
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis

Automatic interpretation of a
declarative cloud service

description

Vadim Raskin

Course of Study: Infotech

Examiner: Prof. Dr.-Ing. habil. Bernhard Mitschang

Supervisors: Dipl.-Inf. Tim Waizenegger,
Dipl. -Phys. Cataldo Mega, IBM

Commenced: November 1, 2014

Completed: May 3, 2015

Abstract

The accelerated move from on-premise enterprise software to a cloud service model intro-
duces certain challenges to service providers. The difference between enterprise customer’s
workloads and the complexity of software products create the need for a formal service de-
scription. It increases abstraction level, encompasses business requirements and eliminates
misunderstanding between a service provider and its customers. However, the declarative
nature of the description does not allow to determine precise implementation components.
Furthermore, each provider is interested in customization and portability of its services to
meet requirements of several customers, at the same time allowing automatic selection of
service topology. The major objective of this work is to show how declarative cloud service
description can be automatically processed, analyzed and mapped to the service topology
matching customer’s workload and original business requirements. In order to decrease service
delivery time and to eliminate the manual selection of application components, a method of
automatic interpretation of a declarative cloud services is proposed.

In this work, several solution concepts of interpretation of a declarative service description were
discussed. As a result, a method of automatic identification of service components matching
to a given business requirements was elaborated. It is based on the gradual reduction of the
list of possible service components considering their compatibility and deployment sequence.
Moreover, it includes an optimization algorithm that selects exact service topology for the
case of several matching options. Additionally, a prototype of an interpreter that transforms
declarative cloud service description into the exact topology of components was implemented
and discussed.

3

Contents

1 Introduction 9
1.1 Scope of the work . 11
1.2 Related work . 12
1.3 Context . 13

2 Solution concept 21
2.1 User input considerations . 21
2.2 Concept selection . 24
2.3 Interpretation workflow . 27
2.4 Application architecture . 37

3 Prototype implementation 41
3.1 Bird’s-eye view . 41
3.2 Core considerations . 43
3.3 Interpretation process . 44
3.4 Application architecture . 50
3.5 Application lifecycle . 56
3.6 Discussion . 61

4 Summary 65

Bibliography 69

5

List of Figures

2.1 One to one mapping concept . 24
2.2 Transformation of Models . 25
2.3 Concept of domain model reduction . 26
2.4 Graph of functional requirements provided by DSL 28
2.5 Processing of functional requirements . 29
2.6 Component space example . 29
2.7 Graph of rough components after rule engine processing 30
2.8 Processing of component-oriented non-functional requirements 31
2.9 An example of compatibility matrix . 32
2.10 The graph of precise components . 33
2.11 Priority space example . 34
2.12 Processing of property-oriented non-functional requirements 35
2.13 Component space with possible service configurations 36
2.14 Architecture of the interpreter . 38

3.1 General view on DSL interpretation . 42
3.2 Components of utilized DSL templates . 46
3.3 Categories of service components . 47
3.4 Technology overview . 51
3.5 Class diagram . 53
3.6 Application user interface . 54
3.7 Sequence diagram of retrieving the template status 55
3.8 Sequence diagram of accessing the start page 57
3.9 Sequence diagram of template uploading . 58
3.10 Sequence diagram of deploying a template . 60
3.11 Sequence diagram of template deletion . 61

6

List of Tables

2.1 Model of ECM Components . 39

List of Listings

3.1 Example of TOSCA policy type and node template 45
3.2 Internal representation of component categories 48
3.3 Asynchronous retrieval of template status . 56
3.4 Get OpenStack authentication token . 62

7

1 Introduction

Recently traditional computing is more and more being replaced by the cloud service model.
The new approach is providing a win-win situation for both users and service providers. From
the user’s perspective, he has to pay only for the consumed resources, which allows cutting
partially its Total Cost of Ownership (TCO), including capital as well as operational costs
[Cha09]. At the same time service provider enjoys the effect of economies of scale by delivering
its services to many customers. In the case of B2B model switch from traditional software
deployment to cloud services does not seem to be straightforward due to several reasons.

Software intended for enterprises has to reflect their internal business processes and cope with
unique workloads, meaning that solution appropriate for one customer is not acceptable for the
another. Enterprise software differs from end-user desktop applications in its customizability
and involvement of dozens of hardware and software components that are required to be
deployed. As a consequence, each B2B software solution has to be manually configured and
should represent a unique combination of known components. Software solutions delivered
in such a fashion are costly due to the involvement of subject matter experts in requirement
analysis, employment of operation teams that manually adapt the software to customer needs.
Consequently, it takes several months to deliver enterprise software. In order to further clarify
the problems of switching from traditional computing to the cloud model, Enterprise Content
Management (ECM) system is chosen as a reference. After a short introduction to ECM, aspects
of the process of traditional software delivery of such system are considered, its drawbacks are
highlighted and a possible solution is proposed.

ECM systems deal with information governance in big enterprises. In the case of small and
medium companies, information governance could be handled manually without losses, or
by keeping data in applications from different vendors scattered around the company. But
in bigger enterprises lack of control on information and content can lead to lost revenue or
non-compliance with the law. Therefore, the need for centralized management of scattered
content arises.

At the very first step, business customers indicate their problems and ask an ECM system
provider for a possible solution. Later, a list of system requirements is provided. Further clarifi-
cation with subject matter experts is needed in order to eliminate ambiguous requirements and
identify exact needs. Thus it is considered to be a long-term process due to misunderstanding
based on term difference between the field of business problems and solution domain. Usually,
customers are faced with the same problems regardless of their operation field but express

9

1 Introduction

them in "different languages" specific to their operation domain. Hence, here arises the need
for a common vocabulary with strict semantics that will allow users explicitly define their
needs and increase service delivery time.

After processing of user requirements, solution architect manually determines the exact system
topology. This step is taken over by operation team that orchestrates and deploys selected
components. Customer specific nature of ECM systems requires fine-grain configuration and
manual adaptation of orchestration scripts in the case of specific requirements. In other words,
it leads to individual solutions that are built from scratch. Typically orchestration scripts
are extremely fragile, which means that changed parameters in one component may lead to
failures of the other ones. Hence, this process is error-prone, requires appropriate testing and
increases the time of service delivery. In the case of several orders of the same software product
with limited human resources in operation team, it even more increases waiting time for the
customers in the queue. Taking into account contradiction of individual solution approach
with cloud principles it becomes obvious that the next step towards cloud acceptance would be
to have the list of generalized services templates with customizable parameters. The template
represents a set of service components aggregated from best practices of already delivered
solutions, including software components, network infrastructure, and virtual machine appli-
ances. Each entity exposes the list of parameters that can be configured externally. Hence,
there is a need for an application that interprets user requirements, determines appropriate
service topology and initializes its deployment with user specific parameters.

Orchestration scripts are usually devoted to one specific environment and cannot be easily
adapted to changed customer needs. If the system was delivered to the customer on premises,
there is no future maintenance provided that guarantees portability of the system to another
environment or conduction of software updates. Even if the software was deployed in the cloud,
and customer was first time satisfied with it, once the enterprise grows it might be reasonable
to install the software in own private cloud infrastructure or arrange a hybrid topology1. For
these purposes, enterprise software deployment format must be portable between different
environments.

The move from on-premise to cloud service delivery model has to cope with the following
challenges: manual requirements engineering for each new customer, human involvement
in selection of service components, lack of customizable deployment automation, portability
of services between several cloud environments. In order to eliminate manual requirement
engineering, a Domain Specific Language (DSL) must be defined. Its aim is to reflect user needs
as well as ECM service provider capabilities. This language enables the user to express his
requirements in a declarative form eliminating implementation’s specification. Human action
involvement in component selection is to be reduced by a DSL interpreter. The goal of this
application is to encompass the knowledge of best practices of already delivered services. It
is responsible for parsing of user defined DSL templates, analyzing its content, suggesting

1According to "State of the Cloud Survey 2015" conducted by Right Scale

10

1.1 Scope of the work

the most appropriate service components and their mapping to the exact service templates.
Predefined customizable service templates can solve the last two issues: lack of customizable
deployment automation and portability of services. Depending on the exact cloud provider
format, these templates could be portable to several environments with the customization
features.

1.1 Scope of the work

The major objective of this work is to show how declarative cloud service description can be
automatically processed, analyzed and mapped to the service topology matching customer’s
workload and original business requirements. A method of automatic interpretation of user
requirements was elaborated. It is based on gradual reduction of the map of possible service
component that leads to the selection of precise service topology. Determination of exact
components is guaranteed by optimization algorithm that calculates the most appropriate
service topology based on compatibility, deployment sequence and optimization metric. In order
to prove the elaborated concept, a prototype of an interpreter was elaborated. It consumes
DSL templates defined by the users and maps user input to one of the predefined service
templates. At the end the prototype implementation was discussed followed by conclusions
and highlighted future research directions.

Further content of this thesis is structured as follows:

• Related work and Context. These subsections follow up the introduction section of
this thesis. Related work subsection gives more insight into the previously utilized
approach of service delivery, as well as research on the transformation of requirements
into service components, TOSCA based interpretation and automatic configuration of
cloud infrastructures. Context subsection clarifies the main terms used in this work:
cloud computing, portability of services and enterprise content management domain.

• Solution concept. This section proposes the concept of interpretation and introduces
sample application architecture. User input is considered to be in the form of DSL. The
result of the interpretation is defined as one of the predefined service templates. Several
ways of handling of user input are considered, and the one based on a gradual reduction
of possible service components is selected and details of this method are discussed.
As part of the approach, an algorithm of optimized component topology selection is
introduced. It is based on graph abstraction and requires the calculation of path’s metrics.
Furthermore, it introduces the concept of partial match of user requirements.

• Prototype implementation. The section introduces the proof of concept that was imple-
mented in a Java-based application with web GUI. Application consumes TOSCA based
ECM domain specific language templates as an input defined in XML format. Two sample
DSL service templates are defined. They are interpreted by the application that maps

11

1 Introduction

them to registered Heat Orchestration Templates (HOTs) and triggered its deployment
with configured parameters. In order to emulate cloud provider environment, OpenStack
infrastructure was installed. Furthermore, used technologies, details of implementation
and application lifecycle are covered in this section. At the end of the section, the
contribution of the prototype is discussed in the context of the switch to a cloud service
model.

• Summary. This section provides conclusions that were drawn from elaborated work.
Moreover, future research directions are emphasized.

1.2 Related work

In the following section, the traditional approach to service delivery is to be presented as
well as consideration of work on the transformation of user requirements, portability of cloud
services and automatic identification of cloud infrastructure configuration.

In the following an already existing approach of service delivery is to be presented, it was
elaborated by ECM experts at IBM. The problem of interpretation of business requirements
of ECM customers was previously carried out manually by means of questionaries filled out
individually by each new customer. In this checklist, potential customer answers the questions
regarding current issues in content management domain and shares its expectations from the
system. From the architectural perspective, the customer is asked to mention technologies
he is already using. In order to assess the capacity of the future system, possible workload
characteristics were also included in the user requirements definition. For example, number
document load operations per minute, average document size, number of searches per time
unit, etc. After retrieving all the above mentioned data it is analyzed manually by domain
experts, and appropriate service topology is selected. However, this approach requires the
repeat of similar work items each time when a new customer comes, the lack of automation
in the selection of the template increases the time of service delivery. If the number of new
customers exceeds the actual number of domain experts, then delivery will be done in a
sequential fashion, processing customer requests individually.

In their work Chang et al. [CLY+14] represent a model-driven development approach to trans-
form from high abstraction level system model to the diagrams describing system architecture.
Original system requirements are gathered by means of interviews, and afterward requirement
diagram is elaborated. With the help of ATLAS modeling language, this diagram further
transferred into Use Case Diagram and Activity Diagram according UML. The given method
describes the principle of transformation based on predefined rules that map elements between
models. However, it does not touch the process of elicitation of actual software components
that will be contained in the service.

12

1.3 Context

Either Binz et al. 2013[BBH+13] and Katsaros et al. [KML+14] present independent prototypes
of applications that process services defined in the language following TOSCA specification
[TOS13a]. Bitz et al. depict the architecture of the OpenTOSCA application, with an example
of deployment of a cloud service. The application consists of the whole stack of tools needed
to circumscribe the cloud service: modeling tool, runtime environment, and user interface
for administrators and customers. From the application architecture point of view, it was
underscored that the Cloud Service Archive (CSAR) must contain predefined set of plans
to deploy and manage the service. Both solutions prove the concept that TOSCA described
applications can be run independently of IaaS provider, but with a condition that provider
specific extension is either enabled in the container or directly on the cloud provider side.
In both works an imperative method of service deployment was utilized, e.g., the user is
responsible for the definition of the components, their orchestration scripts and managing
plans. However, they did not touch the topic of declarative service description that is utilized
in this work.

In Wettinger et al. [WBB+14] authors make an overview of TOSCA capabilities to define a
cloud service and suggestions on decoupling between service description and implementation of
its deployment. The improvement they proposed for script invocation uses inversion of control
pattern [PL12] to lighten management plan description and provide loose coupling between
plans and orchestration scripts. In other words plan declared once can be maintained and
changed over time, on the other hand, orchestration scripts (Shell, Python or another scripting
language) can be reused in different cloud provider environments. The proposed solution is
a good attempt to guarantee portability of cloud applications between several environments.
However, the approach concentrates more on the management of cloud application, rather
that transformation of business requirements into the exact implementation.

