
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit Nr. 267

Implementation of a Parallel
Multigrid Solver for the Solution
of Higher-dimensional PDEs on

Anisotropic Grids in DUNE
Daniel Pfister

Studiengang: Informatik

Prüfer/in: Jun.-Prof. Dr. Dirk Pflüger

Betreuer/in: Mario Heene, M.Sc.,
Dr. Steffen Müthing

Beginn am: 2015-11-02

Beendet am: 2016-05-03

CR-Nummer: G.1.0, G.1.3, G.1.8

Abstract

English
In this bachelor thesis a parallel geometric multigrid solver is extended to be used
with the sparse grid combination technique. To test this method the stationary
advection-diffusion equation is used, which is discretized by the finite volume
element method. Suitable multigrid components are chosen and their convergence
and parallel efficiency is tested in numerical experiments. The implementation
uses the Distributed and Unified Numerics Environment (DUNE) for the solver
and discretization. The SG++ Distributed Combigrid module is employed for the
combination technique. A small weak scaling study is conducted to measure the
influence of the aspect ratio of the grids.

Deutsch
In dieser Bachelorarbeit wird ein paralleler geometrischer Mehrgitterlöser erweitert
um mit der der Dünngitter-Kombinationstechnik genutzt werden zu können.
Zum Testen dieser Methode wird die stationäre Advektions-Diffusions Gleichung
verwendet, welche mit der Finite-Volumen-Elemente Methode diskretisiert wird.
Es werden geeignete Komponenten für den Mehrgitterlöser gewählt und ihre
Konvergenz und parallele Effizienz wird in numerischen Experimenten getestet.
Die Implementierung nutzt die Distributed and Unified Numerics Environment
(DUNE) für den Löser und die Diskretisierung. Das SG++ Distributed Combigrid
Modul wird für die Kombinationstechnik eingesetzt. Eine kleine Studie zur
schwachen Skalierbarkeit wird durchgeführt um den Einfluss der Streckung der
Gitter zu messen.

i

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Outline . 2
1.2 Related Work . 2

2 Problem Formulation 4
2.1 Advection-Diffusion Equation . 4

2.1.1 Steady-State . 5
2.1.2 Boundary Value Problem 5

2.2 Finite Volume Element Method 5
2.2.1 Control Volumes . 6
2.2.2 Finite Element Space . 7
2.2.3 Boundary Conditions . 9
2.2.4 Assembly . 9

2.3 Sparse Grids . 10
2.3.1 Combination Technique 11

3 Multigrid Methods 12
3.1 Coarse Grid Correction . 12
3.2 Multiplicative Multigrid . 13

3.2.1 Coarse Grid Operator . 14
3.2.2 Grid Transfer Function . 14
3.2.3 Smoother . 14
3.2.4 Schedules . 14

3.3 Coarsening Strategy . 15
3.4 Parallelization . 16

4 Implementation 17
4.1 DUNE Project . 17

4.1.1 Core Modules . 17
4.1.2 External Modules . 18

4.2 SG++ Distributed Combigrid . 19

iii

Contents

4.3 Implementation . 19
4.3.1 Finite Volume Element Method 20
4.3.2 Multigrid Method . 21
4.3.3 Combigrid Task Class . 22

5 Numerical Experiments 24
5.1 Model Problems . 24

5.1.1 Problem 1 (Diffusive Flow) 24
5.1.2 Problem 2 (Advective Flow) 26
5.1.3 Problem 3 (Recirculating Flow) 26

5.2 Discretization Error . 26
5.3 Multigrid Comparison . 28

5.3.1 Convergence Behavior . 28
5.3.2 Running Time . 31
5.3.3 Parallel Scaling . 32

5.4 Combination Technique . 36

6 Conclusion 38

Bibliography 39

iv

List of Figures

2.1 A full grid and its dual in 2D. 7
2.2 2D hat function. 8
2.3 Full grid and its dual grid considering boundary conditions 9
2.4 2D regular sparse grid points. 10
2.5 Combination technique for 2D regular sparse grid with level 3. 11

3.1 Multigrid schedules. 15
3.2 Grid hierarchy for strategy 2. 16

4.1 Dependency graph of the DUNE modules 18
4.2 The most important files in the DUNE-MG module. 19
4.3 3D reference element with binary corner indices. 20

5.1 Graph of solution functions for the problems 1a and 1b. 25
5.2 Advective flow for the problems 2 and 3. 26
5.3 Behavior of multigrid methods for for problem 1b with d = 2 and

different aspect ratios. 29
5.4 Convergence history for problem 1b with d = 4. 30
5.5 Wall-clock time for problem 1b with d = 4. 32
5.6 Weak scalability for problem 1b with d = 2 and ψ~l = 1. 34
5.7 Weak scalability for problem 1b with d = 2 and ψ~l = 214. 35
5.8 Strong scalability for problem 1b with d = 2. 36

v

List of Tables

3.1 Coarsening strategies for ~lf = (6, 2, 5, 3) 15

5.1 Discretization error on full grids. 27
5.2 Discretization error with the combination technique solution interpo-

lated to a full grid. 27
5.3 Multigrid convergence rate for problem 3. 31

vi

Chapter 1

Introduction

“In view of all that we have said in the foregoing sections, the many
obstacles we appear to have surmounted, what casts the pall over our
victory celebration? It is the curse of dimensionality, a malediction
that has plagued the scientist from earliest days.”

— Richard Bellman, Adaptive Control Processes [9]

The term “curse of dimensionality” was coined in 1961 by Richard Bellman in a
book of his [9]. Therein it refers to the volume of a mathematical space which
grows exponentially with its dimensionality. One prominent application that is
affected by this so-called curse is the numerical solution of partial differential
equations (PDEs).

In the case of PDEs high dimensionality typically means four or more dimen-
sions. Such equations appear among others in finance and physics. In financial
mathematics the well known Black-Scholes equation can have arbitrarily high
dimensionality [11]. In plasma physics the gyrokinetic approach for the simulation
of turbulence in plasma fusion leads to a five-dimensional PDE [24].

The difficulty arises when the function domain is discretized, which leads to
O(h−d) degrees of freedom (DOFs) when a d-dimensional regular full grid with
spacing h is used. One approach to tackle this problem are sparse grid methods.
These were originally introduced for just this purpose [38, 21, 15]. A discretization
using sparse grids results in only O(h−1 · log(h−1)d) degrees of freedom, which is
a considerable improvement over full grids. This comes at the cost of some loss in
accuracy that can however be bounded if the function satisfies certain smoothness
conditions.

The approach used in this bachelor thesis is the sparse grid combination
technique, which was introduced by Griebel et al. [22] in 1992. Here the problem
is discretized on a number of coarse but anisotropic subspaces of the full grid.
The solutions to these discretizations are then linearly combined to approximate
the solution to the original problem discretized on a sparse grid. The strongly
anisotropic grids which occur in this method may result in slow rates of convergence

1

1. Introduction

for standard iterative solvers like the conjugate gradient method. However this
effect can be countered by using appropriate preconditioners or solvers.
The goal of this bachelor thesis is threefold:

1. A finite volume element (FVE) discretization is implemented for the linear
advection-diffusion equation with d-linear trial functions on rectangular
grids. This serves as a toy problem with arbitrary dimensionality, that can
be used to examine the behavior of advection-dominated flow problems.

2. An existing linear geometric multigrid (GMG) solver is extended to overcome
the specific difficulties of this application. It will be compared to an algebraic
multigrid (AMG) solver with respect to the rate of convergence and parallel
execution time.

3. This solver is then implemented to be used with a sparse grid combination
technique library. The scaling behavior of this constellation is then examined.

The focus of this work is not a rigorous analysis of the presented methods, but
an empirical examination based on numerical experiments.

1.1 Outline
The second chapter is about the formulation of the problem to be solved. First
the model problem and its continuous mathematical formulation are established.
Thereafter the focus lies on the discretization of this model problem. At last
basics of the combination technique are explained.

The third chapter goes into the method for solving the formulated problem.
The basic concepts of multigrid algorithms are explained. Here the choices for the
various components of the multigrid method are shown.

In the fourth chapter all the relevant implementation details are given. At
first the used libraries are presented. After that an overview is given for the code
written for this work.

The fifth chapter is about the results of the numerical experiments. These
regard the accuracy of the discretization, the comparison of the multigrid solvers
and the scaling of the combination technique utilizing the geometric multigrid
solver.

1.2 Related Work
As there are are multiple goals involved in this bachelor thesis, there is also plenty
of related work. In the following some of the most influencing works are listed.

