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Abstract

A rising number of feedback control systems replace their hardwired connections
with intermediate networks. These types of control systems are called Networked
Control Systems (NCSs) and are often very sensitive to delays in the network, i.e.
on their feedback loop. Especially non-uniform delays pose a problem for most
controller implementations.
In light of this, research yielded different approaches to stabilize such systems and
make them robust. Some of these solutions approach the problem at the controller
itself, while others try to mitigate delays and disturbances within the intermediate
network. These approaches have one thing in common: Their results are difficult
to verify and hardly comparable.
This thesis presents and explains the setup of a demonstrator which can be used
to test and compare solutions acting in different intermediate networks using
the same, predictable control system. To achieve this, the required theoretical
background of control systems is revised and the setup of a inverted pendulum
as a NCS demonstrator is explained in detail. Furthermore, different networking
setups and their properties are described and documented.

Kurzfassung

Bei einer wachsenden Zahl von Regelkreisen werden festverdrahtete Verbindun-
gen durch zwischengeschaltete Netzwerke ersetzt. Diese Regelkreise werden als
Networked Control Systems (NCSs), also als vernetzte Regelkreise, bezeichnet
und sind oftmals sehr empfindlich gegenüber Latenzzeiten in diesen Netzwerken,
insbesondere bei der Rückführung der Regelgröße. Vor allem ungleichmäßige
Verzögerungen stellen die meisten Regelkreise vor Probleme.
Angesichts dieser Schwachstellen existieren verschiedene Ansätze um solche Sys-
teme zu stabilisieren und robuster zu machen. Manche dieser Lösungen versuchen,
das Problem mit Hilfe geeigneterer Implementierungen des Regelkreises selbst zu
lösen. Andere setzen in den zwischengeschalteten Netzwerken an, sodass diese
Verzögerungen und Störungen kompensieren können. Vertreter dieser beiden An-
sätze sind jeweils schwer anhand der wissenschaftlichen Arbeiten reproduzierbar
und entsprechend kaum miteinander vergleichbar.
Diese Arbeit stellt den Aufbau eines Demonstrators vor, mit dem Lösungen, die
in den Netzwerken ansetzen, reproduziert und verglichen werden können. De-
mentsprechend wird der benötigte theoretische Hintergrund zusammengefasst
und der Aufbau eines invertierten Pendels als NCS im Detail erklärt. Desweit-
eren werden verscheidene Optionen der Vernetzung beleuchtet und deren Eigen-
schaften dokumentiert.
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1. Introduction
Control systems are integral to modern technologies and surround us everywhere.
Research in this area has progressed for a long time and various courses of study
concern themselves with all aspects of control systems.

Today, control systems are required to be flexible or even distributed while retaining
their real-time aspects. Examples of this are their use in wireless sensor networks,
remote surgery or in different kinds of autonomous vehicles, such as aerial drones
[HNX07].

1.1. Motivation and Definitions
In an introductory book, Control Systems Engineering [Nis00, p. 2], Norman S. Nise
defines control systems as follows:

A control system consists of subsystems and processes (or plants) assem-
bled for the purpose of controlling the outputs of the processes.

While this presents a basic and satisfactory definition in most regards, it does not
state how these subsystems are connected. Many control systems must be considered
Real Time Systems (RTSs) with hard deadlines, as feedback is required to be virtually
without delay [No98].

At the same time, hard-wired connections from sensors to process controllers and
their actuators are no longer to be taken for granted. Most often, fixed-delay channels
are replaced with less predictable means of communication: Networking hardware
has become cheap, wireless sensors are increasingly common, and using those options
reduces cost by avoiding additional, dedicated wiring through higher flexibility. These
kinds of control systems are sometimes called distributed real-time control systems
[No98], or more frequently and recently Networked Control Systems (NCSs) [HNX07].

When decoupling sensors from actuators, their connection quality degrades with
increasing distance and a higher number of network segments required to form a
link. In addition, the packet based nature of today’s networks induces a sampling
process between plant and controller, making the NCS a time-discrete system [BA11b].
However, most plants are continuous-time systems and have to be discretized to work
in such an environment [BA14].

The solutions proposed for these problems often lack a real implementation and
therefore are hard to verify and compare with each other. This thesis presents a demon-
strator for NCSs which offers a basic testing environment and is adaptable for any
scenario.

1.2. Problems with Networked Control Systems (NCSs)
The network behind a NCS has to satisfy hard deadlines while processing large amounts
of data and dealing with other, unrelated traffic. The reasons why NCSs introduce many
problems and often only operate with degraded performance have been reviewed in
many papers [BPZ00; ZBP01; SQ03; TC03; AS03; Ric03].
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All those sources concur, the main problem is the non-uniform distance between
samples caused by the following problems present in all networks:

• packet loss

• out-of-order delivery

• collisions between multiple senders

In a packet-based network – whatever the exact specifications are – a trade-off is made
between packet size and fragmentation. While fragmentation can mitigate packet loss,
it increases problems arising from out-of-order delivery, as most network specifications
do not guarantee First In First Out (FIFO) delivery. If the network is shared with other
users, maybe even other control systems, cross-traffic or collisions can cause additional
delays. Latency is also dependent on network scheduling on the clients and on the
intermediate nodes, i.e. if data is sent immediately or after some buffer has been filled.

All of this leads to a non-deterministic distance between samples which either needs
to be taken into account by the controller, or should be mitigated by the network to stay
within reasonable bounds. As such, most work was done either on controller design or
networking protocols [LMT02; GC10].

Multiple solutions exist for both variations [Yan06; HNX07], a popular notion be-
ing the use of a Kalman filter or other prediction methods within the controller to
compensate variable delays and even the loss of some packets [SFY09; Sin+04].

To mitigate the varying delay, the network needs to replicate the delay-free properties
of hard-wired data channels without sacrificing flexibility and scalability. This is, for ex-
ample, done by using a dedicated network solution, i.e. field-buses like ProfiBus [e.V15]
or DeviceNet [Ass15], or by using Software-defined Networking (SDN) (see Section
1.4) and OpenFlow to overcome some limitations of plain Ethernet networks. Their
goal is to provide data channels which offer some guarantees regarding performance
and latency within a shared best-effort network. Typically, these guarantees depend
on the system and its controller and have to be adapted accordingly [Car+14].

1.3. Using the Inverted Pendulum as representative Example
To provide a well-known application which has been a favorite subject of research for
a long time [Yam89; PFA05; Zha+05; NAR08; Wan+10], the target of this thesis is to
build an inverted pendulum to test and demonstrate solutions and algorithms in the
context of NCSs.

The inverted pendulum makes a great example for a control system which mitigates
disturbances through a closed feedback loop and is very sensitive to delays when its
loop is closed over a network. Using this delay afflicted inverted pendulum as a ba-
sic platform, different solutions can be tested in any environment by transmitting the
detected angle over an arbitrary network. This can be utilized with a wide variety of dif-
ferent networking specifications, mainly with a simulated Ethernet network controlled
by OpenFlow as is implemented later in this thesis.

These problems not only apply to an inverted pendulum, all control systems depend-
ing on a slow sensor might still have real-time requirements. As such, not only the
example of the inverted pendulum would be a good candidate for studying a NCS.
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Any control system which involves a sensor with limited refresh rate can profit from
research done on NCS, even if the latency is relatively easy to handle in comparison
to a real network.

