uses BPMN and BPEL as workflow languages. After modeling the workflows,
they need to be deployed and executed on a workflow engine such as Apache ODE engine
(see Section 2.6.3)[14]. The subsequent section provides a concise review about the BPEL
language in the Service-Oriented Architecture (SOA)22 paradigm.

22http://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
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2.3.1 Web Services Business Process Execution Language (WS-BPEL)

Different web services can be integrated or composed with each other in order to develop a
composite web service. Integrating different web services needs orchestration[14]. It is an
important concept in SOA. The term orchestration for web services refers to coordinating
and integrating several web services and the order in which their service operations are invoked
as a single web service. One of the most common standard for defining the orchestration

of web services is BPEL[1].

BPEL is the standard which was born with the combination of a XML-based language for
defining business (XLANG)23 and Web Services Flow Language (WSFL)24 technology. This
XML-based language is an OASIS standard. WS-BPEL (or BPEL) is a language for orches-
trating web services. BPEL standard uses the WSDL definitions of web services in order to
coordinate and define relationships between various web services[46]. The subsequent section
discusses a brief overview of the BPEL process layout.

2.3.2 WS-BPEL Layout

Previously mentioned, BPEL is a XML-based language which consists of several sub elements.
As Listing 2.4 illustrates, a BPEL definition file starts with a <process> tag which is the
main activity and encapsulates all other elements and activities[1].

1 <?xml version="1.0"?>

2 <process name="NCName" ...>

3 ...

4 <partnerLinks>? ... </partnerLinks>

5 <messageExchanges>? ... </messageExchanges>

6 <variables>? ... </variables>

7 <correlationSets>? ... </correlationSets>

8

9 <faultHandlers>? ... </faultHandlers>

10 <eventHandlers>? ... </eventHandlers>

11

12 <!-- main activity -->

13 </process>

Listing 2.4: BPEL process syntax[22]

All service-based partners, which are going to communicate with the present BPEL process,
can be defined inside the BPEL process with the <partnerLinks> tag. This node refers to
the WSDL description of the web services. Global and local variables are declared inside the
<variables> node. Multiple instances of a BPEL process can be instantiated and executed
simultaneously. The <correlationSets> define a set of properties which are unique in each
instance of a BPEL process. Theses properties can be used to select the correct instance
during communication. In other words, by having the <correlationSets> element inside a
BPEL process, instances do not need to have artificial Identity (ID)[1].

23https://msdn.microsoft.com/en-us/library/aa577463.aspx
24http://www.service-architecture.com/articles/web-services/web_services_flow_language_wsfl.html
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Like all programming languages, BPEL language has capabilities to handle faults, exceptions
and events during the execution of a process. BPEL achieves this goal by using <faultHandlers>

and <eventHandlers> nodes. In the main activity part, BPEL provides several basic as well
as structured activities, such as <invoke>, <receive>, <reply>, <assign>, <flow>, <if>,
<scope>, <sequence>, <wait>, etc. The users use the <invoke> activity to specify the op-
erations they want to invoke for a specific service. With the <receive> element, users can
define the partner link from which to receive information as well as the specific port type and
operation related to the partner link which they should invoke. The <reply> element enables
users to respond a message after receiving it with the <receive> activity. If there exist two
or more requests to the same operation which are sent from one process to another process,
<messageExchanges> node can be used to make distinction between multiple receives/replies
activities. The <assign> element is used in order to manipulate data, such as copying the
value of one variable to another variable. With a <flow> activity, users can define one or
more activities to be performed concurrently. The <if> element is used to specify conditional
behavior for specific activities. The <scope> activity enables users to define a set of child ac-
tivities with their local variables, fault and event handlers and correlation sets. The activities
inside the <sequence> element are performed in a sequential order. The BPEL process can
wait for a certain period of time or until a time limit has been reached with the help of a
<wait> activity[1].

2.4 Simulation Applications

Simulation play a significant role in many aspects of science. By running simulation, scientists
can create models in order to virtually evaluate and test important aspects of the real world.
Therefore, developing simulation applications is one of the biggest challenging topics in IT
world over the last decades. Simulation applications consist of complicated procedures for their
calculations. These applications provide less expensive repeatable and easy ways to represent
and test the complex behaviour of a system in real world. Most of the simulation applications
are based on workflows. As a consequence, workflow technology plays an important role in
developing simulation applications[28]. An example of a simulation workflow is provided as
follows.

2.4.1 Simulation workflow for structure changes within a human bone

Recent researches have shown that the structure of a human bone is changing over the time.
The load caused on human bones according to daily activities of the relevant person as well as
mechanical activities during sports are the main reasons of structure changing within a human
bone. In other words, mechanical and biochemical reasons can be considered as the main
logic in human bone changing processes. Mechanical aspects, such as sport loads and daily
activities can affect dynamics in bone cells as well as tissue properties. Besides mechanical
reasons, biochemical changes in human body have influences on structure changing within a
human bone, as they may contribute to the mass exchange between different solids and fluids
within the bone tissue[29].

The simulation of structure changes within a human bone plays an investigating role of the
healing process after bone fractures. The simulation can be divided into two parts: (1) the
bio-mechanical simulation which simulates mass movements between porous media and the
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liquids contained therein at the level of the bone tissue and (2) the systems-biological sim-
ulation that determines tissue formation processes at the cellular level. The bio-mechanical
simulation is sub-divided into a mechanical and a chemical part. For the bio-mechanical sim-
ulation, the PANDAS framework is used and the systems-biological simulation is performed
by the computing environment GNU Octave25. GNU Octave is an open source version of
MATLAB26. Running bone simulation with MATLAB or other simulation software could be
challenging and complicated. Therefore, the PANDAS bone simulation software is only used
in the scope of this master’s thesis for simulating the structure changes within a human bone.
On the other hand, as PANDAS bone simulation software is not available in the cloud so far,
the main goal of this thesis which is mapping PANDAS into cloud is obvious.

The PANDAS bone simulation software is a framework which calculates simulations on the
tissue level within a human bone. PANDAS is based on the Finite Element Method (FEM)27.
First, it calculates changes in the structure of a human bone for one FEM element. Then, it
combines all FEM elements. Previously mentioned, PANDAS is used for the bio-mechanical
simulation which consists of mechanical and a chemical parts. Therefore, PANDAS simu-
lates two different instances for mechanical and chemical bone structures in the scope of this
master’s thesis. Figure 2.6 shows the high-level workflow of a PANDAS bone simulation soft-
ware. This workflow starts with the Data provisioning step. This step provides huge and
heterogeneous data sources which are required for PANDAS simulation. Then, the workflow
continues to the second high-level step, which is PANDAS calculation. In other words, the
PANDAS instances (two instances in this work) are simulated in this step. Evaluation of the
simulation results can be performed more accurately by visualizing the PANDAS outputs. As
a consequence, the results may be transformed to an appropriate format for a visualization
software. Therefore, the next step of this workflow is transforming the results of calculation.
Following that, the results are visualized in order to facilitate the interpretation of the simu-
lation outcome. After visualization, the workflow and the actual calculation is completed[17].

Figure 2.6: PANDAS simulation workflow, cf.[17]

Figure 2.7 depicts the main activities, input and output data required for the PANDAS bone
simulation software. The workflow consists of three phases: (1) preprocessing phase, (2) solving
phase and (3) post-processing phase. The workflow is started by receiving a message and
continues until it reaches the end event. The preprocessing phase starts by preparing basic data
sources from various databases or file systems about the bone which needs to be simulated.
As input parameters, PANDAS needs various and heterogeneous data sources. It requires a
text-based geometrical bone shape, XML-based material parameters, CSV-based boundary
conditions (e.g. time-dependant pressures on the upper joint of the bone which originate
from outside) and FEM parameters (e.g. some parameters for the basic functions such as
interpolation functions) which come from SQL databases. Interpolation functions are also
known as shape functions or blending functions[30]. As Figure 2.7 depicts, all these various

25http://www.gnu.org/software/octave/
26http://de.mathworks.com/products/matlab/
27http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html
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data sources should be transformed into text-based data files in order to be handled by
PANDAS instances[17].

Figure 2.7: Workflow for bone remodeling simulation[17]

The solving phase starts the actual simulation of PANDAS. The workflow uses the input data
sources, which were prepared in the preprocessing phase, in order to create the intermediate
as well as the final results of the simulation. These input data sources are used to create and
solve some matrix equations. To put it another way, a FEM grid which is necessary to set up
the matrix equations is created for each time step ti. Millions of mesh points are existed in a
FEM grid. After the time step tn, the solving phase is completed. Following that, the interme-
diate and the final results are stored in some CSV files. These CSV files are then transformed
into another file format in the post-processing phase, which is suitable for the visualization
tools. To facilitate the interpretation of the simulation outcome, the results of the simulation
can be visualized with some visualization tools. Therefore, the text-based unknown variables
are transformed into the formats which are appropriate for the visualization tool. All these
procedures for data provisioning and data transformations provide complexities for simulation
workflows[16].

In conclusion, as Figure 2.7 illustrated, the simulation workflow for structure changes within a
human bone consists of huge and heterogeneous data sources, such as databases, CSV files,
text documents, etc., for running the actual simulation. Most of the data management and
data provisioning activities, which are done manually, cause a high error rate. As the result,
a generic way to access different data sources decreases this error rate, and removes the
burden from the scientists and engineers to define the low-level details of data sources[16].
The subsequent sections provides an overview about data management and data provisioning
processes in simulation applications as well as a generic framework, so-called SIMPL, to access
different kinds of data sources.
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2.4.2 Data management and data provisioning in simulation applications

As it can be seen in the example workflow depicted in Figure 2.7, simulation applications deal
with heterogeneous, distributed and huge amount of data sources as input parameters for
their calculation, as well as huge output data sources which they produce as the results. Data
management and data provisioning in simulation applications is one of the most challenging
topics these days. In general, the primary data management activities are Extract, Transform
and Load (ETL). ETL refers to extracting data from homogeneous or heterogeneous data
sources, transforming the data into an appropriate format or structure for querying and ana-
lyzing processes and finally loading the data into final target systems[8].

Workflow technology can be considered as one of the primary technologies which are used
for managing heterogeneous data formats in simulation applications. Most of the WfMS
suffer from inadequate approaches for managing and provisioning huge and heterogeneous
data sources. Scientists have to spend lots of time and effort in order to provide appropriate
input data formats needed for simulation applications. By having a generic platform for data
provisioning and deprovisioning of simulation applications, scientists and engineers do not need
to define concrete details of data formats and operations of data provisioning for simulation
applications. The following section discusses a generic framework, so-called SIMPL, for data
management and data provisioning in simulation fields[16].

2.5 SIMPL framework

The subsequent sections are based on [16] and [17]. The SIMPL framework was a collabo-
ration between the Institute of Parallel and Distributed Systems (IPVS)28 and the Institute
of Architecture of Application Systems (IAAS)29 at the University of Stuttgart. SIMPL is
the framework which compensates the shortage of abstract and generic data management
mechanisms in workflow technologies. It extends the BPEL workflow language, by introduc-
ing some additional DM activities and DM patterns. In this work as mentioned already, the
SIMPL framework is used for data provisioning and data management of PANDAS instances.
Figure 2.8 shows the SIMPL framework as an extension of a scientific WfMS. The SIMPL core
embedded in the Service Bus, provides a unified interface to access huge, heterogeneous and
distributed data sources. The Workflow Execution Environment is extended by the SIMPL
framework for additional DM activities. For using these DM activities during the development
phase, the Workflow Design Tool is extended as well.

28http://www.ipvs.uni-stuttgart.de/index1.html
29http://www.iaas.uni-stuttgart.de/

21



2. Background

Figure 2.8: Structure of the SIMPL framework embedded in a SWfMS[17]

The current prototype of SIMPL is based on BPEL as the workflow language, Eclipse BPEL
Designer30 version 0.8.0 (see Section 2.6.1) as the workflow designer or modeling tool and
Apache ODE version 1.3.5 which is discussed in Section 2.6.3 as the workflow engine. Figure
2.9 depicts the Graphical User Interface (GUI) of the extended Eclipse BPEL Designer. Besides
DM activities, the SIMPL framework offers some DM patterns which ease the design of data
provisioning tasks required in simulation workflows. Workflows can be implemented with a
pattern-based approach. Appropriate DM activities and DM patterns can be selected from the
plug-ins as shown in Figure 2.9. Each pattern abstracts away several low-level workflow steps
which hide all the complexities from the scientists. The abstract patterns which are combined
in the workflow can be transformed, so-called Rule-based Pattern Transformation, to an exe-
cutable workflow during both workflow design and execution. As shown in Figure 2.8, SIMPL
uses a Rule-based Pattern Transformer component for this transformation. This component
uses the Simulation Artifact Registry component for providing appropriate information, which
are required for this transformation. Inside the GUI of the extended Eclipse BPEL Designer as
shown in Figure 2.9, the abstract patterns are transformed to an executable workflow via the
pattern transformation buttons[17].

30https://eclipse.org/bpel/
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Figure 2.9: User Interface of extended Eclipse BPEL Designer - SIMPL framework

In this master’s thesis, only DM activities are used in DataProvisioning and DataDeprovision-
ing workflows, which are discussed in Sections 4.2.3 and 4.2.5. In other words, DM patterns
are not used in this master’s thesis. For this purpose, the discussion in the following section
is based on the detailed information related to SIMPL-based DM activities.

2.5.1 SIMPL Data Management Activities

There are four different types of DM activities: (1) TransferData activity, (2) IssueCommand
activity, (3) RetrieveData activity and (4) WriteDataBack activity. The SIMPL core, which is
shown in Figure 2.8, is called by each of these DM activities. In other words, these activities
send the appropriate DM operations to the SIMPL core in order to provide a generic access
for heterogeneous and huge data sources[16]. These DM activities are discussed deliberately
as follows.

TransferData activity can be used for transferring data from one location to another location.
This activity consists of two input parameters for defining a source and a target. To illustrate,
in different variants of the DataProvisioning plans of PANDAS bone simulation software, this
activity transfers some distributed and heterogeneous data from a Windows server instance
to a Linux-VM. This activity sends the DM functions to the SIMPL core, and waits until
receiving a notification for the successful execution of the functions. In case of failure, the
fault handling process is executed[16].

IssueCommand activity is another DM activity which may be used to manipulate data. This
activity contains a data source reference as well as a data management command as input pa-
rameters, e.g. a SQL statement or a shell command to access files. By execution, the command
is executed on the appropriate data source. The workflow engine then sends a notification of
success. Similarly in case of failure, the engine can enable the fault handling process for re-
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covery[16]. For example, in different variants of the DataProvisioning workflows of PANDAS
bone simulation software, this activity is used several times for creating some sub-folders in
the root folder of the relevant PANDAS software instance.

RetrieveData activity has two input parameters: (1) a data management command for retriev-
ing the appropriate data sources and (2) a data set variable. This activity provides data related
to the data management command, and stores the result into the data set variable within
the workflow context. For instance, the data management command can be a SQL SELECT

statement which retrieves appropriate data from a database. After the successful execution
of this activity, the workflow engine is notified and the execution is continued to the next
activities. In case of failure, the engine can enable the fault handling process similar to other
above-mentioned data management activities[16].

WriteDataBack activity stores data from data variable within the workflow context to an ex-
ternal target data container. The workflow engine then notifies the success of the process and
the execution is continued to the next step. In case of failure, the fault handling is enabled to
recover the failure[16].

In the SIMPL framework, data source and data container terms are used frequently. The
term data source is used for a system which can store and manage data. The commands
that are embedded in DM activities are issued to the data sources and then executed
by them. Data source reference variable is a variable which refers to a data source

from within a workflow. A data source can manage different data containers. Each
data container is used for a collection of data such as a table in a database system or
a file in a file system. Data container reference variable is a variable which refers to
a data container. There are different options in the SIMPL framework for choosing the
types of Data source reference variables. There are different concrete data sources, such
as Windows Local, Unix Local, PostgreSQL, etc., which Data source reference vari-
ables can refer to. Based on theses Data source reference variables which are used in
the workflow, a SSH31 connection for example, only when the data sources are remote file
systems, is established to connect different file systems. The current implementation of the
SIMPL web service contains some operations which enable users to add, delete or update dif-
ferent types of Data source reference variables, Data container reference variables,
etc.[16].

2.5.2 Components of SIMPL run-time environment

The current implementation of the SIMPL framework consists of various components as
follows:

• JDK32, but an original Oracle JDK Version 1.6 (not openJDK for example)

• Apache ActiveMQ version equal or greater than 5.3.2 (standalone application)

• Apache Tomcat version 7.0

• Apache Axis2 version equal or greater than 1.5 (deployed inside Tomcat)

• MySQL Community Server33 (standalone)

31http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/slogin.1?query=ssh&sec=1
32http://www.oracle.com/technetwork/java/javase/downloads/index.html
33https://dev.mysql.com/downloads/mysql/
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• PostgreSQL34 version 9.2 (standalone)

.
Furthermore, the following WARs or libraries are required to be deployed on Apache Tomcat:

• Orchestration Director Engine-Pluggable Framework (ODE-PGF): connected to Ac-
tiveMQ and to the MySQL database for communicating and storing auditing information

• Fragmento: connected to a PostgreSQL database for storing the workflow fragments

• The ZIP archive containing the plug-ins of the SIMPL framework

Figure 2.10 depicts the existing components in the SIMPL framework and how these com-
ponents interact with each other. As shown in the figure, the Apache Tomcat application
server is considered as a run-time environment of the workflow middle-ware components. This
includes (1) an advanced workflow engine, so-called ODE-PGF, (2) a repository for process-
ing the workflow fragments, so-called Fragmento, (3) an Apache Axis2 engine and (4) some
other ZIP archives containing the plug-ins of the SIMPL framework. These ZIP archives only
need to be unzipped into the root folder of the Apache Tomcat server. It was designed to
directly work with the ODE-PGF engine (tight integration and no communication channel
is required). Furthermore, Tomcat is connected to another PostgreSQL database in order to
store the meta-data of SIMPL (simulation artifact registry).

Figure 2.10: Components of SIMPL prototype

The Auditing application is a Java stand-alone application which is implemented with a con-
nection to a MySQL database for logging and storing the events of the workflow engine. It
monitors all process instances which are created and started.

34http://www.postgresql.org/
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The Apache ActiveMQ35 is the most common messaging server. The SIMPL framework is de-
signed in a way that components are loosely coupled. In consequence, the components can be
connected to each other by sending and receiving messages via a messaging server like Apache
ActiveMQ. Actually, SIMPL does not use the Apache ActiveMQ so far. Apache ActiveMQ is
only used for other components in the overall architecture of the SIMPL framework that are
not directly relevant to SIMPL.

Apache ODE-PGF[31], was implemented as part of a thesis and extends Apache ODE engine
v1.3.5. This extension makes the events of the ODE engine visible to the users. For example,
there are events that occur during deployment or execution of process instances and activities.
It uses Apache ActiveMQ in order to publish the events during deployment and execution of
process instances.

The Fragmento (Fragment-Oriented) repository was developed at IAAS institute at the Uni-
versity of Stuttgart. Business process management is an integral part in process-based applica-
tions. Each business process contains of several reusable process fragments. Process fragments
can be extracted from a business process and then stored in a Fragmento repository. The ap-
propriate fragments can be retrieved and reused in another business process[32]. Figure 2.11
depicts the concepts of extracting and retrieving fragments of a business process. In SIMPL,
it is connected to the PostgreSQL database of the SIMPL framework for storing the workflow
fragments. These fragments can be used later in other workflows inside the SIMPL framework.

Figure 2.11: Concept of Fargmento[32]

35http://activemq.apache.org/
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2.6 Technologies

This section discusses all necessary technologies and tools which realize the concepts in all
chapters of this master’s thesis. The work which is designed and implemented in this thesis is
mainly based on these technologies and tools.

2.6.1 Eclipse BPEL Designer

Eclipse BPEL Designer[33] was created by IBM and Oracle in May 2005. It is an extension
to Eclipse36 in order to support defining, editing, deploying and testing BPEL processes. The
author categorizes the primary features of Eclipse BPEL Designer as follows:

• Designer: a Graphical Editing Framework (GEF)-based37editor which provides a graph-
ical means to design the BPEL processes

• Model: an Eclipse Modeling Framework (EMF)38 model that represents the designed
BPEL process in an internal data format

• Validation: a validator which operates on the EMF model and produces errors and
warnings in case of faulty specifications

• Run-time framework: an extensible framework which allows to deploy and execute the
BPEL processes on a BPEL engine from the tools

• Debug: a framework which allows the user to step through the execution of a process,
including support for breakpoints

2.6.2 SoapUI

SoapUI[34] is an open source platform for testing web services. It should be noted that work-
ing with SoapUI is simple because of its user friendly GUI. By creating a project in SoapUI
and importing the WSDL files of the web services, SOAP request and response messages to
different operations of a web service can be easily examined. SoapUI provides complete test
coverage for SOAP-based web services[49] as well as REST-based web services[35]. Figure
2.12 shows the GUI of the SoapUI tool.

36https://eclipse.org/
37https://eclipse.org/gef/
38http://www.eclipse.org/modeling/emf/
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Figure 2.12: User Interface of SoapUI

In Figure 2.12 the functionality of a web service, so-called GeoIPService39, is tested with
SoapUI. This web service enables users to easily look up countries by IP address. In the SOAP
request pallet, the IP address of 2.160.0.1 is sent to the web service operation. The SOAP
response window shows the result of calling this function. As shown in the figure, this IP
address belongs to Germany.

2.6.3 Apache Orchestration Director Engine (ODE)

Apache ODE40 server executes and orchestrates business processes or workflows which are im-
plemented with WS-BPEL standards (see Section 2.3.1). This engine talks to the web services
inside the BPEL process, sends and receives messages and handles errors and exceptions. At
the time of writing this thesis, the latest version of Apache ODE server is version 1.3.6.

2.6.4 Apache Tomcat

Apache Tomcat41 is an open source server for running Java Servlets42 and JavaServer pages43.
It is released under the Apache License version 244. The current version of Apache Tomcat
is Tomcat 8.0.24. Apache Tomcat can be used as a container for deploying Java-based web
services. Java-based web services are packaged in a WAR file format and then can be deployed
on the Apache Tomcat server. In other words, a WAR is a web archive that can be deployed
to any Java Enterprise Edition (EE) application server.

39http://www.webservicex.net/ws/WSDetails.aspx?WSID=64
40http://ode.apache.org/index.html
41http://tomcat.apache.org/
42http://www.oracle.com/technetwork/java/index-jsp-135475.html
43http://www.oracle.com/technetwork/java/javaee/jsp/index.html
44http://www.apache.org/licenses/
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2.6.5 Apache Axis

Apache Axis45, and the the second generation of that, so-called Apache Axis2, are two well-
known containers for web services. These two containers enable users to create, deploy, test
and run web services. Apache Axis2 was implemented in both Java and C languages. Web
services are packaged in Axis ARchive (AAR) file format and then can be deployed on the
Apache Axis server. In other words, an AAR is a specific Axis2 artifact that can be deployed
in an application server where there exists Axis2 standard web application, which is deployed
already. This archive file contains all the implementations of a web service and corresponding
configuration files. A good developer decides to build loosely coupled systems using services
as a smallest piece of functionality. Therefore, it simplifies the development, provides the ca-
pability to develop web services in parallel, simplifies the testing, etc. In this case, it is more
efficient to use a lightweight approach as Axis Archives instead of developing all these services
as separate applications (separate WARs)[36].

2.6.6 Tools/Technologies chain diagram

Figure 2.13 illustrates how tools and technologies mentioned in Section 2.6 are related and
work with each other. BPEL plans which orchestrate web services can be designed and im-
plemented in the Eclipse BPEL Designer environment. Apache ODE engine which is deployed
inside Tomcat is used for deploying BPEL workflows. After deployment of these workflows,
these plans are considered as web services and can be started and tested with the SoapUI
tool. Previously mentioned, Apache Axis2 is another engine for deploying web services. This
engine can be installed and deployed inside the Apache Tomcat server. The functionality of
each web service, which is deployed on the Apache Axis2 engine, can be tested with SoapUI.
In other words, the SOAP messages and related input and output parameters, which are sent
to and received from web services can be tested easily by the SoapUI tool.

45http://axis.apache.org/
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Figure 2.13: Relation between tools and technologies
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Chapter 3

Related Work

This chapter discusses related work in the area of moving legacy applications into cloud en-
vironments. The main goal of this master’s thesis is bringing a PANDAS bone simulation
software to cloud infrastructures and deploy it as a SaaS solution. Running legacy simula-
tion applications in cloud infrastructures can be evaluated from various aspects: (1) running
simulation calculations in the cloud, (2) provisioning simulation software as well as other com-
ponents and resources and (3) data provisioning for cloud-based simulation applications. In
other words, these three aspects are specifically important with respect to the goals of this
master’s thesis which were discussed in Chapter 1. By discussing similar work related to these
three aspects, the concepts of design and implementing the PANDAS bone simulation software
as a SaaS solution in the cloud can be elicited. Section 3.1 discusses two simulation software,
which are running in the cloud and may thus be used, in order that simulation calculations
may benefit from the characteristics of cloud infrastructures. Then, an overview of various
approaches for automating the deployment and management of simulation software in cloud
infrastructures is given in Section 3.2. Section 3.3 specifies some related approaches for data
provisioning and data management in cloud environment.