In their work Uchiumi et al. [UKKM13] present a method of automatic configuration of cloud
infrastructures. The system is trained on a wide set of existing infrastructures. Based on this
knowledge their algorithm can predict the configuration of a new data center. However, the
focus of this work differs in a sense that application layer must be configured based on user
input. Furthermore, deterministic analysis is utilized which does not leave space for training of
the system.

1.3 Context

Cloud Computing

In order to be widely adopted a new technology has to add significant value, which could
bring improved efficiency, reduced operational costs, increase profit, etc. Cloud computing is
one of such technologies that allow to decrease IT infrastructure operational costs in more
than 1.5 times.[Shr10] It is an evolving and relatively new concept; therefore there exist many

13

1 Introduction

definitions of it. The term will be referred throughout this thesis. Hence it is important to
define it and related technologies explicitly. In their work, Dillon et al[DWC10] relate on the
key expectations from that field and refer to the denotation provided by U.S. NIST (National
Institute of Standards and Technology):

“Cloud computing is a model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.”

According to[ISO14]main properties of cloud computing are:

• Broad network access: this feature of cloud computing is addressed to geographical
availability of the service from any point with network connectivity, also including
support of various devices, e.g. workstation, tablet or cell phone.

• Measured service: guarantees metering, billing and charging of service user. Important is
the added value for the customer - lower operational costs - payment is performed only
for the resources that were used.

• Multi-tenancy: the share of computing resources between several customers. Tenant’s
are not aware of each other, their data is safely stored and can not be accessed by other
customers.

• On-demand self-service: if the client assigned to the service, there are no other necessary
steps preventing from its usage. Service are used only when they are needed. However,
they are constantly available.

• Rapid elasticity and scalability: resources must be scaled up according to the current
workload or forecast information. Statistics gathered during the usage of the application
shows the pick hours when the workload is maximal and triggers the allocation of
additional resources. The system is also taking the workload drop into account and the
resources are given back to the pool.

• Resource pooling: serving multiple customers on a shared hardware that is ‘hidden’
and the only visible interface is a pool of virtual machines, application components or
designated cloud service itself.

An important characteristic of the cloud is its deployment model. It could be defined by user
groups that could access a cloud and level of tenant separation. In the following paragraphs, a
brief explanation of cloud service models is provided.

A public cloud is available for both enterprise customers and individual users by means of
multi-tenancy. As a result of user diversity and possible high number of customers, cloud
provider is able to handle peak workloads of individual customers thanks to the fact that high
workloads at one tenant are not necessary correlating with the other one. In this case economy

14

1.3 Context

of scale is easy to leverage, every customer sees public cloud as a black box with unlimited
resources, however resources are limited and spreaded on demand [FLR+14] .

Private cloud is limiting the allocation of resources to one enterprise environment and tries
to ensure maximal isolation from the public Internet. Allocation of the cloud could be done
either on company’s data center or delegated to the outsourced cloud provider. Often public
cloud providers offer so-called virtual private clouds, which may guarantee a higher degree of
isolation from other service consumers in compare to the public cloud, e.g. each tenant could
use only designated hardware. In this case connection to the cloud is established by means of
a secured tunnel, e.g. VPN [FLR+14].

A community cloud is a cooperation initiative supported by different companies and organiza-
tions with a mutual contribution to its infrastructure. It takes the place when companies share
their data to achieve synergy, public cloud may be not appropriate according to security issues,
private cloud is not meant for multi-tenant access.

A hybrid cloud deployment model represents a mixture of above-mentioned models optionally
including the internal non-cloud infrastructure of the enterprise. As a motivation to use such
a cloud following aspects have to be considered: elasticity, accessibility, and trust. To ensure
elasticity property it would be economically reasonable to store cloud components according
to their workload on separate cloud environment, e.g. components with predictable workload
could be stored in internal environment while components with unpredictable or periodically
changing workload could be stored in a more scalable environment. Access to applications is
needed by different groups of users, some of them are employees connecting within intranet,
whereas others are business partners interacting over the public network. Trust aspect is
related to the willingness of cloud customer to store its highly valuable or confidential data on
provider side [FLR+14].

Cloud Computing is a very wide topic that demands an analysis from different angles. Above
introduced properties play a role of a foundation for service models and deployment models
that sets up a list of requirements for cloud providers. Service model touch on functional
part of a cloud service, answering the question, what exactly is being delivered. However
deployment model is considering a question of security and trust in a cloud, answering the
question, where does customer wants to store the data?

Portability and interoperability of cloud services

Portability and interoperability show up among other aspects of cloud computing, as well
as correlating with the context of this work. Portability relates to a possibility of reuse of
cloud service components, meaning minimization of costs when migrating services between
clouds or creating a heterogeneous service compound of relationships to more than one
service provider. Interoperability relates to the ability of different cloud service components
to communicate in a way with either a little or no knowledge about internal characteristics

15

1 Introduction

of their components [ABC13]. The possibility of non-cloud applications being involved in the
picture also has to be considered. For instance, enterprises are required to keep personal data
in an internal environment. Thus, cloud services have to be coupled with already existing
legacy systems. Both terms closely relate to the hybrid cloud deployment model, which requires
loose coupling between components and their alignment in fine granular groups [FLR+14].
Hence, portability and interoperability involve private, public cloud services and non-cloud
applications binding together both roles: customer and service provider. Interaction between
them can be carried through diverse abstraction levels, perfectly fitting into the frame of service
models. Depending on the interaction layer between customer and service provider, following
entities are considered: Data, Application, Platform and Infrastructure. Discussion of portability
and operability perspective of these entities carried through the following paragraphs.

Interoperability of data is done via interfaces of application component rather then
directly[opea]. These interfaces are based on unified OSI model standards, i.e. a stack
of protocols that provide among others virtual networking. Apart from other standards it is
necessary to emphasise VLAN and VPN. VLAN enable multi-tenancy and guarantee that data
can not be transferred to other customer’s network. VPN ensures interoperation between
the corporate network and public cloud provider or between different clouds. In order to
provide message exchange between applications message-oriented middleware is being used
[FLR+14].It encapsulates complexity and heterogeneity of cloud services, addressing the prob-
lem of broadcast and multicast communication. Among possible implementation patterns are
message queue and pipes-and-filters architecture.

Portability of data between applications has found successful implementation by means of
widely acceptable markup languages and object notations, e.g. XML [Lea99]. Among others
are JSON, YAML, traditional SQL schemas, etc. Some languages are utilized to represent data
while communicating between different tiers of one application or across different applications.
Others, like SQL schemas and JSON, are also used to store the data in relational and non-
relational databases accordingly.

Application interoperability could be realized via Service Oriented Architecture (SOA), particu-
larly in Web Services concept, that was discussed from a business processes perspective in the
work of Leymann et. al. [LRS02]. They solve the problem of flexibility in choosing a business
partner offering a service. The main idea is if the service interfaces are unified and information
about them is stored in a centralized place then they can be automatically discoverable by
each other. As a mechanism to communicate with web services SOAP standard is used, which
defines semantics to exchange messages between services. As an alternative REST architecture
could be used. It is not protocol specific, however, is mostly used over HTTP, thus providing
high application interoperability [Bur10]. One could also define predeceasing technologies
like CORBA and Java RMI that are used less due to vendor-specific dependencies.

Application portability. Cloud applications differed from traditional monolithic one primarily
by its distributed nature and increased complexity resulting from its properties. The first
steps in cross-platform portability were done by Java, Python, and Ruby, where program code

16

1.3 Context

is executed or interpreted in OS add-on, e.g. Java Virtual Machine (JVM). Reusability of
relatively simple applications could not be that tedious task, e.g. deliver JAR files to another
JVM. However looking into the future, applications are getting more complex with growing
number of interdependencies to other platforms2. If an enterprise building an application in
PaaS provider decides for whatever reason to switch to another provider, it is not guaranteed
that the application will be easily adapted. Another possible scenario of application portability
would be application migration from development environment to the operation environment.
It is not always economically reasonable to build development environment, which will not be
used after application release. It is vital that application could be transferred to the operation
environment without changes. Thus, companies utilize services of one PaaS provider for both
development and operations purposes (devops). Cloud applications are also including programs
addressed to deployment, configuration, provisioning and orchestration of cloud resources. It
is important for SaaS provider to be flexible in a choice of a PaaS or IaaS provider. For that
purpose connection to different cloud providers interfaces must be unified, this property is
named management interoperability. There are several solutions for automation of operations
that fulfilling that property, e.g. Chef, Puppet [opea].

Interoperability of platforms is achieved by protocols for information exchange with stan-
dardized or vendor defined interfaces. The platform includes both operating systems and
middleware, e.g. application servers, database management systems [FLR+14]. Among stan-
dard interfaces CDMI could be distinguished, which is specifying how to access cloud data
storage and how it must be governed [CDM14]. That is allowing access to diverse storage
platforms via a standard interface. From the other hand communication between different
platform architectures is often done by point-to-point interfaces, for that purpose development
of a converter between every two platforms is required [ABC13]. For instance interoperability
between following platform pairs could be a problem without an interface specification: JVM
and Python, .NET and JVM. Interfaces allow execution of Java code from Python and C# code
from Java.

Portability of platforms is done by means of virtual images, which could be copied across private
users or cloud service providers. Traditionally portability of platforms is realized via copying
the whole virtual machine (VM) with its guest OS, which is not always necessary, e.g. only
one middleware component is needed to be copied to the other environment, not the whole
VM. However more fine-granular way of portability is conveyed through Linux Containers
(LXC)[CS14]. LXC provides operating system level virtualization that creates application
sandboxes isolated from each other. This technology was adopted in a software product
called Docker, it eases deployment and portability of platforms and their components. Fine
granularity in platform images contributes to the overall portability of cloud services, meaning
that the transfer of cloud services could be done not only on IaaS, but on PaaS level. However
according to the LXC nature of Docker it is not possible to execute containers in Windows

2According to Financial Times https://ibm.biz/BdE9FT

17

1 Introduction

environment. It has high adoption rate with positive dynamics among web service providers,
i.e. on January 2014 33% of websites were using Windows web servers [Net14]. Hence, it is
still leaving shortcomings on OS portability.

Portability and interoperability of infrastructure entities are related to virtualization techniques
and hardware components, which utilize physical interfaces applied in traditional computing.
Hence, they are less relevant to the context of this work and will not be further discussed
here.

Based on the portability mentioned above and interoperability aspects of different layers of
cloud computing, one can conclude that overall portability and interoperability of cloud service
descriptions depends on components of all specified layers. Nowadays portability of cloud
service descriptions can not be fully guaranteed due to several challenges.

• Different application standards across cloud providers. Cloud service defined in one
environment can not be migrated to another provider without significant refactoring.
Nevertheless, individual steps in this directions are already done by TOSCA. However, it
is a relatively new specification that is not yet a standard that can be adopted by major
cloud providers.

• The separation between layers of a cloud service. In order to describe a service on the
infrastructure layer, OpenStack Heat template could be utilized. It provides compatibility
with AWS Cloud Foundation template format, but it experiences the lack of support of
deployment scripts above VM provisioning layer. If it is required to configure and deploy
software, Chef recipes could be used to perform it on a centralized basis. However,
infrastructure layer is out of its responsibilities. Docker containers cause the same
problem by defining only application components. Hence, there is a need for a standard
that connects all layers of a cloud service and allows transparency in establishing of cloud
services.

Enterprise Content Management

The amount of information produced, stored and consumed by companies, is growing year
by year. This information is closely related to the content, organization is dealing with. It
can include text documents, emails, spreadsheets and other digital assets. There are several
driving forces motivating to manage this content. Some of them are a competitive advantage
by means of valuable knowledge mined from unstructured content, compliance with law
and regulations, provisioning of evidence in a lawsuit managed by eDiscovery. Knowledge
are gathered from the refinement of enterprise content to the business valuable information
[MNS14]. Enterprise knowledge could be split on know-how characterized by learning-by-
going principle, know-what characterized by learning-by-studying principle and know-why
related to learning-by-using [Gar97]. Afterward, this knowledge is used by the interested
user groups in the enterprise. Another encouragement to pay attention for the content, is the

18

1.3 Context

requirements put by the legislation. In some countries companies are obliged to store their
business records for a certain retention period, e.g. according to Sarbanes-Oxley Act, electronic
records of public companies have to be saved for the period of minimum 5 years [EHW04].

Above mentioned use cases are governed by Enterprise Content Management (ECM) domain.
Definition of ECM field varies depending on the chosen perspective, e.g. content, function,
technology, enterprise [GHH+12]. Content perspective is concerned with the semantics of
the content and its relationship to the user. From the functional perspective, ECM is seen as
a list of functional requirements to the system, while technology perspective regarded as an
exact combination of software products used by an individual provider. Enterprise perspective
shows the business requirements or problems that will be solved by these components. Taking
into consideration above mentioned perspectives, ECM can be considered as a lifecycle of
information from its creation and capturing to retention and deletion. In order to be precise
the notation provided in the review of ECM research is used [GHH+12]:

„Enterprise Content Management comprises the strategies, processes, methods, systems, and
technologies that are necessary for capturing, creating, managing, using, publishing, storing,
preserving, and disposing content within and between organizations.„

Further content of this subsection is meant to clarify above mentioned perspectives on ECM. It is
structured as following: general functional perspective follows content perspective. Enterprise
and technology perspectives are tightly coupled to the particular customer domain. Thus, they
are omitted here.

There are several forms of content that are produced and managed by enterprises: documents,
records, email, web content, digital assets [AII13b].

Document management. Documents can be paper and electronic based, here only electronic
forms are considered. Document management deals with retrieving, tracking, storing and
controlling of the documents [AII13a]. It covers subtasks of ECM and comes with the following
key properties [AII13a]:

• Thread-safe operations on documents, with distributed locking and consistent editing.
Changes made by one user should not override simultaneous changes committed by the
other one.