1.4. Networks for NCSs
To make NCS viable, a possibility is to mitigate any delays affecting the control system.
This retains the advantages a NCS has over regular control systems while eliminat-
ing some issues the intermediate network involves. Many alternative approaches to
mitigate network delays position themselves at the data link layer [e.V15; Ass15]. Con-
sequently, these are not a viable option when using existing networks, as these are
typically based on Ethernet.

When dealing with Ethernet (or any packet-based, best-effort network), a popular
approach is to use probabilistic control models [Hee+09; BA11a; BA12] to deal with
packet loss and latency spikes. However, applying such a model in real communication
services present in current networks is difficult and requires a customized routing
algorithm, as these models are required to have global knowledge.

Instead it is possible to use state of the art SDN technology [Car+14]which is readily
available in much of today’s networking hardware. This does not provide a solution on a
public network of course, but for example within local networks connected using Virtual
Private Networks (VPNs) tunnels which can be integrated into a SDN environment.

In addition, SDN controlled networks can build upon application knowledge which
helps immensely when developing a NCS. For example, the expected delays can be
communicated with the controller. If, for instance, a critical operation of the controller
required above average latency guarantees, a SDN controller might be able to realize
these for a period of time by halting other, unrelated traffic.

1.5. Goals of this Thesis
Testing the solutions addressed in the previous section in a real scenario and comparing
the results is difficult and often overlooked by the original authors. Most often, the
defining criteria for success is the stability of a system, while its overall performance
is not considered.

Therefore, this thesis addresses the need to test these solutions by providing a demon-
strator for NCS. This is done by describing the hardware setup of a inverted pendulum
and determining its exact system model. The software needed to drive the sensors
and the actuators will be described and reviewed. To be able to test and compare the
different solutions addressed in the previous sections, this demonstrator will support
different intermediate networks and is built to be extendable in this regard.

An USB connection with serial communication is the default, but SPI and CAN con-
nections are possible. An Ethernet interface can be used to connect to arbitrary net-
works, for instance a virtual network powered by Mininet [Lan15]. Mininet integrates
well with OpenFlow, making it straightforward to test some of the solutions described
in Section 1.4. In addition to these networks, it is easy to add further network interfaces
as long as they are supported by the hardware on both ends.

As already noted in Section 1.2, controllers can be adapted to or even built around a
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specific network [Yur08]. While this prototype allows some basic controller-side read-
justments of the expected delay, it only allows for testing and comparison of solutions
acting in or providing the intermediate network with regard to the present controller,
a discrete-time state feedback controller with basic prediction (see Section 3.5).

1.6. Outline
The required fundamentals to build and understand (networked) control systems are
provided in Section 2. Subsequently, the actual setup of the demonstrator, an inverted
pendulum, is detailed in Section 3. This section will deal with modeling the system,
specifying the hardware used in the setup, and finally describe the controller used to
drive the demonstrator (Section 3.5). After this, different networking aspects will be
discussed and evaluated in Section 4, especially introducing the means to test Ethernet
networks and SDN. Finally, a general evaluation and a description of future work is
offered in Section 5.
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2. Background: (Networked) Control Systems
When building a control system from scratch, it is important to do it in a structured way
and with a clear understanding of the underlying algorithms. This section attempts
to summarize the theory behind control systems and the approach used to build this
control system.

2.1. Control Systems
In accordance with the definition of control systems given in the introduction (Section
1.1), every control system employs actuators which are used to control the processes
output, and sensors which are used to read input to determine how to drive the ac-
tuators to reach the setpoint. In addition, there usually is a disturbance to the plant
which can be taken into account by the controller. There are however different kinds
of controllers available, each suiting different applications.

2.1.1. Open-Loop Control
Open-loop control systems are the simplest
form of control systems. Their input and
the disturbances determine their output.
They have no sensors to tell if their setpoint
has been achieved which makes the correc-
tion of disturbances impossible. This kind
of control system is easily implemented as
a NCS, as increased delays only lead to
sluggish controls. A good example is a car’s
steering wheel, which is exposed to larger
disturbances at higher speeds.

Systemu
Input

Disturbance

x
Output

Figure 1: Schematics of an open-loop
system.

2.1.2. Feed-Forward Control
Feed-forward systems counteract distur-
bances when they are detected or antici-
pated. Like open-loop systems, they do not
measure their actuating variable and can
not correct their setpoint. A good example
is power steering, which counteracts any
disturbances, for example those caused by
high speeds..

System
Input u

Disturbance

-

x
Output

Figure 2: Schematics of a feed-forward
system.

11



2.1.3. Closed-Loop Control
Closed-loop controllers gain feedback by
observing the actuated variable and cor-
recting their own output accordingly. This
type of control system is suitable to have a
control system mitigate disturbances in the
system. A good example is a driver steering
a car to stay on a path.
This is also the most sensitive type of con-
trol system in regards to delays, as the data
received on the feedback loop is required
to be as current as possible. Therefore, this
is the type of control system most relevant
to NCS and has to be considered a RTS.
This is already apparent from the example
given above, as a human driver introduces
considerable delay.

System

Feedback

Input u

Disturbance

x
Output

-

e

Figure 3: Schematics of an closed-loop
system.

2.2. Control Loops and NCSs
As noted above, closed-loop control systems are especially sensitive to delays affecting
their feedback loops. This makes them challenging NCS setups, especially when paired
with a network of poor quality. NCSs can be defined as follows:

Networked Control Systems (NCSs) are control systems which connect
their components, i.e. sensors, actuators and the controller itself, using a
network.

This is a concise definition of NCSs in general. However, it does not determine the
type of control system used and the specifications of the network. When NCSs are
mentioned in this thesis, two things are implied:

• The control system is implementing a feedback loop, i.e. it is a closed-loop system.

• A shared, best-effort, packet-switched network is used to connect its components.

Similar presumptions are made in many research contributions on the topic of NCS
[Yur08; Hee+09; Car+14].

2.3. Models of Feedback Control
There are many algorithms for controlling a system which can be assigned to one of
two categories [Nis00]. First, there is the classical control theory which operates on
frequency-domain functions. A system is represented as algebraic transfer functions
which makes it possible to control linear systems modeled as an Ordinary Differential
Equation (ODE).

The alternative is to use the modern approach to control theory which uses time-
domain functions and results in working with a state space representation. This ap-
proach also applies to non-linear systems as it is using general differential equations.
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By using vectors for any input, state, or output variables the complexity can be reduced
by representing higher order differential equations line by line, yielding a first order
equation for each line.

2.3.1. PID Control

A PID Controller (proportional-integral-derivative) is one of the most versatile con-
trollers available and a prime example for a classic control mechanism. As shown below
(Equation 2.1), the actuated variable u is determined by forming a weighted sum of the
error function e, i.e. the offset from the system’s setpoint. See Figure 3 from Section
2.1.3 for a visual representation in which the feedback is simplified: The three feed-
back nodes (with their factors K{p,i,d}) typically used to depict a Proportional Integral
Derivative (PID) controller are simplified and merged into a single node.

u(t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ+ Kd
d
d t

e(t) (2.1)

This is a straight forward approach to control a process, but the parameters are not
found easily. K{p,i,d} can be set to arbitrary values and have no relation to each other.
To determine these deciding properties, either an accurate system model is needed,
or – which is the most widely used approach – the controller needs to be tested and
tuned thoroughly. Some empirical methods to make finding the controller’s parameters
manageable are found in scientific literature [WZC00; YZH05; MDF00].