3.1 Running simulation calculations in the cloud

Running simulations in cloud infrastructures is one of the most important areas in cloud com-
puting. There is a noticeable trend to move simulation calculations into cloud infrastructures.
Simulation applications hosted on a cloud environment have many advantages compared to
traditional and on-premise solutions as listed below [37]:

• Faster: In general, running simulation calculations needs massive processing power. By
using powerful virtual infrastructures in cloud environments, cloud-based simulation
software can run their actual calculations faster.

• Better design: Simulation is an iterative procedure and may have parallel and distributed
processing. In other words, parallel simulation refers to the execution of a discrete
simulation software across multiple processors. Cloud infrastructures enable scientists
to have parallel and distributed processing for designing their applications and services
more efficiently. Scientists may design simulation software better by running multiple
simulations at the same time. Therefore, cloud infrastructures eliminate the need to
purchase, operate and maintain computing resources at the local site for parallel and
distributed simulations.
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• Cheaper: Simulation software are overpriced. Moving simulation software to cloud in-
frastructures frees scientists to buy their own software and licenses. They can access
different software in cloud environments, and then pay only for the amounts which they
used (pay per use feature).

• Better collaboration: Some simulation software collaborate with each other in order to
generate better calculations and results. Moving applications to cloud infrastructures
provides possibilities for applications to collaborate easily over the Internet.

• Ubiquitous simulations: Simulation software can be accessed from all locations through
the Internet.

With respect to the above-mentioned criteria in cloud environments, it is important to discuss
these reasons for moving bone simulation software into the cloud. Most of the bone simula-
tion software require lots of computational resources and dependant on a High-Performance
Computing (HPC)1 system. Accordingly, they need massive processing power in general. By
using powerful virtual infrastructures in cloud environments, bone simulation software can
execute their simulations faster and with better performance as well. It is not required to
set up costly infrastructures and buy simulation software and licenses. Users of bone simu-
lation software have to pay only for the amount which they used [Faster and Cheaper criteria].

Most of the simulation software need parallel and distributed processing. By running simula-
tions in parallel and maybe on distributed nodes, the overall simulation time can be decreased
and the performance and productivity can be increased. Cloud infrastructures enable scientists
to have parallel and distributed processing for designing their applications and services. For
example, a situation where the PANDAS simulation software is executed for multiple motion
sequences in parallel. Motion sequences in the PANDAS bone simulation software refer to the
boundary conditions, e.g. sleeping or standing. These boundary conditions define the state
of a bone, which needs to be simulated. In the scope of this master’s thesis, the PANDAS
simulation software is executed for only one motion sequence at each execution. But, in the
situation where the PANDAS simulation software is executed for multiple motion sequences
in parallel, cloud infrastructures are beneficial for running multiple simulations at the same
time [Better design criterion].

The PANDAS bone simulation software can be coupled with other simulation software, such
as GNU Octave. The PANDAS bone simulation software is responsible for simulation on the
tissue level. PANDAS calculates the structure changes within a human bone for one FEM
element and then combines all the FEM elements within a loop activity. The simulation for
the structure changes within a human bone can also be done on the cell level. For this pur-
pose, the GNU Octave can be used. For visualizing the results of the PANDAS simulation,
it can collaborate with some visualization tools at the end of simulation[18]. Consequently,
the PANDAS bone simulation software may have collaboration with other software in order
to generate better calculations and results. On cloud environments, cloud-based applications
can communicate and collaborate easily with each other over the Internet. Therefore, moving
the bone simulation software, especially PANDAS bone simulation software, into cloud envi-
ronments enables the related cloud-based software to collaborate easily and efficiently [Better
collaboration criterion]. Furthermore, these simulation software can be accessed from all lo-
cations through the Internet [Ubiquitous simulations criterion].

1http://searchenterpriselinux.techtarget.com/definition/high-performance-computing
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Above-mentioned challenges are true for other simulation software as well. These criteria de-
rive scientists and engineers to move their traditional and on-premise simulation calculations
into cloud infrastructures in order to benefit from significant advantages of cloud environ-
ments. Many simulation software, such as MATLAB, were moved into the cloud for better
performance. For instance, cloud-based MATLAB speeds up processing by accessing powerful
computing resources on Amazon Elastic Compute Cloud (EC2)2 or other cloud providers.

COMSOL Multiphysics3 is another simulation software which has been moved into cloud en-
vironments. COMSOL is the Platform for Physics-based modeling and simulation. In other
words, this software is a general purpose platform which is based on advanced numerical
methods for simulating problems that may combine multiple physics. Similar to MATLAB,
COMSOL requires HPC power for running its simulations. Therefore, scientists have moved
this platform into cloud infrastructures. By running COMSOL on the Amazon EC2, users can
benefit from virtual computing resources at very low and economical prices[38].

In general, it is possible to run the bone simulation with another cloud-based software, such
as MATLAB or COMSOL. But the implementation of the numerical calculation of the bone
simulation is very sophisticated, and to some part even domain- or problem-specific. Conse-
quently, other software, such as MATLAB or COMSOL, do not provide this implementation
so far. Accordingly, it is required to re-implement all or at least much of the numerical cal-
culation within other software. To clarify, some complex MATLAB scripts is necessary, in the
case of using MATLAB for bone simulation. Furthermore, this would have similar impacts
on the data provisioning, since other software might also need different formats for the input
data sources. As a result, moving the numerical calculation and all other related parts of the
simulation process (especially data provisioning) to another software, such as MATLAB, is a
more complex task than just bringing the PANDAS bone simulation software into the cloud.
For this purpose, in order to provide bone simulation in cloud environments, the PANDAS
bone simulation software is moved into cloud in the scope of this master’s thesis.

3.2 Software provisioning in the cloud

In contrast to MATLAB and COMSOL applications, which are generic simulation platforms
used by millions of engineers and scientists worldwide and which are thus already available
in the cloud, the PANDAS bone simulation software is a specific purpose tool which has a
limited number of users. A large number of automated and efficient approaches for software
provisioning and management in cloud infrastructures were invented for standard and general
purpose software like MATLAB. PANDAS can be used in some fields of engineering, e.g. in
soil and rock mechanics or foam and tissue engineering. In other words, the usage of the
PANDAS bone simulation software is restricted to a few number of fields. Therefore, this
simulation tool has limited number of users in contrast to the general purpose software like
Matlab[39]. To the extent of our knowledge, there does not exist a solution so far which
automatically deploy and manage the proprietary legacy software PANDAS. Consequently, in
the scope of this master’s thesis, an automated approach for software provisioning as well as
data provisioning for the PANDAS bone simulation platform is provided by using the OASIS

2http://aws.amazon.com/de/ec2/
3http://www.comsol.com/comsol-multiphysics
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TOSCA standard and the SIMPL framework. MATLAB and COMSOL software do not use
the OASIS TOSCA standard in order to automate the deployment and management of their
components in cloud environments. But, with the high productivity of the TOSCA standard,
which is discussed in the following, the PANDAS bone simulation software uses the TOSCA
standard for its software provisioning in the cloud.

As Figure 3.1 illustrates, many approaches have been developed and implemented to sim-
plify the automatic deployment and configuration of virtual infrastructures. All the developed
approaches can be evaluated from six different points of view, which are required for the
deployment and management of virtual infrastructures in cloud environments. These criteria
are as follows[7]:

1. The capability of customizing virtual infrastructures at the run-time by installing and
configuring all the required software [VMs contextualization].

2. Having a simple and easy to understand language, which can be used to define all the
hardware and software requirements specification [Simple language].

3. Restrictions such as pre-configuration of VMs [VMs pre-config.]

4. The capability of provisioning virtual infrastructures on public cloud providers (like Ama-
zon Web Services4) as well as on the on-premise resource provisioning systems, such as
OpenNebula5 [Public/private cloud]

5. Existing of the Virtual Machine Image (VMI) in the application architecture to select
the appropriate image for each VM [Catalog of VMIs].

6. Elasticity capability, both horizontal (adding/removing nodes) and vertical elasticity,
which is growing or shrinking the capacity of the existing nodes [Elasticity Mgmt]

4http://aws.amazon.com/de/
5http://opennebula.org/
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Figure 3.1: Virtual infrastructure deployment tools comparison, cf.[7]

In [12], a method to automate the installation of VMs, application components as well as
configuring and managing these components is provided. The system is called Wrangler and
consists of three components: (1) clients, (2) coordinator and (3) agents. Figure 3.2 clarifies
all these three components and their relationships.

• Clients are hosted on user’s local machines and are responsible for sending requests to
the coordinator in order to start, manage, query and terminate deployment processes.

• Coordinator is the central manager which accepts requests from clients, provisions VMs
on appropriate cloud providers and controls application deployment on the installed VMs
as well. As Figure 3.2 illustrates, all information required for these steps are stored in a
database.

• Agents run on each VM node, which are provided by the coordinator. Agents are re-
sponsible for gathering information about the nodes, such as IP addresses, deploying
appropriate software and applications on the nodes as well as sending reports to the
coordinator about the state and health of each node.
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Figure 3.2: Wrangler architecture[12]

All required deployment configurations are provided by users in a simple XML file. This XML
document consists of information, such as number of VMs, required information about cloud
providers (e.g. Amazon cloud provider), some characteristics of VMs (e.g. image type), etc.
As shown in Figure 3.2, each node has one or more plug-ins which provide the functionalities
needed to be implemented by VMs. These plug-ins can be configured and customized by users
with some related parameters. In other words, plug-ins are user-defined scripts which define
the behaviour of a node. These scripts can be invoked and executed by the agents in order
to configure and manage a node. There are different types of plug-ins, such as application
plug-ins, configuration plug-ins, data plug-ins, etc., inside the Wrangler system. Application
plug-ins are responsible for installing the software used by the application. Configuration plug-
ins apply application-specific settings, and data plug-ins download and install application
data. Listing 3.1 shows an example of a simple XML file which defines some configurations
for application deployment in the Wrangler system. This file describes four nodes (one server
and three clients), a cloud provider and other characteristics of the system[12].

1 <deployment>

2

3 <!-- Server node -->

4 <node name=server>

5 <provider name=amazon>

6 <image>ami-912837</image>

7 <instance-type>c1.xlarge</instance-type>

8 ......

9 </provider>

10 <plugin script=nfs_server.sh>

11 <param name="EXPORT">/mnt</param>

12 </plugin>
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13 </node>

14

15

16 <!-- Client nodes -->

17 <node name=client count=3 group=clients>

18 <provider name=amazon>

19 <image>ami-901873</image>

20 <instance-type>m1.small</instance-type>

21 ......

22 </provider>

23 <plugin script=nfs_client.sh>

24 <param name="SERVER">

25 <ref node="server" attribute="local-ipv4">

26 </param>

27 <param name=PATH>/mnt</param>

28 <param name=MOUNT>/nfs/data</param>

29 </plugin>

30 <depends node=server/>

31 </node>

32

33 </deployment>

Listing 3.1: XML configuration file for deployment [12]

As mentioned already in Section 2.2, users can deploy and manage various components of
composite applications in an automated way by using the OASIS TOSCA standard. TOSCA
components and topologies as well as all related management plans are packaged in a CSAR
file and executed on the OpenTOSCA environment. This package contains all the deployment
and management steps, such as installing VMs on a cloud platform, deploying components
of the application on the installed VMs, managing these components by running the TOSCA
management plans, etc.

In contrast to the OASIS TOSCA standard, which does not need any pre-configurations for
VMs, the Wrangler system requires some prior steps to configure VMs. For instance, this
concerns some configurations like installing Wrangler agents on VMs and connecting them to
the coordinator. In addition, Wrangler is only supported by EC2, Eucalyptus6 and OpenNebula
cloud providers. The TOSCA standard on the other hand, does not have any limitations in
choosing the appropriate cloud provider. For TOSCA-based applications, any type of cloud
providers (public, private, hybrid, community) can be used. Figure 3.1 depicts this criterion
for other approaches as well. In opposition to the TOSCA standard, the selection of the most
appropriate VMIs, which are based on user requirements, are necessary in the Wrangler ap-
proach. Bone simulations can be applied to different levels, such as tissue level, cell level, etc.,
within a human bone. Therefore, the situation for running a bone simulation in the cloud is
dynamic and it is more efficient to use the TOSCA standard, which does not need any VMs
pre-configurations. TOSCA also enables users to configure VMs at run-time with the help of
some simple executable files[12].

Vagrant[40] is another approach for software provisioning in cloud infrastructures. It can be

6https://www.eucalyptus.com/
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used for installing VMs on VirtualBox7, VMware Fusion8 and EC2. This approach benefits
from a multi-machine9 environment to manage a set of VMs. By using some provisioning
tools, such as shell scripts, Chef10 or Puppet11, Vagrant enables users to deploy their software
automatically on VMs. In contrast to the TOSCA standard, Vagrant provides high-level lan-
guages for contextualization of virtual infrastructures at run-time.

Like Wrangler, Vagrant approach requires pre-configurations of VMs. Vagrant is appropriate
for simple and small virtual infrastructures. Therefore, Vagrant is not an efficient approach for
moving the PANDAS bone simulation software, which is a complex and distributed software
that can be coupled with other software like MATLAB, into cloud environments.

In conclusion, as Figure 3.1 illustrated, the TOSCA standard provides the contextualization
of VMs at run-time. To clarify, the installed VMs in the TOSCA topology can be customized
during the application execution. In other words, it is not necessary to apply all the config-
uration settings for VMs during the deployment phase. TOSCA uses some executable files
to customize VMs at run-time instead of some high level languages, such as Puppet, Chef,
Ansible12, etc. Unlike other approaches as shown in Figure 3.1, TOSCA does not require
any pre-configurations for VMs. Bone simulations, in particular the PANDAS bone simula-
tion software, are highly dependant on run-time environments. It is not possible to define all
configurations and settings for these simulations before running the actual simulations. As a
matter of fact, it is important to use an approach like TOSCA, which enables users to have a
dynamic situation for managing as well as configuring virtual infrastructures. Unlike Whirr13

and CloudInit.d14 approaches, the TOSCA standard has elasticity capability. For bone simu-
lations in general, which have dynamic environments, the elasticity capability enables bone
simulation applications to benefit from virtual resources more efficiently whenever they are
demanded. Therefore, in the scope of this master’s thesis, the OASIS TOSCA standard is used
to move the PANDAS bone simulation software into cloud infrastructures. In general, OASIS
TOSCA has some features which make this standard distinct from other existing approaches.
Some of these attributes are discussed as follows[26]:

• TOSCA provides the orchestration of web services via existing workflow languages,
like BPMN or BPEL. Therefore, TOSCA benefits from the properties of workflow lan-
guages, such as portability as well as automated execution. The PANDAS bone sim-
ulation software requires portability to move easily from one cloud provider to other
cloud providers. As the bone simulation software are complex and distributed, by using
workflow technologies the deployment and management of the software components
can be automated.

• TOSCA standardizes the application typologies as well as management plans in a self-
governing way. In other words, each node inside the TOSCA topology provides some
functionalities to manage itself.

7https://www.virtualbox.org/
8http://www.vmware.com/
9Vagrant is able to define and control multiple guest machines per Vagrant file.

10https://www.chef.io/solutions/configuration-management/
11https://puppetlabs.com/
12http://www.ansible.com/home
13https://whirr.apache.org/
14http://www.nimbusproject.org/doc/cloudinitd/latest/
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• TOSCA provides a syntax to define application components, their relationships, types
and other properties as a graph. As the bone simulation software are complex and dis-
tributed, this feature helps developers to understand the components inside the TOSCA
topology better. This feature also enables developers to provide better management
operations for their components.

• TOSCA makes it possible to define various constraints on the nodes and components
in the topology with some TOSCA policies. The PANDAS bone simulation software
requires various non functional requirements, such as data security, data quality, etc.
With the help of the TOSCA policies, these non functional requirements can be defined
in a standardized way.

• TOSCA provides the ability to use virtual images as an IA inside the topology. Therefore,
there is no need to have the catalog of VMI in some other approaches. As IAs are part
of the TOSCA topology, they can be customized with some parameters and attributes
at any time.

• TOSCA enables users to define non functional behaviours of web services, such as
monitoring behaviour, by means of policies.

• TOSCA provides the dynamic and automated usage of application topology. Accordingly,
it leads to propagate critical information at an appropriate time during the application
life cycle. This feature is appropriate for dynamic situations, like running the PANDAS
bone simulation software in the cloud.

3.3 Data provisioning in the cloud

Most of the simulation applications deal with huge, distributed and heterogeneous data
sources. Therefore, having an efficient approach for provisioning and managing data sources
may lead to high performance in cloud-based applications. The standard tools for defining
and executing of ETL processes, e.g. IBM-InfoSphere Information Server15, Pentaho16 and
Talend17 put burden on scientists and engineers to define the low-level implementation details
of data sources. To clarify, for retrieving the appropriate data from the results of PANDAS
calculation, scientists have to define some complex SQL commands or scripts for filtering,
aggregating and transforming the data. Therefore, they should be expert in the fields of their
simulation applications in order to deal with these low-level details. As a matter of fact, these
ETL tools do not provide the adequate abstraction supports for data provisioning and data
management of simulation software in cloud environments. It is efficient to have more abstract
approaches for data management and data provisioning of the PANDAS bone simulation soft-
ware in the cloud. Accordingly, in the scope of this master’s thesis, the SIMPL framework
which was described in section 2.5 is used for data provisioning and deprovisioning of a PAN-
DAS bone simulation software.

The Scientific Data Management (SDM) center18 offers an end-to-end data management ap-
proach for providing data as well as analyzing and visualizing data generated by simulations
and experiments. This approach consists of powerful means for accessing data. To put it an-
other way, the SDM approach offers various algorithms, database indexes, etc., for providing

15http://www.ibm.com/software/data/integration/info_server/
16http://www.pentaho.de/
17http://de.talend.com/
18https://sdm.lbl.gov/sdmcenter/
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and analyzing huge and heterogeneous data sources. SDM focuses on analyzing data that
may be generated by simulation software as their output, but not on providing input data for
simulations in a generic way. The latter issue is exactly where the SIMPL framework comes
into play[19].

Open Grid Services Architecture – Data Access and Integration (OGSA-DAI)19 framework
provides an innovative approach for accessing and managing data resources via web services
on the web or within grids or clouds. It encapsulates huge and heterogeneous data sources
and enables users to query, update, transform and combine data. This approach frees users
to deal with low level details of the location, structure or format of data sources which are
transferred or queried. In contrast to the SIMPL framework, the abstraction provided by the
OGSA-DAI framework is one of the limitation of using this approach. In other words, the
abstraction level depends on abstractions which is supported by each web service[41]. On the
other hand, the SIMPL framework provides a unified access to heterogeneous data sources.
There exists abstract supports in the SIMPL framework with the help of DM activities and
DM patterns. In other words, SIMPL provides a generic and unified abstraction mechanism[16].

There are various scientific WfMS which support running of workflow-based applications in the
cloud. To clarify, the scientific workflow management system Pegasus20, automatically handle
all the heterogeneous input and output data sources which are required for running workflow-
based applications. In other words, it locates data sources and computational resources, which
are required for the workflow execution, automatically. Pegasus provides capabilities for users
to form and manage their abstract workflows without worrying about the details of the exe-
cution environment. Abstract workflows are workflows which contain just information about
the overall tasks, which should be done in the workflows, as well as how these tasks are inter-
connected. To put it another way, abstract workflows do not provide any information about
how input data sources are actually delivered. Furthermore, they do not provide any infor-
mation regarding the implementations of these tasks. Pegasus workflow management system
transforms abstract workflows into executable workflows. During this transformation, Pegasus
adds some data management operations for distributed and heterogeneous data sources to
the workflows. These data management operations have to be implemented by the modeler
himself. In contrast to Pegasus, SIMPL provides an abstraction level via DM pattern, which
are automatically converted to some executable workflows and frees modelers to implement
some additional data management operations.

Data management and data provisioning for heterogeneous data sources in cloud environ-
ments is a hot research topic these days. For managing heterogeneous and distributed data in
cloud environments, traditional relational databases cannot provide a high level of scalability,
availability and performance which is required for cloud-based applications. NoSQL database
systems21 overcome some restrictions and limitations of traditional relational databases. These
databases are pattern free and accept key-value pair for their storage mode. A typical NoSQL
database can be extended transparently, deployed on cheap hardware and are appropriate for
distributed storage[20]. However, this approach does not deal with data management abstrac-
tions as a generic and consolidated solution, which can be provided in the SIMPL framework.

19http://www.ogsadai.org.uk/index.php
20http://pegasus.isi.edu/
21http://nosql-database.org/
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In [11], a workflow system, which provides a multi-level abstraction for decomposing tasks
within workflows from required resources and services, is introduced. General Workflow Ex-
ecution Service (GWES) enables users to manage execution and composition of processes
within the workflows with a high level of abstraction in distributed environments, such as
SOA, Cluster, Grid, or cloud environments. GWES maps abstract workflows, which have been
constructed by users, to some concrete and executable workflows. This transformation pro-
vides adequate and available data resources for each task within workflows. When a user sends
a request for some data resources, the request is first mapped to an abstraction layer. Then,
the abstraction layer locates the appropriate candidates for the requested resource. One of
the candidates is selected and the task is mapped to the selected resource. Unlike SIMPL
which provides an abstract mechanism via DM activities and DM patterns, GWES supports
data management abstractions by providing an abstraction layer between user’s requests and
actual resources.
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Chapter 4

Mapping PANDAS into cloud

This chapter provides an overview about requirements and necessary components for moving
the PANDAS bone simulation software into cloud infrastructures. As already mentioned in the
previous chapters, the main goal of this master’s thesis is to design and implement different
variants of a TOSCA Service Template for provisioning and executing the PANDAS bone
simulation software in cloud environments. Section 4.1 discusses the concept of application
topology for the PANDAS bone simulation software in the OASIS TOSCA standard. The
management plans, which are included in a TOSCA-based Service Template for the PANDAS
bone simulation software, are designed and developed in Section 4.2. Following that, in Section
4.3 an approach for integrating the SIMPL framework with the OASIS TOSCA standard is
discussed.

4.1 PANDAS application topology

As already mentioned in the previous chapters, the main contribution of this master’s thesis is
bringing the traditional and on-premise PANDAS bone simulation software into the cloud and
turning the bone simulation into a fully integrated SaaS solution. The manual installation and
configuration of the PANDAS bone simulation software in cloud infrastructures is burdensome
and time-consuming. To automate software provisioning in the cloud for PANDAS, the OASIS
TOSCA standard, which was described in Section 2.2, is used in this work. TOSCA automates
the deployment and management of PANDAS components in arbitrary cloud infrastructures
with reduced efforts and costs. A TOSCA-based Service Template for the PANDAS bone
simulation software consists of an application topology as well as management plans. For
developing PANDAS as a SaaS solution, three VMs are provided. As Figure 4.1 depicts, a
Linux-VM is deployed on a cloud infrastructure such as OpenStack cloud provider which runs
the actual calculation of PANDAS. This VM is provisioned dynamically during the execution
of the PANDAS Service Template. The PANDAS software package and a related PostgreSQL
database for storing the results of PANDAS are installed on this VM with the help of some
management workflows. The second VM, which is a Windows-VM using the operating system
Microsoft Windows Server 2012 R2 Standard 64-bit, is deployed on the OpenStack cloud
provider. This VM consists of the SIMPL framework with the ODE-PGF engine. Furthermore,
this VM is also used for storing the results of PANDAS simulation. In other words, different
variants of the DataDeprovisioning workflow, which is discussed in Section 4.2.5, return the
result data of a PANDAS simulation back to the user and store them in some files and
directories on the Windows-VM. This VM is part of the static infrastructures, which have
been deployed already. As the figure depicts, The OpenTOSCA environment is installed on the
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third Linux-VM in the topology. This VM is used to execute the PANDAS Service Template,
which is exported from the Winery tool as a CSAR. Like the second above-mentioned VM,
this VM is part of the static infrastructures.

Figure 4.1: Cloud-based topology for PANDAS Service Template

The components of the first VM, which is provisioned dynamically by executing the PANDAS
Service Template inside the OpenTOSCA environment, can be modelled as Figure 4.2. In
other words, the developed CSAR file for the PANDAS bone simulation software is executed
inside the OpenTOSCA environment. Based on the service topology and the management
plans inside the CSAR, a new VM is installed on the OpenStack cloud provider. Then, a Linux
operating system will be hosted on the created VM. Following that as the figure shows, the
source code of the PANDAS bone simulation software and the related PostgreSQL database
is installed on the operating system. The current implementation of the PANDAS web service
installs the actual source code and the related PostgreSQL database on the same VM. As
discussed in [18], another TOSCA-based service topology for the PANDAS bone simulation
software with two VMs, one for the PANDAS software and one for the related database, can
be considered as well. In the scope of this master’s thesis, only one VM is provisioned for both
the PANDAS software and the related PostgreSQL database.
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Figure 4.2: TOSCA-based service topology for PANDAS

Regarding to the TOSCA-based service topology of the PANDAS bone simulation software,
several IAs are used in order to develop PANDAS as a SaaS solution in cloud environments.
The first IA, so-called InstallOpenStackVM, is a Java-based implementation which has been
developed already and is only used in this work. This IA contains several functions such as
InstallVMwithCustomKeypair, InstallVMwithGeneratedKeypair, InstallVMwithCustomFlavor,
etc., for installing a new VM on the OpenStack cloud provider. This IA contains a termination
function as well, which terminates VMs inside the topology. The actual implementation of
this web service can be found on GitHub1.

