
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis Nr. 0202-0001

Development and Analysis of a
Window Manager Concept for

Consolidated 3D Rendering on an
Embedded Platform

Han Zhao

Course of Study: INFOTECH

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Dipl.-Inf. Simon Gansel,
Dipl.-Inf. Stephan Schnitzer

Commenced: 19. Jan. 2015

Completed: 21. July 2015

CR-Classification: I.3.2, C.3, D.4.9

Abstract

Nowadays with the information technology rapidly developing, an increasing number of 2D
and 3D graphics are used in automotive displaying systems, to provide vehicle information,
driving assistance, etc. With the demand of 3D models interacting with each other, an
implementation should have a 3D compositing capability. However, traditional 2D compositing
implementations are not capable of 3D models compositing tasks. In order to composite 3D
graphics on embedded platform, the 3D compositing implementation is necessary.

Therefore, a concept of window manager is developed aiming to composite 3D graphics
with an optimized efficiency for embedded platform. Specially for automotive platforms, a
virtualization is made to unify multiple Electronic Control Units (ECUs) into one single ECU
platform. On this platform, a server and multiple clients are implemented with dedicated
Virtual Machines (VMs). The server is in charge of rendering tasks requested from clients.

Based on this, a 3D compositing concept is implemented. It handles efficiently the multiple 3D
applications situation using a method of off-screen rendering. A server-side virtualization is also
implemented by replacing certain client-side commands during commands forwarding. With
this virtualization implementation, multiple applications run simultaneously with accessing
single 3D GPU only. Moreover, due to this implementation, monolithic rendering operations
affecting all applications, e.g. uniform lighting operation, are possible.

3

Contents

List of Figures 7

List of Tables 9

List of Listings 11

1 Introduction 13

2 Background 17
2.1 Window Manager . 18
2.2 OpenGL ES 2.0 . 20

2.2.1 Programable Pipeline . 20
2.2.2 Textures . 21

2.3 EGL . 23

3 System Model 27

4 Concepts and Implementations 31
4.1 Architecture . 32
4.2 Off-Screen Rendering . 34
4.3 Framebuffer Objects . 36

4.3.1 FBO Workflow . 36
4.3.2 Render to Texture . 37
4.3.3 Double Buffering in FBOs . 39

4.4 Forwarding Replacement . 41
4.5 Root Surface Rendering . 44

4.5.1 Non-Intersection Rendering Situation . 45
4.5.2 Intersection Rendering Situation . 45
4.5.3 Maximal Textures Limitation . 46

4.6 Uniform Operations . 48
4.6.1 Phong Reflection Model . 48
4.6.2 Implementation . 49

5 Evaluation 53
5.1 Evaluation Setup . 54

5

5.1.1 Hardware Setup . 54
5.1.2 Software Setup . 54
5.1.3 Test Applications . 55

5.2 3D Compositing Verification . 56
5.2.1 Results and Analysis . 57

5.3 Performance Comparisons with Native Applications 59
5.3.1 Scenario Description . 59
5.3.2 Results and Analysis . 60

5.4 Performance Comparisons with Non-Intersecting Applications 62
5.4.1 Scenario Description . 62
5.4.2 Results and Analysis . 63

5.5 Performance Comparisons with 2D Compositor 65
5.5.1 Scenario Description . 65
5.5.2 Results and Analysis . 66

5.6 Monolithic Rendering Operations . 68
5.7 Summary . 70

6 Related Work 71

7 Conclusion and Outlook 73

Appendix A Glossary of Acronyms 75

Bibliography 77

6

List of Figures

1.1 Mercedes-Benz Concept Car F 015 Luxury in Motion [1] 14

2.1 Quartz Desktop . 18
2.2 Flip 3D on Windows 7 [2] . 19
2.3 OpenGL ES 2.0 Programmable Rendering Pipeline [3] 20
2.4 Render a Brick Wall with Texture [4] . 21
2.5 EGL Double Buffering System . 24

3.1 System Model . 27
3.2 System Virtualization . 28

4.1 Architecture . 32
4.2 Framebuffer Object Workflow . 36
4.3 Attachments for Framebuffer Objects [3] . 37
4.4 Textures Rendering Workflow . 39
4.5 Double Buffering Implementation in Framebuffer Objects 40
4.6 Application Data Structure . 41
4.7 Replacement Strategies and Workflow . 42
4.8 Root Surface Rendering . 44
4.9 m+1 Applications Rendering Strategy . 47
4.10 Phong Lighting Model [5] . 48
4.11 Diffuse Lighting [6] . 50
4.12 Specular Lighting [6] . 50

5.1 Horse Model and Dragon Model Intersection Scene 57
5.2 Performance Comparison in 3D Compositing Scenario 58
5.3 Performance Comparison between 3D Compositing and Native Applications . . 61
5.4 Performance Comparison between 3D Compositing and Non-Intersecting Appli-

cations . 64
5.5 Performance Comparison between 3D Compositing, Non-Intersecting Composit-

ing and 2D Compositing . 67
5.6 Uniform Lighting for 2-Triangle Scenario . 68
5.7 Uniform Lighting Effect when Light Source Moves Nearer to Triangles 69

7

List of Tables

5.1 3D Compositing Verification Scenario . 56
5.2 Native Applications Comparison Scenario . 60
5.3 Non-Intersecting Applications Comparison Scenario 63
5.4 2D Compositing Comparison Scenario . 66

9

List of Listings

2.1 EGL Basic Workflow . 23

4.1 Fragment Shader for 3D Compositing with 3 Applications 46
4.2 Ambient Lighting Sample Code . 49
4.3 Diffuse Lighting Sample Code . 49
4.4 Specular Lighting Sample Code . 50
4.5 Uniform Phong Lighting Model Implementation 51

11

1 Introduction

Recently, with the rapid expansion of electronics and information technology, 2D and 3D
computer graphics are becoming widely applied in daily life, e.g. smartphones, animation
movies and embedded devices. In the last generation of automotive Instrument Cluster (IC)
system, analog gauges are widely used for speedometer, tachometer, etc. Also for the Head
Unit (HU) system, integrated electronic navigator, reversing camera video and other kinds of
in-car infotainment are displayed.

Currently, there is a tendency to mount more than one displays per car. For each display, a large
size screen with high resolution is equipped, to provide rich and vivid information and a good
driving experience for drivers. With the development of Internet of Things[7] and autonomous
car technology, the concept of Internet of Vehicles(IoV)[8] comes out. By using inter-vehicle
communication and real-time road condition collection, this assists drivers to avoid severe
accidents. For the IoV model, multiple displays with accurate and intuitive information and
feedback providing are also the essential part.

In latest in-vehicle information and infotainment systems, multiple displaying screens become
the main information providers in the car. For example, in the new Mercedes-Benz concept car
F 015 Luxury in Motion[9], as Figure 1.1 shows, multiple displays are mounted to interact with
both the driver and passengers.

However, multiple in-vehicle displays are always connected with different Electronic Control
Units (ECUs). With the number of displays increasing, more ECUs have to be mounted in a
vehicle accordingly. Moreover, separated ECUs are difficult to communicate and interact with
each other. For example, the IC system and HU system are separated with different displays
and ECUs respectively, and it is difficult to do a monolithic rendering operation or interaction
to applications from different systems, such as a uniform lighting or shadow mapping.

To make the monolithic rendering operations available across multiple displays, a consolidated
window manager concept is proposed. In this concept, a virtualization is implemented to unify
the IC and HU systems. For an isolation purpose, each system runs on a dedicated Virtual
Machine (VM), as a client VM. Both IC system VM and HU system VM forward rendering
commands to another VM, which is as a server VM. This server VM operates all forwarded
commands from client-side and decide the rendering algorithms. This implementation makes
monolithic rendering operations and inter-VM interactions possible, with a unification 3G GPU
access by multiple systems.

13

1 Introduction

Figure 1.1: Mercedes-Benz Concept Car F 015 Luxury in Motion [1]

A traditional 2D compositing concept has an obvious disadvantage when it comes to a 3D
models intersecting rendering situation. Therefore, a 3D compositing concept is proposed
implementing on the basis of the consolidated window manager concept, which makes multiple
3D applications compositing fully supported.

Summing up the above, an implementation on server VM is introduced. This implementation
replaces the forwarded commands from client-side applications, and then redirect the render
target of each application to a dedicated off-screen buffers. After off-screen renderings complete,
the server VM use these rendered off-screen buffers as sources of a second rendering process.
During the second rendering, all client-side applications are manipulated by server VM with
various operations, such as 3D compositing, uniform lighting, shadowing, etc. With this
implementation, further monolithic operations are also possible to add on this platform.

14

Outline

This thesis is organized as follows:

Chapter 2 – Background: introduces the background knowledge which is referred to among
this work, such as graphics libraries and the window manager concept.