In a NCS, this is even harder, as the non-uniform distance between samples and
the delay have to be taken into account when using PID control. To counteract the
delay a straightforward and popular method is to interpolate the feedback to reflect the
current state using a Kalman filter [Sin+04; SFY09]. Using the singular perturbation
technique [Yur08] is a promising alternative.

2.3.2. Control with a Linear Quadratic Regulator (LQR)

The Linear Quadratic Regulator (LQR) is a feedback controller which operates on a
state space representation. It yields an optimal controller in reference to a cost function
and is applicable to both, continuous and discrete time problems.

For a given state space representation (of the form shown in Equation 2.2) two
matrices are defined: Q which represents the cost for errors, i.e. deviations from zero
and R which sets the cost of input. They both are part of the following cost function
(Equation 2.3), which is optimized by the LQR method.

ẋ(t) = A · x(t) + B · u(t) (2.2)

J(u) =

∫ ∞

0

�

x TQx + uT Ru
�

d t (2.3)

With these, a state-feedback control gain matrix K is calculated, for example by using
the method introduced by Blind et. al. [BA12]. Calculating this matrix is called the
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LQR problem. With this matrix given, the optimal control variable which minimizes
the cost is given by the following equation:

u(t) = −K · x(t) (2.4)

This cost optimization is an algorithmic way of determining a state-feedback con-
troller. However, tuning of the cost matrices Q and R is still required and often presents
an iterative process. As before, the delay present in a NCS must be compensated, for
example by using a Kalman filter to interpolate the measured state to the present state.

The state space representation required for this controller will be derived within the
next section (3.1.2). The approach used in this demonstrator to determine the gain
matrix K will be explained in further detail in section 3.5.
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3. Building a NCS: The Inverted Pendulum
The obvious choice when constructing an universal demonstrator for NCS is a closed
loop feedback system, as it is the most susceptible type of control system when dealing
with delays.

The inverted pendulum is probably the most common example object in control
systems research and also a closed loop system. As such, it is well defined and its
properties are already thoroughly documented [Yam89; No98; PFA05], making it an
ideal base for a demonstrator.

The following sections will detail the hardware and software used for this setup.

3.1. Setup and Properties
An inverted pendulum consists of a rod with its pivot point mounted on a cart or
carriage (see Figure 4). The carriage needs to be controlled in such a way, that the
pendulum’s center of mass always stays directly above the pivot point, i.e. that the
pendulum does not fall over.

M lΦ

P

Figure 4: A sketch of an in-
verted pendulum. M denotes
the pendulum’s center of mass,
l its length. The actuating vari-
able is the pendulum’s angle Φ
from the vertical.

This demonstrator’s inverted pendulum is not imple-
mented with an Inertial Measurement Unit (IMU) like
most implementations are, but rather using a consumer-
grade camera which detects the pendulum’s current
inclination. First, this is because of practical reasons:
When using cheap hardware – like the carriage of a desk-
top printer – an IMU mounted on the pivot point might
receive too much vibration and measurement noise to
be of any use. Second, using a camera adds credibility
to the setup as a NCS, as having two micro-controllers
sitting side by side without a hard-wired link is not a
plausible reason for making it a NCS.

There is also the obstacle of driving the camera:
Most controllers and actuators are run using a micro-
controller which generally does not offer possibilities to
interface with a camera. As seen in Figure 6, this demon-
strator circumvents this by placing the camera at a com-
puter which can communicate with the micro-controller
used to drive the actuator.

This makes this setup distributed in the sense that
the camera and the detection algorithm have no precise
frame rate (see Section 3.4.1) and the components inter-
acting with the sensor and the actuator are decoupled.

Having a computer on one end of the transmission channel also has other advantages
which will become obvious in Section 4.2. This makes the inverted pendulum a great
example for a distributed real-time control system, even in the absence of an actual
network.

It does not matter whether sensor data (the angle) or acceleration parameters are
transmitted between the computer with the sensor from a networking perspective.
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However, locating the controller with the actuator is likely to perform better in pres-
ence of packet losses and is proven to be optimal under certain assumptions [RK08].
Therefore, this implementation locates the controller directly at the pendulum, i.e. on
the micro-controller.

Following from this decision, the demonstrator in its current form closes the feedback
loop over a network in only one place, from sensor to controller. To reflect a fully
distributed NCS in a more precise way, an additional component could be added to
the setup. The assumption that the controller is nearby at least one of the components
and is networked using a fast, dedicated link is however reasonable and serves the
example of a camera controlled inverted pendulum very well.

3.1.1. System Model Deduction

To successfully design a control system, the system must be described and modeled. The
equations necessary for a full system model need to describe the pendulum’s moment
of inertia as well as its kinetic and potential energy.

15
16 l

P

Figure 5: Another
schematic view of
the pendulum and
its pivot point P.

The pendulum’s moment of inertia can be simplified if it presents
a thin rod without any additional mass mounted on top (like the
illustration in Figure 5). The following formula applies for the
moment of inertia when the rod is mounted at its center:

Iend =
1

12
·m · l2 (3.1)

The pendulum’s pivot P is of course not in the middle of the rod,
but neither directly at the end of the rod: It is 1

16 of its full length
from the bottom (Figure 5). This means, the moment of inertia
of the pendulum is given as a direct result of the Huygens-Steiner
theorem. This theorem states that the moment of inertia increases
by the mass times the squared distance from the center of mass:

IP =
�

1
12
·m · l2

�

+
7
16
·m · l2 =

211
768
·m · l2 (3.2)

The assumption that no additional mass is mounted on the pen-
dulum also yields the distance from the pivot to the pendulum’s
center of mass (d = PM + 1

16 l = l
2). The following equations and

their derivatives define the system’s geometry which is necessary
to calculate the system’s energy. The indices refer to the pendu-
lum’s base and center of mass, according to Figure 4, i.e. (xP , yP)
and (xM , yM) are the Cartesian coordinates of the pivot P and the
pendulum’s center of mass M , respectively.
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Arduino some network Computer

Camera

Figure 6: A sketch of the whole setup. Single arrows are used for high latency connections
while triple links indicate a hard-wired, low latency connection. The controller with
all its components is located on the Arduino, while the computer is driving the sensor,
a PS Eye camera. The intermediate network is variable.

xP = x ẋP = ẋ
yP = 0 ẏP = 0

xM = x − l
2
· sin(Φ) ẋM = ẋ − dΦ̇ cosΦ

yM =
l
2
· cos(Φ) ẏM = −dΦ̇ sinΦ

With these, the combined velocity of the center of mass M and thus the kinetic energy
T as well as the potential energy V are given by the following equations:

v2
M = ẋ2

M + ẏ2
M = ẋ2

M − d ẋΦ̇ cosΦ+ d2Φ̇2 (3.3)

T =
1
2

mv2
M +

1
2

IPΦ̇
2 (3.4)

V = m · g · yM (3.5)

These yield the Lagrangian (L = T − V ) which can be solved for Φ̈ using the Euler-
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Lagrange equation. Note that xp is the sleds position and Φ is the pendulum’s angle.

