
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Masterarbeit Nr. 0202-0004

Consistent Splitting of Event
Streams in Parallel Complex

Event Processing

Nagarjuna Siddam

Course of Study: INFOTECH

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Ruben Mayer, Dipl.-Inf.

Commenced: 2015-04-20

Completed: 2015-10-20

CR-Classification: C.2.4,C.1.4,F.1.2





Abstract

Complex Event Processing (CEP) combines streams of simple events from multiple
sources and infer high-level knowledge by correlating the simple events. The correla-
tion of events is done according to the requirement of the application. This requirement
is specified to the CEP system in the form of rules. State of the art implementations of
CEP system deploy a distributed network of operators to execute a rule. For low latency
information retrieval under high event rate of input streams, scalability of operators is
required. This is done by the parallelization of operator functionality. The existing
PACE system provides a framework for operator parallelization. Parameter context in a
rule specify which events in the input stream can be used for correlation and are essential
for application of CEP systems to many real world situations. In this thesis operator
parallelization techniques, for adopting the existing PACE system to execute rules with
various parameter contexts, are proposed. In cases where the existing PACE system
cannot be adopted, other approaches for operator parallelization are proposed. Finally,
the proposed techniques are analysed by implementing the techniques and evaluating
their performance.

iii



iv



Contents

1 Introduction 1

2 Background 5
2.1 Introduction to CEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Complex Event Processing . . . . . . . . . . . . . . . . . . . . . . 6

2.2 CEP System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Centralized CEP system . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Distributed CEP system . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Event Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Parameter Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Event Specification Languages . . . . . . . . . . . . . . . . . . . . . . . . 12

3 PACE System 15
3.1 Parallel CEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Need for Parallel Processing . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Consistent Parallelization . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Parallelization Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Intra-operator Parallelization . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Data Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 PACE System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Pattern sensitive stream partitioning . . . . . . . . . . . . . . . . 17
3.3.2 Runtime Environment . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Merging of output events. . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.4 Example Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Problem Description 23

5 Stream Partitioning with Parameter Context 25
5.1 Latest Selection - Zero Consumption . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Partitioning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Proof of Consistent Parallelization . . . . . . . . . . . . . . . . . . 27
5.1.3 Example Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Each Selection - Selected Consumption . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Partitioning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Proof of consistent partitioning . . . . . . . . . . . . . . . . . . . . 31
5.2.3 Example Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Latest Selection - Selected Consumption . . . . . . . . . . . . . . . . . . . 33
5.3.1 Partitioning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2 Proof of Consistent Parallelization . . . . . . . . . . . . . . . . . . 34
5.3.3 Example Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



5.4 Earliest Selection - Selected Consumption . . . . . . . . . . . . . . . . . . 35
5.4.1 Partitioning with PACE system. . . . . . . . . . . . . . . . . . . . 36
5.4.2 Merger Filterning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.3 Event Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.4 Proof of Consistent Partitioning . . . . . . . . . . . . . . . . . . . 39
5.4.5 Example Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Parallel Processing with Shared Memory 43
6.1 Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Event Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 Proof of Consistent parallelization . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Example Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Analysis and Results 51
7.1 Experimental Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.1 Latest Selection - Zero consumption . . . . . . . . . . . . . . . . . 51
7.2.2 Latest Selection - Selected consumption . . . . . . . . . . . . . . . 51
7.2.3 Each Selection - Selected consumption . . . . . . . . . . . . . . . . 53

7.3 Earliest Selection - Selected Consumption . . . . . . . . . . . . . . . . . . 55
7.3.1 Merger Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.2 Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Conclusion 60
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



List of Figures
2.1 Complex Event Processing System . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Centralized CEP System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Distributed CEP System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 An example rule in Snoop . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 An example rule defined in Tesla . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 An example rule defined in Amit . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Data parallelization framework . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Flow chart of stream partitioning . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 The finite state machine of a partition of Sequence(E1, E2) operator . . . 28
5.2 The finite state machine of a partition of Conjunction(E1, E2) operator . 30
5.3 Flow chart of stream partitioning for Each Selection - Selected Consump-

tion parameter context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Partitioning in a Sequence(E1, E2) operator . . . . . . . . . . . . . . . . . 36
5.5 Partitioning in a Sequence(E1, E2) operator . . . . . . . . . . . . . . . . . 38
5.6 Event processing with Merger filtering . . . . . . . . . . . . . . . . . . . . 38
6.1 Data Parallelization with Shared Memory . . . . . . . . . . . . . . . . . . 43
6.2 Flowchart for event processing with shared memory . . . . . . . . . . . . 45
7.1 Splitter Throughput for Latest Selection - Zero consumption Parameter

Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 Instance Throughput for Latest Selection - Zero consumption Parameter

Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 Splitter Throughput for Latest Selection - Selected consumption Param-

eter Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4 Instance Throughput for Latest Selection - Selected consumption Param-

eter Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.5 Instance Throughput for Each Selection - Selected consumption Parame-

ter Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.6 Throughput of the Instance and Splitter with Merger Filtering . . . . . . 55
7.7 Throughput of the Merger with Merger Filtering . . . . . . . . . . . . . . 56
7.8 Percentage of Positive events at the Merger with Merger Filtering . . . . . 56
7.9 Throughput of the Sequence operator with shared memory parallelization

with parallelization degree eight . . . . . . . . . . . . . . . . . . . . . . . . 57
7.10 Throughput of the operator with shared memory parallelization with var-

ious parallelization degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



viii



List of Algorithms
1 Predicates for sequence operator of PACE system . . . . . . . . . . . . . . 19
2 Predicates for conjunction operator of PACE system . . . . . . . . . . . . 20
3 Predicates for sequence operator with Latest selection and Zero consumption 29
4 Predicates for conjunction operator for Latest selection and Zero con-

sumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Predicates for sequence operator with shared memory . . . . . . . . . . . 48
6 Predicates for conjunction operator with shared memory . . . . . . . . . . 49

ix



x



1 Introduction
In recent years there has been a huge increase in the amount of data produced. This
data is produced continuously by geographically distributed software tools. Most of this
raw data contains information that is of low-level. Many modern information systems
require real-time processing of this continuously flowing data to identify situations of
interest occurring in a system or in the real world:

• In a Sensor network deployed to monitor in an industrial environment [5], an in-
dividual sensor generates data containing information restricted by the physical
location of the sensor and the type of the sensor. This low-level data from the
individual sensors has to be processed to derive high-level knowledge of the nor-
mal or abnormal situation in the environment that the monitoring application is
interested in.

• In Smart grid management [16], measurements from various power-generating,
power-distributing, and power-consuming nodes have to be processed to detect
abnormal situations that may lead to the failure of the gird system.

• In algorithmic trading [9], continuous analysis of stock related data is required
to detect trends in the stock market based on which the required actions are
determined.

• In business activity monitoring [10], high volumes of technical data related to
activities of various business processes has to be processed to provide business
data to higher management.

• In Radio-Frequency Identification (RFID) systems [12], RFID readers collect the
data from RFID tags and transmit it to a back-end server. The back-end server re-
quires processing of received data from various locations for inventory management
and tracking.

In all the above systems there exists an information gap between the sources that
generate the low-level data and the applications that are interested in high-level in-
formation. Complex Event Processing (CEP) systems bridge this information gap by
correlating the seemingly unintelligible low-level input data to derive the knowledge of
high-level situations that are of interest.

The usage of the CEP systems is growing rapidly. A number of open source and pro-
prietary implementations of CEP are available in the market [15]. Every company uses
a software tool that implements CEP exclusively or under the covers.

The information retrieval by a CEP system must be in real-time or near real-time, so
as to take advantage of the identified opportunities or to avoid the occurrence of fore-
casted threats. Overloading of the CEP system results in buffering of input data. Data
waiting in the input buffers increases the latency of output generation. To maintain the

1



real-time nature of information retrieval by the CEP system, parallel processing of input
data is employed. This requires the splitting of input data stream into multiple streams
which can be processed independently in parallel. A framework for such a parallel pro-
cessing, called PACE system, already exists [14].

Parameter contexts in a CEP system can be seen, informally, as restrictions on the
usage of the received input data in generating output. Parameter contexts are used
to tailor the output data of a CEP system in accordance with the requirements of an
application. Therefore parameter contexts are important in realizing the usage of CEP
systems in many application scenarios. Though the existing framework for paralleliza-
tion, the PACE system, is very expressive it does not have any accommodation for the
processing of input data with parameter contexts.

In this thesis I have examined the parallel processing in a CEP system with parameter
context. I have studied different implementations of CEP systems and identified a set of
commonly used parameter contexts. I have considered each parameter context individu-
ally and examined if the current framework can be extended for parallel processing with
that parameter context. In the case where such an extension cannot be done, I have
looked into the reasons for that and proposed a new technique for parallel processing of
incoming event streams.

Thesis Organization

The remaining part of the thesis is organised as follows:

Chapter 2 provides the background for understanding the Complex event processing.
It also describes different approaches for implementation of a CEP system and how the
events are processed in a CEP system. Also presented in this chapter are the concepts
related to parameter contexts and their usage in rule specification in different event
specification languages.

In chapter 3 the necessity for operator parallelizatin and conditions to be met for
consistent parallelization are described. The working of the PACE system is discussed
in detail in this chapter. The system model considered for the CEP system is also pre-
sented in this chapter.

Chapter 4 provides the description of the problem statement that is dealt in this thesis.

In chapter 5, the methods for adopting the PACE system for operator parallelization
with parameter context are presented. The feasibility for such adoption and the consis-
tency of the resulting parallelized operator are discussed.

In chapter 6, a new method, shared memory approach, for operator parallelization
is presented. The shared memory method is presented with respect to the parameter

2



context for which adoption of the PACE system was not feasible.

Chapter 7 provides the details of the implementation and experimental evaluation of
the proposed techniques. The results from the experimental evaluation are presented
and discussed.

The thesis is concluded with chapter 8, providing a brief summary of the work done
and outline for possible future work.

3



4



2 Background

2.1 Introduction to CEP

2.1.1 Basic Definitions

Before looking into details of what a Complex Event Processing does, relevant basic
definitions that are required to understand the CEP model are given in this section.

Event and Event Stream. The dictionary definition of an event is given as ”a happen-
ing in the physical world”. In a CEP system an event is an abstraction that contains the
data related to a happening in the physical world. Some events for example are:

• The output of a temperature sensor that contains the temperature of a location

• A financial ticker that gives change in stock value of a particular stock.

An event stream is an unbounded collection of events. Events in an event stream are
ordered based on a specific criteria. Usually the ordering criterion is time of occurrence
of the event. Multiple event streams can be merged to form a single event stream.

An event is represented by a tuple of attribute-value pairs. These attribute-value
pairs are called parameters of the event and contain data that gives information about
event occurrence. The most common event attributes are event type, time stamp, and
sequence number.

An event type represents a class of events. Every event is an instance of an event
type. An event type describes the essential features that identify an event of that type
and specifies the parameters that sufficiently describe the specific features of the event.

Time stamp gives the time of event occurrence or detection. The value of time stamp
attribute can be a point of time or a time interval depending on the semantics of the
CEP system.

