
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Master’s Thesis No. 0838-003

Extending an Open Source Enterprise
Service Bus for PostgreSQL Statement
Transformation to Enable Cloud Data

Access

Alketa Ramaj

Course of Study: Communication Engineering and Media Technology (INFOTECH)

Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisor: Steve Strauch

Dr. Vasilios Andrikopoulos

Commenced: April 23, 2015
Completed: October 23, 2015

CR-Classification: D.2.8, D.3.3, H.2.3, H.2.4

Abstract

Cloud computing has enabled a new era in the IT industry and many organizations are
interested in moving their business operations to the Cloud. This can be realized by designing
new applications that follow the prerequisites of the Cloud provider or just by migrating
the existing applications to the Cloud. Each application follows a multi-layered architecture
defined by its design approach. Application data is of utmost importance and it is managed
by the data layer, which is further divided into two sublayers, the Data Access Layer (DAL)
and the Database Layer (DBL). The former abstracts the data access functionality and the
latter ensures data persistence and data manipulation.

Application migration to the Cloud can be achieved by migrating all layers it consists of
or only part of them. In many situations it is chosen to move only the DBL to the Cloud
and keep the other layers on-premise. Most preferably, the migration of the DBL should
be transparent to the upper layers of the application, so that the effort and the cost of the
migration, especially concerning application refactoring, becomes minimal. In this thesis, an
open source Enterprise Service Bus (ESB), able to provide multi-tenant and transparent data
access to the Cloud, is extended with PostgreSQL transformation functionality. Previously
the ESB could only support MySQL source databases. After the integration of two new
components, a PostgreSQL proxy and a PostgreSQL transformer, we provide support for
PostgreSQL source databases and dialects. Furthermore, we validate and evaluate our
approach based on the TPC-H benchmark, in order to ensure results based on realistic SQL
statements and appropriate example data. We show linear time complexity, O(n) of the
developed PostgreSQL transformer.

Contents

1. Introduction 1
1.1. Problem Statement . 1
1.2. Motivating Scenario . 3
1.3. Definitions and Conventions . 5
1.4. Outline . 6

2. Fundamentals 9
2.1. Roots of Cloud Computing . 9

2.1.1. Mainframes . 9
2.1.2. Web Services and SOA . 9
2.1.3. Grid Computing . 10
2.1.4. Virtualization . 11

2.2. Cloud Models . 11
2.3. Relational Databases . 13
2.4. SQL Dialects . 14

2.4.1. PostgreSQL vs. MySQL . 14
2.5. CDASMix and its Architectural Components 16

2.5.1. Web Services in CDASMix . 16
2.5.2. JBI and OSGi . 16
2.5.3. ESB . 17
2.5.4. Apache Karaf and Apache Camel . 17
2.5.5. Architecture Overview . 19

2.6. PostgreSQL Protocol . 23

3. Related Work 25
3.1. Multi-database System . 25
3.2. SQL Transformation . 27

4. Analysis and Specification 31
4.1. System Overview . 31

4.1.1. Configuration of CDASMix . 31
4.1.2. Operation of CDASMix . 33
4.1.3. CDASMix JDBC Component . 34

4.2. PostgreSQL Proxy Analysis . 35
4.2.1. Approach 1 . 35
4.2.2. Approach 2 . 36

4.3. SQL Statement Transformation . 37
4.3.1. SQL Statement Parsing (FR1) . 37

iii

Contents

4.3.2. SQL Statement Transforming (FR2) . 39
4.4. Use Cases . 39
4.5. Non-Functional Requirements . 43

4.5.1. Extensibility (NFR1) . 43
4.5.2. Integratability (NFR2) . 43
4.5.3. Performance (NFR3) . 43
4.5.4. Scalability (NFR4) . 43
4.5.5. Maintainability and Documentation (NFR5) 44

5. Design 45
5.1. System Architecture . 45
5.2. SQL Transformation Service . 46

6. Implementation 51
6.1. Transformation Service Implementation . 51
6.2. PostgreSQL Proxy Implementation . 55
6.3. PostgreSQL Transformer Implementation . 57
6.4. SQL Parsers . 59

7. Validation and Evaluation 63
7.1. Validation of SQL Parser and Transformation 63
7.2. Validation of PostgreSQL Transformation . 64
7.3. Performance Evaluation . 66

8. Conclusion and Future Work 81
8.1. Conclusion . 81
8.2. Future Work . 82

A. Source Code Segments 85
A.1. OSGi Declarative Service Implementation . 85
A.2. Validation Test Case . 86
A.3. Evaluation Test Case . 86
A.4. Generated PostgreSQL Parser . 87
A.5. Generated MySQL Parser . 88

B. Class Diagrams 91

C. Visitor Pattern in JSqlParser 93

Bibliography 97

iv

List of Figures

1.1. Cloud Data Migration Tool . 2
1.2. Motivating Scenario . 4

2.1. Relationships Among Web Service (WS), Service-Oriented Architecture (SOA),
and Cloud Computing . 10

2.2. Service Models and Their Relation to the Contribution and Responsibilities of
Providers and Customers . 13

2.3. Relational Model of Data . 13
2.4. Structure of Exchange . 18
2.5. URI Class Diagram . 19
2.6. Architectural Overview of CDASMix . 20
2.7. PostgreSQL Communication Protocol . 23

3.1. Components of an MDBS . 26
3.2. Block Diagram of JavaCC and Transformer Cooperation 28

4.1. Interactions of CDASMix and the Peripheral Technologies, During Configura-
tion and Normal Operation . 32

4.2. First Approach for PostgreSQL Proxy . 35
4.3. Second Approach for PostgreSQL Proxy . 36
4.4. Parsing of a SELECT Statement Into a Parse Tree 38
4.5. Use Case Diagram for the SQL Proxy . 40

5.1. Second Approach - Direct Transformation From Proxy Bundle With Trans-
former Services . 45

5.2. The Life Cycle of Declarative Service of OSGi 48

6.1. Class Diagram that Shows the Relationships Among the PostgreSQL Proxy(Service
Consumer) and the SQL Transformation (Service Producer) Components. . . 53

6.2. Lazy Service Registration Scenario . 54
6.3. PostgreSQL Proxy as an OSGi Bundle, Integrated into CDASMix 56
6.4. PostgreSQL Transformer as an OSGi Bundle, Integrated into CDASMix 58

7.1. TPC-H Database Schema Diagram. 64
7.2. SELECT Statement’s Parse Tree in Class Diagram 68
7.3. Plot of the Time Consumption over Number of Nodes for the PostgreSQL

Transformer, for two Load Testings . 75
7.4. Plot of the Throughput over Number of Nodes for the PostgreSQL Transformer,

for two Load Testings . 75

v

List of Figures

7.5. Plot of the Time Consumption over Number of Nodes for the PostgreSQL and
MySQL Transformer . 76

7.6. Plot of the Throughput over Number of Nodes for the PostgreSQL and MySQL
Transformer . 76

7.7. Plot of the Parsing Time Consumptions of SELECT Statements over the Number
of Nodes for the PostgreSQL and MySQL Transformer 77

7.8. Plot of the Throughput over Number of Nodes for PostgreSQL Transformer
for both Load Testings . 77

7.9. Plot of the Transformer Time Consumption and Parsing Time Consumption,
over Number of Nodes for the PostgreSQL Transformer 78

B.1. Class Diagram that Shows the Relationships Among the PostgreSQL Proxy
and the SQL Transformation Components . 91

B.2. Class Diagram that Shows the Relationships Among the PostgreSQL Proxy
and Other Components of CDASMix . 92

C.1. Visitor Interfaces of the JSqlParser’s Class Architecture 94
C.2. Visitor Architecture of the Group of Classes that Implement the Statement

Interface . 95

vi

List of Tables

4.1. Description of Use Case: Parse PostgreSQL Statement 41
4.2. Description of Use Case: Transform PostgreSQL Statement 42

7.1. Tenant Data Source Registration . 63
7.2. SQL Transformation Validation with Cloud Databases 66
7.3. Time Evaluation of Various Statements . 71
7.4. Time Evaluation of SELECT Statements . 74

vii

List of Tables

viii

List of Listings

6.1. OSGi Declarative Service Descriptor . 51
6.2. SQL Transformer Service Definition . 52
6.3. OSGi Service Lookup With Filter . 53
6.4. Syntax of the DROP table Statement in the PostgreSQL Dialect 59
6.5. Syntax of the DROP table Statement in the MySQL Dialect 59
6.6. Snippet of the PostgreSQL Grammar File, Responsible for the DROP table

Statement . 59
6.7. Snippet of the MySQL Grammar File, Responsible for the DROP table Statement 60

A.1. OSGi Declarative Service Implementation . 85
A.2. JUnit Test Case Example for Validation . 86
A.3. JUnit Test Case Example for Evaluation . 86
A.4. Code Snippet of the Generated PostgreSQL Parser, Responsible for Parsing the

DROP table Statements . 87
A.5. Code Snippet of the Generated MySQL Parser, Responsible for Parsing the

DROP table Statements . 88

ix

1. Introduction

Cloud computing is a term to communicate the concept of virtualizing the computing power,
while hiding its internal structure and operations. The term was initially used by engineers,
back in the early years of network design, to refer to the unknown parts of the network [Lou10].
Computing power is built of discrete components, including processing, data storage, and
software resources. All of them cooperate and give a single, optimized computing package,
which can be provided as a utility, so called "on-demand" delivery. Customers can obtain
computing in a way similar to electricity, water or telephony, and in such a way pay providers
based on what they use, so called "pay-as-you-go". The main objectives of Cloud computing
are to increase resource utilization rates, to centralize management and maintenance of the
systems, and to offer computing power as a service at lower cost.

However, transferring data to Cloud yields a series of incompatibilities between the appli-
cation and the database. A challenge nowadays is to isolate the application and enable it to
simply call the database service without considering the incompatibilities generated after
the data migration. This idea is encapsulated in the "Database as a Service" paradigm, which
attempts to provide seamless scaling of database resources, back-ups, server failure handling,
and provisioning. The ultimate goal is to provide this without affecting the front-end in any
way. The current work focuses on a sub-area of Database as a Service (DBaaS). Specifically, it
resolves the incompatibility of the query language, which occurs when the source and target
database use different query languages.

1.1. Problem Statement

Nowadays in the market there are plenty of vendors offering several types of Cloud services.
Choosing the Cloud solution which meets the requirements of an organization and at the
same time reduces its expenditures to the maximum, seems ambiguous and hard. Bachmann
developed a Cloud Data Migration Methodology and a Tool [Bac12]. The proposed migration
and application refactoring methodology is based on a work by Laszewski [LN12] and is
composed of seven phases as shown in Figure 1.1.

This methodology involves specific questionnaires for supporting the decision making process
to find the most suitable database. In the pre-migration step, it also adapts the Data Access
Layer (DAL) in order to reduce the compatibility issues, which are going to appear after the
migration, as a result of the differences among the source and target databases. However, in
his work, Bachmann does not treat the remaining incompatibilities that occur after the data
migration.

1

1. Introduction

Select Migration
Scenario

Describe Desired
Cloud Data

Hosting Solution

Identify Patterns
to Solve Potential

Migration
Conflicts

Select Cloud Data
Store or Data

Service

Describe Source
Data Store or Data

Service

Refactor
Application
Architecture

Migrate Data

Assessment

Analysis & Design

Migration\Deployment\Support

Figure 1.1.: Cloud Data Migration Tool [Bac12, SAK+14, SAKVH15]

Apart from addressing the compatibility issues, an additional goal of our system is to achieve
this with minimum impact on the application side. To serve this objective, Goméz Sáez
extended an open source Enterprise Service Bus (ESB) for Cloud data access and multi-tenancy
support [GS13]. It acts as a middleware between the application and the local (on-premise) or
Cloud (off-premise) databases. The communication inconsistencies among different Cloud
services are significantly reduced. Furthermore, this prototype ensures the transparency the
Data Layer provides to the Business and Presentation Layers of the application, namely, it
reduces the required changes made to the application1.

However, the aforementioned solution is not sufficient when the source and target data
sources are not built based on the same database system. Incompatibilities related to the
variations of the SQL dialects (syntaxes) remain unsolved. Oracle’s SQL Developer tool for
migration, offers the possibility to convert the SQL statements on the application side in a way
that they will be compatible with the Oracle target database system [LN12]. One drawback of
this solution is that it is dedicated to the Oracle target data sources and therefore, it needs to
be extended to support also other dialects. The biggest problem though, is that it does not
provide database transparency to applications. The goal must be to minimize application
changes when migrating data to the Cloud, in order to reduce the overall migration time and
effort.

New technologies allow to take the SQL statements addressed at the source database and
transform them, before forwarding them to the target database, for execution. Xia extended
on the work by Goméz Sáez further, by enhancing the open source ESB for Cloud data Access
with the capability of transforming SQL statements [Xia13]. The SQL statements used in

1In this work we refer to applications that follow the three-tier architecture [app]. However, our system is
compatible also with applications that follow other design approaches

2

1.2. Motivating Scenario

the presentation and business layers of the application are passed to the middleware, where
they are analyzed by the parser and translated into a hierarchy of Java classes. The SQL
transformer then reconstructs the Java classes into a new set of statements compatible with the
target data store dialect. Xia enhanced the already existent MySQL Proxy with the ability to
interact with a newly added component, the SQL transformer, which receives SQL statements
and further processes them in order to make them understandable to Oracle and PostgreSQL
target databases.

The work of Xia addresses only MySQL source dialects. Hence, he worked on the MySQL
proxy and MySQL transformer in order to make it possible to translate MySQL statements
into Oracle or PostgresSQL statements. However, he does not handle other cases of source
databases, such as PostgreSQL. This work aims at developing and integrating a PostgreSQL
proxy and a PostgreSQL transformer into the existing system, in order to support parsing
and transformation of PostrgreSQL statements into Oracle and MySQL statements.

1.2. Motivating Scenario

There are numerous financial, organizational, and technological reasons why an enterprise
chooses to migrate its application to the Cloud. There are also plenty of Cloud services from
many different vendors. Each of them offers its own special features and aspires to be the
best solution. [ABLS13] discusses the different types of application migration. The enterprise
organization, which decides to migrate its application to the Cloud, tries to maximize its
benefits in all three aforementioned directions. To achieve this it may be required to allocate
its applications’ data among different Cloud storage providers. It may also be required that
some data, the most frequently used and/or confidential data, to remain on-premise. On the
other hand, the organization may also choose to migrate its whole application into the Cloud.
The latter dramatically increases the migration time and effort and is not a case considered
by this work. Our system concentrates on the migration of the Data Layer (DL) and its two
sublayers, the Database Layer (DBL) and the DAL, while the rest of the application remains
unchanged and on-premise.

Inspired by the notation used in [Moh11], we use the following representation to capture the
migration of an enterprise application:

D → DC + DL → DOM + DL (1.1)

where D is the state of the application before migration, while its DL was on-premise. DC is
the part of the application data moved to the Cloud and DL is the data remaining in the local
database. If the DL is fully migrated, then DL is zero, as no data exists on-premise. The data on
the Cloud can reside in a single storage provider or can be allocated in an optimized fashion,
across different providers, in order to maximize the overall benefits for the organization. DOM
expresses the data being optimally migrated and is the aggregation of data among many

3

1. Introduction

different Cloud storages. DOM is described as follows:

DOM → DC1 + DC2 + ... + DCN (1.2)

where DC1 + DC2 + ... + DCN are the different alternatives of Cloud services used. The
dispersion of data in Cloud enables an enterprise to take advantage from the different
providers by using their services in a dynamic and flexible way. It is unlikely though, that all
of them will be compatible with the source database. Thus, mapping a single source database
into multiple, diverse database systems is the main reason why incompatibilities often appear
after migration. Our goal is to address a specific subset of such incompatibilities, related to
the differences in SQL dialects. Vendors, in order to acquire a larger market share, like to
implement new features that will differentiate them from their competitors. For example, one
of the many differences between PostgreSQL and MySQL dialects, is that PostgreSQL is case
sensitive, while MySQL is not, unless the "binary" flag is set. Therefore, an intermediate layer
is required, for a unified and transparent access of the applications to the Cloud and local
databases, as shown in Figure 1.2. Xia implemented the seamless transformation required
when migrating data from MySQL source data store into Oracle and PostgreSQL data stores.
This thesis continues by handling the PostgreSQL source databases.

Unified Cloud Data Access Interface

Application
MySQL

Application
PostgreSQL

Application
Oracle DB

Application
DB2

Application
MS SQL Server

Figure 1.2.: Motivating Scenario [Xia13].

1.3. Definitions and Conventions

In the following section a list of abbreviations used in this thesis is provided, to further the
understanding of this document.

4

1.3. Definitions and Conventions

List of Abbreviations

The following list contains abbreviations which are used in this work.

AWS Amazon Web Services

BC Binding Component

CDASMix Cloud Data Access Support in Multi-Tenant ServiceMix

CRM Customer Relationship Management

DAL Data Access Layer

DBaaS Database as a Service

DBMS Database Management System

DBL Database Layer

DBS Database System

DL Data Layer

ESB Enterprise Service Bus

FDBS Federated Database System

GAE Google App Engine

IaaS Infrastructure as a Service

IBM International Business Machines Corporation

JBI Java Business Integration

JBIMulti2 JBI Multi-tenancy Multi-container Support

JDBC Java Database Connectivity

JMS Java Message Service

JNDI Java Naming and Directory Interface

MDBS Multi-database System

MEP Message Exchange Patterns

NIST National Institute of Standards and Technology

NM Normalized Message

NMF Normalized Message Format

NMR Normalized Message Router

OSGi Open Services Gateway initiative (deprecated)

PaaS Platform as a Service

5

1. Introduction

RDBMS Relational Database Management System

SA Service Assembly

SaaS Software as a Service

SCR Service Component Runtime

SE Service Engine

SOA Service-Oriented Architecture

SQL Structured Query Language

TCP Transmission Control Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

UUID Universally Unique Identifier

WS Web Service

WSDL Web Services Description Language

1.4. Outline

The rest of this document is structured as follows:

• Chapter 2. Fundamentals discusses some fundamental and background information
that is required for the understanding of this thesis.

• Chapter 3. Related Work provides the state of the art in topics that are the cornerstone
of our work and positions them towards the work in this thesis, respectively.

• Chapter 4. Analysis and Specification represents a detailed analysis of the system
overview, functional and non-functional requirements that our components must meet,
as an enhancement of the Multi-tenant ServiceMix with Cloud Data Access Support.

• Chapter 5. Design describes and illustrates the internal structure of the new system
components and their interaction with the other components of ServiceMix. The modifi-
cations and extensions required for the parsing and transformation of SQL statements
are thoroughly described.

• Chapter 6. Implementation describes and illustrates our implementation of the Post-
greSQL proxy and PostgreSQL transformation components, the implementation of
a PostgreSQL parser using JavaCC, and the integration of the components into the
existing system.

6

1.4. Outline

• Chapter 7. Validation and Evaluation presents the validation and evaluation of our
implementation, and discusses the results.

• Chapter 8. Conclusion and Future Work concludes this thesis and discusses some
directions of further development in the future.

7

1. Introduction

8

2. Fundamentals

In this chapter background information and fundamental knowledge is provided, necessary
for a sufficient understanding of the existing system and the objectives of this work.

2.1. Roots of Cloud Computing

Achievements in several fields, including hardware, Internet technologies, distributed systems
and their enterprise-wide administration, prepared the ground for the advent of Cloud
computing. This section provides a view on the step-by-step emergence of the Cloud through
its predecessor technologies.

2.1.1. Mainframes

The need for access to a large amount of computing power and also for acquiring that power
on-demand (Utility computing), has been present since the start of computing. In 1964
International Business Machines Corporation (IBM) came with a new generation of electronic
computing equipment, named IBM System/360. IBM Board Chairman Thomas J. Watson
promised "more computer productivity at lower cost than ever before" [Boy04]. In the early 1970’s,
mainframes evolved to time-shared machines, able to serve hundreds of users simultaneously.
The arrival and rapid progress of low-cost computers based on integrated circuits made the
mainframes an old-fashion technology. However, mainframes remain to be the first important
step towards some of the features encapsulated nowadays by Cloud technology, such as the
illusion of infinite resources, created by their aggregation, and their on-demand delivery.

2.1.2. Web Services and SOA

The next significant station towards Cloud computing can be considered to be SOA, firstly
defined by Sun in the late 1990’s [Qus05]. With SOA, enterprise IT is composed of software
components, packaged as services [VBB11] that interact with each other over a network, in a
loosely-coupled way, ideally by using WS standards [VBB11, Qus05]. These are the preferred
standards used to implement SOA, as they can facilitate the communication over a network
of applications running on different messaging platforms. But they should be distinguished
from the SOA itself, which is the architecture paradigm and not a specific technology that can
be used to implement this architecture [Qus05, WCL+05].