The FVE method [16] has gained some attention for the simulation of fluid
dynamics in the last decades and is also known as vertex-centered finite volume
method [39, 27], box method [3, 23], control-volume finite element method [2, 31]

2

1.2. Related Work

or covolume method [17]. It was introduced by Baliga et al. [2] and has been
extensively studied for the advection-diffusion equation with linear trial functions
on simplicial meshes.

In this work the FVE method is used with d-linear trial functions on rectangular
grids. There recently have been some advances in the error analysis for this case.
An error bound of O(h2) in the L2 norm has been derived for the Poisson equation
with a bilinear finite element space and quadrilateral meshes by Lv et al. [29].

Chou et al. [17] examined the convergence of multigrid algorithms for the FVE
method on triangular meshes, which showed the feasibility of this combination. The
effect of different coarsening strategies on the convergence of multigrid algorithms
was studied by Sprengel [36], by using stable subspace splittings. A multigrid
algorithm was used in the original paper on the combination technique [22]. Zubair
et al. [10, 11] also used a multigrid algorithm with the combination technique to
solve high-dimensional PDEs. Therein the focus lies on the diffusion equation
discretized with the standard finite element method. Unlike in the previous works,
we study the scaling with two levels of parallelization, where the first level is the
combination technique and the second level is a domain decomposition on the
component grids.

3

Chapter 2

Problem Formulation

The overarching goal of this work is to efficiently solve the advection-diffusion
equation on the high-dimensional unit hypercube. To this end the first step is a
mathematical formulation of the continuous problem. Thereafter a discretization
is needed so that the problem can be numerically solved by a computer. This
discretization will first be done on regular full grids, on which the combination
technique will later build upon.

2.1 Advection-Diffusion Equation
The advection-diffusion equation is well suited as a model problem because it can
describe a variety of phenomena. It is a PDE defined as

∂u

∂t
+∇ · (−D∇u+ au) = f, u ∈ C2(Rd × R). (2.1)

This equation can model the following physical process. The function u to be
determined describes the concentration of a material that is suspended in a fluid.
The concentration is however too thin to have any influence on the velocity of
this fluid. There are three terms of which each models a different physical process.
The term ∇ ·D∇u is responsible for the diffusion of the material. Therein the
second-order tensor field D determines how fast this process takes place. The term
∇ · au models the advection of the material, where the vector field a describes the
velocity of the fluid. The scalar field f models occurring sources or sinks.

For different choices of D, a and f there are various special cases of the
advection-diffusion equation. In this work we will only consider the case of
coefficients that are dependent on the spacial position, from which follows that
equation (2.1) is a linear PDE. Furthermore we assume that the coefficients are
smooth on the domain and that D = ε · I for some constant ε ≥ 0 and the identity
operator I.

4

2.2. Finite Volume Element Method

2.1.1 Steady-State
In the remainder of this work we will only consider stationary problems. Once
a state of equilibrium is reached, there are no further changes in time. This
corresponds to a time derivative equal to zero, hence the instationary equation
(2.1) becomes

∇ · (−D∇u+ au) = f (2.2)
which is called the steady-state advection-diffusion equation. If D = I and a = 0
equation (2.2) becomes the Poisson equation

−∇2u = f (2.3)

where ∇2 is the Laplace operator. This is a second-order elliptic PDE. If D = 0
equation (2.2) becomes the stationary advection equation

∇ · (au) = f (2.4)

which is a hyperbolic PDE. These three equations will be used as model problems
for the numerical experiments.

2.1.2 Boundary Value Problem
The function u shall now be restricted to an open connected domain Ω ⊆ Rd.
From here on out Ω := (0, 1)d, that is the open d-dimensional unit hypercube. In
order to get a unique solution additional constraints are enforced on the domain’s
boundary ∂Ω = Ω \ Ω, which is the closure of Ω without its interior points.

The boundary conditions of interest in this work are Dirichlet boundary
conditions. These are defined on ∂Ω and constrain the function value of u. This
is called a boundary value problem and a function

u ∈ C2(Ω) ∩ C0(Ω)

that satisfies

∇ · (−D∇u+ au) = f in Ω (2.5a)
u = g on ∂Ω (2.5b)

in a pointwise sense is called its classical solution.
Other kinds of boundary conditions like Neumann and outflow boundary

conditions were not further investigated in this work.

2.2 Finite Volume Element Method
This section gives a brief view on the construction of a FVE method on rectangular
grids. A more in-depth analysis can be found in the dissertation of Schmidt [34].

5

2. Problem Formulation

Now that the continuous problem has been formulated, it must be discretized.
For this the FVE method is used, which is a mix of the classical finite volume
(FV) method and the finite element (FE) method. There are mainly two reasons
to choose the FVE method.

1. For advection dominated flow problems (i.e. with a high Péclet number) the
standard Galerkin FE method becomes unstable [35].

2. With the FVE method the DOFs are located at the vertices of the grid,
which is where they are needed for the combination technique. This is not
the case for the classical FV method where the DOFs are located at the cell
centers.

Arguably a finite difference method would also have been a good choice as
only structured grids are used. However it might be easier to extend the FVE
implementation to a higher order scheme in the future (cf. [28], section 3.2.2).

2.2.1 Control Volumes
First we need some definitions to describe the occurring regular full grids. Let
~l = (l1, . . . , ld) ∈ Nd be a d-dimensional multi-index, with operators on multi-
indices being applied element-wise. Let there also be special multi-indices for
constant values like ~2 = (2, . . . , 2). Then Ω~l denotes the regular grid on Ω with
spacing h~l := (hl1 , . . . , hld) := 2−~l = (2−l1 , . . . , 2−ld) and level ~l. Furthermore we
need two kinds of entities of the grid Ω~l

E0
~l

:= {E0
~l,~i
∈ Ω : ~0 ≤~i ≤ 2~l}, E0

~l,~i
:= (hl1 · i1, . . . , hld · id) (2.6a)

Ed
~l

:= {Ed
~l,~i
⊆ Ω : ~0 ≤~i < 2~l}, Ed

~l,~i
:=

∏
1≤j≤d

]hlj · ij, hlj · (ij + 1)[(2.6b)

where (2.6a) denotes the vertices—or entities of dimensionality 0—and (2.6b)
denotes the cells—or entities of dimesionality d (see fig. 2.1a). The number of
interior vertices is denoted by N~l = |E0

~l
\ ∂Ω|.

One essential feature of all finite volume methods is that they operate on
conservation laws. These describe processes where some quantity—like the mass
of the material in the example model of section 2.1—is conserved in an isolated
system. As a first step of the discretization the domain Ω is partitioned into
a finite set of control volumes B~l. A local conservation law of equation (2.5a)
can be obtained by integrating over each control volume and applying the Gauss
Divergence Theorem∫

∂B
(−D∇u+ au) · n ds =

∫
B
f dx, ∀B ∈ B~l (2.7)

where n is the unit outer normal vector of the boundary ∂B. This equation
describes a balance between the flux over the control volume boundary on the left
hand side and the sources inside the control volume on the right hand side.

6

2.2. Finite Volume Element Method

(a) Full grid Ω(1,2) (solid lines), its dual
grid (dashed lines), its vertices E0

(1,2)
(black dots), and cell Ed(1,2),(1,1) (gray)

(b) One control volume (gray) and the
integration points for the surface inte-
grals (white dots)

Figure 2.1: A full grid and its dual in 2D.

There are a few possible choices for how to partition the domain, but certain
conditions must hold (cf. [34], section 3.1). In this work we choose the control
volumes as the centered boxes, which form a dual grid. This dual grid is constructed
by connecting the centroid of every cell to the centroids of all faces on its boundary,
see figure 2.1a for the 2-dimensional case. Formally we can define these control
volumes as

B~l := {B~l,~i ⊆ Ω : ~0 ≤~i ≤ 2~l}, B~l,~i := Ω ∩
∏

1≤j≤d
]hlj · (ij − 1

2), hlj · (ij + 1
2)[

which is essentially just a translation of the cells Ed
~l
by half the grid spacing in all

directions (except for the boundary of the domain). Each vertex E0
~l,~i

of the primal
grid is now associated with one control volume B~l,~i which surrounds it. Also for
every vertex there is one balance equation in (2.7) which must be fulfilled.