Sequence numbers are assigned to an event based on their time stamp. The sequence
number of an event defines the position of an event in an event stream.

An event may have many other attributes that are specific to an event type, encapsu-
lating all the necessary information required for processing in the CEP system.

Complex Event. In his book [13], The Power of Events, David Luckham defines a
complex event as an event whose occurrence depends on the occurrence of other events.
A complex event represents a set of other events. These events on which the occurrence
of a complex event depends are called component events. For example if the temperature
sensor of a location reports big raise in temperature and the smoke sensor of the same

5



location reports presence of smoke then a CEP system detects the fire event at that
location. Here fire is the complex event detected and the component events are raise in
temperature and smoke events.

Operator. An operator describes the relation between the component event types of
a complex event. Some of the most common operators are disjunction, conjunction,
sequence, window, not, etc. These operators can be combined to form complex operators.

Event Pattern. The event pattern describes the procedure in which the events of in-
coming event types should occur for a complex event to occur. For example, consider
an event type E12 that occurs whenever an event of type E1 occurs followed by an event
of type E2. E12 can be described by a event pattern with a sequence operator and the
event types E1 and E2 as component event types: E12 = (E1;E2).

2.1.2 Complex Event Processing

Complex event processing(CEP) is defined as a technology for analysing event streams
from multiple event sources to extract high-level information in the form of detected
complex events that the applications are interested in.

The complex events in today’s information systems are made up of many simple events,
which can be observed via sensors or messages within the system. These observed events
are called primitive events. The nodes in the network that produce these events are called
event sources. Gathering high-level insights about the status of the system or situations
occurring in the system requires analysis of high volumes of primitive events. In the
analysis, the primitive events are correlated to detect event patterns that correspond
to the situations the applications are interested in. These detections are forwarded to
the applications as complex events. The applications that receive the detected complex
events are called sinks. The rules for processing of primitive events are submitted to the
CEP system by the sinks. A rule defines an event pattern , the output complex event
type, and how the data of the output event has to be calculated.

Therefore a CEP system receives event streams from event sources, analyses the events
for patterns by correlating the received events, and forwards the detected complex events
to the sinks. A CEP system acts as a middleware providing services to the application
layer hiding from them the event production layer where distributed event sources gener-
ate a vast amount low-level events. The position of CEP with respect to related entities
is depicted in figure 2.1.

6



Figure 2.1: Complex Event Processing System

2.2 CEP System

2.2.1 Centralized CEP system

This is the simplest form of a CEP system. In this model the CEP system runs as a
centralized process on a single node in the network. The event streams from all the event
sources are directed towards this centralized process. All the rules for the correlation
of primitive events are programmed in this process. The processing of all the produced
events is done in this process and the sinks connect to this process to receive the de-
tected complex events. A centralized CEP model with connections to sources and sinks
is depicted in figure 2.2.

With a centralized CEP system, the network architecture is simple and therefore is
easy to implement and maintain. But the processing of all the rules has to be done on a
single node; such a system lacks scalability and quickly becomes a throughput bottleneck
in the network.

2.2.2 Distributed CEP system

In distributed model of the CEP system, the event processing is done by a set of pro-
cesses, that are running in a distributed manner on cluster of connected hosts. A rule
submitted to the CEP system is divided into different operators and the functionality
of an operator is executed by a process. A distributed CEP model with connections to
sources and sinks is depicted in figure 2.3.

7



Figure 2.2: Centralized CEP System

Instead of correlating the primitive events to obtain desired complex events, in a dis-
tributed system the processing of events is done step by step. An operator receiving
primitive events correlates them to intermediate complex events and forwards them to
other operators which in turn correlates the incoming intermediate complex events, and
primitive events in some cases, to desired complex events.

The disadvantage of the distributed CEP system is its high complexity which increases
the cost of implementation and maintenance. An advantage of distributed CEP system
is by splitting the event processing load among different operators, the distributed model
allows for the increase in scalability of the overall CEP system. In addition, with this
model of CEP system the network usage can be minimised by placing an operator as
close as possible to the sources of its incoming streams.

Therefore in a large system with many high-frequency sources distributed across large
spatial distances a distributed CEP system is more suitable than a centralized CEP
system. For this reason hereafter this thesis exclusively refers to distributed CEP system.
However it is to be noted that the methods proposed in this thesis are equally applicable
to a centralized CEP system.

2.3 Event Processing

Operator Graph. A distributed CEP system can be modelled by a directed graph
G(Ω ∪ S ∪C,L), called an operator graph [11]. In the operator graph the set of sources
S, the set of operators Ω , and the set of sinks C are interconnected by the set of event
streams, L ⊂ (S ∪ Ω)× (Ω ∪ C), as edges.

8



Figure 2.3: Distributed CEP System

Merging of input streams. An event stream (p, d) ∈ L of the operator graph is directed
from a producer to a destination and ensures that events are delivered to the destination
in the order they are produced. (p, d) is called an output stream of p and an input stream
of d. The events in an input event stream are delivered at the destination in the order
of their sequence number. Events from different input event streams have a well-defined
global order at the destination, that is independent of their physical time of delivery at
the destination. This ordering depends on the time stamp of the event, source from which
event is received, and the sequence number of the event in the event stream it is received.

An operator ω ∈ Ω performs processing with respect to the set of all incoming streams
(in, ω) ∈ L. The events from all the incoming streams of the operator ω are combined
into a single stream of events denoted by Iω. The order of the events in Iω is determined
by the global ordering of the events.

Event Correlation. An operator in a distributed CEP system performs correlation
on the incoming event streams to produce outgoing events. During its execution, the
operator ω performs a sequence of correlation steps on Iω. In each correlation step, the
operator determines a selection σ which is a finite subset of events in Iω. A correlation
function fω : σ → (e1, ..., em) specifies a mapping from a selection to a finite set of events
produced by the operator. The operator writes the produced events to its output stream
Oω in the order of their detection.

9



Production Set. Each output event has a production set associated with it. The
production set of an output event is a subset of the selection σ in which the output
event is detected. The production set of an output event contains events of component
event types of that output event. For any two output events of an operator ω their
production sets are not equal and differ by atleast one event.

Parameter Computation. The parameters of an output event are calculated from the
parameters of the events in its production set. Apart from specifying the type of the
output event,the rule also specifies the procedure for calculating the parameters of the
output event. In a CEP system where the time stamp is given by a point of time, the
time stamp of the output event is the time stamp of the last event in its production set.
In a CEP system where the time stamp is given by time interval, the time stamp of the
output event is from the start time of the first event production set to end time of the
last event in production set.

2.4 Parameter Context

Together with the event pattern to be detected and the procedure for calculating the
parameters of the output events, the event rule also specifies a selection policy and a
consumption policy for event detection.

Selection policy. In the presence of situation in which a selection σ of an operator
ω can produce more than one output event, the selection policy specifies if a single or
multiple output events have to be produced and which events from the selection are
included in the production set of the output events. There are three types of selection
policies that a rule can specify [8] : each selection policy, latest selection policy, and
earliest selection policy.

A rule with each selection policy allows the production of multiple output events from
one selection. With this selections policy, all the possible complex events are detected.

Conversely, a rule with latest selection policy and earliest selection policy allows the
production of at most one event from one selection. The latest and earliest selection
policies differ in the way the production set of the output event is determined. With
latest selection policy the events included in the production set of the output event are
the latest instances of the component event types. Conversely, with earliest selection
policy the events included in the production set of the output event are the earliest
instances of the component event types.
For example, consider the complex event E12 = (E1;E2). Let ej

i be the jth event of
type Ei. Let the order of the incoming events at the input of the operator be e1

1, e
2
1, e

1
2.

The selection σ will be determined as (e1
1, e

2
1, e

1
2). The number of output events and their

production sets for the above selection policies is as follows:

10



• In the case of each selection policy, there will be two output events with production
sets (e1

1, e
1
2) and (e2

1, e
1
2).

• In the case of latest selection policy, there will be one output event with production
set (e2

1, e
1
2).

• In the case of earliest selection policy, there will be one output event with produc-
tion set (e1

1, e
1
2).

Consumption policy. The consumption policy of a rule specifies whether or not an
event of a selection σ included in the production set of the output event of σ can be part
of future selections. There are two types of consumption policies that a rule can specify
[8]: selected consumption policy and zero consumption policy.

In selected consumption policy, the events that are included in the production set of
an output event of a selection are said to be consumed and all the consumed events will
not be part of future selections. This means that an event can be consumed in at most
one selection.

In zero consumption policy the events included in the production set of an output
event are not invalidated and can be part of future selections.

For example, consider the previously discussed complex event E12 = (E1;E2). Let
the order of the incoming events at the input of the operator be e1

1, e
1
2, e

2
1, e

2
2. The first

selection σ1 will be determined as (e1
1, e

1
2). The selection σ1 will be mapped to single

output event with production set (e1
1, e

1
2). The events in the second selection σ2 depends

on the consumption policy of the rule and is given as follows:

• In the case of zero consumption policy, there will be no consumption of events and
σ2 will be determined as (e1

1, e
1
2, e

2
1, e

2
2).

• In the case of selected consumption policy, the events e1
1, e

1
2 will be consumed and

σ2 will be determined as (e2
1, e

2
2).

As the events are never invalidated in the zero consumption policy, the selection’s size
will continuously grow as the incoming events arrive. Therefore, with zero consumption
policy there is a necessity to limit the portion of the incoming event streams that can be
considered for inclusion in a selection. Such a limitation can be achieved by a time-based
or a tuple-based window operation.

Parameter Context. The parameter context of a rule is the combination of its selection
policy and consumption policy. As there are three selection policies and two consumption
policies, these can be combined to form six parameter contexts.
For example, consider the previously discussed complex event E12 = (E1;E2). Let the

order of the incoming events at the input of the operator be e1
1, e

2
1, e

1
2, e

2
2. The number

11



of output events and their parameter contexts for the six parameter contexts is given in
the table 1

Consumption Policy
Zero Selected

Selection Policy
Each (e1

1, e
1
2), (e2

1, e
1
2), (e1

1, e
2
2), (e2

1, e
2
2) (e1

1, e
1
2), (e2

1, e
1
2)

Latest (e2
1, e

1
2), (e2

1, e
2
2) (e2

1, e
1
2)

Earliest (e1
1, e

1
2), (e1

1, e
2
2) (e1

1, e
1
2), (e2

1, e
2
2)

Table 1: Parameter Contexts

A number of other parameter contexts can be defined other than the six mentioned
above. For example a consumption policy can be defined where a non-empty proper
subset of the events in production set are consumed. For the purpose of limiting the
discussion, the six parameter context from table 1 are considered in this thesis.

2.5 Event Specification Languages
As discussed previously, an event rule describes how a CEP system should process the
incoming events. An Event specification language (ESL) describes how to specify an
event rule to a CEP system. There exists a number of CEP systems, each implemented
for a specific application. Many CEP systems have their own event specification lan-
guages. Every event specification language describes a set of basic operators and how
these operators can be combined to form complex operators. An event specification
language also describes a set of parameter contexts that are supported.

In this section we shall discuss about a few event specification languages and their
features in specifying parameter contexts in a rule.