9

2. Fundamentals

Both SOA and WS can provide the backbone to Cloud development. According to [KB] SOA
is not a requirement for Cloud computing and vice-versa, instead they are complementary
to each other. However, according to The Open Group definition, Cloud services are SOA
services, but not all SOA services are Cloud service. A set of standardized characteristics that
must be enabled simultaneously for the Cloud are just optional in SOA [BGK+11]. Either way,
the pre-existing SOA gives the Cloud a well-defined and robust architecture that considerably
simplifies the maintenance and migration procedures [Amo14]. Differently from SOA, WS
are always part of any Cloud infrastructure and application. They are the glue used for
connecting applications together in order to achieve software integration [KB]. Figure 2.1
depicts the relationships and interconnections among these three technologies: WS, SOA, and
Cloud computing, with a Venn diagram.

Figure 2.1.: Relationships Among WS, SOA, and Cloud Computing [KB].

2.1.3. Grid Computing

Grid computing aggregates distributed resources and forms a big infrastructure that operates
as a single virtual system. Resources can be provisioned as a utility, which is switched on or
off [Mye09]. Its successor, Cloud technology, adopts this idea of resource provisioning and
extends it to "on-demand" resource provisioning. The access to the common pool of resources
is not flat, but it can be dynamically adjusted according to a customer’s needs, who pays
for what she/he uses (Utility computing) [VBB11]. As a newer and more highly evolved
technology, Cloud computing has a set of other advantages compared to Grid computing.
Important differences come from the fact that a Cloud has evolved to make use of SOA
and virtualization technology. The absence of SOA in Grid computing is the common case.

10

2.2. Cloud Models

For this reason, Grid technology usually provides concrete services, such as CPU, network,
memory, bandwidth etc., instead of abstract computing service types provided by a Cloud.

2.1.4. Virtualization

Virtualization of physical computing resources, such as network, server and storage, is
the creation of their virtual versions, in order to ease their shared and flexible use among
many users. Network virtualization allows the sharing of network bandwidth among different
VLANs (Virtual LANs), while server virtualization results in multiple operating systems’
images, known as virtual machines (VMs), running on the same server. Virtualization of
storage refers to the merging of data from multiple types of storage devices into a "single
storage unit" that can be managed centrally [LN12]. The virtualization model that involves
the two latter types of virtualization is named hardware virtualization. The use of hardware
virtualization in Cloud deployments improves sharing and utilization, as it gives the users
the possibility to dynamically get resources and pay only for the amount used. It also
leads to better manageability, by simplifying the monitoring of resource consumption and
subsequently, to higher flexibility, by better management of workloads in VMs. Different
VMs running on the same server are mutually isolated from each other (workload isolation).
This increases the reliability, as failures at one VM will not affect the others and will not
propagate through the whole Cloud infrastructure. Workload isolation has benefits regarding
workload migration, known as application mobility, as well. Migration can extremely simplify
hardware maintenance and disaster recovery [VBB11].

2.2. Cloud Models

Over the years, many attempts have been made to give a precise definition of Cloud comput-
ing and its unique characteristics by academia, industry, and governmental labs. According
to the National Institute of Standards and Technology (NIST) [MF11]: “Cloud computing is a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction. This Cloud
model is composed of five essential characteristics, three service models, and four deployment models.”
The five essential characteristics of Cloud computing are (1) on-demand self-service, which
enables the users to provision the required resources automatically and at run time; (2) broad
network access, which means that the resources hosted on the Cloud are available over the
network; (3) resource pooling, which refers to resource aggregation in order to provide trans-
parent access to phenomenally infinite and directly available resources; (4) rapid elasticity
or in other words scalable provisioning, allows users to automatically request additional
resources; and (5) measured service, denoting the possibility of transparent monitoring,
controlling, and reporting of resource use.

The Service models given by NIST are Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS). Through these three service models Cloud

11

2. Fundamentals

computing is discussed in terms of creation, delivery, and consumption of Cloud services, and
subsequently it is interconnected to the notions of SOA and described as part of it [BGK+11].

SaaS is a model where an application is running on a remote data center and provided as a
service to customers across the Internet. The provider is responsible for software develop-
ment, maintenance and upgrades, while the customer has no control of the underlying Cloud
infrastructure. Google Mail and Google Docs, as well as social media, including Facebook,
LinkedIn, Flickr, and Twitter are just some of the widely known cases of SaaS, accessible with
no limitation from several client devices through Web browsers. Enterprises also resort to
putting applications on to the Cloud for a variety of services, such as accounting, business
management, collaboration, marketing, Customer Relationship Management (CRM), commu-
nication and many others. Some widely used SaaS applications serving the aforementioned
goals are Concur Technologies, Inc., NetSuite, GoToMeeting, Constant Contract, Sales Force
Automation, and Google Mail, respectively.

PaaS provides users with the capability to deploy (build and run) their own applications onto
the Cloud using programming languages, libraries, services and tools, given and maintained
by the Cloud provider. Same as in SaaS, also in PaaS users have no control of the underlying
Cloud infrastructure, namely the middleware, operating system, virtualization, servers,
storage, and networking. However, this service type gives more freedom to the users by
allowing them to manage their own applications on Cloud and to configure the application-
hosting environment. Amazon Web Services (AWS) and Salesforce.com were the pioneers
of PaaS. Google App Engine (GAE), Apprenda, Red Hat OpenShift, Windows Azure Web
Services and many others followed.

IaaS provides users with the capability to provision some fundamental computing resources,
such as servers, storage, networks, and networking services (e.g. firewalls). The offered
servers can be virtualized, when the main requirement is not the performance, but highly
dynamic workloads. Otherwise, IaaS may offer so called bare-metal servers, in which the
hypervisor layer is not required, because no resource sharing takes place. SoftLayer, a
subsidiary company of IBM, is one of the few Cloud providers who offers bare-metal Cloud
computing instances aside IaaS virtual servers. Other famous providers of IaaS are AWS,
IBM SmartCloud Enterprise, Google Compute Engine. Figure 2.2 visualizes the relationship
of service models and the contribution, as well as responsibility, they require by the providers
and the customers, respectively.

The deployment models of the Cloud are (1) Private Cloud, which is dedicated to a single
organization and can be owned and managed by the organization itself, a third party, or
the combination of both; (2) Community Cloud, referring to the case where the Cloud
infrastructure is to be used by a specific group of organizations with the same requirements
and/or purpose (it also can be owned and managed by some of the organizations of the
group/community, a third party or by some combination of them); (3) Public Cloud, a term
for describing the situation when the Cloud infrastructure can serve the general public and
(4) Hybrid Cloud, which can be any combination of two or more different aforementioned
models [MF11].

12

2.3. Relational Databases

Figure 2.2.: Service Models and Their Relation to the Contribution and Responsibilities of
Providers and Customers

2.3. Relational Databases

In [Cod70], Codd brings up the idea of data transparency, while talking about the necessity to
hide the way data is represented in the machine from future users of large data banks. He
realizes that changes on the internal data organization should not affect activities of users at
terminals and application programs. As shown in Figure 2.3, Codd used the mathematical
theory of relation to represent data in a table, known as relation R, which is composed of rows
and columns, respectively named tuples and attributes [Cod70].

Figure 2.3.: Relational Model of Data [Cod70].

Specifically, data is considered to be grouped in attributes, or sets (S1, S2, S3,..., Sj), and the
relation of those sets is a set of n-tuples, each of it having its first element from component S1,
second element from component S2 and so forth. Each n-tuple is unique and their order is
not of importance. Attributes, on the other hand, can be similar, but their order is significant.
With time the need to alter the information stored in the relation can arise. This is achieved by
deleting existing tuples, adding new ones, or changing the components of a tuple. The entire

13

2. Fundamentals

information of a large data bank can be considered a collection of time varying relations.
Codd’s relation model sets up the basis for a high level data language, able to manipulate and
retrieve data stored on relations. For this purpose, the first version of the Structured Query
Language (SQL) was developed [KKH08].

2.4. SQL Dialects

SQL is the standard computer database language for relational database management sys-
tems. Although it is standardized since 1986, various deviations of it are implemented and
extensions of it are still being developed by different vendors. Most database vendors follow
the product lock-in policy: they add their own features in order to bind their customers and
render them unable to use another vendor without reasonable switching costs. This results in
a wide variety of SQL dialects. On the other hand, writing portable SQL statements, namely
such that perform well in multiple databases, is a must for applications that work with a
range of different SQL servers. This work aims at solving SQL incompatibility problems,
generated from the various server implementations and subsequently, the several dialects. It
does not try to implement portability at the application level by defining restrictions on the
SQL queries construction. Instead, a middle layer is added, responsible for parsing the SQL
statements of a source dialect and the transformation of them into a target dialect.

The SQL standard compacts all features that are shared among the different implementations
and define the core functionality of SQL. The following, are implementations of the most
known deviations of SQL standard versions.

• PostgreSQL1: It is considered the most feature-oriented Relational Database Manage-
ment System (RDBMS). It supports many built-in data types and built-in procedures,
including math operations, string operations, and cryptography.

• MySQL2: It is flexible to operate in demanding environments, such as Web applica-
tions, and it can empower embedded applications, data warehouses, highly available
redundant systems, etc. [SZT12]. It is considered the most performance-oriented imple-
mentation.

• Oracle Database3: It is the most popular and commercial database management system,
because it is easy to use. It offers an elegant and fast architecture for handling and
maintaining data.

2.4.1. PostgreSQL vs. MySQL

Businesses around the world commonly use the two leading open source relational Database
Management System (DBMS), PostgreSQL and MySQL. In this document we mainly focus
on the first one, however this subsection will provide a brief comparison of both.

1http://www.postgresql.org/
2http://www.mysql.com/
3http://www.oracle.com/technetwork/database/database-technologies/sql/overview/index.html

14

2.4. SQL Dialects

The most important feature of MySQL is its storage-engine architecture, the design of which
separates query processing and other server tasks from data storage and retrieval. This sepa-
ration lets one choose how the data is stored and what performance is to be achieved [SZT12].
For this reason MySQL has been considered for years a performance-oriented implementa-
tion. On the contrary, PostgreSQL was developed with a focus on features and standards.
Thus, PostgreSQL was often considered as the most standard compliant and feature-oriented
RDBMS, but slower than MySQL. Apart from plenty of supported built-in data types such as
Boolean, Circles, Lines, IPv4, IPv6, and built-in procedures, it offers a better security model
as well. It provides more efficient support for external authentication, security groups, and
built-in SQL injection attack defenses. Its main drawbacks compared to MySQL is its lower
speed and a relatively more challenging set-up and use.

Aside from the differences in architectural characteristics, data types and implemented
procedures, there are also many deviations in the syntax of MySQL and PostgreSQL. In the
Appendix of [Xia13] an overview of a thorough comparison of data types and functions of
these two implementations of SQL is given. Here, we will point out their main syntactical
and structural differences [Eis03, com]:

1. PostgreSQL uses the ANSI standard ’--’ (double dash) to begin a comment line. Instead,
MySQL can also begin it with ’#’.

2. PostgreSQL accepts only single quotes for quoting its values, while MySQL also allows
double quotes.

3. In PostgreSQL double quotes are used for quoting system identifiers, such as table
names, field names etc. MySQL uses the non-standard ’‘’ (accent mark) instead.

4. PostgreSQL is case-sensitive for the former, but it is not for databases, fields, tables, and
column names. Disanalogously, MySQL is case-independent for string comparisons, if
the binary flag is not set, while for the latter it can be case-sensitive or not, depending
on the used operating system.

5. The C-language operators for boolean logic have the same semantics in MySQL, but are
not consistent with the database standards. PostgeSQL follows the standards and so,
for example the OR operator ’||’ is used fo string concatenation in PostgreSQL.

6. Several constructs like DESCRIBE, REPLACE, SHOW, USE, UNLOCK TABLE, are not imple-
mented in PostgreSQL.

7. DROP TABLE IF EXISTS <table>, is always available in MySQL, but can only be found
in the later versions of PostgreSQL (after 8.2).

8. SELECT ... INTO OUTFILE <filepath> in MySQL is formulated as COPY (SELECT
...) TO <filepath> in PostgreSQL.

9. MySQL accepts both formulations SELECT ... LIMIT <offset>, <limit> and SE-
LECT ... LIMIT <limit> OFFSET <offset>, while in PostgreSQL only the latter is
valid.

15

2. Fundamentals

10. PostgreSQL also allows procedural languages like Perl and Python, to create functions
in the database, instead of coding in the Web front end.

2.5. CDASMix and its Architectural Components

This section introduces Cloud Data Access Support in Multi-Tenant ServiceMix (CDASMix),
the system that this work aims at enhancing with additional functionalities. CDASMix is
an extension of the multi-tenant aware version of Apache ServiceMix 4.3.0 [Muh12, GS13],
an open source version of ESB. The presentation of CDASMix will be done gradually, while
going through the main technologies that support it.

2.5.1. Web Services in CDASMix

Web services are a form of distributed information systems. Their definition by W3C states
that "Web service is a software application identified by a URI, whose interfaces and bindings are
capable of being defined, described, and discovered as XML artifacts. A Web service supports direct
interactions with other software agents using XML-based messages exchanged via Internet based
protocols". Hence, the Web Services Description Language (WSDL) uses XML format and this
simplifies data storage and sharing, regardless of the heterogeneity of the involved systems
(or service units). WSDL files define services as collections of network endpoints, or ports.

2.5.2. JBI and OSGi

The version of Apache ServiceMix used in this project is compliant with both Java Business
Integration (JBI) and OSGi specifications. JBI is developed for implementing a SOA, based on
a Web services model. It provides a pluggable architecture for a container that hosts service
producer and consumer components. These components interact with each other by using
WSDL. The WSDL files are stored in Service Assembly (SA). The SA includes metadata for
"wiring" the service units together, by associating service providers and consumers, as well
as for "wiring" them to external services. The central message delivery mechanism, the
Normalized Message Router (NMR), delivers normalized messages via one of four Message
Exchange Patterns (MEP). This provides a simple mechanism for performing composite
application assembly using services. Each service can connect to the container via Binding
Component (BC). This provides protocol independent communication among services. BC
put the services that use a specific protocol, such as HTTP or SOAP, into the JBI NMR
after converting their messages from their specific protocol to XML. This process is called
normalizing and allows other JBI components to access these messages from the NMR. The
result is that any JBI component is able to communicate over any protocol supported by the
binding components deployed to the JBI runtime environment. Thus, JBI turns out to be an
efficient integration solution over different applications, in a vendor independent way.

16

2.5. CDASMix and its Architectural Components

OSGi is a new platform for application development. More specifically, it is a general purpose
Java framework that makes Java the leading environment for software integration. Java,
regarding the code, its libraries (if they are written in pure Java), the runtime environment,
and the JVM is platform independent. Hence, Java provides the needed portability to support
applications on many different platforms. The OSGi framework, on the other hand, provides
the standardized primary elements, which allow applications to be constructed dynamically
from small, reusable, and collaborative components, so called bundles. An OSGi bundle is a
Java module in a JAR file, which consists of a package of Java classes and a JAR manifest file,
named META-INF/MANIFEST.MF. The manifest file is used to define the extension and package
related data, e.g. dependency information. OSGi platforms facilitate easy and dynamic
deployment and undeployment of the bundles. Deploying a bundle and making it able to
join the already collaborating applications that are currently running in the OSGi container, is
done simply through dropping the bundle in the deploy directory.

2.5.3. ESB

ESB is a message oriented technology that attempts to "relax" tightly coupled communication
with the introduction of an intermediate component. In this way software components, which
can be considered as discrete (software) systems, can communicate indirectly with each other.
ESB is also used for effective system integration. Integration is considered as the "fascia of the
enterprise" [Jak], which allows multiple systems to coordinate together in order to perform one
single task. CDASMix is such an aggregation of different systems with the goal of allowing
transparent data access traditionally, on-premise, and off-premise.

Effectiveness of integration is highly related to data resiliency, especially in the face of failure.
Data resiliency is challenging in case of distributed systems (such as CDASMix), where data
can be found not only at "rest" but also in "motion". Resilient data in motion asks for novelty
in code and infrastructure. Attempts for extending the existing programming abstractions
are going on [Mir]. Their target is to support not only the individual, passive values, but also
the changing data sets, as they result from events involved in reactive behavior, in memory
collectors or from data scattered over the Internet. The plenty of ESB implementations, on the
other hand, focus on offering data resilience through infrastructure. In this project ESB serves
as a container that allows to run the Apache Camel, an implementation of the idea called
"Enterprise Integration Patterns". Especially, in this project, the ESB technology is given by
the Apache Karaf, a lightweight container in which Apache Camel runs.

2.5.4. Apache Karaf and Apache Camel

Apache Karaf, as an OSGi based runtime system, offers hot deployment of the services,
as bundles. The bundle simply needs to be dropped in the deploy directory and Apache
Karaf will automatically resolve the type of the file and start its deployment. It allows
also the deployment of non-OSGi applications. Hence, it becomes a flexible and easily
extendible container. Apache Karaf, comes with a complete UNIX-like console, through

17

2. Fundamentals

which a container instance can be fully managed. Moreover, multiple instances of the Apache
Camel container can be managed directly from a root instance.

Apache Camel is an open source routing engine that runs in Apache Karaf. It is a JBI
component deployed as an OSGi bundle. The total data for describing a particular message
flow is encapsulated into the concept of exchange. A Camel exchange is a holder object that
keeps the state of a conversation between systems. As shown in Figure 2.4, the exchange can
support various MEP. e.g. InOnly-, OutOnly- or InOut-exchange patterns. The two former
are "one-way event" messages, while the latter is a "request-reply" message exchange [The].
Other main field of an exchange are: the Unit of Work, a set of flags, the Properties, which
are available for entire duration of exchange, and two messages, In-message and Out-message.
In-message is a mandatory field which contains the input message and Out-message is
optional message which exists only if MEP is InOut. Each message contains the data payload
to be processed during the route and the corresponding headers, used to pass additional
information about the message between the processors of the route. Processors are another
architectural concept in Camel, serving as the base interface for the message-processing steps
of the route [RD09].

InMessage OutMessage Body: Object

Message Exchange Pattern

Unit of Work

Properties Headers

Exchange

Message

Figure 2.4.: Structure of Exchange [Jak]

Headers and also Properties are represented as a map (Strings to Objects). Based on the concept
of exchange, in Apache Camel, each step that the message payload will go through, is
architecturally independent from each other, as they do not invoke each other. A number of
(processing) steps defines the route. The very initial step, which creates the exchange, is the
consuming endpoint and is described as a simple Uniform Resource Identifier (URI). URI
can appear as Uniform Resource Locator (URL) or Uniform Resource Name (URN). URI is
a specification of a string of characters used to identify a Web resource by its name or its
location. In the first case it can be called as URN and in the second as URL. In Object-Oriented

18

2.5. CDASMix and its Architectural Components

Programming (OOP), URI can be defined as a class implementation, while URN and URL, as
subclasses of it. This is depicted as a class diagram of their three, in Figure 2.5.

Figure 2.5.: URI Class Diagram [CK13]

After the consuming endpoint, the exchange will be passed by the Camel engine through
the next steps of the route and in each step, the exchange is manipulated. This includes
In-message modification or preparation of a new payload, which is set on the Out-message.
In the latter, (when Out-message is set) the Camel context will move it to the In-message of
the exchange before passing it to the next processing step. The Camel context is defined as
the engine that handles the process of the exchange along the sequential steps within the
route. Camel Context offers a loose coupling between the steps by using URIs for referring to
endpoints which are created by components (endpoint factories) within routes [CK13].

2.5.5. Architecture Overview

This section discusses the architecture of CDASMix and provides a deep insight of its main
components. CDASMix is an implementation approach, which provides transparent Cloud
data access support for migrated data and allows for multi-tenancy, through tenant isolation,
and diversity among involved database technologies, through dynamic query transformation
functionality.

The system architecture of the most up-to-date version of CDASMix is shown in Figure 2.6. It
is developed as an OSGi container with JBI integration functionalities. The components with
dashed borders are developed in this thesis and are placed in the figure to show how our
work integrates into the existing system. The current state has CDASMix providing support
for the MySQL communication protocol to external applications. The requests are then
routed to Cloud or local backend data stores, which support MySQL, PostgreSQL, and Oracle
technologies. With this work CDASMix now also supports PostgreSQL communication to
the application with all the aforementioned routing capabilities of the requests sent by the
application. Following is a description of the step-by-step operation flow of our system, with
an external application attempting to access the on- and off-premise data stores through
CDASMix. We assume incoming MySQL messages.

One could state that the central component of this system is the Proxy, because it acts as
a go-between server, which receives requests, authenticates the client, builds the target
endpoint URLs, transforms the queries from source to target dialect, marshals messages into
normalized message format, and forwards them into NMR. Then, it receives the database
responses in normalized message format, finally demarshaling them and sending them back

19

2. Fundamentals

to the application. Additionally, the Proxy supports caching mechanisms, communication

External Application

DAL
(MySQL ConnectorJ)

Legend
T1 ... TN Tenant1 ... TenantN

(*) Query and data transformation might exist
------- Multi-tenant context & messaging
......... Multi-tenant messaging

Tenant-aware endpoint
OSGi component
JBI component
OSGi component developed in this thesis

PostgreSQL

Amazon RDS

LOCAL DB

PostgreSQL

Registry-Cache
MySQL
Proxy
(3311)

Standardised Interfaces for Binding Components

Normalized Message Router

MySQL
Transformer

PostgreSQL
Proxy
(3321)

PostgreSQL
Transformer

NMR API

Standardised Interfaces for Service Engines

JBItoCamelJdbc
(Smx-Camel)

CdasmixJDBC JNDI

OSGi

JBI Environment

Smx-
Camel-mt

...

queries &
credentials

 T1 T2 TN

Service
Registry Oracle MySQL PostgreSQL

Figure 2.6.: Architectural Overview of CDASMix for Providing Support of Relational
Database Access (adapted based on [GS13])

20

2.5. CDASMix and its Architectural Components

monitoring, and load balancing [mys]. In order to accomplish these tasks, it needs to interact
with four different components in the system: the NMR API, the Registry-Cache, the Service
Registry, and the SQL Transformer.