2.2.2 Finite Element Space
Note that the integral formulation of equation (2.7) weakened the requirements
for the differentiability of the solution function u compared to equation (2.2).
The next step in the discretization process is to determine the flux values at the
boundaries of the control volumes in equation (2.7). This is done by a finite
element approximation. We first define a suitable space of trial functions

U~l = {u ∈ C0(Ω) : ∀E ∈ Ed
~l

: u|E ∈ Q1, u|∂Ω = 0} ⊂ H1
0 (Ω)

where Q1 is the set of polynomials of degree less or equal to 1 in each variable and
H1

0 (Ω) is the Sobolev space W 1,2(Ω) with zero trace. U~l is a space of piecewise

7

2. Problem Formulation

Figure 2.2: 2D hat function ϕ(2,2),(2,2) on the grid Ω(2,2)

d-linear functions that vanish on the boundary. It is a finite-dimensional vector
space that has the d-dimensional hat functions ϕ~l,~i (cf. [32], section 2.1.3) on the
interior nodes as a basis (see fig. 2.2).

By now approximating u with a function u~l ∈ U~l in equation (2.7) it becomes
∫
∂B

(−D∇u~l + au~l) · n ds =
∫
B
f dx, ∀B ∈ B~l. (2.8)

If u~l is represented by its basis functions

u~l =
∑

~0<~i<2~l

um(~i) ϕ~l,~i

with u ∈ RN~l and m as some mapping to a linear index, this is an algebraic finite
system of equations.

One essential component that is still missing is the treatment of advection
dominated problems. For this we separately choose the function value u~l on the
control volume boundary for the advective term au~l such that the value of the
upwind node is chosen (cf. [4], section 2.7). The result of this is a first order
scheme with respect to the advective flow. It is also possible to construct an
upwind scheme by choosing the control volumes problem dependent [25], which
becomes interesting once higher order schemes are used. This was however not
further considered in this work.

It is also possible to derive this method from a FE method standpoint alone,
by using the characteristic functions of the control volumes as a test space. This
is then classified as a nonconforming Petrov-Galerkin method [34].

8

2.2. Finite Volume Element Method

Figure 2.3: Full grid Ω(1,2) (solid lines), its dual grid (dashed lines) for Dirichlet
boundary conditions and the dual grid skeleton entity γ(0,1),(1,1),(1,2) (dotted line).

2.2.3 Boundary Conditions
Until now we disregarded the boundary conditions required by equation (2.5b).
As for Dirichlet boundary conditions the function value is given by the function
g, the corresponding equations and control volumes can be eliminated from the
system of equations (2.8) (cf. [4], section 2.7). We call B̃~l ⊂ B~l the set of control
volumes not corresponding to a node on the Dirichlet boundary.

Furthermore we now choose u~l ∈ w + U~l where w ∈ H1(Ω) with w|∂Ω = g and

w + U~l = {u ∈ H1(Ω) : u = w + v, v ∈ U~l}

This way the function u~l can have the prescribed values at the boundary.
As a side note Neumann boundary conditions can also be easily enforced by

keeping the node as a DOF but prescribing the flux over the boundary with the
given value.

2.2.4 Assembly
The last step of the discretization is to actually assemble the system of equations.
Because the implementation expects the problem to be formulated as a weighted
residual method, we write the residual form r~l,~i of equations (2.8) as

r~l,~i(u~l) =
∫
∂B̃~l,~i

(−D∇u~l + au~l) · n ds−
∫
B̃~l,~i

f dx.

Let us also define the map R : RN~l → RN~l with

(R(u))m(~i) = r~l,~i(u~l).

So the problem now reads (cf. [20], section 1.3)

find u ∈ RN~l s.t. R(u) = 0.

9

2. Problem Formulation

(a) (b)

Figure 2.4: 2D regular sparse grid points with level 3 (a) and level 4 (b).

To solve this problem the residual R(u) and its jacobian matrix A = ∇R(u) must
be assembled.

To this end we define an additional subset of the domain Ω, the skeleton of the
dual grid (see fig. 2.3). It consists of the common border entities of the control
volumes inside a primal grid cell and can be defined as

Γ~l = {γ~i,~j,~k : Ed
~l,~i
∩ ∂B̃~l,~j ∩ ∂B~l,~k ∩ Ω}.

With this the residual form r~l,~i corresponding to node E0
~l,~i

can be calculated by
adding up the contributions from all adjacent grid cells

r~l,~i(u~l) =
∑

~j : ∂Ed
~l,~j
∩E0

~l,~i
6=∅

 ∑
γ∈Γ~l

∩Ed
~l,~j
∩∂B̃~l,~i

∫
γ
(−D∇u~l + au~l) · n ds

− ∫
B̃~l,~i

f dx.

(2.9)
The surface and volume integrals in equation (2.9) can be approximated by the
midpoint rule [34] (see fig. 2.1b).

2.3 Sparse Grids
For an introduction to sparse grid methods we refer to the dissertation of
Pflüger [32]. In the following the basic ideas of sparse grids are given.

Sparse Grid methods start off with the hierarchical basis representation of the
function space U~l. From there only the hierarchical subspaces are chosen, which
contribute most to the interpolation u~l ∈ U~l of a function u for a some norm.

For an isotropic grid with spacing h this procedure reduces the number
of points from O(h−d) to O(h−1(log h−1)d−1) (see fig. 2.4). If the function
u is smooth enough the approximation error only deteriorates from O(h2) to
O(h2(log h−1)d−1) [32].

10

2.3. Sparse Grids

-

+

Figure 2.5: Combination technique for 2D regular sparse grid with level 3.

2.3.1 Combination Technique
Rather than using the hierarchical basis the combination technique uses the
function subspaces on coarse but anisotropic full grids. The functions on these
component grids are then linearly combined to form a solution in the sparse grid
space (see fig 2.5). So the solution for the combination technique is defined as
(cf. [10], section 3)

ucn =
n+d−1∑
i=n

(−1)i+1
(
d− 1
i− n

) ∑
|~l|1=i

u~l

Where | · |1 is the sum of all elements of a multi-index, and n is the level of the
regular sparse grid space that is utilized.

For the interpolation of a function the combination technique solution and the
sparse grid solution are identical, however when solving PDEs the solutions may
differ [32].

By using the combination technique the total amount of DOFs is higher than
with hierarchical sparse grids, but the benefit is that the component grid problems
are independent from each other. Therefore they can be solved in parallel and
communication is only needed in the combination step, when the solution function
ucn is evaluated.

11

Chapter 3

Multigrid Methods

This chapter will give a short introduction to multigrid methods. For a more
thorough explanation of the topic we refer to the well known books A Multigrid
Tutorial [14] by Briggs and Multigrid [37] by Trottenberg, Osterlee and Schüller.
We follow up on the results of Zubair et al. [10] for the use of multigrid algorithms
with the combination technique.

From the discretization we now have a residual R(u(0)) for some initial guess
u(0) and the jacobian matrix A. These can be used to calculate a function u~l that
fulfills equation (2.8)

u = u(0) −A−1R(u(0))︸ ︷︷ ︸
=e

.

The question that still needs to be answered is how to solve the system of linear
equations Ae = R(u(0)). By using standard iterative methods like Gauss-Seidel
or Jacobi solvers the convergence rate quickly deteriorates on finer grids. To get
convergence rates independent of the grid spacing so-called multigrid methods
must be employed.

3.1 Coarse Grid Correction

There are two observations that lead to multigrid methods. The first one is, that
for some problems certain iterative solver can smooth out the error (i.e. reduce
the high frequency error components) after a few iterations. This process is called
relaxation. The second observation is that the error on a fine grid appears more
oscillatory on a coarser grid [14].

In a coarse grid correction scheme both of these observations are used. First
smooth out the error on the fine grid, then restrict the residual to a coarser grid.
On the coarse grid solve the defect equation, then prolongate the error back to
the fine grid. With that the solution on the fine grid can be corrected.

12

3.2. Multiplicative Multigrid

3.2 Multiplicative Multigrid
The previous idea can be used in a recursive way, instead of solving the problem
on the coarse grid. For this we use a sequence of grids(

Ωci(~lf)

)
i=0,...,k

=
(
Ω~lf

, Ωc(~lf), Ωc2(~lf), . . . ,Ωck(~lf)

)
where c is some function that maps ~l to a level such that c(~l) < ~l, the level ~lf is that
of the finest grid and k is the maximum depth of the grid hierarchy. For each grid
we need an operator A~l analogous to the operator A from the discretization on the
fine grid. Furthermore there is a need for the prolongation I~l

c(~l) and restriction Ic(
~l)

~l

operations. With these components the classical multiplicative multigrid solver is
then defined like in the following.

