
Content-Based Routing in

Software-Defined Networks

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Sukanya Bhowmik

aus Kolkata, India

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Mitberichter: Prof. Dr. Thomas Plagemann

Dr. rer. nat. Muhammad Adnan Tariq
Tag der mündlichen Prüfung: 01.12.2017

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2017

Acknowledgments

First and foremost, I would like to thank my doctoral advisor and mentor, Prof. Dr.
Kurt Rothermel, without whom this research would not have been possible. He gave
me an opportunity to be a part of his research group and continues to inspire me to
keep working in academia. His constant support and guidance has been paramount
throughout this journey, and I am extremely grateful for that.

I would like to offer my sincerest gratitude to Prof. Dr. Thomas Plagemann for kindly
agreeing to be a part of my PhD committee and reviewing my thesis.

I would, also, like to thank my project supervisor, Dr. Muhammad Adnan Tariq, who
has played a major role in quickly familiarizing me with this research area. I have
greatly benefited from his keen scientific insight, will to excel, technical assistance, and
outstanding mentoring. Special thanks go to Dr. Boris Koldehofe and Dr. Frank Dürr
who have always inspired me and from whom I have had the privilege of learning a lot
about research.

During my doctoral studies, I have had the privilege of interacting with my esteemed
colleagues who have helped build a very friendly environment in the department. I
wish to thank each one of them, especially, Naresh Nayak and Thomas Kohler for their
valuable support and technical assistance in the field of software-defined networking.
Special thanks go to Eva Strähle without whom I would be lost while dealing with
administrative matters.

Finally, I would like to thank my family for supporting me during this process. My
parents, Nandini Bhowmik and Milan Bhowmik, and my grandparents, Samir Mohan
Chakravarty and Lily Chakravarty, have always supported me and encouraged me
to pursue my goals. Special thanks go to my sister, Ananya Bhowmik Mitra, and my
brother, Suman Mitra, for always motivating me to strive for excellence. Lastly, I would
like to thank my husband, Sukalyan Roy, for his unending support and outstanding
patience through the course of my doctoral journey. Truly, the contributions of all
these people cannot be expressed merely in words.

3

Contents

Abstract 13

Zusammenfassung 15

1 Introduction 17
1.1 State-of-the-Art Content-Based Pub/Sub Systems 18
1.2 Software-Defined Networking . 20
1.3 Research Statement . 22

1.3.1 Provision of In-network Content-based Filtering 22
1.3.2 Addressing Data Plane Limitations 22
1.3.3 Handling Control Plane Overhead 23

1.4 Contributions . 23
1.5 Structure of the Thesis . 25

2 In-network Content-based Filtering 27
2.1 The PLEROMA Middleware . 28
2.2 Content Representation . 29

2.2.1 Spatial Indexing . 29
2.2.2 Mapping a dz . 31

2.3 Topology Reconfiguration . 31
2.3.1 Maintenance of flow tables . 33

2.3.1.1 Advertisements and Subscriptions 33
2.3.1.2 Flow installation . 34
2.3.1.3 Unsubscriptions and Unadvertisements 38

2.4 Performance Evaluations . 38
2.4.1 Experimental Setup . 38
2.4.2 End-to-End Latency . 40
2.4.3 False Positive Rate . 42
2.4.4 Control Overhead . 42
2.4.5 Discussion . 43

5

Contents

2.5 Related Work . 44
2.6 Conclusion . 45

3 Expressive Mapping of Content Filters 47
3.1 Limitations of Content Representation 48
3.2 Workload-based Indexing . 49

3.2.1 Selective Indexing . 49
3.2.2 Adaptive Spatial Indexing . 53

3.3 Dimension Selection . 54
3.3.1 Event Variance . 54
3.3.2 Subscription Matching . 56
3.3.3 Correlation . 58

3.3.3.1 Calculating Covariance Matrix 59
3.3.3.2 Performing Principal Component Analysis 60

3.3.4 Evaluation-based Techniques . 61
3.4 Handling Dynamic Network Updates 62

3.4.1 Data Plane Consistency in PLEROMA 63
3.4.2 Light-Weight Approach . 64

3.5 Performance Evaluations . 67
3.5.1 Experimental Setup . 67
3.5.2 Workload-based Indexing . 69
3.5.3 Dimension Selection . 69

3.5.3.1 False Positive Rate . 71
3.5.3.2 Runtime Overhead . 72

3.5.4 Combining Approaches . 74
3.5.5 Handling Dynamics . 74
3.5.6 Discussion . 76

3.6 Related Work . 77
3.7 Conclusion . 78

4 Expressive Filtering by Combining Application Layer 79
4.1 System Architecture . 80
4.2 Filter Selection Problem . 81
4.3 Filter Benefit and Penalty Calculation 82

4.3.1 Benefit . 83
4.3.2 Penalty . 85

4.4 Selection Algorithms . 85
4.4.1 Switch Selection Algorithm . 85
4.4.2 Cluster-based Selection Algorithm 88
4.4.3 Network Updates . 91

4.5 Further Optimizations . 91

6

Contents

4.6 Performance Evaluations . 92
4.6.1 Experimental setup . 92
4.6.2 Comparing with State-of-the-Art 93
4.6.3 Impact of Threshold Factor . 94
4.6.4 SSA vs CSA . 95
4.6.5 Discussion . 96

4.7 Related Work . 97
4.8 Conclusion . 98

5 Addressing TCAM Limitations 99
5.1 Impact of TCAM Limitations on PLEROMA 100
5.2 Filter Aggregation Problem . 101

5.2.1 Problem Statement . 101
5.2.2 Problem Analysis . 102

5.3 Filter Aggregation Algorithm . 104
5.3.1 Filter Aggregation on a Switch 104

5.3.1.1 Determining Possible Flow Merges 105
5.3.1.2 Selecting Flow Merges on a Switch 106

5.3.2 Aggregation Cost at a Merge Point 107
5.3.2.1 Incoming Traffic . 109
5.3.2.2 False Positives on Downstream Paths 111

5.3.3 Resolving Dependencies Between Switches 113
5.3.4 Handling Dynamics . 113

5.3.4.1 Basic Local Aggregation (LA-B) 114
5.3.4.2 Cost-based Local Aggregation (LA-C) 114

5.3.5 Ensuring Data Plane Consistency 115
5.4 Performance Evaluations . 116

5.4.1 Experimental Setup . 117
5.4.2 Comparing Network False Positive Rate 117
5.4.3 Comparing Runtime Overhead 120
5.4.4 Impact of Sampling Factor . 121
5.4.5 Dynamic Behavior . 122
5.4.6 Discussion . 124

5.5 Related Work . 124
5.6 Conclusion . 125

6 Scaling the Control Plane 127
6.1 Distributed Control Plane - System Architecture 128
6.2 Control Plane Consistency in Pub/Sub 130
6.3 Scaling Approaches . 133

6.3.1 Shared Everything Approach . 133

7

Contents

6.3.2 Shared Nothing Approach . 137
6.3.2.1 Topology Reconfiguration 138
6.3.2.2 Adaptive Load Balancing 138

6.4 Keeping DP-config Consistent with CP-config 140
6.5 Reducing Flow Operations . 141
6.6 Performance Evaluations . 143

6.6.1 Experimental Setup . 143
6.6.2 Vertical Scaling . 144
6.6.3 Horizontal Scaling . 146
6.6.4 Reducing Flow Operations . 148
6.6.5 Discussion . 149

6.7 Related Work . 150
6.8 Conclusion . 151

7 Summary and Future Work 153
7.1 Summary . 153
7.2 Future Work . 155

Bibliography 159

8

List of Figures

1.1 Broker-based Pub/Sub System . 18
1.2 SDN Architeture . 20

2.1 PLEROMA Middleware . 28
2.2 Spatial Indexing . 30
2.3 Forwarding in the switch network. Match fields of flows in R1, R2, R4-R6

are shown as dzs. Flows follow the notation MF → IS : PO 35
2.4 Flow maintenance on the arrival of S3. 36
2.5 Flow maintenance on the departure of S3 37
2.6 Testbed Topology . 39
2.7 End-to-End Latency . 41
2.8 False Positive Rate . 42
2.9 Average Processing Latency . 43

3.1 Limitations of Content Representation 48
3.2 Avoiding Empty Subspaces . 50
3.3 Selective Indexing . 51
3.4 Adaptive Spatial Indexing . 53
3.5 Effects of event distribution . 55
3.6 Event-based Selection . 55
3.7 Subscription-based Selection . 57
3.8 Light-Weight Approach . 65
3.9 Versioning vs light-weight approach (LWA) 66
3.10 Performance Evaluations: Workload-based indexing 68
3.11 Performance Evaluations: Dimension Selection - False Positive Rate . . 71
3.12 Performance Evaluations: Dimension Selection - Runtime Overhead . . 73
3.13 Performance Evaluations: Combined Approaches 75
3.14 Performance Evaluations: Handling Dynamics 76

4.1 Hybrid Content-based Routing . 80

9

List of Figures

4.2 False Positive Detection . 83
4.3 Partial Overlap . 83
4.4 Switch Selection . 87
4.5 Cluster-based Selection . 89
4.6 Performance Evaluations : Comparing with State-of-the-Art 93
4.7 Performance Evaluations: Impact of Threshold Factor 95
4.8 Performance Evaluations: SSA vs CSA 96

5.1 Importance of upstream switch filters 102
5.2 Merge Point Tree for Incoming Port 1 105
5.3 Cost Calculation . 110
5.4 Performance Evaluations: False Positive Rate 118
5.5 Performance Evaluations: Runtime Overhead 120
5.6 Performance Evaluations: Impact of Sampling Factor 121
5.7 Performance Evaluations: Dynamic Behavior 123

6.1 System Architecture . 129
6.2 Concurrent Access to CP-config and DP-config 130
6.3 Control Plane Inconsistency . 132
6.4 Shared Everything Approach . 134
6.5 Shared Nothing Approach . 137
6.6 Reducing Flow Operations . 142
6.7 Performance Evaluations : Vertical Scaling 145
6.8 Performance Evaluations : Horizontal Scaling 147
6.9 Performance Evaluations : Reducing Flow Operations 149

10

List of Abbreviations

API Application Program Interface
ASI Adaptive Spatial Indexing

BRS Brute-Force Selection
CORBA Common Object Request Broker Architecture

CS Correlation-based Selection
CSA Cluster-based Selection Algorithm

FA Filter Aggregation Algorithm
FA-LB Filter Aggregation Algorithm: Load-Based Method
FA-PB Filter Aggregation Algorithm: Pattern-Based Method

FPR False Positive Rate
FNR False Negative Rate

DC Data Center
DHT Distributed Hash Table

EMCS Event Match Count-based Selection
EVS Event Variance-based Selection

GS Greedy Selection
IP Internet Protocol

LWA Light-Weight Approach
NS Network State

NYSE New York Stock Exchange
PCA Principal Component Analysis
P2P Peer-to-Peer

RI Regular indexing
RPC Remote Procedure Call

RS Random Dimension Selection
SDN Software-Defined Networking
SEA Shared Everything Approach

SI Selective Indexing
SNA Shared Nothing Approach

11

LIST OF ABBREVIATIONS

SNA-LB Shared Nothing Approach with Load Balancing
SSA Switch Selection Algorithm

TCAM Ternary Content Addressable Memory

12

Abstract

Content-based routing, as provided by publish/subscribe systems, has emerged as a uni-
versal paradigm for interactions between loosely coupled application components, i.e.,
content publishers and subscribers, where published content is filtered and forwarded
by content filters to interested subscribers. Over the past few decades, content-based
publish/subscribe has been primarily implemented as an overlay network of software
brokers. Even though these systems have proven to efficiently support content-based
routing between a large number of distributed application components, such broker-
based routing and content filtering in software results in performance (w.r.t. end-to-end
latency, throughput rates, etc.) that is far behind the performance of network layer
implementations of communication protocols.

As a result, the goal of this thesis is to develop methods that enable content-based
filtering and routing at line-rate in the network layer by exploiting the capabilities of
Software-Defined Networking (SDN). In particular, this thesis focuses on realizing a
high performance SDN-based publish/subscribe middleware, called PLEROMA, while
addressing major obstacles raised by data (forwarding) plane and control plane limit-
ations of software-defined networks. More specifically, the following contributions are
made in this thesis.

Our first contribution is to provide methods to fulfill the functional requirements of
the content-based publish/subscribe paradigm on the network layer in order to enable
line-rate filtering and forwarding of published content in the data plane. We pro-
pose methods to establish paths between publishers and their relevant subscribers by
installing content filters directly on hardware switches in the data plane. While the
developed methods result in a publish/subscribe middleware whose performance (w.r.t.
end-to-end latency, throughput rates, etc.) is significantly better than state-of-the-art
solutions, a network layer implementation faces some serious challenges due to inherent
limitations of software-defined networks.

In fact, our next three contributions focus on addressing the problems associated with
expressive filtering of content in the network layer, i.e., on hardware switches in the

13

Abstract

data plane, in the presence of hardware limitations. In particular, we address lim-
itations w.r.t. limited flow table size and limited number of bits available for filter
representation in hardware switches that curtail the expressiveness of content filters.
Our contributions include various methods that use the knowledge of workload in the
system to mitigate the adverse effects of these data plane limitations, thus improving
bandwidth efficiency in the system.

Not just the data plane, but also the control plane can have its own limitations (w.r.t.
scalability in the presence of dynamically changing subscription requests) which can
pose as a significant bottleneck for content-based routing on software-defined networks.
As a result, our final contribution is to provide methods that enable concurrent and
consistent control distribution, thus paving the way for a scalable and distributed
control plane solution to high dynamics in an SDN-based publish/subscribe system.

14

Zusammenfassung

Inhaltsbasiertes Routing (Content-based Routing), wie es etwa von Publish/Subscribe-
Systemen bereitgestellt wird, hat sich zu einem universellen Paradigma für Interak-
tionen zwischen lose-gekoppelten Anwendungskomponenten, den Inhaltsherausgebern
(Publisher) und Inhaltsbeziehern (Subscriber), entwickelt, in dem veröffentlichte Inhal-
te durch Inhaltsfilter gefiltert und an interessierte Bezieher weitergeleitet werden. In den
vergangen Jahrzenten wurde inhaltsbasiertes Publish/Subscribe überwiegend durch ein
Overlaynetzwerk aus softwarebasierten Vermittlern (Broker) umgesetzt. Obwohl diese
Systeme inhaltsbasiertes Routing zwischen einer großen Anzahl von verteilten Anwen-
dungskomponenten effizient umsetzen können, liegt die Softwareimplementierung von
vermittlungsbasiertem Routing und Inhaltsfilterung bezüglich Ende-zu-Ende Latenz
und Durchsatz weit hinter der möglichen Leistung einer Implementierung von Kom-
munikationsprotokollen direkt auf der Netzwerkschicht zurück.

Dementsprechend ist es das Ziel dieser Dissertation, Methoden zu entwickeln, die
inhaltsbasierte Filterung und –Routing bei vollem Leitungsdurchsatz der Netz-
werkschicht durch Ausnutzung der Fähigkeiten der softwaredefinierten Vernetzung
(Software-Defined Networking, SDN) ermöglichen. Diese Dissertation konzentriert sich
dabei auf die Umsetzung einer hoch performanten SDN-basierten Publish/Subscribe-
Diensteschicht (Middleware) namens PLEROMA und die Lösung der durch Ein-
schränkungen der Datenweiterleitungsschicht (Data Plane) und Kontrollschicht (Con-
trol Plane) von softwaredefinierten Netzwerken bestehenden Herausforderungen. Ins-
besondere werden die folgenden Kernbeiträge im Rahmen der Dissertation vorgestellt.