The operation flow is initialized by the application, which sends SQL queries to the proxy
according to the MySQL communication protocol via Transmission Control Protocol (TCP).
The MySQL protocol is implemented by the MySQL proxy, the MySQL backend databases
and the MySQL native driver Connector/J (Java implemented). Integrating a MySQL server
into the ESB, which will operate as an intermediate layer between the application and our
system, conflicts with the main concept of ESB to be itself such an intermediate technology
among applications and servers. Therefore, in [GS13] a Java version of MySQL proxy is
integrated, developed by Continuent Inc.: Tungsten Connector [Cona]. However, this is not
OSGi compliant and not integrated with the JBI environment. It had to be extended to an
OSGi bundle that implements an OSGi- and JBI-compliant version of a Java-based MySQL
proxy.

In case of multi-tenant aware communication with the backend, each tenant and user will be
identified by unique tenantID and userID. Hence, ahead of sending the queries, the application
sends the credentials for authentication. Before migration, the target destination is an endpoint
of the source database, described as an URL. The Java Database Connectivity (JDBC) driver
used in the data access layer of the application, gives the connection to the database and
implements the protocol for transferring data. CDASMix attempts to support seamless
migration, by modifying the applications as little as possible. However, after migration,
the data access layer of the application must be slightly modified and updated with new
credential information and a new target point of entry, the proxy’s port. This is the single
physical endpoint, through which the application accesses our system and through it connects
to any of the multiple physical backend data stores. In the CDASMix implementation, the
port numbers "3311" and "3321" respectively correspond to the endpoints for the MySQL and
PostgreSQL proxy. These port numbers do not have to be static and can be reconfigured
before the deployment of the proxy bundle.

The sent packet of credentials consists of the tenantID, userID, the hashed password and the
database name. The hashed password is a 32 digit hexadecimal number produced by the MD5
message-digest algorithm. The proxy will connect to the local database, the so called Service
Registry and inquire about the password, which corresponds to the received pair of tenantID
and userID. Then the proxy will apply the MD5 algorithm to the obtained password. The
resulted hash value has to be equal to the encrypted password received from the application.
Otherwise, the authentication will fail, the connection to the backend will never be established
and the connection of the application to the proxy will close. The Service Registry contains
the tenant-aware and data source information as a table describing the relationship between
source and target databases.

In case the tenant is authenticated successfully, the next step is to check if a query transforma-
tion is required. The decision is based on the tenant-aware information, stored in the Service
Registry. From it the type of the source data store (e.g. "mysql-database-table-5.6.22")

21

2. Fundamentals

is extracted and compared to the type of the target data store (e.g. "postgresql-database-
table-9.4.1"). If they differ, the received queries from the application are input into the SQL
Transformation component. The output is SQL queries of the target dialect. The SQL queries,
transformed if required, are forwarded to the NMR through a Normalized Message API (NMR
API). The latter implements a set of operations for accessing the NMR and creating message
exchanges. Messages are in a Normalized Message Format (NMF), and they are dynamically
routed by the NMR. The target endpoint is specified dynamically by the tenant context
information, the service type and the endpoint name.

NMR is able to route and exchange messages between endpoints configured on OSGi bundles
and endpoints configured on JBI components. It supports loose communication between
components hosted in the two containers, and therefore, it is a significant component for
system integration. In CDASMix, first, the NMR routes the NMF into the tentants’ JBI
endpoints, which are deployed on ServiceMix-camel-mt. Then, the requests, still encapsulated
as NMF, are routed by the NMR in JBIToCamelJdbc endpoint, deployed on ServiceMix-camel.
These two routes, because of their deployment on different components (ServiceMix-camel-mt
and ServiceMix-camel), are packed and deployed in different SUs and SAs.

JBIToCamelJdbc forwards the NM to the Camel CDASMix JDBC component (depicted in
Figure 2.6 as CDASMixjdbc block). The latter creates and exchanges requests with external
database systems via JDBC. It looks up the appropriate driver via Java Naming and Directory
Interface (JNDI), establishes the connection to the target backend, demarshals the NMF and
marshals the obtained requests into a stream of binaries (suitable for transport across the
network), and eventually sends it to the selected backend data source. CDASMix implements
the communication support for three database systems: MySQL, PostgreSQL, and Oracle,
which are included in the OSGi bundle of the CDASMixjdbc component.

CDASMixjdbc is also the component, which receives the response of the database, marshals
it back to NMF and forwards it to the NMR. The MySQL proxy bundle, demarshals the
retrieved NMF, transforms the received data into the source dialect, if required, marshals it
into a binary TCP stream, which is sent back to the application. The response of the backend
database can be of two types, depending on the type of the statement sent for execution: in
case of a data query (e.g. a SELECT statement), a table of values satisfying the query will be
sent to the CDASMixjdbc component; otherwise, if the executed query is a data modification
or definition statement (e.g. an UPDATE or CREATE statement), the database responds with the
number of affected rows by the statement execution. The structure of the response is the same,
regardless of the database system that sent it. However, the data types of the parameters
involved in the response can be different from the set of data types that the source database
accepts. Even when this happens, as we will see in Section 4.1, the contribution of the SQL
transformer is not required. JDBC can handle the necessary transformation tasks when the
source and target databases are migratable to each other.

Cache registry is used to increase the performance of our system. It contains the tenant
information that was currently used, or responses from the backend regarding the statements
that were recently sent.

22

2.6. PostgreSQL Protocol

2.6. PostgreSQL Protocol

The PostgreSQL communication protocol is divided into two phases, named A and B in Figure
2.7, respectively the start-up and the normal operation. Phase A consists of the following
sequential events. The client initiates the communication by sending the first PostgreSQL
packet to the backend. This packet includes information regarding the username of the
client, the name of the database it intends to access and also the values of the PostgreSQL
connection parameters: TimeZone, DateStyle, extra_float_digits and client_encoding.
If the server is satisfied, it replies with the MD5 password request. The client sends the
second PostgreSQL packet as a response and if it fulfills the requirement of the backend,
the connection is established and the communication enters Phase B. Otherwise, the server
sends an error message response and the communication is terminated. Phase B is driven
mainly by the server, which receives the queries and the configuration queries from the client
and starts the process of their execution. PostgreSQL supports two types of sub-protocols
for handling the query execution: Extended Query and Simple Query protocols [posb]. In

P
Binding

Parsing

Execution

Phase A

Phase B

Parsing

Execution

Client Server

Prepared
Statements

Portals

Prepared
Statements

B
E

Extended
Query

Simple
Query

Figure 2.7.: PostgreSQL Communication Protocol

extended query mode, the backend divides the queries execution into three steps (see Figure
2.7): parsing and binding are preceding steps of the final execution. In simple query mode,
the execution is performed immediately after the parsing of the queries. The parsing of

23

2. Fundamentals

the textual SQL statements return the so called prepared statements. It is up to the client to
choose if the prepared statements will be named or not, by sending along with the queries,
the name of the prepared statements, generated on the sever-side. If successfully created,
an unnamed prepared statement lasts only till the next parsing output, generating the new
prepared statement. On the other hand, a named prepared-statement object lasts as long as
the current session is alive, if not explicitly destroyed. Prepared statements actually are the
result of query compilation and they describe the query plan and semantic. The variables
of the query are placed with placeholders in the prepared statement. During the binding
process they will be bound to the statement and the portals are created. Portals can also exist
in named or unnamed form, depending on what the client defined in the packet, sent with
the queries. The stream of portals is finally executed by the execution process. In case of the
simple query protocol, the binding of the parameter values to the statement is involved in the
execution process and it does not exist as a separate process.

The PostgreSQL protocol is implemented by the PostgreSQL proxy, the Service Registry and
the native driver of the CDASMixjdbc component (See Figure 2.6), which implements the
communication to the backend PostgreSQL data source.

24

3. Related Work

In this chapter a framework of discussion, which highlights the state of the art related to
our work will be given. The seamless migration, with a minimum impact on the application
side and the transparent communication between the on-premise application and the data
sources, is a field of survey, which yields novel and diverse approaches. As indicated in
Chapter 1, the database can be migrated to multiple database systems (on- or off-premise), in
order to achieve the best fitted solution to the specified enterprise requirements. Hence, one
challenge of our system is to offer, apart from multi-tenant, also multi-database and multi-
protocol support. For this reason, this chapter starts with the discussion of the similarities
and differences of our system to the Multi-database System (MDBS). Moreover, as we already
clarified, we focus on integration of systems with different query language support. Thus,
the work done in SQL transformation is also discussed here.

3.1. Multi-database System

Sheth and Larson define MDBS as a distributed system of autonomous and potentially het-
erogeneous component database systems, which cooperate and are integrated in various
degrees [SL90]. Each component can be accessed by a software responsible for their ma-
nipulation. Users can store data to different DBS’ and retrieve data from them through a
single endpoint, which provides a logical connection to the pool of data stores. A popular
implementation architecture for an MDBS is the mediator/wrapper approach, as illustrated in
Figure 3.1.

After migration, the application may require integrated access to two or more heterogeneous
data sources and our system, as a middleware solution, must be able to provide this in a trans-
parent way. Hence, our system could be considered an MDBS with some modifications.

We consider ESB as a single entrance point to multiple, autonomous, backend databases
regardless of their physical location and the DBMS each of them supports. However, this
approach is not absolutely equivalent to the mediator/wrapper approach. One could claim
that ESB is used purely as a mediation between application and database systems, but instead
of a wrapper we use a local database (Service Registry), which stores the information provided
by the tenant during the migration.

Regarding the physical distribution of the DBS’ our system is identical to the MDBS. CDAS-
Mix supports the distribution of data among many target databases in different locations, on-
or off-premise, while still accessible through a single logical endpoint by the tenant. But our
system does not support the joining of data stored in different data sources. Subsequently,

25

3. Related Work

USER

User
requests

System
responses

Multi-DBMS
Layer

...
DBMS DBMS

Figure 3.1.: Components of an MDBS [OV11]

it is not possible to refer to tables, etc., of databases with different locations in one concrete
SQL statement. Our system can support multiple queries that refer to multiple backend
databases, but one single query cannot refer to more than one. Thus, CDASMix is a remote
DBMS interface, able to provide access to multiple DBS’, although not simultaneously. One
query execution takes place in only one DBMS, and so, only one specific database type can be
accessed each time [SL90].

An MDBS is also characterized as an aggregation of autonomic components [SL90]. Autonomy
denotes that each Database System (DBS) that composes the MDBS, controls its operations
independently. Such a system is also identified as a Federated Database System (FDBS). In
our approach, CDASMix provides a centralized control to every DBS component and is the
only one that can "directly" access them. So, autonomy is not an attribute of our system.

Heterogeneity, on the other hand, is a common attribute of MDBS and our system. It refers
to the technological differences across the components, specifically to the differences of the
involved RDBMS. Codd’s rules isolate the application from the details of physical storage of
data and their access. Also, SQL language appeared to be the universal tool for managing
relational databases. Those two facts significantly ease the unification and transparent access
of individual databases, even if the multitude of database vendors offer database systems of
different characteristics. The variations in SQL dialects still remain to be handled. Also, the
different data types, resulting from several implementations of database systems, contribute
to the heterogeneity and must be addressed. This work aims at resolving SQL language
heterogeneity between source and target data sources. However, we only cover a one-to-one
resolution; one source-one target database. As was clarified previously, our system may
support different DBS’, but as a remote DBMS interface, it provides access only to one specific
type of DBS at a time.

26

3.2. SQL Transformation

3.2. SQL Transformation

Handling the issue of different source and target data sources requires the enhancement of
the intermediate layer with a new component, the SQL transformer. When data migration is
involved, the SQL statements addressed to the source database need to be transformed to the
dialect that the target database understands. After transformation the semantic of the queries
and subsequently its operation on the backend, must remain unchanged. SQL statements can
be grouped in two categories, static and dynamic SQL statements. The former do not change
at runtime and this enables their hard-coding into the application. Dynamic SQL statements
however, are formed at runtime and therefore, hard-coding them into the application cannot
be applied [Goo09].

The existing transformation methodologies can analogously be classified as static and dy-
namic. Static transformation tools work sufficiently with static SQL statements, but they
cannot be used when dynamic queries are to be transformed. Apart from their limitation in
handling dynamic queries, another drawback of them is the way they operate: they transform
all the static statements embedded into the application, to static SQL statements of the target
dialect, resulting in a permanent and one-time adaption of the application to the new database
technology. Hence, they are not a tool to achieve seamless migration. On the other hand,
dynamic transformers can handle all the range of possible SQL queries, after they are sent
from the application, while still on their way to the backend data source. There are plenty of
tools available as dynamic SQL transformers, both commercial and open source. General SQL
Parser1, and SwisSQL API2 are the most widely known. These, as any other transformation
tool, come along with a lexical analyzer and parser to decipher the source SQL statements.

The lexical analyzer breaks the statement intended for transformation into a sequence of
tokens, each a string with a defined meaning. The stream of tokens is passed to the parser,
which analyzes it and determines the structure of the information contained in the SQL
statement. Usually, the output of the parser is an expression tree. The nodes of the tree are
expressions, which are equivalent to the operators in Relational Algebra. Actually, the notion of
expression trees was firstly introduced to this field to draw a logical query plan of the SQL
statements. The inner nodes of the tree are operators, applied to their child or children, while
the leaves are the operands, representing either variable or constant relations [Mol12]. Lexical
analyzers and parsers are basically incorporated with compilers and interpreters, but SQL
queries transformation is also an application of them [Rei11].

Writing a parser tends to be a long and complex task. Therefore, parser generators have more
often been the subject of study. A parser generator outputs parsers and lexical analyzers
based on the grammar file, which rules the transformation. There are several such tools
available. ANother Tool for Language Recognition (ANTLR)3 is one, generating parsers that
parse the input from left to right, without backtracking. Because they parse the input from

1General SQL Parser: http://www.sqlparser.com/
2SwisSQL API: http://www.swissql.com/products/sqlone-apijava/sqlone-apijava.html
3ANother Tool for Language Recognition (ANTLR): http://www.antlr.org

27

3. Related Work

Left and construct a Leftmost derivation of the sentence, they are called LL parsers. Another
example of an LL parser generator is JavaCC4.

Our implementation of the query transformer component is based on an open source project,
JSqlParser5. It parses an SQL statement and translates it into a hierarchy of Java classes and
it is generated with JavaCC. It consists of two parts; the JavaCC grammar for SQL dialect
and a set of Java classes representing the lexical components of an SQL statement. Figure 3.2
depicts a high level description of the processes involved in the query transformation and the
cooperation of different components for achieving it.

JavaCC
Java Classes

Grammar file

JVM {Parser}

SQL Statement
of source dialect

{Parse tree} transform()

SQL Statement
of target dialect

Processing component
Information flow

{ } Output

(dynamic binding)

Process span

Parser generation Parsing Transformation

Figure 3.2.: Block Diagram of JavaCC and Transformer Cooperation

At first the parser must be generated. This is a task of the JavaCC program, which uses the
grammar file (JSqlParserCC.jj) and the set of Java classes as input. The Java classes are
the building blocks into which the parsed statement is decomposed while the grammar file
contains the rules for this decomposition. Both these rules and building blocks define the
parser. Modifications and extensions of the rules will be injected into the generated parser
and this is the way to create the parser that serves our goal. For example, the grammar
file used in the JSqlParser project is of general purpose and it is not compliant with the
specific objective of our project. Hence, this file must be extended according to the rules of the
PostgreSQL syntax. The changes in the grammar file are injected into the generated parser,
which is long and complex Java source code. The source code of the parser is compiled by
the Java compiler. This step is omitted in Figure 3.2 in order to keep it short and simple. The

4Java Compiler Compiler: https://javacc.java.net/
5JSQL Parser Project: http://jsqlparser.sourceforge.net/

28

3.2. SQL Transformation

Parser encapsulates both the source code of the parser and its bytecode, as it is created by
the Java compiler. During runtime JVM binds the SQL statement to the parser’s object code
and generates the hierarchy of Java classes, the so called parse tree, which is the expression
tree discussed previously in this section. All the components of the tree (nodes, branches
and leaves), come from the set of Java classes put into JavaCC. These classes are divided
into two main groups, statement and expression. The former group contains the classes that
only implement the nodes of the parse tree, while the latter group contains components for
representing nodes, branches as well as leaves.

This structure allows the dynamic binding of SQL statements. Moreover, the code that
represents any dynamic query as parse tree can be compiled and run normally. Therefore,
this approach is able to parse and then transform dynamic queries. As far as the structure
of the parse tree and the components it consists of, give meaningful content during the
transformation process, they can be substituted with the SQL notation of the target dialect.
The resulting SQL statements have the same impact on the backend as the source SQL
statement would have had.

29

3. Related Work

30

4. Analysis and Specification

In this chapter we provide the analysis of the system and of its environment. The newly
integrated components, PostgreSQL Proxy and PostgreSQL Transformation, will be analyzed
regarding the functional and non-functional requirements the system must fulfill.

4.1. System Overview

Section 2.5 gave an insight of the internal components of CDASMix and the way they coor-
dinate to achieve one goal: to provide transparent and multi-tenant access to the backend
databases. In this section we aim at giving a higher level view of CDASMix and treat it as a
single entity, interacting with the other surrounding technologies. The peripheral applications
and systems, set-up the environment for the configuration and operation of CDASMix. Inner
details of CDASMix will be hidden, however, the internal building components of it that
handle the communication with external systems, are taken into consideration during the
following discussion.

4.1.1. Configuration of CDASMix

In Section 2.5, it is taken for granted that the local PostgreSQL database system contains tenant-
aware information. Actually, the tenant aware configuration data in the local PostgreSQL
data store, is distributed among three registries: Service Registry [Muh12], Configuration
Registry [SALM12], and Tenant Registry [SALM12]. In this section we describe the way the
first information structures of the local registries are populated.

In [SAGS+12] a Web application for multi-tenant aware management and administration
of both BCs and Service Engine (SE)s was developed. It is called JBI Multi-tenancy Multi-
container Support (JBIMulti2)1 and it allows tenant users to have a limited configuration
access to the connectivity and integration services of CDASMix, by granting them to deploy
configuration artifacts into it. JBIMulti2 is the tool through which the required tenant and
backend information are written to the local PostgreSQL registries. It can modify all of
them and the modifying operations have to be handled within distributed transactions. For
this reason, JBIMulti2 is deployed in JOnAS, a JavaEE 5 application server that can manage
distributed transactions, while being responsible for security, thread-pooling, and resource
management. But, how can JBIMulti2 interact with CDASMix and when is it able to add
tenant-aware information to the registries?

1The name describes the ability of the application to provide multi-tenant aware administration and management
of both BCs and SEs [SAGS+12].

31

4. Analysis and Specification

External Application

(JMeter)

DAL

Legend

Configuration
Messages
CDASMix normal
operation messages
OSGi Bundle

PostgreSQL

Amazon RDS

LOCAL DB

Service
Registry

MySQL
tpch

PostgreSQL
tpch

PostgreSQL
tpch

Oracle
tpch

 CDASMix

OSGi

JBI Environment

...

queries &
credentials

JMS
Topic

JBIMulti2 SoapUI
JOnAS

Service
Registry

Service
Registry

...

MySQL
Proxy
(3311)

PostgreSQL
Proxy
(3321)

CdasmixJDBC

Figure 4.1.: Interactions of CDASMix and the Peripheral Technologies, During Configura-
tion and Normal Operation

32

4.1. System Overview

CDASMix inherits the extended version of ServiceMix, which supports multi-tenancy and
further extends it with the deployment of an OSGi bundle, the JMSManagementService
component. This is required for enabling CDASMix to communicate with the Web application,
namely JBIMulti2. However, multi-tenancy of CDASMix must ensure isolation of data
between tenants and therefore, they should not be able to access services of each other.
Moreover, tenant users should not notice their simultaneous use of CDASMix with other
users of the same or another tenant. Thus, a coordination of users of each tenant is required.
Administrators of a tenant define the roles and permissions in order to authorize the tenant
users’ access to data and services. Each request is bound with the tenant context that describes
the role and permissions. "A configurable service instance uses the received tenant context to
adjust its behavior, while a service exclusively provided to one tenant uses the tenant context for
authentication" [SAGS+12]. The requests are sent to JBIMulti2 via its Web service API, which
is called by SoapUI 4.0.12, an open-source, SOAP-based testing tool. Specifically, while
PostgreSQL, JOnAS, and CDASMix are running, the system administrator registers the
CDASMix instance to the JBIMulti2. Then: (1) SOAP request messages are sent via SoapUI to
JBIMulti2, for installing an extended multi-tenant aware version of Apache Camel SE and the
corresponding endpoint configuration per tenant into CDASMix; (2) JBIMulti2 forwards the
requests to a Java Message Service (JMS) topic; (3) JMSManagementService listens to the JMS
topic for incoming management messages sent by the JBIMulti2, (4) analyzes the content of
them and if JBI components or SAs are sent, (5) it respectively installs or deploys them; (6)
SOAP response messages contain the UUIDs generated by JBIMulti2 for the tenant. From this
point forward, the system administrator can start to add tenant information to the registries,
by using the JBIMulti2.