Chapter 3 – System Model: gives an overview of the whole system model on which this
implementation works, including assumptions about this work.

Chapter 4 – Concepts and Implementations: describes the concept and implementation of
this work, including the system architecture, the algorithms, data structures and imple-
mentations.

Chapter 5 – Evaluation: presents the evaluation scenarios, results and analysis about this
implementation.

Chapter 6 – Related Work: does a brief review of related implementations.

Chapter 7 – Conclusion and Outlook: draws a conclusion and presents further possible work
to improve this implementation.

15

2 Background

In this chapter, related background knowledge is introduced.

The whole work is based on the concept of window manager, which is widely integrated in
modern operating systems. Therefore the window manager concept is discussed along with
examples from well-known operating systems.

This work is implemented with the graphical library OpenGL ES, which is a multi-platform
graphics application programming interface (API)specially for embedded systems. OpenGL ES
is in charge of the main drawing tasks in this work.

In order to provide a rendering environment for OpenGL ES on an embedded platform,
the library EGL is used. EGL is an intermediate layer between OpenGL ES and the native
windowing platform. Namely, EGL prepares the rendering environment for OpenGL ES. First
EGL communicates with the native windowing system of an embedded platform to fetch the
current connected display and acquire a window for the rendering preparation. And with these
EGL builds a rendering container specially for OpenGL ES. Then the OpenGL ES rendering
process takes place in EGL containers.

17

2 Background

2.1 Window Manager

Window manager is a system software with the functionality of controlling where and how
could a window be drawn in a graphical user interface (GUI)[10]. Window managers manage
multiple graphical applications displaying on the screen with corresponding order, position,
shape, etc. In modern operating systems, a window manager has a significant role especially
for desktop environments.

Modern operating systems, such as Windows and Mac OS X, usually have their dedicated
window managers. Below are examples to explain the functionality of window managers.

Quartz

Quartz is a window manager on Mac OS X. Figure 2.1 shows the desktop of Quartz window
manager, and two applications display simultaneously. One of them is on top of the other,
which is decided and drawn by Quartz. Window managers decide and manipulate the way to
draw graphics on screen.

Figure 2.1: Quartz Desktop

18

2.1 Window Manager

Windows Aero

From Windows Vista, a new window manager for Windows is introduced with the name of
Aero. Aero supports plenty of 3D effects and animations, as Figure 2.2. A 3D flip effect is
made by Aero for a multi-tasking switch. Aero accomplishes this effect by manipulating display
surfaces of each applications and rebuild them with a 3D compositing algorithm. This is how
window managers composite 3D graphics.

Figure 2.2: Flip 3D on Windows 7 [2]

19

2 Background

2.2 OpenGL ES 2.0

OpenGL ES(also called GLES as abbreviation) is a full-function 2D and 3D graphics API
specialized for embedded systems. It is a subset of OpenGL, the corresponding API of desktop
version. It is cross-platform supported, widely applied on modern embedded operating systems
such as Linux, iOS, Android, etc.[11]

It is designed for embedded systems, therefore it aims to maximize the efficiency and usage of
hardware, with a relative low power consumption. For this reason, some features are removed
from OpenGL to OpenGL ES.

2.2.1 Programable Pipeline

OpenGL ES 1.x(including 1.0, 1.1 and all version ealier than 2.0) is defined for a fixed function
rendering pipeline. Programs can benefit from hardware acceleration by call provided functions
only. In OpenGL ES 2.0, a programmable rendering pipeline is introduced (Figure 2.3), which
is a huge progress making it easier and more flexible to design and implement.

Figure 2.3: OpenGL ES 2.0 Programmable Rendering Pipeline [3]

In the programmable rendering pipeline, shaders are introduced. A shader is a program written
with OpenGL Shading Language (GLSL), a C-like language with customized types, such as

20

2.2 OpenGL ES 2.0

vectors, matrices, and related operations. These features make GLSL to be convenient of
manipulating vertices, coordinate transformations, etc.

There are two types of shaders, vertex shaders and fragment shaders. A vertex shader is
to manipulate the vertices with certain operations, such as coordinate transformations, per
vertex operations, etc. A fragment shader receives the result of rasterization and operates
each fragment. In fragment shader, an operation frequently used is to sample and display a
texture. Besides, the fragment shader can manipulate the display content result with its own
algorithm.

Shaders provide a highly flexible way to customize OpenGL ES pipeline, to meet the require-
ments.

2.2.2 Textures

A texture is an OpenGL object that contains one or more images with the same image format.
There are 2D and 3D textures. However, in most cases, 2D textures are preferred because
of the simplicity and performance. Textures can be used in two ways, as an input source of
rendering, or as an output render target of a rendering process.

Applying textures as a rendering source to a surface is one of the most fundamental operations
in rendering 3D graphics, which reduces a considerable amount of drawing overhead[4]. For
instance, to draw a brick wall (as Figure 2.4) using OpenGL ES commands only, all vertices
from each brick, various colors, and even the random spots should be specified and calculated
during rendering process. However, if a texture rendering is used, only the vertices coordinates
of texture are specified, with sampling texture and mapping to certain position.

Figure 2.4: Render a Brick Wall with Texture [4]

21

2 Background

Textures can also be used as a color or depth buffer for data storage. In this case, a texture
becomes to a render target, instead of a render source. Rendering contents, such as depth
information, color information and stencil information, can be stored into one or multiple
textures respectively. And these textures can be used later by another rendering process as
render sources.

22

2.3 EGL

2.3 EGL

EGL is an interface between OpenGL ES API and the underlying native windowing systems[12],
providing OpenGL ES a platform-independent rendering container.

A series of EGL commands should be called in certain order to build an OpenGL ES ren-
dering environment. The code snippet 2.1 depicts a basic process to establish an rendering
environment.

1 EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);

2 eglInitialize(display, NULL, NULL);

3 eglChooseConfig(display, attribute_list, &config, 1, &num_config);

4 Window_Type native_window = createNativeWindow();

5 EGLWindowSurface surface = eglCreateWindowSurface(display, config, native_window, NULL);

6 EGLContext context = eglCreateContext(display, config, EGL_NO_CONTEXT, NULL);

7 eglMakeCurrent(display, surface, surface, context);

List of Listings 2.1: EGL Basic Workflow

Following are separated steps of this process according to List 2.1.

eglGetDisplay

Most EGL functions require a display directly or indirectly, because a display is the final
render target where all drawing contents are shown to users. eglGetDisplay does a job to
bind EGLDisplay with a native display. A display could be a framebuffer or other display
units. Usually this is the first step of all EGL calls, and the returned EGLDisplay is used in the
following EGL calls.

After this, the function eglInitialize should be called to initialize the display.

eglChooseConfig

This function aims to acquire a customized framebuffer configuration. This includes the
framebuffer format, the sizes of color buffer, depth buffer, etc. The returned configuration is
used as parameter to create a EGL Surface.

23

2 Background

H

Figure 2.5: EGL Double Buffering System

eglCreateWindowSurface

This function creates a EGLWindowSurface. A EGLWindowSurface is a chunk of memory where
rendering takes place. A window surface is a surface that can be shown directly on a screen.
Besides this, there are also other kinds of EGL surfaces e.g. pixel buffer surface, which is a
surface that cannot be shown on a display. In the following chapters we will discuss how and
why we use pixel buffer surface in our implementation.

To create a window surface, a window is required. As line 4 of List 2.1, a native window is
provided by a native window manager.

There is a double buffering mechanism in EGL surfaces. For each EGL surface creation, there
are always two buffers created at the same time, the front buffer and the back buffer. The
back buffer behaves as the render target of client-side renderings, while the front buffer is the
memory chunk used directly by the on-screen framebuffer. After a whole rendering process is
finished, eglSwapBuffers is called, and the back buffer is swapped to front, and vise versa.(see
Figure 2.5) With this system, a complete rendering image is guaranteed for each frame to
present to users, and partial updates of certain frames are avoided.

eglCreateContext

eglCreateContext creates a EGLContext.

24

2.3 EGL

EGLContext is a container of OpenGL ES or other client API rendering. A context should be
established specifying with a client API and corresponding version, and in our case it is OpenGL
ES 2.0. The bound surface, display should also be specified during EGLContext creation.

eglMakeCurrent

There could be more than one EGLContext for each surface, but rendering commands only draw
on the one which is made to be current. Therefore before rendering starts, eglMakeCurrent is
called with specified EGLContext and EGL Surface.

So far, an OpenGL ES rendering environment is established, and OpenGL ES commands start
executing. Every time when a frame is rendered completely, eglSwapBuffers would be called
to swap the rendered content from back buffer to on-screen buffer. Then next frame starts
rendering, and swapping again to front buffer when it is completed. This is the OpenGL ES
rendering loop.

25

3 System Model

This chapter presents a general system view on which this implementation works. Assumptions
about this work will be proposed regarding to the system.