• Version control. The whole history of changes on the document is saved with the
possibility to roll-back to a previous version.

• Non-repudiation during the audit. Ensure mapping between actions on the document
and users, e.g. see who did what.

This list gives only an overview of possible properties since there are many more which are
document specific. In order to illustrate it, let us consider workflow property of a contract in an
enterprise. Big companies usually operate with significant number of contracts. Every contract
includes vast number of intermediate steps from draft to completion. Typical lifecycle of a

19

1 Introduction

contract might be: draft, review, revision, sign, approval, completion and possible termination
[CNMK07]. In order to successfully manage such a document its current state might be
considered, and also possible interoperation with external systems must be provided. As one
can see every type of a document might have its properties, thus document management
systems are usually targeted on a certain document category [NCK+09].

Web Content management. Nowadays enterprises often share their information and communi-
cate with business partners by means of Web. Web Content usually includes HTML documents,
images and videos. The primary goal of Web Content Management is to facilitate non-technical
users to process the lifecycle of the content, e.g. provide basic CRUD operations [LY10]. In
other words, it allows maintenance of presentation layer of three-tier architecture application.

Email management. Emails encompass the bulk of the communication within an enterprise,
what makes them valuable for legal compliance and internal analytics. As a matter of fact,
email systems is a source of history of decisions of the company, which makes them an object
of eDiscovery. From the other hand, they could be used to mine data for knowledge-discovery
[DHGS13].

Records management. All above mentioned content types could be included into record, which
is a type of content related to some state and serves as a prove of executed activity. Usually
record corresponds to the following [ZAB+09]:

• Its content can not be changed.

• Plays role of evidence of action or transaction brings essential value for business or legal
compliance.

• Identified by retention policies, governing questions what information is to be stored and
when it will be deleted.

Hallmark of record from other types of content, for example, document, that it cannot be
modified. If the document is modified several times, it will correspond to different records.
Records management involves: capturing of the information that was identified as valuable,
categorising of records, keep records for a certain period of time related to retention policy,
destroy records when they are no longer needed, guarantee consistency of the record during
audit trail.

20

2 Solution concept

The declarative nature of service description provided by enterprise customers has a variety of
possible interpretations and does not allow to conclude directly how it will influence the result-
ing service runtime. Thus, it is required to provide clarifications and assumptions addressing
possible input to the system. Once the system input is specified, the scope of the influence on
implementation components is to be elaborated. In order to avoid misunderstanding in used
terminology, it is necessary to state that both words user and customer are used as synonyms.
They define an abstract enterprise customer who experiences the need in the interpretation of
a service description. Specification of exact actors within enterprises is not appropriate due to
the difference in their hierarchy. Thus, the generalized notation is utilized.

Several possibilities of interpretation of user input are considered: direct mapping, model
transformation and component map reduction. In the following chapters selection of one these
concepts is made and justified. It is followed by the discussion of elaborated details of chosen
approach.

2.1 User input considerations

In the following two forms of observed user input are considered:

• Ambiguous form. In the general case, a user describes the system that is needed in the
term of its problem domain. In the most basic case they could be expressed in the form
of natural language. The problem definition reflects functional requirements to the
system. For example, the statement "I need to store my data in the web archive" could
be interpreted as requirements on a repository, database and web user interface from
solution domain. However, the meaning of this sentence may vary from customer to
customer, at the same time there could be synonyms interpreted differently depending
on the field. Priority of service delivery can be conveyed in the sentence "I need the
solution with lowest price", this could trigger the search for open source components
with the appropriate license. Both statements relate to functional and non-functional
requirements to the system. However, the number of system components to be deployed
and the final topology remain unclear.

• Precise form. The user is aware not only of the problems but also of the service entities that
possibly solve them, as well as the workload that its company produces. Hence, one can

21

2 Solution concept

specify abstract components with their dependencies and quality of service requirements.
The common vocabulary in the form of a Domain Specific Language (DSL) is used for
the purpose of precise identification of customer requirements. Its semantics defines the
mapping to components of the system; while its syntax determines the service topology
and its interpretation sequence. Language semantics covers functional and non-functional
requirements to the system. Functional requirements can be presented in the form of a
graph where nodes are abstract components of the system and edges are relationships
between them. Each such a node could be mapped to more than one software component
from implementation domain while edges reflect orchestration sequence of components
by simple "depends_on" relationship. Non-functional requirements specify the quality of
service or capabilities the system should obtain, e.g., average number of transactions per
day.

In both cases, the cloud provider needs to determine the exact service components considering
the required quality of service. Mapping to the correct components is concluded from the
semantics of user input. In order to specify this mapping, one needs to consider implementation
components of the system and how they can be influenced. First of all I split the components of
a generic cloud service into three layers: Infrastructure, Platform, and Solution. Infrastructure
layer includes components defined by IaaS provider, which encompasses virtual machines,
network topology, load balancers. Platform level includes software components that are
common to several services that could be delivered based on the user input. Solution layer
contains software components that differentiate services from each other. Entities on each
layer typically have configuration options that can be customized according to customer
requirements. The higher the number of configurable components, the more flexibility in
provided services exists. Thus in this work configuration of components of all layers is to be
considered and user influence on the system is restricted to:

• Inclusion of components into the system. It is found that user input includes functional
specification of abstract system components. They are mapped to the exact components
based on interpretation logic.

• Fine grain tuning of the resulting service. The quality of service parameters defined by the
user is translated into component parameters.

Following restrictions are identified regarding the relationship between user input and service
implementation: (1) functional requirements could be mapped to implementation components
only, (2) non-functional requirements are mapped to either implementation components or
their individual parameters. This separation of mapped service elements addresses the issue
of the definition of processing sequence, e.g., after selecting the components fulfilling the
required functionality it is possible to proceed with their configuration. Selection of system
components is followed by their configuration and deployment of a final service. Details of this
process are described in the following subsections.

22

2.1 User input considerations

In the rest of this work, it is considered that user input has the form of domain specific language
with known vocabulary, syntax and semantics.

Customer expectations

Enterprise customers do not always need a service with 100% matching of specified require-
ments since there is a degree of uncertainty in the necessity of each component. Furthermore,
their requirements usually change over time [Ber14]. At the same time, it is not always
possible to totally eliminate redundant requirements or to persuade the customers continuously
to provide exact requirements. However, it is possible to differentiate them based on their
necessity and finally let the user decide whether the service will be deployed or not.

It is proposed to allow the user to define requirements based on two categories: "strict" and
"soft". The first type represents critical system properties that must be definitely provided,
the second one defines desired properties that can be omitted in service deployment. "Soft"
requirements could be either not specified at all or missed during the selection of final service
template. In the first case, default system values are chosen, while in the second case the most
similar service is selected. Furthermore, when user input is analyzed and compared to the
available components the result of comparison should be displayed for the user that could
make the final decision if such a service is acceptable or not. Another possibility would be to
let the user define acceptance rate, which determines the percentage of soft requirements that
may be missed.

Exact matching of user needs would require the generation of service templates from scratch
for each user input, e.g., attempt to make individual solutions. However, this option might not
find support of service providers based on the following reasons:

• Service providers typically have a finite number of offered services. If they are known in
advance, then it is obvious that their configuration could be also predefined.

• Reliability of resulting service. Each generated service must be adequately tested and
debugged. After that quality assurance team has to ensure stability of each solution.
In the context of limited resources, this might be unrealistic to perform for all possible
combination of components and their parameters.

• Deployment test. The requirement in a centralized orchestration system which includes
individual properties of each component, not only their compatibility. Following requires
the prior generation of each possible combination of service templates in order to prove
that the final solution is deployed correctly.

Aforementioned user expectations do not always need to match the delivered service ideally. At
the same time list of predefined service templates could be generated due to finite number of
offered services. It is also not always economically reasonable to generate and test each possible
combination of components. Based on the facts as mentioned earlier, it is decided to have a

23

2 Solution concept

Figure 2.1: One to one mapping concept

list of already predefined templates with configurable parameters. Each template contains
bundles of components based on best practices of service delivery and considers the majority
of customer expectations. Hence, the service is delivered according to the following sequence.
Parsed user input is associated with exact components. Their combination is compared with
each predefined service template. The one with maximal similarity is selected. After performing
of fine-grain tuning, the template is sent to deployment.

2.2 Concept selection

Based on the above-mentioned considerations regarding possible DSL input, three promising
solution concepts are identified. Their aim is to answer the question of how to interpret
customer requirements to the system into implementation components.

• One to one mapping between the elements of DSL and application components. The
significant point here is the assumption that interpretation of the DSL is realized based on
the decision table [SP10], where every DSL component relates to one single element of a
domain model. After element’s decision was made, service template is to be generated
and deployed in a cloud provider environment.

The concept is schematically depicted on the Figure 2.1. As soon as the customer defines
a service based on DSL, he uploads it into the interpreter. It parses the input, and the
Rule engine defines a strict mapping between each input element and a component of
the domain model. On the next step service template is selected and submitted to the
cloud provider. The provider instantiates the deployment and sends back the access data
with the status of deployed application to the customer.

The approach would work fine for the case of static components defined in each service.
However, when it comes to the situation of non-trivial mapping,e.g., ambiguous one
to many relationship, the choice of the exact components has to follow complex rules
considering non-functional requirements which is not addressed in this approach.

• The transformation of models. The approach is depicted in the Figure 2.2; it was utilized
and discussed in the work of Chang et al. [CLY+14]. Here initial data model is going

24

2.2 Concept selection

Figure 2.2: Transformation of Models

through series of transformations (arrows), where each step represents a new model
(rectangles). Every model is associated with its schema, or metamodel, which describes
the elements and their relationship. One can distinguish two types of transformation:
between models belonging to the different schema and between models within the same
schema. Transforming into different schema is considered as a standard transformation
process. Transformation to a new model is done by a set of rules which identifies
the relationship between elements of both models, typical finding one-to-one mapped
components. Interpretation in the scope of one schema is noted as sibling transformation;
it serves for refining purpose. This transformation can only change the already defined
parameters, or substitute its elements constituting to its metamodel. Mapping is defined
as Sum as depicted on the Figure 2.2.

The key characteristic of this approach is the separation of functional and non-functional
requirements to the system. The initial model is represented by use case diagrams from
different stakeholders with similar use cases related to the same functional components.
The first transformation includes the generation of sequence diagram with eliminated
duplicates. During the next step, each element of sequence model is to be transformed
into a functional requirement. The next transition interprets requirements as implemen-
tation components. Here every requirement is mapped to one of the components of
either solution, platform or infrastructure model. Combination implementation elements
are transformed into a service template. The final step is to include non-functional
requirements to the system. This approach provides a powerful to tool to transform user
requirements into implementation components. However, it would require significant

25

2 Solution concept

number of transformation steps as well as created metamodels and rules in the case of
high difference in the abstraction levels between the models.

• Domain model reduction. This approach combines ideas of the first two methods; it
is schematically represented in the Figure 2.3. Certain similarities are followed from
feature space reduction in content classification problem introduced in [Alp10]. While
classifying sets of data one is given with series of random observations and a list of
categories, they could belong to. In this work, observations are represented by the DSL
input and categories are groups that contain service components. However, in the case of
the declarative language input with strict vocabulary and finite number of combinations,
one does not obtain random observations. Hence, only a deterministic approach, where
the same user input always generates the same output, can be applied. At the same time,
the concept of gradual reduction of component space fits well to the problem. It allows
to decrease the number of service components under consideration.

The DSL input is to be split into two parts, functional and non-functional requirements
to the system. Instead of transforming into different models. Only the one model is
utilized; it is defined by the map of components. Initially it contains the whole range
of components, after interpretation of each part of user requirements it shrinks until it
contains only precise elements of the service. At the first step, a rule engine identifies
the categories of components according to processed functional requirements. After that
non-functional requirements related to implementation components further reduce the
number of elements in the model. Finally, property-oriented non-functional requirements
influence the model. Based on the observed entities, final components obtain their
configuration parameters or use the default ones. Determined components are looked
up in the list of predefined service templates. If the matching template exists, it is
configured based on the above-mentioned configuration parameters. The result of this
step is represented by the template ready for deployment.

Figure 2.3: Concept of domain model reduction

26

2.3 Interpretation workflow

This method reduces shortcomings of the first two approaches: flexibility on mapping to
several possible components after processing of functional requirements, only one model
that stores all the components of the system reduces the complexity of interpretation.
The concept of gradual reduction of components of the model is chosen as a basis of this
work.

2.3 Interpretation workflow

Once knowing input types and their relationship to the implementation entities, one can define
the process of interpretation of a declarative service description. In the following this process
is introduced, in the next subsections details of the process are discussed.