All tenants and their users are added to the Tenant Registry. They are identified by the
Universally Unique Identifier (UUID) and their properties are represented as key-value
pairs, where the key is the UUID. The Service Registry stores service assemblies and service
descriptions in a tenant-isolated way. The former are stored as binary ZIP files and the latter
represented as XML files. Lastly, the Configuration Registry contains all the other data, tenant
related or not. Specifically, it stores the configuration information generated by a tenant
and its users. The service registrations and configurations stored in the Service Registry are
excluded from here [SALM12].

4.1.2. Operation of CDASMix

After successful configuration, the registries contain the tenant-aware information and the
normal operation of CDASMix can start. In Figure 4.1, the message flows corresponding to
the normal operation are depicted as arrows in black, while those related to the configuration
are depicted as dashed arrows in blue. The external application initiates the communication
by sending a start-up request to the proxy port. Then proxy takes action and its operations are
described in detail in Section 2.5. We used Apache JMeter3 as an external application. There

2SmartBear Software, soapUI: http://www.soapui.org
3Apache JMeter Project: http://jmeter.apache.org

33

4. Analysis and Specification

are three backend databases hosted in Amazon RDS 4 and one PostgreSQL database hosted
locally. They all are populated using the TPC-H5 tool. After a successful authentication to
the proxy, JMeter is configured to forward SQL queries that are generated by the TPC-H
benchmark via the TCP protocol [Tra13]. However, in our work TPC-H is not used for
benchmarking, but to generate real world and realistic data, and the corresponding queries.

4.1.3. CDASMix JDBC Component

CDASMix is connected to the target databases via CDASMix JDBC Component (named also
CDASMixjdbc), as it is shown in Figures 2.6 and 4.1. This component loads the appropriate
JDBC driver for the connection to the target database dynamically, after first checking whether
the connection is already registered to the JNDI or not. The interaction with the backend
data stores is achieved through the JDBC API. JDBC driver provides a unified API to deal
with the response from the database. Up until now, CDASMix JDBC bundle can support
three database systems: MySQL, PostgreSQL, and Oracle, as we explained in Section 2.5. The
capability of CDASMixjdbc to connect dynamically to any database of the aforementioned
technologies and to receive the response from them, makes it a unified solution for interacting
with different databases [jdb].

As discussed in Section 2.5, the CDASMix JDBC bundle transforms the NMF messages
into a binary stream that is sent over the network to the target backend. Then, it receives
the response from the backend, namely the result of query execution, which has the same
structure, independent from the type of the target data source (see Section 2.5). However,
the data types included in the results may vary depending on the dialects of the backends
and may also be out of the set of data types that the source database supports. The unified
API of the JDBC driver deals with the response from the database. The java.sql.ResultSet
interface is responsible for retrieving the returning results with their metadata. Because of the
unified support, the differences among data types are not considered by the CDASMix JDBC
component. Thus, the result set is dynamically accessed via ResultSet.getObject. Objects
of the result set are mapped to JDBC types, which are subclasses of the class java.sql.Types.
Each JDBC type corresponds to a Java class, a subclass of the Object class. The set of Java
classes is marshalled into NM and sent to the proxy bundle via NMR. The prox demarshals it
and sends it back to the client via TCP connection with the database native communication
protocol. JDBC already performed the data conversion of the result set into a Java class, and
the proxy bundle does the conversion from the Java class to the native format of the source
data store. If the data in the source database is migratable to the target database, their JDBC
types can be mapped to the same Java classes. In this case, no SQL response transformation is
performed in CDASMix.

4Amazon RDS: https://aws.amazon.com/rds/
5TPC-H benchmark: http://www.tpc.org/tpch/

34

4.2. PostgreSQL Proxy Analysis

4.2. PostgreSQL Proxy Analysis

In this thesis we will not integrate a PostgreSQL server into ESB, in order to implement the
PostgreSQL proxy functionality, because as was explained in Chapter 2, this idea conflicts
with the main concept of ESB to be itself a middleware technology. As was done for the
MySQL proxy, we also make use of the open source, Java-based Myosotis project developed
by Continuent Inc. for the PostgreSQL proxy. Specifically, we use the ’native-client’ to
JDBC proxy for PostgreSQL. This needs to be extended to an OSGi- and JBI-compliant
component and to be integrated with the JBI environment. In the following, two approaches
for integrating a PostgreSQL proxy into the CDASMix are described.

4.2.1. Approach 1

The PostgreSQL proxy communicates over the network with the external application by
using the PostgreSQL client/server protocol and provides unified communication through
CDASMix to one or more servers that implement one of the three supported technologies:
MySQL, PostgreSQL and Oracle. When the target server is not PostgreSQL, the transformation
of the queries is required. The PostgreSQL protocol was described in Section 2.6 (see Figure
2.7). Figure 4.2 depicts one way to implement this into the proxy of CDASMix.

Phase A

Phase B

Client PostgreSQL Proxy Server

T

 Termination

P
B

E

Figure 4.2.: First Approach for PostgreSQL Proxy

35

4. Analysis and Specification

In this approach the PostgreSQL proxy fulfills the entire Phase A of the communication. After
the successful authentication of the client to CDASMix, via the tenant UUID and password,
the communication enters Phase B. Transformation of the queries from the source to the target
dialect will be performed unless the backend is a PostgreSQL data source. The next task of
the proxy is to pass queries for execution to the server, which in case of a PostgreSQL server,
executes them following the Simple Query or the Extended Query Protocol. In this approach
the Extended Query protocol is assumed. Parts of it are proposed to be implemented locally,
on the proxy side. Specifically, the proxy connects to a local PostgreSQL database (the one
that stores the registries) and performs the queries’ parsing and binding steps there. The
generated portals are sent to the backend for execution. In the end, the received results are
forwarded to the client after marshaling them into a binary TCP stream.

This approach may increase the performance of communication, especially when the queries
have the same structure and differ from each other only regarding the values bound to their
variables. However, this idea incorporates a server into CDASMix and conflicts with the idea
of ESB to be an intermediate technology among client and servers.

4.2.2. Approach 2

Figure 4.3 depicts the concept of the second approach for the PostgreSQL proxy.

Phase A

Phase B

Client PostgreSQL Proxy Server

E
B
P

T

 Termination

Figure 4.3.: Second Approach for PostgreSQL Proxy

36

4.3. SQL Statement Transformation

As can be observed, the only operation that the proxy performs with the received queries, is
the transformation to the target dialect when it is needed. The transformed queries are sent
via CDASMix to the backend, which is responsible for compiling and executing them as well
as sending back the generated results.

4.3. SQL Statement Transformation

This section displays and analyzes the functional requirements (FR) of the system. There are
two main functionalities that our components, PostgreSQL Proxy and PostgreSQL Trans-
former, in collaboration with the overall system, must offer: SQL Statement Parsing (FR1)
and SQL Statement Transforming (FR2). Xia implemented in [Xia13] a system, which provides
unified and transparent access of the applications to Cloud and local databases, but only for
cases of MySQL source data stores. The integration of our components enables the system to
also operate for PostgreSQL source databases.

4.3.1. SQL Statement Parsing (FR1)

SQL statements consist of blocks (e.g. SELECT, FROM, WHERE, LIMIT) following a syntactical
structure, easily understandable to the programmer. Its initial version, developed at IBM
by Donald D. Chamberlin and Raymond F. Boyce in the early 1970s, was called SEQUEL
(Structured English QUEry Language) [CB74]. It was an attempt to provide a programming
language similar to English, but with a formal syntax, hence "structured". The strict structure
that SQL queries follow makes their parsing a feasible task, even though the rules defining
the structure vary. As we already discussed, there is a wide range of SQL dialects available
on the market. From the variations of dialects, which are a result of the different formal
syntaxes, arises the need for parsing the SQL statements. Parsing is a prerequisite for their
transformation from one dialect to another. Output of the parsing process is a the parse tree,
an abstract representation of the intention the query carries out. This means that statements
from different dialects produce the same parse tree if they are semantically similar, namely, if
they aim at performing the same operation to the backend. Thus, the parse tree is a unifying
representation of the SQL statement among dialects. It removes the impact of any dialect
from the statement and analogously can add the rules of any dialect back to it. One single
parse tree can be the parsing result of statements from different dialects, if they all encapsulate
the same intention. Additionally, this parse tree can be used to construct statements of any
dialect, which are semantically equivalent to each other and to the original statement as well.
On the other hand, the parser itself, different from its output, is strongly related to the specific
dialect of the original statement. A different dialect means different syntactic rules, which
implement the grammar file differently and so, the generated parser differs as well. In Figure
4.4 the parse tree of a real PostgreSQL statement used for the validation of our system is
shown. Actually, it is a simplification of the a query generated from the TPC-H benchmark.

37

4. Analysis and Specification

select l_orderkey, l_linestatus from customer, orders, lineitem where c_mktsegment =
'HOUSEHOLD' and o_orderdate < date '1995-03-28' – INTERVAL '1 YEAR' limit 33 offset 0;

PostgreSQL Parsing

select

selectItems

l_orderkey Column

fromItems joins where limit

Column l_linestatus

Table

Table

 customer Table orders

 lineitem

==

&&

<

-

c_mktsegment
'HOUSEHOLD'

date '1995-03-28'

0

INTERVAL'1 YEAR'

33

Expr. L
Expr.R

Int offset
Int rows#

Expr. L

Expr.R

Expr. L

Expr.R

Expr.R

Expr.L

o_orderdate

select l_orderkey, l_linestatus
from customer, orders, lineitem
where c_mktsegment = 'HOUSEHOLD'
and o_orderdate < DATE_SUB(date ('1995-03-28') , interval 1 YEAR)
limit 0, 33;

select l_orderkey, l_linestatus
from customer, orders, lineitem
where c_mktsegment = 'HOUSEHOLD'
and o_orderdate < date '1995-03-28' - interval '1 YEAR'
offset 0 row fetch next 33 rows only;

PostgreSQL
Transformation

To Oracle

To MySQL

Legend
Expr.L Left Expression
Expr.R Right Expression

rows# Number of rows

Figure 4.4.: Parsing of a PostgreSQL SELECT Statement into a Parse Tree and Transforming
it into MySQL and Oracle SQL.

38

4.4. Use Cases

4.3.2. SQL Statement Transforming (FR2)

As we explained the parse tree can be transformed into an SQL statement of any dialect.
In Figure 4.4 the transformation to MySQL and Oracle SQL is shown. The three depicted
statements, the original and the two statements obtained after the transformation, slightly
differ from each other.

For example, the node Limit in the figure expresses that the indexes of the returned rows
after the execution of the statement must be within a given range [offset, offset + num-
berOfReturnedRows]. This clause is represented differently, though with the same semantic,
in the three dialects covered by this thesis. For example, in PostgreSQL 9.4.1, it’s written
as "LIMIT 33 OFFSET 0", in Oracle 12c, it’s "OFFSET 0 ROW FETCH NEXT 33 ROWS ONLY"
and in MySQL 5.6.22 it is written as "LIMIT 0, 33". Any of these textual representations for
limit needs to bind two parameters acquired from the tree: offset and row_count. Another
example of inclinations between the aforementioned dialects is the DATE_SUB function. It
subtracts a time value (an interval) from a date value and is implemented only in MySQL. As
seen in Figure 4.4, the expression "DATE_SUB(date(’1995-03-28’), interval 1 YEAR)" is
substituted with "(date ’1995-03-28’- interval ’1 YEAR’)" in the other two dialects.
Take note that the date value in MySQL has a different representation, as it puts it in brackets:
"date (’1995-03-28’)"; contrary to Oracle and PostgreSQL: "date ’1995-03-28’". In
Appendices A and B of [Xia13] a thorough comparison of datatypes and statements from
these three dialects is provided. In general, language-specific and user-defined functions and
data types make the query transformation process a challenging task, which must evolve con-
tinuously. Otherwise, it soon becomes an incomplete, out-of-date and insufficient process.

4.4. Use Cases

In [Xia13] four use cases for the SQL transformation in CDASMix are provided. The first
two represent the event steps of SQL transformation, whose actor is the system itself (more
specifically: the proxy component). Moreover, Xia details two more use cases for extending
the existing SQL transformation functionality, to provide support for additional source and
target SQL dialects [Xia13]. Our work is enabled by these four use cases, while it extends the
first two, as shown in Figure 4.5 and in the subsequent tables.

39

4. Analysis and Specification

Add Transformation to

New Target Dialect to an
Existing Transformer

Actor

Developed in this thesis

Add New SQL Parser
and Transformer for
New Source Dialect

Transform

PostgreSQL
Statements

Transform

MySQL
Statements

Parse

PostgreSQL
Statements

Parse

MySQL
Statements

Parse SQL
Statements

Transform

SQL
Statements

extends

extends

extends

extends

Figure 4.5.: Use Case Diagram for the SQL Proxy

40

4.4. Use Cases

Name Parse PostgreSQL Statement

Goal To parse a PostgreSQL statement in plain text form into a parse tree

Actor PostgreSQL Proxy Component

Pre-Condition A PostgreSQL statement in text form is presented, as well as a corresponding
PostgreSQL parser.

Post-Condition The PostgreSQL statement is parsed into a parse tree

Post-Condition
in Special Case

The PostgreSQL statement is not successfully parsed into a parse tree

Normal Case 1. The PostgreSQL proxy component looks up the transformer service associated
with the PostgreSQL dialect of the statement.
2. The PostgreSQL proxy component uses the service’s parser to parse the statement
into a parse tree.

Special Cases 1. There is no transformer service associated with the PostgreSQL dialect of the
source statement.

a) The system informs the application with an error message.

2a. There is a syntax error in the statement.

a) The system informs the application with an error message.

2b. The statement’s syntax is not supported by the parser.

a) The system informs the application with an error message.

Table 4.1.: Description of Use Case Parse PostgreSQL Statement

41

4. Analysis and Specification

Name Transform PostgreSQL Statement

Goal To transform a statement’s parse tree into a statement with the specified target
dialect

Actor Proxy Component

Pre-Condition The SQL statement in PostgreSQL source dialect is successfully parsed into a parse
tree; the target dialect must be either MySQL or Oracle; and the transformation for
the target dialect is supported in the transformer service.

Post-Condition An SQL statement in the specified target dialect is returned.

Post-Condition
in Special Case

The SQL statement is not transformed into the specified target dialect.

Normal Case The PostgreSQL proxy component uses the previously acquired parse tree to
transform the statement to the target dialect.

Special Cases 1a. The syntax of the original statement in source dialect cannot be transformed
into the target dialect.

a) The system informs the application with an error message.

1b. The transformation is not implemented for the target dialect.

a) The system informs the application with an error message.

Table 4.2.: Description of Use Case Transform PostgreSQL Statement

42

4.5. Non-Functional Requirements

4.5. Non-Functional Requirements

This section provides an overview of the non-functional requirements that we take into
consideration during the design and implementation of our system. The list of the non-
functional requirements was specified in a predecessor of our work, in [Xia13], where a more
detailed description of them can be found [Xia13]. These requirements rule the development,
deployment, and adoption of the new components.

4.5.1. Extensibility (NFR1)

There are plenty of SQL dialects available, which are also constantly evolving. Hence, making
our components easily extensible in order to support new dialects and new features of the
already supported dialects is important. It must be able to add new components with minimal
alteration of existing components.

4.5.2. Integratability (NFR2)

The SQL transformation must be developed as an enhancement of the functionalities of
CDASMix. It should be integrated into the system (CDASMix), without affecting its basic
functions and requirements. Moreover, the deactivation of the new component or its failures
must be isolated from the rest of the system.

4.5.3. Performance (NFR3)

Adding the SQL transformer as an intermediate operation between the proxy and the backend,
increases the transmission time and the requirements in other resources, such as memory
and processing power. Implementing an effective parsing mechanism can compensate the
impact of the SQL transformation in the system performance. Additionally, the position of
the transformation functionality also affects the overall performance of the system. It must be
chosen in such a way that it reduces internal communication methods.

4.5.4. Scalability (NFR4)

For each supported source dialect, the proxy and the SQL transformer are implemented as
two separate OSGi bundles. Each time will be deployed the bundles related to the service we
want to consume and not all of them. In this way we do not exceed the limits of the OSGi
container and the unnecessary system resource consumption is avoided.

43

4. Analysis and Specification

4.5.5. Maintainability and Documentation (NFR5)

Documentation is an important part of this work. There is a constant needs for extensions
on the existing bundles, due to the enhancements of the existing dialects with new features
and also a need to develop new bundles, in order to integrate the support for new dialects.
This makes the delivery of a source code of high readability and a detailed description of
the developing steps a big necessity, in order to ensure the continuation of this work and to
enable its frequent update.

44

5. Design

This chapter examines the software architecture and the discipline of the system after the
integration of the PostgreSQL proxy and PostgreSQL transformer. The new components,
which follow the OSGi specification, fulfill the functional and non-functional requirements,
as they are defined in Chapter 4.

5.1. System Architecture

Figure 2.6 shows a representation of CDASMix after the integration of the components
developed in this work. They are drawn with dashed borders and their place in the system is
chosen in a way that it reduces the different internal communication methods. The goal is to
add the new functionalities while decreasing their negative impact on the system performance
to a maximum. Figure 5.1 depicts the new added components, only showing the parts that
directly communicate with them. This results from Figure 2.6, after extracting the parts of our
main interest.

OSGi

MySQL Proxy PostgreSQL Proxy

Normalized Message Router

MySQL Transformer
PostgreSQL
Transformer

External Application A External Application B
OSGi service invocation

TCP stream

Normalized Message

Legend

Figure 5.1.: Second Approach - Direct Transformation From Proxy Bundle With Trans-
former Services

45

5. Design

For each type of source data store, the corresponding proxy bundle is deployed to handle
their specific communication. As already discussed, the MySQL Proxy that implements the
MySQL communication protocol of CDASMix with the external MySQL application was
developed in [Xia13]. This thesis develops and deploys the PostgreSQL proxy, which aims
at serving PostgreSQL applications through CDASMix. Each proxy receives statements of a
particular dialect, specifically the one of the database system it supports. CDASMix needs
to be enhanced with new, protocol-specific proxy bundles, in order to support application
databases, different from MySQL and PostgreSQL. The main tasks of the proxies are similar,
regardless of the protocol they implement, and they are discussed thoroughly in Section 2.5.
In this work, the PostgreSQL proxy is extended with SQL transformation functionality. The
PostgreSQL transformer shares its transformation service specifically with the PostgreSQL
proxy component. In general, the transformation service of one type is shared only with the
proxy bundle of the same type. The proxy is responsible for determining if transformation
is needed, by comparing the type of source and target data stores that it reads from the
Service Registry. If they differ, it calls the transformation service and provides it with the
queries and the target dialect. CDASMix supports three types of target data sources: mysql-
database-table-5.6.22, postgresql-database-table-9.4.1 and oraclesql-database-
table-11.2.0.4.v3.

By calling the transformation service, the proxy acquires the transformed queries, which are
then marshaled into Normalized Message (NM) and forwarded to the NMR. The fact that the
proxy will transform the SQL statements it received before marshaling them into NM reduces
the overall internal communications necessary and thus benefits the system performance, as
is required in NFR3. The transformation service is implemented as an OSGi bundle. This
satisfies the requirements in NFR1, NFR2 and NFR4, as it makes the deployment an easy and
seamless operation, isolated from the rest of the system.

The communication of the proxy and its corresponding transformer is an inter-bundle com-
munication and can be implemented in multiple ways. In this work it is chosen to import the
transformer package into the proxy bundle, as will be discussed further in Chapter 6 (See Fig-
ure 6.1). However, in CDASMix also one JBI component is deployed, the ServiceMix-camel-mt
(see Figure 2.6). The use of NMR in CDASMix facilitates a message-based communication,
where bundles, but also JBI components, can exchange messages both synchronously and
asynchronously. Our system uses Apache ServiceMix 4.3, which provides a complete, enter-
prise ready ESB, exclusively powered by OSGi. It spans both the OSGi and the JBI container
through the Apache ServiceMix NMR that includes a rich Event, Messaging, and Audit
API1.

5.2. SQL Transformation Service

In Section 4.1 we referred to the Service Registry, while describing the endpoint configurations,
deployed by the tenants and stored via service assembly entities to the Service Registry in a
tenant-isolated manner. In this section we aim at describing the SQL transformation service

1Apache ServiceMix: http://servicemix.apache.org/

46

5.2. SQL Transformation Service

and we show the contribution of the Service Registry on registering and consuming the OSGi
services. The Service Registry, which was first developed in [Muh12] and further extended
in [GS13, Sch14], contains in a WSDL file information related to the bundle services and the
policies that can be dynamically obtained by the tenants.