Figure 3.1: System Model

Figure 3.1 illustrates the system and its working flow. Rendering takes place on this system
in two stages, client-side requests and server-side responses. On client-side, applications
firstly send EGL/GLES commands to server. On server-side, commands will be forwarded to
compositor.

On client-side, EGL and OpenGL ES commands are called in turn to accomplish a rendering pro-
cess. Also, a shared memory channel between server-side and client-side has been established
before rendering for communication.

27

3 System Model

System Virtualization

The server-client model is running on the same host machine with separated virtual machines
(VMs) respectively. Figure 3.2 illustrates the hierarchy of a hypervisor-based virtualization
model.

A hypervisor is a system software in charge of creating and running VMs. The hypervisor
manages all VMs to share and access the hardware of host machine, such as 3D GPU, displays,
etc. The forwarding replacement part between client-side applications and server-side is
implemented via the shared memory channel.

Figure 3.2: System Virtualization

Server-side and client-side applications are running on their dedicated operating systems
(OSes) separately on top of the hypervisor. Multiple client VMs are deployed for dedicated
systems, for instance, the IC system and the HU system. Different systems can be isolated with
separated client VMs implementation, whereas the rendering processes of all client VMs are
gathered at the server VM.

With this implementation, a server VM and multiple client VMs are running separately for an
isolation purpose. Moreover, by gathering all rendering works to the server VM, monolithic
rendering operations are possible on server-side to manipulate all client-side renderings with a
unifying operation. Also, an efficient usage of hardware resources, e.g. 3G GPU, is another
advantage of this implementation.

Forwarding Replacement

In the forwarding replacement process, commands from client-side applications are assumed
to be handled in different methods. For certain EGL commands, appropriate replacement

28

schemes are applied, in order to build a rendering container on an off-screen buffer for each
application to execute the following OpenGL ES commands. All rendering related commands,
are forwarded directly without changes, to ensure the integrity of rendering content. This
builds a transparency layer to client-side, which is virtualized and makes applications on
client-side executing just as working naively.

In this part all client-side renderings take place in off-screen buffers, which store the rendered
contents of each client-side application, as the render sources of 3D compositing implementa-
tion.

Compositor

On compositor part, rendering contents passed from the forwarding replacement part are
composited according to the position of each window surface and, if multiple applications exist
at the same z position, depth information. Namely, multiple applications are assumed to be
rendered at the same window according their depth information, achieving a 3D compositing
implementation. At the end the composited graphics are displayed on monitor.

Window Manager

The Window manager is implemented to provide a native window for rendering processes.
According to the Section 2.3, a native window is required during the EGL working process.
Each client-side application requests a window during initialization, and these requests are
handled by the window manager.

29

4 Concepts and Implementations

In this chapter, design concepts and implementations are described.

This work uses off-screen rendering for client-side applications. A 3D compositing via fragment
shader is implemented with the rendered off-screen buffers as render sources. A virtualization
concept is implemented via forwarding replacement, making multiple client-side applications
running on server with accessing single 3G GPU.

Section 4.1 presents the basic structure and the rendering process. And in Section 4.2 the
concept off-screen rendering is introduced for accomplishing this work. About this concept,
different schemes are compared and selected. Section 4.3 describes the selected off-screen
rendering scheme in detail about how all things work. Section 4.4 presents the forwarding
replacement methodology, to visualize the server-side for client-side applications. In Section
4.5 the main rendering thread is introduced for the server-side system. Section 4.6 presents a
uniform lighting implementation.

31

4 Concepts and Implementations

4.1 Architecture

Figure 4.1 is the architecture of the 3D compositing concept.

Figure 4.1: Architecture

Figure 4.1 illustrates the basic concept of two key parts in this work, the compositor part and
the forwarding replacement part.

On the forwarding replacement part, the inputs are EGL and GLES commands forwarded
from client-sides. Forwarding replacement algorithms vary, however, from different com-
mands. For most commands, a simple forwarding operation is implemented, with exactly
the same command passing through, being as a transparent channel. For some commands,
instead of forwarding the original data from client-sides, this part replaces it with new EGL or
OpenGL ES commands, according to the rendering algorithms on compositor part. In Section
4.4 Forwarding Replacement, the details about commands replacement with reasons are
described.

On the compositor part, in order to render multiple 3D applications compositing according
to depth data at the same window, a concept of off-screen rendering is raised to manage
multiple graphics rendering. Namely, the application from client-side renders first not to
the on-screen framebuffer, but to an off-screen framebuffer. And until all applications finish
rendering, data from all these off-screen buffers are gathered and composited, finally rendering
to the on-screen framebuffer with considering all depth information from each application.
Section 4.2 Off-Screen Rendering and 4.3 Framebuffer Objects present the details about
this algorithm, including rendering schemes comparison, final implementation, etc. Section

32

4.1 Architecture

4.5 Root Surface Rendering describes the concept and implementation for rendering from
the off-screen buffers to the on-screen framebuffer.

Monolithic rendering operations to all applications are also a key feature of this implementation
due to the consolidated window manager concept. Various operations can be implemented
to client-side applications, such as uniform lighting, shadowing, etc. In Section 4.6 Uniform
Operations a uniform lighting is introduced along with related algorithms.

33

4 Concepts and Implementations

4.2 Off-Screen Rendering

Speaking of rendering processes, a rendering target has to be set, to which the finally full-
rendered graphic is stored and displayed. It could be a on-screen framebuffer, which is the
most common situation, and after rendering process completed, the screen used will display
the graphic content of this on-screen framebuffer immediately. This should be the final step of
all rendering processes, if these rendering processes are aimed to display some content on a
screen.

There is another rendering method, instead of on-screen framebuffer, it renders to off-screen
“framebuffer” or other kinds of buffers. There are various reasons for doing this. In our case,
this is used for temporarily storing rendered content of each application. These stored contents
from all client-side applications will be used during the RootSurface rendering, for multiple
3D graphics rendering. And then the render target is set to screen, completing a on-screen
rendering process.

Several possible off-screen rendering schemes are presented here for comparison and selection
with demands of this project. Because of the limitation of embedded system, a scheme with
less resource consumption and more efficiency is important and necessary.

Pixel Buffer

In EGL library there is a kind of surface named pixel buffer surface (pbuffer for short, mentioned
in 2.3), which is an off-screen surface. Unlike on-screen surfaces, it allows and only allows
client-side rendering to a off-screen buffer. Thus there is no associated native framebuffer
along with it[13].

To create a pbuffer surface, an EGL command eglCreatePbufferSurface is called. The creation
procedure is just similar with that of an EGL window surface. After creation, client-side
applications can render directly to this surface as a normal render target. Pbuffer can take full
advantage of any hardware acceleration available to GLES 2.0, just as a window surface[3]
does.

Framebuffer Object

A framebuffer object (FBO), as its name expresses, is an object which behaves just like a
framebuffer. OpenGL ES 2.0 treats a FBO just the same as a native framebuffer. When a FBO
is established, a GLES function glBindFramebuffer can be called passing the name of this
created FBO as a parameter, to bind this as a current rendering framebuffer. By default, a

34

4.2 Off-Screen Rendering

native framebuffer of current screen is bound. The default name of native framebuffer is set to
’0’.

Comparison and Selection

• FBOs are more efficient than pbuffers[3]. Thus in terms of this one, in the situation
where both can be applied and used, the solution with FBOs is more preferable.

• Sharing of depth buffers between FBOs or with other eglContext is possible with frame-
buffer objects usage, while this is usually not true with pbuffers[3]. Accessing the depth
data of each FBO is very important in our case because we need to use this information
for multiple 3D applications compositing.

• There is a double buffering system in pbuffer surface, but not in FBOs. Namely, using
pbuffers can benefit from this. However, a solution to setup this double buffering system
manually by building a double FBOs for each client-side application, which makes similar
result as the double buffering system in EGL surface does.

• pbuffer surfaces are EGL surfaces while framebuffer objects are OpenGL ES objects.
Besides the efficiency mentioned in the first point, another point is that, during the
forwarding replacement, a GLES data structure is likely easier to handle as well as to
share with each other than a EGL data structure. This can also make the replacement
logic less complex.

To sum up, an off-screen rendering scheme with framebuffer objects are more suitable to our
requirements than the EGL pbuffer surfaces scheme, in consideration of efficiency, implementa-
tion difficulty and logic complexity.

35

4 Concepts and Implementations

4.3 Framebuffer Objects

A concept of FBO off-screen rendering solution is described in this section.

According to this concept, a Render to Texture method is implemented. And a FBO double
buffering system is implemented to simulate and implement the swap buffer function.

4.3.1 FBO Workflow

Figure 4.2: Framebuffer Object Workflow

The workflow (Figure 4.2) has three steps:

First Step 1 generates a framebuffer object by calling the function glGenFramebuffers with a
specific name FBO1.