Function MG(v~l, b~l)
Data:

(
Aci(~lf)

)
i=0,...,k

if ~l = ck(~lf) then /* coarsest grid reached */
return A−1

~l
v~l ;

else
for i← 1 to α1 do /* pre-smoothing */

v~l ← smooth A~l v~l = b~l ;
end
bc(~l) ← Ic(

~l)
~l

(b~l −A~l v~l) ; /* restrict residual */
vc(~l) ← 0;
for i← 1 to β do

vc(~l) ← MG(vc(~l), bc(~l)) ; /* recursion */
end
v~l ← v~l + I~l

c(~l)vc(~l) ; /* coarse grid correction */
for i← 1 to α2 do /* post-smoothing */

v~l ← smooth A~l v~l = b~l ;
end
return v~l ;

end

This function is then called iteratively in the assignment

u(i+1) ← u(i) −MG(0, R(u(i)))

until a stopping criterion is met (e.g residual was reduced by a certain factor).
As we can see there are a number of components that must be chosen. In fact

it is critical to the performance of the method to choose the correct components
for a given problem. In the following we take a look at how the components were
chosen for this work.

13

3. Multigrid Methods

3.2.1 Coarse Grid Operator
The operator A~l is obtained by simply discretizing the problem on Ω~l the same
way as on the fine grid. This is called the direct coarse approximation (DCA).

There is also the possibility to construct an operator for the coarse grid in a
purely algebraic way by using the prolongation and restriction operators. This
so-called Galerkin coarse approximation (GCA) has some advantages over a DCA,
and can lead to efficient multigrid methods for first order upwind discretiza-
tions [19]. There are however unresolved issues when constructing a GCA for
higher dimensions [10] so the DCA is the preferred choice.

3.2.2 Grid Transfer Function
As the model problem is a second order PDE, d-linear interpolation is chosen as
the prolongation operator (cf. [37], section 2.7.1). For the restriction operator the
transpose of the prolongation operator is used.

3.2.3 Smoother
The choice for the smoother is not trivial once an upstream discretization is used
as a simple ω-Jacobi method is not viable (cf. [37], section 7.2.1). If the velocity
vector field is constant, downstream relaxation—where the order of visited grid
points corresponds to the characteristics of the problem—is a good choice. This
is however to complicated once variable coefficients and parallelism occur [37].

One approach is to start a Gauss-Seidel sweep from every corner of the grid [37],
but for higher dimensions this results in an exponential amount of sweeps.

Another alternative are alternating line smoothers [37]. For higher dimensions
these become hyper-plane smoothers. They are more complicated to implement
and were analyzed for the sequential case by Reisinger et al. [33] for the combination
technique. It is not clear how well they would scale in a parallel setting.

As there seems to be no practical solution for this problem a symmetric Gauss-
Seidel point smoother is used. This results in at least 2 flow directions which
retain good smoothing qualities, but for some special cases the method might not
converge.

3.2.4 Schedules
The multigrid schedule is described by the α1, α2 and β parameter in the MG
function definition.

For different values of β the traversal order of grid hierarchy changes. Setting
β = 1 results in the V-cycle (see fig. 3.1 left), setting β = 2 results in the W-cycle
(see fig. 3.1 right). Both of these are viable options but the V-cycle is expected to
show a better weak scalability (cf. [37], section 6.3.3).

14

3.3. Coarsening Strategy

Figure 3.1: Multigrid schedules for a grid hierarchy of depth 3. This shows
restriction and prolongation operations (lines), the smoothing steps (black dots)
and the coarse grid solution steps (white dots).

i ci(~lf)
strategy 1 strategy 2

0 (6,2,5,3) (6,2,5,3)
1 (5,2,5,3) (5,2,5,3)
2 (4,2,4,3) (3,2,3,3)
3 (3,2,3,3) (2,2,2,2)
4 (2,2,2,2) (1,1,1,1)
5 (1,1,1,1)

Table 3.1: Coarsening strategies for ~lf = (6, 2, 5, 3)

The α1 and α2 parameters decide how many pre- and post-smoothing steps
are used. A schedule will be called V (α1, α2) for a V-cycle and W (α1, α2) for a
W-cycle with given smoothing iteration count.

3.3 Coarsening Strategy
The coarsening strategy has to deal with the anisotropy in multiple dimensions,
which is given by the component grids of the combination technique. As only
isotropic diffusion coefficients are considered the task is simplified because the
strategy can be chosen independent from the problem.

We will test both of the proposed strategies from Zubair et al. [11]. Strategy 1
partially coarsens along the dimensions with the strongest coupling by doubling
the grid spacing. Once an equidistant grid is reached it proceeds with standard
coarsening. This strategy is also called standard refinement by Sprengel [36].
Strategy 2 is similar to strategy 1, but instead of doubling the grid spacing in the
partial coarsening phase it quadruples the grid spacing (see fig. 3.2). Table 3.1
shows an example for both strategies.

According to Zubair et al. [10] strategy 1 shows good convergence behavior
even if the relaxation parameter of the smoother was not chosen optimally. On

15

3. Multigrid Methods

Figure 3.2: Grid hierarchy for strategy 2.

the other hand strategy 2 is more dependent on the smoothing quality but can
offers a speedup over strategy 1.

3.4 Parallelization
There are two level of parallelization involved in solving the problem. The first level
of parallelization comes from the combination technique, because the problems
on the component grids can be solved independent from each other. The second
level of parallelization comes from the parallel solution on the component grids.
This is done with a domain decomposition approach. The parts of the algorithm
that must be parallelized are the smoother method and the transfer operators.

The grids Ω~l of the hierarchy are now decomposed into a number of rectangular
subgrids. Each of these subgrids has a layer of overlapping cells with its neighboring
subgrids. The grid hierarchy is truncated at the smallest level where there are
more cells than the number of processes p involved in the parallelization

p > |Ed
ck(~lf)|.

This way it is not possible that processors run idle while coarser grids are traversed.
For the coarse grid solver the Bi-CGSTAB method was chosen, which can handle
the non-symmetric matrix resulting from the upwind discretization.

The symmetric Gauss-Seidel smoother is inherently sequential, because every
step in the calculation uses data which was updated in a previous step. To run it
in parallel the additive Schwarz method is used. Here the processes first apply
the smoother independent from each other on their own subgrid. After that the
values from the overlapping region are updated by adding up the solutions from
all processes it is contained in.

The grid transfer operators are trivially parallelizable as they can be carried
out locally on the subgrids. However for the restriction of the residual there is
communication required, because on the overlap boundary not all the necessary
information is available (cf. [5], section 6.4).

16

Chapter 4

Implementation

This chapter is about the implementation details of this work. At first the libraries
which were used are presented. After that the implementation for each of the
goals is explained.

4.1 DUNE Project
The Distributed and Unified Numerics Environment (DUNE) is a toolbox for
solving PDEs with grid-based methods. It is modular by design which makes it
easy to implement further functionality. Its main goals are a separation of data
structures and algorithms by abstract interfaces, an efficient implementation of
these interfaces by generic programming, and reuse of existing simulation pack-
ages [1]. It is written in modern C++ and makes heavy use of static polymorphism
through templates for more compile-time optimizations. This enables the use of
abstract interfaces without the runtime overhead this typically entails.

The code of this work will be combined in a module with the title DUNE-MG.
It is compatible to DUNE 2.4, which is the stable version at the time of writing.
The overall dependency relations are shown in Figure 4.1.

4.1.1 Core Modules

The core modules are the basic framework which all other modules can use. In
the following the most relevant of them are described in more detail.

DUNE-Common

The Common module provides classes for the basic infrastructure, like exception
handling. Among other helper classes it also contains classes for dense vectors
and matrices.

17

4. Implementation

dune-mgdune-parsolve

dune-localfunctions

dune-geometry

dune-common

dune-pdelab

dune-grid dune-istl

dune-typetree

Figure 4.1: Dependency graph of the DUNE modules

DUNE-Grid

The Grid module [7, 6] defines the interface which every grid implementation must
adhere to. Due to this abstraction it is possible to exchange the underlying grid
implementation if it supports all the needed features. In DUNE a grid does not
actually hold any data, but provides just the topological information.

DUNE-Geometry

In the Geometry module everything related to the reference elements is defined.
This module is used in the implementation of the discretization method.

DUNE-ISTL

The Iterative Solver Template Library (ISTL) [13] contains classes for sparse
vectors and matrices. It also provides implementations for Krylov Subspace
methods and an aggregation-based algebraic multigrid preconditioner. These will
be used as a comparison to the geometric multigrid method of this work.

4.1.2 External Modules
There are two external modules on which the implementation depends. In the
following they are described in detail.

DUNE-PDELab

The PDELab module [8] provides the framework for discretizing PDEs. The finite
volume element method implemented in this work, uses the interfaces of PDELab.
It also provides access to the solvers defined in ISTL, to solve the discretized
systems.

