
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 236

Sparse Grid Datamining with

Huge Datasets

Max Franke

Course of Study: Computer Science

Examiner: Jun. Prof. Dr. rer. nat. Dirk Pflüger

Supervisor: Dipl. Inf. David Pfander

Commenced: 2015-05-25

Completed: 2015-11-25

CR-Classification: H.2.8

Acknowledgements

This thesis has benefited greatly from the support of various people, whom I’d like to thank
sincerely for everything they have done for me.

First of all, I’d like to thank the Institute for Parallel and Distributed Systems (IPVS) at the
University of Stuttgart in general, for generously providing me with a very powerful server to
do the computations for my thesis on. The approximately 15 years of user and system time I
got to consume are highly appreciated, and, hopefully, put to a good use.

I’d also like to thank, in particular, the department for Simulation of Large Systems (SGS) at
the IPVS for their general friendly atmosphere. I greatly enjoyed bike tours and Christmas
parties with the department, and regret not having been able to partake in the Back to the
Future movies night. The occasional free coffee and friendly words in the office of Stefan
Zimmer are also highly appreciated.

I’d like to offer special thanks to my supervisor, David Pfander, for his extensive and accom-
modating assistance during my thesis. He left no questions unanswered, could always offer
me helpful pointers when confronted with an error message, and generally took his position
as my supervisor very serious.

I’d like to thank Dr.-Ing. Markus Schubert and Prof. Dr. rer. nat. habil. Jürgen Werner from
the Institute for Photovoltaics for providing the photovoltaic data and, on request, agreeing
to a meeting and suggesting scenarios for data mining and a portion of knowledge about
photovoltaic cells. Furthermore, my thanks go to Thomas Müller, Michael Grotz and Micha
Eisele from the Institute for Water and Environment Modeling for providing a second weather
dataset on short notice. The data were very helpful.

Last, but not least, I’d like to thank my friends and family for their support during the thesis.
Thanks go to Gregor Daiß, who wrote his thesis simultaneously with me, for sharing his
knowledge of C++ and data mining algorithms, and for the good times we shared in our
free time. Special thanks go to my girlfriend Fiona for always being there, especially when I
despaired of segmentation faults or the amount of work simply overwhelmed me, and for
accepting the time pressure I was under.

3

Abstract

Due to the inflated costs of disk space and the prevalence of sensor equipment everywhere, the
scientific world is flooded by huge amounts of data. The intention being to somehow benefit
from that data, data mining algorithms are used to evaluate those data. As conventional data
mining methods scale at least linear with problem size and exponentially with input problem
dimension, this poses a great problem as to the computing power required to mine these
data. For the testing of data mining algorithms, very few real world reference datasets exist.
Using an already in-place toolkit for data mining on sparse grids, the goal of this thesis is to
generate one or more real world reference datasets for data mining purposes. For this purpose,
multiple weather and photovoltaic datasets were used. It was possible to learn 6-dimensional
datasets with 1.2 million data points and obtain a very good prediction of photovoltaic power.
Thus, a dataset was obtained to test regression on. For classification, a 9-dimensional dataset
with 200 000 data points was generated, which however didn’t have overly good results, with
a 41% hit rate over 4 classes. Here, further processing of the data will be necessary.

5

Contents

1 Introduction 11

2 Data Mining on Sparse Grids 13
2.1 Notations . 13
2.2 Sparse Grids . 16
2.3 Regression . 26
2.4 Classification . 28
2.5 Clustering . 33
2.6 k-fold Cross Validation . 36

3 Used Tools and Data 37
3.1 SG++ . 37
3.2 The Used Data . 37
3.3 Other Tools and Libraries . 42

4 Generating Datasets 43
4.1 Database Preprocessing . 43
4.2 Delay Embedding . 43
4.3 Generation of Datasets . 48

5 Dataset Scenarios 51
5.1 Weather Events . 51
5.2 Power Prediction . 57

6 Conclusions and Outlook 67

Bibliography 69

7

List of Figures

2.1 Full grid of grid level 2 . 14
2.2 Nodal basis functions of level 3 . 18
2.3 Nodal basis functions interpolating a function . 19
2.4 Hierarchical basis functions {ϕl,i}1≤l≤4 . 21
2.5 Hierarchical subspaces of dimension d = 2 and level l1, l2 ≤ 3 21
2.6 Sparse grid basis functions for dimension 2 and level 3 22
2.7 Interpolation of a function using a hierarchical basis 23
2.8 Hierarchical basis functions stacked . 24
2.9 Adaptivity of a sparse grid . 25
2.10 Interpolation with adaptive sparse grid . 26
2.11 Classification by density estimation . 32
2.12 Cluster detection by k-nearest-neighbors technique with SGDE 35

3.1 Map of data collection locations . 40

4.1 Comparison of air temperature gradation with and without a thunderstorm . . 47

5.1 Regression results of exp2_2_v3 . 61
5.2 NMSE over dataset size . 62
5.3 NMSE over time difference ∆t . 63
5.4 Comparison: Dataset sizes . 64

List of Tables

2.1 Number of grid points for full and sparse grid of level 3 17

3.1 Sensor descriptions for Stuttgart IPV data . 38
3.2 DWD weather warning types . 41
3.3 Sensor descriptions for the IWS data . 42

8

4.1 Time series prediction of sin(x) . 45

5.1 Attributes for weather event classification . 53
5.2 Weather event hit rates, specialized experiments 54
5.3 Weather event hit rates, specialized experiments 55
5.4 Confusion matrix for exp_3_11_1 . 56
5.5 Attribute space for the power prediction dataset 59
5.6 Power predicition experiment results . 60

Listings

4.1 SQL query to generate dataset . 49

List of Algorithms

2.1 Learning a classification by multiple regression 30
2.2 Evaluating a classification by multiple regression 30

9

1 Introduction

The ultimate goal of this work is to produce one or more huge real world datasets, which
then can be used to test the efficiency of data mining algorithms. There is a lack of real
world datasets to work on, and in particular there is a lack of real world datasets of a certain
size. Most real world datasets have a very limited size. For instance, the well-known Old
Faithful[Was13] dataset, which consists of a data column for the time between eruptions for
the geyser with the same name and a data row for the duration of the eruption, only consists
of 272 data points. Moreover, it is only two-dimensional. This makes it easy to apply data
mining algorithms to it. While there exist larger and higher-dimensional collected data from
Old Faithful, applying data mining methods to it still remains a very small problem.

To test new data mining methods, bigger datasets are often needed to test the stability and
scalability of the method. To achieve thorough testing, in many cases, synthetic datasets are
generated. Synthetic datasets have a number of advantages: They are easily scalable, both
in dimension and size. They are easily conveyable, as they are generated by a program with
specific parameters, so in practice, one can simply send the source code and parameters. Syn-
thetic datasets are typically generated by evaluating a function at random points throughout
the attribute space, and then adding white noise to the evaluated function[TSN99][DR11].

However, data mining methods are designed to be used on real world data. Learning synthetic
data has no other use than to test whether the method is working as wanted. Sooner or later,
every data mining algorithm has to be used on real world data, for example to detect traffic
patterns, predict weather, or group customers by their shopping habits. These applications
are all based on real world data, and real world data has some properties that are very hard to
replicate in synthetic datasets, and which make data mining way harder.

Real world datasets nearly always contain some sort of noise or measurement inaccuracy which
is very difficult to replicate by simply applying random white noise by normal distribution
or other techniques. This is because most measured values in some way dependent on some
variable which might not be part of the dataset. For instance, the wind speed at a certain
location might be dependent on the solar radiation on a large forest a few kilometers away.
However, for a data mining scenario to predict the wind speed at that location, the solar
radiation above the forest is most likely not measured, and thus the wind speed will seem to
have a random component.

Moreover, in synthetic datasets, the data points are usually evenly distributed throughout
the attribute space. This makes it a lot easier to do regression on the data, as there are no

11

1 Introduction

undefined areas to consider. In real world datasets, a large part of the attribute space is often
sparsely populated with data points, if there are points there at all. This is not a problem for
clustering (see section 2.5 on page 33) or density estimation based classification (see section
2.4.2 on page 30), but it is for regression (see section 2.3 on page 26).

Another point is that synthetic datasets can be generated tailor-made for the algorithm or
method they are supposed to test. This leads to the possibility that datasets are generated in a
way that favors the algorithm, and thus testing it becomes a charade. Using real world datasets
to test algorithms assures that the algorithm is working correctly under harder conditions as
well.

Finding real world datasets of a higher dimensionality and especially a greater dataset size
is as of now very difficult. However, for many methods, testing requires large datasets
to test algorithmic attributes like scalability and stability. The goal of this work was to
experiment with a very large database of collected weather and power data from a photovoltaic
experimental plant in Stuttgart and to generate a big dataset from those data which could be
used to test data mining algorithms.

In chapter 2, I will define the necessary symbols and notations for my thesis. I will define the
metrics necessary to assess the accuracy of data mining methods. I will then explain in detail
what interpolation of a function on a finite function space means. The term of the full grid
will be explained and then used to explain the hierarchical grid and, last, the sparse grid.

The data mining methods used in this thesis will be listed. Their functionality will be
explained, together with the mathematical definition of what they do.

In chapter 3, the tools and data used for this work will be listed. The spatially adaptive sparse
grid toolkit SG++will be introduced. Other tools used to generate this work will be shortly
listed. I will also explain the source of the used data and how they were preprocessed.

In chapter 4, I will explain the generation of the datasets used for experiments in the thesis.
First, I will describe how the data were preprocessed and merged into one database. Then,
I will explain the concept of delay embedding, which was used to generate additional and
useful attributes for the datasets. Last, I will briefly show the pipeline from the database to
the dataset.

In chapter 5, I will list the scenarios I based my datasets on and their reasoning. I will also list
all experiments I did with different datasets and discuss their outcome. Lastly, I will share
some findings about dataset sizes.

In chapter 6, I will propose some starting points on which further work can be done based
on this thesis. This is only a Bachelor’s thesis, and it is easily possible to start additional
research on the status quo of the data I collected and maintained. With more knowledge
into photovoltaics or weather theory, far better scenarios could be designed. Also, with some
specialization into data engineering, the data could be refined to only the most relevant data,
possibly leading to better results.

12

2 Data Mining on Sparse Grids

2.1 Notations

In this section, the notations and definitions which are used throughout the thesis are listed.

2.1.1 General notations

Let a measured value with be called an attribute, with a specific domain. An attribute can
for example be the air temperature or relative humidity.

For a set of attributes Ai ,1 ≤ i ≤ d with Ai = {aj ∈R}
N∈ℸ

j=1
let the general attribute space Ω be

the space of value tuples of those attributes

ΩBR
d (2.1)

In order to be able to work with the attribute space in a discrete environment, e.g. in com-
puters, we scale the attribute space down to the [0,1]d hypercube and define the normalized
attribute space

ΩnB [0,1]d (2.2)

for an arbitrary dimension d.

For a grid of dimension d, let the grid level be denoted as l such that the number of grid points
in each dimension is 2l −1. Let the per-dimension index i of a grid point be its sequential
number. Not including the boundary grid points, the indexation starts with 1 and ends with
2l −1. In Fig. 2.1, a full grid of level 2 is shown, with the boundary grid points in red. For a
grid of level l, let the resolution hl of the grid be denoted as

hl B 2−l (2.3)

Let the Euclidean norm or 2-norm be denoted by

∥v⃗∥2B
¿
ÁÁÀ

n

∑
j=1

v2
j (2.4)

13

2 Data Mining on Sparse Grids

as the length of the vector v⃗, and let the discrete ℓ2 norm be the 2-norm squared.

Let the ℓ1 norm or Manhattan norm of v⃗ be defined as

∣v⃗∣1B
n

∑
j=1
∣vj ∣ (2.5)

Let the maximum norm of v⃗ be

∣v⃗∣∞B max
1≤j≤d

∣vj ∣ (2.6)

Let the i-th component of a vector v⃗ ∈Rk be denoted as

vi ∈RB ⟨v⃗, e⃗i⟩ (2.7)

For two vectors of same size u⃗, v⃗, let

u⃗ < v⃗⇔ ui < vi∀i (2.8)

and analog for ≤,≥,>.

Let 1⃗ denote the vector v⃗ of matching length with vi = 1 ∀i. Let 0⃗ denote the vector v⃗ of
matching length with vi = 1 ∀i.

0 1

0

1

Figure 2.1: Full grid of grid level 2 in the space Ωn of dimension 2. For our purposes, the
boundary grid points in red are not included, and the index in each dimension is
limited by 1 ≤ i < 2l .

14

2.1 Notations

2.1.2 Time series addressing notations

For working on time series data, let the following notations be defined for use throughout this
thesis. For a time-dependent measured value A, let A(t) be used to denote the value of A at
time t. To address values of A in the past or future of time t, let ∆t be the time difference size
which will then be implicitly used from that point on until a new time difference is defined.
With a defined ∆t, let

∀k ∈Z ∶ A(t+k)BA(t + k∆t) (2.9)

For differences between values across a certain time, let

∆A(t)BA(t) −A(t−1) (2.10)

and, for special uses where more than one time step difference has to be considered:

∆kA
(t)BA(t) −A(t−k) (2.11)

2.1.3 Statistics

Let the mean squared error (MSE) over a prediction y⃗ for expected values x⃗ be defined as

MSE(x⃗, y⃗)B 1
N

N

∑
i=1
(y⃗i − x⃗i)

2
(2.12)

= 1
N
∥x⃗− y⃗∥22

where dim x⃗,dim y⃗ ∈RN .

The mean squared error is a metric for errors which weighs the error by its severity. That
is, bigger absolute errors have a greater impact on the mean squared error. However, it is a
metric which is not easily comparable with other mean squared errors, because the size of the
mean squared error is dependent on the range of the data it was applied on.

In fact, the MSE will scale quadratically with the data range if the relative error of each data
point stays the same. So, for a comparison where the relative error is more relevant than the
absolute error, the mean squared error is not suitable.

Let the normalized mean squared error NMSE as the quotient of the mean squared error
and the discrete ℓ2 norm of the reference data:

NMSE(x⃗, y⃗)B
MSE(x⃗, y⃗)

MSE(x⃗, 0⃗)
(2.13)

=
∥x⃗− y⃗∥22
∥x⃗∥22

15

2 Data Mining on Sparse Grids

Let the hit rate be defined for a test dataset of discrete values d⃗ and a prediction of those
values e⃗ as the relative amount of correct predictions:

hit(d⃗, e⃗)B
∣{i ∶ di = ei , di ∈D}∣

N
(2.14)

with d⃗, e⃗ ∈ SN , ∣S ∣ <∞. The hit rate will be annotated in percentage points throughout this
thesis.