Second At step 2, a client-side application named App1 is supposed to render to FBO1. However,
by default the render target of OpenGL ES commands is the native framebuffer. Hence
at this time a function glBindFramebuffer is called with parameter FBO1 to rebind the
render target from native framebuffer to this framebuffer object, namely FBO1. In the
following rendering commands from GLES, the render target is FBO1, which means, at
this moment, all renderings affect noting with the screen display any more, but only the
framebuffer object, FBO1. All rendering and displaying contents are stored inside FBO1,
ready for later use.

Third After App1 all renderings complete, another application App2 is planned to render directly
on this native framebuffer. Thus again glBindFramebuffer is called with parameter 0,

36

4.3 Framebuffer Objects

which means the default (native) framebuffer. After this function call, App2 can start to
render on the native framebuffer to expect a rendering result displaying on screen.

This workflow depicts that with this FBO off-screen rendering solution, an application is able
to choose its render target freely, which could be an on-screen framebuffer, or a FBO. This
feature makes this work possible to manipulate multiple applications by using a FBO off-screen
rendering.

4.3.2 Render to Texture

In the last section the basic FBOs implementation structure is described. In this section the
deep inside of a FBO is explored and discussed how to store and load the color and depth
information.

FBO Attachments

Figure 4.3: Attachments for Framebuffer Objects [3]

Figure 4.3 illustrates the available attachments of a FBO and types. Before describing this
figure, some new concepts should be introduced first.

A renderbuffer object, unlike a framebuffer object, is a 2D image buffer allocated for storing
color data, depth data or stencil data of a framebuffer object[3].

37

4 Concepts and Implementations

Renderbuffer Objects versus Textures

According to Figure 4.3, there are three kinds of attachments for FBOs, one color attachment,
one depth attachment and one stencil attachment.

• In general using renderbuffer objects as attachments of a FBO has efficiency advantages
over a texture, and renderbuffer has a wider support to be an attachment of a FBO than
a texture[3].

• The disadvantage of using renderbuffer objects as color or depth attachments is that,
during the root surface rendering process, renderbuffer objects cannot be used and
sampled in a fragment shader, which makes the following rendering steps difficult to
proceed.

According to the archtecture, the color and depth information stored inside FBO attachments
are fundamental inputs for the root surface rendering. Hence a Render to Texture solution is
chosen in our case, for both color buffer and depth buffer implementations.

Textures Rendering Workflow

A textures based FBO attachments for our work is chosen with reasons mentioned above, and
Figure 4.4 shows the workflow of textures rendering from client-side applications and then as
inputs to a root surface rendering process.

First Step 1 shows two applications App1 App2 send OpenGL ES rendering commands to their
corresponding FBO respectively. Each FBO has one color buffer and one depth buffer,
both of which are implemented with textures.

Second At step 2, each FBO has received all rendering commands from its client-side appli-
cation and rendered completely. The rendering color and depth results are stored into
these attached buffers respectively.

Third On root surface side, a new thread is allocated and running from the beginning. It
detects every new color and depth buffers and composites all these buffers together to
the native framebuffer. And at this time the final rendering image displays on screen.

Render to Texture is one of the key steps in this work. The details about root surface rendering
will be discussed in Section 4.5.

38

4.3 Framebuffer Objects

Figure 4.4: Textures Rendering Workflow

4.3.3 Double Buffering in FBOs

As we claimed on Section 4.2, a disadvantage of using FBO is lack of double buffering system
in comparison of EGL pbuffer surface, which leads to a unfinished rendering image displaying
on screen. To avoid this situation, we imitate this system and build a double FBOs system for
each client-side application.

Figure 4.5 illustrates the double buffering FBOs implementation, which behaves similar as EGL
double buffering systems does.

First In step 1 client-side application APP1 renders on FBO1_back as described in Figure 4.4.
Instead of one FBO per application, here two FBOs (front and back respectively) are
created for each application.

Second After all rendering completed, a function texSwapTexture() is called for this FBO. At
this time, front FBO swaps with back FBO, along with all attachments together. This
makes the rendered content swapped from the back FBO to the front one.

Third On root surface side, color buffer and depth buffer of the front FBO are used as inputs.

39

4 Concepts and Implementations

Figure 4.5: Double Buffering Implementation in Framebuffer Objects

In the workflow, back FBOs are always set as render targets of client-side application, and
front FBOs always provide their attachments to root surface as rendering inputs. By using this
design we ensure that all renderings on screen are complete.

40

4.4 Forwarding Replacement

4.4 Forwarding Replacement

The goal of this work is to make client-side applications work in the same way as they work on
a native machine, without notifying any underlying implementation. Therefore a server-side
virtualization is implemented with rendering commands replacement during the forwarding
stage.

Specifically, for each client-side application, a pair of corresponding FBOs and attached textures
should be created and bound. This process is different from a normal rendering process with
single application owning one window. Therefore most EGL commands, such as eglGetDisplay
eglCreateWindowSurface, are not necessary any more. Instead, we introduce new EGL and
GLES commands helping to build and manage off-screen renderings to replace these old ones.
Thus a forwarding replacement concept is a crucial part of this implementation.

We use a C struct Application to define and represent each client-side application for root
surface to gather and use. The data structure of Application is as Figure 4.6. There are
various pointers in each Application to store the necessary rendering data for each client-side
application.

Figure 4.6: Application Data Structure

Figure 4.7 depicts the detail replacement strategies and interactions with Application, which
is according to an order how an application renders.

41

4 Concepts and Implementations

Figure 4.7: Replacement Strategies and Workflow

In the following Figure 4.7 is described in detail for each part.

eglGetDisplay

Originally by calling eglGetDisplay a native display can be obtained as the first step of
rendering. With this work, a native display is already obtained by the root surface, because the
final rendering takes place there. Therefore a second request for the display is not necessary
here.

Because this function is always the first call of a client-side application, a new instance of
Application is created and inserted to a linked list.

eglCreateWindowSurface

An EGL window surface is requested to be created when the function eglCreateWindowSur-
face is called. However, EGL surfaces are not necessary for off-screen rendering.

Instead, the data about the requested window surface, for instance, top-left corner coordinates
(relative coordinates to root surface window), width and height, are passed to this Application
built in eglGetDisplay. These are stored inside and used as position ans size parameters during
rendering.

42

4.4 Forwarding Replacement

eglCreateContext

An EGLContext is created for OpenGL ES rendering via this function. And in this work an
EGLContext is also necessary for rendering. EGLContexts for all applications are created during
root surface initialization, as 4.8 describes. This is because in order to make root surface
available to access rendered textures in each EGLContext, the root surface context should be
passed as a share_context during EGLContext creation. Whereas an access to an EGLContext in
another thread as a share_context is not possible, an EGLContext is created during root surface
initialization (see details in Section 4.5) but used here.

Besides EGLContexts creation, eglMakeCurrent is also called here, to make corresponding
EGLContext current for responding rendering commands.An EGL surface is necessary for
making an EGLContext current, and a 1*1 size pbuffer is created and used for eglMakeCurrent
surface parameter. After these operations, the current EGLContext are ready to handle rendering
commands.

eglMakeCurrent

Here the corresponding FBOs along with attachments of a certain client-side application are
created and bound for replacement. A pair of FBOs (front and back ones), color and depth
buffer textures are created, and textures are attached with their FBOs respectively. At last
glBindFramebuffer is called to bind the back FBO, being as the current target framebuffer.

So far all preparations are completed, and when client-side rendering commands are forwarded,
this would handle them and render to textures of the back FBO.

eglSwapBuffers

This function is called when all rendering operations are finished and a full rendered image in
back buffer is ready to be swapped to front buffer, according to Figure 2.5.

Similarly, a function texSwapTexture replaces the original one, swapping the back FBO with
the front FBO including buffer attachments, according to step 2 in Figure 4.5. This ensures the
front FBO attachments are always ready to be used for root surface rendering.

Also a flag is set here to notify the root surface that new rendering updates come for this
FBO.

Above EGL function replacements virtualize the forwarding part, making itself transparent to
client-side applications.

43

4 Concepts and Implementations

4.5 Root Surface Rendering

The root surface rendering part plays a role to composite all rendered textures and render to
screen. Root surface runs in a separated thread, which is started at the beginning of the server
program.

Figure 4.8: Root Surface Rendering

Figure 4.8 depicts the root surface rendering steps.

First At step 1 the root surface thread is created and joined. Then rootSurfaceContext is cre-
ated as a type ESContext (a C struct defined in esUtil.h[14]), initialized. Furthermore,
a native display is connected and an EGL window surface and an EGLContext are created
for rendering. After initialization the rootSurfaceContext is ready to render.