Φ̈=
d

d2 + 1
3 l2

︸ ︷︷ ︸

=F , a constant
factor

�

ẍp cos(Φ) + g sin(Φ)
�

(3.6)

The calculation yielding this result can be reviewed in Appendix A. The inverted
pendulum behaves approximately linearly for small values of Φ and probably would
not be able to recover from greater inclinations considering the commodity hardware
used in this setup. Thus, this equation may be linearized around Φ̇≡ Φ≡ 0, as a linear
ODE is required for LQR design:

Φ̈= F · ẍ + F · g ·Φ (3.7)

Note that ẍ is the acceleration of the carriage, i.e. the controllers output u, and the
constant factor F is defined in Equation 3.6.

3.1.2. State Space Representation

The full state space representation is given by the following equations:
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0 0 1 0





︸ ︷︷ ︸

C

·x (3.9)

In these, x is the state vector which is composed of the cart’s position x1, the cart’s
velocity x2 (= ẋ1), the pendulum’s angle Φ1 and the pendulum’s angular velocity
Φ2 (= Φ̇1).

The matrix A is called the system matrix, with B being the input matrix and C
being the output matrix. Note the constant factor F present in these matrices which
is defined as shown in Equation 3.6. The most important parameter is u, the control
variable which represents the acceleration the actuator needs to achieve.

These equations are still in their continuous-time form and need to be discretized
as follows:

xk+1 = Ad xk + Bduk (3.10)

yk = C xk (3.11)

Obtaining the discretized matrices Ad and Bd is shown in previous research [BA12],
but summarized in Appendix B.
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3.2. Actuator: A modified Desktop Printer’s Carriage
A goal of this thesis was to built a demonstrator with commodity hardware at hand.
In this case, the solution is to reuse the carriage of an old desktop inkjet printer and
modify it to fit the application.

3.2.1. Setup and Hardware Properties

To accommodate the pendulum, the printing head was removed and the carriage was
fitted with a small aluminium profile serving as a pivot for the pendulum. No other mod-
ifications have been made. The carriage can move on a 0.38m segment, the pendulum
is a simple metal rod 4mm in diameter and 0.265m in length.

A desktop printer’s carriage is typically driven by a stepper motor attached to a belt.
This stepper motor provides sufficient acceleration and speed to compensate smaller
deviations from the setpoint. Its top acceleration is at least 1 m

s2 and the top speed is at
least 1 m

s , both of which are more than required to balance the pendulum (see Section
3.5.2). The whole length of the carriage is addressable by 950 full steps (1.8◦ each).
These values are lower bounds which have been determined experimentally, as the
actual values depend on the physical load and the gears within the motor.

3.2.2. Actuation with a Micro-controller

The stepper motor is actuated using an A4988 Micro-stepping Driver [All09] and an
Arduino Due [LLC15]. The controllers output, i.e. the acceleration needed for stabiliz-
ing the pendulum, is converted to a time delay for which the controller needs to wait
before the next actuation of the stepper motor. This conversion is done based on the
following well known equation.

s = v · t + 1
2

a · t2 (3.12)

By substituting s (in meter [m]) with the known base stepping angle δ (and thus,
converting all other units from meter to radians), the formula can be solved for t, the
interval between actuations which defines the steps done by the motor. The angle δ is
typically 1

8 by default and can be set to different values using the A4988 [All09].

t1,2 =
−v ±

p

v2 ± 2 · a ·δ
a

(3.13)

Only the smaller, positive t is a relevant solution. To find the correct one, some
simple cases have to be distinguished. Both plus-minus signs always become the same
operator and when accelerating further in the current direction of movement, both are
set to the current direction.

When changing directions, i.e. decelerating and then accelerating in the other direc-
tion, the discriminant’s sign has to be observed. If it is greater or equal zero, the cart
still has to decelerate before changing directions, i.e. the same plus-minus signs are
used, but the intervals grow gradually. If the discriminant reaches into the negative,
the plus-minus signs (and thus, the direction) are reversed and the default mode of
keeping the current speed or accelerating further is restored.
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(a) Detection using Hough Transform. The angle
is calculated in regard to the detected horizon
line which is not shown as an overlay.

(b) Detection using only two of three possible
markers. The offset between the actual horizon
line and the debug output is clearly visible.

Figure 7: Example GUI output for both implemented algorithms (3.3.3 and 3.3.4).

3.3. Sensor: A PS Eye Cam for Visual Angle Detection
In addition to a household printer carriage for the actuator, a standard PlayStation (PS)
Eye Cam was used as a sensor. This camera is not only cheap, but also has some
convenient properties for computer vision.

Other consumer grade options considered for this setup include using a Raspberry
Pi Camera [Pic] and repurposing the Leap Motion controller [Lea]. The Raspberry Pi
Camera provides a much better resolution but offers only a poor frame rate. Contrarily
the Leap Motion controller offers a much better frame rate, but also has high cost and
a difficult driver situation (no Video4Linux2 (V4L2) support yet).

3.3.1. Hardware Properties

The PS Eye was chosen for its good price-performance ratio. It delivers frames with a
320px to 240px ratio at a theoretical maximum of 187Hz [How14], although the final
implementation uses a mere 125Hz. The PS Eye Cam also features a fixed focus lens,
with a field of view of either 56◦or 75◦. The absence of auto focus also improves the
stability of computer vision algorithms which is reflected by its popularity for computer
vision projects [Kir09].

3.3.2. Setup

The PS Eye is operated with a Linux computer which displays a Graphical User Interface
(GUI) showing a live feed with some debugging output (see Figure 7) and a calibration
window. The operator needs to use this GUI to select appropriate Hue-Saturation-
Value (HSV) color values specific to the elements the algorithm is trying to detect. The
HSV color space is used to make this manual calibration intuitive and straightforward.
The detected angle and the recognized geometry are shown as an overlay in the live
feed window.
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The live feed is also used to position the camera correctly to ensure that the view is
high and wide enough to accommodate the pendulum and the width of the carriage.
In addition, the operator can easily detect problems with the lighting condition or with
an irregular background. To prevent angular distortion by having the camera set up
at a skewed point of view, the operator’s (likely inaccurate) efforts are assisted by the
detection algorithm.

To aid computer vision algorithms, some preparation of the raw frames is required.
Every frame is converted to the HSV color space to simplify comparison with the
calibrated values. Using this comparison, the filtered image data becomes a binary
representation of the current frame. These binary pictures are available to the operator
for easy online tuning of the values.

To evaluate the performance and practicability of different methods, two algorithms
were implemented both of which can be applied on these binary images. All of this
sensor framework make use of the OpenCV [Gar15] library and its Python [Ros15]
bindings.

3.3.3. Detecting Angles using Hough Transform

The first method implemented for measuring the pendulum’s angle is using the Hough
Transform [Hou62] for detecting the lines formed by the pendulum and the carriage,
the second of which serves to solve the problem of a skewed point of view. The operator
needs to calibrate two HSV values which should reflect the pendulum’s color and the
color of a marker on the horizontal through the pendulums pivot. Obviously, both need
to have an unique coloring and need to stand out in the cameras view.

The detected lines always consist of multiple lines with nearly the same angle which
makes using the average of their angles necessary. The angle is calculated using stan-
dard vector arithmetic in respect to the horizontal determined using the detected
colored marker.