2.2 Sparse Grids

In order to be able to work with continuous functions efficiently with numerical methods,
those functions have to be discretised. This can be done by trying to approximate the function
as precisely as possible using an underlying function space. One method of doing this is
populating the attribute space with a grid of the same dimension, with a distance hl = 2−l

for a given grid level l between the grid points in each direction. The function value is then
evaluated for each grid point, so that the difference from the resulting discrete function to the
original function is as small as possible. Prediction of function values in between grid points
is then done via interpolation.

2.2.1 Motivation for sparse grids

As the number of attributes, that is, the dimension of the attribute space, gets larger, the
number of grid points generated grows exponentially with constant grid level l. This way,
when working on higher-dimensional problems, very soon the needed resources for the
approximation of the function become unsustainable. This problem is known as the curse of
dimensionality[Bel03] and can be tackled by using a subspace of only the grid points that
have the most influence on the representation of the approximated function. Such a subspace
of grid points is called a sparse grid.

A sparse grid of dimension d and grid level n has

O(2nnd−1)

grid points according to Garcke[Gar13], Bungartz and Griebel[BG04], while a full grid has

O(2n⋅d)

grid points in total. For dimension d = 3, this is already a very clear difference, as seen in
Tab. 2.1. So basically, we trade off some precision[BG04][Pfl10, 12] for a much less complex
problem, as every basis function – that means every grid point – is represented by one row

16

2.2 Sparse Grids

in a matrix. As many algorithms on matrices have higher-than-linear scaling, this can get
expensive both in time and storage very fast. Using sparse grids makes our calculation
matrices way smaller, and thus, makes calculating the result much faster.

Table 2.1: Number of grid points for a full and a sparse grid of level 3, according to
Bungartz[Bun15].

Grid level n Full grid points Sparse grid points
1 1 1
2 27 7
3 343 31
4 3 375 111
⋮ ⋮ ⋮

10 1 070 590 167 47 103

I will now explain the interpolation of a function on a full grid, and then explain how a
hierarchical grid and later a sparse grid are generated from the full grid’s subspaces.

2.2.2 Interpolation on a full grid

Before explaining sparse grids, it is important to understand how the approximation of a
function using a finite function space works in general, that is, on a so-called full grid. It
has a level l, a dimension d, and, subsequently, O(2l⋅d) grid points, cf. page 13. On a full
grid, we use basis functions ϕi(x) from the function space Fl , which is defined in Eq. 2.21,
for the interpolation. The function is then evaluated as the sum over all these weighted basis
functions. For a function f (x) an interpolation u(x) is done by calculating factors αi for the
respective basis function ϕi .

f (x⃗) ≈ u(x⃗) ∶=∑
i
αiϕi(x⃗) (2.15)

in such a way that, for a set of data points x⃗i ∈ D and their respective function values
yi = f (x⃗i):

u(x⃗i) = yi ∀x⃗i ∈D (2.16)

The most simple basis function is the linear hat function:

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0

2x 0 ≤ x < 1
2

−2x+2 1
2 ≤ x < 1

0 x ≥ 1

(2.17)

17

2 Data Mining on Sparse Grids

or

ϕ(x) =max(1− ∣x∣ ,0) (2.18)

When more than one hat spanning the whole feature space is used, which is usually the case,
this hat is dilated by the factor of hl and translated by i ⋅hl for it’s index i on the level, with
0 < i ≤ 2l . This way, the following basis function ϕl,i(x) for level l and index i are generated.

ϕl,i(x) =ϕ(2lx− i) (2.19)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0
ϕ3,1(x)

ϕ3,2(x)

ϕ3,3(x)

ϕ3,4(x)

ϕ3,5(x)

ϕ3,6(x)

ϕ3,7(x)

Figure 2.2: Nodal basis functions (hat) ϕl,i of dimension 1 and level 3.

In Fig. 2.2, all basis functions for level 3 are shown. The basis functions overlap and, subse-
quently, their sum is simply the piecewise linear interpolation in between the peaks of the
hats.

To use the discretization approach in higher dimension, the basis function has to be of higher
dimension as well. This is done by simply calculating the tensor product of the basis function

18

2.2 Sparse Grids

in each direction. The level and index become vectors this way, with one level and index value
for each dimension.

ϕl⃗ ,i⃗(x) ∶=
d

∏
j=1

ϕlj ,ij(xj) (2.20)

with l⃗ , i⃗ ∈Nd
0 and ∀j ≤ d,j ∈N ∶ 1 ≤ ij < 2lj . The function space Fd

l⃗
of a maximum grid level

n ∈R and dimension d is then defined as

Fd
n B span{ϕn⋅1⃗,i⃗ ∶ 1 ≤ ij < 2n ∀j ∈ [1,d] ⊊N} (2.21)

− 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

2.0

α3,iφ3,i(x)

u(x)

f(x)

Figure 2.3: Nodal basis functions (hat) ϕl,i of a full grid of dimension 1 and level 3 interpolat-
ing a function f (see Eq. 2.22) by their sum u =∑7

i=1α3,iϕ3,i .

In Fig. 2.2, the basis functions ϕ3,i ,1 ≤ i ≤ 7 are shown. In Fig. 2.3, we approximate a function

f (x) = sin(4x)+0.6sin(5x+5)−0.7x+0.01x2 − 0.3

σ
√

2π
⋅ e−

1
2(

x−µ
σ
)

2

(2.22)

for Gaussian distribution factors σ = 0.1,µ = 0.4 on a nodal basis of level l = 3. As can be seen
from Fig. 2.2, the basis functions overlap one by one. Thus, their sum is a piecewise d-linear

19

2 Data Mining on Sparse Grids

interpolation over the function values in the grid points, starting in (0,0), and ending in
(1,0).

The function f is approximated quite well by u, except for the boundaries of Ωn. That cannot
be helped with the current definition of the nodal basis. For applications where a better
boundary treatment[Pfl10, 12–16] is of importance, the definition of the nodal basis can be
modified so that the value at the edge of the attribute space does not have to be 0. To achieve
this, we add two "half" hat functions at the edges, so that we basically have a function space
Fl of level l given by

Fl B span{ϕl,i ∶ 0 ≤ i ≤ 2l} (2.23)

However, for our purposes, the standard grid without boundary grid points is sufficient, so
we will not use this variation. The boundary problem can be bypassed by smart scaling of the
input data. One should not forget to choose a reversible way of scaling the data however, that
is, a bijection.

After defining the nodal basis of level l⃗, let the hierarchical basis Vl⃗ of level l⃗ be defined as
follows: For a given level l⃗ and dimension d, let the index set Il⃗ be defined as follows:

Il⃗ B {i ∈N ∶ 1 ≤ i ≤ 2l −1, i odd}
d

(2.24)

Let the hierarchical subspace of level l⃗ Wl⃗ be defined as the space spanned by all basis
functions of level l⃗ whose index is in the index set:

Wl⃗ B span{ϕl⃗ ,i⃗(x) ∶ ij ∈ Il∀j} (2.25)

This can be visualized quite nicely in two or three dimensions, cf. Fig. 2.5. Every cell in the
figure shows the grid points of one hierarchical subspace Wl⃗ . For example, the lower left cell
shows the grid points of Wl⃗ with

l⃗ =
⎛
⎝

1
3

⎞
⎠

and the lowermost grid point in that cell is the point which represents the basis function ϕl⃗ ,i⃗
with

l⃗ =
⎛
⎝

1
3

⎞
⎠

and i⃗ =
⎛
⎝

1
7

⎞
⎠

Let the hierarchical function space of level n ∈N, Vn, be the union of all subspaces with level
l⃗ such that ∣l⃗∣

∞
≤ n:

VnB ⊕
∣l⃗∣
∞

≤n
Wl⃗ (2.26)

20

2.2 Sparse Grids

0.0

0.5

1.0
W

1

0.0

0.5

1.0

W
2

0.0

0.5

1.0

W
3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

W
4

Figure 2.4: Hierarchical basis functions ϕl,i ∈ V4. In contrast to the nodal basis, all levels up
to the grid level are used.

l1 =1

l 2
=
1

l1 =2 l1 =3

l 2
=
2

l 2
=
3

Figure 2.5: Hierarchical subspaces of dimension d = 2 and level l1, l2 ≤ 3.

21

2 Data Mining on Sparse Grids

As an example, in Fig. 2.4, the basis functions spanning V3 are plotted.

The interpolant u(x) ∈ Vn of a function f in a hierarchical subspace is created by accumulating
all basis functions ϕl,i ∈ Vn with their respective weight αl,i :

u(x) = ∑
∣l⃗∣∞≤n,i⃗∈Il⃗

αl⃗ ,i⃗ϕl⃗ ,i⃗(x) (2.27)

After defining the hierarchical basis, we now define the sparse grid as a grid where each grid
point represents a basis function of a specific level vector and index vector, such that the
function space V (1)n is spanned over a subset of the same-leveled hierarchical basis. We define
the sparse basis as V (1)n , as opposed to the hierarchical basis Vn, as the combination of all
hierarchical subspaces Wl⃗ such that the sum of all levels li ,1 ≤ i ≤ d is less or equal to the sum
of the sparse basis level plus the dimension minus one:

V (1)n ∶= ⊕
∣l⃗∣

1
≤n+d−1

Wl⃗ (2.28)

The criterion ∣l⃗∣
1
≤ n + d − 1 for n = 3 and d = 2 can be seen in Fig. 2.5 as it is true for all

subspaces with black grid points and false for all subspaces with red grid points. In Fig. 2.6,
in the lower right, the resulting sparse grid of level 3 can be seen.

X
2

X 1

Y

l2 =1

l1 =1

X
2

X 1

Y

l1 =2

X
2

X 1

Y

l2 =2

X
2

X 1

Y

X
2

X 1

Y

l1 =3

X
2

X 1

Y

l2 =3

Figure 2.6: Sparse grid basis functions for dimension 2 and level 3. In the lower right, the
grid points’ positions are also shown, coded by color.

22

2.2 Sparse Grids

We now interpolate the function from Eq. 2.22 using the hierarchical function space V4.
According to our definition from Eq. 2.28, in the one-dimensional case, the hierarchical
space is the same as the sparse space. In Fig. 2.7, the resulting weighted basis functions
αl,iϕl,i , l ≤ 4, i ∈ Il are shown for an interpolant u(x) ∈ V4. Their sum u(x), given as the dashed
red line, are the approximation of the function f (x), which is shown as a blue line. The
hierarchical basis is not as accurate as the nodal basis for approximating functions, however,
it takes a lot less grid points in higher dimensions. That is because the number of grid points
for a full grid – that is what a nodal basis means – of level n and dimension d has 2n grid
points per dimension, or 2n⋅d grid points in total. In Fig. 2.8, the basis functions up to each
level were summed up. This way, we can see nicely how the hierarchical basis produces the
approximation u.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

l1 =1

l1 =2

l1 =3

l1 =4

u(x)

f(x)

Figure 2.7: Interpolation of a function using a hierarchical basis. The interpolation u is giving
by summing up the individual weighted basis functions αl,iϕl,i . The function
f is the same as for the nodal basis example in Fig. 2.3. However, for higher
dimensions, the curse of dimensionality[Bel03] makes nodal basis functions too
expensive. Here, the loss of precision is more than compensated[BG04] by the
smaller grid size, and thus, less computational power required.

23

2 Data Mining on Sparse Grids

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

l1 ≤1

l1 ≤2

l1 ≤3

l1 ≤4

f(x)

Figure 2.8: The hierarchical basis of level 4 used to interpolate the function f from Fig. 2.7.
Instead of the basis functions αl,iϕl,i , the accumulated basis functions up to that

level l̂ (∑l̂
l=1∑i∈Il̂ αl,iϕl,i) are shown, to demonstrate how they add up to produce

u.

2.2.3 Adaptivity of Sparse Grids

Finer grids result in a better representation of the function. However, it also means an increase
in grid size, which results in more computing power required for solving the grid and in
higher storage space requirements. This poses an unnecessary problem when the represented
function u is very simple in large parts of the attribute space, as it could be represented by a
very low-level grid in those parts. Increasing the grid level over the whole attribute space is
uncalled for in those situations.

For those situations, it is possible to increase the grid level only in small parts of the attribute
space. This is called grid refinement by surplus and works as follows: We first select a grid
point we want to refine. As it should be the grid point which would need refinement the

24

2.2 Sparse Grids

most, we take the absolute surplus ∣αl,i ∣ as criterion for grid point selection, as a high surplus
indicates that the function has high variation around the grid point.

Refinement of a grid point in most cases means that we create its 2d children, that being its
two children in each dimension:

children(l⃗ , i⃗)B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜
⎝

l1 +1
l2
⋮
ld

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜
⎝

2i1 ±1
i2
⋮
id

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜
⎝

l1
l2 +1
⋮
ld

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜
⎝

i1
2i2 ±1
⋮
id

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜⎜
⎝

l1
l2
⋮

ld +1

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜
⎝

i1
i2
⋮

2id ±1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.29)

Figure 2.9: Adaptivity of a sparse grid demonstrated on two grid points. This example was
taken directly from Pflüger[Pfl10, 21].

From Fig. 2.9, we can see how this works in detail: First, we have the grid point given by the
tuple of it’s level and it’s index

Pa =
⎛
⎜
⎝

⎛
⎝

2
1

⎞
⎠
,
⎛
⎝

1
1

⎞
⎠

⎞
⎟
⎠

Now, we refine this point by it’s 2d = 4 children

Pb =
⎛
⎜
⎝

⎛
⎝

2
2

⎞
⎠
,
⎛
⎝

1
1

⎞
⎠

⎞
⎟
⎠
Pc =
⎛
⎜
⎝

⎛
⎝

2
2

⎞
⎠
,
⎛
⎝

1
3

⎞
⎠

⎞
⎟
⎠
Pd =
⎛
⎜
⎝

⎛
⎝

3
1

⎞
⎠
,
⎛
⎝

1
1

⎞
⎠

⎞
⎟
⎠
Pe =
⎛
⎜
⎝

⎛
⎝

3
1

⎞
⎠
,
⎛
⎝

3
1

⎞
⎠

⎞
⎟
⎠

Next, we refine Pc:

Pf =
⎛
⎜
⎝

⎛
⎝

2
3

⎞
⎠
,
⎛
⎝

1
5

⎞
⎠

⎞
⎟
⎠
Pg =
⎛
⎜
⎝

⎛
⎝

2
3

⎞
⎠
,
⎛
⎝

1
7

⎞
⎠

⎞
⎟
⎠
Ph =
⎛
⎜
⎝

⎛
⎝

3
2

⎞
⎠
,
⎛
⎝

1
1

⎞
⎠

⎞
⎟
⎠
Pi =
⎛
⎜
⎝

⎛
⎝

3
2

⎞
⎠
,
⎛
⎝

3
1

⎞
⎠

⎞
⎟
⎠

25

2 Data Mining on Sparse Grids

Now, we notice that Pf and Pg miss one parent, so we need to add those parents (grey grid
points in Fig. 2.9) to the grid:

Pj =
⎛
⎜
⎝

⎛
⎝

1
3

⎞
⎠
,
⎛
⎝

1
5

⎞
⎠

⎞
⎟
⎠
Pk =
⎛
⎜
⎝

⎛
⎝

1
3

⎞
⎠
,
⎛
⎝

1
7

⎞
⎠

⎞
⎟
⎠

0.0 0.2 0.4 0.6 0.8 1.0

X1

0.0

0.2

0.4

0.6

0.8

1.0

X
2

X
1

0.0

0.2

0.4

0.6

0.8

1.0

X 2

0.0

0.2

0.4

0.6

0.8

1.0

Y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2.10: Interpolation of a function using an adaptive sparse grid. The red crosses in the
left plot show the grid points, the black dots were the training data. On the right,
the interpolated function is displayed.