Ein erster Beitrag besteht in der Ausarbeitung von Methoden zur Erfüllung der funktio-
nellen Anforderungen an inhaltsbasiertes Publish/Subscribe auf der Netzwerkschicht,
um Filterung und Weiterleitung von veröffentlichten Inhalten in der Datenebene bei
vollem Leitungsdurchsatz zu erreichen. Dabei werden Methoden vorgestellt um Kom-
munikationspfade zwischen Herausgebern und dessen Beziehern aufzubauen, basierend
auf der Einrichtung von Inhaltsfilterung direkt auf den Hardwareswitches in der Da-
tenebene. Die entwickelten Methoden resultieren in einem Publish/Subscribe-System
dessen Performanz bezüglich Ende-zu-Ende-Latenz und Durchsatz signifikant besser

15

Zusammenfassung

sind als moderne, vergleichbare Lösungen, dessen Implementierung auf der Netzwerke-
bene aber aufgrund inhärenter Einschränkungen von softwaredefinierten Netzwerken
große Herausforderungen birgt.

Dementsprechend konzentrieren sich die drei darauffolgenden Beiträge auf Proble-
me bezüglich der Ausdrucksmächtigkeit von Filtern auf der Netzwerkebene, also auf
Hardwareswitches in der Datenebene, unter Berücksichtigung der vorherrschenden Ein-
schränkungen. Im Speziellen wird auf die hardwarebedingten Limitierungen bezüglich
der begrenzten Größe der Flow-Tabelle und der begrenzten Anzahl an für die Filte-
rung zur Verfügung stehenden Bits, was die Ausdrucksmächtigkeit der Inhaltsfilterung
schmälert, eingegangen. Die geleisteten Beiträge beinhalten vielfältige Methoden, die
Wissen über die Arbeitslast im System nutzen um zuwiderlaufende Effekte aufgrund
der genannten Einschränkungen in der Datenebene abzumildern, wodurch die Band-
breiteneffizienz des Systems verbessert wird.

Zusätzlich zur Datenebene, weist auch die Kontrollebene spezifische Einschränkungen
auf, etwa bezüglich der Skalierbarkeit unter Vorherrschen von sich dynamisch
ändernden Bezugsanfragen, was ein bedeutender Kapazitätsengpass für inhaltsbasiertes
Routing in softwaredefinierten Netzwerken darstellen kann. Deswegen stellt der letzte
Beitrag Methoden zur Verfügung, die eine nebenläufige und konsistente Kontrollvertei-
lung ermöglichen, was den Grundstein für eine skalierbare und verteilte Kontrollebene
unter hoher Dynamik in einem SDN-basierten Publish/Subscribe-System legt.

16

Chapter 1
Introduction

In today’s fast-paced world, modern applications have very demanding requirements in
terms of the manner in which they connect and communicate with each other. These
applications include stock exchange [EFGK03, Bet00], instant news delivery [CLS03],
online gaming [KTKR10], network monitoring [MLJ10], road traffic monitoring [MC02],
workflow management [CDNF01], etc. The sheer amount of distributed components
communicating in such applications, their dynamic behavior patterns, the growing
amount of information exchanged between them, and the need for this exchange to
be performed in a timely and bandwidth-efficient manner demand a high performance
communication middleware. This is where classical abstractions of paradigms based on
a request/response model of interaction (e.g., RPC [TA90], CORBA [tOMG], etc.) fall
short, thus prompting the emergence of a more efficient and flexible paradigm, namely,
the publish/subscribe communication paradigm.

Over the past few decades, the publish/subscribe or pub/sub paradigm has been widely
adopted by modern applications to perform one-to-many or many-to-many communic-
ation. The foremost strength of the pub/sub paradigm lies in its ability to provide an
efficient platform that enables asynchronous and decoupled interactions between mul-
tiple distributed components. More specifically, a pub/sub system consists of primarily
two participating components—publishers (producers of information) and subscribers
(consumers of information)—where the communication between the participants is not
dictated by their identities but by the content of published information itself. So,
publishers, which have no information on existing subscribers, simply publish inform-
ation within the network in the form of events. The subscribers, also oblivious of the
existence of the publishers, express their interest in receiving specific events with the
help of subscriptions. Similar to subscriptions, publishers may, additionally, express
the content they intend to publish with the help of advertisements. To maintain an-
onymity and to ensure that each event published by a publisher is delivered to all its
interested subscribers, a logical intermediary, i.e., the pub/sub infrastructure, receives

17

1 Introduction

B1

S

sub: [stock price> $420]

P
B2

Broker

Routing

Filtering

Broker

Routing

Filteringevent: [Stock Price= $500]

Routing

RoutingFiltering

Filtering

Figure 1.1: Broker-based Pub/Sub System

events from publishers and notifies relevant subscribers based on the content of pub-
lished information. Clearly, the performance of the logical intermediary is crucial in
determining the efficiency of a pub/sub system. However, before discussing the manner
in which the logical intermediary has been realized over the past few decades (cf. Sec-
tion 1.1), it is important to discuss the manner in which subscriptions, advertisements,
and events are expressed in a pub/sub system, as this forms the basis of the pub/sub
paradigm.

Depending on the degree of expressiveness of subscriber interests, pub/sub has been
broadly classified into variants. However, the focus of this thesis is the most expressive
variant of all—the very popular content-based pub/sub—which enables subscribers to
specify powerful and expressive subscriptions that are then used as complex content
filters for events. In a content-based model, an event is represented as attribute-value
pairs, while an advertisement or subscription (i.e., content filter) is represented as a
conjunction of constraints over these attributes. For example, Figure 1.1 depicts a
simple stock quote dissemination system where an event e, published by publisher P ,
is represented as an attribute-value pair, i.e., [stock price= $500], and a subscription
sub, issued by a subscriber S, is represented as a constraint over the attribute, i.e.,
[stock price > $420]. As e satisfies the constraint of the filter sub, i.e., the event is
relevant to the subscriber S, the logical intermediary should route e to S.

1.1 State-of-the-Art Content-Based Pub/Sub Systems

Over the past couple of decades, content-based filtering and routing of events to in-
terested subscribers has been largely implemented on an overlay network of software
servers, more commonly known as brokers [JCL+10,CDNF01,CRW01,CRW00,CS04,

18

1.1 State-of-the-Art Content-Based Pub/Sub Systems

Müh02, MFB02]. More specifically, a dedicated set of brokers adopt the role of the
logical intermediary. Brokers collect subscriptions (representing content filters) from
the subscribers in the network and compose routing tables with this information. So,
when a publisher publishes an event, it gets filtered against the routing state main-
tained at the brokers and forwarded accordingly along the paths between the publisher
and all subscribers interested in the published event. Referring again to Figure 1.1,
the depicted stock quote dissemination system is a simple example of a broker-based
network where brokers B1 and B2 collect subscriptions and maintain routing state. In
this example, a path through the network of brokers is established between P and S
for all events satisfying the content filter sub. So, the event e, first, gets filtered against
the routing state at B1 and on account of a match gets routed to B2. Similarly, based
on its maintained routing state, B2 filters and routes e to the interested subscriber S.
The recent past has also seen the advent of P2P-based (peer-to-peer) publish/subscribe
systems [TKKR09, TBF+03, Tar13, BDFG07] where the role of the brokers is adopted
by the participants of the system themselves, i.e., publishers and subscribers, that are
organized into forwarding overlays.

However, whether in an overlay network of brokers or in a P2P-based architecture,
both content-based filtering and routing of events are performed in software, i.e., in
the application layer. As a result, their performance is far behind the performance of
communication protocols implemented on the network layer w.r.t. throughput rates,
end-to-end latency, and bandwidth efficiency. This is because broker-based pub/sub
implementations are unable to exploit the performance benefits of standard multilayer
switches or hardware routers capable of forwarding packets at line-rate and achieving
data rates of 10 Gbps and more using dedicated hardware such as Ternary Content
Addressable Memory (TCAM). Moreover, routing on overlay networks may not be
bandwidth-efficient as the routing tables at brokers take the overlay topology into
consideration which typically differs significantly from the underlying topology. This
results in the dissemination of the same packet multiple times over the same physical
link being shared by multiple logical links. For example, in Figure 1.1, the event e
needs to traverse the same physical links multiple times while being routed by the
brokers from the publisher to the interested subscriber. This is in sharp contrast to
routing in the network layer.

Recent analysis has shown that addressing non-functional requirements of modern ap-
plications, such as increased throughput rates, reduced latency, increased scalability,
increased bandwidth efficiency, etc., is of immense value. For example, according to
InformationWeek [Mar07], electronic trading now makes up around 70% of the daily
volume on the NYSE of which close to half is algorithmic trading. Studies further show
that even a one-millisecond advantage in trading applications can be worth $100 mil-
lion a year to a major brokerage firm [Mar07]. Not only in algorithmic trading but also
in the online gaming industry, latencies larger than 50 milliseconds hurt user experi-
ence [PW02]. Moreover, recent studies on the online industry also show the importance

19

1 Introduction

APIs

Controller

Control Plane

Data Plane

OpenFlow Messages

Applications

Northbound Interface

Southbound Interface

Figure 1.2: SDN Architeture

of high performance communication. For example, a 100 millisecond latency penalty
implies a 1% sales loss for Amazon [Hof09]. Considering such massive demands of
modern applications, it would be highly attractive to implement content-based routing
directly on the network layer. However, even till the recent past, changes to existing
standard network protocols and hardware seemed to be unrealistic and most research
refrained from network layer implementations. This, however, has changed with the
advent of software-defined networking (SDN), which provides the possibility to go bey-
ond the limitations of traditional network architectures by allowing software to flexibly
configure the network.

1.2 Software-Defined Networking

Software-Defined Networking (SDN) has significantly impacted programmable and act-
ive network evolution. In fact, SDN has been extensively considered for automated
interconnection, dynamic resource sharing, WAN VPN, etc., across data centers over

20

1.2 Software-Defined Networking

the past few years. For example, for almost a decade, Google has been exploiting the
benefits of SDN to power one of the world’s biggest WANs, i.e., Google’s data center
(DC) WAN B4 [JKM+13]. Google uses SDN to connect 12 DCs while increasing the
capacity of a single DC by more than 100x. Microsoft, too, has been harnessing the
power of SDN to flexibly and reliably operate one of the largest public clouds in the
world, i.e., Microsoft Azure [Azu15].

The main advantage of SDN is that it allows the abstraction of lower-level function-
alities and presents them as network services. This is made possible through the es-
tablishment of a clear separation between the control plane and the data (forwarding)
plane. More specifically, SDN enables the extraction of all control logic from network
(forwarding) devices (such as switches) and hosts this control logic on a logically cent-
ralized server called the controller. In the traditional approach, each network device
maintains information about its neighboring devices and makes forwarding decisions
based on this information. However, SDN allows the logically centralized controller
to capture a global view of the entire network and use this view to make efficient
centralized decisions while updating the network.

The control plane in software-defined networks provides two interfaces—the north-
bound interface and the southbound interface. The northbound interface acts as the
connection between the SDN controller and the applications and services running over
the network. So, the northbound application program interfaces (APIs) can be used
to orchestrate the network via the SDN controller such that it is aligned to the needs
of various applications. Meanwhile, it is the southbound interface that connects the
controller to the actual physical network. With the help of standards like Open-
Flow [Com12], a popular southbound interface to the network, the controller has the
ability to collect and process information (e.g., network statistics, application-specific
requests) from the data plane and perform network updates accordingly by modifying
the state of network devices (i.e., switches). A brief overview of the SDN architecture
is illustrated in Figure 1.2.

Given the flexibility of SDN, the possibility of exploiting the technology to design a high
performance content-based publish/subscribe middleware on the network layer seemed
very promising and plausible but was yet to be explored in literature. A network layer
implementation implies that the expressive filtering of events, which has been done
at the application layer over the past two decades, should now be performed on the
Ternary Content Addressable Memory (TCAM) of OpenFlow-enabled switches (in the
date plane) at line-rate. Moreover, since the logically centralized controller has a global
view of the underlying topology, it should also be possible to install a network topology
for forwarding information between publishers and subscribers in a bandwidth-efficient
manner. As a result, in this thesis, we exploit the capabilities of SDN to realize high
performance content-based routing on software-defined networks.

21

1 Introduction

1.3 Research Statement

This thesis primarily focuses on three problem areas with respect to the design of a
high performance content-based publish/subscribe middleware.

1.3.1 Provision of In-network Content-based Filtering

The first problem that this thesis focuses on is the provision of in-network content-based
filtering and routing of events in a publish/subscribe middleware such that line-rate
performance can be achieved. As discussed previously, in order to achieve line-rate
forwarding of events, content-based routing needs to be implemented directly on the
network layer such that the filtering of events can be pushed to the data plane. This
implies that content filters, which traditionally reside on the application layer, need
to, now, be mapped to content filters that are capable of being installed in the TCAM
of switches. In fact, content filters need to be represented by forwarding rules or flow
entries in switches. This can prove to be extremely challenging.

Moreover, it is crucial that, in the presence of dynamic subscription requests, necessary
paths are deployed between publishers and relevant subscribers such that no false
negatives, i.e., events that are not forwarded to subscribers interested in receiving them,
occur in the system. Also, necessary paths need to be removed from the network when
subscribers unsubscribe. Performing topology reconfiguration in a resource-efficient
manner to deploy or remove paths in the network can prove to be very challenging
in software-defined networks. So, the first step towards high performance content-
based routing would be to provide the basic functionalities of publish/subscribe in the
network layer.

1.3.2 Addressing Data Plane Limitations

Most modern applications require not only line-rate forwarding of events but also sup-
port for bandwidth-efficient communication. While in SDN, the controller can use
the global view of the actual physical network to ensure that an event packet does
not traverse the same link multiple times, another very important factor influences
bandwidth-efficient pub/sub communication. In content-based pub/sub, the express-
iveness of a filter largely impacts the bandwidth efficiency of a system as it determines
the amount of unnecessary traffic in the network, i.e., events that are forwarded to
uninterested subscribers, commonly known as false positives.

As a result, a significant amount of work has been dedicated to the efficient matching
of events against expressive filters in broker-based overlay networks [JCL+10,CRW01,
JMVM09]. Implemented in software, these content filters have limitless potential w.r.t.
expressiveness. However, such flexibility is not available to content filters installed in

22

1.4 Contributions

the TCAM of software-defined networks due to certain inherent hardware limitations.
TCAM is an extremely expensive and power-hungry resource. As a result, the design
of a hardware switch only allows a limited number of flow entries (forwarding rules) in
TCAM. Please note that, as discussed in Section 1.3.1, a flow entry represents a content
filter. Moreover, only a limited number of bits in a flow entry can be made available to
represent a content filter. As a result, only a limited number of content filters can be
installed in TCAM where each individual content filter is further restricted by the bit
length available to it within a flow entry. So, the question is, how can expressive filtering
of events in the network layer be achieved despite inherent hardware limitations? As
a result, the second problem area that this thesis focuses on is the need to employ
additional mechanisms to install powerful and expressive filters on hardware switches
while performing content-based routing on software-defined networks.