Snoop. Snoop [6] is a well known event specification language. Snoop is originally
designed for active databases, well before the advent of CEP systems. As Snoop is in-
dependent of semantics of the database systems, it can be used for defining rules in a
CEP system.

In Snoop a parameter context can be specified for each rule. The specified parameter
context determines the selection policy and consumption policy of the rule. The selection
policy and consumption policy can not be specified explicitly and have to be specified
through parameter context. Snoop supports four parameter contexts: recent, chronicle,
continuous, and cumulative. The selection policy and consumption policy these param-
eter contexts specify is given in the table 2.

The selection policy of cumulative parameter context allows of at most one event from
a selection and multiple occurrences of a component event type are accumulated as a
single event. This parameter context specifies the selected consumption policy.

12



Consumption Policy
Zero Selected

Selection Policy
Each Not supported Continuous
Latest Recent Not supported
Earliest Not supported Chronicle

Table 2: Parameter Contexts

In snoop a rule is specified in the form of Event-Condition-Action. The Event part
of the rule specifies the event pattern that needs to be detected. The Condition part
specifies a boolean condition that needs to be satisfied for executing the Action part.
An example rule defined in Snoop is given in figure 2.5. The scenario that the example
rule defines is: if an event of type E1 is followed by E2, produce an event of type E12

On (E1;E2)
Condition E1.x == E2.x
Action Output E12
Parameter context Chronicle

Figure 2.4: An example rule in Snoop

Snoop considers the events as occurring at a specific point of time. Later the semantics
of Snoop are extended to capture events that occur over an interval of time. The result
is a new language called SnoopIB [1] with events that have interval-based time stamps.

Tesla. Tesla [7] is another event specification language with the language semantics
defined using first-order temporal logic. T-Rex is a CEP system implemented for pro-
cessing rules expressed in Tesla.

In Tesla the selection policy and consumption policy can be explicitly specified. Tesla
supports the three selection policies described in 2.4. The each, latest, and earliest poli-
cies are named as each, last, and first respectively. It also supports the two consumption
policies described in 2.4. In Tesla the selection and consumption policies can be specified
for each component event of a rule. A simplified example rule defined in Tesla is given
in figure 2.5. The scenario that the example rule defines is: if an event of type E1 is
followed by E2, produce an event of type E12. The quantifiers of each component event
in the from clause of the rule gives the selection policy for that rule. The events given
in the consumption clause of the rule are consumed after detection and other events are
not consumed.

13



define E12
from E2 and first E1 within 5min from E2
consuming E1, E2

Figure 2.5: An example rule defined in Tesla

Amit. Amit [2] defines an event specification language and also a run-time environment
for processing the rules of the event specification language. In Amit a lifespan is defined
for each rule. A lifespan is a time window and the events occurring in this lifespan are
correlated to detect complex events.
In Amit the selection policy and consumption policy can be explicitly specified. Amit

supports the three selection policies described in 2.4. The each, latest, and earliest poli-
cies are named as each, last, and first respectively. It also supports the two consumption
policies described in 2.4. In a rule specified in Amit, the selection and consumption
policies are specified for each component event. A simplified example rule defined in
Amit is given in figure 2.5. The component event in the rule is called operand. For
each operand in a rule, the quantifier gives the selection policy and the consumption
condition specifies gives the consumption policy.

operator sequence
first operand E1

quantifier : each
consumption condition : true

second operand E2
quantifier : last
consumption condition : true

Figure 2.6: An example rule defined in Amit

Other ESLs. There are numerous other languages that are developed in academia and
industry. For example, Stream mill [3] is a CEP system that executes the rules defined
in Expressive stream language. This language allows for the specification of selection
and consumption policies rule by rule.

All these languages show that parameter contexts are an important aspect of rule
specification and are required to define a wide variety of situations from the real-world.

14



3 PACE System

In this section the parallelization of operator functionality is discussed and the PACE
system [14], the state-of-the-art parallelistation technique, is presented.

3.1 Parallel CEP

3.1.1 Need for Parallel Processing

Applications using the CEP systems require low latency event detection as they need to
react to the situations in real-time. If the production rate of events at sources is high, an
operator that is expensive in terms of time may become a bottleneck in the CEP system.
The overloading of operator requires either discarding of events or buffering of events
at the input of the operator. Discarding of events will result false negative or/and false
positive detection of complex events. The buffering of input events results in increased
latency in event detection. Also, if the operator is overloaded continuously, the buffer
length grows without a bound and no bound on the latency of the event detection can
be established.

Therefore, in the presence of the overloading, parallelization of CEP functionality is
required to detect events with low latency.

3.1.2 Consistent Parallelization

A parallization technique is consistent if the output stream of an operator with parallel
processing is equivalent to the output stream of the operator without parallel processing.
The equivalence can be established if the output stream of the parallel operator satisfies
the following conditions:

• There must be no false positives i.e., the events that are not in the output stream
of the operator with out parallelization must not be there in the output stream of
the operator with parallization

• There must be no false negatives i.e., all events that are in the output stream of
the operator with out parallelization must be there in the output stream of the
operator with parallization

• There must be no duplicates i.e., an event must not be present more than once in
the output stream of operator with parallelization.

• The order of the events must not change i.e., for any two events e1 and e2 if e1
happens before e2 in output stream of operator with out parallelization then e1
must happen before e2 in the output stream of the operator with parallization.

15



Figure 3.1: Data parallelization framework

3.2 Parallelization Approaches

3.2.1 Intra-operator Parallelization

In this parallelization approach, the event pattern to be detected is modelled as a finite
state machine. The steps that can be run in parallel, in processing the incoming event
stream, are identified based on the states in the finite state machine [4], [17]. The
identification is done based on the fact that the evaluation of each state predicate can be
parallelized. The operator logic is split into different identified stages and executed in
parallel. In this approach the degree of parallelization depends on the finite state machine
of the event pattern and therefore offers only a limited achievable parallelization degree
depending on the number of states in the finite state machine.

3.2.2 Data Parallelization

In this parallelization approach, the operator functionality is replicated with a number
of instances of the same operator running in parallel. The incoming event stream Iω

of an operator ω is split into a number of partitions and each partition is processed by
an operator instance. The operator instance performs the operator correlation function
fω on the assigned partitions and produces the output events. The operator instances
running in parallel are supported by splitter and merger. Splitter divides the incom-
ing stream Iω into partitions based on a partitioning model. The partitioning model
describes how splitter divides the incoming stream into partitions. The splitter assigns
each partition to one of the operator instances. The merger receives the output streams
from all the operator instances and combines them into a single operator output stream
Oω. The architecture of such an operator is depicted in figure 3.1.

3.3 PACE System

PACE system is the state of the art parallelization framework for CEP systems [14].
In this system the operator parallelization is achieved by data parallelization method.
This system performs a consistent parallelization of operator functionality and provides
high degree of parallelism for a wide class of CEP operators. The stream partitioning
technique used in this system is named as Pattern sensitive stream partitioning.

16



3.3.1 Pattern sensitive stream partitioning

As discussed in section 2.3, an operator is executed according to its correlation func-
tion: mapping selections of events from the incoming streams to output events that are
emitted on the outgoing streams. As the correlation function is a mapping, between
two correlation steps no computational state is maintained. That means that any two
selections can be processed by different operator instances independent of each other.
Pattern sensitive stream partitioning uses this idea to split the event streams into parti-
tions based on selections [14]. Therefore the criterion to be fulfilled during partition is:
each selection must be contained completely in atleast one partition. That is to say all
events that are part of a selection must be present in atleast one partition.

To ensure that a selection is completely comprised in a partition, all events between
the first event and the last event of the selection are included in the partition. Thus,
to partition the input stream Iω, the points where selections start and end must be
determined. For each event in Iω, one or more out of three possible conditions are true:

1. The event triggers that a new selection is opened.

2. The event triggers that one or more open selections are closed.

3. The event triggers neither opening of a new selection nor closing of an open selec-
tion.

To evaluate which condition is true for an incoming event e, the splitter offers an
interface that can be programmed according to the operator functionality. The interface
comprises of two predicates:

• Ps : e→ BOOL
For each incoming event e, Ps is evaluated to determine whether e starts a selection.
If the predicate returns true, e starts a selection. An event type, whose event
instance e starts a selection, is called an initiator event type. Accordingly, the
event e is called an initiator event.

• Pc : (σopen, e)→ BOOL
For each incoming event e, Pc is evaluated with each open selection σopen to de-
termine whether e closes σopen. If the predicate returns true, e closes the selection
σopen. An event type, whose event instance e closes a selection, is called a termi-
nator event type. Accordingly, the event e is called the terminator event.

The splitter also provides the ability to store variables that capture internal state of a
selection. These variables depend on the operator and the predicates, Ps and Pc, modify
and use these predicates.

17



The flowchart for the processing of an incoming event is depicted in figure 3.2. Since a
selection must be completely contained in one partition, all the events from start event
of a selection to the end event of the selection are placed in one partition. The state of
a partition is the state of the selection assigned to that partition. A partition is closed
when the selection assigned to the partition is closed. Therefore, Ps and Pc are the
predicates for opening and closing of partitions.

Figure 3.2: Flow chart of stream partitioning

3.3.2 Runtime Environment

The operator instance receives the assigned partitions and the corresponding events. The
operator determines the selections in the assigned partitions and produces the output
events based on the correlation function fω as discussed in section 2.3. The runtime
environment of an operator instance manages the execution of an operator instance.
It manages the partitions assigned to an operator instance by communicating with the
splitter. In particular, when a complete selection is present in more than one partition,
the runtime environment prevents the processing of a selection by multiple operator
instances. This is done in the following way: When the operator instance processes
an event that potentially starts a new selection, a function in the runtime environment
isAssigned(startevent) is called, that signals whether it is a start event of an assigned
selection or not.

18



3.3.3 Merging of output events.

The splitter assigns each partition an identifier. The identifier is an increasing sequence
number. Also the splitter assigns each event in the incoming stream Iω an increasing
sequence number. The operator instances forwards the produced events to the merger.
The output event contains, as an attribute, the identifier of the partition in which it is
detected. The sequence number of the output event is the sequence number of the last
event in the selection in which it is detected. The merger establishes the ordering of the
output events based on the partition identifier and the sequence number of the output
event.

3.3.4 Example Predicates

With the ability to program the predicates with respect to the operator, the pattern
sensitive stream partitioning can be used for parallelizing a wide class of operators. Be-
low the predicates for parallelizing the two most common operators in CEP, sequence
and conjunction operators, are given as examples.

Algorithm 1 gives the predicates for a sequence operator Sequence(E1;E2) with two
event types E1 and E2 [14]. A partition is opened when an event of type E1 is received
and closed when an event of type E2 is received following the event of type E1.

Algorithm 1 Predicates for sequence operator of PACE system
1: procedure Ps(Event e)
2: if e.type == E1 then
3: return TRUE
4: else
5: return FALSE
6: end if
7: end procedure
8:
9: procedure Pc(Event e Selection σ)

10: if e.type == E2 AND e.timestamp ≥ s.startT ime then
11: return TRUE
12: else
13: return FALSE
14: end if
15: end procedure

Algorithm 2 gives the predicates for a conjunction operator Conjunction(E1&E2)
[14]. A partition is opened when an event of type E1 or E2 is received and closed when
an event of type E1 is followed by an event of type E2 or when an event of type E2 is

19



followed by an event of type E1.