18

4.2. SG++ Distributed Combigrid

├── dune
│ └── mg
│ ├── localoperator
│ │ └── convectiondiffusionfve.hh
│ ├── mgsolver.hh
│ └── parsolve
│ ├── geometric_multigrid_components.hh
│ └── multigrid_preconditioner_overlapping.hh
└── src
 ├── combi
 │ ├── combi-mg.cc
 │ ├── DuneMgTask.cc
 │ ├── DuneMgTask.hh
 │ └── settings.ini
 ├── dune-mg.cc
 ├── problem.hh
 └── settings.ini

Figure 4.2: The most important files in the DUNE-MG module.

DUNE-Parsolve

The Parsolve module is part of a lecture at the University of Heidelberg [5]. In it
the basic geometric multigrid method is implemented, as described in the function
MG from section 3.2.

4.2 SG++ Distributed Combigrid
The SG++ toolbox [32] drastically reduces the amount of work required to use
sparse grids. It is mainly concerned with adaptive sparse grids, but it also contains
a module for the combination technique.

The SG++ Distributed Combigrid module is based on the manager-worker
pattern. A manager process distributes the computational tasks—corresponding
to the component grids—to groups of worker processes. These worker process
groups then solve their tasks in parallel. The implementation of the task interface
is up to the user.

4.3 Implementation
A part of the file tree of the DUNE-MG module can be seen in figure 4.2. The
discretization implementation is inside the file convectiondiffusionfve.hh. The
multigrid solver extensions are in the file mgsolver.hh. Files taken from the
parsolve module are in the directory parsolve.

The src directory contains the driver code to test the implementation. Tests
for the full grid are implemented in the file dune-mg.cc. In the problem.hh file the
definition of the model problems are contained. Tests for the combination technique
are implemented in the files from the combi directory. The settings.ini files
allow to change some of the parameters without recompiling.

19

4. Implementation

Figure 4.3: 3D reference element with binary corner indices.

4.3.1 Finite Volume Element Method
The theoretical background for the FVE method was already covered in section
2.2, so we now take a look on how this carries over into actual code.

It is clear that we somehow need to construct the dual grid, to get the geometry
information for the control volumes. This construction only has to be done once
on the reference element. Because a rectangular grid is used, the reference element
is the unit hypercube. The corners are enumerated in row-major order as seen in
figure 4.3 for the 3-dimensional case.

In the following an algorithm is presented that constructs the neighbor relation
between every corner of the reference element, where two corners are neighbors if
they are connected by an edge and the second corner has a larger index number.
This is equivalent to constructing the hypercube graph with directed edges.

Algorithm 1: Calculate the neighbor relation on the reference element.
Input: dimension D
Output: neighbor relation N
N ← ∅;
for i← 0 to 2D − 1 do

for d← 0 to D − 1 do
j ← i Y 2d ; /* bitwise xor */
if i > j then
N ← N ∪ (j, i);

end
end

end

20

4.3. Implementation

The neighbor relation can now be used to find the control volume boundaries
inside the reference element. For every neighboring corner pair there is exactly one
control volume boundary. The asymmetry of the neighbor relation is necessary for
the direction of the outer normal vector of the associated boundary. To help find
the integration points, outer normal vectors and inside- and outside-cells of these
boundaries the StaticRefinement class from DUNE-Geometry is used. This
results in the skeleton information of the dual grid, that is utilized to calculate
the surface integrals.

Local Operator

The DUNE-PDELab interface for discretization methods requires the residual
form (2.9) to be split into three parts:

r~l,~i(u~l) = αvol
~l,~i

(u~l) + αskel
~l,~i

(u~l) + αbnd
~l,~i

(u~l)
During the assembly process the local contribution to the residual is calculated.
Each of the summands corresponds to the iteration over certain grid entities. In
the local operator implementation each of the summands is calculated in a method
with the fitting name (e.g. ConvectionDiffusionFVE::alpha_volume for αvol

~l,~i
).

All the calculations are done on the reference element, therefore a transforma-
tion between the actual element and the reference element is needed. As we are
using axis aligned rectangular grids this only involves a translation and scaling.
The inverse and jacobian determinant of this transformation is trivial to calculate
and supplied by the geometry implementation of DUNE.

For the FVE method only αvol
~l,~i

and αbnd
~l,~i

are relevant, which are calculated while
iterating over the grid cells and the domain boundary faces. In case there are only
Dirichlet boundary conditions αbnd

~l,~i
= 0 holds, so the residual can be calculated in

one iteration over the grid cells. For every visited cell the contributions to the
residual form from (2.9) are added up.

If Neumann or outflow boundary conditions are used αbnd
~l,~i

does no longer
necessarily vanish, because these would become natural boundary conditions
in this FVE method. The implementation of the discretization does support
homogeneous Neumann boundary conditions.

The jacobian of the residual can be explicitly programmed or calculated
numerically. In this work it was explicitly programmed.

For future work we already implemented a temporal local operator, which can
be used to solve the instationary advection-diffusion equation.

4.3.2 Multigrid Method
The first change for the multigrid solver was to wrap it inside a class conforming
to the PDELab interface for linear solvers. This way it can be used just like any
other already existing solver in PDELab.

21

4. Implementation

The extensions made in this work required changes in the code of DUNE-
Parsolve. The necessary code of it is therefore integrated in the DUNE-MG
module.

Coarsening Strategy

The major change is the implementation of the coarsening strategy described
in section 3.3. The DUNE grid interface supports hierarchically nested grids,
which was originally used by Parsolve to construct the operator and prolongation
hierarchies. One starts with the coarsest grid space and builds up the grid hierarchy
by refining until the finest grid is reached.

The DUNE-Grid module comes with an implementation of its interface called
YaspGrid. It implements a parallel regular grid with arbitrary dimensionality.
One of its shortcomings is however that it does not support anisotropic refinement,
which is necessary for the partial coarsening strategy. To circumvent this problem
a wrapper class was written that stores a separate grid for every level in the
hierarchy. As grids only contain the topology information this is not much worse
than using the built-in hierarchy capabilities.

This is implemented in the GridHierarchy class. It specifically wraps around
YaspGrid by accessing the implementation through the experimental grid exten-
sions configuration flag. This is required for the methods GridHierarchy::father
and GridHierarchy::geometryInFather which return the father entity and the
geometry relative to the father entity. These are normally implemented in the
YaspEntity class, and are needed to build the prolongation hierarchy.

There is an external grid manager that supports anisotropic refinement called
SPGrid [30]. However in contrast to YaspGrid it does not support a user defined
partitioning. This is important for the recombination step in the combination
technique once instationary problems are considered, as the partitioning must be
the same on every component grid. Also it is not possible to restrict the size of
the partition overlap in the refinement process.

4.3.3 Combigrid Task Class
To use the SG++ Distributed Combigrid module a task class must be implemented.
In the DuneMgTask::init method the DUNE specific objects are initialized with
the information supplied by the Task class (e.g. local MPI communicator, com-
ponent grid level, . . .). In the DuneMgTask::run method the solver is applied
to the problem. For a detailed understanding of the driver code we refer to the
DUNE-PDELab howto [20].

To further process the solution data it must be transferred to a DistributedFull-
Grid data structure from SG++ Distributed Combigrid. There is still a problem
left for future work once time dependent problems are a concern. The order of the
ranks in the partitioning of YaspGrid is row-major, but for the DistributedFullGrid
it is column-major. So one of the implementations must be changed or otherwise

22

4.3. Implementation

almost the entire volume of the domain has to be sent through the network, in
each recombination step.

23

Chapter 5

Numerical Experiments

In this chapter the implementation is tested. First the model problems which will
be used in the tests are defined. After that the discretization error is examined in
multiple dimensions. Lastly the multigrid methods are compared with respect to
their parallel efficiency and convergence rate.

5.1 Model Problems
There are four special cases of equation (2.2) which will be considered as model
problems. Three of them are defined for the 2-dimensional case and one is defined
for arbitrary dimensionality.

5.1.1 Problem 1 (Diffusive Flow)
The first class of problems are special cases of the Poisson equation (2.3).

(a) The first problem of this class has f = 0, which is also known as Laplace
equation. The boundary conditions are chosen as u(0, x2) = sin(πx2) and
zero otherwise. The exact solution for this problem (cf. [22], see fig. 5.1a) is

u(x1, x2) = sin(πx2)sinh(π(1− x1))
sinh(π)

(b) The second problem of this class has f = 4π2d
∏d
i=0 sin(2πxi) and homoge-

neous Dirichlet boundary conditions. It can easily be checked that the exact
solution (see fig. 5.1b) is

u(x) =
d∏
i=0

sin(2πxi)

24

5.1. Model Problems

0 0.2
0.4

0.6
0.8

1

00.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

x1x2

u

(a) Problem 1a.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

−1

0

1

x1

x2

u

(b) Problem 1b with d = 2.