In Fig. 2.10, a function was learned where all function values were ≈ 1 within an area around
(0.25 ∣ 0.75). On the right of the plot, the interpolated function can be seen. On the left, the
sparse grid’s grid points are plotted in red. Around the data point cloud, the grid was heavily
adapted. In sparsely populated areas, the grid points were not refined. By using an adaptive
sparse grid, only 529 grid points were required to approximate the function. If a non-adaptive
sparse grid of same maximum level would have been used, the number of grid points might
easily have been around 50 000.

2.3 Regression

2.3.1 Mathematical definition

According to Sykes, regression is "a statistical tool for the investigation of relationships
between variables. Usually, the investigator seeks to ascertain the causal effect of one variable

26

2.3 Regression

upon another—the effect of a price increase upon demand, for example, or the effect of
changes in the money supply upon the inflation rate. To explore such issues, the investigator
assembles data on the underlying variables of interest and employs regression to estimate the
quantitative effect of the causal variables upon the variable that they influence."[Syk93].

On sparse grids, regression is the estimation u ∈ V (1)n of a function f ∶R→R
d , such that for an

input point x⃗ it’s function value f (x⃗) can be estimated by u(x⃗). As opposed to a interpolation,
where the interpolating function is exact in all interpolated points, the regression function
can – and in most cases does – have an error in the input points. In detail, we define a
d-dimensional regression u as

u ∶Ω→R with Ω =Rd (2.30)

in general. However, for our numerical approach, we confine the attribute space to the
d-dimensional hypercube over the interval [0,1]:

u ∶Ωn→R (2.31)

To start, we have a set P of N input points x⃗i ,yi with

P B {(x⃗i ,yi) ∈Ωn ×R}
N

i=1
(2.32)

and for each point x⃗i it’s associated value yi is the function value of f at x⃗:

f (x⃗i) = yi (2.33)

We also have a function space V of functions

V B {v ∶Ωn→R} (2.34)

Last, we have a regularization operator C after Tichonov, Arsenin[TA77, 45–94, 211–235] and
a regularization parameter λ ∈ [0,1]. Now, we can find an approximation u of f by solving
the following equation:

u = argmin
u∈Vn

⎛
⎝

1
m

m

∑
i=1
(yi −u (x⃗i))

2 +λC(u)
⎞
⎠

(2.35)

that is, finding the u ∈ Vn for which the MSE of the approximation of f is the smallest,
considering a regularization operator C(u). The first part

1
m

m

∑
i=1
(yi −u (x⃗i))

2

27

2 Data Mining on Sparse Grids

is the mean squared error between the approximation u in the input points and their real
value. By using the mean squared error, we ensure that large discrepancies get weighted more
than small ones. The second part

λC(u)

is the regularization term. It is used to prevent overfitting of the approximation to the data
points. Given a sufficiently large n for a function space Vn and a regularization parameter
λ = 0, we would get an approximation u which would satisfy

∀(x⃗i ,yi) ∈P ∶ u (x⃗i) = yi (2.36)

This is called overfitting and is generally considered bad, as the input points are only a sample
of the function evaluations – and may contain a white noise error or measurement error – and
fitting the function perfectly to the input points mostly results in very large errors for points
not fitted. By choosing a good regularization term, we can smoothen the approximation so
that overfitting gets reduced.

The regularization operator C was chosen as in [Pfl10, 104][Gar06] as the discrete ℓ2 norm of
the vector of hierarchical surplusses α of the grid for function on a sparse grid u ∈ V (1)n :

C(u)B ∥α⃗∥22 (2.37)

2.4 Classification

2.4.1 Mathematical definition

Classification, as defined by Bishop, has the goal to "take an input vector x and assign it to
one of K discrete classes Ck where k = 1, . . . ,K"[Bis06, 179]. Bishop also states that the classes
are regionally disjunct in the most common scenario. A d-dimensional classificator function c
over a finite set C of classes is defined as

c ∶Ωn→ C (2.38)

The classificator function c is learned using a training dataset D of size N , for which the
classes of the input points are already given:

D = {(ωi ,ci) ∈Ωn ×C}
N

i=1 (2.39)

On a learned classification, the classificator function can then estimate the class for an input
point p ∈Ωn.

28

2.4 Classification

2.4.2 Realization of a Classification

By Regression

A popular approach to solving a d-dimensional classification problem on a image set C is by
learning ∣C∣ d-dimensional regressions. For each class Ci ∈ C, a regression is learned where
all points in that class are mapped to +1 and all points not in that class are mapped to −1.
Assuming we have a classification training dataset of size N

DC B {(pj ,Cj) ∈Ωn ×C}
N

i=1
(2.40)

with the training points

pj ∈Ωn (2.41)

and the training points’ classes

Cj ∈ C (2.42)

So we define ∣C∣ training datasets Di :

Di B {(pj ,γi(pj)) ∈Ωn ×{−1,+1}}
N

i=1
(2.43)

for a binary classificator

γi ∶Ωn→ {−1,+1} (2.44)

which is defined as

γi(p)B
⎧⎪⎪⎪⎨⎪⎪⎪⎩

+1 p ∈ Ci
−1 p ∉ Ci

(2.45)

We then learn ∣C∣ regressions uCi on the training datasets Di . To estimate the class of a new
point pn, we now evaluate the regression functions at the point and compare them for which
one is the best one. For this, there are several approaches. One is to simply take the regression
function with the highest value:

c(pn) = argmax
Ci∈C

uCi(pn) (2.46)

29

2 Data Mining on Sparse Grids

For several reasons, one being overfitting of a curve, the highest regression might not always
be the best guess, so it is also possible – and sometimes necessary – to select the best regression
as the one closest to the +1:

c(pn) = argmin
Ci∈C

∣1−uCi(pn)∣ (2.47)

For my classification implementation, I undertook experiments comparing the two decision
approaches (Eq. 2.46, Eq. 2.47), and concluded that the results did not differ enough to make
a difference. Thus, the maximum approach from Eq. 2.46 was used.

The whole process is also listed here as an algorithm:

Algorithm 2.1 Learning a classification by learning ∣C∣ regression functions.
For each class, a binary classificating vector Γi ∈ {−1,+1}N is created and learned as regression.

Require: Training data D = P ,C
with P = {ωk ∈Ωn}Nk=1, C = {ck ∈ C}Nk=1
for i = 1→ ∣C∣ do

Γi ← γi (P)
uCi ∈ V

(1)
n ← learn_regression(P ,Γi)

end for

To evaluate the class of an arbitrary point x⃗ ∈Ωn, we calculate it’s most likely containing class
c(x⃗) as follows:

Algorithm 2.2 Evaluating a classification from ∣C∣ regressions.

Require: Trained regressions uCi ∀Ci ∈ C
Require: Test point x⃗ ∈Ωn

for i = 1→ ∣C∣ do
yi ← uCi (x⃗)

end for
return argmax

Ci∈C
yi

By density estimation

The approach by regression has several flaws, one of them being the difficulty to decide on
which regression function fits the input point best. Another problem is how a regression
function is behaving in places where there were no points in the training dataset. As the
regression had no constraints whatsoever there, the function estimation in those areas does
virtually have undefined behavior. Real world datasets unfortunately often have large areas
of the attribute space which are very sparsely, if ever, populated.

30

2.4 Classification

The resulting effect is that for each added dimension of the dataset, the number of training
data points also has to be increased. Ideally, this is done in such a way that there are
no sparsely populated areas of the attribute space. This criteria is also called Hughes’
phenomenon[Hug68]. However, for real world datasets, the criteria can rarely be satisfied.
For example, in a dataset which contains an attribute for air temperature and one for wind
speed, we will notice that the attribute subspace spanned by these two attributes contains
some large sparsely populated areas in the high wind corners. This is absolutely natural, as
there is seldom much wind on a very hot day. So, without very thorough preprocessing of the
data, we will always have sparsely populated areas within the attribute space.

Therefore, another method for classification is sometimes the better approach. This method is
called density estimation. Density estimation, according to Ripley, is the process of estimating
the probability density function of the data, that is, the probability of a data point being
located at a certain position in the attribute space, based only on a subset of data points scat-
tered over the attribute space[Rip96][Rip94][GP14][EJHS00]. The resulting density estimator
then is a function

κ ∶Ωn→R (2.48)

which denotes the approximate density of data points in any point within the attribute
space.

We use sparse grid density estimation on a grid with underlying sparse grid function space
V (1)n , such that for a training dataset S = {xi ∈Ωn}Ni=1 and for an initial guess for the density
at the training points fe the density estimator κ is given as

κ = argmin
u∈V (1)n

(∫
Ωn

(u(x)− fe)
2

dx+λC(u)) (2.49)

as proposed by Garcke and Pflüger[GP14]. The regularization term C(u) is chosen to control
the tradeoff between smoothness of κ and error of the estimation.

Ideally, the density should be ≥ 0 throughout the attribute space, however, with sparse grid
density estimation, the density may be negative locally due to overregularization. This
estimation is not perfect, but good enough for our purposes.

To do classification with density estimation, we again generate ∣C∣ training datasets Di from
our training dataset DC from Eq. 2.40. However, this time, we don’t use a binary classificator
function, so our training datasets have function values and do not have the size of our ultimate
dataset DC . Instead, they contain only the points which are in the respective class.

Di B {pj ∈Ωn ∶ Cj = Ci}
N

j=1
(2.50)

31

2 Data Mining on Sparse Grids

We now train ∣C∣ density estimations κCi . After doing this, estimating the class for an input
point pn is done by taking the class which has the highest density estimation at that point:

c(pn) = argmax
Ci∈C

(κCi(pn)) (2.51)

It is now also easy to decide that a point’s class cannot be estimated by defining a density
threshold τdensity, and stating that the point’s class cannot be estimated if no density estimation
κCi(pn)manages to exceed this threshold:

c(pn) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

argmaxCi κCi(pn) if κCi(pn) ≥ τthreshold

Cnone else
(2.52)

X
1

0.0
0.2

0.4
0.6

0.8
1.0

X
2

0.0

0.2

0.4

0.6

0.8

1.0

− 5

0

5

10

15

κC1

X
1

0.0
0.2

0.4
0.6

0.8
1.0

X
2

0.0

0.2

0.4

0.6

0.8

1.0

− 5

0

5

10

15

20

κC2

0.0 0.2 0.4 0.6 0.8 1.0

X1

0.0

0.2

0.4

0.6

0.8

1.0

X
2

Figure 2.11: Using sparse grid density estimation, the density functions κC1 , κC2 are calculated.
The Ripley dataset[Rip94] contains two classes whereof each is generated by two
overlapping Gaussian distributions.

In Fig. 2.11, the density estimators for the two-class Ripley dataset[Rip94] are shown. The
density estimator evaluates to zero where no data points are given, and classification of new
data points is pretty straightforward for this example as the density functions do not overlap
in a larger area. The classes of the Ripley dataset can be seen by color in the scatter plot to the
right in Fig. 2.11.

32

2.5 Clustering

2.5 Clustering

2.5.1 Mathematical definition

Kriegel et al. define clustering as follows: "Clustering refers to the task of identifying groups
or clusters in a data set"[KKSZ11]. This is done by topological resemblance of points, that is,
points which lie closely together are assigned to the same cluster. For a d-dimensional input
set of points

P ⊂Ωn (2.53)

it’s clustering function

c ∶P → C (2.54)

finds clusters based on certain criteria and then assigns each point in P to a cluster. We
restrict the number of clusters as

1 ≤ ∣C∣ ≤ ∣P ∣ (2.55)

That means that in the edge cases, either every point is in the same cluster or every point is in
it’s own cluster. There can be no cluster with no points in it. For general purposes, we ignore
clusters below a size threshold τsize, as they most probably are not relevant:

τsize ≤ ∣C∣ ≤ ∣P ∣ (2.56)

2.5.2 Realization

k-nearest-neighbors

In the k-nearest-neighbors approach to clustering, clusters are detected by density estimation.
This means that, for the purpose of this method, a cluster is defined as all data points within
the attribute space within a contiguous region with a high density of data points[KKSZ11].
The clusters are then delimited by contiguous regions with a low density of data points.
We will consider data points in regions where the density is below a threshold as noise or
outliers.

For one, we will do a density estimation

κ ∶Ωn→R (2.57)

33

2 Data Mining on Sparse Grids

over the attribute space, where ideally the density should never fall below zero. Also, we will
construct a directed, unweighed graph

G = (P ,E) (2.58)

over the data points P , where for a cutoff distance δ

EB {(p1,p2) ∶ ∥p1,p2∥2 ≤ δ and ∣{(p1,pa) ∶ pa ≠ p2 and ∥p1,pa∥2 ≤ ∥p1,p2∥2}∣ < k} (2.59)

We now have a graph with a directed edge from every point to every other point within cutoff
distance. Also, only the k edges from each point with least length are in the graph, which is
assured by the second argument of the set notation. An example of such a graph can be seen
in Fig. 2.12a.

Now, for a density threshold τv , we iterate over all nodes v ∈ V of the graph and remove all
nodes – and, subsequently, all edges which connect to these nodes in any way – from the
graph where the density estimation does not exceed the threshold:

G′ = (V ′,E′) (2.60)

with

V ′ = {v ∶ v ∈ V and κ(v) ≥ τv} (2.61)

and

E′ = {e = (vi ,vj) ∶ e ∈ E and vi ,vj ∈ V ′} (2.62)

An example for the graph after this step can be seen in Fig. 2.12b.