Algorithm 2 Predicates for conjunction operator of PACE system
1: procedure Ps(Event e)
2: if e.type == E1 OR e.type == E2 then
3: return TRUE
4: else
5: return FALSE
6: end if
7: end procedure
8:
9: procedure Pc(Event e Selection σ)

10: if e.type == E2 AND e.timestamp ≥ s.startT ime then
11: if s.startType == E1 then
12: return TRUE
13: end if
14: else if e.type == E1 AND e.timestamp ≥ s.startT ime then
15: if s.startType == E2 then
16: return TRUE
17: end if
18: end if
19: return FALSE
20: end procedure

3.4 System Model

In this section, the assumptions made regarding the system model of a parallel CEP are
specified in detail.

Nodes. As discussed in section 2.2.2, a distributed CEP system consists of a network of
operators. In a parallelized CEP system an operator consists of the following processes:

• Splitter

• Instances

• Merger

These processes are deployed on a network of nodes. These nodes are considered to
be failure-free and provide a homogeneous computing capability, i.e., the same CPU
and memory capabilities. The sources and sinks are not considered a part of the CEP
system. Therefore the nodes on which these processes are deployed are assumed to be
only failure-free.

20



Communication Channel. The sources, operators, and sinks communicate among them-
selves by event streams. In a parallelized CEP the communication between the processes
of an operator is also done by event streams. The event streams are transmitted through
the communication channels interconnecting the nodes on which these processes are de-
ployed. It is assumed that the communication channels are failure-free and provides
reliable communication with the following properties the following properties:

• No loss of events. An event e sent from a node N1 to a node N2 will be eventually
received at the receiver node N2.

• No duplicate events. An event e sent from a node N1 to a node N2 will not be
received by N2 more than once.

• No out-of-sequence events. If a node N1 sends event e1 before sending event e2 to
node N2, then N2 receives e1 before receiving e2.

• No modification of events. An event e transmitted over a communication channel
is not modified in the channel during transmission.

21



22



4 Problem Description
From the discussion of parameter contexts and event specification languages in section
2, it is clear that every CEP system should have the ability to execute rules with param-
eter context. The PACE system discussed in section 3 does not provide the features for
partitioning of event streams for parallel processing operators with parameter context.
So, the main objective of this thesis is to design a partitioning procedure for parallel
processing operators with parameter context by extending the PACE system. The pa-
rameter contexts considered in this thesis are the parameter contexts presented in table
1 of section 2.4. In designing such a partitioning procedure the consistent parallelization
property of the PACE system is maintained.

23



24



5 Stream Partitioning with Parameter Context
As mentioned in section 4, the PACE system does not allow for specifying the rules
with parameter context. The PACE system executes all the rules with its default pa-
rameter context. Let us first analyse the default parameter context of the PACE system.

The processing of events from incoming stream of an operator in the PACE system is
summarised as follows:

Split
1. Open a partition for every initiator event occurrence.
2. Assign an event to all open partitions.
3. Close an open partition on the occurrence of first terminator event after the

opening of partition.

Process
An instance processes each partition independently; detecting the output events
from the selection in the assigned partition, which has the first event of the partition
as initiator event.

Merge
Combine all the output events from the instances into a single output stream.

With the above procedure for event processing, the existing PACE system executes
rules with Each Selection - Zero Consumption parameter context. As discussed in sec-
tion 2.4, when a rule with zero consumption policy is executed, it is required to restrict
the portion of incoming stream to consider in determining the next selection. As an
open partition is closed on the occurrence of first terminator event and the first event
in the next partition is next event of initiator event type, an event of initiator event
type will act as an initiator event for only one selection. Therefore the initiator event in
every selection is invalidated and not considered in determining the next selections. This
keeps the size of the selection under check from growing arbitrarily large by invalidating
the events before the latest initiator event.

As the event in an incoming stream is assigned to all open partitions and the partitions
are processed by instances independently, an event from the incoming stream is used in
the production set of output events of multiple selections. Therefore, the PACE system
does not support executing a rule with selected consumption policy.

In the rest of this section, parallelization techniques, based on the existing PACE
system, for the following parameter contexts is presented:

1. Latest Selection - Zero Consumption

2. Each Selection - Selected Consumption

25



3. Latest Selection - Selected Consumption

4. Earliest Selection - Selected Consumption

The Earliest Selection - Zero Consumption parameter context is not discussed in this
section, as this parameter context does not find any applications for the situations in
the real world. This because because, the selected events are never consumed and all
the output events are derived from the same set of earliest events.

5.1 Latest Selection - Zero Consumption
In this parameter context, because of zero consumption policy, the events are not con-
sumed after being used in a production set. However, because of latest selection policy,
an event is invalidated when a new event of same type occurs. This is because, the
latest event of an event type is used in production set of output events.Therefore, when
a selection is determined, all the events that occurred before the initiator event of the
selection are invalidated. For this reason, this parameter context does not require the
restriction of selection’s size by using a window operation over the incoming stream.

5.1.1 Partitioning Model

In this parameter context, an event of initiator event type acts as initiator event for
zero, one, or multiple partitions. This is because, an initiator event, will continue to be
the initiator event of new selections until the next event of initiator event type becomes
the initiator event of a selection.

For partitioning the incoming stream, of an operator with this parameter context,
with one selection per one partition, multiple partitions must be opened when an event
of initiator event type occurs. The number of selections for which an event of initiator
event type will act as initiator event can only be determined when the next event of
the initiator event type occurs. Therefore, it is not possible to partition the incoming
stream with one selection per one partition. As a result, all the selections with same
initiator event have to be placed in same partition. For this reason, the predicates Ps

and Pc are used to determine the opening and closing of partitions rather than selections.

Consider an initiator event ej
i , which is the jth instance of the initiator event type.

If a partition has all the events occurring between the initiator event ej
i and terminator

event of the last selection initiated by ej
i , then such a partition will have all the events

of all the selections for which ej
i is the initiator event. Therefore, a partition is opened

when an event of initiator event type occurs. An open partition has to be closed when
the terminator event of last selection occurs. But whether a selection with the initiator
event ej

i is the last of the selections with ej
i as initiator is known only when the next

selection is determined with ej+1
i as initiator event. To determine whether the initiator

event of next selection is different from the first event of a partition, for each open par-
tition a finite state machine is maintained based on the events included in the partition.

26



If the state of a partition is in the final state of the state machine, the next event of the
terminator event type is the terminator event of a selection. When the finite state ma-
chines of two consecutive partitions are in same state, then the first partition is closed.
This is because, the initiator event of the next selection will be the first event of second
partition and therefore, the next selection will be present in the second partition.

Therefore, the partitioning model can be given as:

• A new partition is opened when an initiator event occurs. That is to say, Ps(e)
returns true, if e is an event of initiator event type.

• A partition Pj , where j is the partition identifier, is closed when the state of the
partition Pj is same as the state of partition Pj+i, where i > 0.

5.1.2 Proof of Consistent Parallelization

In this section, the proof for consistent paralleization, when incoming stream is parti-
tioned according to the above discussed partitioning model, is given.

False Positives. Assume that a false positive event eout is detected in selection σ of
partition p. Assume that the production set D of the detected false positive event eout

is given as (ei1
1 , e

i2
2 , . . . , e

iN
N ). Since eout is a false positive event, there must be an event

eij
j ∈ D where 1 ≤ j < N such that there exists an event eij+1

j in incoming stream Iω

with the time stamp eij+1
j .timeStamp < eiN

N .timeStamp. Since every event between the
start event and event of σ is in p, eij+1

j is in p. If so, then eout is never detected since,
in an operator instance with latest selection, the latest event eij+1

j will be in production
set instead of eij

j . This contradicts our initial assumption that eout is an output event.
This implies that our initial assumption that eout is a false positive event is also wrong.
Therefore, no false positive events are detected.

False Negatives. Assume that a positive event eout, detected without parallelization,
is not detected with parallelization. Assume that the production set D of this false
negative event eout is given as (ei1

1 , e
i2
2 , . . . , e

iN
N ). Since eout is a postive event in the

operator without parallelization,

∀1 ≤ j < N eij+1
j .timeStamp > e

i(j+1)
j+1 .timeStamp

This implies that all the events from ei1
1 to eiN

N must be in one of the partitions p.
If so, an operator instance with latest selection processing partition p will detect the
event eout. This contradicts our initial assumption that eout is a false negative event.
Therefore all the positive events detected without parallelization are detected and there
are no false negatives.

27



Figure 5.1: The finite state machine of a partition of Sequence(E1, E2) operator

Duplicates. An output event eout is detected more than once, if the selection σ, in
which eout is detected, is completely present in more than one partition. Since the state
of the finite state machines of two open partitions can never be the same, a selection
cannot be present completely in two partitions. Therefore, duplicates of an output event
are not detected.

Ordering of Events. Consider two selections σi and σj . Assume that the termi-
nating events eti and etj respectively of σi and σj are such that eti.timeStatmp <

etj .timeStamp. Let ei
out and ej

out be the output events of σi and σj , respectively. The
ordering of the output stream is maintained, if ei

out occurs before ej
out in the output

stream.
If the two selections σi and σj are in the same partition, then the ordering of the

two output events is maintained in the event stream from instance that processed the
partition to the merger. As the merger does not change the ordering of the events from
an instance, the ordering is maintained in the output stream as well.

If the two selections σi and σj are in two different partitions pi and pj , then from the
partitioning model as described above, the identifier of pi is smaller than the identifier
of pj as pi is opened before pj . As discussed in section 3.3.3, merger orders the events
based on the partition identifier of the output events. Therefore, ∀ i, j ei

out will always
occur before ej

out in the output stream, maintaining the ordering of the events.

5.1.3 Example Predicates

Sequence. Algorithm 3 gives the predicates for a sequence operator Sequence(E1;E2)
with two event types E1 and E2. A partition is opened when an event of type E1 is
received. This is because E1 is an initiator event type and therefore, an event of type
E1 starts a selection. All the events following the initiator event are included in the
partition until the closing predicate Pc returns true for this partition.

For this operator the finite state machine will have only one state other than the start
state and it is final state. The finite state machine of a partition of this operator is shown
in figure 5.1. The final state is reached when a partition is opened on the occurrence of
an event of type E1. This is because any following event of type E2 will act as terminator
event of a selection in this partition. The next partition is opened when the next event
of type E1 occurs and the next partition’s state of the finite state machine will be the

28



Algorithm 3 Predicates for sequence operator with Latest selection and Zero consump-
tion

1: procedure Ps(Event e)
2: if e.type == E1 then
3: return TRUE
4: else
5: return FALSE
6: end if
7: end procedure
8:
9: procedure Pc(Event e, Partition p)

10: if e.type == E1 AND e.timestamp > p.startT ime then
11: return TRUE
12: else
13: return FALSE
14: end if
15: end procedure

final state after the opening of partition. As a result, the present partition has to be
closed when the next partition is opened. Therefore, an open partition is closed when
an event of type E1 is received after opening the partition.