1.3.3 Handling Control Plane Overhead

While modern applications require high performance in terms of latency, throughput
rates, and bandwidth efficiency, the need for a scalable solution is paramount in a
pub/sub middleware. Considering the sheer number of modern application users with
dynamically changing requests, it is only befitting to focus on scalability in pub/sub
systems. For example, financial trading, traffic monitoring, or online gaming are known
to be not only highly latency sensitive applications but also highly dynamic with respect
to the interests of publishers and subscribers [JJE10,KORR12]. In order to analyse the
trend of stocks and quotes, the threshold for receiving events is updated very frequently
for a single subscription [JJE10]. Traffic monitoring and online gaming require location-
dependent updates of run-time parameters such as the location of objects, often at
higher frequency than one update per minute per subscriber [KORR12].

While various pub/sub middleware implementations that address scalability in over-
lay networks exist in literature [JJE10, CFMP04, LYK+11], these cannot be directly
employed to an SDN solution where, in the presence of high dynamics, the logically
centralized control plane must engage in very frequent network topology updates with
changing interests of publishers and subscribers. Providing a scalable control plane
with high responsiveness to such topology change requests in a dynamically changing
environment is, therefore, crucial to the middleware and constitutes the final problem
area explored in this thesis.

1.4 Contributions

This thesis combines and extends the findings and contributions of the work presen-
ted in [TKBR14], [BTK+17], [BTGR16], [BTHR16], [BTBR17], [BTK+15] towards
realizing a high performance content-based pub/sub middleware on software-defined
networks. More specifically, the main contributions of this thesis are as follows.

23

1 Introduction

1. We provide methods to implement the basic functionalities of the content-based
publish/subscribe paradigm on the network layer (cf. Section 1.3.1). Our de-
signed system, PLEROMA, leverages the capabilities of software-defined net-
working to enable line-rate forwarding of published events. To this end, we
provide mechanisms to represent content filters in a manner in which they can
be installed on hardware switches, i.e., they can be represented by flow entries,
such that filtering of published events can be pushed to the network layer. Our
designed algorithms use these content filters to build a topology in the data
plane, consisting of paths established between publishers and subscribers, for
event dissemination. Moreover, PLEROMA offers methods to efficiently recon-
figure a deployed topology in the presence of dynamically changing subscriptions
and advertisements. This contribution is primarily based on the works published
in [TKBR14] and [BTK+17]. The author of this thesis contributed around 45%
and 70% of the scientific content in [TKBR14] and [BTK+17], respectively.

2. After designing methods to push content-based filtering and routing to the net-
work layer, our next contribution involves increasing the expressiveness of these
content filters, installed on TCAM, in the presence of hardware limitations w.r.t.
number of bits available in each flow entry to represent a content filter (cf. Sec-
tion 1.3.2). We explore various techniques to represent content filters express-
ively, given the bit length limitation, such that unnecessary network traffic can
be reduced. We present techniques that i) use workload, in terms of events and
subscriptions, to represent content, and ii) efficiently select attributes to reduce
redundancy in content. Moreover, these techniques complement each other and
can be combined together to further enhance performance w.r.t. bandwidth ef-
ficiency. This contribution is based on the work published in [BTGR16]. The
author of this thesis contributed around 70% of the paper’s scientific content.

3. To further enhance expressiveness of content-based filtering despite the discussed
bit length limitation (cf. Section 1.3.2), we strike a balance between purely
application-layer-based and purely network-layer-based publish/subscribe imple-
mentations by realizing a hybrid content-based middleware that enables filtering
of events in both the application and the network layers. Moreover, we provide
different selection algorithms with varying degrees of complexity to determine
the events to be filtered at each layer such that unnecessary network traffic can
be minimized while, also, considering latency/delay requirements of the middle-
ware. Our hybrid middleware offers full flexibility to configure it according to
the performance requirements of the system. This contribution is based on the
work published in [BTHR16]. The author of this thesis contributed around 70%
of the paper’s scientific content.

4. Our next contribution addresses yet another hardware limitation—limited num-
ber of flow table entries available to pub/sub traffic in TCAM (cf. Section 1.3.2).
We design a filter aggregation algorithm that merges content filters on individual

24

1.5 Structure of the Thesis

switches to respect TCAM constraints while, also, attempting to reduce the ad-
verse effect of aggregation on the expressiveness of filters. Our designed algorithm
ensures minimal increase in unnecessary network traffic due to necessary aggrega-
tion. It uses the knowledge of advertisements, subscriptions, and a global view of
the network state to perform bandwidth-efficient aggregation decisions on neces-
sary switches. We provide different flavors of this algorithm with varying degrees
of accuracy and overhead. This contribution is based on the work published
in [BTBR17]. The author of this thesis contributed around 70% of the paper’s
scientific content.

5. A key challenge in a software-defined network is to ensure high responsiveness of
the control plane to dynamically changing communication interactions (cf. Sec-
tion 1.3.3). So, we propose a methodology for both vertical and horizontal scal-
ing of a distributed control plane that is capable of improving responsiveness by
enabling concurrent network updates in the presence of high dynamics while en-
suring consistent changes to the data plane of PLEROMA. In contrast to existing
scaling approaches that aim for a general-purpose distributed control plane, our
approach uses knowledge of the application semantics that is already available in
the design of the data plane of the pub/sub middleware, e.g. subscriptions and
advertisements. By proposing a methodology for an application-aware control
distribution, we show, in the context of PLEROMA, that application-awareness
is significantly beneficial in avoiding the synchronization bottlenecks for ensuring
consistency in the presence of concurrent network updates. As a result, respons-
iveness of the control plane is greatly improved. This contribution is based on
the work published in [BTK+15]. The author of this thesis contributed around
70% of the paper’s scientific content.

With regards to parts of the implementation and certain evaluations of the PLEROMA
middleware, a number of student theses [Bal17,Heg16,Mis13,ES14,Gru14,Sri17] have
also supported this work.

1.5 Structure of the Thesis

The rest of the thesis is structured as follows. Chapter 2 provides basic mechanisms
required to realize a content-based pub/sub middleware on software-defined networks.
Chapters 3 and 4 focus on improving bandwidth efficiency of the designed middleware.
More specifically, Chapter 3 provides a series of techniques, which impact the mapping
of content to flows or forwarding rules in switches, in order to improve the express-
iveness of content filters despite hardware limitations. Chapter 4 presents a hybrid
pub/sub solution, a means to further reduce bandwidth utilization, that allows hard-
ware as well as software filtering. In Chapter 5, methods to deal with limited number
of flow entries in TCAM in a bandwidth-efficient manner are provided. Chapter 6

25

1 Introduction

presents methods to handle the control plane overhead in the presence of dynamics to
ensure a scalable pub/sub solution. Finally, in Chapter 7, we conclude with a summary
of our contribution and an outlook on future work.

26

Chapter 2
In-network Content-based Filtering

As discussed in Chapter 1, over the past few decades, content-based publish/subscribe
has been primarily implemented as an overlay network of software brokers. Even
though such systems provide the possibility of expressive filtering in software, they
cannot match up to the performance (e.g., end-to-end latency of events) of commu-
nication protocols implemented on the network layer. As a result, to exploit network
layer performance benefits, the recent advent of new networking technologies, such as
SDN, have raised some research efforts towards realizing a publish/subscribe middle-
ware that can support event filtering and routing within the network. For example,
Zhang et al. [ZJ13] and Koldehofe et al. [KDTR12] propose the prospect of using SDN
in future designs of publish/subscribe middleware. However, a design and implement-
ation of content-based pub/sub on software-defined networks was yet to be explored in
literature.

In this chapter, we exploit the capabilities of SDN to offer functionalities of the content-
based pub/sub paradigm in the network layer. As mentioned earlier, standards like
OpenFlow specify the interface to directly install and modify flows on switches and
install dedicated communication paths between the hosts connected to the network.
More specifically, the communication paths are established by installing content filters
on the TCAM of switches. Therefore, in a software-defined network, it is possible to
install a network topology, consisting of content filters, which yields line-rate perform-
ance in forwarding events between publishers and subscribers. However, the topology
needs, also, to be dynamically updated with ongoing subscriptions and advertisements.
In software-defined networks, this is the task of the controller which is in charge of
installing/removing/modifying flows in switches and can access the switches via a ded-
icated control network. The design of the control algorithm is therefore crucial to the
performance of a publish/subscribe middleware in the presence of dynamically changing
subscriptions and advertisements. So, in this chapter, we provide the design, imple-
mentation, and a detailed performance evaluation of an SDN-based publish/subscribe

27

2 In-network Content-based Filtering

SP

Controller

Hardware Filtering using flow tables

Match Field Instruction

Dest IP Out Port

Advertisements Subscriptions
Control Plane

Data PlaneOpenFlow
Messages

Events

Figure 2.1: PLEROMA Middleware

system, called PLEROMA, and methods for its efficient reconfiguration.

2.1 The PLEROMA Middleware

A content-based publish/subscribe middleware using SDN consists of mainly two types
of participants—publishers and subscribers—, which are connected to switches in a
software-defined network. Publishers specify the information they intend to publish by
sending advertisements to the control plane. Likewise, subscribers specify information
they are interested in receiving by sending subscriptions to the control plane. The con-
troller collects all these control requests ((un)advertisement/(un)subscription) based on
which it installs paths on the data plane between each publisher and all its interested
subscribers. In doing so, it configures the network’s data plane by proactively installing
suitable flow table entries—representing content filters—on SDN-configurable switches
by utilizing the widely accepted OpenFlow standard. Once these filters are installed,
published events can directly be filtered against the flow table entries of hardware
switches in the data plane. Figure 2.1 illustrates the architecture of the PLEROMA
middleware, which establishes line-rate content-based routing. We specifically use IP-
Multicast addresses in flow table entries to represent filters in PLEROMA. In this
thesis, we use the term flow to represent a flow table entry on an SDN-configurable
switch. A flow further defines an outgoing port of a switch (cf. Figure 2.1) to which an

28

2.2 Content Representation

event packet with a matching header field (packet-header-based filtering) is forwarded.
Note, our content representation mechanisms are generic and other fields, e.g., MAC
addresses or VLAN tags [Ope13], can also be used for the same purpose.

The above description of the PLEROMA middleware directly leads us to the two main
challenges to be addressed in order to provide content-based pub/sub functionalities
on the data plane. These are (i) mapping of content filters to flow entries in hardware
switches, and (ii) design of an efficient dissemination structure for packet forwarding
and its efficient reconfiguration. These challenges are addressed in the following two
sections of this chapter where we, first, provide a mechanism to map content such that
advertisements, subscriptions and events can be represented as match fields in flows
of switches or header fields of event packets (cf. Section 2.2). This is followed by an
algorithm (topology configuration) that details the processing of both advertisements
and subscription requests at the control plane such that necessary paths are deployed
between publishers and relevant subscribers by installing the aforementioned mapped
content filters, represented by switch flows, along these paths (cf. Section 2.3).

2.2 Content Representation

To ensure high expressiveness and establish paths with low-bandwidth usage between
publishers and subscribers, we follow the content-based subscription model, i.e., an
event is composed of a set of attribute value pairs. To realize the aforementioned
packet-header-based filtering of events at the data plane, we need an efficient mapping
between content attributes and flow identifiers (i.e., one or more header fields that
uniquely identify flow entries in the flow tables of switches). There are two steps to
this mapping process.

2.2.1 Spatial Indexing

The first step yields a binary representation of content following the principle of spatial
indexing [KDTR12]. The event space, denoted by Ω, i.e., the set of all possible events
that can be disseminated by the publishers, can be represented by a multi-dimensional
space of which each dimension refers to the values of a specific attribute. An event
is simply represented as a point and a subscription or advertisement as a subspace in
Ω. Building on the principle of spatial indexing, we can divide the event space into
regular subspaces that serve as enclosing approximations for events, advertisements,
and subscriptions. In fact, since events are points in Ω, they are represented by sub-
spaces of finest possible granularity. Any subspace can be identified by a binary string
named dz-expression (in short dz). In particular, dz-expressions fulfill the following
characteristics:

29

2 In-network Content-based Filtering

ε

d1 = Price(SP)

d
2

 =
 V

o
lu

m
e(

SV
)

L2 =0
0 100

0

100

0 1

0 100
0

100

01

00 10

11

50

50

0
0

100

010

50

50

000

011

001 100 101

110 111

25 75

d1 = Price(SP)

d1 = Price(SP) d1 = Price(SP)

d
2

 =
 V

o
lu

m
e(

SV
)

d
2

 =
 V

o
lu

m
e(

SV
)

d
2

 =
 V

o
lu

m
e(

SV
)

100

U1 =100L1 =0

U2=100

50

sub1={ SP = [50,75], SV = [0,100] }

e1

Figure 2.2: Spatial Indexing

• The shorter the dz, the larger is the corresponding subspace in Ω. Again, since
events are points in Ω, they are represented by dzs of maximum length.

• A subspace represented by dzi is covered by the subspace represented by dzj iff
dzj is a prefix of dzi. In this case, we write dzj � dzi.

• Two subspaces dzi and dzj are overlapping if either dzi � dzj or dzj � dzi holds
and the overlap dzi ∩ dzj is identified by the longest of the two dzs.

• For overlapping non identical subspaces dzi and dzj, the non overlapping part,
say dzi− dzj, may need to be identified by multiple subspaces. For instance, the
non overlapped part of dzi = 0 w.r.t. dzj = 000 contains subspaces 001, 010, and
011.

We illustrate spatial indexing with an example in Figure 2.2 where we consider a stock
quote dissemination system implemented by the pub/sub paradigm. In this example,
we consider two attributes (or dimensions) stock price (SP) and stock volume (SV) of
a stock quote dissemination system. An advertisement/subscription can be composed
of several dzs, denoted as DZ. For instance, to approximate the subscription sub1 in
Figure 2.2, the event space is repeatedly divided and finally two dzs are required, i.e.,
DZ = {110, 100}. The containment and overlap relationships between a pair of DZ

30

2.3 Topology Reconfiguration

can be defined with respect to a set of dz-expressions represented by them. For the sake
of simplicity, here, we consider only two dimensions. However, multiple dimensions can
be indexed which can even include string attributes such as company name in the stock
quote example. The string attributes can be linearized by hashing and indexed in a
similar manner [MJ14].

2.2.2 Mapping a dz

The second step involves the mapping of the generated binary strings (dzs) to flow
identifiers. Using the above relations, an event e disseminated by a publisher P will
contain in a chosen packet header field a dz that represents its attribute values. In
order to deliver e to a subscriber S with a subscription sub which expresses an interest
in e, the controller must have installed on each switch along the path (between P
and S) a flow whose chosen match field matches the corresponding header field of this
event. With respect to spatial indexing, an event will match a subscription filter if it
lies within the subspace representing the subscription in Ω, i.e., the dz representing
sub covers (�) the dz representing e. So, for a match to occur between e and sub,
we utilize the characteristics of dzs such that the match field in flows representing the
filters for sub covers the corresponding header field of event packet representing e. To
this end, we use a range of IPv6 multicast addresses, reserved for pub/sub traffic, as
the flow identifiers to which dzs are mapped. So, a subscription/advertisement is first
converted to one or more dzs which are then represented by one or more corresponding
IPv6 multicast addresses. These IPv6 multicast addresses are then used by the flow
entries in the flow tables of switches for event matching and forwarding. The covering
relation between subspaces is accommodated in IP addresses with the help of Class-
less Interdomain Routing (CIDR) style masking supported by hardware switches where
the ’don’t care’ symbol (*) is used to represent masking operations. An event is also
represented as an IPv6 multicast address and forms part of the header of the event
packet. This enables header-based matching and subsequent forwarding of the event
packet as dictated by a flow on account of a match. So, continuing the stock quote
example from Figure 2.2, the dz representing the subspace {110} is converted to the
IP address ff0e:c000:* (ff0e:c000::/19). Now, if the event e1={SP = 65, SV =
55} in the figure, which lies within (matches) sub1, is represented by the dz {110010},
then it is converted to an IP address ff0e:c800:: and header-based matching of this
event packet takes place with the installed flows for sub1.