As a last measure, we remove all edges which traverse areas of the attribute space where the
density estimation is below a threshold τe. This can – but does not have to – be a different
value than τv . Of course, we cannot evaluate the density estimation for every point along the
edge e from vi to vj , so in practice we only evaluate it at a finite number of points along the
edge, for example in the middle:

In our resulting graph G′′ = (V ′,E′′) (cf. Fig. 2.12c), all vertices with too low density estimation
value and all edges traversing low density areas of the attribute space are removed. Now, we
can interpret each connected component of G′′ as a distinct cluster. This makes sense because
we ensured that only edges and vertices with high densities remained, so a gap between two
clusters should no longer contain any vertices or edges.

34

2.5 Clustering

0.0 0.2 0.4 0.6 0.8

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X
0

(a) First, a graph is generated from the points with k = 3 edges from each point to it’s k nearest
neighbors.

0.0 0.2 0.4 0.6 0.8

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X
0

(b) Then, the vertices with a density estimation below treshold are removed from the graph.

0.0 0.2 0.4 0.6 0.8

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X
0

(c) In the third step, the edges which have too low density at their middle point are removed. Now,
every connected component is a cluster.

Figure 2.12: Cluster detection by k-nearest-neighbors technique using sparse grid density
estimation. The density estimator is given as colored and filled isolines.

35

2 Data Mining on Sparse Grids

2.6 k-fold Cross Validation

As defined by Witten et al.,k-fold cross validation is a method to either tune a data mining
algorithm or assess the usefulness of a dataset for data mining[WFH11]. It is a non-exhaustive
validation method, meaning it is not as accurate as an exhaustive test, but gives a rough
measure. The benefit over an exhaustive test is that those take way too long for practical
use.

k-fold cross validation is done by partitioning a dataset D in k equally large partitions Di .
Then, for each 1 ≤ i ≤ k, the data mining method in question is applied using all partitions but
one as the training dataset and the remaining partition as the test dataset:

Dtrain,i B
k

⋃
j=1
j≠i

DjDtest,i BDi (2.63)

The overall hit rate – for classifications – or MSE/NMSE – for regression – is then given by the
mean of the individual results.

The reasoning behind k-fold cross validation is to reduce so-called type III errors[OD03], that
is, to verify that the hypothesis derived from the data is accurate[Mos48]. It can be used really
well to prevent overfitting, as described on page 28, because the data are learned multiple
times in different variations and the probability that a genuinely bad overfitting happens is
drastically reduced. A partition count of k = 10 is often used[MDA05], however, there is no
real norm.

For my work, I used k-fold cross validation both for regression and regression-based classifi-
cation to tune the regularization parameter λ of the regression functions. By running k-fold
cross validation on a small training dataset for different λ, the best λ from a list of candidates
was found for each experiment. The list of λ was generated as the negative powers of ten (1
. . . 10−8). For most experiments, values of λ between 10−3 and 10−6 were used.

36

3 Used Tools and Data

3.1 SG++

SG++ is an open source toolbox for spatially adaptive sparse grids. SG++ [Tec10] is a project
of the University of Stuttgart and was originally created by Dr. rer. nat. Pflüger during his
dissertation[Pfl10]. It contains a C++ API for a great number of data mining methods, using
different specialized algorithms. The data mining done throughout this thesis was done
nearly exclusively using the SG++ API.

3.2 The Used Data

3.2.1 The IPV data

The data was collected in the years 2006 to 2014 by the Institute of Photovoltaics at the
University of Stuttgart by Hendrik Adler[Adl13][WA14] and Bastian Zinsser[Zin10]. Over
the duration of seven years, a total of 210 sensors measured the environment at three locations.
Those locations were Stuttgart in Germany, Nikosia in Cyprus and Cairo in Egypt. However, as
the data of different locations would have no correlation whatsoever, the data were narrowed
down to the 111 sensors which were located in Stuttgart.

The data contains a number of sensors containing environmental parameters, such as air
temperature and wind speed. There were also sensors measuring electrical values and module
temperature for 13 photovoltaic modules. In table 3.1 all sensors located in Stuttgart are
listed with their respective scope.

37

3 Used Tools and Data

Table 3.1: Description of the IPV data sensors located in Stuttgart. Seven sensors respectively
measure the values for one module. Module enumeration starts at 4 according to
the provided data. Additionally, solar radiation, temperature and wind data were
measured.

Sensor ID Measured quantity Unit

11 Wind speed m ⋅ s−1

12 Wind direction ○

13 Room temperature1 ○C

Module 4
14 Direct voltage V
15 Direct current A
16 Module temperature ○C
17 DC power W
18 DC energy kWh
19 Effective AC power W
20 AC energy kWh

21 Outdoor air temperature ○C
22 Solar radiation (Pyranometer) W ⋅m−2

23 Solar radiation 1 W ⋅m−2

24 Solar radiation 2 W ⋅m−2

25 Solar radiation 3 W ⋅m−2

26 Solar radiation 4 W ⋅m−2

27 Solar radiation 5 W ⋅m−2

28 Solar radiation 6 W ⋅m−2

29 Solar radiation 7 W ⋅m−2

30 Solar radiation 8 W ⋅m−2

31 through 37 Sensors of module 5 see 14 through 20
38 through 44 Sensors of module 6 see 14 through 20
45 through 51 Sensors of module 7 see 14 through 20
52 through 58 Sensors of module 8 see 14 through 20
59 through 65 Sensors of module 9 see 14 through 20
66 through 72 Sensors of module 10 see 14 through 20
73 through 86 Sensors of module 11 see 14 through 20
87 through 93 Sensors of module 12 see 14 through 20

94 through 100 Sensors of module 13 see 14 through 20
101 through 107 Sensors of module 14 see 14 through 20
108 through 114 Sensors of module 15 see 14 through 20
115 through 121 Sensors of module 16 see 14 through 20

38

3.2 The Used Data

The data were already preprocessed in a way, as they were captured using a complex event
driven system[Adl13, 20-23] which used piecewise constant upwind interpolation for missing
data points. Piecewise constant upwind interpolation is the most simple method of repairing
missing values in a time series, as it simply means filling gaps with the last known value.
Thus, no preprocessing had to be done for single missing values, but because of the event
driven system, the metering time period of 1s was not used to its full potential, as measured
data would stay at the exact same value for longer periods of time. Most likely, a hysteresis
was employed and only larger changes in value would even be registered by the event driven
system. This was unfortunately a reduction in accuracy on the data which could not be
reversed.

Additionally, the data were stored in a very inefficient way, using a separate PostgreSQL
table for each sensor, with the timestamps as index. As the data contained 210 sensors with
per-second values for roughly seven years, and the timestamp was stored separately for each
of the 210 sensors, this lead to a database of roughly 2.5TB size, where 1TB was occupied
with the data for Stuttgart. I preprocessed the data by merging all data into one table, with
one column for each sensor. This resulted in a final database size of 100GB for the sensors
from Stuttgart. Also, database access times were drastically reduced.

The data still contained missing values where the piecewise constant upwind interpolation
was no longer an option because the amount of consecutive missing values would be too
big. This typically meant that whole days or even months of data missed for a sensor. These
missing data could unfortunately not be repaired.

3.2.2 The DWD data

Furthermore, for the classification scenario, weather warnings issued by the German Weather
Service (Deutscher Wetterdienst, DWD) in the time from December, 2011 to July, 2015. The
data are publicly available as the DWD is a governmental institution.

This data had multiple issues. For one did it only intersect with the IPV dataset in a period of
only roughly three years, which of course results in far less available data points. Also, it only
contained warnings, not actual weather events. This made the predictions less accurate, as not
every warning was justified. The third and largest issue was that the weather warnings were
for the city of Stuttgart, which generally has slightly different weather than the university.
That is caused by the difference in geography: Stuttgart is situated in a basin with an altitude
of roughly 250 meters above sea level, surrounded in every direction by hills of 500 meters
above sea level. The university is situated outside the basin, on the heights, see Fig. 3.1. Thus,
fog warnings for Stuttgart mostly don’t apply to Stuttgart-Vaihingen, where the university is
located. Also, while it very seldom snows in the city of Stuttgart, it does considerably more
often in Stuttgart-Vaihingen.

39

3 Used Tools and Data

Figure 3.1: Map of the locations for which the data are relevant. The DWD data were is-
sued for Stuttgart Schnarrenberg, which lies in the basis and is marked as a red
dot on the map. The IPV data were collected on campus of the University in
Stuttgart-Vaihingen, which is marked as a blue dot in the map. The IWS data were
collected in Stuttgart-Vaihingen in Lauchäcker, which is marked as a green dot.
The difference in altitude and location between the DWD data and the other data
can be seen clearly.
Source: http://www.openstreetmap.de/ . OpenStreetMap™ is open data, li-
censed under the Open Data Commons Open Database License (ODbL) by the
OpenStreetMap Foundation (OSMF).

40

http://www.openstreetmap.de/

3.2 The Used Data

Table 3.2: DWD weather warning types, sorted by assigned class.

Warning type Class

RAIN Continuous rain
Abundant continuous rain
Torrential rain
Severe torrential rain

FOG Fog
THUNDER Thunderstorm

Heavy thunderstorm
Extreme thunderstorm with torrential rain

SNOW Snowfall
Snowfall and snow drift
Heavy snowfall and snow drift

Unused events
Storm Squall

Heavy squall
Gale-force squall
Gusts of wind

Frost Frost
Severe frost
Warning: Frost (Winter)
Slippery roads
Warning: Slippery roads
Black ice

Thaw Thaw
Severe thaw

The data still was mostly usable. It contained of a time frame, a warning type, and in some
cases an additional comment. The types of warnings were manifold. For example, there
were multiple types of warning for snow, rain, and thunderstorm, as listed in Tab. 3.2. After
noticing that using all those warning classes didn’t yield very good results, I reduced the
variety of warnings to the general ones, which were rain, thunderstorms, fog and snow.

3.2.3 The IWS data

Another dataset with weather data measured in Stuttgart-Vaihingen was provided by the
Institute for Water and Environment Modeling of the University of Stuttgart (IWS). The data
contained some attributes that seemed relevant and were not included in the IPV data, like

41

3 Used Tools and Data

relative humidity and precipitation. The data were measured in Lauchäcker, only roughly
500m away from the photovoltaic modules, see Fig. 3.1. This made the data very attractive, as
they were far more relevant for the location of the photovoltaic data than the DWD data.

Table 3.3: Sensor descriptions for the IWS data from Lauchäcker.

Sensor ID Measured quantity Unit

Ta_2m Air temperature 2m above ground ○C
Ta_18m Air temperature 19m above ground ○C
rh_2m Relative humidity 2m above ground %
rh_18m Relative humidity 19m above ground %
p Air pressure hPa
rr_01 . . .rr_10 Precipitation mm
u_2m Wind speed 2m above ground m

s
u_19m Wind speed 19m above ground m

s
dd_2m Wind direction 2m above ground ○

dd_2m_sigma Wind direction standard deviation (σ) 2m above ground ○

dd_19m Wind direction 19m above ground ○

dd_19m_sigma Wind direction standard deviation (σ) 19m above ground ○

TC_01 Temperature of precipitation ○C
TC_02 Temperature of precipitation ○C

More sensors which were not relevant for our purposes.

In Tab. 3.3, a subset of the attributes measured by the IWS are listed. I ended up using
the air pressure, relative humidity 19m above the ground – as the values were measured
some distance from the photovoltaic modules and this were the less local values and because
the photovoltaic modules are located on a rooftop – and precipitation. Wind direction, air
temperature and wind speed were already part of the IPV dataset.

3.3 Other Tools and Libraries

For storing the data and the generated preprocessed data, a large PostgreSQL[Pos15] database
was used. For operations on the PostgreSQL database, the libpq and libpqxx[Ver15] libraries
for PostgreSQL in C/C++. Also, the data wrangling library pandas[McK12] for Python
was used to restructure and preprocess data. The data mining and visualizing program
Weka[Mac15] was used to look at potential attribute subspaces, however I did not use it on a
larger scale. For the plots and visualizations in this thesis the open source plotting library
matplotlib[Hun12] was used.

42

4 Generating Datasets

4.1 Database Preprocessing

Preprocessing of the data was largely done before the start of this thesis. The IPV data
were already used in a student project I participated in in the beginning of 2015. There, I
completely rebuilt the database because pf performance issues with the old database, which
also had a size of 2.5TB.

The DWD data were given as a small file with only the types of warnings and a start and end
timestamp. In order to efficiently to SQL join operations on this data, I generated a table with
one row for every second in the time period covered by the weather warning data.

The IWS data were given as a HDF5 database, which is an hierarchical data format. The data
were extracted from the HDF5 database and then inserted into the PostgreSQL database.

4.2 Delay Embedding

4.2.1 Introduction to Time Series Analysis

A time series is a sequence of successive data points. Box and Jenkins define a time series as "a
set of observations made sequentially in time"[BJ76, 21]. Usually, the time difference between
two measurements is the same for every two adjacent data points. Time series analysis is
used to find reoccurring patterns in data and then predict those based on new data. On a
more formal level, for a time-dependent measured attribute X, its univariate time series TX of
length k can be denoted as a tuple of timestamp-value pairs

T (k)X = {(ti ,X(ti)) ∈R×R}
k

i=1
(4.1)

for a chosen time difference between measurements of ∆t. For a d-dimensional attribute
space, the multivariate time series of length k – T (k)

Ωn
– consists of pairs of timestamps and

d-dimensional vectors of attribute values.

43

4 Generating Datasets

T (k)
Ωn
= {(ti , X⃗(ti)) ∈R×Rd}

k

i=1
(4.2)

An arbitrary time series can be separated into its index It, a set of timestamps, and its attribute
space Ωn, such that

T (k)
Ωn
= It ∣∣Ωn (4.3)

Let the concatenation of two vectors of arbitrary dimensions be defined as

○ ∶Rn ×Rm→R
n+m (4.4)

v⃗ ○ w⃗B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

v1

⋮
vn
w1

⋮
wm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.5)

Let for the purpose of this definition a real be treated as a one-dimensional vector, such that
for v⃗ ∈Rn, r ∈R:

v⃗ ○ r =

⎛
⎜⎜⎜⎜⎜⎜
⎝

v1

⋮
vn
r

⎞
⎟⎟⎟⎟⎟⎟
⎠

(4.6)

Let the concatenation operator ○ be defined for time series as follows: LetA,B be two attribute
spaces of arbitrary dimension, and T (k)A ,T (l)B be their respective time series. Then, let the
concatenation be defined as

T (k)A ○T (l)B B {(ti , a⃗i ○ b⃗i) ∣ (ti , a⃗i) ∈ T
(k)
A ∧ (ti , b⃗i) ∈ T

(l)
B }

m≤min{k,l}

i=1
(4.7)

in order to be able to merge two time series. Observe how the number of timestamp-vector
tuples depends on how many timestamps are part of both time series. Ideally – and mostly –
the time series we merge will have the same index (set of timestamps).