Initially, a map of all implementation entities is available. It includes service components with
their possible configurations. The overall aim is to reduce this map to the list of components that
suits to the service requirements defined in the DSL input. Service components are classified
according to their functional and non-functional characteristics. The first step is to select only
those that match to provided functional requirements. This process is hardly dependent on
the syntax of user input. The difference in abstraction levels makes an impact on the further
steps of interpretation. From one hand side, the syntax can have fine-grain detailization and
its vocabulary is strongly related to entities of implementation domain. In this case direct one-
to-one mapping could be defined. For example, DSL represents repository component, which
could be mapped to one of the available object stores. However, deployment of only the one
component does not result in fully functional service, to solve this issue dependencies to other
entities need to be taken into account. From the other side import by means of coarse grain
DSL could be provided, in this case, direct mapping to implementation entities seems to be
unrealistic. If DSL entity is too abstract, then various interpretation options could match to the
user input, which requires an additional step to associate atomic implementation components
to the input. Considering the worse case with coarse grain components of DSL, initial analysis
of input values associates observed functional requirements with various component categories.
Thus, after initial extraction and analyzing of functional requirements, matching components
reduce the original map. Now it includes only the entities reflecting functional requirements of
the service. It stands to mention that the map contains redundant elements, for example a need
in a database could lead to several software components that provide such a capability. Hence,
the next step of interpretation further reduces the map by th selection of only those entities that
are being deployed. Here non-functional requirements related to implementation components
come into play. Each of them highlights a component required in the final service. An example
of such a non-functional requirement provided by the user may include the definition of the
vendor. In this case, only components from the certain vendor will be selected. In order to
reduce the map to the condition with no ambiguous components, the user may be obliged to
provide one of the priority dimensions. Otherwise, a default value is set. In a short priority
dimension is a generic non-functional requirement to the system, such can be cost, vendor,

27

2 Solution concept

availability. Internally each system component has a metric associated with each priority, in
the case of ambiguity in the selection process, components are chosen randomly or according
to default priority.

On the next steps, the map of implementation components with their default parameters
becomes available for further processing. Only non-functional requirements related to fine
grain tuning of the system are not reflected in the components yet. They are processed by the
Rule Engine that maps them to the exact component’s characteristics. At this stage, one has to
consider that the components are still required to be deployed. A naive approach would be to
process left virgin DSL input and change parameters of implementation components. Afterward,
to find a service template and deploy it. However, this method has a significant drawback.
The probability to match to one of already existing service template drops significantly if
configuration parameters are considered in the comparison. Hence, it is more rational to
match service template without consideration of its parameters first, and then configure it
and finally initialize the deployment process. This approach leaves space for customization
of service templates and their reuse for several customers. Originally there is a list of already
predefined service templates in the format compatible with one the cloud environments. They
reflect highly-demanded services only. Each of them is configured based on default parameters
and exposes an interface to change them on-demand. The last step of the interpretation is
to initialize deployment of the template. It is realized by sending it to one of the available
cloud environments with parameters based on non-functional requirements targeted to the
configuration. Additionally service access details must be provided to the customer.

Determination of component categories

As mentioned earlier specification of implementation components is a sequential process whose
first step is to analyze functional requirements and to determine a category of potential imple-
mentation components. This process is considered in the context of the whole interpretation
sequence as illustrated in the Figure 2.5. The following subsection describes the details of
category identification.

Figure 2.4: Graph of functional requirements provided by DSL

First of all user input is divided into two groups: functional and non-functional requirements.
Initial analysis is done based on functional requirements only. They are internally represented

28

2.3 Interpretation workflow

Figure 2.5: Processing of functional requirements

Figure 2.6: Component space example

in the form of a graph1. This notation is illustrated in the Figure 2.4 and defines a system
that consists of the repository with the web user interface. The key interpretation element
that maps implementation components to each functional requirement is the Rule Engine.
Each graph node is checked against matching to individual rules. Each rule determines the
semantics of functional requirements of DSL input. In other words, it maps user input to
component categories including atomic implementation components. The property of atomicity
defines that component can not be further cracked into smaller entities and is unambiguously
mapped to one of the points in a component’s space. This space is represented by n form-

1graph representation is discussed in the section 2.1

29

2 Solution concept

vectors, where n is the number of component categories of the system. An example of such a
space is depicted on the Figure 2.6. Each form vector is defined by discrete values that are
represented by components of one of the implementation layers. In object oriented notation,
each dimension could be considered as an interface, and the values on its axis are defined by
classes implementing this interface. For example, database dimension may include various
implementations differentiating by its vendors or other unique properties.

Figure 2.7: Graph of rough components after rule engine processing

Identified atomic components with their relationship substitute the nodes of the original
graph of functional requirements. It results in a new graph of service components that is
depicted in the Figure 2.7. It represents deployment workflow of components. Each node
relates to one dimension in the component space. This association identifies one to many
relationship between a node and implementation components. Each outgoing edge represents
the next component that is being deployed. Hence, all nodes of the graph are mapped to
the component space. For the purpose of expressiveness two representations of functional
requirements are necessary: vector and graph representation. The first one is showing that
reduced map contains components with several possible implementations. The second one
stores the information about deployment workflow; it is used in one of the further steps for
determination of compatibility between components.

On this stage processing of functional requirements results to the map of possible service
components.

30

2.3 Interpretation workflow

Reduction of component space

Figure 2.8: Processing of component-oriented non-functional requirements

On this step, non-functional requirements defined in user input are being processed as depicted
in the Figure 2.8. The following example demonstrates the difference between them. One
has to consider two non-functional requirements "Vendor of components" and "Number of
transactions per day". The first one relates to components of the system while the second one
in the common case determines their parameters, e.g., the number of CPUs of virtual machines.
In the following only non-functional requirements related to components are discussed.

The requirements further reduce component space. Observed user input is mapped to an
individual component belonging to one of the directions. This eliminates ambiguity at least on
one dimension. Hence, all the other components from that directions that were not mapped
can be excluded from the space.This step is necessary to eliminate unnecessary operations on
the components that are not being used in the final service.

Selection of precise components

Once a component space is determined, further processing needs to be done in order to identify
a unique vector from this space that will be associated with exact components of the system.

In order to select exact components, the graph abstraction is selected. The decision is motivated
by the fact that final service represents a unique combination of components deployed in a
certain sequence. Each deployment step is designated to a component category with several

31

2 Solution concept

possible components. Their non-functional characteristics could be mapped to countable values
and used as metrics for transitions between vertexes. Finally, it is required to find the optimal
path in the graph based on the selected metric. The Vertexes are represented by possible service
components and directed edges are defined by the deployment sequence. One only needs to
find all paths from initial to the latest component of deployment workflow. Selection of one of
them highlights the required service components. In the following content of this subsection I
introduce the concept of graph creation and path selection with possible optimization.

Figure 2.9: An example of compatibility matrix

Creation of a new graph involves substitution of vertexes and assignment of new edges
between them. Injection of new vertexes is realized by joining of graph of rough components
with component space. Here each node is to be substituted by new nodes corresponding to
values from space dimensions. However, old edges from the predecessor graph do not reflect
compatibility between individual components from each dimension. It might be the case that
components from different vendors are not compatible with each other, or even the difference
in the versions of the same software component within one vendor does not lead to their
interoperability. Since user does not know internal representation of the system and can not
define it in the form of requirements, it must be performed internally in the system. For this
purpose edges between nodes are created based on their compatibility. To fulfill these needs
the concept of compatibility matrix was elaborated, it is depicted in the Figure 2.9. Its columns
and rows are represented by components of the system, their intersections contain the value
showing if the components pair is compatible or not. Three possible values are chosen: "1" -
compatible, "0" - not compatible, "-" - there is no relation between the components including
the case of loop back to itself. At the end the graph contains interconnected components,
where relationships reflect the deployment sequence and consider their compatibility. The
resulting graph is depicted in the Figure 2.10.

In a simple case when transition between nodes is not weighted, random selection of the path
could be utilized. This is appropriate when user did not specify a service priority. However,
more optimal topology can be selected in the case of weighted transitions. The transition
between each pair of nodes has a weight selected from one of the predefined priorities:
"cost", "availability". Hence, service topology is optimized in one of predefined dimension.
For example, a topology with cost optimization contains components from the shortest path
between start and end vertexes of the graph.

32

2.3 Interpretation workflow

In order to be able to define weights of transitions, the concept of priority space is introduced.
This space represents a system of coordinates where every implementation component is
allocated to a unique point, an example of such a space is depicted in the Figure 2.11. In the
example I consider a three-dimensional system of coordinates with "Scalability", "Availability"
and "Price" axises. Two implementation components of database set "MySQL" and "DB2"
obtain their unique points according to the values in each dimension. Depending on the
implementation, both discrete and continuous values could be used. Needless to say that
performance indicators for each component along each dimension have to be identified and
statically defined in order to place components into such a space. Points in priority space could
be also explained from the object-oriented perspective. Each implementation component is
represented by an instance of the class. Hence its metrics related to each dimension is stored in
attributes of the class instance. In order to lighten future retrieval, all components are sorted
according to each dimension. By knowing the weight of each component, one can calculate
the path from one of the first nodes to the latest nodes of the graph. The exact path is chosen
based on one of the metrics.

Figure 2.10: The graph of precise components

33

2 Solution concept

Figure 2.11: Priority space example

The following orthogonal cases of user input defining priority dimensions have to be treated
differently: (1) user did not specify them at all, (2) only the one dimension is present, (3)
several contradicting dimensions were chosen. If the user does not specify the dimension
itself, then default priority should be defined that will be utilized for topology optimization.
In the second case, the user input precisely identifies the dimension. In the third case, no
trivial selection is possible, thus either the user has to specify priorities of non-functional
requirements he provides or it may be implemented in the system. Consider an example of
the following DSL input by means of non-functional requirements related to the components:
"vendor=IBM", "availability=99.99", "cost=low". This combination means that the user defines
the system based on IBM components with high availability and the lowest cost. In this case,
all three requirements may conflict with each other since the components with the lowest cost
most probably do not guarantee high availability and might have an open source license that
conflicts with the vendor requirement. Hence, non-functional requirements have to be treated
according to their rank; the components matching the requirements with highest priority are
chosen first, under otherwise equal conditions other non-functional requirements with lower
priorities are considered.

Path selection

Calculation of paths between any two nodes could be solved by well-known algorithms.
However, weights for each transition must be known. Priority dimension is to be defined
prior to calculation. This condition guarantees the selection of appropriate metric for the
transition. There are two options for path selection: each dimension has its rule, one rule
for all dimensions with unified metrics. According to the first option, the rule determines the
selection of either one of the extreme values of the paths, e.g., shortest,longest or the path with
the exact value. For the second option, one may determine metrics of different priority in such
a way that for each path selection a single action is to be matched. For example, "availability"

34

2.3 Interpretation workflow

might be valued in descending order, the lower the number, the higher the availability of the
component. Hence, in the case of only two priorities - "cost" and "availability", calculation of
the shortest path is enough to determine the exact components.

The first option with rules for each dimension is more flexible and allows among others
to define a service plan as a dimension. A typical cloud provider could have such a plans
containing components differentiated by their QoS characteristics. Each plan is to be associated
with a particular metric that is saved in the properties of each component. Hence, in order to
choose the components matching the designated plan, one need to select the path with the
weight associated with the plan.

Configuration of components

Figure 2.12: Processing of property-oriented non-functional requirements

After selection of exact service components, the non-functional requirements related to com-
ponent properties are considered as depicted in the Figure 2.12. Finally, the second part of
non-functional requirements related to properties of the components is being processed. The
main purpose of this step is to translate properties of DSL nodes into the characteristics of
system components. It is realized by the rule engine that maps properties of abstract DSL
entities to configurable parameters of service components.

35

2 Solution concept

Figure 2.13: Component space with possible service configurations

Selection of a matching service template

On the previous step, properties were assigned to exact service components. However, until
this moment they existed only in the form of objects without specification of their deployment
scripts and consideration of cloud environment they will be executed in. Each component has
the associated binary files, and its deployment scripts, the combination of selected components
should be defined in the service template. Service templates could be either generated from
scratch or belong to the list of predefined templates containing most demanded combinations
of components. The first case is more flexible in a sense that a new template can be possibly
generated for each user input. However, the orchestration sequence has to be known to the
system. The second approach allows to configure the template by means of input parameters,
however, without guarantee of 100% matching to input requirements.

Finally, service provider has a finite number of verified templates. Each of them includes
software entities from component space. Hence, the template is associated with a unique point
in this space as illustrated in the Figure 2.13. Black dots show possible component sets that
could be observed. Yellow dots are service templates with defined components. Notable is
the fact that the number of service templates might be significantly lower than the number of
possible combinations of components. For this purpose similarity between the identified service
and the existing templates is calculated. For these means Hamming distance could be used
to identify the most similar template [GKK93]. The closest point in component space will be
selected. Moreover, certain acceptability threshold has to be defined, e.g., maximal Hamming
distance that is allowed for the template to be matched. Each cloud service template is to
be given a unique identifier that depends on components presented in the template. At the
same time, each of the selected service components is also provided an identifier. The service
template with the maximal number of congruent components will be chosen for deployment.

36

2.4 Application architecture

Fine-grain tuning of the template

The only part of user input that was not discussed is non-functional requirements related to
parameters of the implementation components. They are processed on the final step when a
matching service template is already selected. Injection of parameters can be done either by
modification of default template parameters or by passing them at the moment of deployment.
In the first case modification of the template is done on the side of the interpreter. Default
parameters of the software components are substituted based on non-functional requirements
provided by the user. In the second case, service templates are already stored at the cloud
provider. Initialization of one of the templates is accompanied by parameters passed from the
interpreter. These parameters relate to configurable settings of the template, e.g., number of
CPU cores, RAM, hard drive size, required platform as well as the configuration of software
components. This functionality should be supported by the rule engine of the interpreter, it
passes values to the REST client of cloud provided.

In both cases only template parameters could be changed, not the combination of the compo-
nents. In contrast to instant modification of the service template, it takes the less computational
effort to pass parameters at the moment of deployment. The interpreter makes an API call
passing the parameters instead of parsing the template, finding default entries and replacing
them. In this case, the values are replaced automatically by the cloud provider. According
to the interpreter requirements it is assumed that ECM customer is not aware of the internal
configuration of the service. Hence it is impossible to download the final implementation
template. As long as this requirement is valid, it is not necessary to prepare the template on
the interpreter side. Based on these assumptions, passing parameters to cloud provider API is
chosen as fine-grain tuning of the service components.