Both the proxy and the SQL transformer are designed as OSGi bundles, in order to benefit
from the OSGi container that Apache ServiceMix 4.3.0 provides. Implementing the OSGi
technology into the CDASMix, fulfills our requirements, FR1 and FR2. Building CDASMix
as a software environment of collaborative OSGi components makes its development a less
complex task, by separating it into different and reusable modules that can be developed in-
dependently, built more easily and deployed in a more manageable manner. Thus, CDASMix
functionalities can easily be extended by integrating into it new or modified OSGi modules,
so called bundles.

The OSGi service layer, as defined in the layered representation of the OSGi specifica-
tion [OSG11], connects the bundles in a dynamic manner by following a publish, find, and
bind model for the plain old Java objects, which encapsulate the OSGi services. Each service,
which is implemented by its corresponding bundle, is registered in the Service Registry under
the name of one or more Java interfaces. The typical way, defined in [OSG12], is that bundles
themselves have the responsibility to register their services after creating them. The Java
interfaces that a service object implements, group the methods and constants related to the
service. A service object is created by its respective bundle and implements the methods it
inherits from the interfaces. The service may additionally define the implementation of other
properties when registered.

Almost all the functionality of CDASMix is implemented as OSGi services (an exception is
the JBI component). Which bundles do we start? If we start them all, the system will work
but it will use more memory than required for a particular job. Also, the start-up times will
be slow. Hence, starting all bundles at once contradicts with NFR4 and NFR1. The approach
followed in CDASMix selects and starts only the bundles which need to be started.

However, bundles may be dependent to each other. For example, the Proxy service has a
dependency on SQL transformation service, because in case of different source and target
dialects, it uses the SQL transformation functionality to accomplish its tasks. On the other
hand, bundles have total freedom to register, unregister, or not register their services at all. Be-
cause of this high flexibility, it is necessary, when building our system as a set of collaborative
components, to follow the preconditions of all services, which must be carefully documented
in advance. This approach is hard and very impractical for large applications [Bar], such as
CDASMix.

Separating the two responsibilities, for creating an implementation of a service and for
publishing the service in the service registry, is the solution proposed in the Declarative
Services Specification [OSG12, Bar]. Creating the service object by following the specification
of the corresponding interface, remains a bundle’s duty. But, the responsibility for publishing
services is transferred to a special bundle, the Service Component Runtime (SCR). Figure 5.2
shows the life cycle of OSGi Declarative Services as UML sequence diagram.

47

5. Design

Service
Consumer

Service
Registry

Service
Component Runtime

Service
Provider

Declare Service Component

Register Service Factory

Find Services

Service Refs [0..n]

Get Service
Activate

Load Bundle

Create Service Object

Service Object

Service Object
Service Object

Call Methods

Unget Services

Figure 5.2.: The Life Cycle of Declarative Service of OSGi [Bar]

Each bundle contains, apart from the service to be registered, also one or more XML files
with the bundle descriptions. The SCR scans the bundles in search of these XML files and
uses the information provided in them, in order to register the services. The SCR may do a so
called "lazy registration". In this case, it first creates and registers a proxy object in the Service
Registry that operates as a placeholder. From this point on, the consumer sees the service
available for use, but only when trying to access the service, will SCR ask the OSGi runtime
to load and activate the bundle.

In conclusion, the approach followed in CDASMix regarding the bundles’ activation can be
summarized as:

1. CDASMix is built from a set of OSGi bundles and this allows its development and
maintenance to fulfill the requirements in NFR1, NFR2, and NFR4.

2. It activates only the required subset of its bundles when it starts and not all of them.

48

5.2. SQL Transformation Service

Hence, it satisfies the requirements in NFR3 and NFR4.

3. CDASMix follows the Declarative Service specification and thus, it allows SCR to
handle the service registration and service dependencies’ resolution. This facilitates
the extensibility of the bundles and the overall system. The requirement in NFR1 is
satisfied.

4. In CDASMix a "lazy" bundle activation takes place. The SCR enables the loading of the
bundles to the registered placeholders after detecting an attempt of a consumer to use
the respective service. Therefore it saves system resources and reduces the start-up time,
as required in NFR3 and NFR4.

49

5. Design

50

6. Implementation

In this chapter, we describe the implementation of the enhancements of CDASMix, as they
are specified and designed in Chapter 4 and Chapter 5. First we show the realization of the
new components as OSGi bundles and the implementation of their services. We focus on their
interaction as consumer-producer. Next, the concrete implementations of the PostgreSQL
proxy and PostgreSQL transformer is presented with the help of UML diagrams. The exten-
sions we added in order to enable their integration with the rest of the system are made clear.
We further discuss the PostgreSQL parser and its cooperation with the SQL transformer.

6.1. Transformation Service Implementation

In CDASMix the SCR is implemented by the org.apache.felix.scr bundle. The SCR first
searches the Manifest file for the path of declaration file. The latter is an XML-based file that
contains the bundle description as shown in Listing 6.1. It can be placed anywhere within the
bundle, although we chose to place it in OSGI-INF folder.

1 -- OSGI-INF/PostgreSQLTransformer.xml --
2

3 <?xml version="1.0" encoding="UTF-8"?>
4

5 <!-- xmlns attribute defines a namespace for the prefix -->
6 <components xmlns:scr="http://www.osgi.org/xmlns/scr/v1.0.0">
7

8 <!-- Immediate: defines if the component will create its object immediately (true) or on
-demand (false),

9 Name: component identifier -->
10 <component immediate="false" name="PostgreSQLTransformer">
11

12 <!-- fully qualified name of the class that impements the component -->
13 <implementation class="iaas.unistuttgart.de.sqltransformer.PostgreSQLTransformer"/>
14

15 <!-- the name of the interface under which the service will be registered is listed
in the "provide" element -->

16 <service>
17 <provide interface="iaas.unistuttgart.de.sqltransformer.api.SQLTransformer"/>
18 </service>
19

20 <!-- configuration properties being available through the ComponentContext -->
21 <property name="source_dialect" value="PostgreSQL"/>
22 <property name="service.pid" value="PostgreSQLTransformer"/>
23 </component>
24 </components>

51

6. Implementation

25

26

27 -- META-INF/MANIFEST.MF --
28

29 ...
30 Service-Component: OSGI-INF/PostgreSQLTransformer.xml

Listing 6.1: OSGi Declarative Service Component Descriptor

The path of the bundle description file is added to the bundle manifest file (MANIFEST.MF), un-
der the header Service-Component: Service-Component:OSGI-INF/iaas.unistuttgart.
de.sqltransformer.PostgreSQLTransformer.xml. Thus, after scanning the MANIFEST.MF,
the SCR is able to find the bundle description and, if the bundle is to be registered as a service,
the SCR realizes the service registration under the interface that is provided in the declaration
(See the "provide" element of Listing 6.1, in Line 17). Apache Felix Maven SCR Plugin1 is used
to automatically generate the declaration file and to add its path to the Service-Component
header of the bundle MANIFEST.MF. All the bundles for SQL Transformation implement the
same interface, which is shown in Listing 6.2. Each proxy supports a specific source dialect
and so, it will attempt to access and consume the service object that handles the same source
dialect.

1 public interface SQLTransformer {
2 String transform(String original, Dialect target) throws NotImplementedException,

UntransformableException, SQLParseException;
3 }

Listing 6.2: SQL Transformer Service Definition

Figure 6.1 shows the dependencies of the mainly involved classes of the two bundles, Post-
greSQL proxy and PostgreSQL transformer, developed in this work, as well as the pre-existed
MySQL transformer as UML class diagram. The class diagram is generated with the Objec-
tAid UML diagram2, an Eclipse Plugin and our goal is to visualize the associations among
them. They follow the producer-consumer model; the PostgreSQL proxy consumes the
PostgreSQL transformation service in the following way:

First, as shown in the Figure 6.1, the class PostgreSQLProtocolHanlder, of the proxy bundle,
depends on the class SQLTransformation, of the same bundle. The former class uses the
latter one by creating an instance of it, which handles the look-up and consumption of the
transformation service.

SQLTransformation class, which is shown in Listing 6.3, retrieves an array of ServiceRefer-
ence objects that satisfy the filter shown in Line 10. A ServiceReference object references
to a registered service and encapsulates properties of it, as well as other metadata related
to it, but not the service object itself. The service objects are instances of the component

1Apache Felix Maven SCR plugin: http://felix.apache.org/documentation/subprojects/apache-felix-maven-
scr-plugin.html

2ObjectAid UML diagram: http://www.objectaid.com/

52

6.1. Transformation Service Implementation

Figure 6.1.: Class Diagram that Shows the Relationships Among the PostgreSQL Proxy
and the SQL Transformation Components.

classes, MySQLTransformer and PostgreSQLTransformer, which both implement the SQL-
Transformer interface, part of the sqltransformer.api bundle. The SQLTransformation
class is able to reference instances of the services, namely objects of the classes MySQLTrans-
former and PostgreSQLTransformer, as instances of the SQLTransformer interface. The
filter source_dialect=PostgreSQL is used as shown in Line 6 and so, only the PostgreSQL-
Transformer service is accessed. Java does not allow to create instances of the interface.
Instead, instances of the classes that implement the interface can be created. Those instances
can be referenced as instances of the interface (see Lines 14 and 20, where transformer is an
instance of PostgreSQLTransformer class, up-casted to the interface and transform(statement,
target) is the overriden method).

1 BundleContext context;
2 ...
3 public String transform(String statement, Dialect source, Dialect target) throws

NotImplementedException, UntransformableException, SQLParseException,
TransformerNotFoundException {

4 SQLTransformer transformer = null;
5 ServiceReference[] services = null;
6 String filter = "(" + SQLTransformer.SOURCE_DIALECT_PROP + "=" + source.name() + ")";

53

6. Implementation

7 // filter= (source_dialect=PostgreSQL)
8

9

10 services = context.getServiceReferences(SQLTransformer.class.getName(), filter);
11 // services= [[iaas.unistuttgart.de.sqltransformer.api.SQLTransformer]]
12

13 if (services != null && services.length > 0) {
14 transformer = (SQLTransformer) context.getService(services[0]);
15 // transformer =iaas.unistuttgart.de.sqltransformer.MySQLTransformer@1897af1
16

17 } else {
18 throw new TransformerNotFoundException(target);
19 }
20 String transformed = transformer.transform(statement, target);
21 return transformed;
22 }

Listing 6.3: OSGi Service Lookup With Filter

Activating, when starting CDASMix, all the involved services would contradict with our
requirements NFR3 and NFR4 as we discussed in Section 5.2. Figure 6.2 shows the procedure
of lazy registration of the PostgreSQL transformer service.

Interface: SQL Transformere

obj

bundle: PostgreSQL Transformere
MANIFEST.MF

SCR

Interface:

SQL Transformer

PostgreSQL
Transformation

Service

MySQL
Transformation

Service

(1) implements

(2) creates

(3) scans (4) creates

(6) loads

(5) filtered Lookup for
PostgreSQL Transformation

 Service

(7) registers

bundle: PostgreSQL Proxye

Figure 6.2.: Lazy Service Registration Scenario

54

6.2. PostgreSQL Proxy Implementation

In Listing 6.1, in Line 10, the "immediate" is defined as false, and this indicates lazy registration
for the PostgreSQL transformer service (the same holds also for MySQL). The sequential steps
of the lazy registration are enumerated in Figure 6.2 and discussed below:

1. The implementation class of the component, so called component class, must implement
the (service) interface.

2. The component class, creates an instance of itself, which actually is the service to be
registered.

3. SCR scans the file MANIFEST.MF of the bundle. There it finds the path of the bundle
declaration file. An example of this file is shown in Listing 6.1.

4. Because "immediate" element is set to "false", in the Service Registry will be created a
placeholder for the service under the interface it implements.

5. At some point, the PostgreSQL proxy will try to access and consume the PostgreSQL
transformation service.

6. SCR "sees" the proxy’s attempt to obtain the service. Therefore, it loads the service,

7. and finally registers the service to the Service Registry, to the pre-saved place.

Differently from the transformation component, the proxy does not follow the Declaratice
Service Specification, and therefore, there is no Service-Component header in its bundle man-
ifest. Instead, the Bundle-Activator header is added in the proxy’s manifest file: Bundle-
Activator:iaas.unistuttgart.de.mysqlproxy.osgi.OSGIHandler. The class OSGIHan-
dler is called at bundle activation and deactivation time and it implements the interface
org.osgi.framework.BundleActivator. The proxy component, through the OSGIHandler
is set responsible to start itself in the ServiceMix OSGi container. To do so, it looks-up and con-
sumes the service of org.apache.servicemix.nmr.api.NMR bundle, loads the server config-
uration from the src/main/resources/cdasmix.server.cfg and establishes the connection
to the ehcache OSGi bundle. Additionally it creates an object of the class iaas.unistuttgart-
.de.mysqlproxy.sqltransformation.SQLTransformation, which is responsible to look-up
and get the SQL transformation service of the dialect that satisfies the filter.

6.2. PostgreSQL Proxy Implementation

The OSGi bundle of the PostgreSQL proxy is developed by the Continuent Tungsten Connec-
tor, as we already discussed in the previous chapters. It is a Java PostgreSQL proxy, able to
connect directly with the backend PostgreSQL database system. In this work, the proxy is
extended and adapted in order to integrate it with CDASMix and reach the objectives about
transparency, multi-tenancy, caching, SQL transformation and dynamic connection to the
backend data stores of various dialects, that can reside locally or in the Cloud. Figure 6.3
represents the UML diagram of the main classes, which build the PostgreSQL proxy bundle or
facilitate its integration into the system. Most of the classes have a huge amount of attributes

55

6. Implementation

Legend

Associations

Dependencies

Generalizations

Realizations

Figure 6.3.: PostgreSQL Proxy as an OSGi Bundle, Integrated into CDASMix

and operations that it is not possible to be all included in this picture. Thus, we omit them for
the sake of simplicity in order to ease understanding.

CDASMix is build as an OSGi container and therefore, PostgreSQL proxy must be adapted
and extended to an OSGi bundle, in order to be compliant with the rest of the system.
The PostgreSQL proxy is enhanced with the class OSGIHandler, which implements the
BundleActivator interface. During the bundle activation process, the OSGi container creates
an instance of OSGIHandler and through its operations the proxy is added to the OSGi
container. As we explained in Section 6.1, this class constructs the Configuration object, which
encapsulates the server properties, as they are defined in the cdasmix.server.cfg file. Then,
it creates an instance of the ServerThread class, which takes the server Configuration object
as argument.

56

6.3. PostgreSQL Transformer Implementation

Apart from being able to activate itself and register its service, the PostgreSQL proxy bundle
must be enabled to lookup and consume services from third party bundles. OSGIHandler
is responsible for this as well. It accesses the NMR3 service, and it also instantiates the SQL-
Transformation class, which does the lookup and consumption of the PostgreSQLTransformer
service.

The next step is to integrate the OSGi bundle of the PostgreSQL proxy with the JBI environ-
ment. This is achieved with the classes of the iaas.unistuttgart.de.postgresqlproxy.jbi
package. The class NMMarshaler provides methods for marshaling incoming SQL statements
and metadata to NMF and for demarshaling the received responses backwards. The Mes-
sageExchangeHandler class adds to the proxy bundles methods that directly invoke the
dynamic routing operations in the NMR API. It creates a Camel Exchange object that is sent
synchronously over NMR. The destination is a JBI endpoint URI that is dynamically created
by the tenant and user UUID, as we discussed in Section 2.5. The MessageExchangeHandler
thread waits till receiving a messeage from the JBI endpoint as a response. The NMConstants
class contains the defined standardized naming for the properties and attachments in the
NMF. ServiceMix-camel-mt component (see Figure 2.6), copies the properties and attach-
ments from Camel Exchange to JBI MessageExchange, by using as keys the names of them
defined in NMConstants class.

6.3. PostgreSQL Transformer Implementation

In the Sections 6.1 and 6.1 we discussed how the PostgreSQL transformation service is
registered and how it is accessed by the PostgreSQL proxy. In this section we focus on the
construction of the PostgreSQL transformer component. In Figure 6.4 is shown a simplified
class diagram of it.

PostgreSQLTransformer class implements the SQLTransformer interface and overrides its
single method, transform(String, String) (see Figure B.2), as shown in Lines 7-21 of
Listing A.1. The parameters of the implemented method, original and target, are the
placeholders of the source and target dialect, respectively. This method checks if source
and target dialect are identical. In such a case it will directly output the original statement.
However, this checking is redundant, because proxy will not lookup for the transformation
service in case of similar source-target dialects. The transform method instantiates the
PostgreSQLParser and calls the Statement() function through this instance. The parse
tree will be generated and returned back. Then, the parse tree is navigated in depth-first
pre-order4, using the visitor pattern (see Appendix C). The "visit" to each node will call the
transform function of the respective JAVA class, which will realize the node’s representation
according to the rules of the target dialect. In this thesis we implemented the transform
method for each potential node.

3The relationships of org.apache.servicemix.nmr.api.NMR with the classes of Figure 6.3 are not
shown for the sake of simplicity. It has associations with OSGIHandler.class, ServerThread.class,
PostgreSQLProtocolHandler.class, and MessageExchangeHandler.class.

4Start from the root and visit each node before visiting any of its children [SW11].

57

6. Implementation

Figure 6.4.: PostgreSQL Transformer as an OSGi Bundle, Integrated into CDASMix

58

6.4. SQL Parsers

Each Java class encapsulates one build block of the SQL statement, (or, in other words, a node
of the parse tree) and thus, there is a high amount of them. Figure 6.4 is a simplified class
diagram of the transformation component, because it cannot include and represents all the
Java classes that may appear in a parse tree.

6.4. SQL Parsers

The syntactical comparison among the SQL technologies involved in CDASMix was thor-
oughly made in [Xia13]. In this section we focus on describing how the PostgreSQL and
MySQL grammar implementations are affected from the syntactical deviation of the two
dialects and lead to different SQL parsers. The Listings 6.4 and 6.5 represent the PostgreSQL
and MySQL systaxes of the statement DROP table [posa, mys].

1 DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Listing 6.4: Syntax of the DROP table Statement in the PostgreSQL Dialect [posa]

1 DROP [TEMPORARY] TABLE [IF EXISTS]
2 tbl_name [, tbl_name] ...
3 [RESTRICT | CASCADE]

Listing 6.5: Syntax of the DROP table Statement in the MySQL Dialect [mys]

The parser logics required for each of them are shown in the segments of the respective
grammar files, Listings 6.6 and 6.7, accordingly. As we discussed in Section 3.2, the source
SQL statement is seen from the parser as a stream of tokens. The parse tree is built as a
hierarchy of Java classes, in depth-first pre-order, based on the token the parser reads from
the given statement. But before, the parser must be generated, and therefore the grammar
file is required. So, after researching about the syntax of the PostgreSQL dialect, the next and
most significant task of our work is to define the appropriate tokens and parsing rules5 in
terms of the tokens.

1 DropTable DropTable():
2 {
3 DropTable dropTable = new DropTable();
4 List tables;
5 }
6 {
7 <K_DROP><R_TABLE>
8 [
9 LOOKAHEAD(2)

10 <K_IF>
11 <K_EXISTS>
12 { dropTable.setIfExists(true); }

5A parse rule is also known as production

59

6. Implementation

13]
14 tables = TableList()
15 { dropTable.setTables(tables); }
16 [
17 <K_CASCADE>
18 { dropTable.setCascade(true); }
19 |
20 <K_RESTRICT>
21 { dropTable.setRestrict(true); }
22]
23 {
24 return dropTable;
25 }
26 }

Listing 6.6: Snippet of the PostgreSQL Grammar File, Responsible for the DROP table
Statement

1 DropTable DropTable():
2 {
3 DropTable dropTable = new DropTable();
4 Table table;
5 List tablesList = new ArrayList();
6 }
7 {
8 <R_DROP>
9 [

10 <K_TEMPORARY>
11 { dropTable.setTemporary(true); }
12]
13 <R_TABLE>
14 [
15 <R_IF >
16 <R_EXISTS>
17 { dropTable.setIf_exists(true); }
18]
19 table = Table()
20 { tablesList.add(table); }
21 (
22 "," table = Table()
23 { tablesList.add(table); }
24)*
25 [
26 <R_RESTRICT >
27 { dropTable.setRestrict(true); }
28 |
29 < R_CASCADE >
30 { dropTable.setCascade(true); }
31]
32 {

60

6.4. SQL Parsers

33 dropTable.setTablesList(tablesList);
34 return dropTable;
35 }
36 }

Listing 6.7: Snippet of the MySQL Grammar File, Responsible for the DROP table
Statement

In both dialects, the SQL reserved keywords are prefixed with R_ to avoid name clashes, while
the SQL non-reserved keyword with K_. The former can never be used as identifiers, while
the latter have special meaning in particular contexts and can be used as identifiers otherwise.
As shown in Listings 6.6 and 6.7, the two dialects considered in this section have differences
on the sets of reserved and non-reserved keywords [keyb, keya]. Each token definition is
enclosed in angle-brackets, (< and >). We see that the tokens DROP, IF, EXISTS, RESTRICT,
CASCADE have the prefix K_ in PostgreSQL, while in MySQL they are defined as reserved
keywords, namely with the prefix R_. The token TABLE on the other hand is treated as a
preserved keyword in both dialects, and thus, in both grammar files it appears as R_TABLE.