Figure 5.1: Graph of solution functions.

25

5. Numerical Experiments

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x
2

(a) Problem 2. (b) Problem 3.

Figure 5.2: Advective flow.

5.1.2 Problem 2 (Advective Flow)
The second problem is a special case of the stationary advection equation (2.4). It
has f = 0 and a = (sin(π2x2), cos(π2 (x1 + 1

2)))T which is a circular flow around the
point (1

2 , 0) (see fig. 5.2a). The boundary conditions are chosen as u(x1, 0) = 1
and zero otherwise. As the characteristics form concentric half circles around the
inflow boundary one finds the solution to be

u(x1, x2) =
1 if (x1 − 1

2)2 + x2
2 ≤ 1

4
0 otherwise.

5.1.3 Problem 3 (Recirculating Flow)
The last problem is a special case of the stationary advection-diffusion equation
(2.2). It has f = 0,D = ε·I, ε > 0 and a = (sin(πx1) cos(πx2),− cos(πx1) sin(πx2))T
which is a recirculating flow (see fig. 5.2b). The boundary conditions are chosen
as u(0, x2) = 1 and zero otherwise.

5.2 Discretization Error
Before we can compare the multigrid methods we must first verify that the
implemented discretization method is correct. As formal verification is not an
option here, we are testing a number of model problems to see if implausible
results might occur.

To measure the discretization error the discrete L2-norm is defined as

‖x‖2 =
√

xTx
N~l

, x ∈ RN~l

26

5.2. Discretization Error

~l
L2 discretization error

Problem 1a Problem 1b (d = 4) Problem 2
~2 1.95016e-03 9.50285e-02 1.42581e-01
~3 1.77864e-04 2.15153e-03 4.35312e-02
~4 1.93067e-05 9.23531e-05 1.58520e-02
~5 2.26806e-06 6.21729e-03
~6 2.79756e-07 2.53737e-03
~7 3.71901e-08 1.05137e-03
~8 6.27906e-09 4.41520e-04
~9 1.80573e-09 1.87906e-04

Table 5.1: Discretization error on full grids.

~l
L2 discretization error

Problem 1a Problem 1b (d = 4) Problem 2
~2 3.94774e-03 4.93827e-02 1.74777e-01
~3 5.26787e-04 6.66389e-03 6.10977e-02
~4 7.54388e-05 1.26420e-03 2.38143e-02
~5 1.10713e-05 1.19301e-04 9.70069e-03
~6 1.62448e-06 4.07973e-03
~7 2.35407e-07 1.76295e-03
~8 3.41297e-08 7.76766e-04
~9 4.30903e-09 3.46877e-04

Table 5.2: Discretization error with the combination technique solution interpo-
lated to a full grid.

on the grid Ω~l (cf. [22]) which approximates the continuous L2-norm. The
discretization error is then calculated by subtracting the exact solution from
the sufficiently accurate numerical solution at the grid points and taking the
discrete L2-norm.

The result for full grids can be seen in table 5.1. The expected error bound of
O(h2) [29] is valid for problems 1a and 1b. Also as expected for problem 2 the
error is bounded by O(h) because first-order upwinding was used.

It is also important to verify that the model problems converge with the
combination technique. The results can be seen in table 5.2. As we can see all
the error bounds hold, and problem 2 converges even though its solution function
is discontinuous.

27

5. Numerical Experiments

5.3 Multigrid Comparison
So now that we know the discretization works as expected, the next step is
to analyze the multigrid methods. In this section variations of the geometric
multigrid solver are compared to a Bi-CGSTAB solver preconditioned by the
algebraic multigrid method from DUNE-ISTL. The stopping criterion for all
solvers is a reduction of the residual R(u(0)) by a factor of 10−6 in the L2-norm.
The initial guess u(0) is always zero.

We call the variations of the GMG solver as follows (cf. section 3.2.4):

• Vi(1, 1) uses the V-cycle schedule with coarsening strategy i ∈ {1, 2}.

• Wi(1, 1) uses the W-cycle schedule with coarsening strategy i ∈ {1, 2}.

The algebraic multigrid method is denoted by its abbreviation AMG. It is treated
as a black box solver as provided in PDELab with the default parameters set from
DUNE::PDELab::ISTLBackend_BCGS_AMG_SSOR.

5.3.1 Convergence Behavior
In the following we will take a look at how each method is affected under the
influence of changing grid anisotropy and advection dominance. To measure the
influence we use the average convergence rate defined as (cf. [33])

ρ = k

√√√√‖R(u(k))‖2

‖R(u(0))‖2
.

All tests in this section are carried out with the sequential multigrid algorithm.
Because of the additive Schwarz domain decomposition the parallel algorithm is
not numerically identical. The convergence in the parallel version will be slower
than in the sequential version.

For more experiments on the convergence behavior of sequential multigrid
methods in this context we refer to the detailed surveys of Zubair et al. [10, 11].

Grid Anisotropy

To investigate the effect of anisotropy we look at the relation between convergence
rate and the aspect ratio of the grid. We define the aspect ratio as the quotient
of the largest cell extent divided by the smallest cell extent parallel to the axes

ψ~l = max(2~l)
min(2~l)

.

To mask out the effects of advection we use model problem 1b with d = 2. We
consider a sequence of grids where the level of the first dimension is halved in

28

5.3. Multigrid Comparison

20 22 24 26 28 210 212 214
0

10

20

30

40

ψ~l

it
er
a
ti
o
n
s

V1(1, 1)

W1(1, 1)

V2(1, 1)

W2(1, 1)

AMG

(a) Iterations until convergence.

20 22 24 26 28 210 212 214

10

20

30

40

50

60

ψ~l

ti
m
e
(s
)

V1(1, 1)

W1(1, 1)

V2(1, 1)

W2(1, 1)

AMG

(b) Wall-clock time.

Figure 5.3: Behavior of multigrid methods for for problem 1b with d = 2 and
different aspect ratios.

every step, whereas the level of the second dimension is doubled. The first grid in
this sequence is the isotropic grid Ω(8,8), so the whole sequence reads

(Ω(8,8),Ω(7,9), . . . ,Ω(1,15)).

The number of DOFs is reduced in every step due to a growing number of points
on the Dirichlet boundary. It should be noted that the aspect ratio quadruples
in every step. It should also be noted that these are component grids for the
combination technique in 2 dimensions, if the sparse grid is of level 15 or 16.

The result can be seen in figure 5.3a. With exception of V2(1, 1) all GMG
methods approximately retain a convergence rate independent of the aspect ratio.
The influence of the aspect ratio is most obvious for the AMG method which
converges the slowest on grid Ω(4,12).

Next we look at the effect of anisotropy in higher dimensions, where they
can occur in multiple directions. For this we solve problem 2 in 4 dimensions.
Figure 5.4 shows the convergence history of an isotropic grid, a grid with anisotropy
in multiple direction and a grid where there is a strong anisotropy in one direction.

For the isotropic grid Ω(4,4,4,4) with ψ(4,4,4,4) = 1 (see fig. 5.4a) the AMG
method shows the best convergence ratio. The GMG variations behave basically
the same, with only marginal differences between the schedules. As expected the
coarsening strategies have no influence as only full coarsening occurs.

For the anisotropic grid Ω(6,2,5,3) with ψ(6,2,5,3) = 24 (see fig. 5.4b) the GMG
methods behave well, but for AMG the number of iteration almost tripled compared
to the isotropic grid.

With the anisotropic grid Ω(10,2,2,2) with ψ(10,2,2,2) = 28 (see fig. 5.4c) there
is a drastic increase in the number of iterations—almost by a factor of 8—for
the AMG method. The GMG solvers fair better with the anisotropy especially

29

5. Numerical Experiments

0 0.5 1 1.5 2 2.5 3 3.5 4
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

iterations

re
si
d
u
a
l

V1(1, 1)

W1(1, 1)

V2(1, 1)

W2(1, 1)

AMG

(a) On grid Ω(4,4,4,4).

0 1 2 3 4 5 6

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

iterations

re
si
d
u
a
l

V1(1, 1)

W1(1, 1)

V2(1, 1)

W2(1, 1)

AMG

(b) On grid Ω(6,2,5,3).

0 2 4 6 8 10 12 14 16
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

iterations

re
si
d
u
al

V1(1, 1)

W1(1, 1)

V2(1, 1)

W2(1, 1)

AMG

(c) On grid Ω(10,2,2,2).