3.3.4. Detecting Angles using Markers

As described before, markers require calibration by the operator who has to choose
HSV values for each one. This algorithm uses one marker at the pivot on the carriage,
one at the tip of the pendulum and optionally another on the horizontal line from the
pivot marker. The first two are visible as green and red markers in Figure 5.

The last marker is not strictly necessary, but it helps reducing measurement offsets
induced by a skewed camera setup as shown in Figure 7b. When the camera is mounted
precisely, this third marker can be left out as it accounts for a third of the processing
time which may be critical depending on the computer used.

The algorithm calculates the image moments [Hu62] of the binary representations
which are used to find the center of mass of the largest cluster that matches the cal-
ibrated values. This leads to precise and stable marker locations which are robust
against fluctuations in lighting conditions and also dampen the measurement noise.

Using these locations, i.e. three points known by their coordinates, the angle between
the pendulum and the horizontal can be determined using basic vector arithmetic.
Some details of the code are found in Appendix C.
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Figure 8: Comparison of processing times in 125Hz mode for single frames when using
Hough Transform and colored markers. Hough Transform shows a higher variance
(0.05038ms, as compared to 0.01093ms) at the same quality of results. Hough Trans-
form is also slightly slower on average (8.00436ms, as opposed to 7.92380ms).

3.3.5. Angle Detection Implementation

As shown in Figure 8, the approach using colored markers (Section 3.3.4) yielded a
lower variance of output delay than the other algorithm (Section 3.3.3). While this
variance was the deciding factor when choosing the algorithm to use, the quality of
the results is also slightly better when using colored markers instead of the Hough
Transform. Figure 9, which was generated using a static angle, shows the jitter in results
for both methods of measurement. The algorithm using colored markers provides the
cleaner results but the introduced jitter still is of the same magnitude.

The maxima in the blue histogram (colored markers) of Figure 9 are due to the
low resolution the camera takes samples with and occur at the arithmetically possible
locations. The algorithm using Hough Transform does not group its results into buckets,
as an average is used for the final value.

Especially because the delay is less predictable, a deciding factor in NCSs, the sensor
built around the Hough Transform was not chosen for further optimization. The final
implementations performance is reviewed in the next section.

3.4. Signal Path
Even though the setup described above does not yet feature a network, information
about the angle arrives at the controller with a considerable delay. The reasons for this
are mainly two bottlenecks:

• The sensor itself.
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Figure 9: When using colored Markers, the jitter of the detected angle was 4.04510 · 10−6rad,
the mean angle detected was −0.42742rad. When using Hough Transform, the jitter
was 8.34698 · 10−6rad, the mean angle detected was −0.42726rad.

• The transmission times to the controller and to the actuator.

3.4.1. Latency at the Sensor

The delay caused by the sensor is mainly dependent on the Frames per Second (FPS)
available from the camera. Driven at 125Hz, the average distance between frames is
8ms. A professional camera would provide exact delays, the PS Eye however is not
very accurate.

The angle detection algorithm has been optimized to perform even better than in
the preliminary comparison shown in Figure 8. By introducing a rate limit, over 92%
of samples leaves the sensor after exactly 8ms. This leads to the distribution shown in
Figure 10.

When higher frame rates are applicable, bandwidth requirements must be consid-
ered: Even though only a floating point number is being transmitted, the sheer fre-
quency of datagrams could congest some networks.

3.4.2. Serial Connection to the Actuator

To build an initial prototype, a serial connection using USB was implemented instead
of an actual network. This is closer to the networking approach than to hardwired
sensors, as a serial connection operates at a certain baud-rate and might use Cyclic
Redundancy Checks (CRCs) as some types of packet switched networks do.

As shown in Figure 11, a serial connection does not add too much latency to the
setup, but still is an overhead in comparison to a directly attached sensor. Therefore,
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Figure 10: Cumulative Distribution Function (CDF) of the intervals between frames. Some
frames are processed much faster than the nominal frame rate of 125Hz (8ms inter-
vals between frames) suggests.

this represents a fair approximation of a very fast network and thus is a good starting
point for degrading the network’s quality for testing purposes.

Figure 11 also shows that the Baud rate can improve the performance and should
be determined experimentally for the specific setup. A very high Baud rate leads to
errors and thus retransmissions which explains the worse results with the highest rate
shown in the plot. The Baud rate’s impact on the latency is however small, as it mainly
affects the possible bandwidth.

3.5. Controller Implementation
With the above setup, all aspects of the NCS are known and properly defined. For
evaluation purposes, two controllers were implemented:

• A PID controller

• A LQR-based controller

While the PID controller is generally better known and easier to implement, it proved
hard to stabilize by tuning its parameters manually. Furthermore, LQR-based con-
trollers make it easier to control multiple variables with their cost matrices, which
enables optimization of the carriage’s position. In addition, LQR-based controllers can
be designed with regard to eventual packet losses [BA12].
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Figure 11: CDF of the RTTs of serial connections with varying baud rate. Measurements are
made using an echo from the Arduino which is checked for transmission errors still
present after the builtin CRC.

3.5.1. Theoretical Concepts of this Controller

As already explained in Section 2.3.2, the LQR problem is a optimization problem which
minimizes a cost function (see Equation 2.3). This function contains two matrices Q
and R, which define the cost of deviations from the zero vector and the cost of input
respectively.

Using these matrices and the state space representation of the pendulum from Sec-
tion 3.1.2, a discrete-time, infinite horizon gain matrix K is calculated using the algo-
rithm specified by Blind et. al. [BA12].

With K defined, the controllers exact implementation is apparent from the following
schematic:

K System C

z−1 z−1

Kalman FilterPrediction

uk

uk−1

yk−1

xk yk

x̂k−1
x̂k

Figure 12: Schematic of the implemented controller.

To mitigate the delay present in the network, the sensors input and the last input into
the system is filtered using a Kalman filter adapted for the possibility of packet losses
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[BA12]. Generally, the use of a Kalman filter is a popular method to mitigate known
delays which is used in different works [SFY09; Sin+04]. The Kalman filter outputs
a estimation of the system’s state during the last step by combining the information
available from the previous two steps. Using this state estimation and the state space
representation known from Section 3.1.2, it is possible to make an accurate prediction
of the current system state: As the state space representation operates in a time-discrete
manner, the state after another sampling period is easily determined as all variables
are known.

This state is used to calculate the the acceleration as described in Section 3.5.3.

3.5.2. Simulation

Using the controller specified above, the system was simulated using GNU Octave
[Pro15]. This simulation models the non-uniform delays as packet loss, because packets
arriving after a deadline have to be considered lost. It does not matter when exactly
packets arrive, as long it is before this deadline. Accordingly, this simulation has a
concept of packet loss, but now of arrival time in general.

The full data of a simulation is visible in Figure 13. When the controller is performing
bad, i.e. its weighted deviations are high and the correction performed is large, the
pendulum’s angle and the applied acceleration are at their maximum. Shortly after,
the carriage position is at its maximum too. In the run plotted for this thesis no packet
loss was assumed, as this represents the state when the network solution is working
ideally. This meets the demonstrators goals, as its performance is expected to decline
when exposed to non-uniform delays, i.e. packet loss.