In the Appendix A, the Listings A.4 and A.5 show the emitted Java codes for the PostgreSQL
and MySQL parsers that will transform the statement into a parse tree, identical for both
dialects. Along with the parser PostgreSQLParser.java (or MySQLParser.java), is gener-
ated the file PostgreSQLParserTokenManager.java (or MySQLParserTokenManager.java)
as well, which is the lexical analyzer. The latter breaks the given SQL statement into a se-
quence of tokens and identifies the kind of each token. For example, the kind of the token
DROP or drop is K_DROP and R_DROP in PostgreSQL and MySQL, respectively.

The method jj_consume_token (e.g. see Line 6 in Listing A.4) takes as an argument an
expected token kind defined by the grammar and tries to obtain a token of that kind from the
lexical analyser, which reads the actual input statement. If the next token has a different kind,
then an exception is thrown. The expression (jj_ntk==-1)?jj_ntk():jj_ntk6 calculates
the kind of the next unread token (e.g. see the Lines 17 and 20 of the Listing A.4).

The LOOKAHEAD(2) directive (see Line 9 in the Listing 6.6), tells JavaCC that it must check
the next two symbols before making any decision about the parse rule. The number of the
next symbols needed to be checked, is defined by the argument. It is placed at the choice
point7, where the decision must be made whether the input statement contains the pair
of tokens (IF, EXISTS) or not. The LOOKAHEAD directive could be omitted as well (see
Listing 6.7) and in such a case it is assumed that its argument has the default value 1. If we
include the LOOKAHEAD directive (with an argument value different from the default 1),
JavaCC assumes that the programmer knows what she/he is doing and so, it generates the
parser without throwing warnings. However, the larger the argument value, the slower the
generated parser.

In conclusion, we can state that grammar file actually is an aggregation of regular expressions,
defining portions of text to be matched. The proper implementation of it is the cornerstone

6the abbreviation ntk stands for Next ToKen
7Points in the grammar file where more than one rule might match.

61

6. Implementation

for a functional and efficient parser, which will lead to an efficient transformation service as
well.

62

7. Validation and Evaluation

In this chapter, we validate and evaluate the PostgreSQL transformer component developed
in this thesis, as a standalone module. Our goal is to verify that the enhancement of CDASMix
system with the PostgreSQL transformation functionality fulfills the requirements defined
in Section 4.5. The new component first is examined separately from CDASMix, before its
integration into it, in order to isolate it from external operation and performance variables.

7.1. Validation of SQL Parser and Transformation

The integration of the PostgreSQL transformer into the CDASMix is discussed in the previous
sections and depicted in Figures 2.6, 4.1, and 6.2. In the two following sections we validate
and evaluate the PostgreSQL transformer as a standalone module. After the integration into
CDASMix, the overall system functionality can be validated and evaluated via Apache JMeter.
It offers listeners1 for an automated Summary Report and Response Time Graphs. The former
aggregates all information regarding the runtime and throughput of the system as well as the
occurred errors. The results are automatically visualized with the Response Time Graph.

We created three database instances in Amazon RDS2, one for each target database technology
supported by CDASMix. The characteristics of them are listed in Table 7.1. Each of them is
populated with the TPC-H database schema shown in Figure 7.1, modified according to the
rules of the target database. The primary keys of the tables are underlined. One notices that the
tables PARTSUPP and LINEITEM use the combination of foreign keys, (PARTKEY, SUPPKEY),
as a unique primary key. The queries used for the system validation and evaluation are
generated based on the TPC-H benchmark, unless denoted explicitly otherwise. Following
the TPC-H, database schema 1 GB of example data is generated and stored into the three
database instances running on Amazon RDS.

DB Name DB Type DB Instance Class

tpch MySQL 5.6.22 db.t1.micro

psqldb PostgreSQL 9.4.1 db.t1.micro

oracledb Oracle SE 11.2.0.4.v3 db.t1.micro

Table 7.1.: Tenant Data Source Registration

1 Feature of Apache JMeter that "listens" to the test results and also provides means to view, save, and read test
results.

2Amazon Relational Database Service (Amazon RDS): http://aws.amazon.com/ rds/.

63

7. Validation and Evaluation

PARTKEY

NAME

MF GR

BRAND

TYPE

SIZE

CONTAINER

RETAILPRICE

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT
NATIONKEY

NAME

REGIONKEY

COMMENT

CUSTKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

QUANTITY

EXTENDEDPRICE

DISCOUNT

TAX

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

REGIONKEY

NAME

COMMENT

ORDERKEY

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-
PRIORITY

CLERK

SHIP-
PRIORITY

COMMENT

PART (P_)

SUPPLIER (S_)

PARTSUPP (PS_)

CUSTOMER (C_)

NATION (N_)

LINEITEM (L_) ORDERS (O_)

REGION (R_)

Figure 7.1.: TPC-H Database Schema Diagram [Tra13].

In Appendix A one can find Listings A.2 and A.3, which are examples of the JUnit test cases,
used for the validation and evaluation of the PostgreSQL transformer, respectively. The first
test case ensures the proper operation of the transformer by comparing the transformed source
statement to the corresponding target statement. For each source SQL statement we can pre-
cisely predict the expected target statement after transformation. The test case in the Listing
A.3 outputs the runtime of the transformer, and by inversing it we can calculate the through-
put as well. By excluding Line 12 (transformed = stmt.transform(Dialect.MySQL);)
from the Listing, we extract the parsing time and calculate its throughput.

7.2. Validation of PostgreSQL Transformation

In this section, the functionality of the PostgreSQL transformer is validated as a standalone
module and the results are shown in the Table 7.2. For the validation JUnit test cases are used.
An example is shown in Listing A.2.

64

7.2. Validation of PostgreSQL Transformation

Dialect Statement

PostgreSQL CREATE TABLE nation(n_nationkey NUMERIC(3,0) NOT NULL PRIMARY KEY, n_regionkey IN-
TEGER NOT NULL, n_comment VARCHAR(152));

MySQL CREATE TABLE nation (n_nationkey TINYINT NOT NULL, n_name CHAR(25) NOT NULL, n_-
regionkey INTEGER NOT NULL, n_comment VARCHAR(152));

Oracle CREATE TABLE nation (n_nationkey NUMBER(3,0) NOT NULL, n_name CHAR(25) NOT NULL,
n_regionkey INTEGER NOT NULL, n_comment VARCHAR(152));

PostgreSQL DELETE FROM lineitem WHERE l_linestatus=’O’;

MySQL DELETE FROM lineitem WHERE l_linestatus=’O’;

Oracle DELETE FROM lineitem WHERE l_linestatus=’O’;

PostgreSQL DROP TABLE supplier CASCADE;

MySQL DROP TABLE supplier CASCADE;

Oracle DROP TABLE supplier CASCADE CONSTRAINTS;

PostgreSQL SELECT l_returnflag, l_linestatus, SUM(l_quantity) as sum_qty, SUM(l_extendedprice * (1 -l_dis-
count)) as sum_disc_price, AVG(l_quantity) as avg_qty, COUNT(*) as count_order FROM lineitem
WHERE l_shipdate <= date (’1998-12-01’) - interval ’1’ day LIMIT 10 OFFSET 3;

MySQL SELECT l_returnflag, l_linestatus, SUM(l_quantity) as sum_qty, SUM(l_extendedprice * (1 -l_dis-
count)) as sum_disc_price, AVG(l_quantity) as avg_qty, COUNT(*) as count_order FROM lineitem
WHERE l_shipdate <= DATE_SUB((date ’1998-12-01’ , interval ’1’ day) LIMIT 3, 5;

Oracle SELECT l_returnflag, l_linestatus, SUM(l_quantity) as sum_qty, SUM(l_extendedprice * (1 -l_dis-
count)) as sum_disc_price, AVG(l_quantity) as avg_qty, COUNT(*) as count_order FROM lineitem
WHERE l_shipdate <= date (’1998-12-01’) - interval ’1’ day FETCH NEXT 10 ROWS ONLY;

PostgreSQL SELECT n_name FROM customer, orders WHERE c_custkey = o_custkey AND o_orderdate < date
’1998-10-09’ + interval ’1’ year

MySQL SELECT n_name FROM customer, orders WHERE c_custkey = o_custkey AND o_orderdate <
DATE_ADD(date(’1998-10-09’), interval 1 year);

Oracle SELECT n_name FROM customer, orders WHERE c_custkey = o_custkey AND o_orderdate < date
’1998-10-09’ || interval ’1’ year;

PostgreSQL INSERT INTO orders (o_orderkey, o_custkey, o_orderstatus, o_totalprice, o_orderdate, o_-
orderpriority, o_clerk, o_shippriority, o_comment, o_image) VALUES (5970822, 69644, ’O’,
71366.76, TIMESTAMP ’1996-03-29 10:20:30.0’, ’Clerk#000000868’, 0, ’comments long text’,
E'\\x53696d696e0d0a');

MySQL INSERT INTO orders (o_orderkey, o_custkey, o_orderstatus, o_totalprice, o_orderdate, o_-
orderpriority, o_clerk, o_shippriority, o_comment, o_image) VALUES (5970822, 69644, ’O’,
71366.76, TIMESTAMP ’1996-03-29 10:20:30.0’, ’Clerk#000000868’, 0, ’comments long text’,
0x53696d696e0d0a));

Oracle INSERT INTO orders (o_orderkey, o_custkey, o_orderstatus, o_totalprice, o_orderdate, o_order-
priority, o_clerk, o_shippriority, o_comment, o_image) VALUES (5970822, 69644, ’O’, 71366.76,
TIMESTAMP ’1996-03-29 10:20:30.0’, ’Clerk#000000868’, 0, ’comments long text’,'53696d696e0d0a');

PostgreSQL UPDATE orders SET o_orderdate=NOW() WHERE o_orderstatus=’F’;

MySQL UPDATE orders SET o_orderdate=NOW() WHERE o_orderstatus=’F’;

65

7. Validation and Evaluation

Dialect Statement

Oracle UPDATE orders SET o_orderdate=CURRENT_TIME() WHERE o_orderstatus=’F’;

Table 7.2.: SQL Transformation Validation with Cloud Databases

SQL statement transformation consists of data types transformation and adaption to the
syntactical rules of the target dialect. There are also many cases where the transformation
from one dialect to the other simply needs to regenerate the source statement. Table 7.2 lists
the different types of statements that are covered by the PostgreSQLParserCC.jj grammar
file and implemented in the PostgreSQL transformer (see Section 6.3). We provide support
for all the statement types existing in SQL. However, there are restrictions on the data types
and syntactical features we can transform. The capabilities of the PostgreSQL transformer
developed in this thesis are depicted in the examples of the said Table 7.2.

7.3. Performance Evaluation

CDASMix performance can be defined as the amount of successfully executed statements
over time and resources used. The transformation service, as an add-on enhancement to
the existing CDASMix, comes with an unavoidable performance drawback. However, the
higher the performance of the transformation functionality, the less its negative effects to the
performance of the CDASMix system. The total transformation time of a statement consists of
the time needed to parse it (parsing time) and the time to construct the target statement from
the parse tree (transforming time). In this section the performance of the added PostgreSQL
transformer is evaluated as a standalone module, in terms of complexity of the parsing and
transformation. We measure the transformation time of the statement and the statement
throughput, which is defined as the amount of statements parsed and transformed in one
unit of time.

However, two instances of the same statement transformation can give different timing
characteristics due to several sources of non-determinism involved [Osi10]. Some non-
deterministic factors can be: memory allocation, which can assign different pages of the
allocated virtual addresses, for different instances of the process: thread scheduling and system
events, which can randomly interrupt the execution of a transformation. Moreover, for
applications running in JVM, such as CDASMix, Just-In-Time (JIT) compilation3 and garbage
collection are additional sources of non-determinism [GBE07].

These result in random variations of the measured time and throughput of statement transfor-
mation. Statistic theory can be used to handle the runtime non-determinism and to interpret
the measured data [GBE07]. For this we need to measure the variable, namely the transfor-
mation time, multiple times. The test case shown in Listing A.3 of the Appendix A is used.
As we can see, the time required to perform 10.000 sequential transformations of a statement

3In many virtual machines the same program may have different execution times due to the use timer-based
optimizations [AFG+05]

66

7.3. Performance Evaluation

is measured. This measurements are done 100 times. Hence, we perform the transformation
process 1 million times for each statement, in order to define the speed of the transformer
as the average time of all (mean value). By inverting the time consumption, the throughput
(number of statement/second) is calculated. The mean value leads us to the most accurate
approach of the transformation time.

In the case of PostgreSQL transformer evaluation, the time measurements of statement
transformation are independent from each other, as each execution is a new process. They are
also random because of the non-determinism added by the environment in which they run,
as we discussed previously.

The Law of the Large Numbers ensures that we resolve the dependency of each measurement
on the non-deterministic runtime environment, by getting a large amount of measurements.
According to the law, the average of the measurements should be close to the expected value
and will tend to become closer for a larger number of measurements [Lin93]. Additionally,
the Central Limit Theorem states that the distribution of the average of a large number of independent,
identically distributed random variables (or measurements in our case) will be approximately normal,
regardless of the underlying distribution [Bar11]. Hence, we chose to perform the same transfor-
mation process 1.000.000 times, get multiple measurements, and consider their average as the
expected runtime value.

The parsing and transforming, which are the two sequential steps of the PostgreSQL trans-
former, as shown in Figure 3.2, are both expected to be of linear time complexity O(n), where
n is the number of nodes. From the superposition principle, the PostgreSQL transformer will
also be linear to the number of nodes. Let’s assume that p(n) is the parsing time for a source
statement, which will be recomposed into a parse tree of n nodes, and t(n) is the transforming
time of generating the target statement from the parse tree. The superposition principle states
that:

i f s1 = p(n1) and s2 = t(n2) then T(n1 + n2) = p(n1) + t(n2) (7.1)

In the case of query transformation n1 is equal to n2, because the number of nodes one query
has, do not change during the transformation process.

But, why linear time complexity O(n)? The result of the parsing is the parse tree and an
example of it is shown in Figure 7.2. It is called a k-ary tree, because each node of it has no
more than k children.

During the parsing step the heapifying4 of the parse tree is realized and the transforming
follows with a depth-first pre-order search of the tree [SW11]. Because of the way the tree is
constructed the number of nodes of depth i is exactly ki for all i < l. Let l be the maximum
depth of any node in a subtree, and h the depth of the leaves (namely, the height of the tree).
The number of nodes at depth l of the k-tree is exactly:

4The goal of heapifying is to build and establish the heap property in the whole parse tree.

67

7. Validation and Evaluation

<<Java Interface>>
Statement

<<Java Class>>
LongValue

<<Java Class>>
Column

<<Java Interface>>
Expression

<<Java Interface>>
Expression

<<Java Class>>
BinaryExpression

<<Java Class>>
Table

<<Java Class>>
AllTableColumn

<<Java Interface>>
Expression

<<Java Interface>>
FromItem

<<Java Interface>>
SelectItem

<<Java Class>>
PlainSelect

<<Java Interface>>
SelectBody

<<Java Class>>
Select

-selectbody 0..1

-selectItems
0..* -fromItem 0..1

-where

0..1

<<Java Class>>
EqualsTo

-leftExpression
0..1

-rightExpression
0..1

SELECT * FROM items WHERE item_id = 1;

Figure 7.2.: SELECT Statement’s Parse Tree in Class Diagram [Xia13].

n −
l−1

∑
i=0

ki = n − (kl − 1) (7.2)

The number of comparisons for the leaves is O(h), with O(1) time for each comparison.
Therefore the running time is at most:

h−1

∑
i=0

ki · O(h − i) = O

(
h−1

∑
i=0

ki(h − i)

)
= O

(
h−1

∑
i=0

ki
h

∑
j=i+1

1

)

= O

(
h

∑
j=1

j−1

∑
i=0

ki

)
= O

(
h

∑
j=1

kj

)
= O(kh+1) = O(n).

(7.3)

In the second equation h − 1 is written as a sum of ones, and in the third equality the order of
summations is exchanged5.

5The Equations 7.2 and 7.3 are reused, but adapted from [Mil12], where they are applied for a special case of
k-trees, the binary trees (where k = 2).

68

7.3. Performance Evaluation

With this assumption, we then proceed by categorizing SQL statements based on their result-
ing parse trees’ total number of nodes, and evaluate the time consumption and the throughput
of parsing and transforming the statements. In the Tables 7.3 and 7.4 are represented the times
to parse a statement and the overall transformation time (parsing and transforming) for both
MySQL and PostgreSQL transformer. The target dialect is PostgreSQL 9.4.1 and MySQL
5.6.22, respectively. The majority of the statements is obtained from the TPC-H benchmark.
They are listed by number of nodes in ascending order. The former table contains a mixture
of various statements, while the latter contains only SELECT statements.

Statements Nodes
MySQL PostgreSQL

Parsing Time (s) Total Time (s) Parsing Time (s) Total Time (s)

drop table lineitem; 3 0.000007105 0.000028497 0.000005934 0.000006277

drop table if exists lineitem,
region;

5 0.000006816 0.000029394 0.000007272 0.000006609

select * from lineitem; 8 0.000008829 0.000033343 0.000010124 0.000010164

create table region2 (r_regionkey
int, r_name varchar);

10 0.000009962 0.000038029 0.000008199 0.000011027

update lineitem set l_orderkey=15000
where l_partkey=100000000000;

13 0.000013892 0.000042708 0.000017798 0.000017043

select n_name from nation where n_-
regionkey=1;

17 0.000019789 0.00004689 0.000018737 0.000019872

insert into region (r_regionkey,
r_name, r_comment) values (5,
'ASIA', 3+2);

18 0.000015267 0.000043151 0.000016181 0.000015355

select sum(o_totalprice) from orders
where o_orderstatus='O' group by
o_orderkey limit 20 offset 10 ;

25 0.000024342 0.000059162 0.000027731 0.000026209

select n_regionkey from nation
where n_name in (select r_name from
region where r_regionkey= 10);

31 0.000044037 0.000086838 0.000045659 0.000048532

select c_name, c_address from
customer, orders where o_-
orderdate=NOW() union select ps_-
suppkey from partsupp where ps_-
partkey=1 order by ps_suppkey limit
100 offset 0;

41 0.000035539 0.000077677 0.000036035 0.000077677

select c_custkey, o_orderkey,
sum(o_totalprice) from (select *
from orders cross join customer
where o_orderpriority = 'URGENT'
and c_custkey> 1000 order by o_-
totalprice limit 100 offset 0) as
sum;

51 0.000052286 0.000108058 0.0000433 0.000108058

69

7. Validation and Evaluation

�1 CREATE TABLE employees_demo
(employee_id NUMBER(6), first_name
VARCHAR2(20), last_name VARCHAR2(25)
NOT NULL, email VARCHAR2(25) NOT
NULL, phone_number VARCHAR2(20),
hire_date DATE NOT NULL DEFAULT
SYSDATE, job_id VARCHAR2(10) NOT
NULL, salary NUMBER(8, 2) NOT
NULL, commission_pct NUMBER(2, 2),
manager_id NUMBER(6), department_-
id NUMBER(4), dn VARCHAR2(300),
CONSTRAINT emp_email_uk UNIQUE
(email));

63 0.000037307 0.000122866 0.000042333 0.000055283

select c_name, c_address from
(select * from customer) join
(select * from supplier where s_-
phone='USER_08873') join (select

* from part) join (select * from
orders) where o_orderdate=TODAY()
AND o_orderstatus='F' limit 10
offset 0;

71 0.000052684 0.000114584 0.000049461 0.000063572

�1 (select firstname, lastname
from contact where age > 25) union
(select salary, workingage from
employee where company ='IBM' and
location='stuttgart') union (select
spouse, parent from registry where
region='bw' or region='bayern')
order by firstname limit 100 offset
0;

80 0.000056304 0.000124342 0.000053372 0.000124342

�1 select firstname, lastname,
address, birthday from contact join
(select * from employee, schedule
where age>20 and workday=TODAY())
join (select * from employer where
name='steve') where birthday=TODAY()
or age=24 group by age having
max(age)<60 order by firstname,
lastname limit 1000 offset 1;

100 0.000079816 0.000163986 0.000078605 0.000087163

select l_returnflag, l_linestatus,
sum(l_quantity) as sum_qty, sum(l_-
extendedprice) as sum_base_price,
sum(l_extendedprice*(1-l_discount))
as sum_disc_price, sum(l_-
extendedprice*(1-l_discount)*(1+l_-
tax)) as sum_charge, avg(l_quantity)
as avg_qty, avg(l_extendedprice) as
avg_price, avg(l_discount) as avg_-
disc, count(*) as count_order from
lineitem where l_shipdate < date
'1998-12-01' and l_shipdate > date
'1998-11-01' group by l_returnflag,
l_linestatus order by l_returnflag,
l_linestatus limit 100 offset 0;