SSH-IA is another IA inside the PANDAS service topology. This IA enables users to cus-
tomize configurations of the installed VMs by making a SSH connection to the servers and
running some shell commands on the servers. To clarify, there are two issues in the current
implementation of the PANDAS Web Service which can be solved with this IA:

1. After each calculation of PANDAS instances, Apache Tomcat should be restarted. Oth-
erwise, the calculation might not be executed properly. For this purpose, a shell command
which restarts Tomcat is sent via the SSH-IA to the server.

2. After each calculation of PANDAS instances, the PostgreSQL database should be
restarted. The SSH-IA is used to send the related shell command, which is sudo

service postgresql restart, to the remote server.

Another IA, so-called ODE-Service IA, is designed and implemented in this master’s thesis.
Some PANDAS management plans, which are discussed completely in the subsequent sec-
tions, need to be deployed on a workflow engine, like Apache ODE-PGF, for execution. The
ODE-Service IA is a SOAP-based web service which consists of Deploy and Undeploy func-
tions for deploying and undeploying some BPEL workflows on and from an Apache ODE-PGF

1https://github.com/tosca-types/openstack
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engine, respectively.

4.2 PANDAS management plans

OASIS TOSCA management plans are XML-based workflows which provide automation for
deployment, configuration as well as management of components inside the application topol-
ogy. The TOSCA standard uses existing workflow languages, such as BPMN or BPEL. In the
scope of this master’s thesis, BPEL is used as the workflow language for modeling and ex-
ecuting TOSCA-based management plans[5]. Figure 4.3 illustrates high-level activities inside
the PANDAS management plans.

Figure 4.3: Activities inside the PANDAS management plans

As shown in Figure 4.3, a VM with a Linux operating system is installed on the OpenStack
with the help of InstallOpenStackVM IA. Then the new installed VM can be configured via
the SSH-IA. As the figure shows, the third activity in the workflow copies the PANDAS source
code on the created Linux-VM [PANDAS source]. Previously mentioned, the PANDAS bone
simulation software requires huge and heterogeneous input data sources for its calculation.
Therefore, the SIMPL framework is used in this step to provision huge and distributed data
sources [Provision data]. At the end of data provisioning phase, the PANDAS source code
and the provisioned data are compiled together [Compile PANDAS]. Then, PANDAS instances
are started [Start PANDAS]. In Run CmdFile step, some commands are sent to PANDAS in-
stances, so they can execute their cmd-files and read some input files properly. After that, the
actual calculations of instances are started [Calculate PANDAS]. Following that, PANDAS
instances are stopped simultaneously [Stop PANDAS], and the workflow continues to the next
step which is data deprovisioning [Deprovision data]. In this phase, the results of PANDAS
simulation are transferred from the Linux-VM to the Windows-VM via the SIMPL framework.
The activities inside data provisioning, calculation and data deprovisioning phases need to be
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executed on the Apache ODE-PGF engine. For this purpose, the ODE-Service IA is used to
deploy these workflows on that engine. Then, the whole workflow is terminated in termination
phase. In this phase [Terminate VM], the installed VM, which was created in the first step, is
terminated and all the workflows on the ODE-PGF engine are undeployed.

Figure 4.3 depicted high-level activities inside the management plans of the PANDAS Service
Template. In the scope of this master’s thesis, six different types of workflows as management
plans have been designed and implemented in order to fulfill all the above-mentioned activities.
These workflows are discussed in detail as follows:

1. Provisioning plan which instantiates VMs and prepares some configurations of these
VMs for installing the PANDAS software components via the next plan.

2. PANDAS software provisioning plan which sets up the necessary simulation software
components, in particular the PANDAS calculation tool and different kinds as well as
configurations of database systems that store the result data of PANDAS.

3. Different variants of management plans that provide and prepare heterogeneous input
data of the simulation in order that PANDAS can properly ingest these data.

4. A management plan that orchestrates the simulation calculation in the PANDAS bone
simulation software.

5. Different variants of management plans that return the result data of PANDAS back to
the user.

6. Termination plan which terminates the installed VMs in the first plan, and undeploys
all other software components.

As it is discussed in the subsequent sections, some of these workflows have to be designed and
implemented in multiple variants in the scope of this master’s thesis. In other words, different
variants of plan number two, three and five are designed and implemented in this work. In
the following, the middle-level design of the PANDAS management workflows are discussed
in detail.

4.2.1 Plan number one

The first workflow, so-called InfrastructureProvisioning workflow, is shown in Figure 4.4. This
plan is started by receiving a message and then continues to the first activity which is Instal-
lOpenStackVM for installing a new VM on the OpenStack cloud provider. The appropriate
operation of the InstallOpenStackVM IA is called in this step. Type of the image for the oper-
ating system, which should be installed on the created VM, can be passed to the workflow via
an input parameter. If this value is not received from input parameters, the default image type
is used. All operations of the InstallOpenStackVM IA require at least two input parameters,
so-called Credentials and EndpointsAPI. These values should be passed to the workflow
via input parameters. The format of these parameters are described on GitHub2. In other
words, Credentials consist of the tenant ID, user name as well as password of the registered
user on the OpenStack. The EndpointsAPI on the other hand, defines the location of some
remote methods of the OpenStack API, which are accessible to external clients. It is an entry
point to the OpenStack system for external clients. This entry point provides a REST-based
API to call different operations inside the OpenStack. The next activity in the workflow in-

2https://github.com/tosca-types/openstack
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vokes the SSH-IA to run some shell commands on the installed VM remotely. These shell
commands configure the VM. To clarify, as discussed in Section 4.1, this IA is used to restart
a Tomcat server and a PostgreSQL database remotely. This workflow includes the deployment
of other BPEL plans on the Apache ODE-PGF engine of the SIMPL framework inside the
Windows-VM on the OpenStack cloud provider. For this purpose, the ODE-Service IA is used
to deploy the plans on the ODE-PGF engine. As shown in Figure 4.4, the last step of this
workflow invokes the SIMPLResourceManagement web service to register the IP address of
the new installed Linux-VM to the SIMPL framework. A new entry for the IP address of the
created Linux-VM should be inserted into the data source table of the SIMPL database. In
other words, by adding the new IP address to the PostgreSQL database of the SIMPL frame-
work, the data sources and the results of PANDAS calculation are transferred correctly to the
right VM in DataProvisioning and DataDeprovisioning workflows, respectively (see Section
4.2.3 and 4.2.5). For this purpose, some other input parameters are passed to the workflow.
The DataSourceID variable defines a unique ID for the entry, which needs to be registered to
the PostgreSQL database of the SIMPL framework. The DataSourceName variable provides
a name for this entry, and the DataSourceAddress variable is the IP address of the created
VM which needs to be registered. As results of the workflow execution, the links of deployed
BPEL workflows on the ODE-PGF engine, which are used later for starting these workflows,
can be retrieved.

Figure 4.4: InfrastructureProvisioning plan

4.2.2 Plan number two

The second workflow, so-called PandasSoftwareProvisioning plan, is a simple plan which is
used for preparing a PANDAS instance. In other words, each execution of this workflow
prepares one PANDAS instance. As mentioned already, two PANDAS instances are required in
the scope of this master’s thesis, one for the mechanical and one for the chemical calculation.
Accordingly, this workflow is called two times in the PANDAS Service Template. Different
variants of this workflow are designed and implemented in the scope of this master’s thesis.
In the subsequent sections, different variants of this workflow are discussed in detail. All the
variants use the below-mentioned two main activities for preparing each PANDAS instance.
The following operations are part of the PANDAS web service and can be called in this
workflow:

• Platform_provisioning : this operation mainly creates a unique ID and a basic directory
structure on the Linux-VM for the PANDAS software instance.
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• Pandas_source: this operation unpacks the archive of the PANDAS source code to the
basic directory structure, which was created in the previous operation.

4.2.2.1 Plan number two - First version

After installing a Linux-VM on the OpenStack cloud provider in the InfrastructureProvisioning
workflow, the floating-IP address of the installed VM is required to install the PANDAS bone
simulation source code and related PostgreSQL database on that VM. As Figure 4.5 illustrates,
this IP address is passed to the workflow via an input parameter. A unique ID and a path to
a basic directory structure for the PANDAS software instance will be created as the result of
executing this workflow.

Figure 4.5: PandasSoftwareProvisioning plan - First version

4.2.2.2 Plan number two - Second version

Previously mentioned, the PANDAS bone simulation software uses a PostgreSQL database as
the storage system. In PandasSoftwareProvisioning plan, the PANDAS source code as well as
its related PostgreSQL database with different configurations have to be installed on the VM.
Conceptually, different architectures for the PANDAS Service Template which can affect this
workflow can be considered as follows:

• If there are different configurations for the database system: in the current implementa-
tion of the PANDAS web service, a PostgreSQL database is used as the storage system.
In the case that we have different configurations for the PostgreSQL database, different
changes are applied to the database system without any need to change the current
implementation of the PANDAS web service.

• If the PostgreSQL database is not deployed on the same Linux-VM of PANDAS instance:
two VMs should be installed on the cloud provider, one for the PANDAS instance and
one for the database system. In this situation, a different and distributed architecture
should be considered for the PANDAS bone simulation tool. The implementation of the
PANDAS web service and of the PANDAS source code require modifications. In the
application topology of the PANDAS Service Template, a separate VM is required for
installing the PostgreSQL database of PANDAS.
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• If the PANDAS bone simulation software uses different kinds of database systems for
storing the results of simulation: for instance, instead of a PostgreSQL database, a
different database, e.g. a Microsoft SQL server3, may be used. In this case, some changes
should be applied to the PANDAS source code and PANDAS web service in order to
work with this database properly, as the current implementation of PANDAS and of its
web service is tightly coupled with the PostgreSQL database system.

• If PANDAS instances are deployed on different VMs: if two PANDAS instances in the
scope of this thesis, one for the mechanical and one for the chemical calculation, require
two different VMs. In this case, a different and distributed architecture should be con-
sidered for the PANDAS bone simulation tool. The implementation of the PANDAS web
service and of the PANDAS source code require modifications. Some mechanisms have
to be considered to connect the VMs with each other for calculating the final results of
simulation.

• The above-mentioned variants might also be combined with each other. For instance,
a different database system (not a PostgreSQL database) with a different configuration
that is even deployed on a different VM (not the same VM as PANDAS). In this situ-
ation, implementations of the PANDAS source code and of the PANDAS web service
are more complicated.

There exist various configuration parameters in the PostgreSQL database system which affect
the behaviour of the system. All these parameters can take a value of one of these five types:
Boolean, integer, floating point, string or enum4. There are some various means for changing
these parameters in the database. The two most common ways are: (1) editing the related
file, so-called postgresql.conf, which is inside the data directory of the PostgreSQL database
and (2) sending some queries to the database in order to change these parameters. Listing 4.1
indicates an example of how this postgresql.conf file might look like inside the data directory
of the PostgreSQL database. Each line belongs to one parameter’s configuration. Hash marks
are used to define a comment and all the values of the parameters must be single-quoted.
Editing the postgresql.conf file is a traditional approach for changing configurations of the
PostgreSQL database. With respect to the TOSCA management plans, which are used in this
master’s thesis, the second approach for customizing the database is more efficient. In other
words, it is more generic to send some queries within the TOSCA management workflows
to change configurations than the manual configurations of the postgresql.conf file. In the
following, some configuration parameters which can affect the behaviour of a PostgreSQL
database are discussed. In general, there are some settings and parameters for Connections
and Authentication, Resource Consumption, Error Reporting and Logging, Replication, Error
Handling, etc., which can be modified[23].

1 // This is a comment

2 log_connections = 'yes'

3 log_destination = 'syslog'

4 search_path = '$user, public'

5 shared_buffers = '128MB'

Listing 4.1: postgresql.conf file [23]

3http://www.microsoft.com/en-us/server-cloud/products/sql-server/
4https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
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Table 4.1 lists some common parameters in a PostgreSQL server which can be used to change
configurations and settings. It is important to note that, a PostgreSQL database contains a
large number of parameters which can affect the system’s behaviour. Based on user’s require-
ments in the case of PANDAS bone simulation software, these parameters can be modified for
the PANDAS PostgreSQL database. For instance, max_connections parameter can be used
to change the maximum number of users that can access the PostgreSQL server concurrently.
To provide a better security for the data inside the PANDAS PostgreSQL database, various
authentication parameters can be configured. Replication parameters can be customized as
well for replicating the results of PANDAS simulation in multiple places. Table 4.1 indicates
only a subset of these parameters which can be used by users to customize the database
system[23].

listen_addresses(string) The address on which the server should listen

port(integer) The TCP port which server should listen on

max_connections(integer) The maximum number of concurrent connections

authentication_timeout(integer) Maximum time for client authentication

ssl(boolean) To enables SSL connections

shared_buffers(integer) The amount of memory for shared memory buffers

wal_level(enum) How much information is written to the WAL

archive_mode(boolean) If on, segments are sent to archive storage

hot_standby(boolean) Can or cannot run queries during recovery

enable_mergejoin(boolean) Enables or disables the usage of merge-join

enable_nestloop(boolean) Enables or disables the usage of nested-loop join

geqo(boolean) Enables or disables genetic query optimization

log_destination(string) Desired log destination

log_filename(string) The file names of the created log files

log_connections(boolean) If on, each connection to the server is logged

log_error_verbosity(enum) The amount of detail written in the server log

log_statement(enum) Controls which SQL statements are logged

search_path (string) The order in which schemes are searched

DateStyle(string) Sets the display format for date and time values

TimeZone(string) Sets the time zone

deadlock_timeout(integer) Time to wait on a lock before checking for deadlock

exit_on_error(boolean) If true, any error will terminate the current session

block_size(integer) Specifies the size of a disk block

server_version(string) Reports the version number of the server

trace_notify(boolean) Generates a great amount of debugging output

Table 4.1: PostgreSQL configuration parameters[23]
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Previously mentioned, different variants of PandasSoftwareProvisioning workflow are designed
and implemented in this thesis in order to install the PANDAS source code as well as different
configurations for its PostgreSQL database system. The first version of this workflow was
discussed in the previous section in Figure 4.5. In the current implementation of the PANDAS
web service, there exists an operation which is used for sending a query to the PostgreSQL
database. By sending different queries, in order to change some configuration parameters (as
Table 4.1 shows) of the PostgreSQL database, different variants of PandasSoftwareProvision-
ing plan can be designed and implemented. Accordingly, as Figure 4.6 illustrates, in the second
version of PandasSoftwareProvisioning workflow, the query is received as as input parameter
and then applied to the database. As the figure shows, the Send_Update_Query operation
of the PANDAS web service is used to send some queries to the database. The next activities
are the same as in the first version. It is not important to call this operation at the beginning
of this workflow. In other words, the queries can be sent to the PostgreSQL database at the
end of the workflow after invoking the Platform_Provisioning and the PANDAS_Source

operations.

Figure 4.6: PandasSoftwareProvisioning plan - Second version

4.2.2.3 Plan number two - Third version

By using the SSH-IA which is used as well in the first plan of the PANDAS Service Template,
so-called InfrastructureProvisioning workflow (see Section 4.2.1), different SQL commands can
be sent to the PostgreSQL server in order to change settings and configuration parameters.
Hence, another variant of PandasSoftwareProvisioning plan can be designed and implemented
by using this IA. As Figure 4.7 illustrates, the Run Script operation of this IA is called in
order to customize some settings of the PostgreSQL database. Therefore, the appropriate
query is received from the input parameters of the workflow and then used as an input for
the Run Script operation of SSH-IA. Besides the query, the Run Script operation requires
other parameters, such as hostname, SSKkey and SSKUser. These parameters are received
from the input parameters of the workflow as well. The rest of the workflow is the same as
in the previous versions. Like previous version, it is not important to invoke this operation at
the beginning of this workflow. In other words, the queries can be sent to the PostgreSQL
database at the end of the workflow after invoking the Platform_Provisioning and the
PANDAS_Source operations.
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Figure 4.7: PandasSoftwareProvisioning plan - Third version

The second and the third versions of PandasSoftwareProvisioning workflow have the same
functionality, i.e. sending queries to the PostgreSQL database of PANDAS for modifying
configuration parameters. But on the other hand, the third version is more generic with respect
to other simulation software than PANDAS. To put it another way, the Send_Update_Query

operation of the PANDAS bone simulation web service, which is used in the second version,
is only specific to the PANDAS bone simulation software. In the case that other simulation
software, e.g. MATLAB, is used for simulation, this operation and the related workflow cannot
be used. As the SSH-IA is used in the third version of PandasSoftwareProvisioning workflow,
the third version of this workflow is appropriate in case of using other simulation software than
PANDAS. The Run Script operation of this IA can be used to send appropriate queries to
the related database server in order to change some configuration parameters.

4.2.2.4 Plan number two - More versions

More versions can be considered for PandasSoftwareProvisioning workflow with respect to the
different options, which were discussed in the beginning of Section 4.2.2.2. In the following,
different cases are discussed as examples. In the case that the PostgreSQL database is not
deployed on the same Linux-VM of PANDAS instance, it is important to connect the Linux-
VM of PANDAS to the VM of the PostgreSQL database in this workflow. As the current
implementation of PANDAS and of its web service is tightly coupled with the PostgreSQL
database system, there is no need to connect them explicitly in the above-mentioned versions
of PandasSoftwareProvisioning workflow.

The PANDAS bone simulation software can use different kinds of database systems, e.g. a
SQL server instead of a PostgreSQL database, for storing the results of simulation. In this
case, if the database system is tightly coupled with the PANDAS web service, there is no need
to connect them explicitly in PandasSoftwareProvisioning workflow. Otherwise, a connection
between the Linux-VM of PANDAS instances and the VM of the related databases has to be
established in this workflow.

Unlike the current implementation of PANDAS, different instances of the PANDAS bone sim-
ulation can be deployed on different VMs. In this case, a connection between these instances
has to be established in PandasSoftwareProvisioning workflow. In other words, different in-
stances of the PANDAS bone simulation are configured simultaneously and may work with
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each other in other workflows of the PANDAS Service Template (see Section 4.2.4). There-
fore, it is required to connect multiple instances of the PANDAS bone simulation with each
other.

4.2.3 Plan number three

The third plan, so-called DataProvisioning plan, provides and prepares heterogeneous input
data sources of the simulation in order that PANDAS instances can properly ingest these
data. In the scope of this master’s thesis, two different variants of DataProvisioning workflow
are designed and implemented. Previously mentioned, two PANDAS instances, one for the
mechanical and one for the chemical calculation, are used in this work. Because the input
data sources are different for the mechanical and chemical instances, this workflow is called
separately for each of the two PANDAS software instances. Based on the value of one of the
input parameters which are sent to the workflow, so-called SoftwareInstance variable, the
path to the appropriate location of data sources for each instance is assigned in the workflow
in order to provision the correct input data sources for PANDAS instances. Two different
versions of this workflow are discussed in the following.

4.2.3.1 Plan number three - First version

Figure 4.8 depicts the initial version of DataProvisioning plan which provisions some hetero-
geneous files for a PANDAS software instance. Aforementioned in Section 2.5, the SIMPL
framework extends workflow languages, such as BPEL, by introducing some additional DM
activities and DM patterns. These activities and patterns provide a generic access to many
different kinds of data sources. Figure 4.8 illustrates a high-level design of these DM activities
in DataProvisioning workflow. Basically, this workflow is not only a data provisioning work-
flow. Instead, it provides and configures a concrete simulation problem or simulation example
to be calculated by PANDAS instances (e.g. a certain bone to be simulated). As the figure
shows, this workflow consists of three phases as follows:

• The first phase creates some sub-folders in the root folder of the relevant PANDAS
software instance. The first IssueCommand activity creates a sub-folder for the sim-
ulation example in the root folder of the relevant PANDAS software instance. This
sub-folder can be used later to store all the input data sources, which are provisioned in
this workflow. The second IssueCommand activity creates another sub-folder, so-called
PandasTecplotOutputFolder for instance, to store outputs of PANDAS simulation.

• The second phase provides necessary data sources which describe the simulation exam-
ple. This phase consists of four TransferData activities and one IssueCommand activity
which transfer heterogeneous data sources to the relevant PANDAS software instance.
The first TransferData activity in this phase transfers a ZIP file that comprises all
files describing the geometrical bone shape from the Windows-VM to the Linux-VM.
Then, with an IssueCommand activity this ZIP file is unpacked to an appropriate direc-
tory. Following that, all the material parameters are transferred to the Linux-VM via a
TransferData activity. Similarly, the boundary conditions and the FEM parameters are
transferred with two TransferData activities in this phase.

• The third phase configures the PANDAS instances (e.g. some numerical configurations)
in order that they can properly calculate the simulation outcomes. The numerical data
sources are transferred with a TransferData activity. The last step in this workflow
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invokes the PANDAS web service to compile the source code of PANDAS and the
transferred simulation example all together.

Figure 4.8: DataProvisioning plan - First version

As Figure 4.8 depicts, some parameters are sent to the workflow as input parameters. The
purpose of these input parameters are as follows:

• ProblemName (String): The name of the problem (or example) to be simulated, e.g.
3d_bone. This is used to generate a correct folder in the directory structure of the
PANDAS software instance, where later input files can be copied to.

• MotionSequence (String): The name of the motion sequence that determines the bound-
ary conditions, e.g. sleeping or standing, and thus the correct input files representing
these boundary conditions. These motion sequences are used to define the state of a
bone which is simulated.

• SoftwareInstance (String): Either mechanical or chemical, depending on whether the
workflow shall provide data for the first (mechanical part) or second (chemical part)
PANDAS software instance. This is currently used to identify the correct input files in
the source folder.

• Instance: A complex type which contains: (1) Path, which is the root folder of the
relevant PANDAS simulation software instance. This path is created by PandasSoft-
wareProvisioning workflow and (2) ID, which is a unique ID for each PANDAS instance.
This ID is created by PandasSoftwareProvisioning workflow.

• IP (String): The IP address of the created VM in the first workflow. This IP address
is used in order to compile the source code of PANDAS and the transferred simulation
example all together on the right VM.

The idea in this master’s thesis is separating PandasSoftwareProvisioning plan from DataPro-
visioning plan. As a result, the same PandasSoftwareProvisioning workflow can be used for
several kinds of simulation problems. Another important issue to mention is including the Com-
pilePandas operation as part of DataProvisioning plan. Conceptually, this operation should
be part of PandasSoftwareProvisioning plan, because it compiles the PANDAS source code
and thus the Pandas software. But, the current implementation of the PANDAS web service
compiles the PANDAS source code with some of the input data sources together. Therefore,
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the required input data should be provisioned first before the CompilePandas operation can be
invoked. It would be another option to invoke this operation in Simulation/Application plan.
Simulation/Application plan is discussed in Section 4.2.4. But, by including this operation at
the end of DataProvisioning workflow, PANDAS simulation can be executed several times
without any need to compile the PANDAS source and the simulation problem again and again
for each calculation. Subsequently, the overall performance of the actual simulation will be
optimized.

4.2.3.2 Plan number three - Second version

In this master’s thesis, two different variants of DataProvisioning workflow are provided. Figure
4.8 illustrated the concept for the first version of this workflow. To develop the second version
of this workflow, different approaches for provisioning heterogeneous and huge data sources of
the PANDAS bone simulation software can be considered. As Figure 2.7 in Chapter 2 indicates,
PANDAS requires heterogeneous data sources as input parameters. For example, PANDAS
instances need some CSV-based boundary conditions files as input parameters. These CSV
files were transferred to the Linux-VM in the first version of DataProvisioning workflow. Some
different kinds of CSV files, that have a different format, can be used as well for PANDAS
instances. These CSV files require a coordinate transformation in order to be appropriate for
PANDAS instances. A Java API for XML Web Service (JAX-WS)5 is implemented in this
master’s thesis in order to transform the coordination of these boundary conditions files. In
other words, a Java-based program for this transformation has been developed before and a
web service around this program is implemented only in this work. Accordingly, as Figure 4.9
illustrates, another version of DataProvisioning workflow can be developed based on this web
service.

Figure 4.9: DataProvisioning plan - Second version

5http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html
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As Figure 4.9 shows, in the second phase of this workflow, the CoordinateTransformation web
service is invoked in order to transform the coordinate of the above-mentioned CSV files. In
other words, before transferring the boundary conditions to the Linux-VM as an input data
source for PANDAS instances, the Transform coordinate operation of this web service is
invoked in order to transform the coordination of these CSV files. As the figure depicts, some
additional input parameters are added to the first version of DataProvisioning workflow. These
additional input parameters are required for invoking the Transform coordinate operation.
In general, this operation requires three CSV files, two string arrays and a path, which refers
to a directory, for storing the results of the operation. These parameters are discussed in detail
in the following:

• BoneFilePathName (String): A string which defines the location of a CSV file which
describes the relevant information about a bone.

• MuscleFilePathName (String): A string which defines the location of a CSV file which
describes the muscle forces working on the bone.

• JointFilePathName (String): A string which defines the location of a CSV file which
describes the joint contact forces of adjacent bones.

• TargetDirectory (String): The directory which is used to store results of the Coordinate-
Transformation web service.

• MuscleArray (String Array): A string array which consists of several names for var-
ious muscles where PANDAS needs the corresponding muscle forces as input. The
Transform coordinate operation of the CoordinateTransformation web service con-
siders all the strings inside this array and generate some other CSV files based on these
strings. In other words, it is not possible to filter only a sub-set of the muscles in the
MuscleArray.

• TargetHeaderArray (String Array): A string array which determines the header values
of the CSV files, which are generated in this operation.