The simulation results are conclusive and show that the designed controller can work
with the demonstrator if an adequate network solution is inserted between sensor and
actuator.

3.5.3. Implementation

The final implementation runs on the Arduino and is using a Interrupt Service Routine
(ISR) triggered by a timer to accept and decode packets from the sensor. The extracted
value is used to perform the prediction steps mentioned above.

The interval in which this timer triggers higher than both, the configured rate of
new packets and the actuation interval of the stepper motor. This means that not every
call to the ISR is used to receive sensor data or to maintain the carriages speed and
acceleration for the whole sampling period. However, this cycle period presents a upper
bound for both.

After the controller has a solid estimation of the current state, the acceleration needed
to counteract any inclination or to return the carriage to the middle is calculated using
the formula given by Equation 2.4. This acceleration is then converted to a interval
using the formula defined in Equation 3.13 which in turn is converted to the number
of cycle periods until the next actuation of the stepper motor or the next packet arrival.

Using this setup, the controller implementation performs according to the simulation
given in Section 3.5.2.

26



-0
.50.
0

0.
5

angleΦindegrees

0.
74

3◦

-6-4-2024

cartpositionxPincm

5.
37

9c
m

-0
.2

-0
.10.
0

0.
1

0.
2

cartaccelerationu(=ẍ)in
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4. Closing the Feedback Loop over a Network
The testing of NCSs and making the results comparable is the main goal of this thesis.
As such, the demonstrator is required to support as many intermediate networks as
possible. Since the most widely used type of network is Ethernet, support for Ethernet
and the protocols building upon it is imperative.

4.1. Networking with Arduino Due
The Arduino Due is easy to use but lacking in the area of compatibility with network
interfaces. Its controller, the Atmel SAM3X8E [Atm15], features interfaces for SPI, CAN,
and even an Ethernet Media Access Controller (EMAC), but lacks accessible pins for
the latter.

4.1.1. Serial via USB

The default serial connection was already explained and measured in Section 3.4.2.
To recap, the Round Trip Time (RTT) is 0.61ms or less in 99% of transmissions. This
means likely one-way transmissions of less than 0.31ms, making it a sane default.

4.1.2. SPI and CAN

Both SPI and CAN are readily available for use on the Arduino Due. However, the
sensor software of this demonstrator, i.e. the part running on the computer, does not
implement these methods of communication, as there were no interfaces available for
testing when writing this thesis.

Code to control these interfaces would be straightforward to write and easy to inte-
grate with the existing sensor software.

4.1.3. Ethernet

The most universal interface available for the Arduino Due is Ethernet. Because Eth-
ernet is well supported, the signal path can be arbitrarily extended using hardware
commonly available or by using virtualization technology. To add such an interface to
an Arduino Due, a so called Ethernet Shield is used. This is plugged onto the Arduino’s
SPI bus, allowing it to connect to a WIZNet W5100 Ethernet Controller [WC15a].

This setup however is very slow. This is mostly the fault of the aged W5100 chip
which clocks its SPI interface at a maximum of 14.29MHz and does not allow the
transmission of multiple bytes in a single transaction. The W5200 Ethernet Controller
[WC15b] fixes these issues and should be able to provide much better speeds.

The delay subsequently is twice as high when comparing the RTT (best and worst
case) of an Ethernet connection with that of a plain serial connection without a full
IP stack (see Figures 11 and 14). While the current setup with the W5100 is gener-
ally slower than a serial connection, the newer W5200 chip should exceed the USB
connections performance when a single link is used.

The cleanest and fastest variant would be to use the Ethernet MAC present on the
boards processor, the Atmel SAM3X8E. This would require a physical layer component
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Figure 14: CDF of the RTTs in a UDP connection.

(PHY) for Ethernet. However, the corresponding pins are not broken out on the Arduino
Due board which is why this option was not further explored. Many non-Arduino boards
using the SAM3X8E expose the pins needed to operate the EMAC and have libraries
to use Ethernet PHYs.

4.2. Mininet for LAN simulation
With an Ethernet interface in place, Mininet [Lan15] can be used to simulate an arbi-
trary, SDN controlled network. This is possible because one end of the transmission
channel is a computer. A simulation with the physical link being the last link in the
simulated network is easy and straightforward. Any other scenarios with the physical
link in different locations are possible by using additional, intermediate hosts run-
ning Mininet. These however are unnecessary in most setups, as a NCS requires the
whole network to be assessed, regardless of a single link which might have different
properties.

As shown in Appendix D, the case in which the computer driving the camera is used
for hosting the Mininet simulation is easy to realize and already provides a testing en-
vironment featuring arbitrary topologies and a SDN controller. In addition, the Mininet
environment makes simulating degraded link quality and dynamic link outages easy.

Using the POX [Pox] controller in a simple OSI Layer 2 (L2) learning switch mode, the
network worked flawlessly and introduced realistic latency and bandwidth properties
when increasing the number of intermediate hosts.
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4.3. Evaluation
With this setup in place, varying simulated networks behave as expected and can be
adapted to test specific scenarios. This enables thorough testing of different NCS solu-
tions based on using SDN technologies [Car+14] with arbitrary OpenFlow controllers.

However, this demonstrators only physical link does not offer a very good perfor-
mance. As already touched on above, using the SAM3X8E’s EMAC would be a more
efficient way to implement Ethernet connectivity. An unofficial Arduino Due clone, like
the TAIJIUINO Due Pro [Ele15], which has the EMAC pins broken out could be used
to remedy these issues.

A good alternative would be a STM32 family controller (e.g. STM32F407 [STM15])
based development board like the Olimex STM32-E407 [Oli15]. It offers better overall
performance and an on-board Ethernet interface at a lower price. The move toward a
STM32 family board would however increase the complexity of the tool chain and the
code required to operate the actuator hardware.
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5. Summary
NCSs are always sensitive to changes in the networks quality of service. Many solutions
for making NCSs viable exist, although they may use very different approaches.

The first possibility is to design a control system around the network. This is promis-
ing in many applications and works fine, as long as the network quality remains con-
stant within certain bounds. The other possibility is to take any control system and
make the network more predictable and capable to accommodate such a sensitive
system.

5.1. Possibilities and Limitations of this Demonstrator
Any of these approaches often lack results based on actual, representative hardware
tests which are easy to compare. An obvious difference between the two possibilities
described above is the fact, that an easily applicable demonstrator is only viable for the
second possibility, by making the intermediate network interchangeable. Specialized
controllers always require rebuilding the setup for its specific requirements.

Therefore, this demonstrator provides the ability to test intermediate networks for
NCSs and to compare the results.

5.1.1. Testing NCSs in varying Network Environments

This demonstrator offers interfaces for USB, SPI, CAN and Ethernet. While the latter
use cases are obvious, USB offers only a serial connection at first. However, the demon-
strator is using a Arduino Due which supports USB devices in host mode: This means
that any interface for which a USB media converter is available can be supported. This
is the case for several field bus systems, but also for different wireless solutions. On an
even lower level, the Arduino also serves to interface with electronics directly, opening
up a range of visual data transmission methods like infrared LEDs.

All these have to be implemented first which can be very time consuming for more
exotic setups. However, many methods have already been explored by the Arduino
Community and are readily available under open source licenses.