2.3 Topology Reconfiguration

An efficient approach to topology reconfiguration is central to pub/sub using SDN. To
this end, we need to maintain a dissemination structure which considers as constraints

31

2 In-network Content-based Filtering

latency efficiency, bandwidth usage, and cost efficiency to update the network topo-
logy. Clearly, the lowest latency is achieved if a controller establishes a shortest path
for each publisher/subscriber pair. However, this severely limits the reuse in forward-
ing an event on common paths, i.e., the possibility to share common subpath(s) and,
therefore, bandwidth between a publisher and subscribers with overlapping subscrip-
tions. Moreover, each new subscription or advertisement would trigger updates of the
network topology to add paths between all relevant publishers and subscribers and,
therefore, impose a very high reconfiguration cost.

A common alternative—often taken by traditional broker-based systems [JCL+10]—
is to embed the paths between publishers and subscribers by means of filters in a
single spanning tree. The spanning tree reflects low latency paths between any pair
of publisher and subscriber. Since all paths between publishers and subscribers are
embedded in the same tree, the number of times an event needs to be forwarded
is significantly reduced. The reconfiguration cost is also limited to the edges in the
spanning tree and is significantly reduced wherever subscriptions and advertisements
overlap.

As a result, the PLEROMA middleware maintains a spanning tree (comprising switches),
denoted by T , at the controller, to account for an acyclic dissemination structure on
which paths are embedded between publishers and subscribers by installing appropri-
ate flows (filters) on switches along these paths. A path is nothing but a sequence of
switches (denoted as R) on which flows are deployed to ensure connectivity between
the publisher and the subscriber.

Installing paths between publishers and subscribers by the controller involves reading
the existing flows of each switch (along the path), taking decisions on flow changes,
and writing these changes to the switch. The network state is represented by net-
work configuration that consists of (i) all switches constituting the network, (ii) all
links connecting the switches in a spanning tree to account for an acyclic dissemin-
ation structure, and (iii) all pub/sub flows deployed on each switch. In general, the
network configuration is maintained both at the data plane and the control plane of
a software-defined network. In fact, we denote the network configuration at the data
plane as DP-config which is maintained implicitly as a result of pub/sub flows deployed
on the TCAM of hardware switches. On the other hand, the control plane network
configuration is denoted as CP-config and is maintained by the controller and serves as
a reflection of DP-config. The controller needs to maintain the network state CP-config
so that it does not need to query the switches in the data plane and read their states
for processing every control request. In fact, since the controller assumes CP-config
to be identical to DP-config, it uses CP-config to read existing flows and decide on
flow changes. On taking a decision, the controller sends the new flow changes to the
hardware switch, resulting in a change in DP-config. After changing DP-config, the
controller also performs these flow changes in the CP-config to ensure that it remains
consistent with DP-config. The details of the aforementioned protocol of keeping CP-

32

2.3 Topology Reconfiguration

config consistent with DP-config is provided in Chapter 6. In fact, in the remaining part
of this thesis, we do not differentiate between CP-config and DP-config and consider
them to be the same entity such that modifying one implies modifying the other.

Please note that, the dissemination structure of CP-config maintained at the control
plane (and DP-config maintained implicitly at the data plane) represents the afore-
mentioned spanning tree. As a result, a spanning tree maintained at the control plane,
a CP-config, and a DP-config are synonymous in the rest of this thesis.

As mentioned earlier, installing a path between a publisher and a subscriber involves
reading the existing flows of each switch along the path in question of the spanning tree,
taking decisions on flow changes on each of these switches, and writing these changes to
the affected switches in the spanning tree. In order to understand this decision-making
process that determines flow changes on a switch, it is important to understand how
the controller processes each type of control request, which is the subject of discussion
in the remaining part of this section.

2.3.1 Maintenance of flow tables

The flow tables in the switch network are modified (e.g, by adding or removing flow
entries) by the controller as a result of (un)advertisement and (un)subscription re-
quests. In the following, we will first focus on advertisement, subscription requests and
later briefly describe the handling of unsubscription, unadvertisement requests by the
controller.

2.3.1.1 Advertisements and Subscriptions

On arrival of an advertisement, denoted by DZ(P), from a publisher P , the controller
notes each dzi in DZ(P) and adds P to the spanning tree (i.e., T). The controller
then checks for already existing subscribers in T whose subscriptions overlap with
DZ(P). If there is no overlap, then no further actions are taken. However, if an
overlap exists, then the controller establishes paths between the publisher P and all
subscribers with overlapping subscriptions in T . A path consists of a sequence of
physical switches (denoted as R) on which flows need to be established along with the
out ports (denoted as oP) through which a matching event should be forwarded so that
connectivity is achieved between the publisher P and the subscriber S, i.e., 〈P, S, T 〉 =
{(Ri, oPi), . . . , (Rj, oPj)}. Each path between a publisher P and a subscriber S only
forwards the events matching the subspaces overlapped between DZ(S) and DZ(P)
(cf. Algorithm 1, lines 1-6). In this way false positives (events forwarded to a subscriber
that is not interested in receiving them) are avoided.

Subscription requests are handled similarly as described formally in lines 7-12 of Al-
gorithm 1. On arrival of a subscription, as a first step, the controller calculates the path

33

2 In-network Content-based Filtering

Algorithm 1 Publish/subscribe maintenance at a single controller

1: upon event Receive(ADV, P , DZ(P)) do
2: for all dzi ∈ DZ(P) do
3: subSet = {S ∈ S ∧ ∃dzj ∈ DZ(S) : dzi � dzj ∨ dzj � dzi} // Subscribers with

overlapping DZ(S)
4: for all S ∈ subSet do
5: overlapWithSub = dzi ∩DZ(S)
6: flowAddition(overlapWithSub, 〈P, S, T 〉, T)

7: upon event Receive(SUB, S, DZ(S)) do
8: for all dzi ∈ DZ(S) do
9: pubSet = {P ∈ P ∧ ∃dzj ∈ DZ(P) : dzi � dzj ∨ dzj � dzi} // Publishers with

overlapping DZ(P)
10: for all P ∈ pubSet do
11: overlapWithPub = dzi ∩DZ(P)
12: flowAddition(overlapWithPub, 〈P, S, T 〉, T)

13: procedure flowAddition(dz, 〈P, S, T 〉, T) do
14: destIP = (binary(ff0e:b400)&(dz � 112− |dz|)) \ 16 + |dz|
15: for all ri ∈ 〈P, S, T 〉 do
16: Flow fln = MF ∪ IS ∪ PO
17: fln.MF = destIP
18: fln.PO = default value
19: fln.IS.oP = {ri.oPi}
20: curFlow = getCurrentFlowsFromSwitch(ri.Ri)
21: if curFlow 6= ∅ ∧ ¬(∃flc ∈ curFlow : flc � fln) then // Cases 3 - 4: None of the

curFlow fully covers fln
22: for all flc ∈ curFlow : fln � flc do // Case 3
23: deleteFlowFromSwitch(flc, ri.Ri)
24: for all flc ∈ curFlow : flc v fln do // Case 4
25: fln.IS.oP = fln.IS.oP ∪ flc.IS.oP
26: increasePriority(fln.PO)
27: for all flc ∈ curFlow : fln v flc do // Case 5
28: flc.IS.oP = flc.IS.oP ∪ fln.IS.oP
29: increasePriority(flc.PO)
30: modifyFlowOnSwitch(flc, ri.Ri)
31: addFlowOnSwitch(fln, ri.Ri)

between the subscriber S and each relevant publisher P on the tree T . Once the path
is calculated, the controller establishes the path by inserting (or modifying) flows on
the switches along the path between the publisher P and the subscriber S. The flows
ensure that only the events matching the overlapped subspaces (i.e., DZ(S)∩DZ(P))
are forwarded on the path. The process of establishing paths along the switch network
is discussed in detail later in this section.

2.3.1.2 Flow installation

The installation of flows on the switches requires to specify the match field (MF), in-
struction set (IS), and priority order (PO) of a flow [Ope13]. The match field defines the
header information against which packets are matched. Recall that PLEROMA uses,

34

2.3 Topology Reconfiguration

1

2

1

3

2

1

2

1
2

1

2 3

1

1*  2

1*  2

100*  2

100*  2

MF PO IS

destIP = ff0e:8000::/19 1 Out Port = {2,3}
destIP = ff0e:8000::/17 0 Out Port = {2}

Example flow
table

DZ(S2) = { 100 }

DZ(S1) = { 1 }DZ(P1) = { 1 }

R1 R2

R3

R4

R5

R6

P1 S1

S2

Figure 2.3: Forwarding in the switch network. Match fields of flows in R1, R2, R4-R6

are shown as dzs. Flows follow the notation MF → IS : PO

for interoperability with other services, IP-multicast ranges to embed dz-expressions.
For instance, subspaces with dz = 101101 and dz = 101 are converted to IPv6 mul-
ticast addresses ff0e:b400:* and ff0e:a000:*, respectively. Therefore, an event
dz = 101101 can be matched against a flow with dz = 101 by a hardware switch
during forwarding, i.e., ff0e:a000::/19 � ff0e:b400::.

Furthermore, in the instruction set the outgoing ports are specified, ensuring that
a matching packet (i.e., an event) can be forwarded to multiple destinations in the
spanning tree. Also, the priority order needs to be defined to decide on the order in
which flows will be applied to a packet. A higher priority ensures that if a packet has
multiple matches in the flow table, it would be matched against and follow the IS of the
flow with highest priority. For example, in Figure 2.3, an incoming event (dz = 1001)
on switch R3 matches multiple flows with dz = 1 and dz = 100. However, the switch
only follows the instructions of the first match. Therefore, to ensure proper forwarding,
the flow installation gives higher priority to the flows with longer dz. In Figure 2.3,
priority order on R3 ensures that all packets matching flow with dz = 100 are forwarded
to both switches (R2 and R4). However, packets matching the flow having dz = 1 but
not with the flow having dz = 100 are only forwarded to R2.

To describe the maintenance of flows in the presence of dynamic (un)subscriptions, we
first define the containment relation between flows w.r.t. a single switch. A flow fl1
covers (or contains) another flow fl2, denoted by fl1 � fl2, iff the following two condi-

35

2 In-network Content-based Filtering

1

2

1

3

2

1

2

1
2

1

2 3

1

2

1*  2

1*  2

100*  2, 3 : PO = 1

DZ(S2) = { 100 }

DZ(S1) = { 1 } DZ(S3) = { 10 }DZ(P1) = { 1 }

10*  2

10*  3 : PO = 0

10*  2

100*  2

100*  2, 3 : PO = 1

10*  2, 3 : PO = 1

1*  2 : PO = 0

Change to flows are
shown in rectangles

1

2

3

5
4

P1 S1

S2

S3

R1 R2

R3

R4

R5

R6

Figure 2.4: Flow maintenance on the arrival of S3.

tions hold: (i) the dz associated with the IP address in the match field of fl2 is covered
by the dz of fl1, and (ii) the out ports to which a packet matching fl2 is forwarded are
a subset of those specified in the IS of fl1. Likewise, a partial containment relation
(v) can be defined between flows of a switch (or flows to be installed on a switch).
A flow fl1 partially covers (or contains) another flow fl2, denoted by fl1 v fl2, if dz
associated with the match field of fl1 covers dz of fl2, but not all the out ports used
for forwarding packets matching fl2 are listed in the IS of fl1.

The procedure flowAddition is used by the controller to set up flows on the switches
along the path 〈P, S, T 〉 between the publisher P and the subscriber S (cf. Algorithm 1,
lines 13 - 31). The dz used for creating the match field of the new flows (to be added
in the switch network) is determined from the overlap between DZ(S) and DZ(P), as
mentioned earlier.

In more detail, the controller iteratively checks the existing entries in the flow tables
of each switch Ri along the path 〈P, S, T 〉 and determines whether to add a new flow
fln or to modify (or delete) existing flows. The following cases drive the process of
flow addition and modification at a particular switch Ri. Continuing the example from
Figure 2.3, the cases are explained w.r.t. the changes to the flow tables of the switches
on the arrival of a new subscriber S3 with subscription DZ(S3) = {10} as depicted in
Figure 2.4. (1) If the flows are not currently installed on a switch, then the new flow
fln is simply added to the flow table of that switch, e.g., a new flow with dz = 10 is

36

2.3 Topology Reconfiguration

1

2

1

3

2

1

2

1 2

1

2 3

1

2

1*  2

1*  2

DZ(S2) = { 100 }

DZ(S1) = { 1 } DZ(S3) = { 10 }DZ(P1) = { 1 }

10*  2

100*  2

100*  2, 3 : PO = 1

1*  2 : PO = 0

Change to flows are
shown in rectangles

10*  2

100*  2, 3 : PO = 1

10*  3 : PO = 0

10*  2, 3 : PO = 1

P1 S1

S2

S3

R1 R2

R3

R4

R5

R6

Figure 2.5: Flow maintenance on the departure of S3

added to R6 in Figure 2.4. (2) If an existing flow flc already covers the new flow fln
to be installed on the switch (i.e., flc � fln), then no action is performed, e.g., no
new flow is added to the switch R1 in Figure 2.4 when S3 subscribes. The flow {10∗}
that needed to be installed on R1 to direct required traffic towards S3 is covered by
the already existing flow {1∗} which directs traffic that includes required traffic for S3

along the same direction. So, an additional flow in this case will be redundant. (3) If
an existing flow flc is covered by the new flow fln, then the new flow fln is added and
flc is deleted from the flow table as it is no longer needed, e.g., in Figure 2.4 existing
flows associated with dz = 100 are replaced by new flows with dz = 10 on R3 and
R4. This follows from the argument of case (2). So, the existing flow which is covered
by the new flow should be replaced to avoid redundancy. (4) If the new flow fln is
partially covered by an existing flow flc (i.e., flc v fln), then fln should be added
with high priority and should include the out ports in the IS of flc, as depicted by R3

in Figure 2.4. This ensures that traffic specific to the flow {10∗} (subscription of S3)
strictly matches it and gets forwarded towards both S3 and S1. The remaining traffic
that is specific only to S1 and that does not match the new flow will now be forwarded
by the existing flow {1∗} only to S1. (5) Finally, if the existing flow flc is partially
covered by the new flow fln, then besides adding fln to the flow table, the existing
flow flc should be updated to include out ports used by fln and to hold higher priority
than fln, e.g., in Figure 2.4 an additional out port (i.e., oP = 3), and a higher priority

37

2 In-network Content-based Filtering

order is assigned to an existing flow {100∗} on R5. This follows similar logic as case
(4).