125 0.000090581 0.000207711 0.000094025 0.000119122

70

7.3. Performance Evaluation

select n_name, sum(l_extendedprice *
(1 - l_discount)) as revenue, avg(l_-
extendedprice*(1-l_discount)*(1+l_-
tax)) as avg_revenue from customer,
orders, lineitem, supplier, nation,
region where c_custkey = o_custkey
and l_orderkey = o_orderkey and l_-
suppkey = s_suppkey and c_nationkey
= s_nationkey and s_nationkey =
n_nationkey and n_regionkey = r_-
regionkey and r_name = 'germany'
and o_orderdate >= date '2011-11-11'
and o_orderdate < date '2012-11-11'
group by n_name order by revenue
desc;

150 0.000102352 0.000218036 0.000084183 0.000119624

select s_acctbal, s_name, n_name,
p_partkey, p_mfgr, s_address,
s_phone, s_comment from part,
supplier, partsupp, nation, region
where p_partkey = ps_partkey and
s_suppkey = ps_suppkey and p_-
size = 100 and p_type like '%type'
and s_nationkey = n_nationkey and
n_regionkey = r_regionkey and
ps_supplycost = (select min(ps_-
supplycost) from partsupp, supplier,
nation, region where p_partkey =
ps_partkey and s_suppkey = ps_-
suppkey and s_nationkey = n_-
nationkey and n_regionkey = r_-
regionkey and r_name = 'germany')
order by s_acctbal desc;

174 0.000141075 0.000286147 0.000132546 0.000155821

select s_acctbal, s_name, n_name,
p_partkey, p_mfgr, s_address,
s_phone, s_comment from part,
supplier, partsupp, nation, region
where p_partkey = ps_partkey and
s_suppkey = ps_suppkey and p_size
= 10 and p_type like 'type1' and
s_nationkey = n_nationkey and n_-
regionkey = r_regionkey and r_-
name = 'region' and ps_supplycost
= (select min(ps_supplycost) from
partsupp, supplier, nation, region
where p_partkey = ps_partkey and s_-
suppkey = ps_suppkey and s_nationkey
= n_nationkey and n_regionkey = r_-
regionkey and r_name = 'region')
order by s_acctbal desc, n_name,
s_name, p_partkey;

197 0.00016848 0.000302252 0.000144116 0.000167569

Table 7.3.: Time Evaluation of Various Statements

71

7. Validation and Evaluation

Statements Nodes
MySQL PostgreSQL

Parsing Time (s) Total Time (s) Parsing Time (s) Total Time (s)

select * from lineitem; 8 0.000008829 0.000033343 0.000010124 0.000010164

select * from nation where n_-
regionkey=1;

15 0.000015544 0.000045239 0.000016898 0.000017486

select n_name from nation where n_-
regionkey=1;

17 0.000019789 0.00004689 0.000018737 0.000019872

select avg(o_totalprice) from orders
where o_orderstatus='O';

20 0.000022024 0.000051509 0.000020699 0.000020972

select sum(o_totalprice) from orders
where o_orderstatus='O' order by
o_orderkey limit 20 offset 10 ;

25 0.000024342 0.000059162 0.000027731 0.000026209

select n_regionkey from nation
where n_name in (select r_name from
region where r_regionkey= 10);

31 0.000044037 0.000086838 0.000045659 0.000048532

select c_name, c_address from
customer, orders where o_-
orderdate=NOW() union select ps_-
suppkey from partsupp where ps_-
partkey=1 order by ps_suppkey limit
100 offset 0;

41 0.000035539 0.000077677 0.000036035 0.000077677

select c_custkey, o_orderkey,
sum(o_totalprice) from (select *
from orders cross join customer
where o_orderpriority = 'URGENT'
and c_custkey> 1000 order by o_-
totalprice limit 100 offset 0) as
sum;

51 0.000052286 0.000108058 0.0000433 0.000108058

�1 select address, concat(firstname,
lastname) as name from contact
join (select salary, employer from
company where name = 'IBM' and
location = 'germany') where age>40
and age<60;

64 0.000055155 0.000109287 0.000048619 0.000057968

select c_name, c_address from
(select * from customer) join
(select * from supplier where s_-
phone='USER_08873') join (select

* from part) join (select * from
orders) where o_orderdate=TODAY()
AND o_orderstatus='F' limit 10
offset 0;

71 0.000052684 0.000114584 0.000049461 0.000063572

72

7.3. Performance Evaluation

�1 (select firstname, lastname
from contact where age > 25) union
(select salary, workingage from
employee where company ='IBM' and
location='stuttgart') union (select
spouse, parent from registry where
region='bw' or region='bayern')
order by firstname limit 100 offset
0;

80 0.000056304 0.000124342 0.000053372 0.000124342

select s_acctbal from part,
supplier, partsupp, nation where
p_partkey=ps_partkey and s_-
suppkey=ps_suppkey and p_size=10
and p_type like 'type1' and s_-
nationkey=n_nationkey and n_-
regionkey=r_regionkey and r_-
name='region' order by s_acctbal
desc, n_name;

90 0.000052339 0.00011454 0.000048215 0.000055184

�1 select firstname, lastname,
address, birthday from contact join
(select * from employee, schedule
where age>20 and workday=TODAY())
join (select * from employer where
name='steve') where birthday=TODAY()
or age=24 group by age having
max(age)<60 order by firstname,
lastname limit 1000 offset 0;

100 0.000079816 0.000163986 0.000078605 0.000087163

select l_returnflag, l_linestatus,
sum(l_quantity) as sum_qty, sum(l_-
extendedprice) as sum_base_price,
sum(l_extendedprice*(1-l_discount))
as sum_disc_price, sum(l_-
extendedprice*(1-l_discount)*(1+l_-
tax)) as sum_charge, avg(l_quantity)
as avg_qty, avg(l_extendedprice) as
avg_price, avg(l_discount) as avg_-
disc, count(*) as count_order from
lineitem where l_shipdate < date
'1998-12-01' and l_shipdate > date
'1998-11-01' group by l_returnflag,
l_linestatus order by l_returnflag,
l_linestatus limit 100 offset 0;

125 0.000090581 0.000207711 0.000094025 0.000119122

select n_name, sum(l_extendedprice *
(1 - l_discount)) as revenue, avg(l_-
extendedprice*(1-l_discount)*(1+l_-
tax)) as avg_revenue from customer,
orders, lineitem, supplier, nation,
region where c_custkey = o_custkey
and l_orderkey = o_orderkey and l_-
suppkey = s_suppkey and c_nationkey
= s_nationkey and s_nationkey =
n_nationkey and n_regionkey = r_-
regionkey and r_name = 'germany'
and o_orderdate >= date '2011-11-11'
and o_orderdate < date '2012-11-11'
group by n_name order by revenue
desc;

150 0.000102352 0.000218036 0.000084183 0.000119624

73

7. Validation and Evaluation

select s_acctbal, s_name, n_name,
p_partkey, p_mfgr, s_address,
s_phone, s_comment from part,
supplier, partsupp, nation, region
where p_partkey = ps_partkey and
s_suppkey = ps_suppkey and p_-
size = 100 and p_type like '%type'
and s_nationkey = n_nationkey and
n_regionkey = r_regionkey and
ps_supplycost = (select min(ps_-
supplycost) from partsupp, supplier,
nation, region where p_partkey =
ps_partkey and s_suppkey = ps_-
suppkey and s_nationkey = n_-
nationkey and n_regionkey = r_-
regionkey and r_name = 'germany')
order by s_acctbal desc;

174 0.000141075 0.000286147 0.000132546 0.000155821

select s_acctbal, s_name, n_name,
p_partkey, p_mfgr, s_address,
s_phone, s_comment from part,
supplier, partsupp, nation, region
where p_partkey = ps_partkey and
s_suppkey = ps_suppkey and p_size
= 10 and p_type like 'type1' and
s_nationkey = n_nationkey and n_-
regionkey = r_regionkey and r_-
name = 'region' and ps_supplycost
= (select min(ps_supplycost) from
partsupp, supplier, nation, region
where p_partkey = ps_partkey and s_-
suppkey = ps_suppkey and s_nationkey
= n_nationkey and n_regionkey = r_-
regionkey and r_name = 'region')
order by s_acctbal desc, n_name,
s_name, p_partkey;

197 0.00016848 0.000302252 0.000144116 0.000167569

Table 7.4.: Time Evaluation of SELECT Statements

1. The queries of the Tables 7.3 and 7.4 started with a checkmark (�), are gotten from the
set of evaluation queries used in [Xia13].

The following Diagrams, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, and 7.9 visualize the results of Tables 7.3
and 7.4 regarding the relationship between the number of nodes over the consumed time, as
well as the throughput, for statement parsing and transformation. We notice that in all cases,
the time follows a linear trend over statement complexity, which is described by the number
of nodes.

The first pair of the Diagrams, 7.3 and 7.4, shows the relationship of time and throughput
over the number of nodes for the case of the PostgreSQL transformer. Two trendlines are
depicted in each diagram, one for the set of SELECT statements and the other for the mixed
set of statements (which contains SELECT, UPDATE, INSERT INTO, CREATE TABLE, DELETE and
DROP TABLE statements). For both load testings the time gives a linear interpolation while
the throughput interpolation is a hyperbolic function. They both prove the linearity of the

74

7.3. Performance Evaluation

Figure 7.3.: Plot of the Time over Number of Nodes for the PostgreSQL Transformer, for
two Load Testings

Figure 7.4.: Plot of the Throughput over Number of Nodes for the PostgreSQL Transformer,
for two Load Testings

75

7. Validation and Evaluation

Figure 7.5.: Plot of the Time Consumption over Number of Nodes for the PostgreSQL and
MySQL Transformer

Figure 7.6.: Plot of the Throughput over Number of Nodes for the PostgreSQL and MySQL
Transformer

76

7.3. Performance Evaluation

Figure 7.7.: Plot of the Parsing Time Consumptions of SELECT Statements over the Number
of Nodes for the PostgreSQL and MySQL Transformer

Figure 7.8.: Plot of the Throughput over Number of Nodes for PostgreSQL Transformer
for both Load Testings

77

7. Validation and Evaluation

Figure 7.9.: Plot of the Transformer Time Consumption and Parsing Time Consumption,
over Number of Nodes for the PostgreSQL Transformer

PostgreSQL transformer over the number of nodes and thus, the O(n) time complexity of this
component.

The second pair of Diagrams, 7.5 and 7.6 is obtained after adding to the Diagrams 7.3 and
7.4 the respective results of the MySQL transformer (see Tables 7.3 and 7.4), as they were
presented in [Xia13]. For both transformers the basis for the measurements are the same
queries, of course adapted in order to be compliant with the specific dialect features. We see
that both transformers coincide with the O(n) notion. However, the PostgreSQL transformer
is more efficient, especially for larger number of nodes, because, as we can see in the Diagram
7.5, the gradient of its trendline is lower. The reason is the deviation of the two dialects and
subsequently the need to handle them with different grammar files6. This leads to different
parsers and different implementations of the transform() methods.

In the Diagram 7.7 the parsing times of MySQL and PostgreSQL transformer for SELECT
statements are compared. We see that for queries with a large number of nodes, the Post-
greSQL parser tends to be more efficient. However, this result is highly dependent on the
design of the grammar file. Future extensions of the grammar files may reverse the current
outcome.

In the Diagram 7.8 the throughput of the PostgreSQL parser over the number of nodes for the

6The grammar file of the MySQL parser is built based on the syntax guideline given in
"https://dev.mysql.com/doc/refman/5.0/en/sql-syntax-data-definition.html", while the PostgreSQL
grammar file follows the syntactical rules given in "http://www.postgresql.org/docs/9.0/static/sql-
syntax.html".

78

7.3. Performance Evaluation

two loads is depicted and we see that the interpolation remains hyperbolic.

Lastly, Diagram 7.9 represents the relationship of PostgreSQL parsing and total transformation
time, over the number of nodes, for the load of mixed statements. We see that the deviation
of the two trendlines increases with the number of nodes. This result is in accordance with
our expectations from the Equation 7.1; the deviation of these is equal to the transforming
time, which is also increasing in a linear trend over the number of nodes.

79

7. Validation and Evaluation

80

8. Conclusion and Future Work

A big challenge of this thesis, apart from the development of the components as standalone
modules, was their integration to the existing system. Dealing with system integration is
hard as it requires a good understanding of all the involved components and technologies.
On the other hand, time constrains make it unfeasible to elaborate with all of them. Finding
out in which depth your understanding and knowledge over the surrounding environment
should reach is the key to success.

8.1. Conclusion

Nowadays, the trend in companies is to look for moving business services into the Cloud. As
was expected in [Tec], technologies that realize the migration of existing applications to Cloud
and/or access support for the migrated data, took off in 2015. CDASMix is a system that
enables multi-tenant communication with Cloud or local databases of different technologies.
A strong advantage of CDASMix is that it supports the seamless migration of the applications;
adaptations made on the DAL of one application suffices for establishing the communication
of it with the Cloud backend data store, and therefore, the migration is transparent to the
higher layers of the application.

However, the current market of database technologies and Cloud service providers is wide
and vividly changing. In order to be a useful data access tool, CDASMix must be able
to operate as a unified cloud data access interface that will serve the communication for
different database vendors, even if the source and target data source are built on different
database technologies. The initial CDASMix system that we had at the beginning of this
thesis, was able to successfully support the MySQL communication protocol and to provide
access to MySQL, PostgreSQL, and Oracle backend data stores. A transformation service able
to convert MySQL queries into PostgreSQL or Oracle was already integrated. The goal of
this work was to extend on CDASMix component and enable the support for a PostgreSQL
communication protocol as well as the transformation of said PostgreSQL statements into
MySQL and Oracle.

In the previous chapters we present the step-by-step realization of this goal. In Chapter 2 the
fundamental knowledge and background information related to this thesis were provided. In
Chapter 3 the state of the art this work is based on, was discussed and positioned towards
the work, respectively. Chapter 4 analyzed the old version of CDASMix, clarified the needed
enhancements and defined the functional and non-functional requirements the extended
system must fulfill. Based on these requirements, in Chapter 6 we illustrated and thoroughly
discussed the extensions of CDASMix. Code segments, class diagrams, and Figure 6.2 were

81

8. Conclusion and Future Work

given to clarify the functionality of the PostgreSQL proxy and PostgreSQL transformer, as
well as the declaration of the transformation service and the service lookup.

The output of our work enables CDASMix to receive, transform, and deliver PostgreSQL
statements to MySQL or Oracle data stores and to receive their response. In Chapter 7 we
present the validation and evaluation of the transformation functionality. It is shown that
the runtime of the PostgreSQL transformer is linear over the complexity of the SQL queries.
The complexity of a query is defined by the number of nodes its parse tree is made of. The
results regarding the performance of the PostgreSQL transformer are the indicators of the
performance drawback added to CDASMix with the integration of the new functionality. Our
measurements show that the PostgreSQL transformer has a speed advantage over the MySQL
transformer.

8.2. Future Work

There are several issues arising from this work which should be pursued in the future.

First of all, CDASMix could be extended further, in order to provide access for a larger range
of source and target SQL dialects. Currently it supports MySQL and PostgreSQL as source
dialects and it is able to access MySQL, PostgreSQL, and Oracle backend data sources. In
the future, other SQL proxies and transformation functionalities could be integrated. In
addition, the OSGi bundle of the Camel CDASMix JDBC component (depicted in Figure 2.6
as CDASMixjdbc block) could be extended to provide communication support to more target
database systems.

For the two supported source dialects, there is a limitation in the SQL statement and data types
that can be handled by the system. The grammar files of both MySQL and PostgreSQL dialects
could be broadened to support the parsing of more dialect features. Transforming capabilities
must be extended accordingly. Moreover, there is a need to maintain and keep up-to-date
the transformation support we currently provide. Due to the changes and enhancements
occurring constantly to the existing dialects, our implementation can become insufficient and
out-dated soon.

The current implementation does not consider any performance optimization of the grammar
files and subsequently of the generated parsers. In Chapter 7 we found that the performance
of PostgreSQL transformer is higher compared to the MySQL transformer. However, while
developing the PostgreSQL grammar file we focused on achieving the desired functionality,
without considering any performance objective. In the future, the code architecture could be
analyzed mathematically in advance and optimization techniques could be applied that will
lead to a faster transformation functionality.

The SQL parser of the transformation service could be used further, to define the type of
an SQL statement, retrieve the alternated first information structure (table), etc. The proxy
bundle can use those functionalities beside the transformation and this may benefit the
performance of CDASMix.

82

8.2. Future Work

Regarding the PostgreSQL proxy, currently the Simple Query Protocol (see Figure 6.3) is
implemented. Realizing the implementation of the Extended Query Protocol could increase
the performance of CDASMix. Structurally similar queries, namely queries that can be
analyzed into identical parse trees with different leaves’ values, can be handled significantly
faster. For this, several components of CDASMix, involved in message routing, marshaling
and demarshaling, need to be modified and enabled to deal with prepared statements and
portals.

83

8. Conclusion and Future Work

84

Appendix A.

Source Code Segments

The following lists we display the code segment used for implementing OSGi declarative
transformation service and two JUnit test cases for validating the desired functionality of the
PostgreSQL transformer and for evaluating its transformation speed, respectively. Also, the
generated MySQL and PostgreSQL parsers are displayed in the two last lists.

A.1. OSGi Declarative Service Implementation

1 @Component(name = "PostgreSQLTransformer", immediate = false)
2 @Service(value = SQLTransformer.class)
3 @Property(name = SQLTransformer.SOURCE_DIALECT_PROP, value = "PostgreSQL")
4 public class PostgreSQL implements SQLTransformer {
5

6 @Override
7 public String transform(String original, String target) throws NotImplementedException,

UntransformableException, SQLParseException
8 {
9 if(target.equals(getSourceDialect())){

10 return original;
11 }
12 PostgreSQLParser parser = new MySQLParser(new StringReader(original));
13 String transformed = null;
14 try {
15 Statement stmt = parser.Statement();
16 transformed = stmt.transform(target);
17 } catch (ParseException e) {
18 throw new SQLParseException(e.getMessage());
19 }
20 return transformed;
21 }
22
23 }

Listing A.1: OSGi Declarative Service Implementation with Felix SCR annotations

85

Appendix A. Source Code Segments

A.2. Validation Test Case

1

2

3 public SelectTest extends TestCase{
4 ...
5 public void test() throws JSQLParserException {
6 String statement = "SELECT * FROM lineitem WHERE quantity =11 LIMIT 10 OFFSET 3;";
7 String transformed = "SELECT * FROM lineitem WHERE quantity = 11 LIMIT 3, 10;";
8 Select select = (Select) parser.parse(new StringReader(statement));
9 assertEquals(3, ((PlainSelect)select.getSelectBody()).getLimit().getOffset());

10 assertEqauls(statement, select.toString());
11 assertEquals(transformed, select.transform(Dialect.PostgreSQL));
12 ...
13 }
14 ...
15 }

Listing A.2: JUnit Test Case Example for Validation

A.3. Evaluation Test Case

1

2 public class SpeedTest {
3 ...
4 public static void main(String[] args) {
5 try {
6 str = "SELECT * FROM lineitem WHERE quantity = 11 LIMIT 10 OFFSET 3;";
7 for (int i = 0; i < 100; i++) {
8 long t0 = System.currentTimeMillis();
9 for (int j = 0; j < 10000; j++) {

10 parser = new MySQLParser(new StringReader(str));
11 stmt = parser.Statement();
12 transformed = stmt.transform(Dialect.MySQL);
13 parser = null;
14 stmt = null;
15 transformed = null;
16 }
17 long e0 = System.currentTimeMillis() - t0;
18 System.out.println("Overall time", e0);
19

20 }
21

22 } catch (Throwable e) {
23 e.printStackTrace();
24 }
25 }
26 }

Listing A.3: JUnit Test Case Example for Evaluation

86

A.4. Generated PostgreSQL Parser

A.4. Generated PostgreSQL Parser

1 final public DropTable DropTable() throws ParseException {
2

3 DropTable dropTable = new DropTable();
4 List tables;
5

6 jj_consume_token(K_DROP);
7 jj_consume_token(R_TABLE);
8 if (jj_2_54(2)) {
9 jj_consume_token(K_IF);

10 jj_consume_token(K_EXISTS);
11 dropTable.setIfExists(true);
12 } else {
13 ;
14 }
15 tables = TableList();
16 dropTable.setTables(tables);
17 switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {
18 case K_CASCADE:
19 case K_RESTRICT:
20 switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {
21 case K_CASCADE:
22 jj_consume_token(K_CASCADE);
23 dropTable.setCascade(true);
24 break;
25 case K_RESTRICT:
26 jj_consume_token(K_RESTRICT);
27 dropTable.setRestrict(true);
28 break;
29 default:
30 jj_la1[221] = jj_gen;
31 jj_consume_token(-1);
32 throw new ParseException();
33 }
34 break;
35 default:
36 jj_la1[222] = jj_gen;
37 ;
38 }
39 {if (true)
40 return dropTable;
41 }
42 throw new Error("Missing return statement in function");
43 }

Listing A.4: Code Snippet of the Generated PostgreSQL Parser, Responsible for Parsing
the DROP table Statements

87

Appendix A. Source Code Segments

A.5. Generated MySQL Parser

1 final public DropTable DropTable() throws ParseException {
2

3 DropTable dropTable = new DropTable();
4 Table table;
5 List tablesList = new ArrayList();
6

7 jj_consume_token(R_DROP);
8 switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {
9 case K_TEMPORARY:

10 jj_consume_token(K_TEMPORARY);
11 dropTable.setTemporary(true);
12 break;
13 default:
14 jj_la1[286] = jj_gen;
15 ;
16 }
17 jj_consume_token(R_TABLE);
18 switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {
19 case R_IF:
20 jj_consume_token(R_IF);
21 jj_consume_token(R_EXISTS);
22 dropTable.setIf_exists(true);
23 break;
24 default:
25 jj_la1[287] = jj_gen;
26 ;
27 }
28 table = Table();
29 tablesList.add(table);
30 label_37:
31 while (true) {
32 switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {
33 case 150:
34 ;
35 break;
36 default:
37 jj_la1[288] = jj_gen;
38 break label_37;
39 }
40 jj_consume_token(150);
41 table = Table();
42 tablesList.add(table);
43 }
44 switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {
45 case R_CASCADE:
46 case R_RESTRICT:
47 switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {
48 case R_RESTRICT:
49 jj_consume_token(R_RESTRICT);
50 dropTable.setRestrict(true);
51 break;

88

A.5. Generated MySQL Parser

52 case R_CASCADE:
53 jj_consume_token(R_CASCADE);
54 dropTable.setCascade(true);
55 break;
56 default:
57 jj_la1[289] = jj_gen;
58 jj_consume_token(-1);
59 throw new ParseException();
60 }
61 break;
62 default:
63 jj_la1[290] = jj_gen;
64 ;
65 }
66 dropTable.setTablesList(tablesList);
67 {if (true)
68 return dropTable;
69 }
70 throw new Error("Missing return statement in function");
71 }

Listing A.5: Code Snippet of the Generated MySQL Parser, Responsible for Parsing the
DROP table Statements

89

Appendix A. Source Code Segments

90

Appendix B.