As the result, twelve muscle files (based on the input parameters which are used in this work)
and one joint file are generated after executing the Transform coordinate operation of this
web service. Afterwards, these files are transferred to the Linux-VM as an input data source
for a PANDAS instance via one TransferData activity of the SIMPL prototype.
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4.2.4 Plan number four

The fourth plan, so-called Simulation/Application workflow, realizes the actual simulation cal-
culation of PANDAS instances. In this master’s thesis, this workflow is called after DataPro-
visioning workflow. The workflow runs simulation for both PANDAS instances (mechanical
and chemical) simultaneously. Accordingly, this workflow only needs to be executed once for
realizing the PANDAS bone simulation software as a SaaS solution in cloud environments.
Only one version of this workflow is designed and implemented in this master’s thesis, since
the actual simulation calculation is not the main focus of this thesis. As Figure 4.10 illustrates,
the main activities inside this workflow are as follows. Similar to the operations which were
used in PandasSoftwareProvisioning plan, the following operations are part of the PANDAS
web service:

• Start_Pandas_Mechanical and Start_Pandas_Chemical : start the respective PAN-
DAS software instances (both instances simultaneously in this work).

• Execute_Command : sends some commands to both PANDAS instances (at once),
so that they execute their cmd-files and read some input files. The current version
of the PANDAS web service sends some commands to both instances at once. But
conceptually, it would be more efficient to execute this activity separately and in parallel
for each instance of PANDAS.

• Calculate_Pandas: invokes the actual calculation (both instances at once). There is
one problem with the current version of the PANDAS web service implementation: the
calculation actually lasts something about half an hour, but the web service operations
access PANDAS in an asynchronous manner and then the invocation is finished after
one minute. As a workaround, a BPEL wait activity which waits for 45 minutes is added
to the workflow in order that everything works properly.

• Stop_Pandas: stops PANDAS instances (both instances at once). Similar to Exe-
cute_Command, it is more efficient to Stop PANDAS instances separately in two
Stop_Pandas activities in parallel. But, the current version of the PANDAS web service
stops both instances at once via one invoke activity.
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Figure 4.10: Simulation/Application plan

As Figure 4.10 shows, three input parameters are passed to the workflow. The IP address of
the created VM in the first workflow of the PANDAS Service Template is sent to this workflow.
This IP address is used to execute all the above-mentioned operations on the new created VM
in the topology. Two complex type parameters, one for the mechanical and one for the chemical
instances, are sent to the workflow as well. These parameters consist of the information related
to PANDAS instances. A path and an ID, which are the output of PandasSoftwareProvisioning
workflow, are passed to the workflow via these complex type parameters in order to run
simulation for the correct PANDAS instance. Besides, the ProblemName variable, which was
also an input parameter in DataProvisioning workflow and discussed in Section 4.2.3.1, is
part of these complex type parameters and sent to Simulation/Application workflow as well.
In other words, each of these complex type parameters consists of a path, an ID and a
ProblemName variable.

4.2.5 Plan number five

The fifth plan, so-called DataDeprovisioning workflow, returns the result data of a PAN-
DAS simulation back to the user. In the scope of this master’s thesis, different variants of
DataDeprovisioning plan are designed and implemented.

4.2.5.1 Plan number five - First version

Figure 4.11 shows the initial version of DataDeprovisioning workflow. This is a simple workflow
which consists of only one TransferData activity that transfers the outcome of a PANDAS
calculation from PandasTecplotOutputFolder, i.e. all text-based files of PANDAS result are
stored in this folder, to an appropriate folder of the Windows-VM on the OpenStack cloud
provider. This PandasTecplotOutputFolder was discussed in Section 4.2.3.2. A path to an
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appropriate folder on the Windows-VM is passed to the workflow as an input parameter.
Similarly, the actual location of this PandasTecplotOutputFolder for each PANDAS instance
is passed to the workflow as an input parameter.

Figure 4.11: DataDeprovisioning plan - First version

4.2.5.2 Plan number five - Second version

Instead of using PandasTecplotOutputFolder and provisioning the results of the simulation to
the user from this folder, as Figure 4.12 shows, in the second version of DataDeprovisioning
workflow, the results can be queried directly from the PostgreSQL database. First, it is required
to add a new data source for the PANDAS PostgreSQL database inside the database of the
SIMPL framework. To put it another way, after creating a new VM in the first workflow, the
new IP address of the created VM has to be registered inside the SIMPL database. This IP
address is used later to connect to the right PostgreSQL server of PANDAS, and then extract
the appropriate data based on the received query. For this purpose, The AddDataSource

operation of the SIMPL web service is invoked to register a new entry for the PANDAS
PostgreSQL database inside the SIMPL database. This IP address is sent to the workflow
as an input parameter. Besides, a simulation ID of a PANDAS instance is sent to the the
workflow as well. This ID is used in the query to export the right data for the right PANDAS
instance from the PostgreSQL database. With the help of an IssueCommand activity inside
the SIMPL framework, the query is executed on the server and the results are exported into
one or more files. Following that, these files have to be transferred to the Windows-VM by
using a TransferData activity of SIMPL. Different variants of this workflow can be provided
by changing the query which is executed on the PostgreSQL database.
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Figure 4.12: DataDeprovisioning plan - Second version

As shown in Listing 4.2, a COPY TO statement copies the contents of a table or the results of
a query to a file. COPY TO statement in PostgreSQL databases reads data from a database
and writes it back to an appropriate file. It is also possible to define some options for a COPY

TO statement in order to customize this statement. For example, the format of the file which
is used for storing the results of the query can be from different types such as text, CSV or
binary[24].

1 COPY { table_name [ ( column [, ...] ) ] | ( query ) }

2 TO { filename }

3 [ [ WITH ] ( option [, ...] ) ]

Listing 4.2: PostgreSQL COPY TO statement [24]

Different variants of a workflow with this COPY TO statement can be designed and imple-
mented. For instance, one variant can copy the results of PANDAS into one or more text files.
Other variant could copy them into one or more CSV files instead. CSV files do not have any
limitations in the file length. It is possible to store 100,000 or billions of rows of data in a
CSV file[42]. By changing the query inside the COPY TO statement, various versions can be
considered as well. To clarify, by filtering the results of the simulation based on the simulation
ID which was created in PandasSoftwareProvisioning plan for each PANDAS instance, the
appropriate calculation results of each instance can be derived from the database for users. It
is also possible to filter the results for different tables or even for some columns based on user’s
requirements. The second version of DataDeprovisioning workflow can be modified as well to
extract appropriate data for multiple PANDAS instances. In other words, different simulation
IDs of PANDAS instances can be transferred to the workflow via input parameters. Then, for
each PANDAS instance one IssueCommand activity is used in order to execute the query on
the PostgreSQL server and then copy data into one or more files . Following that, these files
for each PANDAS instance are transferred separately to the Windows-VM with the help of a
TransferData activity inside the SIMPL framework.

4.2.5.3 Plan number five - Third version

Instead of querying tables from the PostgreSQL database of the PANDAS bone simulation
software, the whole database and all related data sources can be backed up to a different
machine as a data deprovisioning process. One approach to back up PostgreSQL databases is
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using a SQL dump statement. With a SQL dump command, a text file with some appropriate
SQL commands is generated on the database system. Then, by executing this file as a query
on the database server, the same database can be recreated in the new location. As shown
in Listing 4.3, a pg_dump statement writes a database to an standard output. The text
files which are created by a pg_dump statement can be restored by a psql command. In
other words, the result of a pg_dump command can be transferred to the dbname database
with a psql command. This dbname database in the third command as Listing 4.3 shows
should be created before executing a psql command. The dbname database can be created
with the help of some commands, such as createdb, as the second command in the listing
depicts[25]. Subsequently, another version for DataDeprovisioning workflow can be designed
and implemented by using the above-mentioned SQL statements.

1 pg_dump dbname > outfile

2 createdb -T template0 dbname

3 Psql dbname < outfile

Listing 4.3: PostgreSQL Backup statement [25]

Figure 4.13 depicts the middle-level design of the third version of DataDeprovisioning work-
flow. The pg_dump statement requires a user name and password for connecting to the
database server. It is also necessary to define the name of the database which needs to
be backed up. All these values are transferred to the workflow as input parameters. Then,
an IssueCommand activity inside the SIMPL framework can be used to execute the pg_dump

statement on the database server. This command produces a .sql file as the result. Follow-
ing that, this file is transferred to the Windows-VM via a TransferData activity. With an
IssuCommand activity, a database can be created on the Windows-VM before executing a
psql command. Then, a psql command can be executed on the PostgreSQL database in-
side the Windows-VM. As the result, the database is backed up from the Linux-VM to the
Windows-VM.

Figure 4.13: DataDeprovisioning plan - Third version

4.2.5.4 Plan number five - Fourth version

Most of simulation applications, the PANDAS bone simulation software for instance, generate
heterogeneous and huge amount of data as simulation results. Therefore, tables inside their
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databases could grow dramatically in size. The PostgreSQL database allows user to create
tables larger than the maximum size allowed on the system. By using a SQL dump command,
dumping those huge tables to one or more files can be problematic. Using compression in a
SQL dump command can be considered as a solution in order to deal with this problem. The
appropriate compression program, such as gzip6, can be used to compress tables and then
store them to an appropriate file[25].

1 pg_dump dbname | gzip > filename.gz

2 createdb -T template0 dbname

3 gunzip -c filename.gz | psql dbname

Listing 4.4: PostgreSQL Backup statement with compression[25]

Listing 4.4 indicates the commands for dumping the compressed database to a file and then
restoring it using a gunzip command. Another version for DataDeprovisioning workflow can
be implemented by using these commands. Figure 4.14 shows the main activities for the forth
version of DataDeprovisioning workflow. In this version, all tables inside the database are
compressed first and then backed up to another machine.

Figure 4.14: DataDeprovisioning plan - Forth version

4.2.5.5 Plan number five - Fifth version

Instead of compressing tables inside the database, there is an option in PostgreSQL databases
which allows users to split the output into different pieces. In other words, users can control
large tables and split them into different pieces with an appropriate size which is acceptable on
the target system. For instance, Listing 4.5 shows the usage of the split option in order to
make chunks of one megabyte [pg_dump dbname | split -b 1m - filename]. Then, the
generated files can be restored with the help of a cat statement. This statement concatenates
the splitted files in order to regenerate the database again and back it up to the Windows-
VM[25].

1 pg_dump dbname | split -b 1m - filename

2 createdb -T template0 dbname

6http://www.gzip.org/
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3 cat filename* | psql dbname

Listing 4.5: PostgreSQL Backup statement with split option [25]

Accordingly, another version for DataDeprovisioning workflow can be designed by splitting ta-
bles into different chunks and restoring them again on the Windows-VM. Figure 4.15 illustrates
the middle-level design of the fifth version.

Figure 4.15: DataDeprovisioning plan - Fifth version

4.2.6 Plan number six

The last plan for realizing the PANDAS bone simulation software as a SaaS solution in cloud
environments is Termination plan. As Figure 4.16 illustrates, the first activity of this workflow
invokes the TerminateVMbyServerid operation of the InstallOpenStackVM IA inside the service
topology of the PANDAS Service Template. This is a loop activity which can be executed
several times. To put it another way, several VMs might be installed in the first workflow by
users, depending on which variants of the plans are used. For this purpose, this operation reads
the TOSCA service topology and then determines the number of installed VMs which need to
be terminated. The TerminateVMbyServerid operation requires credentials, endpointsAPI

and serverId as input variables. In Section 4.2.1, the credentials and endpointsAPI

variables were discussed. The ServerId variable defines a unique ID for each server on the
OpenStack cloud provider. Therefore, these values are transferred to the workflow via input
parameters. Following that, in the second activity of this workflow, the Undeploy operation
of the ODE-Service IA is called in order to undeploy all BPEL plans from the ODE-PGF
engine inside the Windows-VM. For this purpose, the names of the workflows which need to
be removed from the ODE-PGF engine are passed to the workflow as input parameters. In
this master’s thesis, three workflows have to be undeployed from the ODE-PGF engine. As
the result, the names of these three workflows are passed to the workflow, as Figure 4.16
illustrates. Finally, in the last step of this workflow, the new SIMPL data source which was
created and added to the SIMPL resource management in the first workflow is unregistered
from SIMPL again. The DeleteDataSource operation of the SIMPL web service is called in this
step to remove the entry from the database. This operation needs an ID, which determines
the entry that should be removed from the database. Therefore, the unique ID of that entry
is transferred to the workflow as an input parameter, as Figure 4.16 depicts. In this master’s
thesis, only one variant of this workflow is designed and implemented.
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Figure 4.16: Termination plan

4.3 Integration of SIMPL with TOSCA

Previously mentioned, both TOSCA and SIMPL rely on workflows to orchestrate processes for
on-demand service deployment and management, as well as for data provisioning and simula-
tion calculation, respectively. One goal in this master’s thesis is to combine both approaches
in order to offer a full-fledged and integrated support for cloud-native simulation software that
spans all these relevant goals[18]. Consequently, one contribution of this master’s thesis is to
integrate the prototype of SIMPL with the OpenTOSCA engine in order to make the data
provisioning technology offered by SIMPL an integral part of a TOSCA description. For data
provisioning and deprovisioning of simulation applications in cloud environments, the DM ac-
tivities and DM patterns of SIMPL can be integrated to TOSCA plans. Different approaches
can be considered for integrating SIMPL with TOSCA as follows.

4.3.1 Extending the workflow engine inside the OpenTOSCA environment

One approach for integrating the TOSCA standard with the SIMPL framework could be ex-
tending the workflow engine inside the OpenTOSCA environment to accept the DM activities
and DM patterns of the SIMPL framework. To put it another way, the workflow engine in-
side the OpenTOSCA environment, which is a WSO2 Business Process Server, needs to be
extended by the plugable framework of the ODE-PGF engine (PGF means plugable frame-
work). In this approach, one could simply copy the ZIP-archive of the SIMPL ODE extensions,
maybe adjust a configuration file to register this extension bundle, and then everything should
work properly. Only one workflow engine, i.e. the WSO2 Business Process Server inside the
OpenTOSCA environment, is used in this approach for executing all workflows inside the
TOSCA Service Template. The other components of the SIMPL framework can be connected
to OpenTOSCA components in a loosely coupled way[18].

65



4. Mapping PANDAS into cloud

4.3.2 Extending the OpenTOSCA environment via plug-ins

Another approach for integrating the SIMPL framework with the TOSCA standard is devel-
oping some plug-ins7 for the OpenTOSCA environment. Based on these plug-ins, the SIMPL-
based workflows are recognized automatically from other types of workflows inside the TOSCA
Service Template, and then deployed on the right workflow engine. In this thesis, the ODE-PGF
engine on the SIMPL framework should be selected for these workflows. Consequently, this
approach relies on two different workflow engines (ODE-PGF and WSO2 Business Process
Server).

4.3.3 Integrating via some features inside the TOSCA management plans

Similar to the previous method, this approach uses the plug-in architecture as well. The plug-in
functionality is already provided in the OpenTOSCA environment. In this case, scientists are
able to define in the TOSCA plans on which engine they should be deployed. Therefore, there
is only need to develop the corresponding plug-in and then deploy it inside the OpenTOSCA
environment. With the help of this plug-in, the OpenTOSCA environment automatically deploy
the corresponding workflows on the defined workflow engine. This might be a combination
of the two above-mentioned approaches. In other words, this approach relies on two different
workflow engines (ODE-PGF and WSO2 Business Process Server) like in the second approach,
and similar to the first and second approaches the workflows are deployed automatically to
one of these engines.

4.3.4 Integrating via the ODE-Service IA

In this master’s thesis, a different approach for integrating the SIMPL framework with the
TOSCA standard is described as follows: both workflow engines in the SIMPL framework and
the OpenTOSCA environment work together in a loosely coupled way. In other words, we
still have two different workflow engines: (1) the WSO2 Business Process Server inside the
OpenTOSCA environment and (2) the separate ODE-PGF engine. Based on the activities
inside the workflows, the appropriate engine for running and executing the BPEL plans is se-
lected and then the workflows are deployed on that engine. For this purpose, the ODE-Service
IA is an integral part of the TOSCA service topology inside the PANDAS Service Template.
This is a Java-based IA which contains two main functions for deploying to and undeploying
BPEL plans from a workflow engine and was designed and implemented in this thesis. As
mentioned already, the Winery tool is used in order to create a CSAR file which contains
the PANDAS Service Template. The Service Template contains an application topology as
well as management plans. The ODE-Service IA is inside the service topology and can be
used for deploying and undeploying SIMPL workflows. As Figure 4.17 shows, if the workflow
contains some SIMPL DM activities or DM patterns, the ODE-Service IA is called in order to
deploy the workflows on the ODE-PGF engine within the SIMPL framework. This engine is
extended already in order to understand and execute the SIMPL activities. These workflows
can be undeployed from the engine with this IA as well. On the other hand, if the workflows
do not contain any SIMPL activities, the plans are deployed on the workflow engine inside the
OpenTOSCA environment. In this case, the deployment and undeployment of the plans are
happened automatically and there is no need to call the Deploy and Undeploy operations of
the ODE-Service IA. It is important to note that the process of deploying and undeploying

7https://github.com/decebals/pf4j
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workflows via the ODE-Service IA cannot be done automatically like in the above-mentioned
approaches. In other words, two TOSCA plans do the deployment and undeployment tasks. In
this work, the first workflow inside the PANDAS Service Template defines the workflows which
need to be deployed on the ODE-PGF engine. To put it another way, the Deploy function
of the ODE-Service IA is called inside the first plan for each workflow which needs to be
deployed on the ODE-PGF engine. The Undeploy operation of this IA is called in the last
plan of the PANDAS Service Template for each workflow which needs to be undeployed from
the ODE-PGF engine. Therefore, with the help of two TOSCA plans [the first and the last
plans in this work], the deployment and undeployment processes can be done in this approach.

Figure 4.17: Integration of SIMPL with TOSCA

4.3.5 Evaluation of the proposed approaches for TOSCA and SIMPL in-

tegration

This section evaluates the above-mentioned approaches for integrating the TOSCA standard
and the SIMPL framework from a conceptual point of view. The first three approaches are
mainly based on the plug-in architecture. But, the last approach which was designed and im-
plemented in this master’s thesis is different from the first three approaches. For this purpose,
this section compares the implemented approach in this master’s thesis [the last approach]
with the plug-in architecture [the first three approaches] in general.
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Using the ODE-Service IA for integrating SIMPL with the TOSCA standard is an easy and
straightforward approach to understand. This IA consists of only two simple operations, so-
called Deploy and Undeploy, which can be used in the first and the last workflows of the
PANDAS Service Template, respectively. Developers only need to define a node template inside
the application topology of TOSCA for each SIMPL-based workflow. SIMPL-based workflows
are workflows which consist of one or more DM activities or DM pattern. Following that, the
Deploy operation of the ODE-Service IA is called for each workflow separately in the first
plan to deploy the workflow. Similarly, in the Termination plan, the Undeploy operation of
this IA is called for each workflow which needs to be removed from the ODE-PGF engine.

Besides, the TOSCA-based service topology of simulation software, inside the TOSCA Service
Template, is self–explanatory. To put it another way, by looking at the service topology, it is
simple enough to understand which workflows are SIMPL-based and need an extended version
of Apache ODE engine for execution. Each SIMPL-based workflow requires a node template
in the topology, which represents the actual workflow implementations and may consist of
some properties. In other words, the actual implementation of these workflows are added to
theses node types as DAs. For instance, three different workflows (DataProvisioning, Simu-
lation/Application and DataDeprovisioning) inside the PANDAS Service Template require an
ODE-PGF engine for their execution. Moreover, the Simulation/Application workflow in the
PANDAS Service Template is basically some kind of application logic workflow, but not
a TOSCA-based workflow from a conceptual point of view. So, it might also be more intuitive
to define this workflow as a DA for a node template than as a TOSCA-based plan. There-
fore, by using the ODE-Service approach for integrating TOSCA with SIMPL, engineers are
capable to separate the real TOSCA-based workflows from other types of workflows [so-called
application logic workflows].

Furthermore, it is always a question for engineers which workflow engine to use for which plan,
either the workflow engine inside the OpenTOSCA environment or the ODE-PGF engine. This
issue can be seen from the perspective of which workflow design tool is used and which per-
son has designed the corresponding workflows. Conceivably, the actual TOSCA-based plans
are designed by different persons than the SIMPL-based ones. Then, these different persons
maybe also need different workflow design tools depending on their knowledge and on the
way how they design workflows (maybe they even use different workflow languages or work-
flow technologies). As a consequence, it might also be beneficial to see workflows that are
designed with an external design tool as DAs, and not as TOSCA-based workflows. Based on
the above-mentioned desirable features, which can be provided by the ODE-Service approach,
the author prefers this method of integration to the other approaches.

At first, the plug-in architecture seems to be an efficient way to integrate TOSCA with SIMPL.
In other words, because this architecture constitutes a generic solution where every workflow in
a TOSCA Service Template, from a design perspective, is treated in the same way and there
is no need to define any additional activities in some of the plans to deploy and undeploy
these workflows. But on the other hand, this generic solution might not be the right one as
discussed above. Furthermore, there are some issues and challenges for a pluggable system as
follows, which turn away most of the developers[43]:

• Maintainability: maintainability of plug-ins can be difficult most of the time. Managing
versions and backwards compatibility with existing plug-ins can be challenging in a
plug-in framework.
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• Complexity: a plug-in can work fine when it is tested alone. But, when different plug-
ins are integrated with each other, the interactions between plug-ins can cause many
problems.

• Testing: testing a plug-in can have many difficulties if the plug-in system does not pro-
vide some form of plug-in runner for testing. Therefore, developers only have to test
plug-ins in the real world and this decreases the speed of development.

One limitation of the ODE-Service approach for integrating TOSCA with SIMPL is the lack
of automation. In other words, the deployment and undeployment processes of the workflows
inside the PANDAS Service Template are not automated without any human interventions.
The developers need to determine in advance the workflows which require an extended ODE
engine for their executions. Then, the Deploy operation of the ODE-Service IA is called for
these workflows inside the first plan. In a similar way, the Undeploy operation of this IA is
invoked in the last plan of the PANDAS Service Template in order to remove the workflows
from the ODE-PGF engine. As it is discussed in Section 7.2, an optimized approach for this
IA which deploys and undeploys workflows automatically can be designed and implemented in
future.

4.3.6 Adopting the PANDAS management plans to the different approaches

of TOSCA and SIMPL integration

The third approach, which were discussed in Section 4.3.3, requires possible changes that need
to be done to the management plans inside the PANDAS Service Template. Inside all the man-
agement plans, the developer has to determine the appropriate workflow engine. Therefore,
some changes need to be applied to the current versions of all management plans inside
the PANDAS Service Template. In the first and second approaches, which were discussed in
Sections 4.3.1 and 4.3.2 respectively, there is no need to change the management plans sig-
nificantly. Because the workflow engine inside the OpenTOSCA environment [First approach]
and the OpenTOSCA environment itself [Second approach] are extended via plug-ins in order
to understand different types of workflows [SIMPL-based, TOSCA-based].
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Implementation

In this chapter, the implementation of the prototype for realizing the PANDAS bone sim-
ulation software in cloud infrastructures is described, with respect to the requirements and
concepts specified in the previous chapters. In Section 5.1, the detailed approach for the first
contribution of this master’s thesis which is the integration of the SIMPL prototype with
the TOSCA standard is discussed. Section 5.2 describes the design, development and imple-
mentation of different variants of a TOSCA Service Template realizing the PANDAS bone
simulation software in a cloud-native way, which is the second and basically the main goal
of this master’s thesis. Furthermore, in each section the challenges the author faced during
design and implementation are discussed as well.

5.1 Integration of SIMPL with TOSCA

Aforementioned, both the OASIS TOSCA standard and the SIMPL prototype rely on work-
flows to orchestrate processes for on-demand service deployment and management, as well as
for data provisioning and simulation calculation, respectively. The first goal of this master’s
thesis is to combine both approaches in order to offer a full-fledged and integrated support
for cloud-native simulation applications that spans all these relevant processes[18]. In the fol-
lowing, the implementation of the presented approach for this goal in this master’s thesis is
described in detail.

This approach is mainly based on the Apache ODE deployment API. Apache ODE engine
has some communication layers, such as Axis2, and integration layers which are used by ODE
BPEL Engine run-time in order to interact with the outside world. Already mentioned in sec-
tion 2.6.5, Apache Axis2 is a container for web services. This container enables users to create,
deploy, test and run web services. Apache ODE deployment web service1, which is used for
deploying WS-BPEL processes, is an Axis2 web service which is deployed on the ODE engine
during the initiation of ODE run-time[44].

The ODE-Service IA which was developed in this master’s thesis is mainly based on the ODE
deployment web service. This IA reads the BPEL process artifact (zip package containing .bpel,
.wsdl, deploy.xml, etc., files) and then encodes the package with Base64 encoding schemes2.
Then, the package is sent to the ODE deployment web service in order to deploy and undeploy

1https://github.com/apache/ode/tree/master/axis2/src/main/java/org/apache/ode/axis2/service
2https://www.base64encode.org/
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BPEL processes from Apache ODE engine as a payload inside a SOAP message. Winery, a
graphical modelling TOSCA tool, is used in this work to develop and design the ODE-Service
IA. The subsequent section gives an overview about using the Winery tool in correspondence
with developing the ODE-Service IA.