Conjunction. Algorithm 4 gives the predicates for a conjunction operator, with two
component event types, Conjunction(E1&E2). A partition is opened when an event of
type E1 or E2 is received. This is because, the events of both event types E1 and E2 act
as initiator events for this Conjunction operator. All the events following the initiator
event are included in the partition until the closing predicate Pc returns true for this
partition.

A partition of this operator has two final states and the start state. The finite state
machine of a partition of this operator is shown in figure 5.2. From the start state based
on the type of initiator event of this partition one of the two final states is reached.
When the partition is opened with initiator event of type E1, the terminator event of
the selections in the partition is an event of type E2. Conversely, when the partition
is opened with initiator event of type E2, the terminator event of the selections in the
partition is an event of type E1. The two final states of the finite state machine represent
the two states: the next event of type E1 is the terminator event and the next event
of type E2 is the terminator event. when a future partition is opened with an event of
same initiator event type as this partition, then such a partition’s finite state machine
will be in the same final state as this partition. As a result, this partition has to be
closed. Therefore, an open partition is closed when an event of type E1 is received in a
partition where the first event is of type E1 or when an event of type E2 is received in

29



Figure 5.2: The finite state machine of a partition of Conjunction(E1, E2) operator

Algorithm 4 Predicates for conjunction operator for Latest selection and Zero con-
sumption

1: procedure Ps(Event e)
2: if e.type == E1 OR e.type == E2 then
3: return TRUE
4: else
5: return FALSE
6: end if
7: end procedure
8:
9: procedure Pc(Event e Selection σ)

10: if e.type == E1 AND e.timestamp > s.startT ime then
11: if s.startType == E1 then
12: return TRUE
13: end if
14: else if e.type == E2 AND e.timestamp > s.startT ime then
15: if s.startType == E2 then
16: return TRUE
17: end if
18: end if
19: return FALSE
20: end procedure

30



a partition where the first event is of type E2.

5.2 Each Selection - Selected Consumption
In this parameter context, a selection is mapped to multiple output events. Because of
each selection, each event in a selection is used atleast once in the production set of an
output event. Because of selected consumption, all the events in a selection are consumed
and no event of this selection is used in a future selection.

5.2.1 Partitioning Model

By changing the partitioning procedure, in the splitter, of the PACE system, the existing
framework can be extended to parallelize an operator with this parameter context. As
all the events of a selection are consumed and no two selections have an event common
between them, the selections in this parameter context do not overlap. Therefore, at
any point of time in splitter, there is at most one open selection. As a result, there is
at most one open partition. The flowchart in figure 5.3 shows the partitioning procedure.

The predicates for partitioning work in the following way:

• A new partition is opened when an initiator event occurs. That is to say, Ps(e)
returns true, if e is an initiator event.

• An open partition is closed when a terminator event occurs. That is to say,
Pc(σopen, e) return true, if e is the terminator event of σopen

5.2.2 Proof of consistent partitioning

False positives. Assume that a false positive event eout is detected in selection σ of
partition p. Assume that the production set D of the detected false positive event eout

is given as (ei1
1 , e

i2
2 , . . . , e

iN
N ). Since eout is a false positive event, there must be an event

eij
j ∈ D where 1 ≤ j ≤ N such that eij

j is consumed in a previous selection. This implies
that, eij

j is included in two partitions. Since the partitions are disjoint an event cannot
be part of two partitions. This contradicts our initial assumption that, eout is a false
positive event. Therefore, no false positive events are detected.

False negatives. Let eout be a positive event with production set D containing events
(ei1

1 , e
i2
2 , . . . , e

iN
N ) from the incoming queue.

Since eout is a positive event, for eiN−1
N , the latest terminator event before eiN

N ,
the condition eiN−1

N .timeStamp < ei1
1 .timeStamp must hold. This is because, if

eiN−1
N .timeStamp is greater than ei1

1 .timeStamp ,then all the events eij
j in D, for which

eij
j .timeStamp < eiN−1

N .timeStamp, would have been part of the selection in which
eiN−1

N is the terminator event. This means that all these events would be consumed in

31



Figure 5.3: Flow chart of stream partitioning for Each Selection - Selected Consumption
parameter context

the previous selection and eout with production set D wouldn’t be a positive event.

Since eiN
N is the first terminator event after ei1

1 , according to the proposed partitioning
procedure, all the events from ei1

1 to eiN
N will be included in one partition. Therefore,

eout with production set D will be detected in the instance processing this partition and
false negatives do not occur.

Duplicates. A duplicate of an output event is detected, if a selection is processed by
more than one instance. In the proposed partitioning procedure, all the partitions are
disjoint and a partition is processed by only one instance. This implies that, a selection
is processed by only one instance. Therefore, each output event is detected only once
and duplicate events do not occur in the output stream.

Ordering of events. The ordering of the events in the output stream of the parallel
operator is consistent if the following condition is met: for all i and j, if the output
event ei

out occurs before output event ej
out in the output stream of the operator without

parallelization, then ei
out occurs before ej

out in the output stream of the operator with

32



parallelization.

There are two cases of possibility depending on the partition in which ei
out and ej

out

are detected:

• Case 1 is where ei
out and ej

out are output events from the same partition. In this
case, the instance forwards ei

out before ej
out to the merger. Since the merger does

not change the order of the output events from an instance, the order of ei
out and

ej
out is maintained in the output stream.

• Case 2 is where ei
out and ej

out are output events from different partitions(and as
a result from different selections). In this case, the merger orders the events ei

out

and ej
out based on the identifier of the partition in which they are detected. Since

ei
out occurs before ej

out in the output stream of operator without parallelization,
selection σi, in which ei

out is detected, is determined before selection σj , in which
ej

out is detected. Since σi is determined before σj , partition pi, in which σi is
included, will be opened earlier than partition pj , in which σj is included. As a
result, pi will have smaller identifier than pj . Therefore, merger orders the event
ei

out with lower partition identifier before ej
out with higher partition identifier.

Therefore, the ordering of ei
out and e

j
out is maintained in all possible cases.

5.2.3 Example Predicates

For partitioning of this parameter context, the predicates defined in the existing PACE
system are used. The opening and closing predicates for sequence operator are given in
algorithm 1 of section 3.3.4. The opening and closing predicates for conjunction operator
are given in algorithm 2 of the same section 3.3.4.

5.3 Latest Selection - Selected Consumption
In this parameter context, a selection is mapped to only one output event. The latest
events of the component event types in a selection are included in the production set
of the output event. The events in a selection that are included in the production set
of an output event are consumed and are not included in the future selections. Since
only latest events of an event type are included in the production set, an event in the
incoming stream becomes invalidated when another event of same event type occurs.

5.3.1 Partitioning Model

By changing the partition procedure, in the splitter, of the PACE system, the existing
framework can be extended to parallelize an operator with this parameter context. Since
the latest events of an event type in a selection are consumed and other events of the
same event type are invalided because of the occurrence of the latest event, no events
from a selection are included in the future selections. Therefore, similar to Each selection

33



- Selected consumption parameter context, at any point of time, there is at most one
open selection in the splitter. As a result, there is at most one open partition. As
the selections and partitions are similar to the Each selection - Selected consumption
parameter context, the same partitioning procedure, as described in section 5.2.1, can
be used at the splitter.

5.3.2 Proof of Consistent Parallelization

In this section, the proof for consistent paralleization of an operator, with Latest Selec-
tion - Selected Consumption parameter context, when incoming stream is partitioned
according the above proposed partitioning model, is given.

False Positives. Assume that a false positive event eout is detected in selection σ of
partition p. Assume that the production set D of the detected false positive event eout

is given as (ei1
1 , e

i2
2 , . . . , e

iN
N ). Since eout is a false positive event, one of the two following

cases must be true:

1. There is an event eij
j ∈ D, which has already been consumed in a previous selection.

2. There is an event eij
j ∈ D where 1 ≤ j < N , such that there exists an event eij+1

j

in incoming stream Iω, where

eij+1
j .timeStamp > eij

j .timeStamp

eij+1
j .timeStamp < eiN

N .timeStamp

.

In case 1, if eij
j is consumed in two selections, then eij

j must be included in two
partitions. But, according to the proposed partitioning model, any two partitions are
disjoint sets of incoming events. Therefore, eij

j cannot be part of two partitions and the
first case is not true.

In case 2, since all the events between the start event and end event of a selection
are included in a partition, event eij+1

j is also included in the partition p. Since
eij+1

j .timeStamp > eij
j .timeStamp, an event processing partition p will detect the

output event with production set that contains eij+1
j and not eij

j . Therefore, in case 2,
eout is not detected by an instance.

Therefore, a false positive event is not detected in all the possible cases.

False Negative. Let eout be a positive event with production set D containing events
(ei1

1 , e
i2
2 , . . . , e

iN
N ) from the incoming queue. Since eout is a positive event, for eiN−1

N , the
latest terminator event before eiN

N , the condition eiN−1
N .timeStamp < ei1

1 .timeStamp
must hold. This is because, if eiN−1

N .timeStamp is greater than ei1
1 .timeStamp ,then

34



all the events eij
j in D, for which eij

j .timeStamp < eiN−1
N .timeStamp, would have been

part of the selection in which eiN−1
N is the terminator event. This means that all these

events would be consumed in the previous selection and eout with production set D
wouldn’t be a positive event.

Since eiN
N is the first terminator event after ei1

1 , according to the proposed partitioning
procedure, all the events from ei1

1 to eiN
N will be included in one partition. Therefore,

eout with production set D will be detected in the instance processing this partition and
false negatives do not occur.

Duplicates. A duplicate of an output event is detected, if a selection is processed by
more than one instance. In the proposed partitioning procedure, all the partitions are
disjoint and a partition is processed by only one instance. This implies that, a selection
is processed by only one instance. Therefore, each output event is detected only once
and duplicate events do not occur in the output stream.

Ordering of events. The ordering of the events in the output stream of the parallel
operator is consistent, if the following condition is met: for all i and j, if the output
event ei

out occurs before output event ej
out in the output stream of the operator without

parallelization, then ei
out occurs before ej

out in the output stream of the operator with
parallelization.

Since ei
out occurs before e

j
out in the output stream of operator without parallelization,

the selection σi, in which ei
out is detected, is determined before σj , in which ej

out is
determined. Since σi is determined before σj , the partition pi, in which σi is included, is
opened before partition pj , in which σj is included. As a result pi will have the smaller
partition identifier, when compared to pj . Since the merger orders the output events
based on the partition identifier in which the output event is detected, ei

out, whose
partition identifier is smaller, occurs before ej

out in the output stream of the parallel
operator. Therefore, the ordering of the events is maintained.

5.3.3 Example Predicates

For partitioning of this parameter context, the predicates defined in the existing PACE
system are used. The opening and closing predicates for sequence operator are given in
algorithm 1 of section 3.3.4. The opening and closing predicates for conjunction operator
are given in algorithm 2 of the same section 3.3.4.