Time series data can then, as the most simple variant, be learned by a regression and the
regression function obtained this way can be used to predict values on newly measured data.
For instance, if we were to learn the function f (t) = sin(t) as a time series of length 2 with
∆t = π

2 , we would very soon have learned the function in Tab. 4.1 from the time series data.

44

4.2 Delay Embedding

Table 4.1: Time series prediction of sin(x) for a time series length of 3 – attribute space size 2
– and ∆t = π

2 , for four example value pairs X(t−2),X(t−1).

X(t−2) X(t−1) Prediction of X(t)

0 1 0
1 0 -1
0 -1 0
-1 0 1
⋮ ⋮ ⋮

sin(t −2∆t) sin(t −∆t) sin(t)

4.2.2 Using Delay Embedding

Delay embedding is the process of generating additional attributes from historical values of
already present attributes’ time series[SYC91][WG94]. Hereby, for a d dimensional attribute
space, the resulting attribute space with embedded attributes may at most have a dimension-
ality of 2d + 1 according to Takens[Tak81], Sauer et al.[SYC91], Shalizi[Sha06]. While it is
possible to simply embed historical values of an attribute as new dimension of the attribute
space – that is, as a new attribute – it is in most cases better to embed a newly generated
attribute A which is in some way generated by a function ξ. For a multivariate time series
T (k)A of dimension d and size k of a set A of attributes

A = {Ai}di=1 (4.8)

with

T (k)A = {(ti , a⃗i) ∈R×Rd}
k

i=1
(4.9)

a new time series potentially containing additional attributes as data rows is generated using
the existing time series T (k)A and applying a function to it.

Let Ξ be the space of functions from one time series to another

ΞB

⎧⎪⎪⎨⎪⎪⎩
ξi ∶ (R×Rd)

k
→ (Rd̃ ×R)

j⎫⎪⎪⎬⎪⎪⎭i∈N
(4.10)

where k ∈N and j ∈N are the sizes of the respective time series, which do not necessarily need
to be equal, and d ∈N and d̃ ∈N are the dimensions of the in- and output attribute spaces.

Thus, from one arbitrary time series of arbitrary dimension, we can generate a time series of
arbitrary dimension with arbitrary properties by choosing a fitting ξi . Usually, a function ξi is
selected such that j = k +1, embedding one additional attribute’s time series into the original
time series.

45

4 Generating Datasets

In most cases, we limit ourselves to embed an attribute which is only generated from one
other attribute. It is however important to keep in mind that in general, generation from
multiple existing attributes is possible. For most cases, embedding historical values with
delay j∆t of an attribute as new attribute like in Tab. 4.1 specializes the function ξ ∈Ξ as, for
the multivariate time series from Eq. 4.9 and an attribute Ae ∈A for which the historical value
is embedded:

ξhistorical ∶ T
(k)
A ↦ T (k−j)A ○{(ti ,ai−j,x) ∈R×R ∣ (ti−j ,ai−j) ∈ T

(k)
Ae
}
k−j

i=1
(4.11)

In many cases, embedding absolute historical values is not very feasible. Instead, just using
the per-interval differences ∆Xi for a given time difference ∆t, or, in special cases, also any
other interval difference ∆jXi , does yield far better results for an analysis:

ξdifference ∶ T
(k)
A ↦ T (k−j)A ○{(ti ,ai,x − ai−j,x) ∈R×R ∣ (ti ,ai,x) ,(ti−j ,ai−j) ∈ T

(k)
Ae
}
k−j

i=1
(4.12)

It should be noted that, when embedding a new attribute via delay embedding, in the worst
case, the resulting time series has a size of 0. Using time series with equidistant timestamps
ti and using a delay ∆t that is a multiple of that ∆t solves this problem. From the data
used in this thesis, measurements were performed once a minute or second, respectively, so
we can safely perform delay embedding, assuming the ∆t is chosen as a multiple of 1s or
1min, respectively. It should also be noted that there is always a reduction in time series size
when delay embedding. Consider a time series T (k)X of size k with equidistant timestamps of
interval th. Then, when performing delay embedding with a delay ∆t = th, we obtain a time
series T (k−1)

X′ of size k −1, as we have to drop the lowest-valued timestamp according to the
definitions from Eq. 4.11, Eq. 4.12. For time differences ∆t = j ⋅ th, j ∈N, we will subsequently
lose j tuples.

While using absolute values as embedded attributes can predict a periodic function like the
sinus, it cannot for example predict a function like

f (t) = t + sin(t) (4.13)

for new values of t. Using differences makes the attribute more meaningful in many ways.
For my experiments, I nearly always used differences for delay embedding, with very good
results.

Consider Fig. 4.1: It plots the gradation of the air temperature in Stuttgart Vaihingen from
12pm to 10pm on three consecutive days in the summer of 2011, and for one day exactly a

46

4.2 Delay Embedding

14
16
18
20
22
24

2
1.
0
6.
2
0
11

14
16
18
20
22
24

22
.0
6
.2
01
1

14
16
18
20
22
24

2
3
.0
6
.2
0
11

12 14 16 18 20 22
Hour of day

14
16
18
20
22
24

22
.0
6.
2
01
2

T
em

p
er
at
u
re

[◦
C
]

Figure 4.1: Air temperature gradation on three subsequent days and exactly a year later. On
June 22nd, 2011, there was a big thunderstorm, during which the air temperature
dropped by 6○C within less than an hour. By delay embedding of the temperature
difference over 30min or 60min, events like this can be collated to thunderstorms
very clearly.

year later. On June 22nd, around 3pm, there was a heavy thunderstorm, during which the
temperature fell by 6○C within 30 minutes. By embedding the attribute1

∆Tair = T
(t)
air −T

(t−1)
air (4.14)

with ∆t = 30min, data points during a thunderstorm stand out clearly against data points
without any rain. However, data points where rain was falling show a similar behavior, as
seen from the data on June 23rd, 2011, where there was some rain around 6pm, resulting in a
4○C temperature drop.

Other suggestions for attribute generation are for example accumulation, for attributes that
are already observing some accumulated value during the interval. For instance, in the

1To avoid confusion, it should be noted here that T denotes the physical quantity for temperature, which is an
attribute, and not a time series, which is denoted using a calligraphic T .

47

4 Generating Datasets

dataset I obtained from the Meteorological Institute of the University of Stuttgart, there was
an attribute observing the amount of precipitation that had accumulated over the last minute,
measured each minute. From this, I generated an attribute with ∆t = 5min, which summed
up the accumulated precipitation over all five measured values from those five minutes.

Another method is to use the discrete first derivative

A =
X(t)i −X

(t−1)
i

∆t
(4.15)

as proposed by Garcke et al.[GGG13, 3–4], which is actually just a scaled version of time
differences, assuming the time difference stays the same. When using different ∆t, this
becomes a handy method for generating attributes, however it has to be handled with care, as
a discrete first derivative of dv

dt over the interval 2∆t does not necessarily mean the same as
the same discrete first derivative over the interval ∆t.

4.3 Generation of Datasets

Generating datasets was done in several steps. From the preprocessed databases of the IPV,
DWD and IWS data, a joined table was first generated with SQL INNER JOIN statements on
the timestamp. As the IWS data was in a resolution of one minute, but the IPV data was in
a resolution of one second, and because of the only partially overlapping time periods, this
already drastically reduced the number of data points. By inner joining the IPV and IWS data,
the number of data points was reduced to approximately 1.6 million.

From the join table, which only contained the desired attributes, with an SQL cursor object, the
data was read row by row into memory using the libpqxx library for PostgreSQL with C++. As
the time steps between each row were always the same, delay embedded attributes could easily
be generated by taking differences of different rows. For example, for a ∆t = 1 min, simply the
previous row was subtracted from the current row to generate delay embedded attributes
∆1Ai . For greater ∆t, the equivalent number of rows were skipped in the subtraction.

The advantage of using a cursor on the raw database table was that the table would only need
to be traversed once, which was a lot faster than querying all the data and loading all data
into memory at once. The read data and the delay embedded attributes were then written
back into another table using a pqxx tablewriter object.

In the last step, from the generated table, which contained all desired original and delay
embedded attributes, the datasets could be generated with custom size using SQL queries
which selected random rows from the table. For a list of attributes A1,A2,A3,A4 and an
example dataset size of N = 12 345, the SQL query would be

48

4.3 Generation of Datasets

SELECT A_1, A_2, A_3, A_4

FROM tabledelayembedded

ORDER BY random()

LIMIT 12345;

Listing 4.1: SQL query to generate dataset

Before being able to use the dataset, it had to be normalized to the [0,1]d hypercube. This
was done by the most simple method possible, the linear scaling. For an attribute A of the
dataset, its data points ai were scaled using a function s:

s ∶R→ [0,1] , ai ↦
ai −minA

maxA−minA
(4.16)

Of course, the scaling parameters, that is, maxA,minA, had to be saved in order to be able to
use the exact same parameters on the test dataset. For datasets with a large amount of data
points near the edges of Ωn, the scaling function was modified to include a margin, such that
for example only the inner 80% were used in each dimension:

s̃ ∶R→ [0.1,0.9] , ai ↦ 0.8 ⋅ s(ai)+0.1 (4.17)

As a result of Hughes’ phenomenon[Hug68], I chose a formula used by Good and Hardin
[GH12] to gauge the necessary dataset size for dataset generation:

N =Md (4.18)

The formula states that, if only one independent variable exists and we perform some type
of learning on it with a dataset of size M, we need approximately a dataset of size N for d
independent variables in order to obtain a comparably good result. Therefore, when adding
dimensions to attribute spaces, I also generated larger datasets whenever possible, keeping
in mind that, for experiments, the dataset sizes had to be kept small in order to save some
time.

49

5 Dataset Scenarios

5.1 Weather Events

5.1.1 The scenario

Utilizing weather warning data from the German metereological service (DWD)[KD15], I
created a large dataset for classification. The dataset itself contained start and end points
of weather warnings issued for Stuttgart and the type of warning. The warnings themselves
were a bit specific, like heavy snowfall and snow drift, so I generalized the warnings into
four categories that I chose to include. Those categories were RAIN, SNOW, THUNDER, and FOG.
There was also a category NOEVENT which included all points in time where no other event
was active. As the DWD dataset[KD15] only ranged from the end of 2009 to present, I could
not use the whole photovoltaic database to generate the classification dataset, but instead
only a subset of 121 841 918 data points. After also including the IWS dataset, which was
only measured in one minute time steps, the number of data points was reduced to 1 649 910
data points.

First, relevant sensors for classification of weather events were selected. This was done by
selecting those attributes which were obvious candidates for affecting the weather. Also,
some not so obvious attributes were selected and then tested in the experiments. Last, time
differences were delay embedded into the attribute space. Obvious choices for sensors were
the wind speed and wind direction. Also, the air temperature and solar radiation were chosen,
as they too indicate a lot about the current weather condition. To see whether it would
be an interesting attribute, the direct current power generated by solar module 4 was also
chosen. After first experiments which showed very large overlap between the ’snow’ and
’no event’ classes (see 5.1.2), I decided to also calculate the solar altitude at the current time
for each data point and use it as an attribute. It was now possible to differentiate between
nighttime and daytime data points. For calculating the sun’s current altitude I used the
formula found here[Gie15] with the coordinates for the University of Stuttgart in Vaihingen
(φ = 48.7456724○,λ = 9.1024567○):

51

5 Dataset Scenarios

dyear = (m−1) ⋅30.3+d (5.1)

δ = −23.45 ⋅ cos(2 ⋅π ⋅
dyear +10

365
) (5.2)

t = 60 ⋅ (−0.171 ⋅ sin(0.0337 ⋅dyear +0.465)−0.1299 ⋅ sin(0.01787 ⋅dyear −0.168)) (5.3)

θhour = 15 ⋅(h+ min

60
− 15−λ

15
−12+ t

60
) (5.4)

x = sin(π

180○
⋅φ) ⋅ sin(π

180○
⋅δ)+ cos(π

180○
⋅φ) ⋅ cos(π

180○
⋅δ) (5.5)

⋅ cos(π

180○
⋅θhour)

The solar altitude angle is then calculated as:

θsun =
arcsin(x) ⋅180○

π
(5.6)

Now, delay embedding was used on the sensor columns with a delay of 30 minutes and
two time steps. From the resulting 12 columns, by experiment, the most relevant ones were
selected for an ideal classification. In the following paragraphs, the results of various attribute
subspaces are shown. In Tab. 5.2 in 5.1.3, the results are all compared and listed.

5.1.2 First experiments

Before starting the first real experiments, I tested what would happen when all specialized
kinds of warning – like ’heavy snow’, ’snow drift’, see page 41 – were used, and concluded that
using all those classes would deteriorate the resulting hit rates of the classification too much.
Thus, I boiled the weather warnings down to their base classes. In the first experiments, the
training and test datasets had a total of four classes:

RAIN The class for all data points where warnings for heavy rain were issued.

SNOW The class for all data points where warnings for any kind of snow were issued.

THUNDER The class for all data points where warnings for any kind of thunderstorm were
issued.

FOG The class for all data points where warnings for fog were issued.

The experiments exp_NO_NOEVENT_00 through exp_NO_NOEVENT_12 were performed with
arbitrarily chosen attributes. The experiments exp_NO_NOEVENT_03, exp_NO_NOEVENT_04,
exp_NO_NOEVENT_06, exp_NO_NOEVENT_07, exp_NO_NOEVENT_11, and exp_NO_NOEVENT_12

showed very good hit rates now, as shown in Tab. 5.2.

52

5.1 Weather Events

Table 5.1: Attributes for the weather event classification attribute space, with their unit and
name.