5.1.1 ODE-Service IA

The following subsections provide some implementation details about the ODE-Service IA. In
Subsection 5.1.1.1, the interface design of the ODE-Service IA in the Winery tool is discussed.
Following that, the actual implementation of operations, which are inside the ODE-Service IA,
with the help of Eclipse is explained in Subsection 5.1.1.2. Then, Subsection 5.1.1.3 tests the
ODE-Service IA with the SoapUI tool. Finally, the challenges the author faced during design,
implementation and deployment of this IA are discussed in Subsection 5.1.1.4.

5.1.1.1 ODE-Service interface design in Winery

Winery is a graphical environment which can be used to model the TOSCA Service Templates.
A TOSCA Service Template consists of an application topology as well as some management
plans. With Winery, all elements inside a TOSCA specification can be modeled and designed.
In other words, all components are stored within a repository in a CSAR format and can be
imported to and exported from the Winery web-based environment. Figure 5.1 depicts the
GUI of the Winery tool. With Winery, users can create TOSCA-based node types, relationship
types, policy types, etc., which can be used inside the application topology of a TOSCA Service
Template. The Add new button in the figure is used to generate different element types.
Following that, the created elements can be exported as a CSAR format from the Winery tool.
As shown in Figure 5.1, three buttons are used for exporting, editing and deleting the elements.
In other words, an already created CSAR file can be modified as well by importing it again
to the Winery tool[45]. In this master’s thesis, different node types with their corresponding
relationships are used in the service topology of the PANDAS bone simulation software. The
service topology of PANDAS is described in Section 5.2.1.
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Figure 5.1: Winery Graphical User Interface[45]

Aforementioned, the ODE-Service IA is one of the main IAs, which are used in the PANDAS
bone simulation service topology. As shown in Figure 5.2, this IA consist of two main opera-
tions, so-called Deploy and Undeploy, for deploying and undeploying BPEL processes to and
from Apache ODE engine remotely. The Deploy operation of the ODE-Service IA requires a
PackageName, a Path and an OdeEngineIpAddress as input variables. The PackageName

defines the name of the BPEL package, which needs to be deployed on the ODE-PGF en-
gine. Path variable is the location which this package is stored. The OdeEngineIpAddress

variable defines the IP address of the workflow engine, which is used for deploying and un-
deploying processes. Similarly, BPEL workflows can be undeployed from the engine by using
the Undeploy operation of this ODE-Service IA. This operation requires a PackageName and
an OdeEngineIpAddress as input parameters. A specific package, which is defined by the
PackageName variable, can be removed from the ODE engine with the IP address which can
be determined by the OdeEngineIpAddress variable. The interface of this IA is generated as
a WAR file by clicking on the generate Implementation Artifact button as the figure
illustrates. Then, the Winery tool creates a Maven3 project for this IA automatically. The
created Maven project can be imported into Eclipse for implementing the actual codes of
these operations. To put it another way, with the help of the Winery tool, the web service

3https://maven.apache.org/
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interface for each IA can be generated, and then the developer can implement the actual web
service from the generated interface using a development environment of his or her choice. In
the following, the process of developing the ODE-Service IA in Eclipse is described.

Figure 5.2: ODE-Service IA in Winery[45]

5.1.1.2 ODE-Service IA in Eclipse

After exporting the ODE-Service IA from the Winery tool, it can be imported into Eclipse
as a Maven project in order to design and implement the operations. Previously mentioned,
this IA is based on the Apache ODE deployment API which is an Axis2 web service. Thence,
org.apache.axis2 library4 should be included in the project as the main dependency. Other
libraries, such as org.apache.ode5, org.apache.axiom6, etc., are used to design and im-
plement this ODE-Service IA. Then, after implementing the ODE-Service IA, it should be an
integral part of the PANDAS bone simulation service topology. This IA is called inside the
first workflow of the PANDAS Service Template (see Section 4.2.1), in order to deploy BPEL
workflows on the ODE-PGF engine inside the Windows-VM. Similarly, the Undeploy function
of this IA can be used in the last workflow of the PANDAS Service Template as well (see
Section 4.2.6) to undeploy all workflows from the ODE-PGF engine.

5.1.1.3 ODE-Service IA in SoapUI

The ODE-Service IA is a WAR file which can be deployed on an application server, such
as Apache Tomcat, and then tested with the SoapUI tool. Figure 5.3 shows the GUI of the

4http://axis.apache.org/axis2/java/core/api/
5http://grepcode.com/project/repo1.maven.org/maven2/org.apache.ode/ode-tools/
6http://grepcode.com/search/?start=0&query=org.apache.axiom&entity=type
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SoapUI tool for testing the Deploy and Undeploy functions of this IA. In other words, with
the help of the SoapUI tool the input parameters of the operations as well as the SOAP
messages which are required to invoke the web service operations can be determined. These
input parameters can be used to invoke the operations inside the workflows properly. In other
words, these parameters are used to invoke the Deploy and Undeploy operations inside the
first and the last workflows of the PANDAS Service Template.

Figure 5.3: Testing ODE-Service IA with SoapUI

5.1.1.4 Challenges during implementation and deployment phases

The aforementioned section provided the main details of the implemented prototype for the
first goal of this master’s thesis, which is integrating TOSCA with the SIMPL framework.
Previously mentioned, the ODE-Service IA is one of the main IAs inside the TOSCA service
topology. As this IA is based on many libraries such as Axis2, Apache ODE, etc., there were
many challenges during the implementation phase to deal with all these dependencies and
to avoid conflicts between them as well. These issues can be solved by using the Maven
tool to ease the management of all these dependencies. Furthermore, the version of each
dependency should be consistent with the versions of other dependencies. The author faced
other challenges as well for deploying this IA on an application sever, such as Tomcat, during
the deployment phase. In other words, Apache ODE and Axis2 engines are installed inside
the Apache Tomcat application server. Accordingly, the ODE and Axis2 libraries inside this IA
had so many conflicts, according to different versions, with these libraries inside Tomcat. To
solve this issue, some libraries inside the ODE-Service IA, which have conflict with the ones
inside Tomcat and Axis2 have to be removed from the library folder of this IA. For instance,
servlet-api.jar7 and XmlSchema.jar8 libraries have to be removed from the library folder
of this IA after building the WAR file of this web service.

7https://tomcat.apache.org/tomcat-5.5-doc/servletapi/
8https://ws.apache.org/commons/XmlSchema/
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5.2 Implementation of PANDAS Service Template

This section describes the actual implementations of the prototype which moves the PAN-
DAS bone simulation software into cloud infrastructures. As already mentioned in the previous
chapters, the second goal of this master’s thesis is to elaborate, develop and implement differ-
ent variants of a TOSCA Service Template realizing a bone simulation in a cloud-native way.
The subsequent sections provide implementation details of the prototype which is designed
and implemented in this work in order to turn the PANDAS bone simulation into a SaaS
solution. A Service Template consists of an application topology as well as some management
plans. As a consequence, the application topology and the management plans of the PANDAS
Service Template are discussed in Sections 5.2.1 and 5.2.2 deliberately.

5.2.1 PANDAS service topology

Previously mentioned, the Winery, which is a graphical modelling TOSCA tool, is used in this
work in order to design the service topology for the PANDAS bone simulation software. The
Winery tool can not be used for developing the management plans inside the Service Template.
It can be used only for design and implementation of service topology. Accordingly, these
workflows are designed and implemented with other tools, such as Eclipse BPEL Designer,
and then imported to the Winery in order to have the complete Service Template. Following
that, the TOSCA service topology with all the corresponding workflows are exported from the
Winery tool as a CSAR. The OpenTOSCA environment can be used to execute this CSAR
file, which realizes the whole Service Template of the PANDAS bone simulation software.
Figure 5.4 depicts the service topology with all components and relationships between these
components, which was designed and developed for the PANDAS bone simulation in this work.

Figure 5.4: PANDAS service topology in Winery
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As Figure 5.4 illustrates, four IAs are used in the PANDAS service topology. The first one is
the ODE-Service IA which is designed and implemented in this master’s thesis in order to de-
ploy and undeploy BPEL workflows to an ODE engine remotely. The other three IAs, so-called
SSH-IA, PANDAS-WS and InstallOpenStackVM, were already implemented and only used in
this thesis. The SSH-IA is used in InfrastructureProvisioning plan and in the third variant
of PandasSoftwareProvisioning plan to run some shell commands on a remote server. The
workflows with this IA are discussed in detail in the following sections. The third IA, so-called
InstallOpenStackVM, installs a new VM with a defined operating system on the OpenStack
cloud provider. The fourth IA is the PANDAS-WS IA which is a web service that provides all
operations which are related to the PANDAS tool and are used in the workflows.

Besides the above-mentioned IAs, there exist other nodes in the service topology of the PAN-
DAS bone simulation software as Figure 5.4 depicts. The PANDAS-OperatingSystem node
inside the topology realizes a Linux operating system which is required to be installed on
top of the VM which was created with the InstallOpenStackVM IA. Previously mentioned,
a service topology shows relationships between components inside the topology as well. In
the PANDAS service topology, there is a relationship between the PANDAS-OperatingSystem
node and the InstallOpenStackVM node. The InstallOpenStackVM node realizes the created
VM inside the topology. This node has an attached InstallOpenStackVM IA. The relationship
between the PANDAS-OperatingSystem node and the InstallOpenStackVM node realizes that
an operating system is installed on top of a VM. This relationship is of type Installed-On,
as the operating system requires to be installed on top of the created VM after invoking
the appropriate operation of the InstallOpenStackVM IA. Another node in the topology is
the PANDAS node which realizes the PANDAS tool and has an attached IA, which is the
PANDAS web service. This node shows that the PANDAS tool is installed on top of the
PANDAS-OperatingSystem node. Therefore, a relationship of type Installed-On connects
this node to the PANDAS-OperatingSystem node.

Three different workflows inside the PANDAS Service Topology (so-called DataProvision-
ing, Simulation/Application and DataDeprovisioning workflows) need to be deployed on the
ODE-PGF engine inside the Windows-VM for execution. Aforementioned, the ODE-Service
IA is used to deploy these workflows to the Windows-VM remotely from the OpenTOSCA
environment. In the PANDAS service topology, it is required to include three node types
for these three different workflows. In other words, the actual implementation of these three
workflows are added to theses node types as DAs. These three nodes inside the topology are
connected to the ODE-Service IA with three Connected-To relationships. To put it another
way, these nodes have to be connected to this IA in order to be able to use the Deploy and
Undeploy operations of this IA. In the following sections, the implementation of six different
management plans, which are existed inside the Service Template of PANDAS, are discussed
deliberately.

5.2.2 PANDAS management plans

For realizing the PANDAS bone simulation software as a SaaS solution in cloud infrastructures,
six various types of plans are required, as they were discussed in Section 4.2. The overall
and complex TOSCA management plan is divided into six different workflows as this kind
of modularization is useful for the application. Previously mentioned, BPEL is used as a
workflow language to design and implement all management plans in this master’s thesis.
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Some of these workflows are deployed on the OpenTOSCA environment and executed on the
workflow engine inside OpenTOSCA. On the other hand, some other plans are deployed on the
SIMPL prototype and then executed on the ODE-PGF engine inside the SIMPL framework.
For implementing most of the management plans in this thesis, the Eclipse BPEL Designer
as the standard workflow design tool and the extended Eclipse BPEL Designer inside the
SIMPL prototype are used. For implementing the InfrastructureProvisioning and Termination
workflows, Notepad++9 was used. The following subsections define the implementation of
these management plans inside the Service Template of PANDAS in detail.

5.2.2.1 Plan number one: InfrastructureProvisioning plan

InfrastructureProvisioning plan is the first plan in the PANDAS Service Template, which is
invoked in order to prepare the main infrastructures for the PANDAS bone simulation soft-
ware in cloud environments. This workflow is executed inside the OpenTOSCA container,
and provides an essential framework for other workflows which are inside the PANDAS Service
Template. In this workflow the IAs inside the PANDAS service topology are called via a service
invoker, so-called OpenTOSCA Service Invoker 10, which was originally developed by Michael
Zimmermann as a bachelor thesis[21] at IAAS of the University of Stuttgart. Accordingly, in
implementation phase of this workflow, the BPEL operations are called via the OpenTOSCA
Service Invoker in an asynchronous way. This workflow consists of four primary tasks, which
were already discussed in Section 4.2.1, as follows: (1) creating a VM for the PANDAS bone
simulation software and its corresponding PostgreSQL database, (2) executing the required
shell commands on the created VM in order to configure the VM, (3) deploying some BPEL
workflows, which are inside the PANDAS Service Template, to the ODE-PGF engine inside
the Windows-VM and (4) registering the new IP address of the created VM on the resource
management database of the SIMPL framework.

For creating a new VM on the OpenStack cloud provider, the InstallOpenStackVM IA, which
is inside the PANDAS service topology, is used. This is an already implemented IA which
creates a new VM on the OpenStack cloud provider. All operations of this IA are called via
the OpenTOSCA Service Invoker. The actual implementation of this implementation artifact
can be found on the GitHub11. In this work, the InstallVMwithGeneratedKeypair operation
of this IA was used for creating a new VM on the OpenStack cloud provider. The SSH-IA is
another IA which is used in this work to run some shell commands on a server remotely. In
the current implementation of the PANDAS web service for example, we need to restart the
PostgreSQL database and the Apache Tomcat server after each simulation run. Otherwise,
the calculation might not be executed properly. Accordingly, the runScript operation of this
SSH-IA is used in this work to send some shell commands for these two issues. Like other
invocations, this operation is called via the OpenTOSCA Service Invoker. Listing 5.1 illustrates
the shell commands which are sent to the Linux-VM with the help of this SSH-IA.

1 # Tomcat shutting down

2 ./apache-tomcat-6.0.43/bin/shutdown.sh;

3

4 # Delay for 5s

9https://notepad-plus-plus.org/
10http://install.opentosca.org/documentation/Documents/InstallationGuide.pdf
11https://github.com/tosca-types/openstack
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5 sleep 5s;

6

7 # Solve a problem related to shared kernel memory. The sysctl command

is used to configure a shared memory. The shmmax command is used

to define the maximum size (in bytes) for a shared memory segment.

8 sudo sysctl -w kernel.shmmax=1073741824;

9

10 # Starting Tomcat and delay for 20s

11 nohup ./apache-tomcat-6.0.43/bin/startup.sh; sleep 20s;

12

13 # Restart PostgreSQL

14 sudo service postgresql restart;

Listing 5.1: Restarting Tomcat and PostgreSQL database

Aforementioned, for deploying the BPEL workflows on the ODE-PGF engine inside the SIMPL
prototype, the ODE-Service IA was designed and developed in this master’s thesis (see Section
5.1.1). As Figure 5.4 shows, one node template is used for each workflow which needs to be
deployed on the Windows-VM. The actual implementation of these workflows (see Sections
5.2.2.3, 5.2.2.4 and 5.2.2.5) are added to these nodes as DAs. In implementation phase of
this workflow, there were many problems for integrating this step with the previous steps.
In order to address the goal, a separate workflow was designed and implemented in order
to call the Deploy operation of the ODE-Service IA for these three workflows. Therefore,
the InfrastructureProvisioning workflow was divided into two workflows. The last step in
InfrastructureProvisioning workflow is registering the new IP address of the created VM on the
resource management database of the SIMPL framework. The SIMPL resource management
web service is used in this work for registering a new entry in the database. This web service
contains a function, so-called AddDataSource, to add a new data source inside the PostgreSQL
database of the SIMPL framework. By adding a new data source for the created VM, the
provisioning and deprovisioning processes of the required data sources for the PANDAS bone
simulation become feasible. Similar to the previous step, adding the AddDataSource operation
of the SIMPL web service to the InfrastructureProvisioning workflow was challenging and
problematic in the implementation phase. Therefore, this operation was added to the second
workflow, which was implemented for calling the Deploy operation of the ODE-Service IA.
In conclusion, the InfrastructureProvisioning workflow was divided into two workflows. The
first workflow creates a new VM on the OpenStack cloud provider and configures the VM
by running some shell commands. The second workflow invokes the Deploy operation of the
ODE-Service IA for the three above-mentioned workflows, which need to be deployed on the
ODE-PGF engine, and registers the IP address of the new VM to the PostgreSQL database
of the SIMPL framework as well.

5.2.2.2 Plan number two: PandasSoftwareProvisioning plan

The second plan, so-called PandasSoftwareProvisioning plan, is a simple plan which is used for
preparing a PANDAS instance, one for the mechanical and one for the chemical calculation. For
realizing the PANDAS bone simulation software as a SaaS solution in cloud infrastructures,
this plan is called two times in order to create two PANDAS instances for the mechanical
and chemical calculations, respectively. In the scope of this master’s thesis, three different
variants for this workflow were designed and implemented. The first version has exactly the
same activities which were discussed in Section 4.2.2.1. In this workflow, the IP address of the
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created VM in the first plan is used in order to copy the PANDAS source code on the right
VM. For this purpose, this IP address is received from the input parameter of the workflow
and then assigned to the PANDAS partnerLink12. The PANDAS partnerLink is a partnerLink
which was defined inside the Eclipse BPEL Designer and realizes the PANDAS web service.
Then, the Platform_Provisioning and Pandas_Source operations of the PANDAS web service
are executed on this new created VM. Figure 5.5 depicts the actual implementation of this
workflow with the help of Eclipse BPEL Designer.

Figure 5.5: Implementation of PandasSoftwareProvisioning plan - First version

As mentioned in Section 4.2.2.2, there are many configuration parameters in the PostgreSQL
database which affect the behaviour of the database server. By modifying these parameters,
different variants for the PandasSoftwareProvisioning plan can be designed and implemented.
For instance, the PANDAS web service has an operation, so-called Send_Update_Query,
which can be used to set different configuration parameters for the PostgreSQL database of
the PANDAS bone simulation tool. Figure 5.6 shows the implementation of the second variant
of the PandasSoftwareProvisioning plan. The query which is required to change these configu-
ration parameters can be received as a string from the input parameter of the workflow. Then,
the query is executed to the database server by calling the Send_Update_Query operation
of the PANDAS web service. Some of these queries, which were used in this work for testing
the second variant of the PandasSoftwareProvisioning plan, are discussed as follows.

12https://www.packtpub.com/sites/default/files/downloads/7948_AppendixA.pdf
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Figure 5.6: Implementation of PandasSoftwareProvisioning plan - Second version

The PostgreSQL database provides three SQL commands as the following, which can establish
different configuration parameters[23]:

• ALTER SYSTEM: this command can be used to change global settings of the whole
PostgreSQL server. This command is equivalent to edit the postgresql.conf file,
which was discussed in Section 4.2.2.2, and are applied across the entire database
cluster.

• ALTER DATABASE: this command allows global settings to be overwritten for a single
database within the cluster.

• ALTER ROLE: this command allows both global settings as well as the database settings
to be customized with user-specific values.

Listing 5.2 illustrate how these commands can be used in order to change different configura-
tions of the PostgreSQL database. The ALTER SYSTEM and the ALTER DATABASE commands
are used in this work to test functionalities of PostgreSQL configuration parameters of the
PANDAS database. The first code example shows the usage of the ALTER SYSTEM command.
By using the DEFAULT value, the customized setting for that specific parameter will be re-
moved from the configuration files. Customized configurations for parameters can additionally
be removed by using the RESET keyword for each parameter separately, or by using the RESET

ALL keyword for all configuration parameters[23].

1 ALTER SYSTEM SET configuration_parameter{TO|=}{value|'value'|DEFAULT}

2 ALTER SYSTEM RESET configuration_parameter

3 ALTER SYSTEM RESET ALL

Listing 5.2: ALTER SYSTEM command in PostgreSQL database [23]

81



5. Implementation

The ALTER DATABASE command changes configuration parameters for a specific database. As
shown in Listing 5.3, different names, owners, table spaces, and some configuration parameters
can be customized for each table in the PostgreSQL database system. Therefore, this offers
fine-grained, but also more complicated possibilities to change configuration parameters[23].

1 ALTER DATABASE name [ [ WITH ] option [ ... ] ]

2 where option can be:

3 CONNECTION LIMIT \emph{connlimit}

4 NAME \emph{newname}

5 NEW_OWNER \emph{newowner}

6 NEW_TABLESPACE \emph{newtablespace}

7 SET configuration_parameter { TO | = } { value | DEFAULT }

8 RESET configuration_parameter

9 RESET ALL

Listing 5.3: ALTER DATABASE command in PostgreSQL database [23]

Most of configuration parameters can be customized locally for a session with the SET13

command as well. This command has no effect on other sessions. A simple example could be
a query which can change the time zone of the database server. This query can be received as
a string from the input parameter of the PandasSoftwareProvisioning plan and then applied
to the database system. Listing 5.4 shows this query. In this example, the time zone for the
database is first set to Berkeley, California and then changed to the Italy time zone. For testing
all these SQL commands, the second variant of the PandasSoftwareProvisioning workflow was
used.

1 --set the time zone to Berkeley, California

2 SET TIME ZONE 'PST8PDT';

3

4 --set the time zone to Italy

5 SET TIME ZONE 'Europe/Rome';

Listing 5.4: Changing the time zone of the PostgreSQL database [23]

In the third version of the PandasSoftwareProvisioning plan as Figure 5.7 depicts, the SSH-IA
is used to make a connection to the PostgreSQL database of the PANDAS bone simulation
software, and then execute some queries on the server remotely. These queries can be used
to change configuration parameters of the database. Accordingly, the runScript operation of
this IA is invoked in this workflow to change database settings. The rest of the plan remains
the same as in the previous versions. All activities which were used during the implementation
phase of the third version of the PandasSoftwareProvisioning plan are exactly the same as in
Section 4.2.2.3.

13http://www.postgresql.org/docs/current/interactive/sql-set.html
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Figure 5.7: Implementation of PandasSoftwareProvisioning plan - Third version

5.2.2.3 Plan number three: DataProvisioning plan

As mentioned in Section 4.2.3, the third workflow inside the PANDAS Service Template,
so-called DataProvisioning plan, provides and prepares heterogeneous input data of the sim-
ulation in order that PANDAS instances can properly ingest these data. As the input data
sources are different for the mechanical and chemical instances, this workflow is executed
separately for each of the two PANDAS software instances. In other words, in the PANDAS
Service template which realizes PANDAS as a SaaS solution in cloud infrastructures, this
workflow is called two times. The SIMPL framework was used to design and implement differ-
ent versions of this workflow. In the scope of this master’s thesis, two different variants for the
DataProvisioning workflow were designed and implemented. These two variants can be used
to provide and prepare heterogeneous input data of both mechanical and chemical instances
of the PANDAS bone simulation software. As discussed before in Section 4.2.3.1, based on
one of the input parameters of this workflow, so-called SoftwareInstance parameter, the
correct input files in the source folder are selected for the mechanical or chemical instances.

In the first variant of this workflow, the main activities inside the workflow are exactly the
same as discussed in Section 4.2.3.1. Figure 5.8 shows the actual implementation of the first
version of this plan inside Eclipse BPEL Designer. This workflow consist of a large number
of activities, but the figure below illustrates only some first activities of the workflow for the
sake of simplicity. As Figure 5.8 depicts, this workflow needs the PANDAS web service as
a partnerLink. This partnerLink is required in order to invoke the CompilePandas operation
of this web service at the end of the workflow. The new IP address of the created VM
is assigned to the PANDAS partnerLink before invoking the CompilePandas operation. As a
result, the source code of the PANDAS tool and all the provisioned data are compiled together.
As the figure illustrates, some SIMPL variables are used in this workflow to define different
DataContainer and DataSource variables. All activities which were used in the implementation
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phase of this workflow are exactly the same as in Section 4.2.3.1.

Figure 5.8: Implementation of DataProvisioning plan - First version

Previously mentioned, the PANDAS bone simulation software requires heterogeneous data
sources as input. As shown in Figure 2.7, PANDAS requires some CSV files for its boundary
conditions input parameter. Different kinds of CSV-based files, which have a different format,
can be used as well for PANDAS instances. These CSV files require a coordinate transformation
in order to be appropriate for PANDAS instances as an input parameter. Therefore, the second
version of the DataProvisioning workflow uses an additional web service in order to transform
the coordination of these CSV files. For this purpose, a JAX-WS was designed and implemented
in this master’s thesis for transforming the coordination of the boundary conditions CSV files.
As Figure 5.9 depicts, the transform operation of this web service requires six different input
variables. In other words, it needs references to three CSV files (CSV files for bone, joint and
muscle) as input parameters. Based on these CSV files and two string arrays for the muscles
and target header, it creates some other CSV files as output. The target directory for storing
the generated CSV files should be passed as an input to this operation. For example as the
figure shows, the muscle array consists of twelve strings which define the names of different
muscles inside a human body. Based on these twelve strings inside the array, twelve CSV files
for the muscles and one CSV file for the joint are created as output of calling the transform
operation.
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Figure 5.9: Testing CoordinateTransformer web service with SoapUI

Following that, the second version of the DataProvisioning plan can be designed and imple-
mented. As figure 5.10 illustrates, this version uses the transform operation of the above-
mentioned web service in order to transform the coordination of the boundary conditions CSV
files. Then, all other required data sources and theses CSV files can be transferred to the
Linux-VM. As Figure 4.9 in the previous chapter shows, all these required files and variables
for calling the transform operation can be received in the workflow as input parameters. As
a consequence, this operation is invoked inside the workflow instead of reading the already
created boundary conditions CSV files from the local directory. The rest of the workflow for
provisioning and transferring other data sources to the Linux-VM remain the same as in the
previous version.
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Figure 5.10: Implementation of DataProvisioning plan - Second version

5.2.2.4 Plan number four: Simulation/Application plan

The fourth plan, so-called Simulation/Application plan, realizes the actual simulation of the
PANDAS bone simulation tool. The main activities of this workflow are the same as mentioned
in Section 4.2.4. This workflow calculates the simulation for both mechanical and chemical
PANDAS instances at the same time. Accordingly, this workflow is executed only once inside
the PANDAS Service Template. As Figure 5.11 illustrates, this workflow contains the PANDAS
web service as a partnerLink in order to invoke different operations of this web service. The IP
address of the created VM in the first plan is received as an input parameter of the workflow
and then assigned to the PANDAS partnerLink in order to execute all the activities on the
new created VM. There are two important issues to be considered inside this workflow:

1. The calculation of the instances lasts something about half an hour. But the web service
operation accesses PANDAS in an asynchronous manner and is thus finished after one
minute. As a workaround, a BPEL wait activity which waits for 45 minutes was added
after calling the Calculate_Pandas operation in order that everything works properly.