5.4 Earliest Selection - Selected Consumption

In this parameter context, the operator correlates each selection to one output event.
The earliest events of the component event types in a selection are used in the production
set of the output event. The events used in the production set of an output event are
consumed and are not used in determining the next selection.

35



Figure 5.4: Partitioning in a Sequence(E1, E2) operator

5.4.1 Partitioning with PACE system.

The idea of the PACE system is to partition the incoming stream by putting all the
events from start of a selection to the end of a selection in one partition. To do so
the starting predicate Ps(e) determines if an event e starts a new selection and closing
predicate Pc(e, σ) determines if an event e closes a selection σ.

To determine if an event e closes a selection σ, a state is maintained for each open
selection. The decision whether an event e closes selection σ is made based on the state
of the selection σ. The state of a selection is determined by the events included in the
partition that contains the selection. With earliest selection - selected consumption
parameter context it is not possible to determine if an event e closes a selection. This
is because, when partitions overlap, an event is included in multiple partitions. The
closing predicate cannot appropriately maintain the state of an open selection based on
the events included in the partition, as it does not have the information if an event is
consumed in the earlier selections in which the event is included.

For example, consider the sequence operator Sequence(E1, E2). The predicates for
this operator are given in algorithm 1 of section 3.3.4. A partition is opened when an
event of type E1 occurs. A partition is closed when an event of type E2 occurs after
opening of a partition. Consider the incoming stream and partitions as shown in figure
5.4. The event ej

i of the incoming stream is the jth instance of event type Ei. The
predicates for this operator gives the first partition as (e1

1, e
2
1, e

1
2). The selection in

this partition is correlated to output event e1
out, with the production set (e1

1, e
1
2). The

second partition is given as (e2
1, e

1
2). The selection in this partition contains event e1

2,
which is included in production set of output event e1

out and therefore must have been
consumed. This results in false positive event with the production set (e2

1, e
1
2). As the

next partition starts at event e3
1, the positive output event e2

out with production set
(e2

1, e
2
2) is not detected, resulting in a false negative event.

Therefore, the predicates of the existing framework does not perform the consistent
partitioning of the incoming stream with earliest selection - selected consumption pa-
rameter context.

36



Why PACE system cannot be extended?

In order to perform consistent stream partitioning with PACE system for Earliest
Selection - Selected Consumption parameter context, it is required to determine the
terminator event of a selection at the splitter. The determination of terminator event
of a selection, with this parameter context, requires knowledge of consumed events in
the previous selections.

For example, consider the sequence operator and incoming stream discussed in the pre-
vious section (Figure 5.4). With consistent partitioning the first partition is (e1

1, e
2
1, e

1
2)

and the second partition is (e2
1, e

1
2, e

2
2). This is because, e1

1 and e1
2 are the initiator and

terminator events of first selection and e2
1 and e2

2 are the initiator and terminator events
of second selection. The splitter can determine that e2

2 is the terminator event of second
selection and not e1

2, only if it has the knowledge that e1
2 is consumed in the first selection.

The consumed events in a selection are known only after the mapping of selection
to output events. Therefore, in order to determine a partition, the splitter has to wait
for processing of all the previous partitions. This leads to sequential processing of
the incoming stream and no parallelization is acheived. Therefore, it is not possible
to modify the partitioning procedure of the existing PACE system to consistently
parallelize an operator with Earliest Selection - Selected Consumption parameter
context.

5.4.2 Merger Filterning

For consistently parallelizing an operator with Earliest Selection - Selected Consumption
parameter context, the merger filtering method is proposed in this section.

5.4.3 Event Processing

In this method, the splitter uses only the starting predicate to determine the opening
of a selection. A partition contains only one selection. Therefore, when a selection is
opened, a partition is opened and the selection is included in the partition. The opened
partition is assigned to an instance for processing. The procedure for splitting is shown
in the flowchart in figure 5.5.

The instance processes a partition by detecting all the possible events from the
selections in the partition whose initiator event is the first event in the partition. The
instance forwards the output events to merger, in the order of their detection, along
with the production set of the output event. The output event also contains identifier
of the partition in which it is detected.

The merger receives the output events from the instances and performs the filtering
for positive events. The merger discards the false positive events, and forwards the

37



Figure 5.5: Partitioning in a Sequence(E1, E2) operator

Figure 5.6: Event processing with Merger filtering

positive events to the consumers through the output stream. When the merger finds a
positive event, it sends a message with the partition identifier of the output event to the
splitter. When the splitter receives this message from the merger, the partition with
the identifier in the message is closed.

The sequence of steps in event processing is shown in figure 5.6.

Filtering of positive events. To filter positive events from the detected events for-
warded by instances, the merger maintains a set of consumed events. As the name
suggests, this set contains the events that are included in the production set of output
events, i.e. consumed events. The merger orders the detected events from different in-
stances based on the partition identifier of the detected event. The merger processes the

38



detected event by comparing the production set of the detected event with the set of
consumed events. If the production set is disjoint with the set of consumed events, i.e.,
all the events in the production set are not consumed, the detected event is determined
as positive output event. The production of this output event is added to the set of con-
sumed events, as the events in production set are consumed now. If the production set is
not disjoint with set of consumed events, the detection is a false positive and therefore,
it is discarded.

5.4.4 Proof of Consistent Partitioning

In this section, the proof for consistent parallelization, when an operator is parallelized
with merger filtering method, is discussed.

False Positives. Assume that a false positive event eout is detected in selection σ of
partition p. Assume that the production set D of the detected false positive event eout

is given as (ei1
1 , e

i2
2 , . . . , e

iN
N ). If eout is a false positive event, then one of the following

conditions must hold:

1. There is an event eij

j ∈ D, that is already consumed in a previous selection.

2. There is an event ekj

j ∈ σ , which is not consumed in any previous selection, such
that,

e
kj

j .timeStamp < e
ij

j .timeStamp

e
kj

j .timeStamp > e
ij−1
j−1 .timeStamp

Consider the first case. The detected events from a selection before σ will be from a
partition with smaller identifier. the merger orders the events according to the partition
identifier. As a result, detected events from selection σp will be processed before the
detected events from selection σ. Therefore, in the first case, if the event eij

j is consumed
in a previous selection σp, e

ij

j will be in the consumed set of the merger. Since merger
discards any detected event whose production set contains an event from the consumed
set, eout will be discarded and will not be an output event.

Now consider the second case. In such scenario, the event ekj

j is also included in the
partition p. This is because all the events after the event that opened the partition are
included in the partition until the partition is closed. If the second case is true and
and there is a detected event eout with production set (ei1

1 , . . . , e
ij

j , . . . , e
iN
N ) , then there

will be a detected event with production set (ei1
1 , . . . , e

kj

j , . . . , e
iN
N ). This is because,

the instance detects the events with Each Selection - Selected consumption. Let this
detected event be e′out. The production set of e′out and eout is same, except for the event
of type Ej . Since the time stamp of ekj

j is less than the time stamp of eij

j , e′out will be
detected and forwarded to merger before eout. If merger determines e′out as positive

39



event, then eout will not be a positive event. This is because, the production sets of
e′out and eout have events in common. If merger determines e′out as false positive event,
then merger determines eout as false positive event. This is because, since e′out is a
false positive event and ekj

j is not consumed, this implies that atleast one of the events
common between the production sets of e′out and eout is consumed. Therefore eout is
also discarded as false positive.

Therefore in all the possible cases, eout is not an output event and no false positives
are detected.

False Negatives. Let eout be a false negative event. Let the production set of eout

be D given as (ei1
1 , e

i2
2 , . . . , e

iN
N ). Since an instance processing a partition detects all

the possible events from the partition, eout will be detected by any one of the parallel
instances. Since eout is false negative, it must have be discarded in the merger. This
implies that there is atleast one event that is common between the production set D and
the consumed set of the merger. Since eout is a positive event in the operator without
parallelization, the events in D are not consumed in any previous selection. As discussed
previously, the false positives are not possible. Therefore, the events in the consumed
set of the merger contain only the events consumed in the previous selections. Since, the
events in D are not consumed in previous selection, the consumed set of the merger and
D are disjoint sets. This contradicts our initial assumption that eout is a false negative
event. As a result, merger will not discard the event eout and will determine eout as the
positive event. Therefore, false negatives do not occur.

Duplicates. Let eout be the positive event detected from a selection whose initiator
event is ej

i . since only one instance correlates the selections in which ej
i is the initiator

event, eout will be detected only once. Therefore, there can be no duplicates of the events
in the output stream.

Ordering of Events. The ordering of the events in the output stream of the parallel
operator is consistent, if the following condition is met: for all i and j, if the output
event ei

out occurs before output event ej
out in the output stream of the operator without

parallelization, then ei
out occurs before ej

out in the output stream of the operator with
parallelization.

Since ei
out occurs before e

j
out in the output stream of operator without parallelization,

the selection σi, in which ei
out is detected, is determined before σj , in which ej

out is
determined. Since σi is determined before σj , the partition pi, in which σi is included, is
opened before partition pj , in which σj is included. As a result pi will have the smaller
partition identifier, when compared to pj . Since the merger processes the output events
based on the partition identifier in which the output event is detected, ei

out, whose
partition identifier is smaller, occurs before ej

out in the output stream of the parallel
operator. Therefore, the ordering of the events is maintained.

40



5.4.5 Example Predicates

The splitter of an operator with merger filtering parallelization method consists of only
the start predicate. The start predicate of a merger filtering operator is defined in the
same way as the start predicate of the operator in the existing PACE system. The start
predicates of algorithms 1 and 2 of section 3.3.4 gives the predicates for sequence and
conjunction operator respectively.

41



42



6 Parallel Processing with Shared Memory

As discussed in section 5.4, the PACE system cannot be extended to provide consistent
parallelization for processing a rule with earliest selection - selected consumption
parameter context. One method that can be used to parallelize an operator with this
parameter context is merger filtering, which is discussed in section 5.4.2. In this section,
shared memory parallelization, a new framework for parallelization of an operator,
executing a rule with earliest selection - selected consumption parameter context, is
discussed.

Similar to PACE system, this is a data parallelization method. A number of similar
operator instances run in parallel. Each instance processes a part of the incoming stream.

6.1 Architecture.

The architecture is similar to PACE system. The nodes in a parallel operator are a split-
ter, instances, and a merger. The tasks and the procedure of executing the tasks of nodes
is different when compared to the PACE system. The instances have a shared memory
between them. Figure 6.1 shows an operator with shared memory parallelization.

Figure 6.1: Data Parallelization with Shared Memory

Splitter. Splitter connects to all the event sources from which the operator receives
events. It receives events from all the event sources and serializes the received events
into a single incoming stream Iω based on the global ordering of the events. Splitter also
connects to all the instances that are running in parallel.

Instance. Multiple instances of an operator run in parallel. All the instances have
access to a shared memory. An instance accesses the shared memory when processing
an incoming event.

43



Merger. The merger functions in the same way as in the PACE system. It connects
to all the operator instances running in parallel. It receives the output events of all the
instances and merges them into a single output stream Oω.