2.4 Application architecture

In this chapter, the architecture of a generic interpreter is introduced, which provides automatic
interpretation and deployment of service templates defined in a domain specific language.

From the high abstraction level perspective the application interacts by means of parsing a
service template defined in the DSL. It is followed by matching of the service templates, its
refinement and deployment of one of the predefined service templates. As can be seen from
the Figure 2.14, interpreter consists of the following tiers: presentation, logic and data. Parts
of the first two tiers fall into Model-View-Controller (MVC) design pattern [MJ99]. While data
tier incorporates application data backend, and the cloud provider.

The presentation tier is represented by View in terms of MVC design pattern. It includes a web
user interface that enables the user to create, retrieve, update, delete service templates in the
database. The main goal of this level is to provide transparent user experience encapsulating
interpretation logic, and service orchestration.

37

2 Solution concept

Figure 2.14: Architecture of the interpreter

Logic tier represents a core component of the application. It is made up of Domain Model
and Controller. Domain Model reflects an operational view of the final system, describing
domain-specific components. The components belong to one of these three groups: Infras-
tructure, Platform, and Solution. The controller encapsulates core logic of interpretation, it is
responsible for execution of the following operations: process DSL input, change the model
according to that input, update the view depending on user actions, select matching template,
pass parameters based on the updated model, communicate with the cloud provider API.

Decoupling of data tier from the application logic guarantees interchangeability of service
templates and domain model components as well as data consistency in the case of system crash.
Data tier encompasses application backend and cloud service provider. Backend represents
the metadata of user defined DSL services as well as cloud provider service templates; it
includes creation date, name, its current status. Template storage preserves service descriptions
uploaded by the user. Cloud provider represents runtime environment where services are
deployed. It encloses several predefined service templates that can be selected, parametrized
and deployed by the application. Manipulation of the templates is done via REST API of the
provider.

38

2.4 Application architecture

Domain Model

Domain Model represents a map that stores information about all possible service components
that can be included into the final service. It is defined by object representation of component
and their properties. This map changes during the time of interpretation. Properties are defined
as customizable parameters that are adapted to the DSL input. The final model is reduced
to the components that are deployed. An example of such a model for ECM applications is
depicted in the Table 2.1. However, it does not depict the initial state of the model. Thus, not
all the components with their parameters are covered.

Model
Group Component Properties Component Status

Infrastructure VM

OS true
CPU
RAM

Database Vendor true
Transactoins per day

Platform
Object store Number of object stores true
Application server Number of domains true
Web UI Number of workspaces true

Solution Content collector Type of collected content false

Table 2.1: Model of ECM Components

Components are grouped according to their deployment similarities:

• Infrastructure. Typically includes back-end components that are critical for system
performance, could scaled-up or scaled-out depending on customer needs. Includes
virtualized hardware components as well as software components that are not domain-
specific.

• Platform. Involves components that are typical for every solution. They could be also
deployed once and then adapted to the user by further migration and configuration.

• Solution. Describes optional component that are unique for each user and can be
deployed only after interpretation of requirements.

39

3 Prototype implementation

In order to prove the concept elaborated in the previous section, a prototype of an interpretation
application with a web user interface is implemented. For demonstration purposes two service
templates simulating user requirements are defined. The translation process identifies the most
appropriate service topology optimized on cost or availability parameter. Selection of exact
service components is associated with one of the HOT templates of OpenStack. As a result
their deployment in a cloud environment is to be triggered.

3.1 Bird’s-eye view

In order to demonstrate general view on implemented prototype, the whole picture with actors
involved in interpretation process is presented. It leads to clarification of core components
of the prototype as well as a justification of their selection. Thus, generalized view on the
implementation in the context of ECM user input and cloud provider environment is presented
as depicted on the Figure 3.1. It represents actors of the system, operational entities, their
implementation and justification of their necessity. Actors define participating parties in
ECM service delivery process. Operational entities represent artifacts they cope with. The
Implementation column identifies technologies that relate to the artifacts, e.g., domain-specific
language foundation, Java classes and cloud orchestration template. Justification column gives
a short introduction to each artifact implementation. The prototype implemented in this work
will represent the Interpreter operational entity belonging to ECM Service Provider.

Core logic of the application is trapped between DSL input and runtime environment. Thus,
three principal actors are represented: ECM User, ECM Service Provider, and Cloud Provider.
The user specifies his requirements in the syntax of the domain-specific language. Notable
is the fact the Metametamodel and Metamodel are defined by the service provider. So ECM
user is not able to change them, the only creation of its Model based on already existing
language syntax and vocabulary is possible. ECM Service Provider identifies the meaning of
DSL vocabulary and initiates deployment of appropriate service. Cloud provider arranges the
runtime environment for future services.

ECM user describes the needs by means of domain-specific language. Its syntax is specified in
TOSCA standard, which plays the role of metametamodel. It defines following notations: Node,
Policy. This knowledge is essential for interpretation of the language, e.g., parsing of user

41

3 Prototype implementation

Figure 3.1: General view on DSL interpretation

defined templates. Nodes define component groups, policies themselves influence on the exact
components selection and definition of their properties. ECM DSL fills in the vocabulary of the
language, specifying what components can be used by the users to describe their needs. Thus,
it is named metamodel of the service. It includes extensions of standard TOSCA node types
by ECM specific types, as well as the definition of policies and relationships. Knowledge of
metamodel is required to identify the semantics of the vocabulary, e.g., exact meaning of each
word in the implementation domain. The model itself encloses the needs of the customer. In
other words, it represents the vocabulary defined in the metamodel that follows the semantics
of metametamodel. Final user selection will consist of system requirements.

Processing of the input is done by the interpreter, which was developed in Java. It serves to
assign semantics for each word of the language that is observed. Following core components
can be identified: DSL parser, Rule Engine, Topology Calculator and Template Selector. DSL
parser is responsible for parsing of the input template that constitutes to TOSCA semantics.
It creates an internal representation of observed user input separating functional and non-
functional requirements to the system. Rule engine processes each functional requirement
assigns them to implementation components and reduces the initial model of all possible
components. Topology calculator creates the graph of selected components considering their
compatibility and optimization priority. After that, it calculates the path that identifies the exact
components that reflect user needs. Finally, template selector determines the cloud service

42

3.2 Core considerations

template with minimal Hamming distance and initiates its deployment in a designated cloud
environment.

A cloud provider plays the role of the execution environment for services identified by the
interpreter. It must provide an API that allow to instantiate services. In this case, OpenStack
IaaS provider was chosen. Motivation to adopt IaaS model was followed by flexibility in
the configuration of the service including network parameters and software components.
Furthermore, OpenStack provides Heat orchestration engine that allows to define services in
the form of templates. Theoretically it is possible to define the service on PaaS level. However,
it is considered as out of the scope of this work. Hereafter only IaaS cloud provider with
already configured network topology is considered as backend of the interpretation.

3.2 Core considerations

In order to simulate the user input, a prototype of ECM domain specific language provided
by IBM was utilized [Kuk]. It is defined in XML and follows TOSCA v1.0 standard. According
to previously highlighted need in separation of user requirements following core decisions
were made: nodes are associated with functional requirements related to components, their
properties define non-functional requirements targeted to their configurable parameters, and
policies applied to the nodes play the role of non-functional requirements.

In order to observe the case with high semantic difference between input and output of
interpretation, it was decided to use high abstraction level components describing user service
requirements. The need for archiving service is expressed in two components: "Repository" and
"Web Client". This notation represents the necessity to store its data in an archive and access
them via web GUI. The number of users of this application could be modified and influence on
parameters of the virtual machine instances by means of flavor in OpenStack notation. Rule
engine maps each TOSCA node to a list of component categories. In the case of "Repository",
it is assigned to the following categories: virtual machine, database, directory service, object
store and application server. In the case of "Web Client" direct mapping to web UI component is
realized. Notable is that category does not specify exact components, only a group of possible
implementations.

For the demonstration of topology selection based on different priority dimensions, it was
decided to use cost and availability metrics. They reflect non-functional requirements to the
service. Selection of these metrics was driven by the fact that opposite values of both metrics
are demanded by the users, e.g., highest availability and lowest price. Components aligned
on one priority dimension do not intersect with the ones selected according to the other
priority. This fact leads to two opposed cases in topology determination: lowest price solution
constitutes to the shortest path in the graph while solution with high availability leads to the
longest path in the graph. A typical factor that differentiates priority dimensions is the target
environment of the application. It can be designated for either development or production,

43

3 Prototype implementation

where the first one requires a minimal functional system with lowest cost and the second
one demands a highly available service. Hence, two TOSCA policies can be applied to the
components: "Development environment" and "Production environment".

In order to address the concept of partial matching of user needs as well as the non-functional
requirements related to components, the policy "Continuous availability" is defined. Its ap-
plication to one of the components will be interpreted as a need to deploy the database with
foreseen scalability and high available cluster. In the prototype, it is mapped to the DB2 Pure
Scale component.

Two service templates (stacks) describing orchestration sequence of ECM components were
predefined. They are associated with a unique ID that reflects their content. The decision of
what template is to be deployed is made based on the Hamming distance between the ID of
selected components and the ID of one of the mentioned templates. Enterprise content man-
agement services represent highly complex systems, and their deployment requires numerous
orchestration scripts. Thus, in order to concentrate more on interpretation logic it was decided
to use pattern templates that simulate the deployment of ECM components. Since the focus of
this work is the interpretation process, this decision does not make significant impact on the
results of the thesis and the implemented prototype.

3.3 Interpretation process

The resulting prototype represents the system that interprets DSL input and selects one of the
predefined service templates to be deployed in a cloud environment. In order to demonstrate
that service topology can be calculated on the fly and optimized based on the input, two types
of user templates are considered. The user either needs a service with minimal cost or highest
availability. The need for the service with minimal cost is required for development purposes
while the solution with high availability is used in a production system. The template with
the lowest cost components is named "OneBox", while the template with high availability is
defined as "FourBox". Their content, as well as, domain meaning assigned by the interpreter,
are depicted on the Figure 3.2. This conventional naming is required for future references
in this work. In the following section, the process of interpretation of both types of input is
considered. Furthermore, comments are given on the difference in topology treatment and
possible extension of the method.

The user input is packed in zip files containing description of nodes, relationships, and policies
in TOSCA notation[TOS13b]. For conventional purposes, the term node is used as a synonym
of a NodeType element in TOSCA notation. The original purpose of relationships is defined
as prediction of orchestration sequence, since non-atomic components are observed in the
input, they can not provide the whole orchestration sequence of exact implementation entities1.

1atomicity property of components is discussed in the section 2.3

44

3.3 Interpretation process

Listing 3.1 Example of TOSCA policy type and node template
<NodeTemplate name="Repository" id="ECMRepositoryNode" type="ns1:ECMRepositoryNode">

</NodeTemplate>

<NodeTemplate name="WebClient" id="WebClient" type="ns1:WebClient">

</NodeTemplate>

<PolicyType name="DevEnv">

<DerivedFrom typeRef="RootPolicyType"/>

<PropertiesDefinition element="pp:HAProperties"/>

<AppliesTo>

<NodeTypeReference typeRef = "ns1:ECMNode"/>

</AppliesTo>

</PolicyType>

Based on this consideration, the relationships are not utilized for further interpretation, only
nodes and applied policies are considered. They are represented in XML notation, an example
of nodes and policies is depicted in Listing 3.1. The original DSL input consists of several XML
files containing nodes, their capabilities, and requirements. However, only node names, their
inheritance and applied policies are processed. Thus, other parts of DSL as well as TOSCA
implementation details are not discussed here. The content of both "OneBox" and "FourBox"
user input contains the same node types: "Repository" and "Web Client". They differentiate only
on the applied policies. "OneBox" contains only "DevEnv" policy while "FourBox" has "ProdEnv"
and "ContiniousAvailability" policies. This differentiation leads to the selection of non-similar
components from each category.

Processing of nodes

As soon as the user template is uploaded, the interpreter parses the XML document, identifies
nodes and policies and preserves them internally. Important thing here is that interpreter
knows that node types are mapped to functional requirements only, in other words to categories
of service components; policy types relate to both functional and non-functional requirements,
e.g., exact service components; and properties of the nodes have direct mapping to the options
of exact service components. This knowledge defines the processing order of DSL elements
according to defined concept. Hence, the sequence of interpretation is as follows: node
types, policies, properties of the node types. In the first step, each node is consumed by the
rule engine. In the prototype, it is implemented by a list of ”if(NodeType) then action”
statements that check each observed TOSCA NodeType on matching to one of the known
nodes. If such a node is identified, the action on assigning atomic component categories is
executed. The categories are taken from the map of all possible domain components reducing
the initial map.2 It is realized by the inclusion of the results provided by the rule engine.

2Initial map reduction was discussed in rough component determination in the section 2.3

45

3 Prototype implementation

Figure 3.2: Components of utilized DSL templates

Following component categories are present in the model: virtual machine, database, directory
server, object store, application server and a web user interface. The list of categories is
presented on the Figure 3.3. Internally each category is represented by Enum class as depicted
in the Listing 3.2, which includes implementation components of such a category. Each object
is initialized with its index, price metric, availability metric. Set of all possible categories are
stored in a sequence that reflects their deployment order, e.g., the first element should be
deployed first. However, in case of production application data about categories could be
stored in a database. For conventional purposes it is directly implemented in POJO based on
the following reasons: (1) category components are static, (2) internal presentation eliminate
the need to connect to the database to retrieve component information.