2.3.1.3 Unsubscriptions and Unadvertisements

We, also, briefly discuss the handling of unsubscriptions and unadvertisements by the
controller. Handling of an unsubscription or unadvertisement is the exact reverse pro-
cess of handling a subscription or advertisement. On the arrival of an unsubscription,
the subscriber S, associated with the corresponding subscription, is removed from T .
This is accomplished by removing previously established paths between S and all pub-
lishers with overlapping advertisements. To remove a path on T , the flows are either
deleted or downgraded depending upon other subscribers reachable (w.r.t. their relev-
ant publishers) via a particular switch. For example, on arrival of an unsubscription
from S3 in Figure 2.5, the path between P1 and S3 comprising of switches R1, R3, R4,
R5 and R6 needs to be removed. However, the existing flows on these switches determ-
ining this path cannot simply be removed as each of these flows may share paths to
other subscribers based on the covering relations between flows as seen earlier in this
section. For example, the flow with dz = 10 is deleted from the flow table of R6 as no
other subscriber is reachable w.r.t. P1 via R6. However, the flows installed on switches
R3, R4, and R5 have to be downgraded from dz = 10 to dz = 100 (in their match
fields) because the path from P1 to subscriber S2 with DZ(S2) = {100} passes through
these switches. Downgrading not only ensures that no further events are forwarded to
S3 but also ensures that no other subscriber paths get affected due to these updates.
So, in this example, S2 continues to receive relevant events as downgrading of flows
does not affect its path from P1. Likewise, an unadvertisement from a publisher P is
handled by removing the previously established paths in the switch network between
the publisher P and all subscribers with overlapping subscriptions on T with which
the publisher P is associated.

2.4 Performance Evaluations

This section is dedicated to an analysis of the design and implementation of the pro-
posed PLEROMA middleware. A series of experiments are conducted to understand
the effects of the design on the performance of the system w.r.t. end-to-end latency
for event dissemination, bandwidth efficiency in terms of false positives w.r.t. length
of dz, and control overhead.

2.4.1 Experimental Setup

We have conducted our evaluations under three environments—1) an SDN-testbed
comprising a physically distributed network of software switches (SDN-t-sswitch) and

38

2.4 Performance Evaluations

h4h3h2h1

1

1 1

12

2 2

2

3 3

3 3

4 4

4 4

1

2

h8h7h6h5

1

1 1

12

2 2

2

3 3

3 3

4 4

4 4

1

23 3

4 4
R1 R2

R3 R4 R5 R6

R7 R8 R9 R10

Figure 2.6: Testbed Topology

commodity PC hardware, 2) an SDN-testbed (SDN-t-hswitch) comprising a hardware
Whitebox Openflow-enabled switch from Edge-Core and commodity PC hardware, and
3) an emulated network running on a single machine using Mininet (SDN-m). Majority
of the experiments in this thesis have been conducted on these aforementioned test
environments.

In more details, SDN-t-sswitch consists of commodity PC hardware and virtualization
technologies as used in data centers. SDN-t-sswitch is created as a hierarchical fat-tree
topology as depicted in Figure 2.6. The testbed consists of a cluster of hosts (running
on commodity rack PCs) constituting 10 switches and 8 end systems. Some of these
hosts act as OpenFlow switches with four physical ports by executing a production-
grade software switch (Open vSwitch [Ope]) attached to the 4-port NIC. The other
hosts act as 8 end systems (end hosts) by executing virtual machines on two physical
machines. The end hosts implement the functionality to publish and subscribe events.

Besides SDN-t-sswitch, we have also conducted experiments on SDN-t-hswitch where,
again, we created a hierarchical fat-tree topology consisting of 10 switches and 8 end-
hosts as depicted in Figure 2.6. The 10 switches are created by partitioning the hard-
ware Whitebox switch from Edge-Core running the network operating system PicOS
(version 2.6) [Pic,Edg]. The 8 end-hosts are hosted on commodity rack PCs and per-
form the role of publishers and subscribers. We also implemented an application-layer
based middleware to compare the performance of hardware filtering in PLEROMA
with software filtering. The SDN controller and application layer reside on a 3.10 GHz
machine with 40 cores.

39

2 In-network Content-based Filtering

Please note that all end-hosts are synchronized using the IEEE 1588 Precision Time
Protocol (PTP). We used a separate network infrastructure for PTP traffic using a
second NIC on each host dedicated to PTP synchronization to counter the possibility
of inaccuracies in clock-synchronization.

Besides the aforementioned testbeds, we have also conducted experiments on a promin-
ent tool for emulating software-defined networks, namely, Mininet [LHM10] (SDN-m).
Mininet is an extremely flexible tool that allows to conduct experiments with different
types of topology and application traffic.

For the evaluations presented in this chapter, in order to generate workload, i.e., events
and subscriptions, we use both synthetic as well as real world data. With regards to
synthetic data, the workload was generated using parameters similar to those used in
well established publish/subscribe literature [CMTV07, MJ14, ZKV13]. So, we used a
content-based schema containing up to 10 attributes [MJ14], where the domain of each
attribute varies in the range [0, 1023]. Most real world applications, e.g., stock quote
dissemination systems, perform content-based routing with not more than 10 attributes
and similar domain ranges. Experiments are performed on two predominantly used
models for the distributions of subscriptions and events [MJ14,CMTV07]. The uniform
model generates subscriptions and events independent of each other and uniformly
distributed in Ω. The interest popularity model chooses up to 8 hotspot regions around
which subscriptions and events are generated using the widely used zipfian distribution.

2.4.2 End-to-End Latency

These experiments study the latency characteristics of the aforementioned SDN-t-
sswitch and SDN-t-hswitch (with fat-tree topology). We analyse the end-to-end latency
to deliver an event from a publisher to all interested subscribers w.r.t. the number of
subscriptions in the system. For the experiment, up to 16,000 subscriptions are gener-
ated using the above mentioned distributions and divided among different end hosts.

Figure 2.7(a) compares the performance of PLEROMA implemented on SDN-t-sswitch
with a purely application layer-based middleware (APP-M). We implemented the
purely application layer-based middleware as a parallelized matching pub/sub service.
We divided the event-space into 16 partitions and assigned them to 16 matchers run-
ning on 16 cores to enable one-hop forwarding of events similar to Bluedove [LYK+11].
Note that the highly parallelized filtering technique implemented at APP-M presents
one of the best case scenarios for application layer filtering, resulting in relatively bet-
ter latency performances when compared to state-of-the-art solutions using overlays.
However, even then, Figure 2.7(a) shows that PLEROMA, with an average end-to-end
latency in the order of microseconds, clearly, outperforms the application layer-based
middleware APP-M even when virtual switches are used in the data plane. Moreover,
the number of subscriptions does not significantly impact end-to-end latency in SDN-
t-sswitch. As the number of subscriptions increase, so does the number of flows on the

40

2.4 Performance Evaluations

 0

 1

 2

 3

 4

 5

 6

1k2k 4k 8k 16k

E
n
d
-
t
o
-
E
n
d

L
a
t
e
n
c
y

[
m
s
]

of Subscriptions - (a)

PLEROMA(SDN-t-sswitch)
APP-M

 0

 200

 400

 600

 800

 1000

1k2k 4k 8k 16k

E
n
d
-
t
o
-
E
n
d

L
a
t
e
n
c
y
(

μs
)

of Subscriptions - (b)

PLEROMA(SDN-t-hswitch)

Figure 2.7: End-to-End Latency

switches of the network. So, clearly, the number of flows on switches does not impact
the filtering time of the events which remains constant. On the contrary, as filtering is
performed in the application layer in APP-M, more the number of subscriptions, more
is the average end-to-end latency.

The use of virtual switches in SDN-t-sswitch gives conservative performance bounds.
As a result, we, also, perform experiments on SDN-t-hswitch consisting of real hardware
switches. Figure 2.7(b) shows that the use of real hardware switches further reduces
the average end-to-end latency of events as compared to virtual switches. Also, as
expected, in SDN-t-hswitch too, the latency remains constant with increasing number
of subscriptions. So, the above evaluation results, clearly, show the improvement in
performance w.r.t. end-to-end latency of events when content-based routing is imple-
mented on the network layer.

41

2 In-network Content-based Filtering

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

dz-length (bits)

Uniform
Zipfian

Figure 2.8: False Positive Rate

2.4.3 False Positive Rate

We define the false positive rate (FPR) as the percentage of total number of events
forwarded to the subscribers that are unnecessary (i.e., false positives). Clearly, false
positives are undesirable and the aim of any publish/subscribe system is to keep them
to a minimum. We observe that the longer the dz, the fewer are the false positives.
This follows from the fact that as the length of the dz increases, the granularity of
the subspaces (assigned to advertisements, subscriptions and events) also increases
and, hence, the false positives forwarded to a subscriber decrease. Figure 2.8 shows the
variation of false positive rate with the length of dz for different number of subscriptions
for both uniform as well as zipfian distribution. As seen in the figure, with increase in
the length of the dz the false positives decrease for both distributions. As we only have
a limited number of bits, say Ldz, for the representation of dz in an IP multicast address,
subscriptions and events which differ in dz only after the Ldz cannot be differentiated.
Thus, an event e might fit into the filtering criteria of a subspace—which does not
actually contain (or cover) the event e—due to dz truncation and is counted as a false
positive.

2.4.4 Control Overhead

The controller needs to process control requests from all publishers and subscribers
in the system in order to ensure necessary forwarding of events in the data plane. In
this context, we evaluate the impact of the rate at which control requests arrive at
the controller on the average time it takes for a control request to be processed by the

42

2.4 Performance Evaluations

1

2

4

6

8

10

100 400 800 1200

A
v
g
.

P
r
o
c
e
s
s
i
n
g

L
a
t
e
n
c
y

[
s
]

Rate [subscriptions/s]

Figure 2.9: Average Processing Latency

controller (i.e., processing latency). More specifically, we define processing latency as
the time elapsed from the issuance of the request by a publisher/subscriber to the time
when this request has been completely processed by the controller. Please note that
in order to ensure consistent processing of control requests (i.e., to ensure consistency
of flow tables in the switch network), a controller processes one control request at a
time, i.e., it performs sequential processing of requests. As a result, control requests
from publishers and subscribers are enqueued to a waiting queue at the controller until
their turn to be processed by the controller arrives. Our evaluation results depicted in
Figure 2.9 show that, at relatively lower subscription rates, the processing latency is
very low (in the order of milliseconds). However, as depicted in this graph, higher the
rate at which subscriptions arrive at the controller, higher is the average processing
latency of a subscription. This is because the waiting time of subscriptions goes up
with increased subscription rates as a single controller processes requests sequentially
with constant throughput.

2.4.5 Discussion

Our performance evaluations clearly show the impact of a network layer implement-
ation of the pub/sub middleware on end-to-end latency of events in the system. We
show that when compared to even a highly efficient pub/sub middleware (APP-M)
implemented in the application layer, the end-to-end latency in PLEROMA is signi-
ficantly lower. Moreover, with increasing number of subscriptions in the system, the
end-to-end latency in APP-M further increases, whereas the number of subscriptions
has no impact on end-to-end latency in PLEROMA. Our evaluations, also, show the

43

2 In-network Content-based Filtering

impact of the number of bits available for content representation, i.e., dz length, on the
false positive rate in the system. Of course, longer the dz, lower are the false positives
in the system. However, as the number of available bits is restricted by the selected
match field (e.g. IPv6) length, additional mechanisms may need to be employed to in-
crease expressiveness of content filters installed in TCAM. Our final set of evaluations
show that on a single controller, processing control requests sequentially, an increase
in the subscription rate in the system results in an increase in the average processing
time of these subscriptions due to an overloaded controller. This, clearly, prompts the
need for the design of a more efficient control plane with provision of concurrent yet
consistent processing of control requests.

2.5 Related Work

Various approaches to the many aspects of content-based pub/sub have been presented
in literature [CRW01,JCL+10,Müh02,CS04,JJE10,CFMP04,TKR13,BBQ+07]. Most
of the traditional systems target the scalability aspect of pub/sub by attempting to
reduce unnecessary dissemination of events in the system [CRW01, JCL+10, Müh02,
TKK+11]. For example, one of the pioneers in this field, the Scalable Internet Event
Notification Architecture (SIENA) [CRW01] pub/sub system, uses subscription sum-
maries to filter out events from disseminating to the parts of the broker network that
do not host interested subscribers. Similarly, forwarding of new subscriptions is only
restricted to the brokers which previously do not receive subsuming (or covering) sub-
scription summaries. In the recent past, clustering of subscribers has also been explored
to realize a scalable pub/sub solution [CS04, PC05, WQA+04, BFP10]. For example,
Kyra [CS04] partitions the publish/subscribe broker network into smaller routing net-
works. Subscriptions are assigned to relevant brokers such that event matching and
subscription maintenance overhead is balanced between the networks.

While all of the aforementioned systems have their respective advantages in building
a scalable pub/sub solution, a common drawback of these existing systems is their
dependence on the application layer mechanisms to optimize pub/sub operations. For
instance, event routing on a broker network that is organized oblivious to the under-
lying physical network (in short underlay), may result in higher bandwidth utilization
(irrespective of the use of subscription summarization and event filtering mechanisms)
and higher end-to-end latency, since multiple logical links in the broker network may
share the same physical links [TKR13].

Only a few systems explicitly take into account the properties of the underlying net-
work and its topology to organize publish/subscribe broker network [JPMH07,MSRS09,
TKR13,ECG09]. In fact, Tariq et al. [TKR13], besides implementing a routing layer,
build a topology discovery layer as its basis that attempts to reduce end-to-end latency,
reduce packet duplicates, and minimize stress on underlying physical links. Neverthe-
less, inferring underlay topology or properties comes at a significant cost. Also, despite

44

2.6 Conclusion

the additional cost, it is still hard to accurately infer advanced underlay properties such
as the current link utilization based on observations on end systems (such as brokers).

In the past, IP multicast has been proposed to distribute events between the clusters
(or groups) of subscribers and publishers. Clearly, IP multicast overcomes many draw-
backs of application layer by routing events on the network layer [RLW+02a,TKKR12].
However, IP multicast is very expensive in the presence of frequently changing sub-
scriptions and event traffic, mainly because clusters have to be recalculated to ensure
minimal false positives.

With the growing interest in technologies such as NetFPGA and SDN, some research
efforts are being dedicated towards realizing pub/sub middleware that can support
event filtering and routing within the network. LIPSIN [JZER+09] presents a novel
multicast forwarding fabric using NetFPGAs on the network layer. More specific-
ally, LIPSIN uses Bloom filters in data packets to encode links of the delivery tree
for each event, resulting in the efficient multicasting of events on the network layer.
However, the expressiveness of LIPSIN is limited to topic-based pub/sub. Zhang et
al. [ZJ13] address impact of SDN on the future design of pub/sub middleware. Also,
Koldehofe et al. [KDTR12, KDT13] present reference architecture of a content-based
publish/subscribe using OpenFlow specifications. Nevertheless, to the best of our
knowledge, we are the first to design, implement and thoroughly evaluate the perform-
ance of a content-based pub/sub middleware on software-defined networks.

2.6 Conclusion

In this chapter, we have proposed the PLEROMA middleware leveraging line-rate per-
formance for content-based publish/subscribe in software-defined networks. In partic-
ular, we have proposed methods that preserve the basic functionalities of the pub/sub
paradigm in the presence of dynamic subscriptions and publications. Our evaluations
show that PLEROMA imposes very low latency in mediating events between publishers
and subscribers (cf. Figure 2.7). However, the presented system does not address the
problems related to hardware limitations in the data plane in terms of limited number
of available bits for each filter representation and limited number of flow table entries
available to pub/sub traffic in TCAM. In fact, the evaluation results presented in this
chapter also indicate that fewer the number of bits available for content filter repres-
entation, more are the false positives in the system (cf. Figure 2.8). As, in this context,
only a limited number of bits is available for content filter representation, additional
methods must be employed to increase expressiveness of filters despite this limitation.
This is addressed in Chapters 3 and 4 along with addressing the problem of limit-
ation on number of flow entries in Chapter 5. Also, the problems of an overloaded
controller, as depicted in Figure 2.9, must be tackled and new mechanisms need to
be introduced at the control plane in order to handle high dynamic workload. These

45

2 In-network Content-based Filtering

mechanisms addressing the problems at the control plane of PLEROMA are addressed
in Chapter 6.