5.1.2. Testing NCSs in an OpenFlow-capable LAN

Testing different algorithms for SDN based networks proved straightforward and simple.
Mininet makes changing setups easy and enables debugging at arbitrary levels of the
networking stack. Any SDN controller supporting OpenFlow 1.0 or 1.3 works with
Mininet and can be used to develop network applications providing an abstraction
from low level networking, thus enabling the support of real time requirements needed
by NCS.

5.1.3. Testing specialized NCS Controllers

As explained above, testing specialized NCS controllers is not a viable option with an
unified demonstrator such as this. This is because much of the setup detailed above
has to be reimplemented using the NCS controller. In such cases it is easier to built a
dedicated prototype instead of targeting the platform chosen for another setup.
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Figure 15: Visualization of the simulation. This is rendered using the same data as Figure 13.
The shown angles are scaled to be more visible.

However, the inverted pendulum is the single most studied control system and also
a prime example for a closed-loop system. When implementing a showcase imple-
mentation, the inverted pendulum should be considered with a strong preference. In
addition, using a camera as the sensor makes for a convincing setup which is not only
constructed from the need to have actuators and sensors on different network nodes.

This demonstrator’s sensor software is reusable, well optimized and uses very popular,
consumer-grade hardware. If a camera is chosen as sensor, this can save the effort of
writing dedicated sensor software.

5.2. Future Work
Even if the current state of this demonstrator provides a basic environment for testing
and comparing NCS optimizations and algorithms in the network, there is much room
for improvements.

The current controller can and should be stabilized further. It is apparent from the
simulation in Section 3.5.2 that the controller is far from perfect. Even though the set
point deviations are small, the cart is moving around too much. This also leads to a
poor robustness against manual disturbances. For a visualization of this, please see
Figure 15.

While the sensor software and the controller are disjoint for now, a major addition
would be the introduction of a negotiation protocol. Right now, an upper bound for the
delay on the feedback loop is configured statically in the controller. Having the sensor
software and the controller negotiate this upper bound dynamically could prove to be
beneficial in certain cases. Also, the introduction of a lower bound for transmission de-
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lay can increase a controller’s efficiency. These two measures could further improve or
even replace the Kalman filter and the prediction step present in front of the controller
implementation.

As noted in Section 4.3, the Ethernet interface used to connect the Arduino did not
meet expectations. The next step would be to use a more sophisticated controller board
than the Arduino Due which also meets industrial quality requirements and thus is a
more realistic demonstration. Any STM32F407 family [STM15] development board
with an Ethernet PHY presents a promising candidate which could serve as a drop in
replacement for the Arduino Due and the Ethernet Shield.

5.3. Conclusion
The study of NCSs is as relevant as ever. The networking requirements are easily
matched by today’s hardware and the applications profiting from NCSs are steadily
growing. Hence, research in this area continues to produce solutions to the problems
NCSs pose.

These solutions are divided into those which optimize the controllers to work with
inconsistent communication, and those which mitigate delays within the network to
properly serve an unoptimized controller. The goal of this thesis was to present the
setup of a demonstrator which makes testing of the solutions acting in the network
possible and the results comparable.

The first section of this thesis described the need for a demonstrator for NCSs and
suggests the use of the well-known and thoroughly documented inverted pendulum.
After summarizing the background needed to built this control system in Section 2, the
third section detailed the setup of an inverted pendulum with visual angle detection,
a very practical and representative example for NCSs. This thesis concluded with a
description of different networking interfaces which can be used with the resulting
demonstrator.

All in all, a setup consisting of commodity hardware was proven to be sufficient to
built a operational demonstrator for NCSs. The sensor software needed to use such a
camera to detect the pendulums inclination was written and evaluated, proving it stable
in its measurements and its performance. The actuator software was realized using a
well known micro-stepping driver and can be reused for any future NCS demonstrator
setup. The communication interface between sensor and actuator was kept as variable
as possible while exploring the possibilities of a connection via virtualized Ethernet
networks.

Finally, a discrete-time system model was derived and an appropriate, LQR based
controller was suggested. This controller’s simulation and implementation have been
explained in detail to ensure the reproducibility of this setup and to enable the testing
of arbitrary solutions to NCS problems.
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Appendices

A. Solving the Inverted Pendulum’s Lagrangian
To recap, these are the definitions from Section 3.1.1, with (xP , yP) and (xM , yM) be-
ing the Cartesian coordinates of the pivot P and the pendulum’s center of mass M ,
respectively. :

xP = x ẋP = ẋ
yP = 0 ẏP = 0

xM = x − l
2
· sin(Φ) ẋM = ẋ − dΦ̇ cosΦ

yM =
l
2
· cos(Φ) ẏM = −dΦ̇ sinΦ

They define the positions of the pendulum’s base P and center of mass M (see Figure
4) and their derivatives, i.e. their speed.

These yield the kinetic energy T and the potential energy V present this system and
thus, its Lagrangian (L = T − V ):

v2
M = ẋ2

M + ẏ2
M = ẋ2

M − d ẋPΦ̇ cosΦ+ d2Φ̇2 (A.1)

T =
1
2

mv2
M +

1
2

IPΦ̇
2 (A.2)

V = m · g · yM (A.3)

L = T − V (A.4)
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ẋ2
M +

1
2

�

d2 +
1
3

l2
�

Φ̇2 − d
�
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This equation can be solved for Φ̈ by using the Euler-Lagrange equation:

d
d t
∂ L
∂ Φ̇
=
∂ L
∂Φ

(A.9)

∂ L
∂ Φ̇
=
�

d2 +
1
3

l2
�

Φ̇− d ẋP cos(Φ) (A.10)

∂ L
∂Φ
= d

�

ẋPΦ̇+ g
�

sin(Φ) (A.11)

34



d
d t
∂ L
∂ Φ̇
− ∂ L
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⇒ Φ̈=
d

d2 + 1
3 l2

︸ ︷︷ ︸

=F , a constant
factor

�

ẍp cos(Φ) + g sin(Φ)
�

(A.15)

Which is the equation for Φ̈ given in Section 3.1.1.

B. Discretization of a continuous-time State Space
Representation

The discrete time state space representation of the system is given by the following
equations:

xk+1 = Ad xk + Bduk (B.1)

yk = C xk (B.2)

To obtain Ad and Bd from their continuous-time variants, a general solution to the
first order differential ẋ = A · x + B · u is used and discretized according to the method
used by Blind et. al. [BA12]:

x(t) = eAt · x(t0) +

∫ t

t0

�

eAτ · Bu(τ)
�

dτ (B.3)

xk+1 = eATs
︸︷︷︸

Ad

xk +

∫ Ts

0

�

eAτ · B� dτ

︸ ︷︷ ︸

Bd

·uk (B.4)

C. OpenCV Angle Detection
The classes below present a simplified version of the algorithm used to detect the
pendulums inclination. As it operates only on two markers, the camera has to be setup
very precisely. The full code is available with the electronic release of this thesis. Refer
to inline comments for further details.
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The following class is simplification for the class below. It updates color ranges
according to the track bars displayed by the GUI, offering the results to the main
algorithm.