Attribute Unit Attribute name Source

v(t)wind
m
s Wind speed IPV

d(t)wind
○ Wind direction IPV

T (t)air
○C Air temperature IPV

E(t) W
m2 Solar radiation IPV

P (t)mod4 W DC power of module 4 IPV

∆P (t)mod4 W DC power DC power of module 4 difference 1 Delay

∆v(t)wind
m
s Wind speed difference 1 Delay

∆E(t) W
m2 Solar radiation difference 1 Delay

∆T (t)air
○C Air temperature difference 1 Delay

θ(t)sun
○ Solar altitude Calculated

φ(t)19m % Relative humidity in 19m height IWS

p(t)air hPa Air pressure IWS

∆p(t)air hPa Air pressure difference 1 Delay

∑rr(t−1,t)
rr07 mm Accumulated precipitation IWS/Delay

T (t)precip
○C Precipitation temperature IWS

5.1.3 Second experiments

In the second experiments, I added data points from a disjoint class NOEVENT, which consisted
of all data points which were left out of the other base classes. I first, as a test, checked what
would happen when I used the whole attribute space, in exp00. This resulted in a hit rate
of roughly 40%, which is not that bad considering that the dataset had 5 classes. In exp01

and exp02, I tried out attribute spaces that I thought would yield better results. However, the
hit rates did not really improve. In exp03 through exp16, I removed one different attribute
from the attribute space in each experiment to see how it would affect the hit rate. After the
experiments were all done, I checked the amount of data points which were stored in the
confusion matrix[WFH11] for each classification. The confusion matrix Mc is defined as

Mc = (mi,j)BAmount of data points in class i which were classified to class j (5.7)

So, the diagonal elements of the matrix would count the hits, while the non-diagonal elements
would count the wrongly predicted points (misses) and even specify the per-class confusion.
The non-diagonal elements in the column of a class are false positives for that class, the
non-diagonal elements in the row of a class are false negatives for that class. In Tab. 5.4, the
confusion matrix of a classification experiment – exp_3_11_1 – is shown as an example.

From the confusion matrix, I concluded that the NOEVENT class was too vague and thus
confusing the classification too much. This made a lot of sense: The DWD would only issue

53

5 Dataset Scenarios

Table 5.2: Classification hit rates for different attribute space subsets for the weather event
scenario for ∆t = 30min.

Name Size λ W
in

d
sp

ee
d

W
in

d
d

ir
ec

ti
on

A
ir

te
m

p
er

at
u

re

So
la

r
ra

d
ia

ti
on

D
C

p
ow

er
of

m
od

u
le

4

D
C

p
ow

er
of

m
od

u
le

4
d

iff
er

en
ce

1

W
in

d
sp

ee
d

d
iff

er
en

ce
1

So
la

r
ra

d
ia

ti
on

d
iff

er
en

ce
1

A
ir

te
m

p
er

at
u

re
d

iff
er

en
ce

1

So
la

r
al

ti
tu

d
e

R
el

at
iv

e
hu

m
id

it
y

in
19

m
he

ig
ht

A
ir

p
re

ss
u

re

A
ir

p
re

ss
u

re
d

iff
er

en
ce

1

A
cc

u
m

u
la

te
d

p
re

ci
p

it
at

io
n

P
re

ci
p

it
at

io
n

te
m

p
er

at
u

re

H
it

ra
te

With class NOEVENT
exp00 50 000 1E-6 40.68
exp01 50 000 1E-6 41.44
exp02 50 000 1E-6 43.36
exp03 50 000 1E-5 41.74
exp04 50 000 1E-6 42.24
exp05 50 000 1E-6 43.68
exp06 50 000 1E-6 47.56
exp07 50 000 1E-6 41.84
exp08 50 000 1E-6 42.66
exp09 50 000 1E-6 41.44
exp10 50 000 1E-6 41.26
exp11 50 000 1E-6 41.44
exp12 50 000 1E-5 41.64
exp13 50 000 1E-6 40.54
exp14 50 000 1E-5 41.22
exp15 50 000 1E-6 43.20
exp16 50 000 1E-5 48.64

Without class NOEVENT
exp_NO_NOEVENT_00 50 000 1E-6 43.34
exp_NO_NOEVENT_01 50 000 1E-6 44.70
exp_NO_NOEVENT_02 50 000 1E-5 44.84
exp_NO_NOEVENT_03 50 000 1E-5 69.54
exp_NO_NOEVENT_04 50 000 1E-5 70.74
exp_NO_NOEVENT_05 50 000 1E-6 45.26
exp_NO_NOEVENT_06 50 000 1E-4 65.70
exp_NO_NOEVENT_07 50 000 1E-5 69.04
exp_NO_NOEVENT_08 50 000 1E-5 43.98
exp_NO_NOEVENT_09 50 000 1E-5 42.86
exp_NO_NOEVENT_10 50 000 1E-5 44.24
exp_NO_NOEVENT_11 50 000 1E-6 68.74
exp_NO_NOEVENT_12 50 000 1E-5 68.74

More experiments on highlighted columns in Tab. 5.3.

warnings for very heavy rain, but none for everyday rainy weather. Thus, most of the times
it rained, there would be no weather warnings, and thus, the class of those events would
still be NOEVENT. Also, like already described in 3.2.2, the snow and fog classes were not very
accurate because of the geographical differences between the location for which the weather
warnings were issued and the location where the weather data were measured (see Fig. 3.1).

5.1.4 Third experiments

Based on the high hit rate experiments without use of the class NOEVENT – cf. 5.1.2 – another
set of experiments was generated. The choice of attributes which was causing these high
hit rates were not clearly deductible from the experiments, so I tried out every possible

54

5.1 Weather Events

Table 5.3: Classification hit rates for different attribute space subsets determined off the blue
highlighted rows in Tab. 5.2 for the weather event scenario for ∆t = 30min.

Name Size λ W
in

d
sp

ee
d

W
in

d
d

ir
ec

ti
on

A
ir

te
m

p
er

at
u

re

So
la

r
ra

d
ia

ti
on

D
C

p
ow

er
of

m
od

u
le

4

[u
nu

se
d

]

W
in

d
sp

ee
d

d
iff

er
en

ce
1

[u
nu

se
d

]

A
ir

te
m

p
er

at
u

re
d

iff
er

en
ce

1

So
la

r
al

ti
tu

d
e

R
el

at
iv

e
hu

m
id

it
y

in
19

m
he

ig
ht

A
ir

p
re

ss
u

re

A
ir

p
re

ss
u

re
d

iff
er

en
ce

1

A
cc

u
m

u
la

te
d

p
re

ci
p

it
at

io
n

[u
nu

se
d

]

H
it

ra
te

exp_3_00 50 000 1E-4 66.26 %
exp_3_01 50 000 1E-4 67.18 %
exp_3_02 50 000 1E-5 68.26 %
exp_3_03 50 000 1E-5 69.24 %
exp_3_04 50 000 1E-4 66.92 %
exp_3_05 50 000 1E-5 67.96 %
exp_3_06 50 000 1E-4 66.30 %
exp_3_07 50 000 1E-5 68.22 %
exp_3_08 50 000 1E-5 68.00 %
exp_3_09 50 000 1E-4 65.34 %
exp_3_10 50 000 1E-4 65.62 %
exp_3_11 50 000 1E-6 71.62 %
exp_3_12 50 000 1E-5 69.44 %
exp_3_13 50 000 1E-5 69.28 %
exp_3_14 50 000 1E-5 68.24 %
exp_3_15 50 000 1E-5 71.48 %
exp_3_16 50 000 1E-5 68.14 %
exp_3_17 50 000 1E-5 69.76 %
exp_3_18 50 000 1E-5 68.86 %
exp_3_19 50 000 1E-5 69.40 %
exp_3_20 50 000 1E-4 67.48 %
exp_3_21 50 000 1E-4 67.98 %
exp_3_22 50 000 1E-4 66.36 %
exp_3_23 50 000 1E-4 68.62 %
exp_3_24 50 000 1E-5 67.34 %
exp_3_25 50 000 1E-4 66.64 %
exp_3_26 50 000 1E-5 69.14 %
exp_3_27 50 000 1E-4 67.40 %
exp_3_28 50 000 1E-6 69.12 %
exp_3_29 50 000 1E-4 66.86 %
exp_3_30 50 000 1E-4 66.94 %
exp_3_31 50 000 1E-4 68.00 %
exp_3_32 50 000 1E-4 67.06 %
exp_3_33 50 000 1E-4 67.48 %
exp_3_34 50 000 1E-4 65.80 %
exp_3_35 50 000 1E-4 67.20 %
exp_3_36 50 000 1E-5 68.32 %
exp_3_37 50 000 1E-4 68.80 %
exp_3_38 50 000 1E-4 67.56 %
exp_3_39 50 000 1E-4 69.00 %
exp_3_40 50 000 1E-4 66.74 %
exp_3_41 50 000 1E-5 69.96 %
exp_3_42 50 000 1E-4 65.72 %
exp_3_43 50 000 1E-4 69.34 %
exp_3_44 50 000 1E-5 69.94 %
exp_3_45 50 000 1E-4 68.26 %
exp_3_46 50 000 1E-4 67.10 %
exp_3_47 50 000 1E-4 68.26 %
exp_3_48 50 000 1E-4 66.88 %
exp_3_49 50 000 1E-4 68.42 %
exp_3_50 50 000 1E-5 69.12 %
exp_3_51 50 000 1E-4 67.18 %
exp_3_52 50 000 1E-4 67.62 %
exp_3_53 50 000 1E-4 67.56 %
exp_3_54 50 000 1E-6 69.96 %
exp_3_55 50 000 1E-4 68.04 %
exp_3_56 50 000 1E-4 66.68 %
exp_3_57 50 000 1E-4 66.52 %
exp_3_58 50 000 1E-5 68.12 %
exp_3_59 50 000 1E-4 67.94 %
exp_3_60 50 000 1E-5 70.02 %
exp_3_61 50 000 1E-4 68.32 %
exp_3_62 50 000 1E-5 69.96 %
exp_3_63 50 000 1E-6 70.06 %

exp_3_11_1 200 000 1E-6 40.79 %

55

5 Dataset Scenarios

combination of the attributes which were different in the experiments with high hit rates,
but using all attributes that they had in common. This resulted in the experiments listed in
Tab. 5.3. Here, most attribute combinations resulted in hit rates between 60% and 70%. Four
experiments, however, resulted in hit rates over 70%. Those are highlighted in Tab. 5.3. What
is noticeable is that while exp_3_11 has the highest dimensionality, it also has the highest hit
rate. Based on the formula (Eq. 4.18) provided by Good and Hardin[GH12], this implies that
the attributes in this experiment are all relevant for the classification.

Using the results from the large experimentation batch, I did another experiment –
exp_3_11_1 – on the attribute set from exp_3_11, but with a training dataset size of 200 000.
However, this time I generated a dataset where I made sure that all classes had the same
amount of data points in the dataset. The resulting hit rate showed that the previous hit rates
were largely false positives, as the hit rate for exp_3_11_1 only was around 40%. However,
it has to be considered that exp_3_11_1 had four classes to choose from. That means that a
random function would only have classified 25% of the data points into the right class.

Table 5.4: Confusion matrix for exp_3_11_1. It can be seen that the THUNDER class has the
best individual hit rate.

Prediction
RAIN SNOW THUNDER FOG

R
ef

er
en

ce RAIN 2 349 49 4 440 3 162
SNOW 124 2 513 6 047 1 316

THUNDER 195 96 7 946 1 763
FOG 96 219 6 179 3 506

In Tab. 5.4, the confusion matrix for exp_3_11_1 is shown. This matrix tells us exactly where
the problems lie in a classification. For one, rain and snow events are often falsely classified
as thunderstorm or fog. Also, fog is often falsely classified as thunderstorm. However, rain
and snow are well confined against each other, meaning that they are seldom classified as
each other. Also, thunderstorms are nearly always classified right, but also non-thunderstorm
events are classified as thunderstorm.

That FOG events were badly classified was to be expected from the innate inaccuracy of
the weather warning data, as discussed in 3.2.2. That the RAIN and SNOW classes are so
often classified as THUNDER or FOG is probably caused by the thunderstorm class being very
dominant. As seen from the confusion matrix, the amount of false positives is huge in that
class. The exact cause for this cannot easily be determined as the dataset for exp_3_11_1 is
9-dimensional, meaning it cannot be easily visualized. All that can be done is to do further
preprocessing on the dataset, removing all data points which are prone to being false positives,
and thus creating a dataset with more clearly confined classes.

One method of doing this would be to compute the probability of a point being in its reference
class for each point in the dataset and storing those values. This way, individual datasets

56

5.2 Power Prediction

could then be generated with a freely chooseable confusion parameter. Doing this, however,
would go beyond the scope of this thesis.

5.2 Power Prediction

5.2.1 About the scenario

The goal of this scenario was to be able to predict the power generation of a photovoltaic
module a fixed time into the future based on measured or calculated values only from the
present or past. So, assuming we have a set of k attributes

A = {Ai}ki=1 (5.8)

and a index It such that

T (k)A = It ∣∣ A (5.9)

where we have an attribute AP ∈A for the power. Then we would learn a regression from a
time series, which would serve as dataset

T = {(tj , ω⃗j ○pk) ∣ (tj , ω⃗j) ∈ T
(k)
A ∧ (tk ,pk) ∈ It ∣∣ Ap ∧ tk = tj + τ} (5.10)

from the attribute space and the time series of power measured at the time t + τ , that is, one
time step into the future. The lead time[BJ76] τ was in all experiments set to the same value
as the delay embedding interval ∆t. The non-normalized attribute space Ω would then be
chosen as a subset of the attribute space of the time series of measured attributes and all
possible delay embedded attributes:

T (k)
Ω∗
=◯
ξ∈Ξ

ξ (T) (5.11)

Ω ⫋Ω∗ (5.12)

As the space of delay embeddable attributes is infinitely large, we only use a true subset of
it. In fact, in most cases this subset is even smaller or equal in size to the number of original
attributes, as stated in Taken[Tak81], Sauer et al.[SYC91], as we don’t want to deteriorate the
precision of our regression.

The goal is to obtain a regression function

u(x) ∶Ωn→R, ω⃗(t)
≈↦ P (t+1) (5.13)

which approximates the power generated one time step ∆t into the future based only on
already known attributes. This way, theoretically, we could approximate the power generation
live if we had a data feed from all sensors available. Instead, we will just collect random
data points from the database and compare the predicted power generation u(ωj) with the
measured value P (t+1).

57

5 Dataset Scenarios

5.2.2 Attribute Space

The attribute space consisted of a number of data dimensions from both the IPV database
and the weather station of the IWS. Additional attributes were added by delay embedding of
already present attributes. The full list of selected attributes can be seen in Tab. 5.5.

For the full attribute space, I selected the more obvious attributes. I selected the module
temperature as according to Luque, Hegedus[LH03] and Nelson[Nel03], the current of a
photovoltaic cell can be calculated as

I = IL − ID − ISH (5.14)

where IL is the current produced by the photovoltaic cell, ID is the current flowing through
the diode of the cell and ISH is the current which flows through the Shunt resistor. Those
two currents are lost, and the formula for the diode current is

ID = I0 ⋅
⎛
⎝

exp(
qVj

nkT
)
⎞
⎠

(5.15)

where I0 is the reverse saturation current of the diode, which is constant. q is the elementary
charge, a constant. Vj is the voltage across the diode and Shunt resistor. n is the diode ideality
factor, a constant for the diode. k is the Boltzmann constant, and T is the module temperature.
Thus, the module temperature in fact has an effect on the module’s generated power.