46

Chapter 3
Expressive Mapping of Content Filters

As seen in Chapter 2, content-based pub/sub using SDN suffers from certain inherent
limitations that result in bandwidth wastage. It should be noted that the effectiveness
of content-based routing relies heavily on the expressiveness of content filters which are
responsible for filtering out unnecessary traffic to ensure bandwidth-efficient commu-
nication. In an SDN-based pub/sub, these content filters are represented by the match
fields of flows in the Ternary Content Addressable Memory (TCAM) of switches. This
implies that content filters are limited by the bits available for filter representation at
the selected match field (e.g., IPv6 address, VLAN tag). For instance, the choice of
the destination IPv6 address to represent content filters allows a maximum of 128 bits
which in reality would further reduce as the entire range of IP addresses may be shared
among multiple applications. Moreover, IPv6 is not widely deployed and the use of
IPv4 addresses instead can further impede the expressiveness of filters. Jokela et al.,
in LIPSIN [JZER+09], also target filtering on hardware (NetFPGA) in the context of
topic-based pub/sub by encoding forwarding paths in packet headers. However, for a
considerably small topology, even the use of a staggering 248 bits in the packet header
does not suffice to prevent unnecessary traffic in the system (∼10%).

The above limitations may significantly impact bandwidth usage—something that is
truly critical in a network. As a result, this chapter focuses on exploring techniques
that address concerns with bandwidth efficiency in the context of limited number of
bits available for the representation of each content filter in the flow entries of TCAM.
First, we propose two techniques—selective indexing and adaptive spatial indexing—
that consider workload in the system in terms of events and subscriptions to express-
ively map content to match fields of flows on hardware switches. Then, we present
algorithms with varying complexities to efficiently identify and neglect redundant at-
tributes or dimensions in the event space such that more bits are available to express
more meaningful attributes in content filters. Moreover, these techniques complement
each other and may be combined for enhanced effectiveness. Our evaluations show

47

3 Expressive Mapping of Content Filters

1

SP

Controller

Hardware Filtering using flow tables

Match Field Instruction

Dest IP Out Port

11

Mapping to IPv6 ff0e:c000:*

IP Prefix

01

10

11

00

Temperature (T)
0 100

100

P
re

ss
u

re
 (

P
)

Subscription (sub1)
{T = [50, 100] ∧ P = [50, 100]}

0 1

Temperature (T)
0 100

100

P
re

ss
u

re
 (

P
)

sub1

1-bit representation 2-bit representation

Figure 3.1: Limitations of Content Representation

that a significant amount of irrelevant traffic (up to 97%) can be avoided by employing
each of these techniques independently or in combination while benefiting from the
advantages of SDN in terms of reduced end-to-end latency, high throughput, etc. The
techniques proposed in this chapter result in significant updates to the network, i.e.,
the data plane, which must be performed in a consistent manner to ensure the desired
behavior of the system. So, the contributions of this chapter also include the design of
a light-weight approach that ensures data plane consistency in the presence of dynamic
network updates when each of the proposed techniques is employed.

3.1 Limitations of Content Representation

In Chapter 2, we see that expressiveness or granularity at which spatial indexing can
be performed is limited by the number of bits that can be appended to the destination

48

3.2 Workload-based Indexing

IP address. To further understand the true nature of this problem faced by content
filters in PLEROMA, let us look at an example depicted in Figure 3.1. Let us assume
that subscriber S has a subscription sub1 : {T = [50, 100] ∧ P = [50, 100]}. Spatial
indexing yields the dz {11} to represent it as illustrated in the 2-bit representation in
the figure. This dz is then converted into an IPv6 address (ff0e:c000:*) and installed as
a destination IP in the match field of flows on the switches, enabling hardware filtering
of events along the path between publisher P and subscriber S. Now, let us assume
that instead of 2 bits only 1 bit can be accommodated in the IP address reserved for
pub/sub traffic. In such a scenario, subscription sub1 will be represented by the dz
{1} as depicted in the 1-bit representation in Figure 3.1. This implies that all events
matching the entire subspace of {1} in the figure will be received by subscriber S. So,
the path between P and S will be subjected to a lot of unnecessary traffic or false
positives. Note, the length of dzs, required to accurately represent content, increases
with the increase in the number of dimensions in the system as spatial indexing is
employed along every dimension.

As a result, the remaining part of this chapter is dedicated to the design of vari-
ous techniques that would improve expressiveness of content filters installed on hard-
ware switches, despite their limitations, and render content-based pub/sub realized on
software-defined networks bandwidth-efficient. The presented techniques are workload
dependent and are implemented by the controller. The controller already has a know-
ledge of all the subscriptions in the system and has to additionally collect statistics of
events periodically and modify flows on switches accordingly.

Note that, although we focus on spatial indexing, other indexing techniques (e.g.,
Bloom filters, hashes) will encounter the same problems and the proposed techniques
in this chapter are applicable in general to all indexing mechanisms.

3.2 Workload-based Indexing

The effectiveness of the previous attempts to encode content into binary form has
primarily depended on the size of the event space. Be it the use of spatial indexing, or
hashes, the only parameters that play a role in the mapping process are the number
of available bits and size of Ω. However, in this chapter, we design two mapping
techniques—selective indexing and adaptive spatial indexing—that not only consider
the previous two parameters but also look into the workload of the system (i.e., events
and subscriptions) to encode content to binary strings.

3.2.1 Selective Indexing

In-network filtering may result in significant number of false positives depending on
the size of Ω, i.e., number of dimensions and range of values along each dimension.

49

3 Expressive Mapping of Content Filters

11

Temperature (T)

P
re

ss
u

re
 (

P
) sub2

10

01

00

sub5

sub4

sub3

sub1

11

Temperature (T)

P
re

ss
u

re
 (

P
) sub2

1000

01

sub5

sub4

sub3

sub1

(a) (b)

Figure 3.2: Avoiding Empty Subspaces

This is mainly due to the fact that with a fixed number of bits available for a dz
(e.g., 23 bits for IPv4 multicast addresses), larger the size of Ω, less fine granular is
the indexing. However, it should be noted that regular spatial indexing partitions
the entire space into subspaces, even those subspaces that are of no interest to any
subscriber. What if the entire event space Ω does not get indexed? What if all empty
subspaces w.r.t. subscription distribution in Ω are left out and the bit strings earlier
assigned to these empty spaces used for more fine granular indexing of the populated
subspaces? Here, we do not specifically consider the event distribution as, in any case,
only those events that lie within the subscriptions are important from filtering point of
view and those lying in other subspaces can be ignored. To understand the effectiveness
of such selective indexing of Ω, we look at an example from Figure 3.2. We, specifically,
focus on subscription sub1 in a 2-dimensional event space comprising the dimensions
temperature (T) and pressure (P). For the sake of simplicity, let us assume that only 2
bits are available to represent sub1 through spatial indexing. Figure 3.2(a) shows that
when the entire event space is indexed, then sub1 is represented by {11} and it receives
all events lying within this subspace (highlighted in gray). Now, since there are no
subscriptions in subspaces {00} and {01}, we completely neglect these empty spaces
and use the available strings for finer indexing in the populated subspaces as illustrated
in Figure 3.2(b). So, in Figure 3.2(b), sub1 is represented as {01}, and receives only the
events lying within this subspace which is much smaller than the subspace representing
sub1 in Figure 3.2(a). Due to more fine granular indexing in the latter case, the false
positives received by sub1 will also be lower compared to the former case. So, to this
end, we introduce the selective indexing approach where the main idea is to identify
meaningful subspaces w.r.t. subscriptions in Ω and only index those subspaces instead
of indexing the entire event space.

The first step in the selective indexing approach is to select subspaces in Ω populated

50

3.2 Workload-based Indexing

Temperature (T)

P
re

ss
u

re
 (

P
)

0
11

(d)
Temperature (T)

P
re

ss
u

re
 (

P
)

(c)

sub1

10

01

00

Temperature (T)
0

100

100
P

re
ss

u
re

 (
P

)

(a)

mbr1

Temperature (T)
0

100

100

P
re

ss
u

re
 (

P
)

mbr2

(b)

sub1

10

mbr1

mbr2

sub1

11

sub2

sub3
sub4

sub6

sub7

sub5

Figure 3.3: Selective Indexing

with subscriptions while identifying the empty spaces to be neglected. To identify
meaningful subspaces, we benefit from the widely used mechanism of similarity-based
subscription clustering [RLW+02b, BFG07]. Once subscriptions are clustered into
groups, we generate polyspace rectangles which serve as the closest enclosing approx-
imation of each of these clusters. These polyspace rectangles are known as minimum
bounding rectangles or MBRs. The set of generated MBRs encloses all subscriptions in
the system such that every subscription can be represented by a binary filter (or set of
filters) and attempts to leave out as much empty space as possible. To understand the
concept of an MBR, we provide an example from Figure 3.3. Here, the subscriptions
are distributed in the event space as illustrated in Figure 3.3(a). Figure 3.3(b) shows
two MBRs covering all subscriptions in the system clustered together in two groups on
the basis of similarity. Please note that even though two MBRs may partially overlap
as in 3.3(b), a subscription strictly belongs to a single MBR. Let us suppose that the
controller chooses to have 2 MBRs for the system. So, for the purposes of our example,
we proceed with the next phase of this approach with the two MBRs, mbr1 and mbr2,

51

3 Expressive Mapping of Content Filters

obtained from the first phase.

Having identified the MBRs, the next phase is the actual mapping of subscriptions to
dzs. We again employ spatial indexing for the binary conversion of content but, of
course, now, with a difference. Spatial indexing is not employed on the entire range
of values along each dimension to arrive at the dz of a subscription. Instead, spatial
indexing is performed only on the range of values along each dimension of the MBR
(i.e., subspace in Ω) which contains the subscription in question. This means that two
subscriptions belonging to two different MBRs may end up with the exact same dz as
they occupy the same relative position in their respective MBRs. However, this would
be incorrect as the two subscriptions occupy different positions relative to the actual
event space. This problem is mitigated by assigning unique IDs to MBRs. First, each
MBR is assigned an MBR ID which is in binary form and which depends on the total
number of MBRs in the system. So, if M is the set of MBRs in the system, then the
total bits required to uniquely identify each MBR is log2|M|. Next, the dz representing
a subscription generated by the recursive decomposition of the MBR is appended to the
MBR ID that the subscription belongs to. The unique ID prefix makes a dz different
from that of another MBR.

The selective indexing approach allows for more fine granular spatial indexing as it can
avoid assigning bits to the subspaces in Ω that are not part of any subscription in the
system, thus allowing the use of more bits to represent more meaningful subspaces. We
illustrate our point in Figure 3.3(c) and Figure 3.3(d). Let us focus on the subscription
sub1 that needs to be converted to a binary string. Let us assume that again only 2 bits
are available for representing content filters. Now, since there are two MBRs, one bit
is required to uniquely represent them. However, this bit represents a smaller subspace
as compared to what it would represent in regular spatial indexing in Ω as the empty
spaces have been removed. The next step is to perform spatial indexing within mbr2
till the closest approximation of the subscription is reached with the available number
of bits. In this case, the subscription can afford just one more bit that will be appended
to the MBR ID 1 for mbr2. Therefore, for sub1, the generated dz is {10} as depicted in
Figure 3.3(d). However, when spatial indexing is performed on entire Ω as depicted in
Figure 3.3(c), false positives are more as the same dz of {10} represents a much larger
subspace in this context.

Of course, for header-based matching of packets to work, events will also need to be
mapped to the selected packet header field using the selective indexing approach. For
this purpose, publishers need to have information about the MBRs and their respective
bounding values. As a result, the controller sends this information to each publisher
whenever there is a change in MBR values. The mapping of events to the selected
header field works similar to the mapping of subscriptions to match fields. However,
it should be noted that MBRs may overlap. For example, in Figure 3.3(b), mbr1 and
mbr2 overlap. In such a scenario, an event that lies in the overlapping subspace must be
indexed w.r.t. both MBRs as it can match subscriptions from both. This ensures the

52

3.2 Workload-based Indexing

A

(a) Spatial Indexing

A

(b) Adaptive Spatial Indexing

00 01 10 11 00 01 10 11

0 10 1

sub1 sub1

Figure 3.4: Adaptive Spatial Indexing

avoidance of false negatives, i.e., events that were not received by subscribers interested
in receiving them. Also, all events that do not lie within any MBR are simply ignored
by the publisher and do not get indexed.

3.2.2 Adaptive Spatial Indexing

The selective indexing approach uses regular spatial indexing to finally convert filters
and events to dzs. As discussed in Chapter 2, spatial indexing divides the event
space repeatedly to achieve subspaces of maximum possible granularity where each
decomposition divides the current subspace equally into two halves. The question is,
can the employed spatial indexing technique itself be modified to obtain more expressive
filters and, therefore, less false positives in the system? In this section, we design an
adaptive spatial indexing (ASI) approach to answer the same.

The spatial indexing technique, essentially, performs disjoint event space partitioning.
We employ a similar technique but with a difference. For each recursive decomposition,
instead of dividing a subspace into two equal halves in terms of range of values along
dimensions, the basic idea is to divide it into two subspaces with balanced workload
w.r.t. events and subscriptions. This allows indexing to have finer granularity in
subspaces with higher workload in Ω. Here, it is extremely important to first define
the term workload. We define workload of a subspace ssi as Wssi =

∑
ek∈Et

|SBssi
ek
|, where

SBssi
ek

represents the set of subscriptions within ssi matched by an event ek. So, when
a subspace is further divided during spatial indexing along a dimension, the workload
of it along that dimension is calculated and the division is made such that the resulting
two subspaces have equal workload, i.e., they are not necessarily equal in terms of range
of values along dimensions.

We explain the above indexing strategy with the help of an example from Figure 3.4
which depicts a 2-dimensional event space with events and subscriptions. For the
sake of simplicity, we only explain indexing along one dimension, i.e., dimension A.

53

3 Expressive Mapping of Content Filters

Let us, again, assume that only 2 bits are available for indexing. Now, while per-
forming indexing to represent sub1, in regular spatial indexing, the dimension range
is divided equally into two subspaces {0} and {1} as depicted by the blue solid line
in Figure 3.4(a). However, in our adaptive spatial indexing technique, the division is
made such that the workloads in the resultant subspaces are equal. Let the blue solid
line in Figure 3.4(b) illustrate this workload-based division. This allows for more fine-
grained partitioning in the subspace denoted by {0} where matching traffic is heavy
as compared to {1}. Further divisions in both cases, as depicted by the red dotted
lines in Figure 3.4(a) and Figure 3.4(b), clearly indicate that sub1 is represented by
a much smaller subspace {01} in adaptive spatial indexing as compared to {00} in
regular indexing. As a result, sub1 suffers from fewer false positives when represented
by adaptive spatial indexing.

All dimensions are divided in the exact same manner to arrive at the final dz for a
subscription or an event in a multi-dimensional system. By allowing more bits to be
assigned to more meaningful parts of Ω, false positives can be reduced in adaptive
spatial indexing.