1 c l a s s Marker(object):
2 """ A class for identifying objects by defining a range

,→ of colors with
3 cv2 track bars.
4

5 A Marker defines an upper and a lower bound for each
,→ value within the HSV

6 color space and can be used for filtering a HSV image
,→ for a specific color,

7 i.e. an object (the marker) with that color, if it is
,→ sufficiently unique

8 in the overall picture.
9

10 """
11 PARAMETERS = [("hue", 179), ("sat", 255), ("val", 255)]
12

13 de f __init__(self, name, attach_window="Trackbars"):
14 """ Constructor, initialize Trackbars. """
15 self.name = name
16 self.attach_window = attach_window
17

18 de f update(data):
19 """ unused callback """
20 pass
21

22 f o r param_name, maximum i n self.PARAMETERS:
23 cv2.createTrackbar("l{0}_{1}".format(param_name

,→ , name), attach_window, 0, maximum, update
,→ )

24 cv2.createTrackbar("h{0}_{1}".format(param_name
,→ , name), attach_window, maximum, maximum,
,→ update)

25

26 de f get_limits(self):
27 lower_vector = np.array([cv2.getTrackbarPos("l{0}_

,→ {1}".format(param_name, self.name), self.
,→ attach_window) f o r param_name, _ i n self.
,→ PARAMETERS], np.uint8)

28 upper_vector = np.array([cv2.getTrackbarPos("h{0}_
,→ {1}".format(param_name, self.name), self.
,→ attach_window) f o r param_name, _ i n self.
,→ PARAMETERS], np.uint8)

29 r e t u r n lower_vector, upper_vector
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The following class contains the main mechanism of angle detection.

1 c l a s s AngleDetector(object):
2 """ A class for calculating the angle of the line

,→ between two points to the
3 horizon.
4

5 It calculates the angle between two markers defined by
,→ Marker objects. The

6 angle is returned in radians in the interval [-pi,pi],
,→ with 0 being a

7 upright position. "upright" assumes that the first
,→ marker (a) is at the

8 bottom.
9 """

10

11 de f __init__(self, cap_device, resolution=(320, 240),
,→ fps=125, output=True):

12 """ Constructor, initialize camera and GUI """
13 self.capture = cv2.VideoCapture(cap_device)
14 self.resolution = resolution
15 self.fps = fps
16 self.output = output
17

18 self.capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH,
,→ resolution[0])

19 self.capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT,
,→ resolution[1])

20 self.capture.set(cv2.cv.CV_CAP_PROP_FPS, fps)
21

22 i f self.output:
23 cv2.namedWindow("Angle")
24 cv2.namedWindow("Threshold A (Pivot)")
25 cv2.namedWindow("Threshold B (Tip)")
26 cv2.namedWindow("Trackbars")
27

28 self.marker_names = (’a’, ’b’)
29 self.markers = (Marker(self.marker_names[0],

,→ attach_window="Trackbars"), Marker(self.
,→ marker_names[1], attach_window="Trackbars"))

30

31 de f __del__(self):
32 cv2.destroyAllWindows()
33 self.capture.release()
34

35 de f find_marker(self, hsv_img, marker):
36 """ This methods finds any markers defined by the

,→ program and returns the binary image as
37 well as a set of coordinates """
38 lower_vector, upper_vector = marker.get_limits()
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39

40 threshold_img = cv2.inRange(hsv_img, lower_vector,
,→ upper_vector)

41 image = threshold_img.copy()
42

43 contours, _ = cv2.findContours(threshold_img, cv2.
,→ RETR_LIST, cv2.CHAIN_APPROX_NONE)

44 best_contour = None
45 max_area = 0
46 f o r contour i n contours:
47 area = cv2.contourArea(contour)
48 i f area > max_area:
49 max_area = area
50 best_contour = contour
51 x = 0
52 y = 0
53 i f best_contour i s not None:
54 moments = cv2.moments(best_contour)
55 area = moments[’m00’]
56 x = int(moments[’m10’] / area)
57 y = int(moments[’m01’] / area)
58 r e t u r n image, (x, y)
59

60 de f get_current_angle(self):
61 """ Main angle detection routine. this method is

,→ called by the main program and returns the
62 angle on basis of the markers found in the picture.

,→ """
63 # capture a image and convert to hsv
64 _, img = self.capture.read()
65 hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
66

67 marker_img = dict()
68 marker_coords = dict()
69

70 f o r marker i n self.markers:
71 marker_img[marker.name], marker_coords[marker.

,→ name] = self.find_marker(hsv_img, marker)
72 cv2.circle(img, marker_coords[marker.name], 2,

,→ (0, 255, 0), 20)
73

74 x1, y1 = marker_coords[self.marker_names[0]]
75 x2, y2 = marker_coords[self.marker_names[1]]
76 i f self.output:
77 cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0),

,→ 3, cv2.CV_AA)
78 cv2.line(img, (x1, y1), (img.shape[1], y1),

,→ (255, 0, 0), 3, cv2.CV_AA)
79
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80 # calculate the angle
81 i f x1 == x2: # this is the upright case
82 angle = 0.0
83 e l i f y1 == y2: # this is the horizontal case
84 i f x2 < x1:
85 angle = -np.pi / 2
86 e l s e:
87 angle = np.pi / 2
88 e l s e:
89 angle = np.arctan(float(y2 - y1)/float(x2 - x1)

,→ ) + np.pi/2
90 # rotate the angle, so a upright position

,→ equals 0
91 i f x2 < x1:
92 angle -= np.pi
93

94 i f self.output:
95 # put the angle on the output picture
96 cv2.putText(img, str(angle), (20, img.shape[0]

,→ - 20), cv2.FONT_HERSHEY_SIMPLEX, 1.0,
,→ (255, 255, 255), 2)

97 # display frames to users
98 cv2.imshow("Angle", img)
99 cv2.imshow("Threshold A (Pivot)", marker_img[’a

,→ ’])
100 cv2.imshow("Threshold B (Tip)", marker_img[’b’

,→ ])
101 r e t u r n angle
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D. Mininet Configuration
The following lines of Python [Ros15] code attach a hardware interface to the Mininet
[Lan15] simulation. Refer to inline comments for more details.

1 #!/usr/bin/python
2

3 # import required libraries
4 from mininet.cli impor t CLI
5 from mininet.net impor t Mininet
6 from mininet.link impor t TCIntf
7 from mininet.topolib impor t TreeTopo
8

9 i f __name__ == ’__main__’:
10 # name of the hardware interface
11 iface_name = ’eth0’
12

13 # use a binary tree of depth three as topology
14 net = Mininet(topo=TreeTopo(depth=3, fanout=2))
15

16 # take the root switch and attach the hardware to it
17 switch = net.switches[0]
18 iface = TCIntf(iface_name, node=switch)
19

20 # optionally, specify properties of this interface
21 iface.config(loss=50) # packet loss in %
22 iface.config(delay=15) # additional delay in ms
23 iface.config(bw=1) # bandwidth in Mb/s
24

25 # start, show cli, and clean up
26 net.start()
27 CLI(net)
28 net.stop()

With this simulation running, an arbitrary SDN controller like POX [Pox] can be started
to fill the switches flow tables. Of course, the Mininet configuration has to be adjusted
to find the controller when using another port than 6633 or another host than localhost.

With this in place, the demonstrator can be connected to the interface specified in
the above code. The sensor software needs to be started from one of the Mininet hosts
by issuing h1 xterm followed by the setup required for the sensor.
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