Class Diagrams

In the following, a class diagram that depicts the relationships among the PostgreSQL proxy
and the SQL transformation components is shown. Here, a more detailed overview of the
class diagram of Figure 6.1 is provided. The methods each of the involved classes implements
or overrides are shown.

Figure B.1.: Class Diagram that Shows the Relationships Among the PostgreSQL Proxy
and the SQL Transformation Components

91

Appendix B. Class Diagrams

The following class diagram depicts the relationships among the PostgreSQL proxy and
classes of other components of CDASMix, such as ServiceMix-Camel and CDASMixJDBC.

Figure B.2.: Class Diagram that Shows the Relationships Among the PostgreSQL Proxy
and Other Components of CDASMix

92

Appendix C.

Visitor Pattern in JSqlParser

As we discussed in Section 3.2, we develop the PostgreSQL transformation based on the
open source JSqlParser, which analyzes SQL statement and generates from it a hierarchy
of Java classes in depth-first pre-order. The generated hierarchy can be navigated using
the visitor pattern [Conb] (also in depth-first pre-order). This allows the addings of new
methods to the existing hierarchy without modifying the hierarchy [Mar02]. This is actually
the reason why the same class hierarchy can be easily re-used for implementing different
types of parsers [MA06]. It was used in [Xia13] for generating the MySQLParser and it is
used in this work for the PostgreSQLParser.

The visitor represents an operation, encapsulated as a Java method, to be performed on the
elements and allows us to define new operations without changing the classes. In such a
way we are able to plug-in the transform functionality to the existing class hierarchy that will
convert each node to an SQL component of the target statement.

The visitor architecture organizes the class hierarchy of JSqlParser in 7 groups, as shown in
Figure C.1. Figure C.2 focuses on the group of classes that implement the Statement Interface.
These classes are the so called elements. Each element implements an accept method that
takes the respective visitor as an argument. In the example of Figure C.2, the accept methods
that each element overrides, take as argument the StatementVisitor. The implementation of
the called accept method is chosen based on the dynamic type of the element and the static
type of the visitor, while the implementation of the called visit method is chosen based on the
dynamic type of the visitor and the static type of the element. Hence, the double dispatch is
effectively implemented.

One should notice that our implementation uses the visitor pattern architecture to navigate
the Java hierarchy and not to directly implement transform functionality. Each Java class
of the elements is enhanced with a new method, the transform method, which handles the
transformation of the SQL feature encapsulated by this class, into the implemented target
dialects.

93

Appendix C. Visitor Pattern in JSqlParser

<<Java Interface>>

ExpressionVisitor
net.sf.jsqlparser.expression

visit(HexValue):void

visit(BitValue):void

visit(BooleanValue):void

visit(DefaultValue):void

visit(NullValue):void

visit(Function):void

visit(InverseExpression):void

visit(JdbcParameter):void

visit(DoubleValue):void

visit(LongValue):void

visit(DateValue):void

visit(TimeValue):void

visit(TimestampValue):void

visit(Parenthesis):void

visit(StringValue):void

visit(Addition):void

visit(Division):void

visit(Multiplication):void

visit(Subtraction):void

visit(AndExpression):void

visit(OrExpression):void

visit(Between):void

visit(EqualsTo):void

visit(GreaterThan):void

visit(GreaterThanEquals):void

visit(InExpression):void

visit(IsNullExpression):void

visit(LikeExpression):void

visit(MinorThan):void

visit(MinorThanEquals):void

visit(NotEqualsTo):void

visit(Column):void

visit(SubSelect):void

visit(CaseExpression):void

visit(WhenClause):void

visit(ExistsExpression):void

visit(AllComparisonExpression):void

visit(AnyComparisonExpression):void

visit(Concat):void

visit(Matches):void

visit(BitwiseAnd):void

visit(BitwiseOr):void

visit(BitwiseXor):void

<<Java Interface>>

ItemsListVisitor
net.sf.jsqlparser.expression.operators.relational

visit(SubSelect):void

visit(ExpressionList):void

<<Java Interface>>

StatementVisitor
net.sf.jsqlparser.statement

visit(Select):void

visit(Delete):void

visit(Update):void

visit(Insert):void

visit(Replace):void

visit(DropTable):void

visit(Truncate):void

visit(CreateTable):void

visit(Set):void

<<Java Interface>>

FromItemVisitor
net.sf.jsqlparser.statement.select

visit(Table):void

visit(SubSelect):void

visit(SubJoin):void

<<Java Interface>>

OrderByVisitor
net.sf.jsqlparser.statement.select

visit(OrderByElement):void

<<Java Interface>>

SelectItemVisitor
net.sf.jsqlparser.statement.select

visit(AllColumns):void

visit(AllTableColumns):void

visit(SelectExpressionItem):void

<<Java Interface>>

SelectVisitor
net.sf.jsqlparser.statement.select

visit(PlainSelect):void

visit(Union):void

Figure C.1.: Visitor Interfaces of the JSqlParser’s Class Architecture

94

Figure C.2.: Visitor Architecture of the Group of Classes that Implement the Statement
Interface

95

Appendix C. Visitor Pattern in JSqlParser

96

Bibliography

[ABLS13] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch. How to Adapt Applica-
tions for the Cloud Environment. Computing, 95:493–535, 2013.

[AFG+05] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. A Survey of Adaptive
Optimization in Virtual Machines. Proceedings of the IEEE, 93(2):449–466, 2005.

[Amo14] G. Amorim. The Importance of SOA to Cloud Computing. Service Technology
Magazine, 2014.

[app] Application Architecture Guide - Chapter 9 - Layers and Tiers.
http://www.guidanceshare.com/wiki/Application_Architecture_Guide_
-_Chapter_9_-_Layers_and_Tiers.

[Bac12] T. Bachmann. Entwicklung einer Methodik für die Migration der Daten-
bankschicht in die Cloud. Diploma Thesis No. 3360, Institute of Architecture of
Application Systems, University of Stuttgart, 2012.

[Bar] N. Bartlett. A Comparison of Eclipse Extensions and OSGi Services. http:
//www.eclipsezone.com/articles/extensions-vs-services/.

[Bar11] I. Barukcic. Causality II. A Theory Of Energy, Time And Space. lulu.com, 2011.

[BGK+11] M. Behrendt, B. Glasner, P. Kopp, R. Dieckmann, G. Breiter, S. Pappe, H. Kreger,
and A. Arsanjani. Introduction and Architecture Overview, IBM Cloud Comput-
ing Reference Architecture 2.0. Draft Version V, 1(0), 2011.

[Boy04] C. Boyer. The 360 Revolution. IBM Corp, 2004.

[CB74] D. D. Chamberlin and R. F. Boyce. SEQUEL: A Structured English Query
Language. In Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop
on Data Description, Access and Control, SIGFIDET ’74, pages 249–264. ACM, 1974.

[CK13] S. Cranton and J. Korab. Apache Camel Developer’s Cookbook (Solve Common
Integration Tasks With Over 100 Easily Accessible Apache Camel Recipes). Packt
Publishing, 2013.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun.
ACM, 13(6):377–387, 1970.

[com] MySQL vs. PostgreSQL. https://www.wikivs.com/wiki/MySQL_vs_
PostgreSQL.

97

Bibliography

[Cona] Continuent, Inc. Continuent Tungsten Connector. http://sourceforge.
net/apps/mediawiki/tungsten/index.php?title=Introduction_to_the_
Tungsten_Connector.

[Conb] Continuent, Inc. Sourceforge. http://jsqlparser.sourceforge.net.

[Eis03] P. Eisentraut. PostgreSQL – Das Offizielle Handbuch. Verlag Moderne Industrie,
2003.

[GBE07] A. Georges, D. Buytaert, and L. Eeckhout. Statistically Rigorous Java Perfor-
mance Evaluation. SIGPLAN Not., 42(10):57–76, 2007.

[Goo09] J. Goodson. The Data Access Handbook : Achieving Optimal Database Application
Performance and Scalability. Prentice Hall, 2009.

[GS13] S. Gómez Sáez. Extending an Open Source Enterprise Service Bus for Cloud
Data Access Support. Diploma Thesis No. 3419, Institute of Architecture of
Application Systems, University of Stuttgart, 2013.

[Jak] Jakub Korab. Effective System Integrations with
Apache Camel. https://skillsmatter.com/skillscasts/
5074-effective-system-integrations-with-apache-camel.

[jdb] JDK 6 Java Database Connectivity (JDBC)-related APIs & Developer Guides.
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/.

[KB] D. K. Barry. Web Services and Cloud Computing. http://www.
service-architecture.com/articles/cloud-computing/web_services_
and_cloud_computing.html.

[keya] MySQL Documentation: Keywords and Reserved Words. https://dev.mysql.
com/doc/refman/5.5/en/keywords.html.

[keyb] PostgreSQL 9.4.5 Documentation: Appendix C. SQL Key Words. http://www.
postgresql.org/docs/7.3/static/sql-keywords-appendix.html.

[KKH08] K. E. Kline, D. Kline, and B. Hunt. SQL in a Nutshell. O’Reilly, third edition, 2008.

[Lin93] B. Lindgren. Statistical Theory, Fourth Edition (Chapman & Hall/CRC Texts in
Statistical Science). Chapman and Hall/CRC, 1993.

[LN12] T. Laszewski and P. Nauduri. Migrating to the Cloud : Oracle Client/Server Mod-
ernization. Syngress, 2012.

[Lou10] P. Louridas. Up in the Air: Moving Your Applications to the Cloud. IEEE
Software, 27(4):6–11, 2010.

[MA06] B. Meyer and K. Arnout. Componentization: The Visitor Example. Computer,
39(7):23–30, 2006.

[Mar02] R. C. Martin. Agile Software Development, Principles, Patterns, and Practices. Pear-
son, 2002.

98

Bibliography

[MF11] P. Mell and T. France. The NIST Definition of Cloud Computing. National
Institute of Standards and Technology, 2011.

[Mil12] N. Milosavljević. Algorithms and Data Structures, Course Notes, University of
Stuttgart, 2012.

[Mir] Mira Mezini. Programming Abstractions for Applications in Cloud Environment
(PACE). http://pace-erc.eu/assets/PACE-Synopsis.pdf.

[Moh11] T. S. Mohan. Migrating into a Cloud, pages 43–56. John Wiley and Sons, Inc., 2011.

[Mol12] L. Molková. Theory and Practice of Relational Algebra: Transforming Relational
Algebra to SQL. LAP LAMBERT Academic Publishing, 2012.

[Muh12] D. Muhler. Extending an Open Source Enterprise Service Bus for Multi-Tenancy
Support Focusing on Administration and Management. Diploma Thesis No.
3226, Institute of Architecture of Application Systems, University of Stuttgart,
2012.

[Mye09] J. Myerson. Cloud Computing Versus Grid Computing. Service Types, Similarities
and Differences, and Things to Consider, IBM, 3, 2009.

[mys] MySQL Documentation: MySQL 5.6 Reference Manuals. http://dev.mysql.
com/doc/refman/5.6/en/index.html.

[OSG11] OSGi Alliance. OSGi Service Platform Core Specification. Release 4, Core Version
4.3, 2011.

[OSG12] OSGi Alliance. OSGi Service Platform Service Compendium. Release 4, Com-
pendium Version 4.3, 2012.

[Osi10] J. Osis. Model-Driven Domain Analysis and Software Development: Architectures and
Functions (Premier Reference Source). IGI Global, 2010.

[OV11] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Springer,
third edition, 2011.

[posa] PostgreSQL 9.4.0 Documentation. http://www.postgresql.org/docs/9.4/
interactive/index.html.

[posb] PostgreSQL Documentation, Chapter 43. http://www.postgresql.org/docs/
9.4/static/protocol.html.

[Qus05] Qusay H. Mahmoud. Service-Oriented Architecture (SOA) and Web Ser-
vices: The Road to Enterprise Application Integration (EAI), 2005. http:
//www.oracle.com/technetwork/articles/javase/soa-142870.html.

[RD09] T. Rademakers and J. Dirksen. Open Source ESBs in Action. Manning Publications
Co., 2009.

[Rei11] A. J. D. Reis. Compiler Construction Using Java, JavaCC, and Yacc. Wiley-IEEE
Computer Society Pr, 1 edition, 2011.

99

Bibliography

[SAGS+12] S. Strauch, V. Andrikopoulos, S. Gómez Sáez, F. Leymann, and D. Muhler.
Enabling Tenant-Aware Administration and Management for JBI Environments.
In Proceedings of the 5th IEEE International Conference on Service-Oriented Computing
and Applications, SOCA 2012, pages 206–213. IEEE Computer Society, 2012.

[SAK+14] S. Strauch, V. Andrikopoulos, D. Karastoynova, F. Leymann, N. Nachev, and
A. Staebler. Migrating Enterprise Applications to the Cloud: Methodology and
Evaluation. International Journal of Big Data Intelligence, 1(3):127–140, 2014.

[SAKVH15] S. Strauch, V. Andrikopoulos, D. Karastoyanova, and K. Vukojevic-Haupt. Mi-
grating eScience Applications to the Cloud: Methodology and Evaluation, book chap-
ter 5, pages 89–114. Cloud Computing with E-science Applications. CRC Press/-
Taylor & Francis, 2015.

[SALM12] S. Strauch, V. Andrikopoulos, F. Leymann, and D. Muhler. ESBMT: Enabling
Multi-Tenancy in Enterprise Service Buses. In Proceedings of the 4th IEEE Inter-
national Conference on Cloud Computing Technology and Science, CloudCom 2012,
pages 456–463. IEEE Computer Society, 2012.

[Sch14] C. Schmid. Development of a Java Library and Extension of a Data Access Layer
for Data Access to Non-Relational Databases. Diploma Thesis No. 3679, Institute
of Architecture of Application Systems, University of Stuttgart, 2014.

[SL90] A. P. Seth and J. A. Larson. Federated Database Systems for Managing Dis-
tributed, Heterogeneous, and Autonomous Databases. ACM Computing Surveys,
22(3), 1990.

[SW11] R. Sedgewick and K. Wayne. Algorithms (4th Edition). Addison-Wesley Profes-
sional, 2011.

[SZT12] B. Schwartz, P. Zaitsev, and V. Tkachenko. High Performance MySQL: Optimization,
Backups, and Replication. O’Reilly Media, Inc., 2012.

[Tec] TechTarget, SearchCloudComputing. Cloud Computing Technology
Trends-in-2015. http://searchcloudcomputing.techtarget.com/feature/
Cloud-computing-technology-trends-in-2015.

[The] The Apache Software Foundation. Apache Camel. http://camel.apache.org/
exchange-pattern.html.

[Tra13] Transaction Processing Performance Concil. TPC BenchMark H Standard Speci-
fication Revision 2.16.0, 2013.

[VBB11] W. Voorsluys, J. Broberg, and R. Buyya. Introduction to Cloud Computing. John
Wiley and Sons, Inc., 2011.

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, 2005.

100

Bibliography

[Xia13] S. Xia. Extending an Open Source Enterprise Service Bus for SQL Statement
Transformation to Enable Cloud Data Access. Diploma Thesis No. 3506, Institute
of Architecture of Application Systems, University of Stuttgart, 2013.

All links were last followed on October 22, 2015.

101

Acknowledgement

I am heartily thankful to my supervisor Steve Strauch from
the University of Stuttgart for trusting me and giving me the
opportunity to enter the exciting field of system integration
and Cloud computing. Without his encouragement, guidance,
persistent support, and patience, the completeness of this thesis
would not have been possible. I am grateful to my parents as
well, who have always been the source of inspiration and the
greatest supporters for me. I want to thank my colleague and
boyfriend Oliver Feldmann, for the encouragement, support,
and countless advices. Last but not least, I thank my sister and
young programmer, Eva Ramaj, as well as my fellow and friend,
Omar Elazhary. The long and fruitful discussions with them were
extremely helpful.

Alketa Ramaj

Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any sources and references other than those
listed. I have marked all direct or indirect statements from other
sources contained therein as quotations. Neither this work nor
significant parts of it were part of another examination procedure.
I have not published this work in whole or in part before. The
electronic copy is consistent with all submitted copies.

Stuttgart, 23 October 2015 ——————————–
(Alketa Ramaj)

 HistoryItem_V1
 TrimAndShift

 Bereich: alle Seiten
 Beschneiden: keine
 Versatz: links um 5.67 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20150929114554
 841.8898
 a4
 Blank
 595.2756

 Wide
 1
 0
 No
 394
 418
 Fixed
 Left
 5.6693
 0.0000

 Both
 3
 AllDoc
 83

 CurrentAVDoc

 None
 8.5039
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 26
 116
 115
 116

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite, nur wenn ungerade
 Beschneiden: keine
 Versatz: oben um 8.50 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20150929114554
 841.8898
 a4
 Blank
 595.2756

 Wide
 1
 0
 No
 394
 418
 Fixed
 Up
 8.5039
 0.0000

 Odd
 3
 CurrentPage
 83

 CurrentAVDoc

 None
 8.5039
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 116
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite, nur wenn ungerade
 Beschneiden: keine
 Versatz: rechts um 8.50 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20150929114554
 841.8898
 a4
 Blank
 595.2756

 Wide
 1
 0
 No
 394
 418
 Fixed
 Right
 8.5039
 0.0000

 Odd
 3
 CurrentPage
 83

 CurrentAVDoc

 None
 8.5039
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 116
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite, nur wenn ungerade
 Beschneiden: keine
 Versatz: rechts um 8.50 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20150929114554
 841.8898
 a4
 Blank
 595.2756

 Wide
 1
 0
 No
 394
 418
 Fixed
 Right
 8.5039
 0.0000

 Odd
 3
 CurrentPage
 83

 CurrentAVDoc

 None
 8.5039
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 116
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite, nur wenn ungerade
 Beschneiden: keine
 Versatz: oben um 5.67 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20150929114554
 841.8898
 a4
 Blank
 595.2756

 Wide
 1
 0
 No
 394
 418
 Fixed
 Up
 5.6693
 0.0000

 Odd
 3
 CurrentPage
 83

 CurrentAVDoc

 None
 8.5039
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 116
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite, nur wenn ungerade
 Beschneiden: keine
 Versatz: unten um 2.83 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20150929114554
 841.8898
 a4
 Blank
 595.2756

 Wide
 1
 0
 No
 394
 418
 Fixed
 Down
 2.8346
 0.0000

 Odd
 3
 CurrentPage
 83

 CurrentAVDoc

 None
 8.5039
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 116
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite, nur wenn ungerade
 Beschneiden: keine
 Versatz: links um 2.83 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20150929114554
 841.8898
 a4
 Blank
 595.2756

 Wide
 1
 0
 No
 394
 418

 Fixed
 Left
 2.8346
 0.0000

 Odd
 3
 CurrentPage
 83

 CurrentAVDoc

 None
 8.5039
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 116
 0
 1

 1

 HistoryList_V1
 qi2base