The efficiency of the workload-based indexing approaches w.r.t. reducing false positives
may still be limited when the number of attributes (dimensions) in the system is large.
As a result, the next section is dedicated to mechanisms that influence the number of
dimensions to be encoded into content filters while performing in-network filtering.

3.3 Dimension Selection

As discussed before, more the number of dimensions in a system, longer are the dzs.
However, what if there was no need to index every dimension? What if the available bits
could be used to perform fine granular spatial indexing only on a subset of dimensions
that prove to be more promising w.r.t. bandwidth efficiency? As a result, in this
chapter, we use the above notion to propose and thoroughly evaluate a set of algorithms
that select dimensions that are beneficial for reducing false positives and discuss their
applicability, complexity, and performance w.r.t. realistic workload distributions.

3.3.1 Event Variance

The distribution of events in Ω plays a major role in determining the importance of
each dimension for filtering in the system. To this end, the spread of events along a
dimension is an important metric to determine the importance of that dimension. More
spread would require more fine granular indexing to avoid false positives, rendering the
dimension worthy of being considered for selection. More specifically, we use variance
of events to measure this spread. If Et denotes the set of all events in Ω, then event
variance along a dimension d is measured as (

∑
(xdi − xd)2)/|Et|, where xdi represents

54

3.3 Dimension Selection

Temperature (T)

P
re

ss
u

re
 (

P
)

(a)

00 10

01 11

sub1

Temperature (T)
P

re
ss

u
re

 (
P

)

(b)
Temperature (T)

P
re

ss
u

re
 (

P
)

(c)

00

10

01

11
00 1001 11

sub1 sub1

Figure 3.5: Effects of event distribution

Temperature (T)

P
re

ss
u

re
 (

P
)

(a)
Temperature (T)

P
re

ss
u

re
 (

P
)

(b)

00

10

01

11
00 1001 11

sub1
sub1

Figure 3.6: Event-based Selection

the value of the ith event along dimension d. We illustrate this with a very simple
example in Figure 3.5 w.r.t. a single subscription sub1, where the variance of events
along dimension P is far greater than that along dimension T. Let us assume that only
2 bits are available for spatial indexing. Figure 3.5(a) shows spatial indexing along both
dimensions according to which sub1 is represented by the subspace {10} which means
that sub1 receives all events lying in this subspace. Now, if only dimension P, with a
high variance value for events, is selected for indexing, then sub1 gets represented by
the subspace {00} and receives all events lying within it as shown in Figure 3.5(b).
In Figure 3.5(a) sub1 suffers from far more false positives as compared to the false
positives received when only P is selected for indexing. This is because, the latter
can take advantage of the fact that dimension P has a significantly high variance
value for events as compared to dimension T and, thus, has the liberty of more fine
granular indexing along P. As a result, most events that are irrelevant for sub1 can be
partitioned out into other subspaces. Since event variance is low along dimension T,
ignoring it does not cost sub1 much. However, if the dimension with low variance value

55

3 Expressive Mapping of Content Filters

for events, i.e., dimension T, is selected for indexing, Figure 3.5(c) clearly shows that
sub1 would be subjected to more false positives as compared to not only indexing along
dimension P but also indexing along both dimensions. This example clearly indicates
the importance of event distribution within Ω in dimension selection.

So, the very first dimension selection algorithm that we present is Event Variance-based
Selection (EVS). EVS calculates the variance of events along each dimension. Let D
be the set of ω dimensions in Ω and Et be the set of ψ events that are being considered
for the algorithm in the current time window t. Let SD be a subset of n dimensions
of D, i.e., SD ⊆ D and |SD| = n. We assign, to each dimension d ∈ D, a selectivity
factor denoted as %d, which determines the importance of the dimension in terms of
reduction of false positives if chosen for spatial indexing. Higher the value of %d, higher
is the importance (selectivity) of d w.r.t. the ability to reduce false positives. For EVS,
the selectivity factor %d of a dimension d is given by the variance of events along that
dimension. EVS selects dimensions for SD by selecting n dimensions in D with the
highest variance/selectivity factor values. Spatial indexing commences now on SD.

The main advantage of this approach lies in its low computation overhead with a
complexity of O(ω ∗ψ). However, the consideration of only event distribution may not
be enough in every scenario. For example, in Figure 3.6(a), since event variance along
dimension P is high, the subscription sub1, when indexed along P, is represented by the
subspaces {01}, {10}, and {11} and will receive all events lying within these subspaces.
However, if indexed along dimension T, with lower event variance, sub1 is represented
by the subspace {10} and receives events lying within it as depicted in Figure 3.6(b).
Here, false positives are fewer in the latter case. This clearly indicates that both events
as well as subscriptions play a major role in the selection process.

3.3.2 Subscription Matching

It would be interesting to investigate the role played by subscriptions in the process of
dimension selection. In fact, in doing so, we identified the importance of subscription
overlaps. Dimensions where subscriptions have a lot of overlaps are less important
for filtering because if an event matches a subscription along this dimension, then it
matches majority of the subscriptions along this dimension, thus reducing its import-
ance w.r.t. the ability to reduce false positives. For example, Figure 3.7(a) shows a
scenario where there is a significant overlap of subscriptions along dimension P (the
gray lines indicate overlaps). According to the figure, selection of dimension T would
reduce more false positives than if P is selected. If indexing is performed along T,
events are matched by interested subscriptions as most events are matched by disjoint
subscriptions. On the contrary, if indexing is performed along P, then false positives
will be high as most events match multiple overlapping subscriptions on this dimension
but not along T. Note that an event is matched by a subscription if and only if it is
matched on all dimensions. However, again, the selection decision cannot be taken

56

3.3 Dimension Selection

Temperature (T)

P
re

ss
u

re
 (

P
)

Temperature (T)

P
re

ss
u

re
 (

P
)

(a) (b)

Figure 3.7: Subscription-based Selection

Algorithm 2 Event Match Count-based Selection

1: D→ Set of original dimensions
2: SB → Set of all subscriptions
3: Et → Set of all events
4: SD = ∅ // Set of selected dimensions
5: %→ Set of ω selectivity factors for ω dimensions, where ω = |D|
6: for all d ∈ D do
7: matches = 0
8: for all e ∈ Et do
9: matches+ = |SBd

e | // No. of subscriptions that e matches along d
10: %d = 1− (matches/(|Et| ∗ |SB|))
11: SD← Select dimensions corresponding to n highest values in %

based on subscription overlaps alone. The reason why the selectivity of T is higher is
because of not only fewer overlaps but also the distribution of events. For example, in
Figure 3.7(b), we have the same subscription overlaps as before, however, due to the
distribution of events, in this case, the selectivity of T is not too high.

Therefore, it is necessary to consider the combination of both subscriptions and events
to determine selectivity of dimensions. As a result, we introduce another algorithm
known as Event Match Count-based Selection (EMCS) which has higher computational
complexity than Event-based Selection but considers both events and subscriptions to
take the selection decision, rendering it more generic w.r.t. the distribution of events
and subscriptions in Ω.

In the following, we provide the detailed steps of EMCS. The main idea of EMCS is
to deem dimensions where event traffic matches most subscriptions as less important
for dimension selection. Considering SB to be the total set of s subscriptions in the
system, this algorithm determines the set of subscriptions that each event e ∈ Et

57

3 Expressive Mapping of Content Filters

matches, i.e., SBd
e , along each dimension d and calculates the number of matches in

each case, i.e., |SBd
e |. Now, for each d ∈ D, the selectivity factor is calculated as

%d = 1 − (
∑
e∈Et

|SBd
e |)/(|Et| ∗ |SB|) where the sum of all the matches of all events

matching subscriptions is calculated and represented as a fraction of the maximum
value possible for matches, i.e., |Et| ∗ |SB|. Having calculated %d for each d, a value
between 0.0 and 1.0, n dimensions with highest values of selectivity factor are added to
SD. The steps of EMCS are more formally presented in Algorithm 2. This algorithm
is more generic than the previous one but has a higher time complexity of O(ω ∗ψ ∗ s).

3.3.3 Correlation

Most application domains handle a large amount of data with numerous attributes.
Quite often, such data has redundancy among its attributes. Redundancy in data may
occur in a system due to underlying relations (i.e., correlations) between the attributes
(i.e., dimensions) of the system such that the change in values in one dimension is
positively or inversely correlated to the change in values in another dimension. Quite
often, subscriptions and the events matching them have dimensions that are correlated
or inversely correlated rendering the selection of these dimensions redundant because
if an event matches a subscription in one dimension, it would also do so in the others.
Such correlation between attributes exists across most applications. For instance, in
IoT, most sensors detect and measure changes in various physical phenomena (i.e.,
dimensions) where correlations exist. For example, the sensor data set provided by
the Intel Research Berkeley Lab [sen] that has a 54 node sensor network measuring
values for temperature, humidity, and light shows positive correlation among all the 3
attributes [DXG+11]. Again, in a traffic monitoring scenario, for certain time periods,
there may exist an inverse correlation between car speed and density. In a completely
different domain, i.e., in stock exchange, it is well established that there exists a cor-
relation between volume and stock prices [sto]. Redundancy in data can be utilized to
avoid less meaningful dimensions without loss of much information while selecting di-
mensions. However, because of the sheer amount, data is often fuzzy making it difficult
to identify such redundancy.

As a result, our next algorithm, Correlation-based Selection (CS) tries to take advant-
age of any redundancy in data, in the form of correlation, that may exist between
dimensions while also considering the previous two factors, i.e., event variances and
subscriptions across dimensions. In the previous two algorithms, the selectivity factor
% was independently calculated for each dimension d. However, in order to consider
correlation as well, we construct a covariance matrix, CM, which captures relations
between dimensions as well as within them w.r.t. selectivity. This algorithm, formally
described in Algorithm 3, consists of primarily two steps—(i) calculating the covari-
ance matrix and (ii) performing principal component analysis (PCA) on the calculated
matrix.

58

3.3 Dimension Selection

Algorithm 3 Correlation-based Selection

1: D→ Set of original dimensions
2: SB → Set of all subscriptions
3: Et → Set of all events
4: SD = ∅ // Set of selected dimensions
5: CM← Initialize ω ∗ ω covariance matrix, where ω = |D|
6: for i=0 to ω − 1 do
7: for j=0 to ω − 1 do
8: sfi,j = 0.0 // Similarity factor between dimension i and dimension j

9: for all ek ∈ Et do

10: sf i,j
ek = (|SBdi

ek ∩ SB
dj
ek |)/|SB|

11: sfi,j+ = sf i,j
ek

12: ci,j = 1.0 - (sfi,j / |Et|) // covariance value at (i, j)th index of CM
13: Q← Calculate eigenvectors of CM
14: Λ← Calculate eigenvalues of CM
15: princComp← Select eigenvector ∈ Q corresponding to highest eigenvalue ∈ Λ
16: SD← Select n dimensions ∈ D with highest coefficients in princComp

3.3.3.1 Calculating Covariance Matrix

The basis of this approach is the calculation of the covariance matrix CM. A covariance
matrix is a symmetric matrix where each entry holds a covariance representing the
relation between two random variables. In our Correlation-based Selection algorithm,
we consider the random variables to be dimensions and calculate the covariance values
based on the relation that must be captured between each dimension pair. As before,
we consider that ω is the total number of dimensions in the system. The purpose of our
covariance matrix is to identify correlations such that the dissimilarity between each
dimension pair can be captured. As a result, CM is an (ω*ω) matrix where an element
at position (i, j) represents variance or dissimilarity of the ith and the jth dimensions.
CM captures two types of information—(i) the covariance between dimensions w.r.t.
selectivity and (ii) the amount of variance within each dimension. The diagonal of CM
captures the latter. For dimension selection, both of these information are crucial as
the former highlights correlated dimensions and the latter highlights selectivity of each
independent dimension.

Quite naturally, it is crucial to identify the metric representing the covariances, i.e.,
ci,j ∈ CM, depending on the type of relation between dimensions that needs to be
captured. In the context of this algorithm, we define covariances between dimension
pairs w.r.t. events consumed by subscriptions along each dimension. Please note that
in the context of our designed middleware, if for a dimension pair, say di and dj, an
event matching a subscription along di also matches the same subscription along dj,
then such a match increases the correlation or, as we call it, similarity between di and
dj. As a result, we consider one dimension pair at a time and identify the similarity
between them by calculating the number of times events match subscriptions along both

59

3 Expressive Mapping of Content Filters

dimensions of the dimension pair in question. Of course, more the number of matches,
higher is the correlation or similarity between the dimension pair. The inverse effect of
this similarity provides the variance or dissimilarity between the dimension pair, and
this is what we capture in the covariance matrix. So, an element at position (i, j) in the
covariance matrix represents the dissimilarity (w.r.t. the described matches) between
di and dj.

We provide the steps to calculate the covariance matrix more formally as follows (cf.
Algorithm 3, lines 5-12). While calculating the covariance ci,j between a pair of dimen-
sions di and dj, first, for each event ek ∈ Et, we calculate a factor called the similarity
factor which calculates the set of subscriptions that the event ek matches along both
dimensions of the dimension pair. So, the similarity factor of a dimension pair di and
dj for an event ek ∈ Et is calculated as sf i,j

ek
= (|SBdi

ek
∩ SBdj

ek |)/|SB| (cf. Algorithm 3,
line 10). As before, here, SBdi

ek
represents the set of subscriptions matched by event

ek along dimension di. As a result, an intersection of set SBdi
ek

and set SB
dj
ek provides

the set of only those subscriptions that ek matches along both di and dj. The number
of subscriptions in this resultant subscription set contributes to the similarity factor
between the two dimensions for this event. To calculate the aggregated similarity factor
(sfi,j) between the dimension pair di and dj, the similarity factors of all events are cal-
culated as mentioned above and aggregated (cf. Algorithm 3, lines 8-11). Then, the
inverse effect of this summed up (or aggregated) value is considered to measure the
dissimilarity between the two dimensions in order to calculate the covariance between
them. So, finally, ci,j is calculated as 1.0 -

∑
ek∈Et

sf i,j
ek
/|Et| (cf. Algorithm 3, line 12).

This value indicates the covariance between a dimension pair w.r.t. the number of
times events match subscriptions along both dimensions of a dimension pair. Along
the diagonal of CM, the variance of the match of events with subscriptions within each
dimension gets captured.

3.3.3.2 Performing Principal Component Analysis

Once CM is calculated, the technique of principal component analysis (PCA) is ap-
plied [Jol86]. The PCA technique has found its application in pattern recognition,
feature selection problems, etc., which demand mapping of data from the original
dimensional space to a lower dimensional space while preserving maximum useful in-
formation [LCZT07]. Considering our objective is similar, we apply the technique of
PCA on CM to identify the dimensions along which the variance in the event traffic
matched by subscriptions is maximized.