The second attribute I chose was the module power itself. I then chose the air temperature
and the solar radiation.

From the IWS database, I chose the relative humidity of the air. There were two attributes for
this, one measured two meters above the ground, one measured 19 meters above the ground.
As the data were not measured in the same place as the module is located, and the module is
installed on a roof anyways, I selected the 19 meters above ground data.

I also calculated the height of the sun from Eq. 5.6 and inserted it as an additional attribute.
The reasoning here was that the height of the sun differentiates low power because of low sun
height from low power because of covered sky, which might be useful for the prediction.

I then embedded some attributes by generating the differences of most already present
attributes – except for the sun height – over the last time frame for a time difference of
∆t = 5 min. The lead time[BJ76, 2] – the ∆t used to embed the attribute P (t+1) – was also
chosen as 5 min. I also calculated the accumulated precipitation over the time frame from the
per-minute precipitation data from the IWS database.

Now I started to experiment with different subsets of this attribute space to gauge which ones
were relevant and helpful for the prediction and which ones were not.

58

5.2 Power Prediction

Table 5.5: Attribute space for the power prediction dataset. For individual experiments, a
subset of the attribute space was used as experiment attribute space. The image set
of all regression functions was the module power in the coming time step P (t+1)

mod .
Attribute Unit Attribute name Source

T (t)mod
○C Module temperature at time t IPV

∆T (t)mod
○C Module temperature change in time frame [t −1, t] Delay

P (t)mod W Module power at time t IPV

∆P (t)mod W Module power change in time frame [t −1, t] Delay

T (t)air
○C Air temperature at time t IPV

∆T (t)air
○C Air temperature change in time frame [t −1, t] Delay

E(t) W
m2 Solar radiation at time t IPV

∆E(t) W
m2 Solar radiation change in time frame [t −1, t] Delay

φ(t)19m % Relative humidity of air at 19m height at time t IWS

∆φ(t)19m % Relative humidity of air at 19m height change in time frame [t −1, t] Delay

rr(t−1,t)
07

dm3

m2 Accumulated precipitation over the time frame [t −1, t] IWS/Delay

θ(t)sun
○ Sun height at time t Calculated

5.2.3 Experiments

For all the experiments, I let the regularization parameter λ be determined by k-fold cross-
validation. I then learned the regression on the selected attributes. I generated a reference
dataset

R = {(ωj ,Pj) ∈Ωn ×R}
N

j=1
(5.16)

with

RΩn = {ωj ∈Ωn}
N

j=1
(5.17)

and

RP = {Pj ∈R}
N

j=1
(5.18)

and predicted the power of the test points P̃ via the regression function u ∈ V (1)n as

P̃ = u (RΩn
) (5.19)

Then, I compare the prediction P̃ to the reference RP by calculating the mean squared
error, the normalized mean squared error, the mean error and the relative mean error. The
experiments can be seen in Tab. 5.6, with the respectively chosen attribute space.

59

5 Dataset Scenarios

Table 5.6: Power prediction scenario experiments. For each subset of the attribute space that
was tested, the mean squared error and the normalized mean squared error are
shown. Also, the mean error and relative mean error were calculated. The time
difference chosen was ∆t = 5min.

λ Tr
ai

ni
ng

d
at

as
et

si
ze

M
od

u
le

te
m

p
er

at
u

re
at

ti
m

e
t

M
od

u
le

te
m

p
er

at
u

re
ch

an
ge

in
ti

m
e

fr
am

e
[
t
−

1,
t]

M
od

u
le

p
ow

er
at

ti
m

e
t

M
od

u
le

p
ow

er
ch

an
ge

in
ti

m
e

fr
am

e
[
t
−

1,
t]

A
ir

te
m

p
er

at
u

re
at

ti
m

e
t

A
ir

te
m

p
er

at
u

re
ch

an
ge

in
ti

m
e

fr
am

e
[
t
−

1,
t]

So
la

r
ra

d
ia

ti
on

at
ti

m
e
t

So
la

r
ra

d
ia

ti
on

ch
an

ge
in

ti
m

e
fr

am
e
[
t
−

1,
t]

R
el

at
iv

e
hu

m
id

it
y

of
ai

r
at

19
m

he
ig

ht
at

ti
m

e
t

R
el

at
iv

e
hu

m
id

it
y

of
ai

r
at

19
m

he
ig

ht
ch

an
ge

in
ti

m
e

fr
am

e
[
t
−

1,
t]

A
cc

u
m

u
la

te
d

p
re

ci
p

it
at

io
n

ov
er

th
e

ti
m

e
fr

am
e
[
t
−

1,
t]

Su
n

he
ig

ht
at

ti
m

e
t

MSE NMSE ME rME
exp0 1E-3 50 000 119 867.07 0.9977 136.167 0.0740
exp1 1E-3 50 000 12 450.68 0.1030 34.798 0.0202
exp2 1E-4 50 000 13 099.24 0.1079 35.147 0.0192
exp3 1E-5 50 000 13 997.94 0.1215 37.584 0.0204
exp4 1E-4 50 000 12 749.79 0.1033 34.188 0.0199
exp5 1E-4 50 000 13 967.55 0.1103 35.454 0.0210
exp6 1E-3 50 000 16 265.94 0.1245 38.463 0.0221
exp7 1E-4 50 000 14 839.04 0.1115 37.489 0.0202
exp8 1E-5 50 000 114 418.94 0.9955 132.592 0.0758
exp9 1E-1 50 000 112 295.55 0.9999 132.592 0.0751
exp10 1E-5 1 612 754 125 046.73 0.9982 142.217 0.0778
exp2_0 1E-4 50 000 14 838.23 0.1254 36.124 0.0197
exp2_1 1E-4 50 000 37 880.85 0.2907 85.856 0.0499
exp2_2 1E-4 50 000 11 263.67 0.0934 33.689 0.0191
exp2_3 1E-4 50 000 13 632.42 0.1074 35.888 0.0212
exp2_4 1E-4 50 000 11 879.82 0.0954 32.852 0.0197
exp2_5 1E-4 50 000 12 812.85 0.1035 33.923 0.0190
exp2_2_0 1E-4 50 000 12 026.75 0.0961 33.218 0.0194
exp2_2_1 1E-3 50 000 41 083.83 0.3178 90.776 0.0493
exp2_2_2 1E-4 50 000 11 415.73 0.0954 33.337 0.0198
exp2_2_3 1E-4 50 000 11 351.45 0.0976 33.125 0.0195
exp2_2_4 1E-4 50 000 13 764.72 0.1165 34.232 0.0186
exp2_2_5 1E-3 50 000 13 066.45 0.1030 34.565 0.0195
exp2_2_v1 1E-4 1 200 000 11 388.98 0.0911 32.379 0.0170
exp2_2_v2 1E-4 1 200 000 12 072.22 0.0963 33.245 0.0180
exp2_2_v3 1E-4 1 200 000 11 753.13 0.0947 32.879 0.0178
exp2_2_v4 1E-4 1 200 000 11 417.68 0.0935 32.287 0.0174
exp2_2_v5 1E-4 1 200 000 11 736.47 0.0945 32.749 0.0177
exp2_2_v6 1E-4 1 200 000 11 685.45 0.0942 32.475 0.0174

60

5.2 Power Prediction

First, in exp0, I checked how the prediction would fare on the full attribute space. It did not
work very well. However, this might have be an instance of Hughes’ phenomenon[Hug68], as
the dataset size was selected to 50 000. So, according to the heuristics provided by Good and
Hardin[GH12], I re-ran the experiment with a larger sample size as exp10. That, too, didn’t
work out very well, so I concluded that the attribute space contained some attributes that
lessened the precision of the prediction and thus should not be part of the attribute space.

In experiments exp1 through exp9, I tested some arbitrarily chosen subsets. I then selected
the experiment with the lowest mean squared error and relative mean squared error and
refined it. This was done in exp2_0 through exp2_5 by removing one attribute from exp2,
and removing a different one in each experiment. However, I figured the solar radiation itself
was too important for the power to be removed, so I didn’t test it.

The experiments exp2_0 through exp2_5 revealed some interesting correlations. For one,
and little surprising, removing the current power attribute P (t)mod drastically worsened the
prediction. Removing other attributes did not lead to significant improvement of the result,
except for a slight improvement when removing the air temperature attribute, which, to be
honest, is coherent, as the air temperature should not have that large an influence on the
power. Thus, exp2_2 was selected for further refinement.

Figure 5.1: Result of the regression for exp2_2_v3. The predicted power P̃ (t+1) is plotted
against the reference power RP (t+1) taken from the reference dataset. On the
left side, the density of the data points is estimated by using a two-dimensional
histogram. This way, the amount of points on the diagonal can be grasped. On
the right side, the (RP , P̃) pairs are plotted in a scatter plot, to show the outliers.
It can be seen that the number of points near the origin is very high. This is
understandable as the dataset used was distributed evenly for values across all
hours, so approximately half of the data points are at night.

61

5 Dataset Scenarios

Again, for exp2_2, every attribute was removed once and the prediction was tested, resulting
in the experiments exp2_2_0 through exp2_2_5. Here, we did not get considerably better
results. Therefore, I reran those experiments with a much higher training set size of 1 200 000
in the experiments exp2_2_v1 through exp2_2_v6. Those also yielded slightly better results.
Getting NMSEs < 0.1 was in itself a very good result. This meant we had a pretty good
prediction of the solar power in the next time step in most cases.

In Fig. 5.1, the prediction P̃ of each data point is plotted over the expected value RP , as
defined in Eq. 5.18, Eq. 5.19. As can be seen, especially from the heat map, most of the points
lie near the diagonal, which means a good prediction of the power. Of course, there are
outliers where the prediction did not match the reference.

Outliers can be explained by one of multiple causes: Either they are points in sparsely
populated areas of the attribute space, where the regression function could not be learned
as precisely because of missing data. Or there were contradictory data points in the training
dataset, resulting in the regression function trying to fit all of them as closely as possible and
thus accumulating some error for every data point. As the power generated by a photovoltaic
module can be deterministically calculated with perfect information, contradictory points in
the dataset might mean that there is a relevant attribute that influences the power generation
and which is not included in the attribute space.

101 102 103 104 105 106

Training dataset size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
M

S
E

Figure 5.2: NMSE plotted over the size of the training dataset. The test dataset was always
the same.

62

5.2 Power Prediction

To illustrate the correlation between dataset size and accuracy, I generated datasets of variable
size for the experiment exp2_2_0 and learned a regression from them. I also generated one
fix test dataset, with which I tested every learned regression and got the NMSE from the test.
The results of those experiments can be viewed in Fig. 5.2, where the NMSE is plotted against
the dataset size. It can be seen how the prediction gets more accurate with dataset size. For
dataset sizes < 10000, this is simply caused by undersampling of the data, which leads to a
largely unpopulated attribute space. Therefore, the regression simply cannot be accurate,
as it has no information whatsoever on large areas of the attribute space. It should also be
noted how the accuracy of the prediction converges around a dataset size of 100 000. Here,
the vagueness of the prediction is the only error left, as, of course, the fact that we chose
a time difference of ∆t = 5 min means that we lose some precision on the steadiness of our
attributes during that time. Within five minutes, a lot can change. For instance, it is enough
time for a cloud to move in front of the sun. For a lower time difference, we should get even
better results, and for higher time differences, the power at t + 1 becomes more and more
nondeterministic.

0 20 40 60 80 100 120
Lead time τ = delay embedding time difference ∆t [min]

0.00

0.05

0.10

0.15

0.20

0.25

N
M

S
E

Figure 5.3: NMSE plotted over the time difference chosen for the prediction. The increasing
inaccuracy with increasing ∆t can be seen very clearly. The dataset size was chosen
as 50 000, with a regularization parameter λ = 10−4.

To illustrate the correlation between time difference for the prediction and accuracy, I gener-
ated datasets for variable time differences 1 min ≤∆t ≤ 120 min. The trivial ∆t = 0 was omitted
as the error for that time difference would be given by the error of the regression function’s

63

5 Dataset Scenarios

interpolation u in the training data points, and had no predictive significance. The resulting
NMSEs can be seen in Fig. 5.3. For a time difference of only one minute, the prediction was
very accurate, resulting in an NMSE of ≈ 0.05. However, such a prediction is most probably
not much better than assuming that the power stays the same as the previous minute. For
larger ∆t, the predictions get less accurate fast, so that the NMSE is around 0.1 already for
∆t = 8 min. For a ∆t = 2 h, the NMSE is already around 0.2. This is in line with how hard
predictions get with increasing time difference.

0 200 400 600 800 1000 1200 1400 1600

RP

0

200

400

600

800

1000

1200

1400

1600

P̃

(a) N = 100 and ∆t = 5 min:
Undersampling

0 200 400 600 800 1000 1200 1400 1600

RP

0

200

400

600

800

1000

1200

1400

1600

P̃

(b) N = 106 and ∆t = 5 min:
Sufficient sample size

0 200 400 600 800 1000 1200 1400 1600

RP

0

200

400

600

800

1000

1200

1400

1600

P̃

(c) N = 50 000 and ∆t = 2 min:
Good prediction

0 200 400 600 800 1000 1200 1400 1600

RP

0

200

400

600

800

1000

1200

1400

1600

P̃

(d) N = 50 000 and ∆t = 119 min:
Vague prediction

Figure 5.4: Comparison of prediction P̃ and reference RP (t+1) for different training dataset
sizes N and different time differences ∆t.

64

5.2 Power Prediction

In Fig. 5.4c, the predicted power at t +1 – P̃ – is plotted against its reference value RP (t+1)

for a time difference of ∆t = 2 min. In Fig. 5.4d, the same is done for ∆t = 119 min. For the
larger ∆t, the prediction gets more inaccurate, which can be seen by comparing how dense
the points are scattered along the diagonal in both plots.

In Fig. 5.4a, the predicted power at t +1 P̃ is plotted against its reference value RP (t+1) for
a training dataset size of N = 100. In Fig. 5.4b, the same plot is shown for a dataset size of
N = 1 000 000. It is noticeable how many less predictions are plain wrong for a higher dataset
size.

What stands out is the fact that dataset sizes and time differences generate different kinds of
inaccuracies: With too small datasets, we simply have too large areas in the attribute space
with too sparse support of training data, and thus, the function evaluations in those areas are
not very accurate[Hug68][GH12]. However, with increasing ∆t, the change in power simply
becomes a more and more nondeterministic quantity. Therefore, the training data in a way
become more and more noised, and the prediction often deviates more from the real value.