Figure 5.4: Convergence history for problem 1b with d = 4.

the ones using strategy 1. These results suggest that the AMG method does not
converge independent of grid spacing if anisotropy grows.

Advection Dominance

To measure the influence of the advective flow we solve problem 3 with differing
values for ε on the isotropic grid Ω(8,8). Because the coarsening strategies are the
same for isotropic grids, we only test one method for each schedule. This problem
is well known to be hard to solve with multigrid methods as solver (cf. [37], section
7.8.1). Therefore we will additionally use the GMG methods as a preconditioner
for the Bi-CGSTAB solver. These are then denoted by Ṽ1(1, 1) and W̃1(1, 1).

The results can be seen in table 5.3. The convergence rate for the GMG solvers
deteriorates quickly. As expected, using the multigrid methods as a preconditioner
leads to a significant improvement. The W-cycle turns out to be the best method
and the V-cycle is comparable to AMG when used as a preconditioner. However

30

5.3. Multigrid Comparison

ε
ρ (#iterations)

V1(1, 1) Ṽ1(1, 1) W1(1, 1) W̃1(1, 1) AMG
1e-00 0.0260 (4) 0.0001 (2) 0.0266 (4) 0.0001 (2) 0.1366 (7.5)
1e-01 0.0459 (5) 0.0008 (2) 0.0267 (4) 0.0001 (2) 0.1555 (7.5)
1e-02 0.3399 (13) 0.0304 (4.5) 0.0280 (4) 0.0002 (2) 0.4802 (19.5)
1e-03 0.7909 (59) 0.2358 (10.5) 0.1351 (7) 0.0156 (3.5) 0.3871 (15)
1e-04 0.9350 (206) 0.4379 (17.5) 0.5418 (23) 0.1260 (7.5) 0.4747 (20.5)
1e-05 0.5467 (23) 0.7483 (48) 0.2058 (9) 0.4569 (19.5)
1e-06 0.5302 (22) 0.8231 (71) 0.2274 (11.5) 0.4805 (19)

Table 5.3: Multigrid convergence rate for problem 3.

we do not expect mesh independent convergence for any of our methods (cf. [37],
table 7.15).

5.3.2 Running Time
The calculations in the following were done on a shared memory system with 8
Intel® Xeon® CPU E7-8880 v3 and 515 871MB RAM. With this system there are
144 available virtual cores.

As we have seen above, the GMG variants show a better convergence behavior
than the AMG method. However in figure 5.3b one can see that W1(1, 1) is the
slowest method on high aspect ratios even though it has the best convergence
rate. This is shows that W1(1, 1) has a significantly higher cost per multigrid
cycle than all the other methods for high aspect ratios. So one can not only judge
the methods by their convergence rate.

For multigrid methods the running time is the sum of a setup phase and a
solving phase. In the setup phase the coarse grid operators and grid transfer
functions are prepared, as these do not change during the solution phase. We
now take a look at the time needed for the different phases in the experiments
corresponding to figure 5.4 with the sequential multigrid methods.

The results are shown in figure 5.5. Like we would expect the GMG methods
using strategy 1 have a longer setup time than for strategy 2 because their grid
hierarchy is deeper. This is the reason for the speed-up that can be observed from
using strategy 2. We can also see that the AMG method uses most of its time for
the solution phase.

The results from this section suggest the following conclusions

• V-cycles are faster on high aspect ratio grids whereas W-cycles are faster on
low aspect ratio grids.

• Methods using strategy 2 retain their running time better for varying aspect
ratios than methods using strategy 1.

• The AMG method and the W1(1, 1) GMG method are significantly slower
on grids with high aspect ratio.

31

5. Numerical Experiments

(a) On grid Ω(6,2,5,3). (b) On grid Ω(10,2,2,2).

Figure 5.5: Wall-clock time for problem 1b with d = 4.

With this knowledge we can now leave the sequential version behind and take a
look at the parallel version.

5.3.3 Parallel Scaling
The challenge for tomorrow’s exascale computing is to solve larger and larger
problems, instead of solving today’s problems faster. So when we look at the
parallel multgrid methods we are most interested in how they behave if the
processor count is grows with the problem size. This is called the weak scaling
and to measure it we define the sizeup as (cf. [26], chapter 10)

sizeup(N, p) = N(p)
N(1) ·

Tseq(N(1))
Tpar(N(p), p)

where N is the problem size dependent on the number of processes, Tseq is the
running time for the sequential algorithm and Tpar is the running time for the
parallel algorithm. The weak scaling efficiency then reads (cf. [26], chapter 10)

E(N, p) = sizeup(N, p)
p

.

Due to the restriction in available processing cores we only do a small weak
scaling study for the 2 dimensional case. We solve problem 1b again for 2
dimensions with an isotropic and an anisotropic test case. The sequential problems
have the level (8, 8) and (15, 1) respectively and the grid spacing is doubled in each
direction for the next larger problem, so the aspect ratio is conserved. Furthermore
we choose p proportional to the problem size. We check the scaling for at most
64 processes, therefore the largest problem has 4 194 304 DOFs on the fine grid
with 65 536 DOFs per process. In the previous sections we have seen that the

32

5.3. Multigrid Comparison

AMG method and the W1(1, 1) GMG variation are insufficiently efficient in the
anisotropic case, so they are not further considered.

From figure 5.6 we can see that for isotropic grids the V1(1, 1) method scales
up best. Like we expected in section 3.2.4, V-cycles scale better than W-cycles.
The AMG method has the worst scaling behavior of the three. The results for
the AMG method approximately accord to the results from Blatt [12] table 5.2,
where the weak scalability for a Poisson problem discretized with the FE method
is shown.

For the anisotropic case the picture looks worse as can be seen in figure 5.7.
All the methods are already rather inefficient on 4 processes and continue to
get worse. The most likely reason for this seems to be the employed smoothing
method which is known to cause bad scaling behavior (cf. [18], section 3.3.2).

In both cases the major sequential time component comes from the solution
phase. To isolate the cause one would have to make additional measurements of
the individual multigrid components.

33

5. Numerical Experiments

(a) V1(1, 1) method. (b) W2(1, 1) method.

(c) AMG method.

Figure 5.6: Weak scalability for problem 1b with d = 2 and ψ~l = 1. The weak
scaling efficiency is given as percentage above the bars.

34

5.3. Multigrid Comparison

(a) V1(1, 1) method. (b) W2(1, 1) method.

(c) V2(1, 1) method.

Figure 5.7: Weak scalability for problem 1b with d = 2 and ψ~l = 214. The weak
scaling efficiency is given as percentage above the bars.

35

5. Numerical Experiments

20 21 22 23 24 25 26
0

0.2

0.4

0.6

0.8

1

p

E
(N
,p
)

V1(1, 1)

V2(1, 1)

W2(1, 1)

Figure 5.8: Strong scalability for problem 1b with d = 2.

5.4 Combination Technique
The GMG methods are superior to the AMG method for the model problems, but
until there is a solver that scales up better for high aspect ratios, we deem it not
sensible to conduct massively parallel experiments.

Nevertheless we want to demonstrate that the implementation works. We take
a look at the running time for a fixed problem with a growing number of processes.
This is called strong scaling and we define it through the speedup measure (cf. [26],
chapter 9)

speedup(N, p) = Tseq(N)
Tpar(N, p)

.

The strong scaling efficiency is then defined analogous to the weak scaling efficiency
(cf. [26], chapter 9)

E(N, p) = speedup(N, p)
p

.

We use the same computing system and model problem as in the weak scaling
study. The solution lies in the 2-dimensional sparse grid space of level 15 with a
minimum component grid level of 2, therefore there are 27 component grids in
the combination technique.

Because there are two levels of parallelization it is not clear how to distribute
the growing amount of processes to these levels. We decide to first increase the
number of processes in the domain decomposition up to 4, and then to increase
the number of processing groups in the combination technique up to 16, so that
we can observe the effects of both levels. This way we use 64 processes in total
and take no advantage of the virtual cores, because these would probably distort
the results. Keep in mind that we only measure the solution process and not the
combination of the component grids.

36

5.4. Combination Technique

The result is shown in figure 5.8 and we can clearly see the different effects of
the level of parallelization. In the beginning the efficiency quickly drops most likely
due to the inefficient domain decomposition on small grids. When we start to add
new process groups to the combination technique the efficiency stops dropping
because there are enough component grids available so no group runs idle. Once
the number of process groups approaches the amount of component grids the
processor load drops and with it the efficiency.