Moreover, a number of EGLContexts are created for client-side applications off-screen
rendering, according to the eglCreateContext replacement strategy in Section 4.4. The
number of this depends on the maximal supported number of applications rendering at
the same z level window surfaces. This is discussed in details in Subsection 4.5.2.

Second At step 2, a doubly linked list filled with texture contexts is accessed by
rootSurfaceContext. A texture context includes rendering information of this corre-
sponding client-side application, such as size and position of rendering window surfaces
(talked in eglCreateWindowSurface replacement strategy in Section 4.4), color and
depth textures which are ready to render. New texture contexts can be inserted into this
list when the first swap buffer is called.

The window surface information of a texture context presents not only the window
position in 2D plane, but also the value of z-axis position. Therefore a strategy to
composite multiple application with different z value window surface is to draw these

44

4.5 Root Surface Rendering

surfaces one by one from far to near (relatively to the view point). For applications
whose window surfaces have the same z value, a fragment shader is involved for a 3D
compositing strategy (details are described in Subsection 4.5.2).

Third At step 3 a pair of appropriate vertex and fragment shaders are selected according to
the number of surfaces rendering at the same z level.

Fourth By using shaders selected from last step, rootSurfaceContext renders all these textures
to screen. And then it goes back to step 2 and continues looping.

Step 2 to 4 compose the draw function of this rendering loop. This is the on-screen rendering
process of this work.

4.5.1 Non-Intersection Rendering Situation

As step 2 of 4.8 describes, if all window surfaces of client-side applications are at a different
z level from each other, there would be no intersection at any surface. For this situation, the
color buffer texture is rendered on corresponding window surface directly.

First the window surfaces list would be sorted according to z value. Second,
rootSurfaceContext would sample each color texture and render them in the turn from
bottom to top, according to z value. This ensures that window surfaces which are closer to the
view point can override the covered part, when overlapping happens.

4.5.2 Intersection Rendering Situation

For a situation where multiple applications are rendered at the same z level of window surfaces,
a concept of comparing depth texture value per fragment is a solution for displaying the
intersection rendering result.

Fragment Shaders

In this situation, a fragment shader is used for comparing the depth information per fragment
of all textures, displaying the color with a smallest depth value (which means it is nearest to
the view point among all rendering contents). This operation is applied for each fragment.

Listing 4.1 is a code snippet for 3 applications rendering at the same window. v_texCoord

is a GLSL varying passed from the vertex shader, as the texture coordinate. The function
texture2D returns each texel of texture bound sampler according to v_texCoord.

45

4 Concepts and Implementations

1 depth0 = texture2D(s_depth0, v_texCoord);

2 depth1 = texture2D(s_depth1, v_texCoord);

3 depth2 = texture2D(s_depth2, v_texCoord);

4

5 tex0 = texture2D(s_texture0, v_texCoord);

6 tex1 = texture2D(s_texture1, v_texCoord);

7 tex2 = texture2D(s_texture2, v_texCoord);

8

9 if (depth0.r < depth1.r) {

10 if (depth0.r < depth2.r) {

11 gl_FragColor = tex0;

12 } else {

13 gl_FragColor = tex2;

14 }

15 } else {

16 if (depth1.r < depth2.r) {

17 gl_FragColor = tex1;

18 } else {

19 gl_FragColor = tex2;

20 }

21 }

List of Listings 4.1: Fragment Shader for 3D Compositing with 3 Applications

In line 9-21 of Listing 4.1, a selection algorithm is implemented to select the visible texture part
for each fragment. The built-in variable gl_FragColor is assigned with color value outputted
by this algorithm, and it finally displays on screen.

4.5.3 Maximal Textures Limitation

Theoretically, the implementation is supposed to handle unlimited number of applications
to composite and display on screen simultaneously. However, plenty of limitations exist in
practice, making this assumption difficult to realize. For instance, a maximal number of
textures support is usually restricted by the hardware implementation and driver settings. At
this situation, a new root surface rendering concept is raised, to solve the maximal textures
limitation.

Suppose m is the maximal supported number of applications rendering at the same fragment
shader. If the number of applications is now m+1, textures of the (m+1)th application cannot
be sampled into the corresponding fragment shader due to exceeding the fragment shader
capability. A solution to render the first m applications to a FBO, and then render the last
application together with this FBO to the screen, regarding this FBO also as an application.

46

4.5 Root Surface Rendering

We call it Double Render to Texture as Figure 4.9 shows. For simplicity, in this figure each
Application contains the rendered depth and color textures from previous steps. And the Temp

FBO is a temporary FBO with depth and color textures attached. These attachments are render
targets of First Render and render sources of Second Render.

Figure 4.9: m+1 Applications Rendering Strategy

For the situation with 2m applications, similarly, a Triple Render to Texture is implemented, with
two intermediate FBOs and three times rendering.

With this solution, regardless of performance and overhead, theoretically, there is not a maximal
supported number of applications for this implementation.

47

4 Concepts and Implementations

4.6 Uniform Operations

Section 4.5 describes how the root surface implementation solves 3D compositing problem.
Besides, another advantage by using this is to do uniform operations for all client-side applica-
tions.

Various uniform operations can be implemented with vertex and fragment shader, for in-
stance, uniform lighting, shadowing, etc. Here a uniform directional lighting operation is
implemented.

4.6.1 Phong Reflection Model

A Phong reflect model is used.for this lighting operation.

In this model, the final reflection is composed of three parts, ambient, diffuse and specular, as
Figure 4.10 shows.

Figure 4.10: Phong Lighting Model [5]

• Ambient lighting refers to light reflections on the object surface which are not from the
light source directly, but lights from environments or reflections. By using this a part that
is sheltered totally from the light source would not be full dark, but with a low brightness,
which makes the lighting simulation more lifelike.

• Diffuse lighting approximates the light reflections from the light source on the real world
surface, which is not perfectly flat. Hence this describes reflections to other directions
rather than a single reflection on a flat surface.

• Specular lighting simulates the lighting reflection which is reflected directly by the surface
from a light source. This is usually shiny and localized.

48

4.6 Uniform Operations

4.6.2 Implementation

The lighting algorithm is mainly implemented in fragment shader. A number of uniform

variables are used to pass input data to the fragment shader, such as normal vectors for each
application, light position, view position, etc. A normal vector is a vector which is perpendicular
to the surface of a vertex[6]. A varying variable v_FragPos with a coordinate value of each
vertex is passed from vertex shader to fragment shader for calculation.

For simplification, the light color is set to be white.

Ambient Lighting

Ambient lighting is calculated with the original color multiplied by a constant factor. This factor
could be set in the range (0, 1) according to the needs. Here the ambient factor is assigned to
0.1.

1 float ambient = 0.1;

2

3 gl_FragColor = ambient * original_color;

List of Listings 4.2: Ambient Lighting Sample Code

Listing 4.2 shows a simple way to simulate a ambient lighting effect with a preset ambient
factor.

Diffuse Lighting

Diffuse lighting is impacted by the angle between the light direction vector and the normal
vector of a vertex. As Figure 4.11, if the light ray is perpendicular to the surface of a vertex, a
vertex has a maximal diffuse lighting value from this light source.

Therefore a dot product of the normalized normal vector and light direction vector could
represent the diffuse lighting factor.

1 vec3 light_direction = normalize(light_position - v_FragPos);

2 float diffuse = max(dot(normal, light_direction), 0.0);

3

4 gl_FragColor = diffuse * original_color;

List of Listings 4.3: Diffuse Lighting Sample Code

This code (Listing 4.3) calculates the light direction for each fragment. Original color is
multiplied by the calculated diffuse factor diffuse, resulting to a diffuse lighting.

49

4 Concepts and Implementations

Figure 4.11: Diffuse Lighting [6]

Specular Lighting

A specular lighting calculation is similar with the diffuse lighting. As Figure 4.12, the specular
lighting is impacted with the angle between a view direction and the reflected light direction.
Here the reflected light refers to the light source reflected by the flat surface, with a single
reflection only.

Figure 4.12: Specular Lighting [6]

Also, we use a dot product of the normalized reflection direction vector and the view direction
vector to represent the specular factor.

1 vec3 view_direction = normalize(view_position - v_FragPos);

2 vec3 reflect_direction = reflect(-light_direction, normal);

3 float specular = pow(max(dot(view_direction, reflect_direction), 0.0), 32.0);

4

5 gl_FragColor = specular * original_color;

List of Listings 4.4: Specular Lighting Sample Code

During the specular factor specular calculation in Listing 4.4, a power of 32 is calculated to
the result of dot product, for making the specular lighting highlighted to certain point.

50

4.6 Uniform Operations

Code Example

Listing 4.5 is a code snippet of a fragment shader for 2 applications situation.