2. It is more efficient to implement the PANDAS web service in a way which calls Exe-
cute_Command and Stop_Pandas operations separately for each PANDAS instance.
But, the current version of PANDAS calls the Execute_Command as well as the
Stop_Pandas operations only once for both instances.
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Figure 5.11: Implementation of Simulation/Application plan

5.2.2.5 Plan number five: DataDeprovisioning plan

The fifth plan, so-called DataDeprovisioning plan, returns the result data of PANDAS instances
back to users. In other words, in the DataDeprovisioning workflow the calculation results are
transferred from the Linux-VM, which was installed in the first plan, to the Windows-VM in
order to save the calculations in an appropriate folder. In the scope of this master’s thesis, five
different approaches for transferring the results of the calculation to the Windows VM were
discussed conceptually in the previous chapter. In the implementation phase of this workflow,
five various versions were implemented and tested based on the approaches which were dis-
cussed in the previous chapter. It is important to note that in Section 4.2.5, five different
approaches for transferring data from the Linux-VM to the Windows-VM were discussed con-
ceptually. In the implementation phase, five different variants were designed and implemented
which are not totally the same as the variants in the previous chapter. All these variants are
discussed in detail as follows. For implementing all these different variants, the SIMPL frame-
work with extended Eclipse BPEL Designer was used.

In the first variant of this workflow, one SIMPL TransferData activity is used to transfer the
outcome of the PANDAS calculation from the PandasTecplotOutputFolder to an appropriate
folder in the Windows-VM on the OpenStack cloud provider. All activities in this version are
exactly the same as discussed in Section 4.2.5.1. The PandasTecplotOutputFolder folder is a
folder which was created in the DataProvisioning plan for storing the results of the calculation.
As Figure 5.12 shows, this simple workflow contains two DataSource Reference variables, so-
called DataSourcelocal and DataSourceRemote. The DataSourcelocal variable is of type Unix

Local, and the DataSourceRemote variable is of type Windows Local as we need to transfer
data from a Linux-VM to a Windows-VM.
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Figure 5.12: Implementation of DataDeprovisioning plan - First version

In the second version of the DataDeprovisioning workflow, instead of transferring PANDAS
results from the PandasTecplotOutputFolder folder to the Windows-VM, a query is sent to
the PostgreSQL database of PANDAS in order to extract the data. By executing this query,
the appropriate results are copied to one or more specific files. Then, the next activity in this
workflow transfers these files to the Windows-VM by using a TransferData activity of the
SIMPL prototype. It is important to note that the second version of the DataDeprovisioning
workflow, as shown in Figure 5.13, was implemented exactly the same as discussed in Section
4.2.5.2. Different versions of this workflow can also be provided by changing the query which
is sent to the PostgreSQL database. In the second version, the query in Listing 5.5 copies the
results of the calculation for a specific PANDAS instance to a specific file. To put it another
way, the simulation ID of a PANDAS instance can be received from an input parameter of
the workflow, and then the appropriate data based on the query is retrieved from two specific
tables, so-called gausspunkte and dofs, in the PostgreSQL database. The results of the query
is copied to some text files, and then these text files are transferred to the Windows-VM. By
executing this workflow, the calculation results for one PANDAS instance can be retrieved
from the PostgreSQL database.

1 COPY (SELECT datavalu, stepnr, elementnr, name, gaussnr FROM

gausspunkte WHERE sid=$sid) TO alldata_export1.txt;

2 COPY (SELECT datavalue,stepnr, nodenr, dofnr FROM dofs WHERE sid=$sid)

TO alldata_export2.txt;

Listing 5.5: Query for the second version of DataDeprovisioning plan
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Figure 5.13: Implementation of DataDeprovisioning plan - Second version

The third version of the DataDeprovisioning workflow in the implementation phase is not the
same as the third version which were discussed in Section 4.2.5.3. In other words, this variant
as well as the following variants of the DataDeprovisioning workflow in this chapter can be
considered simply as other variants of the second version, which was discussed in Section
4.2.5.2. As Listing 5.6 depicts, instead of using text files for copying the results of the query,
some CSV files are used. To put it another way as Figure 5.14 illustrates, the simulation ID
of a PANDAS instance is received from an input parameter of the workflow. Then, the query
is executed and the results are copied to the CSV files. As the listing below illustrates, some
different options for the CSV files can be determined. To clarify, with the DELIMITER keyword
the delimiter for the CSV files can be customized. In this query, the delimiter is defined as a
comma.

1 COPY (SELECT value, stepnr, elementnr, name, gaussnr FROM gausspunkte

WHERE sid=$sid) TO alldata_export1.csv WITH DELIMITER ',' CSV

HEADER;

2

3 COPY (SELECT value,stepnr, nodenr, dofnr FROM dofs WHERE sid=$sid) TO

alldata_export2.csv WITH DELIMITER ','

4 CSV HEADER;

Listing 5.6: Query for the third version of DataDeprovisioning plan
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Figure 5.14: Implementation of DataDeprovisioning plan - Third version

In the fourth version of the DataDeprovisioning workflow as Figure 5.15 depicts, the results
of the calculation can be retrieved from the database for both PANDAS instances, which are
mechanical and chemical instances. The simulation IDs for both instances are received from
the input parameters of the workflow, and based on the query the results are copied to some
CSV files. Following that, these CSV files are transferred to the Windows machine. Listing
5.7 illustrates the query which was used for this version.

1 -- For Mechanical instance

2 COPY (SELECT value, stepnr, elementnr, name, gaussnr FROM gausspunkte

WHERE sid=$sid_Mechanical) TO alldata_Mechanical_Gausspunkte.csv

WITH DELIMITER ',' CSV HEADER;

3 COPY (SELECT value,stepnr, nodenr, dofnr FROM dofs WHERE sid=

$sid_Mechanical) TO alldata_Mechanical_dofs.csv

4 WITH DELIMITER ',' CSV HEADER;

5

6

7 --For Chemical instance

8 COPY (SELECT value, stepnr, elementnr, name, gaussnr FROM gausspunkte

WHERE sid=$sid_Chemical) TO alldata_Chemical_Gausspunkte.csv

9 WITH DELIMITER ',' CSV HEADER;

10 COPY (SELECT value,stepnr, nodenr, dofnr FROM dofs WHERE sid=

$sid_Chemical) TO alldata_Chemical_dofs.csv

11 WITH DELIMITER',' CSV HEADER;

Listing 5.7: Query for the fourth version of DataDeprovisioning plan
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Figure 5.15: Implementation of DataDeprovisioning plan - Fourth version

In the fifth version of the DataDeprovisioning workflow as Figure 5.16 depicts, instead of using
CSV files, some text files are used for storing the results. In other words, the calculation results
for both PANDAS instances are retrieved from the PostgreSQL database, and then stored in
some text files. Following that, similar to the previous versions, these files are transferred to
the Windows-VM. Listing 5.8 illustrates the query for this version.

1 -- For Mechanical instance

2 COPY (SELECT value, stepnr, elementnr, name, gaussnr FROM gausspunkte

WHERE sid=$sid_Mechanical) TO alldata_Mechanical_Gausspunkte.txt;

3 COPY (SELECT value,stepnr, nodenr, dofnr FROM dofs WHERE sid=

$sid_Mechanical) TO alldata_Mechanical_dofs.txt ;

4

5 --For Chemical instance

6 COPY (SELECT value, stepnr, elementnr, name, gaussnr FROM gausspunkte

WHERE sid=$sid_Chemical) TO alldata_Chemical_Gausspunkte.txt; COPY

(SELECT value,stepnr, nodenr, dofnr FROM dofs WHERE sid=

$sid_Chemical) TO alldata_Chemical_dofs.txt;

Listing 5.8: Query for the fourth version of DataDeprovisioning plan
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Figure 5.16: Implementation of DataDeprovisioning plan - Fifth version

5.2.2.6 Plan number six: Termination plan

In the last plan, so-called Termination plan, all components inside the PANDAS service topol-
ogy should be removed from cloud infrastructures, and terminated as well. This workflow
is executed inside the OpenTOSCA container and similar to the InfrastructureProvisioning
workflow, the IAs are called via the OpenTOSCA Service Invoker in an asynchronous way.
This workflow consists of three primary tasks: (1) terminating the created VMs inside the
PANDAS service topology, (2) undeploying the BPEL workflows from the ODE-PGF engine
of the Windows machine and (3) removing the created data source from the PostgreSQL
database of the SIMPL framework.

The termination of the VMs (only one VM in this work) can be done via the TerminateVMby-
Serverid operation of the InstallOpenStackVM IA in the PANDAS service topology. This part
of the workflow was already implemented before and only used in this master’s thesis. The
actual implementation of this part can be found on GitHub14. In the next step, the Undeploy
function of the ODE-Service IA which was developed in this work is used to undeploy some
workflows from the ODE-PGF engine of the SIMPL framework. Integrating this step into the
previous step was challenging and problematic in the implementation phase. In order to ad-
dress the goal, a separate workflow which calls the Undeploy operation of the ODE-Service IA
for three workflows [DataProvisioning, Simulation/Application and DataDeprovisioning ] was
designed and implemented. The third step in the Termination workflow is removing the cre-
ated data source from the PostgreSQL database of the SIMPL framework. Like the previous
step, integrating this step to the main Termination workflow had many problems. Therefore,
this step was added to the second workflow, which was created for the second step [unde-
ploying plans from the ODE-PGF engine]. In other words, the DeleteDataSource operation
of the SIMPL resource management web service is invoked in the second workflow to delete
the previously created entry from the PostgreSQL database. In conclusion, similar to the first

14https://github.com/CloudCycle2/Enterprise_CSAR
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workflow, which was discussed in Section 5.2.2.1, the Termination workflow was divided into
two workflows. The first workflow deletes the created VM from the PANDAS service topology,
and the second workflow undeploys the plans and then removes the created data source from
the PostgreSQL database of the SIMPL framework.

5.2.2.7 Challenges during implementation and deployment phases

Previously mentioned, the TOSCA Service Template consists of two main concepts : (1)
application topology and (2) management plans. The Winery tool is a graphical tool which
can be used to design and develop the topology of a TOSCA Service Template. But, for
implementing the management plans inside the Service Template, there is not so far any
designer like Eclipse BPEL Designer to design and implement the TOSCA-based management
plans. Accordingly, all the steps for implementing these plans need to be done manually. In
other words, for implementing the first and the last workflows which need to be executed inside
the OpenTOSCA environment and the operations are invoked via the OpenTOSCA Service
Invoker, the author faced lots of challenges at the implementation phase. In other words, using
only Notepad++ for writing these workflows are problematic. As it will be discussed later in
Chapter 7 Section 7.2.3, one of the future work of this master’s thesis can be conducted by
the extension of the Winery tool with a graphical editor for developing the TOSCA-based
management plans.

5.2.3 The overall PANDAS Service Template

As mentioned already, a Service Template consists of an application topology and some man-
agement plans. Similarly, the PANDAS Service Template consists of an application topology,
which was discussed in Section 5.2.1, and several management plans, which were discussed in
Section 5.2.2. Previously mentioned, the overall and complex TOSCA management plan for
the PANDAS bone simulation software is divided into six different workflows as this kind of
modularization is useful for the application. Therefore, the PANDAS Service Template has an
application topology and six different types of management plans. To simulate theses man-
agement plans as an automated overall plan, a SoapUI test case15 can be used. This test case
can be part of a test unit and consists of several test steps. This kind of testing, so-called
functional testing, tests the functional behaviour of the management plans which are executed
one after each other. For validating the responses of this test case, several assertions16 can
be added to the test case. There are different types of assertions in SoapUI, such as SOAP
Fault, XPath17 Match, XQuery18 Match, Not SOAP Fault, etc. If all assertions are successful,
the test case responses are valid. In the PANDAS Service Template, the test case consists
of an appropriate order for all management plans. In other words, the test case starts by
executing the first workflow, which is InfrastructureProvisioning plan. Then, the execution
continues to the second plan, which is PandasSoftwareProvisioning plan. Following that, the
third workflow, which is DataProvisioning plan is executed. The next workflow in this test case
is Simulation/Application workflow. Then, the DataDeprovisioning plan is executed. Lastly,
the test case can be completed by executing the Termination plan. It is important to note
that, all the input and output parameters, which are required for each workflow, have to be

15http://www.soapui.org/getting-started/functional-testing.html
16http://www.soapui.org/functional-testing/validating-messages/getting-started-with-assertions.html
17http://www.w3schools.com/xpath/
18http://www.w3schools.com/xquery/
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defined in the test case. As a result, the overall functionality of the PANDAS Service Template
can be tested in this way. As it will be discussed in Section 7.2.4, running choreographies[3]
for the PANDAS Service Template is a better approach and can be conducted as a future
work.
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Chapter 6

Discussion

This chapter discusses the significant arguments which were set up in Chapter Introduction.
Section 6.1 restates the general goals and motivations of this master’s thesis which is followed
by a statement about whether or not, and how much, our findings address these goals. In Sec-
tion 6.2, the lessons which were learned in this master’s thesis with respect to the approaches
and contributions were discussed. Section 6.3 discusses whether and how the approach which
is used in this work for the PANDAS bone simulation software can be generalized to other
simulation examples, other simulation software and for developing other variants of a TOSCA
Service Template. Furthermore, this chapter discusses briefly about using other cloud providers
for the PANDAS Service Template instead of OpenStack, which is used in this master’s thesis.

6.1 Evaluation of the findings regarding goals and motiva-

tions

The following section evaluates the approaches presented in this master’s thesis with regard to
the goals and motivations specified in the Introduction chapter. The general goals of this
thesis are: (1) moving traditional and on-premise simulation applications, namely PANDAS,
into cloud infrastructures, (2) automating the deployment and management of applications
in cloud environments, (3) dealing with huge and heterogeneous data sources in simulation
applications and (4) integration of the OASIS TOSCA standard with the SIMPL framework.

6.1.1 Mapping traditional applications into cloud infrastructures

Moving traditional and on-premise applications into cloud infrastructures is turning to one
of the main challenges in IT organizations over the last decades. Virtual resources instead of
physical resources and pay per use capability for resources in the cloud are the two most impor-
tant and biggest advantages of cloud-based applications. Having virtual resources for storage,
processing, etc., removes the cost which is required for providing technology infrastructures in
traditional solutions. Most of complex applications, especially simulation applications, depend
on a large number of software and servers. Moving applications into cloud infrastructures
eliminates the cost for data storage, software updates, management, etc., by providing virtual
resources instead of physical resources for users. Many solutions have been discovered in the
last few years for mapping traditional applications into cloud environments. The main goal of
this master’s thesis is turning the PANDAS bone simulation software into cloud infrastruc-
tures in order to benefit from the advantages of cloud-based applications. For this purpose,
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the TOSCA standard and the SIMPL framework are used in this thesis. As the result, different
variants of a TOSCA Service Templates which realize the PANDAS bone simulation in cloud
environments as a SaaS solution are designed and implemented.

In this master’s thesis, the PANDAS bone simulation software has been moved to cloud
infrastructures with the help of TOSCA and SIMPL. A new VM is created on the OpenStack
cloud provider. Then, the PANDAS source code and its related PostgreSQL database can be
installed on the created VM. Following that, the required data sources are provisioned for
the PANDAS bone simulation software and the actual simulation for two PANDAS instances
(mechanical and chemical) are executed on that machine. Then, the results of the calculations
are deprovisioned to another machine for later usage. Finally, the created VM is removed from
the OpenStack cloud provider. As the result, the goal of mapping the traditional PANDAS
bone simulation into cloud infrastructures has been reached.

6.1.2 Automating the deployment and management of cloud-based appli-

cations

Composite cloud-based applications consist of various and distributed components. The man-
ual deployment and management of these components is an expensive and tedious process.
By automating the deployment and management of these components, the provisioning of
software instances for new customers gets cheaper and faster in cloud infrastructures. Most of
cloud computing advantages, such as elasticity, pay per use, etc., are significantly dependant
on the degree of automation in deployment and management of cloud-based applications.
Various approaches have been discovered in the state of the art for automating the deploy-
ment and management of composite applications in cloud infrastructures.

In this master’s thesis, the OASIS TOSCA standard is used for automating the deployment
and management of the PANDAS bone simulation software. Previously discussed in Section
2.2, a TOSCA Service Template consists of an application topology and management plans.
TOSCA management plans fulfill the automation goal. The management plans are described
via workflow-based languages, such as BPEL or BPMN, which describe all the detailed steps
for executing and managing application components. These workflows can be started and ex-
ecuted automatically by receiving an external message. As the result, all the required steps for
deploying and managing different components of a composite cloud-based application are fully
automated without any human interventions. As the result of this master thesis, different vari-
ants of a PANDAS Service Template, which consists of one service topology and six different
types of management plans, were designed and implemented. As mentioned above, with the
help of these management plans, the deployment and management of the PANDAS Service
Template is automated in the cloud. In other words, these management plans can be executed
automatically one after each other. As discussed in Section 5.2.3, in the current implementa-
tion of the PANDAS Service Template, a SoapUI test case which defines an appropriate order
for the management plans and then executes them one after each other is used to automate
all the steps of moving PANDAS into cloud infrastructures. As it is discussed in Section 7.2.4,
running choreographies[3] for the PANDAS Service Template is a better approach and can be
conducted as a future work. With choreographies, running all the management plans inside
the Service Template are automated and each workflow calls its subsequent workflow in an
appropriate order. Therefore, there is no need to define a SoapUI test case for automating the
overall workflow of the PANDAS Service Template.
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6.1.3 Data management and data provisioning of simulation applications

in the cloud

A large number of applications, particularly simulation applications, deal with huge, heteroge-
neous and distributed data sources these days regarding to the world of information explosion.
Finding an appropriate format for data sources and dealing with all the required data transfor-
mations lead to a large number of complexities for data provisioning and data management in
the cloud for simulation applications. Having a generic access to many kinds of data sources,
frees scientists and engineers to deal with the low level details of data sources.

The required heterogeneous data sources for a PANDAS bone simulation software are defined
in Figure 2.7. Consequently, a generic approach for data management and data provisioning of
the PANDAS bone simulation in cloud infrastructures is demanded. The SIMPL framework is
used in this master’s thesis in order to address this goal. The SIMPL framework fulfills this goal
by extending the BPEL workflow language with some DM activities and DM patterns. Data
provisioning and data deprovisioning workflows for the PANDAS bone simulation software
were designed and implemented with the SIMPL framework in this master’s thesis. As a
result, users of PANDAS do not need to deal with the low level information of each data
source. Data provisioning and data deprovisioning of the PANDAS bone simulation in the
cloud benefits from an efficient approach to access data by using the SIMPL prototype. The
two implemented versions of the DataProvisioning plan, which were discussed in Section
5.2.2.4, do not provision all different types of data sources for the PANDAS bone simulation
software, as Figure 2.7 shows. In other words, all different types of data sources in Figure 2.7,
which are text-based, XML-based, CSV-based and SQL-based, are not provisioned completely
in these workflows. These workflows provision some kinds of text-based and XML-based data
sources for the PANDAS bone simulation software. As it is discussed in Section 7.2.2, other
variants for DataProvisioning workflow, which provision all types of data sources which are
required by PANDAS, can be designed and implemented as a future work.

6.1.4 Integration of TOSCA with SIMPL

The OASIS TOSCA standard and the SIMPL framework are both based on workflow lan-
guages, such as BPEL. By integrating these two standards, cloud-based applications can ben-
efit from an integrated support. To put it another way, a generic approach for data provisioning
and data management of cloud-native applications with the SIMPL framework becomes an
integral part of the TOSCA standard definition. This goal is fulfilled by the ODE-Service IA
which was designed and implemented in this work. The ODE-Service IA is an integral part
of the TOSCA service topology in order to combine the TOSCA management plans with
the SIMPL workflows. The management plans of the TOSCA Service Template, realizing the
PANDAS bone simulation software in the cloud, are deployed on the appropriate workflow
engine for running and execution with the ODE-Service IA. Some workflows inside the PAN-
DAS Service Template require an extended workflow engine for execution. Therefore, this
ODE-Service IA uses the Apache ODE deployment API in order to deploy and undeploy the
plans to and from an extended workflow engine remotely. As the result, the TOSCA Service
Template can consist of TOSCA-based as well as SIMPL-based (workflows which consist of
some DM activities or DM patterns) workflows. Based on the activities inside the workflows,
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the appropriate engine is selected. This approach provides a generic solution of using SIMPL
advantages inside the OpenTOSCA run-time environment.

The goal of integrating the TOSCA standard and the SIMPL framework has been reached
via this ODE-Service IA. But, this approach does not deploy and undeploy workflows auto-
matically. In other words, as discussed in Section 4.3.5, one problem in this approach is the
lack of automation. The deployment and undeployment processes of the workflows inside the
PANDAS Service Template are not automated without any human interventions. Developers
need to determine the workflows which require an extended ODE engine for their executions
in advance. Then, the Deploy operation of this ODE-Service IA is called for these workflows
inside the first plan. In a similar way, the Undeploy operation of this IA is invoked in the last
plan of the PANDAS Service Template for the workflows which need to be removed from the
ODE-PGF engine. As it is discussed in Section 7.2.1, an optimized approach for this IA which
deploys and undeploys workflows automatically can be designed and implemented in future.

6.2 Lessons learned with respect to the approaches and con-

tributions

In this master’s thesis, the traditional and on-premise PANDAS bone simulation software is
moved into cloud infrastructures. The OASIS TOSCA standard is used in this work in order to
automate the deployment and management of the PANDAS bone simulation software in the
cloud. As PANDAS requires distributed and heterogeneous data sources, the SIMPL framework
is used for data provisioning and data management in this work. In this thesis, an efficient
approach for integrating SIMPL with TOSCA was developed and implemented. Moreover,
different variants of a TOSCA Service Template realizing the PANDAS bone simulation in
the cloud were elaborated, developed and implemented. This Service Template provides the
corresponding service topologies, as well as management plans which turn PANDAS into a
fully integrated SaaS solution. This section discusses the author’s lessons learned in this thesis
with respect to the approaches, contributions and implementations. Some of these lessons are
listed as follows:

• Mapping the PANDAS bone simulation software into cloud infrastructures in order to
benefit from the advantages of cloud-based applications is a beneficial decision.

• Using the OASIS TOSCA standard for automating the deployment and management of
the PANDAS bone simulation software is an efficient approach. Therefore, the assump-
tions about TOSCA, which the author made in Section 3.2 are correct. In other words,
the TOSCA standard is an easy and straightforward approach. Working with the Winery
tool for developing the service topology as well as using the BPEL workflow language for
implementing the management plans provide simplicity for developers. TOSCA-based
applications are portable from one cloud provider to another cloud provider. Therefore,
developers are not restricted in choosing a cloud provider.

• On the other hand, the Winery tool does not support graphical editors, such as Eclipse
BPEL Designer, for developing the management plans inside TOSCA Service Templates.
Consequently, it is problematic to develop the management plans without help of editors.
As it is discussed in Section 7.2.3, extending the Winery tool to have an editor for
developing TOSCA management plans can be conducted as a future work.

• Using the SIMPL framework as a generic approach for data management and data pro-
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visioning of the PANDAS bone simulation software in cloud infrastructures is a good
decision. As a consequence, the assumptions in Section 3.3 about SIMPL with respect
to other approaches for data provisioning and data management are correct. In reality,
the SIMPL framework frees developers to deal with the low-level details of data sources.
Therefore, the author believes that using the SIMPL framework for extending the pre-
sented approach in this thesis, as it is discussed in Section 6.3, is a good choice. In other
words, SIMPL is a good choice in future for developing other variants of DataProvision-
ing and DataDeprovisioning workflows inside the PANDAS Service Template. Therefore,
as it is discussed in Section 7.2.2, future work for developing other variants of a TOSCA
Service Template for the PANDAS bone simulation software can be conducted with the
help of SIMPL as a data provisioning and data management tool.

• It is a little bit challenging in the beginning of working with the SIMPL framework. At
first, developers may think that SIMPL provides many complexities instead of simplifying
the data management and data provisioning processes. But, after working a little bit
with this framework, developers can make sure that SIMPL is a good choice for data
management and data provisioning processes.