37

Chapter 6

Conclusion

In this work we explored the possibility to solve the higher dimensional advection-
diffusion equation with a parallel multigrid method on anisotropic grids. This was
done through experimentation on different model problems.

To do these experiments a suitable discretization method was implemented
using DUNE-PDELab. Furthermore a parallel geometric multigrid method was
extended to handle the difficulties of the problem. Both of these implementations
were then used with the sparse grid combination technique using the SG++

Distributed Combigrid module.
Different variations for the geometric multigrid method were compared to

each other, together with an algebraic multigrid method. The results of the
experiments suggest that the V1(1, 1), V2(1, 1) and W2(1, 1) variations respectively
are the best choice for certain problems. The V-cycles show better scalability
than the W-cycles for both low and high aspect ratios. The W-cycles are generally
better for advection dominant equations if they are used as a precondtioner for
Bi-CGSTAB. The algebraic multigrid method was, apart from some isolated cases,
worse then the geometric multigrid methods. However this should come as no
surprise because only structured grids were involved.

Even though some improvements were made in comparison to the previously
available solvers, none of these multigrid methods is adequate for massively parallel
experiments yet, due to their low efficiency. Future research is required to find
suitable multigrid components for upwind discretizations on higher-dimensional
parallel anisotropic grids.

38

Bibliography

[1] Dune project description. https://dune-project.org/dune.html. Ac-
cessed: 2016-05-02.

[2] B. R. Baliga and S. V. Patankar. A new finite-element formulation for
convection-diffusion problems. In Numerical Heat Transfer, volume 3, pages
393–409, 1980.

[3] R. E. Bank and D. J. Rose. Some error estimates for the box method. In
SIAM Journal on Numerical Analysis, volume 24, pages 777–787, 1987.

[4] P. Bastian. Parallele adaptive Mehrgitterverfahren. PhD thesis, Universität
Heidelberg, 1994.

[5] P. Bastian. Lecture notes on parallel solution of large sparse linear systems,
2015.

[6] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
M. Ohlberger, and O. Sander. A generic grid interface for adaptive and
parallel scientific computing. part ii: Implementation and tests in dune, 2007.

[7] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger,
and O. Sander. A generic grid interface for parallel and adaptive scientific
computing. part i: Abstract framework, 2007.

[8] P. Bastian, F. Heimann, and S. Marnach. Generic implementation of the
finite element methods in the distributed and unified numerics environment
(dune). In Kybernetika, volume 46, pages 294–315, 2010.

[9] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University
Press, 1961.

[10] H. bin Zubair and C. W. Oosterlee. Multigrid method for high dimensional
elliptic equations. In European Conference on Computational Fluid Dynamics,
2006.

[11] H. bin Zubair, C. W. Oosterlee, and R. Wienands. Multigrid for high-
dimensional elliptic partial differential equations on non-equidistant grids. In
SIAM Journal on Scientific Computing, volume 14, pages 178–194, 2007.

39

https://dune-project.org/dune.html

Bibliography

[12] M. Blatt. A Parallel Algebraic Multigrid Method for Elliptic Problems with
Highly Discontinuous Coefficients. PhD thesis, Ruprecht-Karls-Universität
Heidelberg, 2010.

[13] M. Blatt and P. Bastian. The iterative solver template library. In Lecture
Notes in Scientific Computing, volume 4699, pages 666–675. Springer, 2007.

[14] W. L. Briggs. A Multigrid Tutorial. SIAM, 2000.

[15] H.-J. Bungartz. Dünne Gitter und deren Anwendung bei der adaptiven Lösung
der dreidimensionalen Poisson-Gleichung. PhD thesis, Technische Universität
München, 1992.

[16] Z. Cai. On the finite volume element method. In Numerische Mathematik,
volume 58, pages 713–735, 1991.

[17] S.-H. Chou and D. Y. Kwak. Multigrid algorithms for a vertex–centered
covolume method for elliptic problems. In Numerische Mathematik, volume 90,
pages 441–458, 2002.

[18] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. M. Yang. A survey
of parallelization techniques for multigrid solvers, 2006.

[19] P. M. de Zeeuw. Matrix-dependent prolongations and restrictions in a black-
box multigrid solver. In Journal of Computational and Applied Mathematics,
volume 33, pages 1–27, 1990.

[20] Dune Team. dune-pdelab howto, 2014.

[21] M. Griebel. A parallelizable and vectorizable multi-level algorithm on sparse
grids. In Parallel Algorithms for Partial Differential Equations, volume 31,
pages 94–100. Vieweg-Verlag, 1991.

[22] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the
solution of sparse grid problems. In Iterative Methods in Linear Algebra,
pages 263–281. North Holland, 1992.

[23] W. Hackbusch. On first and second order box schemes. In Computing,
volume 41, pages 277–296, 1989.

[24] P. Hupp, R. Jacob, M. Heene, D. Pflüger, and M. Hegland. Global commu-
nication schemes for the numerical solution of high-dimensional pdes. In
Advances in Parallel Computing, volume 52, pages 564–573, 2014.

[25] L. Ju, L. Tian, X. Xiao, and W. Zhao. Covolume-upwind finite volume
approximations for linear elliptic partial differential equations. In Journal of
Computational Physics, volume 231, pages 6097–6120, 2012.

40

Bibliography

[26] A. Kaminisky. BIG CPU, BIG DATA Solving the World’s Toughest Compu-
tational Problems with Parallel Computing. 2015.

[27] T. Lin and X. Ye. A posteriori error estimates for finite volume method
based on bilinear trial functions for the elliptic equation. In Journal of
Computational and Applied Mathematics, 2013.

[28] Y. Lin, J. Liu, and M. Yang. Finite volume element methods: An overview on
recent developments. In Numerical Analysis and Modeling, volume 4, pages
14–34, 2013.

[29] J. Lv and Y. Li. L2 error estimate of the finite volume element methods on
quadrilateral meshes. In Advances in Computational Mathematics, volume 33,
pages 129–148, 2010.

[30] M. Nolte. Efficient Numerical Approximation of the Effective Hamiltonian.
PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2011.

[31] C. Parkash and S. V. Patankar. A control volume-based finite-element method
for solving the navier stokes equations using equal-order velocity-pressure
interpolation. In Numerical Heat Transfer, volume 8, pages 259–280, 1985.

[32] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems.
Verlag Dr. Hut, München, Aug. 2010.

[33] C. Reisinger and G. Wittum. On multigrid for anisotropic equations and
variational inequalities. In Computing and Visualization in Science, volume 7,
pages 189–197, 2004.

[34] T. Schmidt. Analyse zweier Finite-Volumen-Methoden für elliptische partielle
Differentialgleichungen 2. Ordnung auf Vierecksgittern. PhD thesis, Christian-
Albrechts-Universität zu Kiel, 1992.

[35] I. A. Segal. Finite element methods for the incompressible navier-stokes
equations, 2015.

[36] F. Sprengel. Comparing multilevel coarsening strategies. In Electronic
Transactions on Numerical Analysis, volume 14, pages 178–194, 2002.

[37] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press,
2000.

[38] C. Zenger. Sparse grids. In Parallel Algorithms for Partial Differential
Equations, volume 31, pages 241–251. Vieweg-Verlag, 1991.

[39] Z. Zhang and Q. Zou. Some recent advances on vertex centered finite volume
element methods for elliptic equations. In Science China Mathematics,
volume 56, pages 2507–2522, 2013.

41

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wörtlich oder sinngemäß aus anderen Werken über-
nommene Aussagen als solche gekennzeichnet. Weder diese
Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Prüfungsverfahrens. Ich habe diese Ar-
beit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift

	List of Figures
	List of Tables
	Introduction
	Outline
	Related Work

	Problem Formulation
	Advection-Diffusion Equation
	Steady-State
	Boundary Value Problem

	Finite Volume Element Method
	Control Volumes
	Finite Element Space
	Boundary Conditions
	Assembly

	Sparse Grids
	Combination Technique

	Multigrid Methods
	Coarse Grid Correction
	Multiplicative Multigrid
	Coarse Grid Operator
	Grid Transfer Function
	Smoother
	Schedules

	Coarsening Strategy
	Parallelization

	Implementation
	DUNE Project
	Core Modules
	External Modules

	SG++ Distributed Combigrid
	Implementation
	Finite Volume Element Method
	Multigrid Method
	Combigrid Task Class

	Numerical Experiments
	Model Problems
	Problem 1 (Diffusive Flow)
	Problem 2 (Advective Flow)
	Problem 3 (Recirculating Flow)

	Discretization Error
	Multigrid Comparison
	Convergence Behavior
	Running Time
	Parallel Scaling

	Combination Technique

	Conclusion
	Bibliography