1 vec4 original_color;

2 vec3 normal;

3

4 float ambient = 0.1;

5

6 vec3 light_direction = normalize(light_position - v_FragPos);

7 vec3 view_direction = normalize(view_position - v_FragPos);

8

9 vec4 depth0 = texture2D(s_depth0, v_texCoord);

10 vec4 depth1 = texture2D(s_depth1, v_texCoord);

11 vec4 tex0 = texture2D(s_texture0, v_texCoord);

12 vec4 tex1 = texture2D(s_texture1, v_texCoord);

13

14 if (depth0.r < depth1.r) {

15 original_color = tex0;

16 normal = normal_tex0;

17 } else{

18 original_color = tex1;

19 normal = normal_tex1;

20 }

21

22 float diffuse = max(dot(normal, light_direction), 0.0);

23 vec3 reflect_direction = reflect(-light_direction, normal);

24 float specular = pow(max(dot(view_direction, reflect_direction), 0.0), 32.0);

25

26 gl_FragColor = (ambient + diffuse + specular) * original_color;

List of Listings 4.5: Uniform Phong Lighting Model Implementation

The 3D compositing algorithm is modified to adapt this operation. For normal vectors selection,
it is similar with the solution mentioned in Subsection 4.5.2, which is according to the depth
comparison. Comparing line 14-20 with the selection algorithm in Listing 4.1, the normal
vector selection is implemented with the same method. At the end all three factors are summed
up and affect on the original color.

51

5 Evaluation

In this chapter evaluation about this work is elaborated. First an overview of the hardware and
software setups is presented for a better understanding of the evaluation environment. In the
following parts there are various scenarios to evaluate and verify the concept of this work.

The 3D compositing capability is verified first, with exploring the performance variation
tendency according to the increasing number of applications. Then the result will be compared
with those of other scenarios, to analyze the performance.

To verify the monolithic rendering, a uniform lighting operation is evaluated at the end with a
Phong lighting model implemented on a 2-triangle intersection scenario.

53

5 Evaluation

5.1 Evaluation Setup

5.1.1 Hardware Setup

The 3D compositing concept is implemented on Freescale i.MX6 Quad Automotive board,
which is an embedded board specifically for automotive and infotainment applications. The
main hardware configuration is as below[15]:

• CPU: ARM Cortex A9 Quad-Core 4 x 1.2 GHz

• RAM: 2 GB

• GPU 3D: Vivante GC2000

• GPU 2D(Vector Graphics): Vivante GC355

• GPU 2D(Composition): Vivante GC320

Specially, the 3D GPU, Vivante GC2000, has a OpenGL ES 2.0 graphics accelerator support[16].
Namely, calling OpenGL ES 2.0 commands directly can benefit from GPU 3D acceleration.
Freescale i.MX6 graphic hardware has a full GL_OES_depth_texture support, which makes it
possible to use depth texture as a FBO depth buffer attachment.

On Freescale i.MX6 board, a maximal supported number of textures in one fragment shader
is 8. Because for each application, there are at least two textures representing, color buffer
texture and depth buffer texture. Hence for this board, 4 (8 divided by 2) applications are
capable to render at the same time. With the solution in 4.5.3, a performance degradation is
expected when the number of applications is large enough.

Besides, up to four displays can be connected to this board at the same time, including parallel
display, HDMI1.4, MIPI display, and LVDS display[17]. During the evaluation the HDMI port is
used to output the display content to a monitor.

5.1.2 Software Setup

A real-time system, PikeOS, is installed as the operating system on the i.MX6 board, on which
three virtual machines are running. A server virtual machine behaves as the server-side for in
Chapter 3. The other two virtual machines behave as client-side.

54

5.1 Evaluation Setup

5.1.3 Test Applications

For performance evaluation, glmark2 is used. glmark2 is an OpenGL 2.0 and OpenGL ES 2.0
benchmark[18].

glmark2 has numerous built-in 3D models. Options can be given to select and switch on and
off features about glmark2 during execution. For example, the following code means to render
the built-in model horse for benchmark by rendering 10,000 frames (default value).

./glmark2-es2 -b build:model=horse

The result of each glmark2 execution is a glmark2 score based on the average Frames per
Second(FPS) of the whole rendering process. This result reflects an overview of the current
rendering performance.

By using glmark2 built-in models a relatively complex rendering situation is simulated. In
addition, a uniform benchmark is also a good measurement to compare the performance
between different implementations. Therefore, glmark2 is used to evaluate this work.

55

5 Evaluation

5.2 3D Compositing Verification

A fundamental feature of this work is the compositing for 3D applications. The first evaluation
scenario is set to measure the performance variation tendency by increasing the number of
applications.

In this scenario, glmark2 is used with different built-in 3D models in different applications.

Input details of this scenario is as Table 5.1. glmark2-es2 with a number appended at the end
is the client-side glmark2-es2 application. Each of them is with a native window requested for
540x540 resolution, same z position at the same area.

Application Command Window Size z Position

1 ./glmark2-es2-1 -b build:model=horse 540x540 1

2 ./glmark2-es2-2 -b build:model=dragon 540x540 1

3 ./glmark2-es2-3 -b build:model=cat 540x540 1

4 ./glmark2-es2-4 -b build:model=bunny 540x540 1

5 ./glmark2-es2-5 -b build:model=buddha 540x540 1

6 ./glmark2-es2-6 -b build:model=horse 540x540 1

7 ./glmark2-es2-7 -b build:model=dragon 540x540 1

8 ./glmark2-es2-8 -b build:model=cat 540x540 1

9 ./glmark2-es2-9 -b build:model=bunny 540x540 1

10 ./glmark2-es2-10 -b build:model=buddha 540x540 1

Table 5.1: 3D Compositing Verification Scenario

56

5.2 3D Compositing Verification

5.2.1 Results and Analysis

Rendering Results

The 3D compositing result is as Figure 5.1.

Figure 5.1: Horse Model and Dragon Model Intersection Scene

Two applications render horse and dragon models respectively simultaneously, depicted in
Figure 5.1. At the part where the front legs of the horse model intersect with the horn of the
dragon model, one leg comes out through the gap between the horn and the head of dragon.
This proves that the 3D compositing is working as the expectation.

Performance Analysis

The performance results(FPS) according to the number of 3D compositing applications is as
Figure 5.2:

57

5 Evaluation

0 1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100
110
120

Number of Applications

A
ve

ra
ge

FP
S

Stage 1

Stage 2

Stage 3
3D − compositing

Figure 5.2: Performance Comparison in 3D Compositing Scenario

This line graph shows, in general, the performance decreases with the number of applications
increasing.

Specifically, a number of stages are shown on this graph. First, when the number of textures
increases from 1 to 2, the performance declines rapidly, comparing to the descending ranges
from 2 to 4 in x axis. Same phenomenon happens also from 4 to 5 and from 7 to 8 in x axis.
According to this, the whole line graph is divided to four stages, (1), (2,4), (5,7) and (8,10) in
x axis.

Stage 1 contains only the situation when there is one application, where 3D compositing is not
in use, and compositor just simply forwards the color buffer of this application to on-screen
framebuffer. In the situation that 2 applications are rendering simultaneously, 3D compositing
is invoked, which has a heavier CPU and GPU overhead than that in stage 1. Therefore a sharp
decline happens between these two stages.

On stage 2, 3D compositing is invoked. As the number of applications increases, the maximal
number of textures is reached, and performances drop again to stage 3. On stage 3, the Double
Render to Texture algorithm (mentioned in 4.5.3) is used. With two times Render to Texture, a
performance degradation is inevitable.

Similarly, on stage 4 a Triple Render to Texture is applied, which leads a further performance
degradation.

To sum up, the number of Render to Texture times has a major influence on performances.
Different stages have a distinct performance differences between each other.

58

5.3 Performance Comparisons with Native Applications

5.3 Performance Comparisons with Native Applications

The scenario in this section focuses on comparing the performance between 3D compositing and
native application executions. Strictly speaking, this comparison is not with equal conditions
and outputs, because native applications execution do not have any compositing related
implementation. This comparison is only for evaluating the 3D compositing performance.

5.3.1 Scenario Description

This scenario compares the performances between 3D compositing applications with applica-
tions running natively on server-side.

In this scenario, multiple glmark2 applications executes simultaneously on server-side natively,
without compositing. Theriotically, the performance of native execution applications should be
the maximal performance that can be ever reached.

Input details of this scenario is as Table 5.2. glmark2-es2-native with a number appended
at the end is the server-side glmark2-es2 application. Each of them is with a native window
requested for 540x540 resolution, same z position at the same area.