Processing of policies

On the next step policies applied to nodes are processed. Until this moment, interpretation of
both "OneBox" and "FourBox" templates does not differ due to identical node types. However,
from this point interpretation of each case faces certain differences. In the processing of
non-functional requirements, policies that are applied to exact components are processed first.

46

3.3 Interpretation process

Figure 3.3: Categories of service components

It leads to the selection of only the one component from designated category. In the case of
"OneBox" there is no such a policy. Hence, all components mentioned in Enum category are
considered in the process of topology determination. However, "FourBox" template contains
"Continuous Availability" policy that is interpreted as the requirement to install database with
active-active replication. Interpretation engine searches for Database that constitutes to that
policy. In our case, it forces to deploy DB2 Pure Scale component in the final service. Thus,
the list of components in Database category is reduced to only the one above mentioned
component.

The next step of interpretation includes processing of policies designated to optimization
priority. As mentioned earlier, it is defined by availability and cost. In order to calculate the
path of components that are being deployed, each component of the system is assigned with
a metric. These metrics are depicted in the Listing 3.2 and defined in price and availability

properties of class objects. "DevEnv" policy will result in the selection of price property that
will be used as a weight for transitions between nodes, while "ProdEnv" will force to choose
availability field. In this prototype, assignment of both metrics was based on the following
principle. The component without high availability support was given the smallest metric
(DB2 with availability 1), component with active-passive replication was given a bigger value
(DB2 with High availability disaster recovery has a value of 2), component with active-active
replication has the highest value (DB2 Pure Scale has availability property has a value of 3). In
the case of other components, scalability criterion was used in order to differentiate availability

47

3 Prototype implementation

Listing 3.2 Internal representation of component categories
public enum DBTypes{

DB2("01","100","1"), DB2_PS("10","1000","3"), DB2_HADR("11","500","2");

private final String index;

private final String price;

private final String availability;

DBTypes(String index, String price, String availability){

this.index = index;

this.price = price;

this.availability = availability;

}

public String getIndex(){

return this.index;

}

public String getPrice(){

return this.price;

}

public String getAvailability(){

return this.availability;

}

}

of components. The ability to create a cluster of components increases the chances of the
system to stay alive during pick workloads. Thus, IBM Web Sphere Application server cluster
has more availability coefficient that the same server without clusterization property. The
price of components was specified proportionally to their availability index, the higher the
availability, the more it costs.

Graph traversal

According to the elaborated concept, components are stored in the graph that allows to
calculate the exact path from the first to the last element of the orchestration order. After
processing of user requirements mapped to service components, each component category
is substituted by exact implementation components generated from its Enum class. Each
exact component is represented by a class that implements IServiceComponent interface. The
final graph of components is represented in a HashMap of vertexes with initiated weights of
transitions between them. Connections between nodes based on both orchestration order of
components categories and compatibility between the components defined in the compatibility
matrix. It is represented by two constants, first encapsulates all components of the system,
second stores the compatibility vector for each row.

In order to prove the method of calculation of optimized service topology, modified version
of Dijkstra shortest path finding algorithm is implemented [Cor09]. The modification was

48

3.3 Interpretation process

made based on the requirement to calculate the longest distance between nodes. It was
achieved by saving not only the connection from the previous node with smallest weight, but
by keeping the information about all connections preserved in a HashTree. Capturing the last
element of the tree will give the component with the highest metric. Hence, iteration from
the latest node based on the highest metric leads through the path with the longest distance.
Implementation of Dijkstra consumes a graph with initialized edges and vertexes and calculates
all possible paths from the given first node. For two given user input formats, interpreter either
asks for the shortest path between given nodes in the case of "DevEnv" policy or the longest
path in the case of "ProdEnv" policy. Depending on the applied policy, different weights are
calculated during initialization of the graph. Important is that the graph of components is
not statically stored, but it is generated based on user input. The weight for each transition
between edges is calculated following identified optimization priority. These features provide
further extendability of the given method to select paths with exact metrics or from a given
interval.

Stack selection

Once a service topology is identified, it is mapped to one of the existing stacks. OpenStack
environment was selected as an application runtime for several reasons. It provides its Heat
orchestration engine out of the box that allows to specify VM provisioning parameters, as well as
to start the scripts that instantiate the deployment of desired services. Another feature of this
environment is the ability to deploy a hybrid cloud environment based on diverse hypervisors
[opeb]. Mapping of the template is based on the calculation of Hamming distance between
ID of selected topology and one of the stored template. The ID distinguishes each component
in its category, the concatenation of IDs of all entities that were selected on the previous step
forms a unique binary number. At the same time, the Heat template is given with an ID that
was formed, in the same way, e.g., depending on included components. Metadata of each
registered template is stored in SQLite database. The decision to select this database was
motivated by its ability to persist the data locally without the need to run a database server. It
persists the information about user DSL templates, its status and assigned OpenStack template.
The number of not matched symbols after comparison of ID of selected topology and one of
the registered templates is the desired Hamming distance. In the prototype, it is defined that
more than 80% matching template leads to the automatic service deployment. However, in
the case of future extension it can by either configured by service provider or asked from the
user if she accepts such a service. In the case of "Continuous Availability" policy, it forces to use
DB2 Pure Scale as a database. However, if there no such registered template that includes this
particular version of the database, then the most relevant service template is selected.

At the final step, properties of the node are processed and added to the internal component’s
model. Each observed property is checked matching to the rules. In our case, more than ten
users of web UI is mapped to a mid-size flavor of a virtual machine that is used in service

49

3 Prototype implementation

deployment. This task is done by passing parameters to the Heat API at the moment of
deployment of the template.

3.4 Application architecture

Implemented prototype belongs to typical multi-tier application architecture [ZLZW02]. Since
this well-known design pattern can be achieved in a variety of technology stacks, the discussion
of pros and cons of each third-party software component is left out of the scope of this work.
Application layers include web user interface, Java-based server part, SQLite database and
OpenStack cloud backend. In the following section, light is shed on the technologies that were
used in order to implement such a system, as well as insights into implemented Java packages
and selected classes.

Utilized software and hardware

In order to implement the prototype certain already existing technologies were utilized. The
application was developed with Java Standard Edition in Eclipse IDE and is compatible with
Java Virtual Machine version 1.7. DSL interpreter is built with Maven and deployed in Apache
Tomcat v7 application server. Its architecture is presented in the Figure 3.4. According to the
requested URL, each HTTP request to the server is passed to one of the registered Java Servlets.
For every GET request to URL associated with the index page of the application, JSP page
with injected values is passed to JVM, then HTML page is generated and returned in HTTP
response back to the user. This page includes among others JavaScript code that plays the
role of a client application. It is responsible for capturing the user behavior and processing
HTTP responses from the server. In order to render HTML page following JavaScript libraries
were used: JQuery, Bootstrap.js. JQuery provides an API to work with DOM elements, as
well as encapsulates functionality to communicate via HTTP protocol. In order to connect to
the database, the JDBC driver was used. During its life cycle the application operates with
JSON files. That is the data format used in communication between web client, server, and
OpenStack backend. In order to manage these files, Jersey Java library was utilized. The
metadata of uploaded service templates is stored in SQLite database.

For the purpose of simulation of the customer environment, private cloud infrastructure is
installed. The setup was done using IBM Cloud Manager (ICM) with OpenStack [IBM15]. ICM
is a software product meant for deployment of both public and private cloud infrastructures. A
private cloud instance is installed on IBM x3650 M2 server with RedHat version 6.6; the setup
includes OpenStack with following components: Heat, Compute, Identity, Network. Every
component provides an API, in this work only two components were called directly from the
application: Identity API v2.0 and Orchestration API v1.0 [opeb].

50

3.4 Application architecture

Figure 3.4: Technology overview

Class diagram

On the Figure 3.5 reduced class diagram of server part of the application is represented,
it shows the main components excluding Enum classes of ECM model for expressiveness.
Incoming HTTP user requests are processed by one of the class instances extending Java Servlet
class. These classes are located in the PageHandlers package. Mapping between each pair
page handler and URL is done directly in the class by means of Java annotations using the

51

3 Prototype implementation

following syntax @WebServlet(”/URL”). Following classes represent such a handlers that
dispatch user requests:

• Default. Mapped to the main page of the application, shows template list with their
status.

• Delete. Processes user request, deletes the template and its metadata.

• Deploy. Initiates deployment of the template by means of initialization of a new cloud
stack with most probable components.

• Download. Returns requested template in ZIP format.

• Status. Responsible for the retrieving status of deployed stack associated with ECM DSL
template.

• Upload. Process input form data, unpack and allocate uploaded template on the disk.

Every page handler operates with the instance of class Controller. That is the key entry point
to the functionality of the application. It provides following public methods: parseTemplate(),
deleteTemplateAndStack(), uploadTemplate(), deployTemplate(), getTemplateStatus(). It returns
the list of templates with their metadata, interacts with OpenStack API for updated stack
status that is reflected in the UI. At the same time, it encapsulates core logic of parsing the
input, management of metadata, choosing of model components, and deploying a stack. The
functionality of the Controller class is dependent on the following classes:

• The DSLParser class is responsible for resolving of dependencies between the DSL nodes
and creation of its internal representation. ServiceTemplateResolver class initiates an
instance of TopologyGraph class that stores the uploaded template; it depends on classes
Node and Enge - abstractions of graph elements. Node class implements IMatrixEntity
interface in order to be assigned to observation matrix, which is to be used in the
calculation of ECM service components after this. Class PolicyResolver applies global
policies defined in the template to all nodes and changes their structure.

• The RuleEngine class is responsible for the initial interpretation of DSL template model. It
assigns component categories to observed TOSCA NodeTypes.

• The TopologyCalculator class encapsulates methods that implement Dijkstra shortest path
finding algorithm that allows to identify exact service topology.

• The MetadataDB class is an adapter for metadata database, which provides create, retrieve,
update and delete methods on the entries. It encapsulates low-level SQL queries so that
the other application components operate with object representations of table rows
implemented by classes DAOHeatOrchestrationTemplate and DAOTemplate.

• The IServiceComponent interface represents elements of ECM model. In other words, the
classes implementing this interface are the service components from ECM domain.

52

3.4 Application architecture

Figure 3.5: Class diagram

53

3 Prototype implementation

• The OpenStackClient class represents REST client that provides operations for authentica-
tion, stacks manipulation in OpenStack environment.

3.4.1 User interface

In order to interactively demonstrate the management of DSL templates, a web GUI was
implemented. It provides upload, deploy, download and delete operations on the templates.

Figure 3.6: Application user interface

After sending a GET request to the application URL, an HTML page with the list of deployed
templates is returned. From this point, the user interactions with the application are done
asynchronously. It is necessary to track template status because it excludes the need to update
the page when a new status is required. After the click on the Deploy button, in the case of
successful deployment, application returns stack id of the template. At that point JavaScript
application initializes automatic tracking of the status of the template. It is realized by sending
an HTTP get request on the following URL: /status/template−name/, the sequence of request
processing is depicted on Figure 3.7.

54

3.4 Application architecture

Figure 3.7: Sequence diagram of retrieving the template status

Listing 3.3 represents an asynchronous retrieval of template status. It keeps the user informed
about the status of the template when deployment is initialized. The purpose of the updates is
to help the user to resolve the errors that could arise during template processing, as well as to
notify in the case of favorable result. It is equal to the current state of the stack that is associated
with the template retrieved from Orchestration API of OpenStack. Once satisfied reply on
template deployment request is received, the function is executed in an infinite loop until the
page is reloaded. However, if the refreshed page contains templates with started deployment,
then this function starts its execution again. It accepts two parameters templateName - a
template that status is required to check and statusCell - TD element of HTML page which
shows template’s status. In the body of the function, AJAX method of JQuery library is called
that performs GET request and accepts response in JSON format. Returned file has two possible
formats: (1) "stack_status":"value" in the case of successful operation and (2) "error":"value"
in the case if status is not available. In both cases, the response is extracted and inserted
into p tag of the corresponding table cell. As soon as response processing is accomplished,
function execution will halt for 5 seconds and then it continues by recursively calling itself.
The key point here is the recursive call which should be executed only upon completion of the
request. Otherwise, too many open connections may accumulate on the server and influencing
its performance.

JavaScript on the main page is also used to check user input. Only zip files are allowed to be
present on the server, the name of the file has to be unique and does not conflict with any of
already uploaded.

55

3 Prototype implementation

Listing 3.3 Asynchronous retrieval of template status
function getTemplateStatus(templateName,statusCell){

var template = templateName;

var cell = statusCell;

$.ajax({

url: templateStatusURL+template,

dataType: "json",

success: function(json,status) {

console.log(json);

console.log(status);

if("stack_status" in json){

var templateStatus = json.stack_status;

cell.find($("p")).html(templateStatus);

cell.change();

}

else if("error" in json){

cell.find($("p")).html(json.error);

cell.change();

}

},

complete: function() {

setTimeout(function(){getTemplateStatus(template,cell);}, 5000);

}});

};

3.5 Application lifecycle

In order to give more insights into the functionality of the prototype, application lifecycle is
considered. Based on the actions initiated by the user, sequence diagrams illustrate the inter-
connection between application components presented in the previous subsection. Moreover,
details on exception handling in the prototype are provided.

Main page loading

Loading of the main page is the very first action that user performs in the process of interaction
with the application. Sequence diagram of this process is depicted on the Figure 3.8. The
user’s browser initializes HTTP session sending GET request to the URL of the interpreter. The
request is dispatched by the Default Servlet. It creates a new instance of class Controller, and
executes a method getTemplates(). In its turn controller calls the method of MetadataDB

class instance to retrieve all registered templates. When the information about the templates is
retrieved, it is injected into default.jsp file that is converted into an HTML file and sent out in
the form of HTTP response.