• The ODE-Service IA is evaluated as a good approach for integrating TOSCA and SIMPL
from the author’s point of view. As discussed in Section 4.3.5, this approach has some
advantages and limitations. The author believes that optimizing this approach in future
provides the generic SIMPL-based approach for data provisioning and data manage-
ment of cloud-native applications as an integral part of the TOSCA standard definition.
Therefore, as it is discussed in Section 7.2.1, optimizing this approach can be conducted
as a future work.

6.3 Generalization of the presented approach

This section investigates generalization capabilities of the approach proposed in this master’s
thesis from four different aspects: (1) generalization capabilities for other simulation exam-
ples, (2) generalization capabilities for other simulation software instead of PANDAS, (3)
generalization capabilities for developing other variants of a TOSCA Service Templates and
(4) generalization capabilities of the proposed approach with respect to other cloud providers
instead of OpenStack. As mentioned already, the overall TOSCA management plan is divided
into six different workflows which realize the PANDAS bone simulation software in cloud in-
frastructures. Accordingly, the subsequent sections evaluate generalization capabilities for each
workflow from the above-mentioned points of view. In Subsection 6.3.1, generalization capa-
bilities of the presented approach for other simulation examples are discussed. Subsection 6.3.2
investigates generalization capabilities of the proposed approach for other simulation software
instead of PANDAS. The discussion in Subsection 6.3.3 is centered around the development of
other variants of a TOSCA Service Template for PANDAS bone simulation software. Finally,
Subsection 6.3.4 discusses briefly about generalizing the approach proposed in this master’s
thesis with respect to other cloud providers instead of OpenStack.

6.3.1 Generalization of the presented approach for other simulation ex-

amples

This section assesses the generalization capability of each workflow inside the PANDAS Service
Template for other simulation examples, which need to be calculated by PANDAS (e.g., a
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different bone to be simulated or different boundary conditions). To put it another way,
the question is what happens when the PANDAS bone simulation uses different simulation
problems for its calculation from the one which was used in this master’s thesis. Basically,
the PANDAS software can calculate other simulations than the bone simulation as well. For
example, this can also concern other tissues such as cancer. PANDAS was originally developed
to simulate some problems from civil engineering or structural mechanics. PANDAS is based
on the, so-called, Theory of Porous Media[9] which may be used for both civil engineering and
tissue simulations. From a conceptual point of view, in case of other simulation examples as
mentioned above, it is required to provide different input data (as these input data describe
the problem to be simulated). Furthermore, it is necessary sometimes to change the service
or plan that is used for the calculation (in case the numerical scheme needs to be adjusted).
Besides, some more sophisticated simulation examples might also require different topologies
for the PANDAS environment (for example even more PANDAS instances that are involved in
one distributed calculation). It is important to note that all the following discussions neglect
these kinds of simulation examples. Some workflows are generic enough and do not need any
changes in order to be adopted to support other simulation examples, and some are not on
the other hand. The subsequent sections evaluate generalization capabilities of six different
workflows, which were discussed in Section 4.2, in detail.

6.3.1.1 InfrastructureProvisioning plan

This workflow installs the required VMs (only one VM in this work) on the OpenStack cloud
provider, in order to realize the PANDAS bone simulation software in cloud infrastructures
as a SaaS solution. The next step in this workflow, deploys some other workflows on the
ODE-PGF engine of the Windows-VM. Then, the new IP address of the created VM is added
to the resource management database of the SIMPL framework. This workflow is executed
on the OpenTOSCA environment. If PANDAS requires another simulation example for its
calculation, this workflow can be adopted easily with the new simulation example without any
modifications. In other words, the main steps in this workflow and the artifacts the workflow
provisions with these steps are necessary for all other simulation examples, which are simulated
by PANDAS. As the result, this workflow can work perfectly with other simulation examples.
Previously mentioned, developing TOSCA-based workflows are challenging as there does not
exist any graphical tool like Eclipse BPEL Designer to develop and implement these work-
flows. Accordingly, all the steps inside the TOSCA-based workflows need to be implemented
manually without the help of graphical editors, and the debugging process is really problem-
atic. Therefore, basically it is good that this workflow is generic enough for other simulation
examples. Because it was implemented in this master’s thesis and no one else needs to bother
with all these issues mentioned above.

6.3.1.2 PandasSoftwareProvisioning plan

PandasSoftwareProvisioning workflow prepares a PANDAS instance. In other words, the work-
flow creates a unique ID and a basic directory structure for the PANDAS software instances,
and then unpacks the archive of the PANDAS source code to the basic directory structure.
To the greatest extent, this workflow is independent of simulation examples. It only deals
with the number of instances which are required for a simulation. To clarify, in this master’s
thesis, two PANDAS instances are required, one for the the mechanical calculation and one
for the chemical. For this purpose, this workflow is executed two times inside the PANDAS
Service Template to realize two PANDAS instances in cloud environments. In other simulation
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examples, this workflow can be executed less or more times based on the defined simulation
problem. Basically, the main steps within this workflow do not need any changes to be adopted
to other simulation examples, and can work perfectly with other simulation examples as well.

6.3.1.3 DataProvisioning plan

This workflow provides and prepares heterogeneous input data of the simulation in order that
PANDAS can properly ingest these data. As mentioned already, this workflow consists of
three phases. In the first phase, some sub-folders are created in the root folder of the rele-
vant PANDAS software instance. As all other simulation examples require some folders and
directories for storing all input data sources, this phase can be adopted easily by any simu-
lation examples without any changes. The second phase, provides the necessary data which
describe the simulation example. This phase is highly dependant on a simulation example,
since a simulation example or a simulation problem is mostly described by these data which
need to be provisioned. In case these input data are different because of a different simulation
problem, this phase of the workflow requires the most changes in order to be accepted by a
specific simulation example. As shown in Figure 2.7, PANDAS requires heterogeneous data
sources. These data sources can be different in various simulation examples. For instance, if
PANDAS simulates other simulation examples than bone simulations, the text-based files in
Figure 2.7 which define bone shapes are not required anymore. The other example could be
the second variant of DataProvisioning workflow, which were discussed in Section 4.2.3.2.
This variant defines another simulation example which requires different CSV files from the
first variant. Therefore, these CSV files are different and this workflow needs to be adopted
to provision the new CSV files. These are only some simple examples, but there might be
even more sophisticated examples which require different data sources. The third phase of
this workflow configures PANDAS (e.g. some numerical configurations) in order that it can
properly calculate the simulation outcome. Following that, the actual compilation of the PAN-
DAS source code with some of the input data, which is transferred in the second phase of
this workflow, is the final step of the third phase in this plan. Similar to the second phase, the
first part of this phase, which configures some numerical configurations, needs to be adopted
for the new simulation example. In other words, different simulation examples, which simulate
structure changes within a human bone, may require different configuration parameters for
their calculation. Subsequently, the files or directories which determine these configuration
parameters may differ from one simulation example to another simulation example. But on
the other hand, the second part of the third phase, which compiles the PANDAS source code
with some of the input data, does not need to be adopted to other simulation examples.

Aforementioned, in this master’s thesis, the SIMPL framework was used for developing all
variants of DataProvisioning workflow. The SIMPL framework defines some DM activities,
which were discussed in Section 2.5.1, and some DM patterns. In other words, these activities
and the pattern-based approach in SIMPL ease workflow development even more, in particular
for scientists. The GUI of the SIMPL framework, with extended Eclipse BPEL Designer,
is straightforward and easy to use. The users may have some challenges at the beginning
of using this framework. But, everything becomes straightforward after working a little bit.
Consequently, developing or adopting different variant of DataProvisioning workflow with the
new simulation examples would not require lots of effort.
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6.3.1.4 Simulation/Application plan

This workflow realizes the actual simulation calculation for PANDAS bone simulation in-
stances. First, PANDAS instances (in this work, only two instances) are started at the same
time. After starting the PANDAS instances, this workflow invokes the Execute_Command
operation of the PANDAS web service in order to send some commands to both instances at
once. Conceivably, these commands may not be the same for different simulation examples
and need to be adopted for the new simulation example. Following that, the actual calcula-
tion for instances is started. It is not possible to make sure that this step, which performs the
calculation, is generic enough. In other words, there might be different kinds of calculation
schemes that might need different web service operations implementing these schemes. The
last step of the Simulation/Application workflow stops the instances simultaneously. This step
is generic enough, and do not need any changes for the new simulation examples in case these
examples again rely on exactly two PANDAS software instances. On the assumption that the
new simulation example is based on more or less instances for its calculation, the PANDAS
web service implementation as well as the operations of this workflow need to be adopted
with the new one. To put it another way, the current implementation of the PANDAS web
service works only for two instances. If the new simulation example requires more instances
for its calculation, the implementation of the PANDAS web service needs to be adopted with
the new requirements.

6.3.1.5 DataDeprovisioning plan

This workflow returns the result data of one or more PANDAS instances back to users. In
this master’s thesis, different variants of the DataDeprovisioning workflow were designed and
implemented with the help of the SIMPL framework. In the first variant of this workflow for
instance, results are transferred from one folder on the Linux-VM to an appropriate folder on
the Windows-VM. If other simulation examples require all the generated data to be transferred
to the Windows-VM, this variant of the workflow works fine with other simulation examples
as well. The other variants, query data from the PostgreSQL database and then transfer them
to the Windows-VM. Based on the requirements which exist for new simulation examples,
these workflows may need some changes. To clarify, the query which is used for fetching data
from the PostgreSQL database of PANDAS, may vary for the new simulation examples. In
other words, the data structure of the corresponding database tables can be different in other
simulation examples. For example, the tables or their related columns may differ in other
simulation examples. It might be required to join different tables first, and then retrieve the
appropriate data. As a result, the queries which were used in the implementation phase of
different variants of this workflow (see Section 5.2.2.5) may need to be adopted to the new
simulation examples. Similar to the DataProvisioning plan, working with SIMPL is convenient
and straightforward. Besides, DM activities and DM patterns inside the SIMPL framework ease
the workflow development even more. Therefore, adopting the DataDeprovisioning workflow
with the new simulation examples would not be challenging, and most of the implementations
of the required workflow can be derived from the old versions.

6.3.1.6 Termination plan

The last plan terminates the VMs, which are created in the first workflow. In this master’s
thesis, only one VM is terminated in this plan. This workflow however contains a BPEL loop
activity which terminates all the VMs existing inside the TOSCA service topology one after
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another. If the new simulation example instantiated more than one VM, this workflow would
be generic enough to be adopted with the new simulation example without any modifications.
In other words, the BPEL loop activity in this workflow reads the appropriate data from the
TOSCA service topology in order to determine how many VMs were instantiated in the first
plan. For this purpose, the number of VMs, which need to be terminated, is not important and
this workflow can work perfectly for any number of VMs in the application topology. Moreover,
terminating one VM is a generic operation that works for all kinds of VMs in the same way.
In other words, this termination step works perfectly with Linux-VMs or Window-VMs for
example.

6.3.1.7 Generalization degree as a graph

Figure 6.1 depicts the degree of generalization capabilities of the proposed approach in this
master’s thesis for other simulation examples with respect to each management plan inside
the PANDAS Service Template. As mentioned in Section 6.3.1, the PANDAS software can
calculate other simulations as well than the bone simulations. But, the discussion in Section
6.3.1 eliminated all these sophisticated simulation examples. Previously mentioned, If PAN-
DAS requires another simulation example for its calculation, the InfrastructureProvisioning
workflow can be adopted easily with the new simulation example without any modifications.
Similarly, the Termination plan is generic enough to work with other simulation examples. In
general, as mentioned already, TOSCA-based workflows are more generic than other types of
workflows. Therefore, as shown in Figure 6.1, these two plans have the highest number, which
shows the highest degree of the generalization, than other workflows. On the other hand,
DataProvisioning and DataDeprovisioning workflows are specific to simulation examples as
discussed in Sections 6.3.1.3 and 6.3.1.5, respectively. As a result, they have the lowest num-
ber in Figure 6.1. The main steps within the PandasSoftwareProvisioning workflow do not
need any changes to be adopted to other simulation examples, and can work perfectly with
other simulation examples. This workflow can be executed less or more times based on the de-
fined simulation problem. Therefore, this workflow is more generic than DataProvisioning and
DataDeprovisioning workflows. Finally, as discussed in Section 6.3.1.4, the Simulation/Ap-
plication workflow needs some changes to be adopted to other simulation examples in some
cases. Accordingly, as the figure shows, this workflow is less generic than InfrastructurePro-
visioning, PandasSoftwareProvisioning and Termination workflows. But on the other hand, it
is more generic than DataProvisioning and DataDeprovisioning workflows. It is important to
mention that these numbers are based on the author’s assumption. Therefore, it is possible
that one considers a different assumption with respect to a different generalization degree for
each workflow.
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Figure 6.1: Generalization degree for other simulation examples

6.3.2 Generalization of the presented approach for other simulation soft-

ware

This section investigates generalization capabilities of the proposed approach for other sim-
ulation software instead of PANDAS. In this master’s thesis, the TOSCA standard and the
SIMPL framework were used to move the PANDAS bone simulation software into cloud in-
frastructures. This section discusses generalization capabilities of using these two approaches
for other simulation software. Moreover, it evaluates to what extent the TOSCA management
plans for the PANDAS bone simulation software are generic enough to incorporate other sim-
ulation software, such as GNU Octave. To realize this assumption, the installation process,
required data sources and other features of the GNU Octave software are studied, as a case
study, to get an overview about general and common processes of working with different sim-
ulation software in cloud environments. Like in the previous sections, this evaluation considers
all workflows inside the TOSCA Service Template separately.

The TOSCA standard improves the portability and automated deployment and management of
cloud-based applications. Most of simulation software are composite applications, and consist
of distributed and heterogeneous components in their architectures. Accordingly, automating
the deployment, termination and management of these components in the topology improves
the overall performance of these software. The OASIS TOSCA standard is a generic approach
which can be used to move many simulation software into cloud infrastructures. The TOSCA
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standard defines an application topology and then manage the components inside this topol-
ogy by means of management plans. These two concepts of TOSCA are generic enough to
be used for most of applications. Here, we assume that the application topology inside the
TOSCA Service Template remains the same in other simulation software. In other words, we
assume that the only thing which is required to be changed is the software itself, but the gen-
eral number of software instances and the general structure of the topology remain the same.
Therefore, generalization capabilities of the TOSCA management plans for other simulation
software are discussed as follows.

6.3.2.1 InfrastructureProvisioning plan

In the first workflow of almost all simulation software, the main infrastructures which are
required for the software should be provided in cloud environments. Provisioning a set of VMs
and customizing some configurations on the VMs are some common steps in the first workflow
for many simulation software. Generating a new VM, which is the first activity in this workflow,
is compatible to other simulation software if only one VM is required to be provisioned. In
case other simulation software need additional ones, this step of the workflow need to be
adjusted accordingly. In the second activity of this workflow, some shell commands are sent to
the new created VM in order to configure it properly. This might be quite different and more
complex for other simulation software. Accordingly, this step has to be adopted to the specific
requirements in other simulation software. The InfrastructureProvisioning workflow may also
embed some other steps, which are unique for each simulation software. For instance, the
PANDAS bone simulation software works with the SIMPL framework in this master’s thesis
for data provisioning and data deprovisioning steps. Consequently, the last two step in this
workflow are registering the new IP address of the created VM on the PostgreSQL database
of SIMPL and deploying some workflows to an ODE-PGF engine. These steps might be quite
different and more complex for other simulation software.

6.3.2.2 PandasSoftwareProvisioning plan

All simulation software require software instances on cloud infrastructures to run their simu-
lation calculations. To clarify, in this work, the PANDAS bone simulation software needs two
software instances for running their mechanical as well as chemical calculations on the cloud.
As a consequence, the PandasSoftwareProvisioning workflow is called two times inside the
PANDAS Service Template. Other simulation software may require different number of soft-
ware instances for their calculations. Accordingly, the number of execution of this workflow
has to be adopted in different simulation software. It is compatible for most of simulation
software to prepare a platform (e.g. some basic directory structures for each instance) in the
first step of this workflow. Then, the source code of the simulation software is unpacked on the
corresponding directory. In other words, preparing a platform for each software instance and
then copying the software source code on the appropriate directory of the instance are generic
steps in most of simulation software. In this master’s thesis, the current implementation of the
PANDAS web service includes a connection between PANDAS and the PostgreSQL database.
Therefore, there is no need in this workflow to set up the connection between PANDAS and
PostgreSQL database. However, other simulation software might not be tightly coupled with
their databases. In this case, it is also required to make a connection between a simulation
software and its related database system in this workflow.
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6.3.2.3 DataProvisioning plan

Different simulation software require various data sources for their calculations. As simulation
software are based on a large number of criteria in order to simulate the real phenomenons,
their required data sources are distributed and heterogeneous. Accordingly, the DataProvi-
sioning workflow varies from one simulation software to other simulation software in general.
As mentioned already in Section 6.3.1.3, this workflow consists of three phases. In the first
phase, some sub-folders are created in the root folder of the relevant PANDAS software in-
stance. As all other simulation software require some folders and directories for storing all
input data sources, this phase can be adopted easily to any simulation software. The second
phase provides the necessary data which describe the simulation example which is simulated
by the software. This phase is highly dependant on the simulation software and their require-
ments, since a simulation example or a simulation problem is mostly described by these data
to be provisioned. In this case, these input data are different because of a different simulation
problem in a different simulation software. Therefore, this phase of the workflow requires the
most changes in order to be accepted by a specific simulation software. As shown in Figure
2.7, PANDAS requires heterogeneous data sources. These data sources can be different in
various simulation software. For instance, other simulation software might not use any CSV-
based data sources or SQL-based files. The GNU Octave simulation software for instance, may
accept only text-based files as input data sources. These are only some simple examples, but
there might be even more sophisticated examples which require different data sources. The
third phase of this workflow configures PANDAS (e.g. some numerical configurations) in order
that it can properly calculate the simulation outcome. Following that, the actual compilation
of the PANDAS source code with some of the input data, which is transferred in the second
phase of this workflow, is the final step of the third phase in this plan. These two steps may
not be part of the new simulation software. In other words, the new simulation software might
not need any numerical configurations or use another mechanism for compiling the source
code. Previously mentioned, the SIMPL framework is used for data provisioning and data
management in this master’s thesis. This framework has a user friendly GUI and it would be
convenient for developers to modify the workflows in order to be adoptable to other simulation
software. Furthermore, the SIMPL framework has extensibility features, which enable a devel-
oper to define new types of data sources in the SIMPL framework. As a consequence, if the
simulation software require some new types for their data sources, it is possible to customize
the SIMPL framework in order to understand the new data sources. Furthermore, the SIMPL
framework defines some DM activities, which were discussed in Section 2.5.1, and some DM
patterns. To put it another way, these activities and the pattern-based approach in SIMPL
ease workflow development even more, in particular for scientists. To conclude, with the help
of SIMPL, developers can use the existing variants of DataProvisioning workflow in order to
derive a new workflow for the new simulation software.

6.3.2.4 Simulation/Application plan

This workflow realizes the actual simulation calculation for PANDAS bone simulation in-
stances. The discussion here can be centered around three main steps in this workflow: (1)
starting software instances, (2) performing the actual calculation and (3) stopping software
instances. On the one hand, other simulation software will rely on other web services. Accord-
ingly, this workflow needs some changes to work with the new web services. On the other
hand, different web services may require a different kind of workflow or orchestration of the
web service operations. In other words, the general structure of starting a software instance,
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performing the calculation, and stopping the instance is a good choice for legacy applications.
But, it is good only for legacy applications. In other words, a real workflow might need more
sophisticated workflow steps within these three phases of the workflow.

6.3.2.5 DataDeprovisioning plan

This workflow returns the result data of one or more PANDAS instances back to users. In
this master’s thesis, different variants of the DataDeprovisioning workflow were designed and
implemented with the help of the SIMPL framework. In the first variant of this workflow for
instance, results are transferred from one folder on the Linux-VM to an appropriate folder on
the Windows-VM. If other simulation software require all the generated data to be transferred
to the Windows-VM, this variant of the workflow works fine with other simulation software as
well. The other variants, query data from the PostgreSQL database, and then transfer them to
the Windows-VM. Based on the requirements which exist for the new simulation software, this
workflow may need some changes. To clarify, the query which is used for fetching data from
the PostgreSQL database of PANDAS, may vary for the new simulation software. In general,
the new simulation software may not use the PostgreSQL database as a database system.
Other database systems, such as SQL server, may be used in other simulation software. In
other words, the data structure of the corresponding database tables can be different in other
simulation software as well. For example, the overall schema, tables or their related columns
maybe different in other simulation software. It might be required to join different tables
first, and then retrieve the appropriate data. As a result, the queries which were used in the
implementation phase of different variants of this workflow (see Section 5.2.2.5) may need
to be adopted to the new simulation software. Similar to the DataProvisioning plan, working
with SIMPL is convenient and straightforward. Besides, the DM activities and the DM pattern
ease workflow development even more. Therefore, adopting the DataDeprovisioning workflow
with the new simulation software would not be challenging.

6.3.2.6 Termination plan

Most of simulation software require some kinds of termination or garbage collection plans to
terminate or remove cloud infrastructures at the end of simulation. In the case that other
simulation software require to terminate all the VMs, which were created in the beginning of
the deployment phase, this workflow can be adopted to the new simulation software as well.
The Termination plan for most of simulation software terminates the VMs and undeploys
the other components from the topology of the simulation software. But there might also
be cases, where one does not want to undeploy the whole VMs from the topology. Instead
one might only want to delete directories on the machine, that hold some of the software
instances, but not the actual VM. Because, these VMs might be used later. This is may be
a very rare case, but this Termination plan cannot be used in this case. For each VM in the
topology, some directory structures need to be removed from the VMs. In BPEL workflow
language, a loop activity can be used to loop over all the VMs in the topology and then delete
directories on each machine. Consequently, other simulation software maybe require other
workflow steps. Some other tasks which are specific only to some simulation software can be
done in this workflow. To clarify, in this master’s thesis, the entry which was created inside the
PostgreSQL database of the SIMPL framework in the first plan, is removed in the last step
of this workflow. In other simulation software different tasks maybe required in respect to the
topology and requirements. In conclusion, based on the different cases, which were discussed
above, other simulation software might require different steps in their Termination workflows.
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6.3.2.7 Generalization degree as a graph

As discussed in Section 6.3.2, generalization capabilities of the proposed approach in this
master’s thesis for other simulation software instead of PANDAS depend on different cases that
can be considered in each management plan. In other words, it is a little bit difficult to show
generalization capabilities of all these cases as a graph. Therefore, as shown in Figure 6.2, the
PandasSoftwareProvisioning and Termination workflows have the highest degree with respect
to the several reasons which were mentioned in Sections 6.3.2.2 and 6.3.2.6, respectively.
As mentioned in Sections 6.3.2.3 and 6.3.2.5, the DataProvisioning and DataDeprovisioning
workflows have the second highest degree as shown in Figure 6.2. These workflows are highly
dependant on the simulation software, but working with the SIMPL framework is convenient
and straightforward. Therefore, it eases the development process in general. Lastly, as discussed
in Sections 6.3.2.1 and 6.3.2.4, the InfrastructureProvisioning and Simulation/Application
workflows are the least generic workflows with respect to other simulation software. It is
important to note that these numbers and scales are based on the author’s assumption.
Therefore, it is possible that one considers a different assumption with respect to a different
generalization degree for each workflow.

Figure 6.2: Generalization degree for other simulation software
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6.3.2.8 The SIMPL framework in other simulation software

Most of simulation applications are based on huge and heterogeneous data sources for their
simulation processes. Finding a standard format for data sources and provisioning all dis-
tributed data which are required for simulations are one of the most difficult steps for scien-
tists and engineers who work with simulation applications. The SIMPL framework removes
this burden from scientists, and provides a generic access to many kinds of data sources.
SIMPL is generic enough to deal with many kinds of data sources which are required for many
simulation software. Aforementioned, DM activities, DM patterns and the specifications of the
SIMPL core operations are independent of data sources. Therefore, whenever it is required
to extend SIMPL with new kinds of data sources, which are required for a new simulation
software, they do not need to be modified or adopted to the new data sources. This feature
provides extensibility for the SIMPL framework. Accordingly, using the SIMPL framework for
data management and data provisioning in simulation applications reduces the complexity and
improves the overall performance in cloud infrastructures. Nevertheless, one might still need
to change some workflow steps in the workflow that provision or deprovision data with the
help of the SIMPL framework.

6.3.3 Generalization of the presented approach for developing other vari-

ants of a TOSCA Service Template

This section discusses generalization capabilities of the presented approach for developing
other variants of a TOSCA Service Template. Previously mentioned, a TOSCA Service Tem-
plate consists of an application topology and management plans. The different variants of a
TOSCA Service Template can be developed by using different versions for management plans
or changing completely the structure of the application topology. In Subsection 6.3.3.1 the
discussion is centered around using different versions of management plans inside the Service
Template in order to develop different variants of a TOSCA Service Template. Subsection
6.3.3.2 evaluates generalization capabilities of the presented approach for developing differ-
ent variants of a TOSCA Service Template via changing the application topology instead of
management plans.

6.3.3.1 Management plans

In this master’s thesis, some workflows were designed and implemented in more than one ver-
sion. Different variants for the PandasSoftwareProvisioning, DataProvisioning and DataDe-
provisioning workflows were implemented. Accordingly, different variants of a TOSCA Service
Template can be designed and developed with support of these different variants. This section
figures out how uncomplicated and straightforward it is to derive a new variant for one spe-
cific workflow from its other implemented variants. The evaluation in the following sections
is centered around three different kinds of workflows, so-called PandasSoftwareProvisioning,
DataProvisioning and DataDeprovisioning. Because, different variants were designed and im-
plemented in this work only for these workflows, a different TOSCA Service Template for the
PANDAS bone simulation software can be derived by using these different variants.