6.2 Event Processing.

An operator, with earliest selection - selected consumption, processes the incoming
stream Iω to produce the outgoing stream Oω in the following way:

1. Determine a selection σ from the incoming stream.

2. Map the incoming events from σ to a single output event as fω : σ → eout.

3. Remove the events in the production set of output event from incoming stream.

4. Goto 1.

As discussed in section 5.4, it is not possible to process the partitions of incoming
streams independently in parallel and arrive at consistent output. Therefore, the idea
is to process the events from incoming stream in parallel by sharing the state of the
instances in a shared memory. Instead of detecting the output event and its production
set from a selection of the incoming stream in a single step, the output event is detected
by constructing the production set in multiple steps by processing the events from
incoming streams one at a time. The state of the partial production sets is saved
in the shared memory. Any instance can access a production set from the shared memory.

The production sets in the shared memory are saved in the form of a linked list. The
earliest production set in the list is at the head of the list. When a new production set
is opened it is added at the end of the list. When an instance accesses a production set
it acquires the lock of the production set and releases the lock after the processing of
the production set. It is not possible to access a production set in the shared memory
without acquiring the lock.

When an instance is free, it sends a request to the splitter for an incoming event.
When splitter receives a request from an instance, it sends the earliest event in the
incoming stream to the instance and deletes the event from the incoming stream. After
receiving an event from the splitter, the instance processes the production sets in the
shared memory with the received event. For processing the production sets an instance
offers an interface that can be programmed according to the operator functionality. The
interface comprises of the following predicates:

• Pi : (e, γ) → BOOL If the event e is included in the production set γ, then Pi

returns true. Else it returns false.

• Pc : (γ) → BOOL If the production set γ is complete, then Pc returns true. Else
it returns false.

44



Figure 6.2: Flowchart for event processing with shared memory

• Ps : e → BOOL If the event e starts a new production set, then Ps return true.
Else it returns false.

The flowchart in figure 6.2 gives the procedure for processing of an event e by an
instance.

An instance processes the received event with the production sets in the shared
memory, starting from the earliest production set, by executing Pi(e, γ). If Pi returns
false, the instance executes Pi for the event e with next production set until Pi returns
true.

If Pi returns true for a production set, the event e is consumed in that production
set and therefore, Pi is not executed for further production sets with this event e. The
Pc(γ) is executed for the production set γ in which the event e is consumed, to check
whether e is the last event of the production set. If Pc returns true for a production
set γ, then the output event is detected. The production set γ is removed from the
list of production sets in the shared memory. The output event is detected from the
production set γ and is forwarded to the merger. The output event forwarded to the
merger is attached with the time stamp of the last event in the production set of the
output event. The merger uses this time stamp in the output event for ordering of the

45



events in the output stream.

If Pi, for an event e, does not return true for any of the production sets in the
shared memory, Ps(e) is executed. If Ps returns true for an event e, then e starts a
new production set. The instance adds this new production set to the end of the list of
production sets in the shared memory.

6.3 Synchronization
For consistent detection of output events by shared memory parallelization, synchro-
nization among all the instances is required while accessing the production sets in the
shared memory. For proper synchronization the following conditions have to be met:

• When an instance accesses a production set it acquires the lock of the production
set and releases the lock after the processing of the production set. It is not possible
to access a production set in the shared memory without acquiring the lock.

• If e1 occurs before e2 in the incoming stream, then instance I2, processing event e2,
must access any production set γi in the shared memory only after the happening
of one of the following two things:
1. Instance I1, processing event e1, has accessed γi.
2. Event e1 is consumed in a production set.

6.4 Proof of Consistent parallelization
In this section, the proof of consistent parallelization of an operator, with earliest se-
lection - selected consumption parameter context, with shared memory parallelization is
discussed.

False Positives. Let eout be an output event with production set (ei1
1 , e

i2
2 , . . . , e

iN
N ),

where eij

j is the ithj event of type Ej . For an operator with earliest selection - selected
consumption parameter context, eout is a positive event, if the following two conditions
are met:

1. ∀1 ≤ j < N ∀1 ≤ xj < ij ∃ e
xj+1
j+1 such that

e
xj

j .timeStamp < e
xj+1
j+1 .timeStamp < e

ij+1
j+1 .timeStamp

2. ∀1 < j ≤ N , ∀xj < ij , and e
xj

j .timeStamp > e
ij−1
j−1 .timeStamp: the event exj

j is
consumed in a previous selection.

Let eout is a false positive output event. This implies that, atleast one of the above
two conditions is not obeyed. If the first condition is not obeyed, then according to
the event processing procedure described in section 6.2, eout cannot be a positive event.

46



This is because, for the j on which the first condition is violated, exj+1
j+1 would have

been consumed in a previous production set and hence could not have been part of the
production set that resulted in the output event eout. This violates the initial assumption,
that eout is an output event. If the second condition is not obeyed, then, for the value of
j on which the second condition is violated, exj

j could have been part of the production
set instead of eij

j . This violates the initial assumption, that eout is an output event.
Therefore, false positive events are not detected.

False Negatives. Let eout, with production set (ei1
1 , e

i2
2 , . . . , e

iN
N ), be the false negative

event. Since it is proved that false positive events are not detected and the events from
incoming stream are included in at most one production set, the events in the production
set of the false negative event are not consumed in any other production set. This is
because, such a consumed event will result in a production set that is not equivalent to
production set of any of the positive output events. According to the event processing
procedure discussed in section 6.2, if an event e in the incoming stream is not consumed
in any of the production sets in the shared memory, Ps(e) is executed. Since eout is a
positive event, the first event of its production set ei1

1 returns true for Ps(ei1
1 ). Therefore,

a new production set γ is opened in the shared memory. For all other events eij

j , the
predicate Pi(e

ij

j , γ) returns true and eij

j is included in γ resulting in the output of event
eout. Therefore, false negative events do not occur.

Duplicates. A duplicate output event occurs when there are two output events with
the same productions set. Since every event e in the incoming stream is consumed in
only one production set, there cannot be two production sets in the shared memory with
same set of events. Therefore, duplicate events are not detected.

Ordering. For an operator without parallelization, if selection σi is determined before
selection σj , then output event ei

out mapped from σi occurs in the output stream before
the output event ej

out mapped from σj . if σi is determined before σj , then the time
stamp of the terminator event of σi is less than the time stamp of the terminator
event of σj . Therefore, the output events are ordered according the time stamp of the
terminator event of the selection from which the output event is mapped.

As discussed in section 6.2, in the operator with shared memory parallelization, the
merger orders the output events according to the time stamps of the last event in the
production set. Since the last event in the production set is the terminator event of
the selection, the output events in the output streams of both the operators, with and
without parallelization, are in the same order. Therefore, the ordering of the events in
the output stream is preserved.

47



Algorithm 5 Predicates for sequence operator with shared memory
1: procedure Ps(Event e)
2: if e.type == E1 then
3: return TRUE
4: else
5: return FALSE
6: end if
7: end procedure
8:
9: procedure Pi(Event e, ProductionSet γ)

10: if γ.prevType == E1 then
11: if e.type == E2 then
12: γ.prevType = E2
13: return TRUE
14: end if
15: else if γ.prevType == E2 then
16: if e.type == E3 then
17: γ.prevType = E3
18: return TRUE
19: end if
20: end if
21: return FALSE
22: end procedure
23:
24: procedure Pc( ProductionSet γ)
25: if γ.prevType == E3 then
26: return TRUE
27: else
28: return FALSE
29: end if
30: end procedure

6.5 Example Predicates.

Sequence. Algorithm 5 gives the predicates for a sequence operator
Sequence(E1, E2, E3) with three event types E1, E2, and E3. Since E1 is the
initiator event type, the starting predicate Ps returns true for an event of type E1. The
predicate Pi returns true, if event of type E2 occurs after event of type E1 or event of
type E3 occurs after event of type E2. The predicate Pc returns true, if the event of
type E3 is included in the production set.

Conjunction. Algorithm 6 gives the predicates for a conjunction operator
Conjunction(E1, E2, E3) with three event types E1, E2, and E3. Since any of the

48



Algorithm 6 Predicates for conjunction operator with shared memory
1: procedure Ps(Event e)
2: if e.type == E1 OR e.type == E2 OR e.type == E3 then
3: return TRUE
4: else
5: return FALSE
6: end if
7: end procedure
8:
9: procedure Pi(Event e, ProductionSet γ)

10: if e.type ∈ conjunction.types then
11: if e.type /∈ γ.prevTypes then
12: γ.prevTypes = γ.prevTypes

⋃
{e.type}

13: return TRUE
14: end if
15: end if
16: return FALSE
17: end procedure
18:
19: procedure Pc( ProductionSet γ)
20: if γ.prevTypes == conjunction.types then
21: return TRUE
22: else
23: return FALSE
24: end if
25: end procedure

component event types is the initiator event type, the starting predicate Ps returns true
for an event of type E1, E2, or E3. The predicate Pi returns true, if event of type that
is not already included in the production set occurs. The predicate Pc returns true, if
the events of all the component event types are included in the production set.

49



50



7 Analysis and Results
In this section, the implementation and the results of evaluation for the parallelization
methods proposed in sections 5 and 6 are discussed. The main aim of this evaluation is
performance analysis of splitter in partitioning the incoming streams.

7.1 Experimental Set up

Test Environment. The evaluations have been carried out on a cluster of computing
nodes with homogeneous capacity. Each node consists of 8 cores(Intel(R) Xenon(R)
CPU E5620 @ 2.40Ghz) and 24 GB memory. They are connected by 10 Gigabit Ethernet
connections.

Implementation. The components of the parallel CEP, splitter, instances, and merger,
are implemented in Java. The other nodes related to the CEP system, sources and
consumers, are also implemented in Java.

Experiment. The experiments are performed with a sequence operator. The number of
component events of the sequence operator are varied to see how the performance of the
splitter varies with it. The incoming stream of the operator consists of events belonging
to the component event types. The source sends events at uniform rate to the operator,
choosing the type of event randomly from the component event types. For all the results
presented in this section, if not specified explicitly, the experiments are conducted with
a parallelization degree of four.

7.2 Results

7.2.1 Latest Selection - Zero consumption

Figure 7.1 gives the splitter throughput of an operator with this parameter context.
In splitter, the number of opening and closing of partitions per unit time affects the
performance. When the number of component events is low, the percentage of initiator
and terminator events in the incoming streams is high. As a result, the number of
partitions opened and closed per unit time is high and the throughput is less.

Figure 7.2 gives the instance throughput. In instance, the throughput is affected by
the number of output events detected. As mentioned above, the percentage of initiator
and terminator events is high, when the number of component events is low. As a result,
high number of output events are detected when the number of component events is low
and the instance throughput is less.

7.2.2 Latest Selection - Selected consumption

Figure 7.3 gives the splitter throughput of an operator with this parameter context.
Similar to the splitter throughput of the Latest Selection - Zero consumption, the splitter

51



Figure 7.1: Splitter Throughput for Latest Selection - Zero consumption Parameter
Context

Figure 7.2: Instance Throughput for Latest Selection - Zero consumption Parameter
Context

52



Figure 7.3: Splitter Throughput for Latest Selection - Selected consumption Parameter
Context

throughput of this parameter context is low, when the number of component events are
less, because of the high number of opening and closing of partitions. Also, similar to the
instance throughput of the Latest Selection - Zero consumption, the instance throughput
of this parameter context is low, when the number of component events are less, because
of the high number of detected events.