56

3.5 Application lifecycle

Figure 3.8: Sequence diagram of accessing the start page

Uploading of a template

Here the case when the user uploads a DSL template to the application is considered. After
he specifies the template file and submits, the uploadformHTTPPOSTrequest is sent to the
server. Upload Servlet dispatches the request and extracts the part of it that contains the file
- an archive in ZIP format. On the next step, the servlet calls uploadTemplate() method of
the controller, that in its turn performs the job of unpacking and registering in MetadataDB
component. The archive is unpacked to the uploads directory on the server, where it is available
for future usage. Metadata of the uploaded template is stored persistently in the database,
and it contains: template-id, name, creation data and associated stack ID. At the moment of
upload, stack identifier is unknown. Thus, it contains a zero value. As soon as the deployment
of this template is instantiated, and a matching stack is identified, the stack ID is assign to the
template.

Deployment of a template

Once the template is uploaded to the server, the user can initiate its deployment. The
deployment process is depicted in the Figure 3.10. Click on the Deploytemplate button
leads to sending out of HTTP POST request to the server with the name of the tem-
plate in the URL. The request is received by DeployServlet that initializes an instance of
a class Controller and calls the function deployTemplate(), passing template name as a
parameter. Instances of the following classes will be initialized inside of the Controller:

57

3 Prototype implementation

Figure 3.9: Sequence diagram of template uploading

DSLParser, ModelManager, MetadataDB, OpenStackClient. First parseTemplate function
of DSLParser called. It looks up for the directory associated with the name of the template
and search for ECM service files in the XML format. For each file, its POJO representation
is created. Generation of Java classes mapped to the XML notation of DSL is done prior to
parsing using Java Architecture for XML Binding (JAXB). Retrieved elements of the service
are not still ready for further processing and needed to be stored in a suitable data structure
that reflects relations between DSL elements. For that purpose, graph abstraction is chosen
to represent DSL service template. Its nodes relate to the abstract components, and its edges
define the relationship between them. Thus, a bundle of parsed elements is transformed to
topology graph and returned to the controller. The process of graph generation is not depicted
on the figure. Once given the components from user template, the controller needs to find
out what elements of its internal model are to be included into the final service. In order to
accomplish this goal, the controller passes service template as a parameter to getModelIndex()
function of the TopologyCalculator. An instance of this class calculates either shortest or
the longest path between the first and the last components of the model. The resulting path
indicates exact components of the service. On the next step the index of resulting components
is calculated. Every model element has its unique index from the group it belongs to, e.g.
FileNet P8 component found in Object store group has an index 01. For the demonstration
purpose index is defined as a two-digit binary number, causing maximum four elements in the
group. The final index of the model is calculated as the concatenation of indexes of all the
model components that were activated. After the calculation is done final index of the model
is sent back to the controller, which calls MetadataDB component to return Heat template that
is associated with this index. Based on the returned name of the Heat template, controller

58

3.5 Application lifecycle

triggers deployment of a new stack using OpenStackClient component. It returns stack ID
in the case of successful initialization of the stack. At this moment controller is required to
remember this ID for future usage and associate it with a user template. Hence it executes
setStackId() method of MetadataDB component. Once template status is successfully assigned,
control is delegated to Deploy Servlet which sends JSON response containing stack ID to the
client.

Deletion of a template

Deletion of the template from the user interface initiates the cascade of deletions of the
data belonging to that template, its metadata, and the associated stack if the it is deployed.
If the user presses the Delete button in the UI that is associated to that template. Then
JavaScript application sends HTTP POST request to the server that is dispatched by Delete
Servlet, which calls deleteTemplate() method of the controller. It initiates deletion of template
metadata in the MetadataDB component, which returns the stack ID of the template if it was
previously deployed. Once given a stack identifier, the controller calls deleteStack() function
of OpenStackClient component, which returns HTTP code 204 if the operation was successful.
Finally, the controller returns the status of the template and the servlet redirects the original
HTTP request to default.jsp page, it shows the updated list of templates.

Exception handling

Due to multi-tier architecture and the variety of integrated software components, thrown
exception in one of the tiers is distributed back to the caller. Thus, it is important to handle
thrown exceptions to prevent the user from observing the whole stack trace, and provide
her with useful information instead. In order to guarantee exception handling, a class Re-
sponseMessage is introduced. It represents a communication medium between application
components. Instance of such a class has two parameters: status and message. The status is
defined by Enum Java class and contains only two members: "SUCCESS" and "FAILURE". The
message is represented by String type, since communication between components is done by
either transferring of JSON or a simple sequence of chars, however, the message type could be
substituted for generic Java Object class. It will allow to pass any objects and simply cast them
to needed type upon receiving.

Exception handling is demonstrated on the example of getAPIToken() function of Open-
StackClient class, depicted in Listing 3.4. It creates WebResource instance related to URL
of OpenStack Identity API. Onwards it sends post request with access credentials and waits
for the response. If the response status is not equal to 200, then we create a new instance
of MessageResponse class with error status and explanation of the error. Otherwise, the
authentication token is extracted from the JSON response and create a new instance of Mes-
sageResponse class with success status and the token in the message. During retrieval of the

59

3 Prototype implementation

Figure 3.10: Sequence diagram of deploying a template

authentication token, several exceptions could be thrown, for example, web resource may be
unavailable, the incorrect syntax of the request body in terms of JSON, wrong credentials,
etc. The scope of this work represents a prototype and does not concentrate on the detailed
investigation of all possible exception that may occur. Hence, all the exceptions which may

60

3.6 Discussion

Figure 3.11: Sequence diagram of template deletion

be thrown in getAPIToken() method are handled by the creation of a response error message
containing following text "Can not get token from OpenStack".

Based on the example mentioned above the following strategy for exception handling was
elaborated. The Caller method has two scenarios of execution: ResponseMessage with statuses
"SUCCESS" and "FAILURE", it does not expect to handle exceptions but the response message.
The callee method or function will take the whole responsibility for exception handling and
generation of the explanation of what occurred if it was thrown. Eventually, the process of
communication between application components comes down to interchanging of instances
of the class ResponseMessage. This strict separation of responsibilities between components
provides eliminates the problem of not handled exceptions that may occur during application
runtime. At the same time, it guarantees error reasoning for the end user.

3.6 Discussion

The implemented prototype covers only several parts of the whole range of steps that are
required to guarantee complete shift from traditional computing to the cloud model. Since
non-considered steps like DSL development and creation of HOT templates are out of the
scope of this work, evaluation of the prototype by performance test or subject matter expert
surveys is difficult to realize. Therefore in order to evaluate the solution, one needs to analyze
comparatively service delivery processes in order to observe the added value. In the following
I compare previously utilized approach to the one addressed in this work.

61

3 Prototype implementation

Listing 3.4 Get OpenStack authentication token
public ResponseMessage getAPIToken(){

String token;

ResponseMessage getTokenResult = null;

File identityJson = new File(this.IdentityAPIConnectionFile);

// pass identity file to openstack identity API

try{

Client client = Client.create();

WebResource openstackAPI = client.resource(identityAPIAddress);

ClientResponse response =

openstackAPI.type("application/json").post(ClientResponse.class,identityJson);

String entity = response.getEntity(String.class);

if(response.getStatus() != 200){

getTokenResult = new ResponseMessage("Can not get token from

OpenStack",ResponseStatus.FAILURE);

}

else{

JSONObject jsonResponse = new JSONObject(entity);

token = jsonResponse.getJSONObject("access").getJSONObject("token").getString("id");

getTokenResult = new ResponseMessage(token,ResponseStatus.SUCCESS);

}

}

catch (Exception e)

{

getTokenResult = new ResponseMessage("Can not get token from

OpenStack",ResponseStatus.FAILURE);

e.printStackTrace();

}

return getTokenResult;

}

Partially referring to the problem statement of this work I will reconstruct traditional process
of ECM on-premise service delivery employed at IBM. Five essential steps are considered:

1. Requirements engineering. Retrieved by subject matter experts by means of queries and
customer interviews.

2. Selection of software components. Manually performed by solution architects according to
collected experience from previously delivered services and customer needs.

3. Deployment of components in a test environment. Done by operation team that is responsi-
ble for provisioning of virtual machines, network infrastructure, automation of software
deployment.

4. Testing. Performed by quality assurance team that identifies test cases, reports found
bugs either to the operation or directly to the development team.

62

3.6 Discussion

5. Service delivery. The operation team executes the deployment of the system to designated
production environment.

Last three steps could be done by the customer who already bought software products from
ECM stack. However, I consider the case in which these tasks are included in the SLA and
performed by the ECM service provider. Although certain steps for cloud archive components
already have automation scripts, the key drawback of this method is that the routine is repeated
the number of times proportional to the number of customers. In other words, as soon as a
new customer with its requirements comes the process of individual service delivery iterates
again. Needless to say that it reveals several directions for optimization that were elaborated
in this work.

Modified service delivery model is reduced to these three steps:

1. The user defines its requirements in DSL. The usage of DSL directly substitutes the first step
of the above-mentioned traditional process. The users can express their needs without
subject matter experts. In order to reduce the ambiguity of user requirements, as well
as the time of service delivery, it is assumed that they are clearly defined in the domain
specific language. It is considered that the business user can declare his needs using GUI
that persistently stores the result in the XML format acceptable by the interpreter.

2. Automatic selection of service components. Implemented prototype automates the selection
of software components. It absolves of relying on the decision of solution architect since
his expertise could be implemented in the interpretation application. The semantics of
each DSL word is kept in the rule engine that assigns observed input to atomic service
components. Knowledge of components interoperation is filed in the compatibility matrix.
Non-functional requirements to the service are defined in priority direction of the system,
and exact topology is selected from the graph of components. The method implemented
in this work automates the optimization of service topology. Operation teams are required
to create only the limited number of service templates with foreseen possibility of their
configuration at the time of deployment. It is also considered, that user requirements do
not always need to match the delivered service perfectly. Thus, finite number of service
templates is required. If user defined requirements are partially met and their similarity
coefficient is higher than the certain threshold, then the service is to be deployed.

3. Automatic service deployment. It eliminates last three steps of traditional service delivery.
Deployment of the components in a test environment is not necessary because deployment
scripts are already defined in service templates. Testing of the service is not performed
before the actual delivery, but right after the moment of creation of a new template.
As mentioned earlier, each service template has configurable parameters. Hence, all
the variety of configurations is tested prior to publishing of the templates. The service
delivery step previously executed by operation team is now automatically accomplished
by the interpreter.

63

3 Prototype implementation

In order to provide a fully functional solution, each software component should have predefined
scripts packed into a service template.

One can see that the problem addressed by this work provides a method of elimination of
human interaction into the process of service delivery. It allows to reduce drawbacks of
individual solutions and to offer customizable services for new customers. The key value
of this approach is the ability to offer both public and private cloud services with possible
extension to a hybrid model. In the case of public model the user obtains the service running
in ECM provider environment with minimal onboarding costs. However, when the user finds it
economically reasonable to have the service in its private cloud, the required service template
may be purchased from ECM provider. The hybrid cloud model is still in the development,
however, the results of various research allow to conclude that OpenStack environment is
appropriate for this extension [DFCV14] [SPH+14].

64

4 Summary

This work addresses the problem of automatic interpretation of declarative service description
in the context of the shift to a cloud environment. After discussion of related works conducted
in the problem domain, three concepts of solution implementation were considered, and
the one based on the gradual reduction of component map was chosen as a basis. The
implementation of the concept allows to select exact service topology based on user input;
it also introduces optimization criterion for the case of multiple matching components. As
a proof of concept, the prototype of ECM DSL interpreter with web GUI was implemented.
It allows the user to upload, download and delete service templates as well as to initialize
deployment of matching topology. For demonstration purposes, two ECM service topologies
were considered, and their pattern templates were elaborated. The templates address another
accompanying problem - portability of service templates. OpenStack cloud environment was
deployed and selected as a backend to guarantee the portability of services. One of the main
benefits of it is the flexibility in the choice of hypervisors. While carrying out this work, several
conclusions were made that will be reflected in this chapter.

ECM domain-specific language based on TOSCA v1.0 was consumed and interpreted by the
prototype application. Its specification covers among others relationships between described
components, management plans, and implementation artifacts. Relationships between nodes
are not necessary when high abstraction level vocabulary is used since each observed node
entity will be subdivided into atomic application components. It will lead to the creation
of new connections between these components preserved in the rule engine that are not
derived from observed user input. Management plans and implementation artifacts define
deployment sequence and component installation scripts accordingly. Thus, they cannot be
used in declarative service description based on the assumption that service implementation is
hidden from the user. However, this functionality was not used during the interpretation. Hence
DSL could have been defined without strict inheritance of TOSCA types. In the interpretation,
only functional and non-functional requirements for the service were consumed.

The proposed interpretation method divides user input into three parts that are processed
sequentially reducing the map of possible service components. First, functional requirements
related to component categories are processed. They identify groups of components that belong
to the service. Second, non-functional requirements related to exact service components are
analyzed; this leads to further reduction of certain categories. On the last step, non-functional
requirements related to component properties perform fine-grain tuning of the system. How-
ever, it was identified that after the second reduction step, several possible implementation

65

4 Summary

components could be present. In order to optimize the process of selection, graph abstraction
was utilized. Its vertexes were defined by service components while edges reflected their
compatibility and orchestration sequence. Based on the predefined transition weights between
nodes one of the paths was chosen as a combination of final service components. Presented
interpretation method gave impulse to the following conclusion:

• DSL syntax must allow to define types of user requirements. There is a direct dependency
between the type and its processing order.