59

5 Evaluation

Application Command Window Size z Position

1 ./glmark2-es2-native-1 -b build:model=horse 540x540 1

2 ./glmark2-es2-native-2 -b build:model=dragon 540x540 1

3 ./glmark2-es2-native-3 -b build:model=cat 540x540 1

4 ./glmark2-es2-native-4 -b build:model=bunny 540x540 1

5 ./glmark2-es2-native-5 -b build:model=buddha 540x540 1

6 ./glmark2-es2-native-6 -b build:model=horse 540x540 1

7 ./glmark2-es2-native-7 -b build:model=dragon 540x540 1

8 ./glmark2-es2-native-8 -b build:model=cat 540x540 1

9 ./glmark2-es2-native-9 -b build:model=bunny 540x540 1

10 ./glmark2-es2-native-10 -b build:model=buddha 540x540 1

Table 5.2: Native Applications Comparison Scenario

5.3.2 Results and Analysis

The rendering result is a continuously flashing screen mixed with several models overlapping
due to a lack of compositing implementation.

60

5.3 Performance Comparisons with Native Applications

0 1 2 3 4 5 6 7 8 9 10
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400

Number of Applications

A
ve

ra
ge

FP
S

3D − compositing
Nativelyexecuting

Figure 5.3: Performance Comparison between 3D Compositing and Native Applications

Figure 5.3 illustrates that, native application performance has a large advantage over 3D
compositing performance, as we expect. However, this advantage becomes less with the
number of applications increasing.

Therefore, a optimization potential for the 3D compositing is possible in theory, due to the
large performance differences.

61

5 Evaluation

5.4 Performance Comparisons with Non-Intersecting Applications

The scenario in this section focuses on comparing the performance between 3D intersect-
ing applications compositing and non-intersecting applications compositing situations. This
comparison is for evaluating the 3D compositing performance with different situations.

5.4.1 Scenario Description

As section 4.8 presents, compositing strategy differs from the z position of window surfaces.
3D compositing algorithm is invoked only when application window surfaces are on the same z
level, otherwise all applications are rendered to screen in the turn of z value ascending (which
is from far to near in terms of view point). This scenario compares the performances between
3D compositing applications and non 3D compositing applications.

Input details of this scenario is as Table 5.3. glmark2-es2 with a number appended at the end
is the client-side glmark2-es2 application, which is the same applications with those in Table
5.1. Each of them is with a native window requested for 540x540 resolution at the same area,
but with a different z position.

62

5.4 Performance Comparisons with Non-Intersecting Applications

Application Command Window Size z Position

1 ./glmark2-es2-1 -b build:model=horse 540x540 1

2 ./glmark2-es2-2 -b build:model=dragon 540x540 2

3 ./glmark2-es2-3 -b build:model=cat 540x540 3

4 ./glmark2-es2-4 -b build:model=bunny 540x540 4

5 ./glmark2-es2-5 -b build:model=buddha 540x540 5

6 ./glmark2-es2-6 -b build:model=horse 540x540 6

7 ./glmark2-es2-7 -b build:model=dragon 540x540 7

8 ./glmark2-es2-8 -b build:model=cat 540x540 8

9 ./glmark2-es2-9 -b build:model=bunny 540x540 9

10 ./glmark2-es2-10 -b build:model=buddha 540x540 10

Table 5.3: Non-Intersecting Applications Comparison Scenario

5.4.2 Results and Analysis

Because of different z position is used on different applications, only the application on top of
all is displayed, according to 4.5.1. In this case, the first one with a horse model is displayed
only.

63

5 Evaluation

0 1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100
110
120

Number of Applications

A
ve

ra
ge

FP
S

3D − compositing

non − intersecting

Figure 5.4: Performance Comparison between 3D Compositing and Non-Intersecting Applica-
tions

Figure 5.4 depicts the performance comparison result in this scenario.

These two lines have similar trends at the first half as the number of applications increases.
However, unlike the distinct stages appearing on 3D compositing performance graph, the
performance of non-intersecting applications declines gradually with applications increasing.
This is because there is no implementations differences with applications increasing at this
situation, and the rendering overhead is directly proportional to the number of applications,
without sharp decline points. Hence, at the second half of this graph, the non-compositing
situation shows a better performance than the 3D-compositing situation.

Nevertheless, the non-intersecting situation shows an average performance in total. Consid-
ering this work is mainly targeted to 3D compositing situation, the non-compositing imple-
mentation has also performance sacrifices due to this Render to Texture design concepts and
implementations.

64

5.5 Performance Comparisons with 2D Compositor

5.5 Performance Comparisons with 2D Compositor

The scenario in this section focuses on comparing the performance between the 3D compositing
and a 2D compositor. This comparison is for evaluating the 3D compositing performance with
other related implementations.

5.5.1 Scenario Description

The 2D compositor we use to compare with is implemented mainly using 2D GPU com-
mands with bitblitting algorithms, which is optimized by reducing drawing for the overlapped
parts[19].

This scenario compares the 3D compositing implementation with the 2D compositing imple-
mentation with both non-intersecting applications rendering situation and 3D intersecting
situation.

Input details of this scenario is as Table 5.4. The input data of this scenario is the same with
that of non-intersecting scenario.

65

5 Evaluation

Application Command Window Size z Position

1 ./glmark2-es2-1 -b build:model=horse 540x540 1

2 ./glmark2-es2-2 -b build:model=dragon 540x540 2

3 ./glmark2-es2-3 -b build:model=cat 540x540 3

4 ./glmark2-es2-4 -b build:model=bunny 540x540 4

5 ./glmark2-es2-5 -b build:model=buddha 540x540 5

6 ./glmark2-es2-6 -b build:model=horse 540x540 6

7 ./glmark2-es2-7 -b build:model=dragon 540x540 7

8 ./glmark2-es2-8 -b build:model=cat 540x540 8

9 ./glmark2-es2-9 -b build:model=bunny 540x540 9

10 ./glmark2-es2-10 -b build:model=buddha 540x540 10

Table 5.4: 2D Compositing Comparison Scenario

5.5.2 Results and Analysis

As this compositor has only the ability to composite 2D scenario, the testing applications are
with different z positions. And the result is the same with non-intersecting scenario, which is
only the first model is displayed due to its z position.

Figure 5.5 illustrates a performance comparison between current compositor, including 3D
compositing and non-intersecting situations, and previous 2D compositor. The first half of
2D compositor performance graph is nearly level, because a reduce FPS strategy is applied
when the FPS is over 60. At the second half, the performance of 2D compositor drops
linearly. Nonetheless, in general, the 2D compositor has a better performance than both the 3D

66

5.5 Performance Comparisons with 2D Compositor

0 1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100
110
120

Number of Applications

A
ve

ra
ge

FP
S

3D − compositing

2D − compositing
non − intersecting

Figure 5.5: Performance Comparison between 3D Compositing, Non-Intersecting Compositing
and 2D Compositing

compositing and the non-compositing situations of this work. This could be explained by the
overhead of Render to Texture.

67

5 Evaluation

5.6 Monolithic Rendering Operations

Monolithic rendering operations are available in this work. For an evaluation purpose, one
scenario with the uniform lighting is implemented to verify this feature.

In this scenario, a simple uniform lighting operation is implemented on a 2-triangle intersecting
scene. These two triangles intersect with each other as Figure 5.6. A lighting source is set
between these two in front of the viewing point. The rendering result with lighting effect is as
Figure 5.6.

Figure 5.6: Uniform Lighting for 2-Triangle Scenario

Figure 5.6 shows that the lightness varies from the near part to the far part. And at the far end,
it becomes nearly black.

We move the lighting source nearer to these two triangles, and this time the rendering result is
as Figure 5.7.

68

5.6 Monolithic Rendering Operations

Figure 5.7: Uniform Lighting Effect when Light Source Moves Nearer to Triangles

Figure 5.7 depicts that as the lighting source becomes nearer to the triangles, the diffuse
lighting, which is the main composing part of the lighting model, is weaker for the far end
points, due to a larger angles between the light direction and the normal vector for those
points, referring to Section 4.6. Thus the far end parts is darker than Figure 5.6

Results of this uniform lighting operation is as expected. Other monolithic rendering operations
are with similar principles. Therefore, the monolithic rendering feature is proven.

69

5 Evaluation

5.7 Summary

The basic goal of this implementation is achieved, for a 3D compositing rendering. It is
stable with multiple applications tests. A uniform operation performance also meets the
expectation.

After performance comparisons in various scenarios, a conclusion has been made, that the
performance of this work still has potential to optimize. In order to composite 3D applications,
a performance sacrifice is inevitable. Moreover, the hardware limitation is another obstacle for
the 3D compositing performance.

For a 3D compositing situation with the number of applications less than or equal to 4 on this
board, the performance is still good and acceptable.

70

6 Related Work

With a continuously growing demand of graphical applications, various window managers exist
to accomplish different tasks. A few instances are referred and described in this chapter.

3D Composting Window Manager by Mayerle

Mayerle’s work[20] about a 3D compositing window manager concept is one basis of this
work. In Mayerle’s work, a 3D compositing concept is implemented with off-screen renderings
and command replacement strategies. Based on that, this work adapt the 3D compositing
concept to a unifying platform. Furthermore, this work extends the capability with monolithic
rendering operations, which makes the system more flexible to manipulate all applications
uniformly.