65

6 Conclusions and Outlook

As the scope of this work limited the depth into which I could work on this topic, I will
propose here some things that can still be done. For one, from the classification experiment
exp_3_11_1 which is listed in Tab. 5.3 on page 55, by removing data points which can not be
classified accurately enough or by rating each data point by it’s probability to be in each class,
a better dataset can be generated which can then be used to test classification implementations.
The experiment used wind speed, solar radiation, DC power generated by a photovoltaic
module, difference in wind speed, solar altitude, relative humidity, air pressure, air pressure
difference and accumulated precipitation over the last time step to classify data points into
the four classes RAIN,SNOW,FOG, and THUNDER. The hit rates using a training and test dataset
with the same amount of points for each class was 40.79%.

Removing data points which lie between classes, a clustering dataset can also be generated.
By confining the classes and creating a dataset where a classification can be learned with
≥ 90% hit rate, this dataset can be used for clustering as well. Clustering does only need one
dataset, which is training and test dataset in one: The attribute space part of the dataset is
the training data and the image set is the reference. It can be expected that one class will
be split up in multiple clusters, however the total result should correlate with the classes in
some way. Another idea would be to get a better source for weather event data (rain, snow,
thunderstorms, fog) from a source in better proximity to the other sensor stations. However,
it is quite difficult to find reliable historical data that is also freely available. Using the
precipitation sensors from the IWS data, the RAIN class could be refined so that it contains
most, if not all, data points where any rain was falling.

For the regression scenario, different time differences can be tested for their predictive
accuracy, as already done in the experiments graphed in Fig. 5.3. It might also help a lot to do
this based on some weather theory literature, leading to better designs in the attribute spaces.
One idea would be to use different time differences ∆t for different attributes. The idea behind
this is that some physical quantities like air temperature or solar radiation change relatively
fast, but others like air pressure change more slowly. For example, choosing ∆t = 4 h for the
air pressure and ∆t = 30 min for the air temperature might be more sensible than choosing it
as the same amount for both attributes. Throughout this thesis, the lead time τ was always
selected as τ = ∆t. When selecting separate ∆t for separate attributes while embedding, a
specific lead time might also be selected, potentially leading better results. Also, additional
attributes might be embedded based on weather theory or photovoltaic theory.

67

Bibliography

[Adl13] H. Adler. Langzeitüberwachung von Photovoltaikanlagen, 2013. (Cited on pages 37
and 39)

[Bel03] R. Bellman. Dynamic Programming. Dover Books on Computer Science
Series. Dover Publications, 2003. URL https://books.google.de/books?id=

fyVtp3EMxasC. (Cited on pages 16 and 23)

[BG04] H.-J. Bungartz, M. Griebel. Sparse grids. Acta numerica, 13:147–269, 2004. (Cited
on pages 16 and 23)

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. (Cited on
page 28)

[BJ76] G. E. Box, G. M. Jenkins. Time series analysis: forecasting and control rev. 1976.
(Cited on pages 43, 57 and 58)

[Bun15] H.-J. Bungartz. Dünne Gitter und ihre Anwendung zur numerischen Quadratur,
2015. URL http://www5.in.tum.de/lehre/vorlesungen/algowiss2/WS06/

Handout_02_2auf1.pdf. (Cited on page 17)

[DR11] J. Drechsler, J. P. Reiter. An empirical evaluation of easily implemented, non-
parametric methods for generating synthetic datasets. Computational Statis-
tics & Data Analysis, 55(12):3232 – 3243, 2011. doi:http://dx.doi.org/10.1016/j.
csda.2011.06.006. URL http://www.sciencedirect.com/science/article/pii/

S0167947311002076. (Cited on page 11)

[EJHS00] B. Engquist, L. Johnsson, M. Hammill, F. Short. Simulation and Visualization
on the Grid: Paralleldatorcentrum Kungl Tekniska Hoegskolan Seventh Annual
Conference, Stockholm, Sweden, December 1999, Proceedings. Springer-Verlag
New York, Inc., 2000. (Cited on page 31)

[Fra11] F. Franzelin. Classification with Estimated Densities on Sparse Grids, 2011.

[Gar06] J. Garcke. Regression with the optimised combination technique. In Proceedings of
the 23rd international conference on Machine learning, pp. 321–328. ACM, 2006.
(Cited on page 28)

69

https://books.google.de/books?id=fyVtp3EMxasC
https://books.google.de/books?id=fyVtp3EMxasC
http://www5.in.tum.de/lehre/vorlesungen/algowiss2/WS06/Handout_02_2auf1.pdf
http://www5.in.tum.de/lehre/vorlesungen/algowiss2/WS06/Handout_02_2auf1.pdf
http://www.sciencedirect.com/science/article/pii/S0167947311002076
http://www.sciencedirect.com/science/article/pii/S0167947311002076

Bibliography

[Gar13] J. Garcke. Sparse grids in a nutshell. In Sparse grids and applications, pp. 57–80.
Springer, 2013. (Cited on page 16)

[GGG13] J. Garcke, T. Gerstner, M. Griebel. Intraday foreign exchange rate forecasting using
sparse grids. In Sparse grids and applications, pp. 81–105. Springer, 2013. (Cited
on page 48)

[GH12] P. I. Good, J. W. Hardin. Common errors in statistics (and how to avoid them).
John Wiley & Sons, 2012. (Cited on pages 49, 56, 61 and 65)

[Gie15] J. Giesen. Formula for calculation of solar altitude, 2015. URL http://www.

geoastro.de/SME/tk/index.htm. (Cited on page 51)

[GP14] J. Garcke, D. Pflüger. Sparse Grids and Applications - Munich 2012. Lecture Notes
in Computational Science and Engineering. Springer International Publishing, 2014.
URL https://books.google.de/books?id=tezCBAAAQBAJ. (Cited on page 31)

[HHR00] M. Hegland, G. Hooker, S. Roberts. Finite Element Thin Plate Splines in Density
Estimation, 2000.

[Hug68] G. Hughes. On the mean accuracy of statistical pattern recognizers. Information
Theory, IEEE Transactions on, 14(1):55–63, 1968. doi:10.1109/TIT.1968.1054102.
(Cited on pages 31, 49, 61 and 65)

[Hun07] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science &
Engineering, 9(3):90–95, 2007.

[Hun12] J. Hunter. matplotlib Online Documentation, 2012. URL http://matplotlib.org/

1.5.0/index.html. (Cited on page 42)

[KD15] C. Klein, Deutscher Wetterdienst. Wetterwarnungsarchiv DWD, Standort Stuttgart,
2015. URL https://www.chklein.de/wetter7/dwdwarnings/bypath/BW/SXX.
(Cited on page 51)

[KKSZ11] H.-P. Kriegel, P. Kröger, J. Sander, A. Zimek. Density-based clustering. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(3):231–240,
2011. doi:10.1002/widm.30. URL http://dx.doi.org/10.1002/widm.30. (Cited
on page 33)

[Kod14] Y. Kodratoff. Introduction to machine learning. Morgan Kaufmann, 2014.

[LH03] A. Luque, S. Hegedus. Handbook of Photovoltaic Science and Engineering. Wi-
ley, 2003. URL https://books.google.de/books?id=u-bCMhl_JjQC. (Cited on
page 58)

[Mac15] Machine Learning Group at the University of Waikato. Weka Online Documenta-
tion, 2015. URL http://www.cs.waikato.ac.nz/ml/weka/documentation.html.
(Cited on page 42)

70

http://www.geoastro.de/SME/tk/index.htm
http://www.geoastro.de/SME/tk/index.htm
https://books.google.de/books?id=tezCBAAAQBAJ
http://matplotlib.org/1.5.0/index.html
http://matplotlib.org/1.5.0/index.html
https://www.chklein.de/wetter7/dwdwarnings/bypath/BW/SXX
http://dx.doi.org/10.1002/widm.30
https://books.google.de/books?id=u-bCMhl_JjQC
http://www.cs.waikato.ac.nz/ml/weka/documentation.html

Bibliography

[McK12] W. McKinney. Python for Data Analysis: Data Wrangling with Pandas, NumPy,
and IPython. O’Reilly Media, 2012. URL http://books.google.de/books?id=

v3n4_AK8vu0C. (Cited on page 42)

[MDA05] G. McLachlan, K.-A. Do, C. Ambroise. Analyzing microarray gene expression
data, volume 422. John Wiley & Sons, 2005. (Cited on page 36)

[Mos48] F. Mosteller. A k-Sample Slippage Test for an Extreme Population. Ann. Math.
Statist., 19(1):58–65, 1948. doi:10.1214/aoms/1177730290. URL http://dx.doi.

org/10.1214/aoms/1177730290. (Cited on page 36)

[Nel03] J. Nelson. The physics of solar cells, volume 1. World Scientific, 2003. (Cited on
page 58)

[OD03] A. J. Onwuegbuzie, L. G. Daniel. Typology of analytical and interpretational errors
in quantitative and qualitative educational research. Current Issues in Education,
6, 2003. (Cited on page 36)

[Pfl10] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Prob-
lems. Verlag Dr. Hut, München, 2010. URL http://www5.in.tum.de/pub/

pflueger10spatially.pdf. (Cited on pages 16, 20, 25, 28 and 37)

[Pos15] PostgreSQL Global Development Group. PostgreSQL 8.4.22 Documentation, 2015.
URL http://www.postgresql.org/docs/8.4/static/. (Cited on page 42)

[PPB12] B. Peherstorfer, D. Pflüger, H.-J. Bungartz. Clustering Based on Density Estimation
with Sparse Grids. In KI 2012: Advances in Artificial Intelligence, volume 7526
of Lecture Notes in Computer Science. Springer, 2012.

[Rip94] B. D. Ripley. Neural networks and related methods for classification. Journal of the
Royal Statistical Society. Series B (Methodological), pp. 409–456, 1994. (Cited
on pages 31 and 32)

[Rip96] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, 1996. URL https://books.google.com/books?id=2SzT2p8vP1oC. (Cited
on page 31)

[Sha06] C. Shalizi. Methods and Techniques of Complex Systems Science: An Overview.
In T. Deisboeck, J. Kresh, editors, Complex Systems Science in Biomedicine, Top-
ics in Biomedical Engineering International Book Series, pp. 33–114. Springer
US, 2006. doi:10.1007/978-0-387-33532-2_2. URL http://dx.doi.org/10.1007/

978-0-387-33532-2_2. (Cited on page 45)

[SYC91] T. Sauer, J. Yorke, M. Casdagli. Embedology. J. Stat. Phys., 65(3-4):579–616, 1991.
(Cited on pages 45 and 57)

[Syk93] A. O. Sykes. An introduction to regression analysis. 1993. (Cited on page 27)

71

http://books.google.de/books?id=v3n4_AK8vu0C
http://books.google.de/books?id=v3n4_AK8vu0C
http://dx.doi.org/10.1214/aoms/1177730290
http://dx.doi.org/10.1214/aoms/1177730290
http://www5.in.tum.de/pub/pflueger10spatially.pdf
http://www5.in.tum.de/pub/pflueger10spatially.pdf
http://www.postgresql.org/docs/8.4/static/
https://books.google.com/books?id=2SzT2p8vP1oC
http://dx.doi.org/10.1007/978-0-387-33532-2_2
http://dx.doi.org/10.1007/978-0-387-33532-2_2

Bibliography

[TA77] A. N. Tichonov, V. J. Arsenin. Solutions of ill-posed problems. Winston,
Washington, D.C., 1977. URL http://digitool.hbz-nrw.de:1801/webclient/

DeliveryManager?pid=2198436&custom_att_2=simple_viewer. (Cited on
page 27)

[Tak81] F. Takens. Detecting strange attractors in turbulence. Springer, 1981. (Cited on
pages 45 and 57)

[Tec10] Technical University of Munich. SG++ Online Documentation, 2010. URL http:

//www5.in.tum.de/SGpp/releases/index.html. (Cited on page 37)

[TSN99] Y. Theodoridis, J. Silva, M. Nascimento. On the Generation of Spatiotemporal
Datasets. In R. Güting, D. Papadias, F. Lochovsky, editors, Advances in Spa-
tial Databases, volume 1651 of Lecture Notes in Computer Science, pp. 147–
164. Springer Berlin Heidelberg, 1999. doi:10.1007/3-540-48482-5_11. URL
http://dx.doi.org/10.1007/3-540-48482-5_11. (Cited on page 11)

[Ver15] J. T. Vermeulen. libpqxx C++ PostgreSQL Online Documentation, 2015. URL pqxx.

org/devprojects/libpqxx/doc/2.6.4/html/Reference/. (Cited on page 42)

[WA14] T. Wurster, H. Adler. SenseTrace. Internes Dokument, 2014. (Cited on page 37)

[Was13] L. Wasserman. Old Faithful dataset, 2013. URL http://www.stat.cmu.edu/

~larry/all-of-statistics/=data/faithful.dat. (Cited on page 11)

[WFH11] I. H. Witten, E. Frank, G. Holmes. Data mining : practical machine learning
tools and techniques. The Morgan Kaufmann series in data management systems.
Morgan Kaufmann, Amsterdam, Boston, Paris, 2011. URL http://opac.inria.fr/

record=b1132751. (Cited on pages 36 and 53)

[WG94] A. S. Weigend, N. A. Gershenfeld. Time Series Prediction: Forecasting the Fu-
ture and Understanding the Past. Addison-Wesley, Reading, Massachusetts, 1994.
(Cited on page 45)

[Zin10] B. Zinßer. Jahresenergieerträge unterschiedlicher Photovoltaik-Technologien bei
verschiedenen klimatischen Bedingungen, 2010. (Cited on page 37)

All links were last followed on November 22nd, 2015.

72

http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2198436&custom_att_2=simple_viewer
http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2198436&custom_att_2=simple_viewer
http://www5.in.tum.de/SGpp/releases/index.html
http://www5.in.tum.de/SGpp/releases/index.html
http://dx.doi.org/10.1007/3-540-48482-5_11
pqxx.org/devprojects/libpqxx/doc/2.6.4/html/Reference/
pqxx.org/devprojects/libpqxx/doc/2.6.4/html/Reference/
http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
http://opac.inria.fr/record=b1132751
http://opac.inria.fr/record=b1132751

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Data Mining on Sparse Grids
	2.1 Notations
	2.2 Sparse Grids
	2.3 Regression
	2.4 Classification
	2.5 Clustering
	2.6 k-fold Cross Validation

	3 Used Tools and Data
	3.1 SG++
	3.2 The Used Data
	3.3 Other Tools and Libraries

	4 Generating Datasets
	4.1 Database Preprocessing
	4.2 Delay Embedding
	4.3 Generation of Datasets

	5 Dataset Scenarios
	5.1 Weather Events
	5.2 Power Prediction

	6 Conclusions and Outlook
	Bibliography