• Orchestration sequence of component categories is predefined. Otherwise, it must be
concluded from user input.

• Optimization of topology selection requires predefined metrics. They are needed for the
comparison of calculated weights of paths.

After determination of service components, they are mapped to one of the service templates
from provider’s catalog. They are predefined prior to interpretation. Generation of templates
from scratch is not considered due to several objective reasons. Typically service providers offer
only a limited number of services that can be predefined and customized for each user. Each
template is tested before it becomes available, this guarantees more rapid service provisioning
since there is no need for testing before actual delivery. Each template leaves space for
configuration by passing the parameters at the moment of deployment. These parameters
are derived from non-functional requirements related to component configuration from user
input. During the research, it was identified that the number of possible combinations of
service components is not always equal to the number of predefined templates. At the same
time, usually users accept the service that is not fully matching their requirements. Based on
the mentioned assumptions it was decided to find the template that has minimal Hamming
distance that is above user acceptance threshold. Hence, this allows to provide the service with
partially matched requirements acceptable by the user.

Future work

In order to guarantee full switch from traditional software delivery into cloud based services the
following research directions were identified and highlighted. As mentioned earlier declarative
input interpretation process is trapped between user input and underlying domain model with
cloud runtime environment. This leads to the following future work directions:

• Clarification of DSL syntax and semantics. This could be realized by analysis of previously
delivered software solutions and customer expectations. This will lead to selection of
benchmark requirement bundles which will constitute to the service templates.

66

• Orchestration sequence preservation. Deployment workflow plays an important role in
component selection, thus extension of the model by adding new components into the
sequence must be investigated.

• Optimization of service topology based on metrics requires determination of priority
dimensions. In this work only cost and availability metrics were selected, however their
precise calculation as well as consideration of other possible metrics must be defined.

• Deployment automation. In order to guarantee cloud orchestration, deployment scripts
must be provided for each component in the benchmark templates.

• Further evaluation of the concept. The concept must be evaluated in a larger set of
service topologies in order to guarantee its robustness.

67

Bibliography

[ABC13] J. Alton Buddy Cleveland. Interoperability Platform. Technical report, A Bentley
White Paper, 2013. (Cited on pages 16 and 17)

[AII13a] AIIM. Association for Information and Image Management. "What is Document
Management (DMS)". http://www.aiim.org, 2013. Accessed: 2015-02-01. (Cited
on page 19)

[AII13b] AIIM. Association for Information and Image Management. "What is Enterprise
Content Management (ECM)?". http://www.aiim.org, 2013. Accessed: 2015-01-
31. (Cited on page 19)

[Alp10] E. Alpaydin. Introduction to machine learning. The MIT press, 2010. (Cited on
page 26)

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, S. Wagner.
OpenTOSCA – A Runtime for TOSCA-based Cloud Applications. In 11th Interna-
tional Conference on Service-Oriented Computing, LNCS. Springer, 2013. (Cited on
page 13)

[Ber14] J. Bergmann. Requirements Engineering fuer die agile Softwareentwicklung.
dpunkt.verlag, 2014. (Cited on page 23)

[Bur10] B. Burke. RESTful Java with JAX-RS. O’REILLY, Sebastopol, USA, 2010. (Cited on
page 16)

[CDM14] Cloud Data Management Interface (CDMI) Version 1.1.0. http://www.snia.org/
sites/default/files/CDMI_Spec_v1.1.pdf, 2014. (Cited on page 17)

[Cha09] S. Chari. Confronting the Data Center Crisis: A Cost - Benefit Analysis of the IBM
Computing on Demand (CoD) Cloud Offering. 2009. (Cited on page 9)

[CLY+14] C.-H. Chang, C.-W. Lu, W. P. Yang, W. C.-C. Chu, C.-T. Yang, C.-T. Tsai, P.-A. Hsiung.
A SysML Based Requirement Modeling Automatic Transformation Approach. In
Computer Software and Applications Conference Workshops (COMPSACW), 2014
IEEE 38th International, volume 5, pp. 474 – 479. 2014. (Cited on pages 12
and 24)

69

http://www.aiim.org
http://www.aiim.org
http://www.snia.org/sites/default/files/CDMI_Spec_v1.1.pdf
http://www.snia.org/sites/default/files/CDMI_Spec_v1.1.pdf

Bibliography

[CNMK07] T. C. Chieu, T. Nguyen, S. Maradugu, T. Kwok. An Enterprise Electronic Contract
Management System Based on Service-Oriented Architecture. In Services Computing
(SCC). IEEE International Conference on, volume 8, pp. 613–620. 2007. (Cited on
page 20)

[Cor09] T. S. Cormen. Introduction to Algorithms. MIT Press, 2009. (Cited on page 48)

[CS14] R. Chamberlain, J. Schommer. Using Docker to support reproducible research.
Technical Report 1101910, figshare, 2014. (Cited on page 17)

[DFCV14] P. Donadio, G. B. Fioccola, R. Canonico, G. Ventre. Network Security for Hybrid
Cloud. In Euro Med Telco Conference (EMTC), 2014, volume 6, pp. 1 – 6. 2014.
(Cited on page 64)

[DHGS13] L. Dey, S. B. H., M. G., G. Shroff. Email Analytics for Activity Management and
Insight Discovery. In Web Intelligence (WI) and Intelligent Agent Technologies (IAT),
IEEE/WIC/ACM International Joint Conference on, volume 8, pp. 557–564. 2013.
(Cited on page 20)

[DWC10] T. Dillon, C. Wu, E. Chang. Cloud Computing:Issues and Challenges. In Advanced
Information Networking and Applications (AINA), 24th IEEE International Conference
on. 2010. (Cited on page 14)

[EHW04] E. Engel, R. M. Hayes, X. Wang. The Sarbanes-Oxley Act and Firms’ Going-Private
Decisions. Journal of Accounting and Economics, pp. 116–145, 2004. (Cited on
page 19)

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud Computing
Patterns. Fundamentials to Design, Build and Manage Cloud Applications. Springer,
Wien, Austria, 2014. (Cited on pages 15, 16 and 17)

[Gar97] R. Garud. On the Distinction between Know-How, Know-What, and Know-Why.
Advances in Strategic Management, pp. 81–201, 1997. (Cited on page 18)

[GHH+12] K. R. Grahlmann, R. W. Helms, C. Hilhorst, S. Brinkkemper, S. van Amerongen.
Reviewing Enterprise Content Management: a functional framework. European
Journal of Information Systems, 19:268–286, 2012. (Cited on page 19)

[GKK93] N. Gaitanis, G. Kapogianopoulos, D. A. Karras. Pattern Classification Using A
Generalized Hamming Distance Metric. In Neural Networks, 1993. IJCNN ’93-
Nagoya. Proceedings of 1993 International Joint Conference on, volume 4, pp. 1293
– 1421. 1993. (Cited on page 36)

[IBM15] IBM. IBM Cloud Manager with OpenStack v4.2.0 documentation. http://http:
//www-01.ibm.com/support/knowledgecenter/SST55W/, 2015. Accessed: 2015-
04-01. (Cited on page 50)

70

http://http://www-01.ibm.com/support/knowledgecenter/SST55W/
http://http://www-01.ibm.com/support/knowledgecenter/SST55W/

Bibliography

[ISO14] ISO. Information technology — Cloud computing — Overview and vocabu-
lary. Technical Report ISO 17788, International Organization of Standardization,
Geneva, Switzerland, 2014. (Cited on page 14)

[KML+14] G. Katsaros, M. Menzel, A. Lenk, J. Rake-Revelant, R. Skipp, J. Eberhardt. Cloud
Application Portability with TOSCA, Chef and Openstack. In Cloud Engineering
(IC2E), IEEE International Conference on, pp. 295–302. 2014. (Cited on page 13)

[Kuk] S. Kukhtichev. Design and implementation of a Domain Specific Language for defining
ECM workloads in elastic cloud environments using TOSCA. Master’s thesis. (Cited
on page 43)

[Lea99] A. C. Lear. XML seen as an Integral to Application Integration, 1999. (Cited on
page 16)

[LRS02] F. Leymann, D. Roller, M.-T. Schmidt. Web services and business process manage-
ment. IBM Systems Journal, 14, 2002. (Cited on page 16)

[LY10] H. Liduo, C. Yan. Design and Implementation of Web Content Management System
by J2EE-based Three-tier Architecture. In Information Management and Engineering
(ICIME), The 2nd IEEE International Conference on, volume 5, pp. 513–517. 2010.
(Cited on page 20)

[MJ99] M. J. Mahemoff, L. J. Johnston. Handling Multiple Domain Objects with Model-
View-Controller. In Technology of Object-Oriented Languages and Systems, 1999.
TOOLS 32. Proceedings, volume 11, pp. 28 – 39. 1999. (Cited on page 37)

[MNS14] H. R. Motahari-Nezdhad, K. D. Swenson. Towards a Knowledge-Based Framework
for Enterprise Content Management. In System Sciencies (HICSS), 47th Hawaii
International Conference on, volume 10, pp. 3543–3552. 2014. (Cited on page 18)

[NCK+09] S. Nakamura, S. Chiba, H. Kaminaga, S. Yokoyama, Y. Miyadera. Development of a
Topic-centered Adaptive Document Management System. In Computer Sciences and
Convergence Information Technology (ICCIT’09). Fourth International Conference on,
volume 7, pp. 109–115. 2009. (Cited on page 20)

[Net14] Web Server Survey. http://news.netcraft.com/archives/2014/05/07/

may-2014-web-server-survey.html, 2014. Accessed: 2015-01-26. (Cited
on page 18)

[opea] OpenGroup. http://www.opengroup.org/. Accessed: 2015-01-19. (Cited on
pages 16 and 17)

[opeb] OpenStack - open source software for creating private and public clouds. http:

//www.openstack.org/. Accessed: 2015-04-21. (Cited on pages 49 and 50)

71

http://news.netcraft.com/archives/2014/05/07/may-2014-web-server-survey.html
http://news.netcraft.com/archives/2014/05/07/may-2014-web-server-survey.html
http://www.opengroup.org/
http://www.openstack.org/
http://www.openstack.org/

Bibliography

[PL12] G. Pabon, M. Leyton. Tackling Algorithmic Skeleton’s Inversion of Control. In
Parallel, Distributed and Network-Based Processing (PDP), 2012 20th Euromicro
International Conference on, volume 4, pp. 42 – 46. 2012. (Cited on page 13)

[Shr10] G. Shross. Enterprise Cloud Computing. Technology, Architecture, Applications.
Cambridge University Press, Cambridge, United Kingdom, 2010. (Cited on page 13)

[SP10] P. Sutheebanjard, W. Premchaiswadi. Fast Convert OR-Decision Table to Decision
Tree. In Knowledge Engineering, 2010 8th International Conference on ICT and,
volume 4, pp. 37 – 40. 2010. (Cited on page 24)

[SPH+14] D. Sitaram, H. L. Phalachandra, S. Harwalkar, S. Murugesan, P. Sudheendra,
R. Ananth, V. B, A. H. Kanji, S. C. Bhat, B. Kruti. Simple Cloud Federation. In
Modelling Symposium (AMS), 2014 8th Asia, volume 7, pp. 83 – 89. 2014. (Cited
on page 64)

[TOS13a] Topology and Orchestration Specification for Cloud Applications Primer
Version 1.0. http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/

tosca-primer-v1.0-cnd01.html, 2013. (Cited on page 13)

[TOS13b] Topology and Orchestration Specification for Cloud Applications Version 1.0.
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf, 2013. (Cited
on page 44)

[UKKM13] T. Uchiumi, S. Kitajima, S. Kikuchi, Y. Matsumoto. Automatic parameter configu-
ration for cloud infrastructures by design pattern extraction. In Cloud Computing
Technology and Science (CloudCom), 2013 IEEE 5th International Conference on,
volume 8, pp. 224 – 231. 2013. (Cited on page 13)

[WBB+14] J. Wettinger, T. Binz, U. Breitenbücher, O. Kopp, F. Leymann, M. Zimmermann.
Unified Invocation of Scripts and Services for Provisioning, Deployment, and
Management of Cloud Applications Based on TOSCA. In Proceedings of the 4th
International Conference on Cloud Computing and Service Science, CLOSER 2014, 3-5
April 2014, Barcelona, Spain, pp. 559–568. SciTePress, 2014. (Cited on page 13)

[ZAB+09] W.-D. Zhu, R. Aitchison, E. Bonner, H. C. Mendez, R. Rathgeber, A. Yadav,
H. Yessayan. Understanding IBM FileNet Records Manager. IBM Redbooks, 11400
Burnet Road, Austin, TX 78758-3493, USA, 2009. (Cited on page 20)

[ZLZW02] S. Zhang, Q. Li, Y. Zheng, H. Wang. The Multi-Tier Architecture Based on Offline
Component Agent. In Computer Supported Cooperative Work in Design. The 7th
International Conference on, volume 4, pp. 241 – 244. 2002. (Cited on page 50)

All links were last followed on March 30, 2015.

72

http://docs.oasis- open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://docs.oasis- open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Scope of the work
	1.2 Related work
	1.3 Context

	2 Solution concept
	2.1 User input considerations
	2.2 Concept selection
	2.3 Interpretation workflow
	2.4 Application architecture

	3 Prototype implementation
	3.1 Bird's-eye view
	3.2 Core considerations
	3.3 Interpretation process
	3.4 Application architecture
	3.5 Application lifecycle
	3.6 Discussion

	4 Summary
	Bibliography