Cache-Hybrid compositing by Gansel

Gansel’s work[21] introduces a new compositing strategy named Cache-Hybrid compositing. In
2D compositing concepts, full compositing and tile compositing are two strategies to implement
bitblitting. This concept describes a strategy to predict the execution time of each bitblitting
operation, with which an appropriate bitblitting strategy is assigned. A cached prediction
model is also established to reduce the CPU overhead of prediction execution. This is proven
to be an efficient strategy with 2D compositing. However, in case of a 3D model intersection
scenario, it is still not capable.

X Window System

The X window system (also as know as X11) is a windowing system widely used on Unix-
like operating systems. In X window system, a composite extension Xcomposite is a popular
extension for 2D compositing[22]. It is implemented with bitblitting and a full compositing
strategy is chosen. The concepts of Xcomposite are aimed at desktop environment mainly. For
embedded systems, these concepts are not suitable any more. Besides, 3D compositing concept
is also usually ignored by X11 related compositors.

71

6 Related Work

Summary

Most currently existing window manager implementations are aimed at 2D compositing. With
a trend of 3D models increasing, window managers with a 3D compositing feature would
be necessary. Also, a monolithic rendering concept is another useful feature for embedded
systems.

72

7 Conclusion and Outlook

Currently, 3D graphical applications play an important role in automotive platforms. Traditional
2D compositors have the capability to cope with simple 3D compositing scenarios, whereas for
complex 3D compositing scenarios, for example, 3D models intersection, the disadvantage of
2D compositors stands out. For the purpose to handle complex 3D compositing scenarios, a 3D
compositing implementation is necessary.

The implementation of this consolidated window manager uses off-screen rendering to store
render result of client-side applications into textures, and then render all rendered textures to
screen with a 3D compositing implementation. During the rendering to screen process, other
implementations besides 3D compositing are also possible, such as uniform lighting operations,
shadow mapping, etc, to make a monolithic rendering affecting all rendered applications.

According to various evaluations, this 3D compositing implementation handles multiple inter-
secting 3D applications with a good performance. And the monolithic rendering performance
is also as good as expectation.

Outlook

Possible optimization might be made for further development. The performance of this work
could be improved by learning from the existing 2D compositing strategies when it copes with
non-intersecting applications compositing scenarios, because in these scenarios this work is not
fully optimized, whereas 2D compositors have a better performance due to various compositing
strategies.

Moreover, besides the uniform lighting operation, other kinds of monolithic rendering opera-
tions could be implemented, to maximize the benefits from this implementation and to fulfill
more practical and useful features.

73

A Glossary of Acronyms

LCD - Liquid-Crystal Display

API - Application Program Interface

GLSL - OpenGL Shading Language

FBO - Framebuffer Object

IoV - Internet of Vehicles

ECU - Electronic Control Unit

GPU - Graphics Processor Unit

GLES - OpenGL ES

GUI - Graphical User Interface

OS - Operating System

CPU - Central Processing Unit

RAM - Random-Access Memory

VM - Virtual Machine

75

Bibliography

[1] “The mercedes-benz f 015 luxury in motion research vehicle.” (Cited on pages 7 and 14)

[2] https://en.wikipedia.org/wiki/Windows_Aero. (Cited on pages 7 and 19)

[3] D. S. Aaftab Munshi, Dan Ginsburg, OpenGL ES 2.0 Programming Guide. Addison-Wesley
Professional, 2008. (Cited on pages 7, 20, 34, 35, 37 and 38)

[4] J. de Vries, “Learn opengl.” http://learnopengl.com/#!Getting-started/Textures.
(Cited on pages 7 and 21)

[5] https://en.wikipedia.org/wiki/Phong_reflection_model. (Cited on pages 7 and 48)

[6] J. de Vries, “Learn opengl.” http://learnopengl.com/#!Lighting/Basic-Lighting.
(Cited on pages 7, 49 and 50)

[7] http://en.wikipedia.org/wiki/Internet_of_Things. (Cited on page 13)

[8] Huawei, “Internet of vehicles: Your next connection.” http://en.wikipedia.org/wiki/
Internet_of_Things. (Cited on page 13)

[9] https://www.mercedes-benz.com/en/mercedes-benz/innovation/

research-vehicle-f-015-luxury-in-motion/. (Cited on page 13)

[10] https://en.wikipedia.org/wiki/Window_manager. (Cited on page 18)

[11] https://en.wikipedia.org/wiki/OpenGL_ES. (Cited on page 20)

[12] https://en.wikipedia.org/wiki/EGL_(API). (Cited on page 23)

[13] https://www.khronos.org/registry/egl/sdk/docs/man/html/eglIntro.xhtml. (Cited
on page 34)

[14] http://opengles-book-samples.googlecode.com/svn/trunk/LinuxX11/Common/

esUtil.h. (Cited on page 44)

[15] http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX6Q. (Cited
on page 54)

[16] http://www.vivantecorp.com/en/technology/3d.html. (Cited on page 54)

[17] F. Semiconductor, “i.mx6 dual/6quad automotive and infotainment applications proces-
sors data sheet,” 2014. (Cited on page 54)

77

https://en.wikipedia.org/wiki/Windows_Aero
http://learnopengl.com/#!Getting-started/Textures
https://en.wikipedia.org/wiki/Phong_reflection_model
http://learnopengl.com/#!Lighting/Basic-Lighting
http://en.wikipedia.org/wiki/Internet_of_Things
http://en.wikipedia.org/wiki/Internet_of_Things
http://en.wikipedia.org/wiki/Internet_of_Things
https://www.mercedes-benz.com/en/mercedes-benz/innovation/research-vehicle-f-015-luxury-in-motion/
https://www.mercedes-benz.com/en/mercedes-benz/innovation/research-vehicle-f-015-luxury-in-motion/
https://en.wikipedia.org/wiki/Window_manager
https://en.wikipedia.org/wiki/OpenGL_ES
https://en.wikipedia.org/wiki/EGL_(API)
https://www.khronos.org/registry/egl/sdk/docs/man/html/eglIntro.xhtml
http://opengles-book-samples.googlecode.com/svn/trunk/LinuxX11/Common/esUtil.h
http://opengles-book-samples.googlecode.com/svn/trunk/LinuxX11/Common/esUtil.h
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX6Q
http://www.vivantecorp.com/en/technology/3d.html

Bibliography

[18] https://github.com/glmark2/glmark2. (Cited on page 55)

[19] R. Cecolin, “Compositing concepts for the presentation of graphical application windows
on embedded systems,” 2014. (Cited on page 65)

[20] M. Mayerle, “Konzeption und realisierung eines window managers für die darstellung
von 3d-inhalten unabhängiger opengl es 2.0 anwendungen,” 2012. (Cited on page 71)

[21] R. C. F. D. K. R. C. M. Simon Gansel, Stephan Schnitzer, “Efficient compositing strategies
for automotive hmi systems.” (Cited on page 71)

[22] http://www.x.org/archive/X11R7.5/doc/man/man3/Xcomposite.3.html. (Cited on
page 71)

All links were last followed on July 20, 2015.

78

https://github.com/glmark2/glmark2
http://www.x.org/archive/X11R7.5/doc/man/man3/Xcomposite.3.html

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	2 Background
	2.1 Window Manager
	2.2 OpenGL ES 2.0
	2.2.1 Programable Pipeline
	2.2.2 Textures

	2.3 EGL

	3 System Model
	4 Concepts and Implementations
	4.1 Architecture
	4.2 Off-Screen Rendering
	4.3 Framebuffer Objects
	4.3.1 FBO Workflow
	4.3.2 Render to Texture
	4.3.3 Double Buffering in FBOs

	4.4 Forwarding Replacement
	4.5 Root Surface Rendering
	4.5.1 Non-Intersection Rendering Situation
	4.5.2 Intersection Rendering Situation
	4.5.3 Maximal Textures Limitation

	4.6 Uniform Operations
	4.6.1 Phong Reflection Model
	4.6.2 Implementation

	5 Evaluation
	5.1 Evaluation Setup
	5.1.1 Hardware Setup
	5.1.2 Software Setup
	5.1.3 Test Applications

	5.2 3D Compositing Verification
	5.2.1 Results and Analysis

	5.3 Performance Comparisons with Native Applications
	5.3.1 Scenario Description
	5.3.2 Results and Analysis

	5.4 Performance Comparisons with Non-Intersecting Applications
	5.4.1 Scenario Description
	5.4.2 Results and Analysis

	5.5 Performance Comparisons with 2D Compositor
	5.5.1 Scenario Description
	5.5.2 Results and Analysis

	5.6 Monolithic Rendering Operations
	5.7 Summary

	6 Related Work
	7 Conclusion and Outlook
	Appendix A Glossary of Acronyms
	Bibliography