7.2.3 Each Selection - Selected consumption

As the partitioning procedure and the predicate logic in the splitter with this parame-
ter context is similar to that of the Latest Selection - Selected consumption parameter
context, the splitter throughput is also similar and is as shown in figure 7.3. Figure
7.5 shows the instance throughput with this parameter context. Since, in this param-
eter context, all the possible events in a selection are detected, the number of output
events detected grows exponentially as the number of component events increases. As
a result, the instance throughput decreases exponentially as the number of component
events increases. Therefore, for input streams with high event rate, an operator with this
parameter context, can be practically implemented only for low number of component
events.

53



Figure 7.4: Instance Throughput for Latest Selection - Selected consumption Parameter
Context

Figure 7.5: Instance Throughput for Each Selection - Selected consumption Parameter
Context

54



Figure 7.6: Throughput of the Instance and Splitter with Merger Filtering

7.3 Earliest Selection - Selected Consumption

7.3.1 Merger Filtering

Figure 7.6 shows the throughput of splitter and instance with merger filtering. As the
number of component events increases, the splitter throughput decreases exponentially.
This is because of the exponentially increasing number of events detected, as the number
of component events increases. Figure 7.8 shows the percentage of the positive events
that are forwarded on the output stream out of the total events detected by the instances.
The percentage of the positive events is close to zero for operators with more than 3
component events. this low percentage of positive events results in the low rate of positive
output events at the merger. This can seen in figure 7.7. In figure 7.7 the throughput
of merger for all the detected events increases with the number of component events.
This is because, the processing of detected events at the merger involves set comparison
operation between consumed events set and production set of detected events. The set
comparison operator is expensive when the two sets are disjoint. When the number of
component events is low, the percentage of the positive events is high. This means,
with low number of component events, the result of high number of set comparisons is
disjoint. Therefore, the throughput is low.

55



Figure 7.7: Throughput of the Merger with Merger Filtering

Figure 7.8: Percentage of Positive events at the Merger with Merger Filtering

56



Figure 7.9: Throughput of the Sequence operator with shared memory parallelization
with parallelization degree eight

7.3.2 Shared Memory

Figure 7.9 shows the throughput of the sequence operator with shared memory paral-
lelization with parallelization degree of eight. The throughput increases slightly initially
and is stable later as the number of component events in the operator increases. The
throughput is low when the number of component event is less. This is because, when
the number of component events are less, the percentage of initiator and terminator
events in the input stream is high. As a result, the production sets are opened and
closed with in a short duration of time and there will be less number of open partitions
in the shared memory at any point of time. This results in the blocking of processes
as the processes try to access the production sets in the shared memory. Therefore,
this blocking results in low throughput. As the number of component events increases,
the number of open production sets in the shared memory increases. Therefore, the
probability for blocking of processes decreases and throughput is stable. Figure 7.10
shows the throughput of the sequence operator with various parallelization degrees of
two, four, six, and eight. The throughput of the operator increases steadily as the num-
ber of operator instances increases. It can be seen that, when the number of component
events is two, the throughput for operator with a parallelization degree eight is less than
the throughput of operator with parallelization degree four and six. This is because of
the high probability of blocking of the instances, when parallelization degree is high and
number of component events is small, in accessing the shared memory.

57



Figure 7.10: Throughput of the operator with shared memory parallelization with vari-
ous parallelization degrees

58



8 Conclusion

8.1 Summary

The focus of this thesis is on prallelization of an operator in a distributed CEP system.
Specifically, the thesis presented techniques for operator parallelization, when the rules
are specified with a parameter context. The form of parallelization discussed in this
thesis is data parallelization. In data parallelization approach the incoming events of an
operator are divided into partitions, which are processed by instances of the operator
running in parallel. There is an existing framework for such an operator parallelization,
called PACE system. The PACE system identifies the partitions by using a couple
of predicates to determine the start and end of partitions. These partitions can
programmed according to the operator, allowing the PACE system to support a wide
class of operators.

This thesis analysed the parameter context of the PACE system to be Each Selection
- Zero consumption. It analysed, if the PACE system can be adopted to parallelize
an operator with other parameter contexts. This analysis is done for four general
parameter contexts : Latest Selection - Zero consumption, Latest Selection - Selected
consumption, Each Selection - Selected consumption, and Earliest Selection - Selected
consumption.

For the first three of the four above mentioned parameter contexts, it is found
that the PACE system can be adopted with certain modifications. The modifications
to the PACE system, the logic to program the predicates, and the proofs that such
modifications provide consistent operator parallelizaiton are discussed. It is also
analysed, by experimental evaluaiton, how the throughput of such a parallelization
technique varies, when the number of component events in the operator are increased.

In the case of the Earliest Selection - Selected consumption parameter context, it is
shown that the predicate logic cannot be successfully adopted to partition the incoming
stream. For operator parallelization with such a parameter context, two methods are
proposed: merger filtering and shared memory approach.

In the merger filtering method, the architecture of the PACE system is retained.
In this approach, the instances of the operator detect events in such a way that no
false negatives occur. Note that the false positives may occur. The detected events
from all the parallel instances are merged into a single stream and the false positives
are filtered and discarded. The proof that the merger filtering approach provides a
consistent parallelization is discussed. In the experimental evaluation of the merger
filtering approach it is found that, the operator throughput is poor and does not scale
well with the increase in the number of component events of the operator.

In the shared memory approach, all the instances running in parallel have access to

59



a shared memory, where the state of the event processing is stored. In this approach,
instead of processing the partitions of the incoming streams, each instance processes one
event of the incoming stream at a time updating the state in the shared memory after
processing each event. The experimental evaluation with the sequence operator shows
that the throughput is stable when the number of component events in the operator
are increased. The operator throughput also increases steadily with the increase in the
number of parallel instances.

8.2 Future Work
In this thesis, the work on operator parallelization is done only for the general parameter
contexts. Various other parameter contexts can be defined with selection and consump-
tion policies that are customized for a specific real world application. For example, a new
selection policy can be defined with the combination of the two or more selection policies
discussed in this thesis. Similarly, a new consumption policy can be defined, where only
a subset of the events included in the production set are consumed. Work can be done in
the future for operator parallelization with such parameter contexts. In this thesis, the
discussion and analysis of shared memory approach is done only for parallelizing opera-
tors with Each Selection - Selected consumption parameter context. In the future, work
can be done on extending the usage of this approach for other parameter contexts. The
evaluation of merger filtering approach for operator parallelization with Each Selection
- Selected consumption parameter context showed, that it is not suitable for practical
application because of the poor throughput rate. Work can be done in the future to
see if this approach gives a practically viable performance for operator parallelization
with other parameter contexts. All the experimental evaluations are conducted with a
single sequence operator and a synthetic input stream. In the future, experiments can
be conducted by implementing a network of operators that depicts a real world situation
and an input stream with data acquired from real world scenario.

60



References

[1] Raman Adaikkalavan and Sharma Chakravarthy. Snoopib: Interval-based event
specification and detection for active databases. Data and Knowledge Engineering,
59(1):139 – 165, 2006.

[2] Asaf Adi and Opher Etzion. Amit - the situation manager. The VLDB Journal,
13(2):177–203, May 2004.

[3] Yijian Bai, Hetal Thakkar, Haixun Wang, Chang Luo, and Carlo Zaniolo. A data
stream language and system designed for power and extensibility. In Proceedings of
the 15th ACM International Conference on Information and Knowledge Manage-
ment, CIKM ’06, pages 337–346, New York, NY, USA, 2006. ACM.

[4] Cagri Balkesen, Nihal Dindar, Matthias Wetter, and Nesime Tatbul. Rip: Run-
based intra-query parallelism for scalable complex event processing. In Proceed-
ings of the 7th ACM International Conference on Distributed Event-based Systems,
DEBS ’13, pages 3–14, New York, NY, USA, 2013. ACM.

[5] Krysia Broda, Keith Clark, Rob Miller, and Alessandra Russo. Sage: A logical
agent-based environment monitoring and control system. In Manfred Tscheligi,
Boris de Ruyter, Panos Markopoulus, Reiner Wichert, Thomas Mirlacher, Alexan-
der Meschterjakov, and Wolfgang Reitberger, editors, Ambient Intelligence, volume
5859 of Lecture Notes in Computer Science, pages 112–117. Springer Berlin Heidel-
berg, 2009.

[6] S. Chakravarthy and D. Mishra. Snoop: An expressive event specification language
for active databases. Data Knowl. Eng., 14(1):1–26, November 1994.

[7] Gianpaolo Cugola and Alessandro Margara. Tesla: A formally defined event spec-
ification language. In Proceedings of the Fourth ACM International Conference on
Distributed Event-Based Systems, DEBS ’10, pages 50–61, New York, NY, USA,
2010. ACM.

[8] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From
data stream to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62,
June 2012.

[9] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker
White. Towards expressive publish/subscribe systems. In Proceedings of the 10th
International Conference on Advances in Database Technology, EDBT’06, pages
627–644, Berlin, Heidelberg, 2006. Springer-Verlag.

[10] Daniel Jobst and Gerald Preissler. Mapping clouds of soa- and business-related
events for an enterprise cockpit in a java-based environment. In Proceedings of the
4th International Symposium on Principles and Practice of Programming in Java,
PPPJ ’06, pages 230–236, New York, NY, USA, 2006. ACM.

61



[11] Boris Koldehofe, Ruben Mayer, Umakishore Ramachandran, Kurt Rothermel, and
Marco Völz. Rollback-recovery without checkpoints in distributed event processing
systems. In Proceedings of the 7th ACM International Conference on Distributed
Event-based Systems, DEBS ’13, pages 27–38, New York, NY, USA, 2013. ACM.

[12] Xiangsheng Kong. The study of rfid system based on cep. In Consumer Electronics,
Communications and Networks (CECNet), 2012 2nd International Conference on,
pages 1477–1480, April 2012.

[13] David C. Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[14] R. Mayer, B. Koldehofe, and K. Rothermel. Predictable low-latency event detection
with parallel complex event processing. Internet of Things Journal, IEEE, 2(4):274–
286, Aug 2015.

[15] Roy Schulte. An overview of event processing software.
http://www.complexevents.com/2014/08/25/an-overview-of-event-processing-
software/.

[16] S. Srinivasagopalan, S. Mukhopadhyay, and R. Bharadwaj. A complex-event-
processing framework for smart-grid management. In Cognitive Methods in Situa-
tion Awareness and Decision Support (CogSIMA), 2012 IEEE International Multi-
Disciplinary Conference on, pages 272–278, March 2012.

[17] Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda, Subash
Chaturanga, Srinath Perera, and Vishaka Nanayakkara. Siddhi: A second look
at complex event processing architectures. In Proceedings of the 2011 ACM Work-
shop on Gateway Computing Environments, GCE ’11, pages 43–50, New York, NY,
USA, 2011. ACM.

62



Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

63