PandasSoftwareProvisioning plan:
In this master’s thesis, three different variants for PandasSoftwareProvisioning plan were de-
signed and implemented. The second and the third versions have some additional operations
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compared to the first version. These additional operations send some commands to the Post-
greSQL database server in order to change the database configuration parameters. Except
those activities and operations, the rest of the workflow is the same as in the first version, and
can typically be derived from the already existing implementations. With the help of Eclipse
BPEL Designer, implementing different variants of this plan is not troublesome. Therefore,
other variants of a TOSCA Service Template can be derived with the help of different variants
of the PandasSoftwareProvisioning workflow. As mentioned already is Section 4.2.2.2, differ-
ent architectures can be considered for this workflow. Scientists might need to develop other
variants for this workflow than the ones which were implemented in this work. In other words,
the new variants can be developed with respect to the different conditions and architectures
which were listed in Section 4.2.2.2. With respect to these different architectures, the appli-
cation topology inside the TOSCA Service Template might be different from the topology
which was developed in this work. Therefore, in all above-mentioned cases, different variants
for a TOSCA Service Template can be derived. Section 6.3.3.2 discusses more about devel-
oping other variants of a TOSCA Service Template via changing the application topology. In
conclusion, the workflow steps might be different in different variants. If the required changes
can be applied to the PANDAS web service and its source code with respect to each option
in Section 4.2.2.2, developing other variants of this workflow might not be problematic with
the help of Eclipse BPEL Designer.

DataProvisioning plan:
As mentioned already in Section 4.2.3, two different variants for the DataProvisioning plan
were designed and implemented in the scope of this master’s thesis. The SIMPL framework
was used to design and implement these different variants. SIMPL has a user friendly GUI and
eases difficulties of developing different variants. Moreover, DM activities and DM patterns in
the SIMPL framework ease the whole development process. In the second variant of this work-
flow, a web service was developed in this work to change the coordination of some CSV-based
data sources, which are required by the PANDAS bone simulation software. For implementing
the second version, much of the already existing code in the first version were reused. In other
words, only a new JAX-WS was designed and then used in the second variant. The second
variant (see Section 4.2.3.2) only has an additional Invoke activity for calling this web service
in the middle of the workflow. The results of this web service is stored in a directory on the
Window-VM. The path to this directory is only assigned to the variable which is responsible
for holding the right location of these input sources on the Windows-VM. Furthermore, some
additional input parameters have to be passed to the workflow in the second variant. These
input parameters are used for invoking this web service. The above-mentioned changes are
only required for developing the second version of this workflow. If engineers are able to de-
velop web services in general, developing the second variant for this workflow might not be
difficult with the help of the SIMPL framework. Other variants could also be considered for
this workflow than the variants which were developed in this work. For example, some pattern-
based approaches in the SIMPL framework can be used for provisioning all the required data
for the PANDAS bone simulation software. If scientists can work with the SIMPL framework
in general, developing other variants might not be problematic.

DataDeprovisioning plan:
In this master’s thesis, five different variants for the DataDeprovisioning workflow were de-
signed and implemented (see Section 5.2.2.5). Similar to the DataProvisioning workflow, the
SIMPL framework was used to design all variants of this workflow. As discussed before, the
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first variant transfers results of the calculation from the created Linux-VM to the Windows-
VM. The other variants on the other hand, query data directly from the PostgreSQL database
of PANDAS and then transfer them to the Window-VM. The first variant of this workflow,
except the usage of the TransferData activity of the SIMPL framework, is completely different
from other variants. But, with the help of the existing implementations of the second variant,
the other variants can be easily derived from the second variant. For instance, some data
formats for storing the results of the queries are distinct in different versions. As an alter-
native, some versions have been implemented to query the result of one PANDAS instance,
while some other versions can be used to query data of both PANDAS instances (mechanical
and chemical in this work) simultaneously. In general, much of the already existing workflow
steps in the second version were reused to implement the third, fourth and the fifth versions
in this master’s thesis. Furthermore, other variants could also be considered for this workflow
than the variants which were developed in this work. For example, the approaches which were
discussed in Section 4.2.5 can be used for developing other variants. But, from a conceptual
point of view, it is required to retrieve results of the simulation from the related databases
somehow in all variants. Therefore, if scientists are able to work with database systems, de-
veloping other variants would not be complicated.

6.3.3.2 Application topology

The discussion in the previous sections were centered around the development of different
variants for a TOSCA Service Template by changing the management plans inside the Service
Template. This section on the other hand, discusses the development of different variants
for a TOSCA Service Template by having a completely different service topology. Different
topologies for the PANDAS Service Template can be considered with respect to the different
architectures, which were discussed in Section 4.2.2.2. For instance, if the related database is
not deployed on the same Linux-VM of PANDAS instance. In other words, two VMs should be
installed on the cloud, one for the PANDAS instance and one for the database system. In this
situation, a different and distributed architecture should be considered for the PANDAS bone
simulation tool than the one we used in this work. The implementation of the PANDAS web
service and of the PANDAS source code require modifications. In the application topology
of the PANDAS Service Template, a separate VM is required for installing the PostgreSQL
database of PANDAS. A different topology for the PANDAS Service Template can be derived
as well if the PANDAS instances are deployed on different VMs. Furthermore, a combination
of the different options in Section 4.2.2.2 might change the topology of the PANDAS Service
Template. In most of the above-mentioned cases, the PANDAS web service, PANDAS source
code, PANDAS topology and related management plans require very sophisticated changes
which are out of the scope of this master’s thesis.

6.3.4 Using other cloud providers instead of OpenStack

The OpenStack cloud provider was used in this master’s thesis for moving the PANDAS bone
simulation software into cloud infrastructures. Other cloud providers can be considered as
well. The OASIS TOSCA standard, which provides portability for cloud-based applications,
was used in this work. Therefore, moving the PANDAS Service Template from the OpenStack
to another cloud provider might not be very complicated. Using other cloud providers instead
of the OpenStack for the PANDAS Service Template can be discussed from two different
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perspectives: (1) different cloud providers with interfaces similar to the OpenStack interface
and (2) different cloud providers with interfaces different to the OpenStack interface. In the
first case, as interfaces are similar, there is no need to change anything. In other words,
if the API of the new cloud provider is similar to the OpenStack API, creating VMs and
configuring them might not be different. Therefore, the topology and the management plans
inside the PANDAS Service Template do not require any modifications. In the second case,
the interface, so-called theAPI, input and output parameters are different for the new cloud
provider. Consequently, in the first workflow of the PANDAS Service Template, which is
InfrastructureProvisioning workflow, the first two steps which create a new VM and then
configure the VM have to be adopted to the new interfaces and operations of the new cloud
provider. To clarify, different input and output parameters can be used for calling the operation
of creating a new VM. In conclusion, as the TOSCA standard was used in this master’s thesis
for moving the PANDAS Bone simulation software into cloud environments, developers do
not need to worry about choosing a cloud provider.
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Chapter 7

Summary, conclusion and future work

This chapter summarizes this master’s thesis, brings this thesis to conclusions and outlines
directions for future research. This chapter is divided into two sections as follows. In Section
7.1, a brief summary about the main contributions of this work as well as the implemented
approaches is provided. This section brings this master’s thesis to conclusions as well. Section
7.2, realizes some opportunities and future work for extending the application scope of the
results of this thesis.

7.1 Summary and conclusion

Recent years have shown a steadily increasing trend to move applications and services into
cloud infrastructures. Cloud-based applications benefit from virtual infrastructures in the cloud,
such as processing, memory, storage, networking, etc. Automating the deployment and man-
agement of composite cloud-based applications is one of the main topics in relevant research.
Automation makes the provisioning of new service instances for new customers cheaper and
faster. The OASIS TOSCA standard is a formal language to describe the service topology
and orchestration processes by means of management plans. The University of Stuttgart has
developed an open source container for TOSCA, so-called OpenTOSCA [47].

Appropriate data management and data provisioning in simulation applications is one of the
most challenging topics over the last decades. Lots of effort have to be done to find an
adequate format for data sources in simulation applications, and to specify and implement
required data transformations as well. SIMPL is an extensible framework which provides a
generic access to many kinds of data sources in simulation workflows. With the SIMPL frame-
work, the difficulties to deal with low-level details of data sources are removed from scientists
and engineers[16].

In this master’s thesis, different variants of a TOSCA Service Template for provisioning and
executing PANDAS bone simulations in cloud infrastructures were designed and implemented.
In other words, the main contribution of this work is to elaborate, develop and implement
different variants of a TOSCA Service Template realizing the PANDAS bone simulation soft-
ware in a cloud-native way. This Service Template provides an application topology as well as
the corresponding management plans, which orchestrate the components inside the TOSCA
service topology. To put it another way, a SaaS solution for the PANDAS bone simulation
software has been provided.
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The second contribution of this thesis is integrating the prototype of the SIMPL framework
with the TOSCA standard. As both TOSCA and SIMPL are based on workflow languages,
such as BPEL, the integration of these two approaches make the data provisioning technol-
ogy, offered by SIMPL, as an integral part of the TOSCA descriptions. For this purpose, the
ODE-Service IA was designed and implemented in this work in order to combine these two
technologies. By using this IA inside the PANDAS service topology, it is possible for both
TOSCA and SIMPL to work perfectly with each other. The outlines of the chapters in this
work are summarized as follows.

Chapter one is introductory, and defined the motivations behind this master’s thesis, the prob-
lem statement as well as the scope of work.

Chapter two discussed the basic knowledge regarding tools and technologies, which are nec-
essary for this master’s thesis. This chapter was subdivided into six parts. Part one provided
a brief introduction to cloud computing. The OASIS TOSCA standard was discussed in part
two. In part three, the concept of workflows and web services was discussed. The fourth part
argued about simulation applications in general as well as a simulation workflow for structure
changes within a human bone. A generic framework for data management and data provision-
ing in simulation applications, so-called SIMPL, was discussed in part five. Finally, Part six
addressed a brief overview about technologies and tools which were used in this master’s thesis.

Chapter three provided an extensive study of related work in the area of moving legacy and
on-premise applications into cloud infrastructures. In this chapter, the related work were inves-
tigated from three different points of view: (1) running simulation software in the cloud, (2)
provisioning components of simulation software and related resources in cloud environments
and (3) provisioning and managing data for cloud-based simulation software. By discussing
some related work to PANDAS as a simulation software, TOSCA as a software provisioning
tool in the cloud and SIMPL as a data provisioning tool in this chapter, some results can be
derived as follows:

• Bringing the PANDAS bone simulation software into cloud for simulating structure
changes within a human bone is a better and easier approach than using other simulation
software in the cloud, such as cloud-based MATLAB, for bone simulations.

• The OASIS TOSCA standard is a more efficient approach for moving the PANDAS bone
simulation software into cloud than other approaches, such as Vagrant, Wrangler, etc.

• SIMPL is a generic and consolidated approach for data management and data provi-
sioning of a PANDAS bone simulation software. It would be more efficient to use the
SIMPL framework than other approaches, such as standard tools for the ETL processes,
the method from the SDM center, the OGSA-DAI framework, etc.

Chapter four concentrated conceptually on the proposed approaches for the main two con-
tributions in this master’s thesis. First, an approach to move the PANDAS bone simulation
software into cloud infrastructures with the help of TOSCA and SIMPL technologies was il-
lustrated. Then, an efficient method for integrating the SIMPL prototype with the TOSCA
standard was realized. The conceptual results of this master’s thesis can be summarized and
concluded as follows:

• In Section 4.1, the TOSCA-based application topology for the PANDAS bone simulation
software was designed. The three VMs which were used for mapping the PANDAS bone
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simulation software into cloud were discussed. Furthermore, the different IAs, which
were used inside the PANDAS service topology, were discussed in detail.

• Section 4.2 argued six different types of management plans, which are used for moving
PANDAS into the cloud. The middle-level design of all management plans as well as their
different variants were discussed. From the conceptual point of view, different variants
of a Service Template, which consist of an application topology and management plans,
for the PANDAS bone simulation software were designed in this chapter.

• An approach for integrating the SIMPL framework with the OASIS TOSCA standard
was designed in Section 4.3. Conceptually, different approaches for this integration were
discussed in this section and compared as well with the one (integrating via the ODE-
Service IA) which were implemented in Chapter Implementation. As mentioned in Sec-
tion 4.3.5, the implemented approach in this thesis is concluded as a more efficient
approach than plug-in architectures from a conceptual point of view.

In Chapter Implementation, the implementations of the discussed approach for integrating
SIMPL and TOSCA were argued in detail. An IA inside the PANDAS service topology was
designed and implemented in order to integrate these two technologies. Furthermore, the ac-
tual implementations of the PANDAS bone simulation software, as a SaaS solution, in cloud
environments were discussed. In other words, different variants of a TOSCA Service Tem-
plates for the PANDAS bone simulation software, which consists of a corresponding services
topology and management plans, were implemented. Finally, all challenges and problems the
author faced during the deployment and implementation phases were discussed.

In Chapter six, the results and findings of this master’s thesis were evaluated from various
aspects. This chapter was subdivided into three sections. Section 6.1 evaluated whether or
not, and to what extent, the findings of this work addressed the goals and motivations of this
thesis, which were mentioned in Chapter one. In Section 6.2, the lessons which were learned
in this master’s thesis with respect to the approaches and contributions were argued. Sec-
tion 6.3 discussed generalization capabilities of the presented approaches to other simulation
examples, other simulation software and for developing other variants of a TOSCA Service
Template. Furthermore, this chapter discussed briefly about using other cloud providers for
the PANDAS Service Template instead of the OpenStack, which was used in this master’s
thesis. The results of this chapter can be summarized and concluded as follows:

• Using cloud infrastructure within organizations turns applications to become more mo-
bile and collaborative. Cloud computing provides a large number of various advantages
for simulation applications. In brief, moving composite simulation software, such as the
PANDAS bone simulation software, into cloud infrastructures provides a large num-
ber of desirable features. In this master’s thesis, the OASIS TOSCA standard and the
SIMPL framework were used to move the PANDAS bone simulation software into cloud
environments and to realize this simulation software as a SaaS solution on cloud infras-
tructures. According to the goals of this master’s thesis, which were discussed in Section
6.1, the goal of mapping the traditional PANDAS bone simulation into cloud infrastruc-
tures has been reached. With the help of TOSCA management plans, the second goal
of this thesis, which is automating the deployment and management of the PANDAS
bone simulation software, has been reached as well. Furthermore, users of PANDAS do
not need to deal with low level information of each data source by using the SIMPL
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framework. In other words, the third goal, which is data management and data provi-
sioning of PANDAS in the cloud, has been reached. Lastly, The goal of integrating the
TOSCA standard and the SIMPL framework has been reached via the ODE-Service IA.
The implemented approaches in this thesis have some limitations, which were discussed
in Section 6.2, and can be used to derive some recommendations for future work which
is discussed in the following in Section 7.2. A brief summary of the lessons which were
learned in this thesis are listed as follows.

• Using the OASIS TOSCA standard for automating the deployment and management of
the PANDAS bone simulation software is an efficient approach. Therefore, the assump-
tions about TOSCA, which the author made in Section 3.2 are correct.

• On the other hand, the Winery tool does not support graphical editors, such as Eclipse
BPEL Designer, for developing the management plans inside TOSCA Service Templates.
Consequently, it is problematic to develop the management plans without help of editors.
As it is discussed in Section 7.2.3, extending the Winery tool to have an editor for
developing TOSCA management plans can be conducted as a future work.

• Using the SIMPL framework as a generic approach for data management and data pro-
visioning of the PANDAS bone simulation software in cloud infrastructures is a good
decision. As a consequence, the assumptions in Section 3.3 about SIMPL with respect
to other approaches for data provisioning and data management are correct. In real-
ity, the SIMPL framework frees developers to deal with the low-level details of data
sources. Therefore, the author believes that using the SIMPL framework for extending
the presented approach in this thesis, as it is discussed in Section 6.3, is a good choice.

• It is a little bit challenging in the beginning of working with the SIMPL framework. At
first, developers may think that SIMPL provides many complexities instead of simplifying
the data management and data provisioning processes. But, after working a little bit
with this framework, developers can make sure that SIMPL is a good choice for data
management and data provisioning processes.

• The ODE-Service IA is evaluated as a good approach for integrating TOSCA and SIMPL
from the author’s point of view. As discussed in Section 4.3.5, this approach has some
advantages and limitations. The author believes that optimizing this approach in future
provides the generic SIMPL-based approach for data provisioning and data manage-
ment of cloud-native applications as an integral part of the TOSCA standard definition.
Therefore, as it is discussed in Section 7.2.1, optimizing this approach can be conducted
as a future work.

• The most important conclusions which can be derived from discussions in Section 6.3
are: (1) the presented approach in this master’s thesis can be generalized to other
simulation examples, which need to be calculated by PANDAS without many difficulties,
(2) the generalization capability of the proposed approach to other simulation software,
different to PANDAS, is negotiable and can be so sophisticated in some cases (3) the
different variants of the workflows inside the PANDAS Service Template can be derived
without many difficulties from the existing versions.

7.2 Recommendations for future work

While this master’s thesis has demonstrated the potential of using the OASIS TOSCA standard
and the SIMPL framework to move a simulation software, so-called PANDAS, into cloud
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infrastructures, many opportunities for extending the scope of this thesis are remained. The
following subsections present some of these directions and opportunities.

7.2.1 TOSCA and SIMPL integration

A future work has to be conducted to optimize the implemented approach in this work for
TOSCA and SIMPL integration. This future work is considered with respect to the ODE-
Service IA, which was designed and implemented in this master’s thesis. The current im-
plementation of this IA deploys and undeploys workflows perfectly. But, developers need to
determine the workflows which require an extended ODE engine for their executions in ad-
vance. Then, the Deploy operation of the ODE-Service IA is called for these workflows inside
the first plan. In a similar way, the Undeploy operation of this IA is invoked in the last
plan of the PANDAS Service Template for the workflows which need to be removed from the
ODE-PGF engine. Accordingly, an optimized approach for this IA which deploys and undeploys
workflows automatically can be designed and implemented as a future work.

Another future approach could be extending the workflow engine inside the OpenTOSCA
environment by introducing some plug-ins, as discussed in Section 4.3.1. The workflow en-
gine inside the OpenTOSCA environment can be extended to accept the DM activities and
DM patterns of the SIMPL framework. To put it another way, the workflow engine inside
the OpenTOSCA environment, which is a WSO2 Business Process Server, needs to be ex-
tended by the plugable framework of the ODE-PGF engine. Only one workflow engine, i.e. the
WSO2 Business Process Server inside the OpenTOSCA environment, is used in this approach
for executing all workflows inside the TOSCA Service Template. The other components of
the SIMPL framework can be connected to OpenTOSCA components in a loosely coupled way.

Furthermore, a future work for integrating TOSCA and SIMPL could be extending the Open-
TOSCA environment with some plug-ins to distinguish SIMPL-based workflows from TOSCA-
based workflows. After deploying a CSAR file, which consists of an application topology and
management plans, on the OpenTOSCA environment, the deployment of workflows has to be
done automatically. Based on the plug-ins, the SIMPL-based workflows are distinguished in
an automated-manner from the TOSCA-based workflows, and then the appropriate engine for
executing these workflows is selected. Obviously, this approach relies on two different workflow
engines (ODE-PGF and WSO2 Business Process Server). To put it another way, there is no
need for developers to explicitly define workflow steps for deploying the SIMPL-based work-
flows in the first workflow. In the ODE-Service approach, the first workflow of the PANDAS
Service Template determines the SIMPL-based workflows which need to be deployed on the
ODE-PGF engine.

Similar to the previous methods, another future work can be conducted by using plug-in archi-
tectures as well. The plug-in functionality is already provided in the OpenTOSCA environment.
In this case, scientists are able to define in the TOSCA plans on which engine they should be
deployed. Therefore, there is only need to develop the corresponding plug-ins and then deploy
them inside the OpenTOSCA environment. With the help of these plug-ins, the OpenTOSCA
environment automatically deploy the corresponding workflows on the defined workflow en-
gine. This approach relies on two different workflow engines (ODE-PGF and WSO2 Business
Process Server). As discussed in Section 4.3.5, the efficiency of the implemented approach
in this thesis to integrating TOSCA and SIMPL is arguable as compared to plug-in architec-
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tures. In other words, this approach can be considered as a more efficient approach than the
plug-in based approaches which were mentioned above. Therefore, this theory should also be
investigated in detail in future work.

7.2.2 Generalizing the implemented PANDAS Service Template

The generalization capabilities of the approach proposed in this master’s thesis were discussed
in Section 6.3 from four different aspects: (1) generalization capability for other simulation
examples, (2) generalization capability for other simulation software instead of PANDAS, (3)
generalization capability for developing other variants of a TOSCA Service Templates and
(4) generalization capability of the approach with respect to other cloud providers instead of
the OpenStack. This section evaluated the generalization capabilities of each workflow inside
the PANDAS Service Template. Therefore, some future work can be conducted by extending
the approach proposed in this master’s thesis to other simulation examples, other simulation
software, developing other variants of a TOSCA Service Template and using other cloud
providers than the OpenStack.

7.2.3 Extending the Winery tool to have an editor for developing TOSCA

management plans

As mentioned already, Winery is a graphical environment tool which can be used to model the
TOSCA Service Templates. A TOSCA Service Template consists of an application topology
as well as management plans. The current version of the Winery tool provides a user friendly
GUI for developing the application topology. The management plans on the other hand,
cannot be designed and implemented inside the Winery tool. Different management plans
are implemented manually and then imported into the Winery tool in order to be included in
the TOSCA Service Templates. Writing all steps of the management plans manually without
the help of any graphical editors, such as Eclipse BPEL Designer, is cumbersome and error-
prone. Therefore, one of the future work of this master’s thesis has to be conducted by the
extension of the Winery tool with a graphical editor for developing the TOSCA management
plans. Furthermore, the Winery tool is based on Eclipse as well. Maybe it would be possible to
integrate Winery with the Eclipse BPEL Designer (maybe even with the one that is extended
by the SIMPL framework). The possibilities for this integration can be investigated in future
work.

7.2.4 Running choreographies for the PANDAS bone simulation software

Most of simulation applications consist of data-intensive computing. The size of data and
number of services involved in simulation applications are increased significantly. Therefore,
centralized orchestration techniques[14] are not so efficient. In the orchestration approach, all
data are passed into a centralized engine, which can be a bottleneck to the execution of a work-
flow. Therefore, if huge amounts of data can be passed directly to where they are required, it
prevents from overloading the workflow engine and increases the overall performance. In gen-
eral, the interaction between multiple workflows can be modeled by using choreographies[3].
In other words, the participating web services are collaborating and communicating with each
other in a peer-to-peer fashion in choreographies approaches. Instead of using orchestration
languages, such as BPEL, different languages such as Web Services Choreography Descrip-
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tion Language (WS-CDL)1 are used in choreographies. Choreographies can also be modeled
with BPEL4Chor[13]. Then, the model can be transformed into executable BPEL processes.
A future work can be conducted by running choreographies for the PANDAS bone simulation
software in order to connect the required web services. To put it another way, the PANDAS
bone simulation software is based on intensive and heterogeneous data sources. Different
workflows inside the PANDAS Service Template have to collaborate and communicate with
each other. In the current implementation of the PANDAS Service Template, different work-
flows inside the Service Template have to be called via a SoapUI test case. Developers need
to define an order for running the management plans in order to automate the deployment
and management of the PANDAS bone simulation software in the cloud. Each workflow can
be started automatically by receiving a notification from the previous executed workflow by
using choreographies.

7.2.5 Running a coupled simulation for PANDAS

As mentioned already, the PANDAS bone simulation software is responsible for simulation on
the tissue level. PANDAS calculates structure changes within a human bone for one FEM
element and then combines all the FEM elements within a loop activity. The simulation for
structure changes within a human bone can also be done on the cell level. For this pur-
pose, Matlab2-Bone workflows have to communicate and collaborate with the workflows for
the PANDAS bone simulation software, which have been developed and implemented in this
master’s thesis. In other words, for each FEM element, which is calculated by PANDAS, 8
cells can be calculated with the help of Matlab simulator. It is also required to have some
Data-Manager workflows, which are responsible to transform the data that is used by PAN-
DAS at the tissue level to the appropriate formats for Matlab simulation and vice versa. The
collaboration between simulations and workflows can be done via the choreographies concept.
The execution of multiple simulations can be linked with each other via choreographies. As
a consequence, a future work for this master’s thesis can be conducted by coupling the sim-
ulation at the tissue level, i.e. PANDAS simulation, with the simulation at the cell level, i.e.
Matlab simulation by using choreographies[29].

It is also possible to couple the PANDAS bone simulation software with the GNU Octave
software, which simulates structure changes within a human bone on the cell level[18]. These
two simulations can be linked with each other with the help of choreographies. Therefore,
the contributions of this master’s thesis are the steps towards moving these kinds of coupled
simulation into the cloud via choreographies.

Furthermore, the PANDAS bone simulation software can collaborate with some visualization
tools in order to visualize the results of the calculations. A future work can be conducted as
well to couple the PANDAS bone simulation software with these visualization tools in cloud.

1http://www.w3.org/TR/ws-cdl-10/
2http://de.mathworks.com/products/matlab/
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