Without going into much mathematical details, we describe the main steps required to
select dimensions using PCA (cf. Algorithm 3, line 13-16). First, CM is subjected to
spectral analysis through the process of eigendecomposition, i.e., CM = QΛQT , where
Λ = {λ1, . . . , λω} is a diagonal matrix of eigenvalues and Q = {q1, . . . , qω} is the matrix

60

3.3 Dimension Selection

whose columns are orthogonal eigenvectors of CM. So, eigendecomposition projects the
original dimensions (in Ω) onto an orthogonal basis of vectors called eigenvectors. This
transformation makes the highest variance by any projection of the dimensions to lie
on the very first axis (i.e., first principal component). In fact, as proposed by [MG04],
an eigenvector q with largest eigenvalue represents the dimension (in the orthogonal
basis) along which variance is maximized (i.e., first principal component), and thus
this eigenvector q is used to rank the original dimensions. In more detail, a higher
absolute value of ith coefficient of q indicates that the dimension di is more important
to be used for filtering. Thus, the dimensions (in the original space) that correspond
to the first n coefficients with higher magnitude are selected for filtering. CS efficiently
chooses dimensions based on the idea of reducing redundancy in data while maximizing
variance of events matched by subscriptions. The time complexity of the calculation
of the covariance matrix itself is O(ω2 ∗ ψ ∗ s), rendering the algorithm more complex
than the previous two.

3.3.4 Evaluation-based Techniques

The previous algorithms, though effective in their own ways, do not give an indication
of an ideal value of n. So, in this subsection, we introduce two algorithms which
not only significantly reduce false positives in the system, but also provide the most
suitable value for n. Since the controller has knowledge of both SB and Et, we can
implement evaluation-based techniques to simulate false positives in the system for
various combinations of dimensions and choose the most beneficial one, thus obtaining
even a suitable value for n. The performances of these techniques are more optimal as
compared to the previous three algorithms but have relatively higher computational
complexities.

Ideally, in order to obtain an optimal set SD, a brute force technique must be employed
which calculates the false positives for all combinations of dimensions and finally selects
the one producing least false positives. In order to do so, a complete simulation of
the entire filtering process must be performed at the logically centralized controller,
given a fixed value of the number of available bits for filter representation. With the
information of the actual subscription and event values, their corresponding mappings
to binary strings, the false positive rate can be determined for each combination of
dimensions. However, running such a simulation has exponential computation overhead
of O(2ω ∗ ω ∗ s ∗ ψ).

We reduce the complexity of the brute force algorithm by using a greedy strategy which
is also based on simulation but does not evaluate every combination of dimensions. Ini-
tially, the combination with all ω dimensions in D is considered, and the resulting false
positive rate is noted. Then, all combinations with ω-1 dimensions are evaluated, i.e.,
each combination has ω-1 dimensions but in each combination a different dimension is
removed. The combination with the lowest false positive rate is selected and in the pro-

61

3 Expressive Mapping of Content Filters

cess one dimension gets removed. The next cycle uses this selected combination with
ω-1 dimensions as input and evaluates all combinations with ω-2 dimensions to arrive
at the most beneficial combination for ω-2 dimensions. The process continues till the
number of dimensions being considered for the combinations is reduced to 1 by incre-
mentally removing one dimension in every step. So, we have a total of ω combinations
where the first combination consists of ω dimensions, the second consists of ω-1, and
so on till the last (ωth) combination contains 1 dimension. Quite often, with decreasing
number of dimensions, the false positive rate decreases till the redundancies in data are
removed, after which the rate increases again due to loss of important information with
further reduction in dimension count. As a result, different combinations with different
dimension counts can be expected to reduce different number of false positives. So, of
all the aforementioned ω combinations, the one producing least false positives is chosen
for SD. By employing such a technique, we essentially also obtain the most suitable
value of n. The greedy strategy has a time complexity of O(ω3 ∗ ψ ∗ s).

3.4 Handling Dynamic Network Updates

All of the above discussed methods rely heavily on past event traffic and subscription
distributions. However, the event distribution and the current subscriptions in the sys-
tem may change over time, degrading the effectiveness of the proposed techniques. So,
the controller must periodically collect workload information over time to monitor the
recent distribution, execute proposed techniques, and deploy necessary changes in the
network. For example, in the case of dimension selection algorithms, the event traffic
distribution may change over time and the dimensions that were selected previously
by the dimension selection algorithm may need to be replaced in the next period. This
implies that the indexing of content will be done for a different set of dimensions now
resulting in completely different dzs. As a result, a new set of flows would need to
be deployed in the network. So, all the techniques described in this chapter require
periodic updates to flows in the network (i.e., removal of existing flows and deployment
of new flows that replace the existing ones) according to the current indexing decisions.

However, with the need for network updates comes the problem of ensuring consistency
in the data plane. Please recall from Chapter 2 that the network state is represented
by network configuration that consists of all flows on all switches in the network. Let
us denote this network state or network configuration as NS. So, when the transition
from one network state to another is being performed, the event packets in transition
in the network may be incorrectly dropped or forwarded. Let us consider an example
of a system where indexing is performed on 4 dimensions, A, B, C, and D, resulting in
a network state NSo. Let us assume that dimension selection is employed to improve
the bandwidth efficiency of the system, and now, spatial indexing is performed on
only 3 dimensions, B, C, and D. In such a scenario, the existing flows need to be
removed and new flows according to the new indexing (resulting in a network state

62

3.4 Handling Dynamic Network Updates

NSn) must be deployed as the old dzs, representing all 4 dimensions, are semantically
different from the new dzs, representing only 3 dimensions. So, while the transition
from NSo to NSn is being performed, event packets in transition and targeted to
follow NSo, may no longer find a path through NSo or/and be incorrectly forwarded
by NSn which is semantically different from the event packet in question. The same
applies to event packets targeted at NSn. The difference in semantics can be further
explained through an example depicted in Figure 3.5 where, when indexed along both
dimensions, temperature and pressure, sub1 has the dz {10} (cf. Figure 3.5(a)) but
on indexing only along the dimension pressure, it has a dz {00} (cf. Figure 3.5(b)).
Clearly, in the context of the new index, the old one has completely different semantics
and an event published during transition, say with a dz {10001} lying within sub1 and
indexed according to the old dimension set will no longer find a match in the newly
deployed flow representing sub1 which now matches {00*}. As a result, this event may
be dropped due to the absence of any flow matching it or may be incorrectly forwarded
by a flow matching the event but representing a different subscription according to the
new index. So, additional mechanisms must be employed to ensure that packets are
not lost or incorrectly forwarded in the data plane during transitions.

3.4.1 Data Plane Consistency in PLEROMA

A lot of work has already been dedicated to ensuring data plane consistency in
SDN [RFR+12, JLG+14]. Most works attempt to provide a general solution to data
plane consistency for any application and are, therefore, computation intensive and/or
resource intensive. However, in our case, we can design a middleware-specific solu-
tion, i.e., a light-weight approach, that targets only those data-plane consistency issues
that affect the functional requirements of our specific system. Data plane consistency
in SDN is primarily characterized by three properties—(i) blackhole-freedom, i.e., a
packet that should be forwarded by a switch should not be dropped during the trans-
ition, (ii) loop-freedom, i.e., no packet should loop in the network, and (iii) packet
coherence, i.e., no packet should see a mix of old and new flows belonging to the old
(NSo) and new (NSn) network states, respectively.

Please note that the PLEROMA middleware installs paths between publishers and sub-
scribers by first creating an acyclic spanning tree that covers all switches in the network
and then embedding content filters along these paths. This ensures the existence of
only a single path between two hosts of a network. Also, here, when we talk about
transitions from one network state to another, we only talk about changing the content
filters that are embedded along the path connecting a publisher to a subscriber, i.e.,
the path itself between two hosts remains the same in a transition. As a result, there is
no possibility of cycles or loops in the network due to the transition because of which
no additional measures need to be taken to ensure the inherent loop-freedom property
of our system. So, in the context of our middleware, the main consistency properties

63

3 Expressive Mapping of Content Filters

that we try to ensure are blackhole-freedom and packet coherence. Ensuring these two
properties is essential for the system as both of these can lead to false negatives which
is not tolerated in our system.

3.4.2 Light-Weight Approach

To ensure the above two properties, the main idea is to continue to have a path con-
necting a publisher to a subscriber when flows are being updated while also ensuring
that a packet sees only one network state while being forwarded to its destination.
So, we design a light-weight approach where the main idea is, also, to always have a
path connecting each publisher to its relevant subscribers so that false negatives can be
avoided. In fact, we use a temporary intermediate network state that can be traversed
by events targeted at either the old network state or the new one while network updates
are being performed. Let us take an example depicted in Figure 3.8 where there is a
need to transition from NSo (cf. Figure 3.8(a)) to NSn (cf. Figure 3.8(e)) on switch
R1. In Figure 3.8 each flow in the flow table of R1 is represented by its incoming port
(iP), match field (represented by dz), outgoing ports (oP) which specifies the ports
through which matching events are forwarded, and flow priority (PO). The priority of
a flow may be important in certain cases as please recall that when an event satisfies
the matching criteria of multiple flows, the flow with the highest priority is allowed to
forward it.

Once the decision to make the switch to NSn is taken, first, a resource-efficient in-
termediate network state, i.e., NSI , comprising flows matching any pub/sub event is
installed along all paths connecting publishers to their relevant subscribers. The pur-
pose of this temporary intermediate state is to always have paths for any pub/sub
event no matter which network state it is targeted at. More specifically, for each in-
coming port, say iP , on a switch, all flows on the switch, belonging to the old network
state NSo, which have iP as their incoming port are identified, and a set of outgoing
ports oP is created from the union of all outgoing ports to which the identified flows
forward packets on account of a match. For example, in Figure 3.8(b), for the incoming
port iP=1, the flows fl1 and fl2 are identified, and a union of the outgoing ports to
which these flows forward events is performed yielding the outgoing port set oP={2,3}.
Next, a single flow that forwards all pub/sub traffic (representing the entire event space
Ω) through all ports in oP is installed on the switch for this incoming port. So, in
Figure 3.8(b), this is represented by fl4 which forwards all incoming pub/sub traffic
through the outgoing ports {2,3}. Please note that as this flow represents the dz {*},
covering entire Ω, it forwards any pub/sub traffic, irrespective of the semantics of the
event and as long as it is part of the pub/sub traffic. This is done for every incoming
port on each switch of the network during the transition. So, in the example in Fig-
ure 3.8, the same is done for the incoming port 3 as there exists a flow fl3 in the old
network state where incoming traffic arrives at port 3. The flows, covering the entire

64

3.4 Handling Dynamic Network Updates

(e) NSn (New State)

R1 21
3

4

NSI (Intermediate State)

fl1 1 1101* 2 1

fl2 1 0001* 3 1

iP dz oP

fl3 3 010 * 1,4 1

PO

R1 21
3

4

R1 21
3

4

R1 21
3

4

R1 21
3

4

fl4 1 * 2,3 1
fl5 3 * 1,4 1

fl1 1 1101* 2 1

fl2 1 0001* 3 1

iP dz oP

fl3 3 010 * 1,4 1

PO

fl4 1 * 2,3 1

fl5 3 * 1,4 1

iP dz oP PO fl6 1 1110* 2 0

fl7 1 0101* 3 0

iP dz oP

fl8 3 001 * 1,4 0

PO

fl4 1 * 2,3 1

fl5 3 * 1,4 1

fl6 1 1110* 2 0

fl7 1 0101* 3 0

iP dz oP

fl8 3 001* 1,4 0

PO

(a) NSo (Old State)

(b) (c) (d)

Figure 3.8: Light-Weight Approach

65

3 Expressive Mapping of Content Filters

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140

T
o
t
a
l

n
o
.

o
f

f
l
o
w
s

Network Size

Versioning
LWA

Figure 3.9: Versioning vs light-weight approach (LWA)

event space, constitute the intermediate network state NSI . For each incoming port of
a switch, replacing fine-grained filters of NSo with a single flow covering Ω ensures the
use of minimum additional flows during the transition to maintain data plane consist-
ency. In fact, in our light-weight approach, at any given time, the maximum number
of additional flows installed on a switch to avoid false negatives is the total number of
incoming ports of the switch. This is because at most a temporary flow belonging to
NSI may be added for each incoming port. This is in sharp contrast to the traditional
versioning method [RFR+12] which would result in almost double the number of old
flows during the transition to guarantee consistency. The impact on number of flows
in the pub/sub network for our light-weight approach as compared to the versioning
method is depicted in Figure 3.9. Please note that TCAM is a very expensive and
power-hungry resource and current vendors design SDN-compliant switches that can
accommodate only a few thousand flows [CMT+11]. Clearly, there may not be any
TCAM space available to install another version for the same filters as is the case
with the traditional versioning method, especially when there can be a huge number
of subscribers in the system where each subscription may be represented by multiple
content filters. So, where TCAM is scarce, the figure clearly shows the advantage of
our designed approach over the traditional versioning method.

Once NSI is deployed in the network, the flows constituting NSo can be removed as
there is already an alternate set of flows connecting each publisher to at least its relevant
subscribers through NSI . This step is depicted in Figure 3.8(c). Once NSo is removed,
flows constituting NSn are added to the switches of the network (cf. Figure 3.8(d)).
However, the priority of the flows in NSn is kept lower than the priority of the flows in
NSI such that any event that was targeted at NSo matches the flows in NSI and never

66

3.5 Performance Evaluations

those in NSn. We do so to satisfy the packet coherence property in the context of our
approach that prohibits a packet to see a mix of old and new flows belonging to NSo

and NSn, respectively. Please note that in our approach we provide a form of packet
coherence where packet coherence is not considered to be violated if a packet sees a
mix of old (∈ NSo) and intermediate (∈ NSI) flows or a mix of intermediate (∈ NSI)
and new (∈ NSn) flows. This is mainly because the intermediate state semantically
applies to both NSo and NSn, and an event belonging to either is a valid event for
NSI . Once all flows in NSn have been deployed, the publishers are notified to index
events according to the new chosen indexing approach such that events can now be
targeted towards the already deployed new network state NSn. After a given time
bound (depending on the bounds on the forwarding latency of the longest path in the
network) that ensures that all events matching the old network state NSo have been
delivered to the subscribers, all flows constituting NSI are removed (cf. Figure 3.8(e)).

In this way a transition from NSo to NSn is performed in the network without violat-
ing the blackhole-freedom and packet coherence properties. As a result, the pub/sub
system does not suffer from any false negatives. Of course, as, for each incoming port,
the fine-grained content filters are temporarily substituted by a single flow represent-
ing the entire event space, the pub/sub system experiences additional false positives
temporarily during the transition.

3.5 Performance Evaluations

This section is dedicated to evaluating and analyzing the performances of each of the
presented approaches. We conduct a series of experiments to measure and compare the
overall false positive rate at the subscribers of an SDN-based publish/subscribe system
for all the techniques. We, especially, show the impact of different types of workload
on the performance of each of the approaches in order to highlight their applicability
in various scenarios.

3.5.1 Experimental Setup

For our experiments, we have used SDN-m (cf. Chapter 2) built on the prominent tool
for emulating software-defined networks, i.e., Mininet. We use Mininet to experiment
with up to 128 switches and 256 end-hosts on different topologies. Our evaluations
include up to 10,000 subscriptions and up to 100,000 events. In order to generate
workload, i.e., events and subscriptions we use both synthetic as well as real world
data. In synthetic data, a content-based schema containing up to 8 attributes (dimen-
sions) is used where the domain of each attribute varies between the range [0,4095].
We, again, use two models for the distributions of subscriptions and events to gen-
erate synthetic data—uniform model and the interest popularity model that chooses

67

3 Expressive Mapping of Content Filters

 0

 20

 40

 60

 80

 100

1k 2k 4k 8k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Subscriptions - (a)

RI
SI

 0

 20

 40

 60

 80

 100

1k 2k 4k 6k 8k
F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Subscriptions - (b)

RI
SI

 0

 20

 40

 60

 80

 100

2 4 8 16 32

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of MBRs - (c)

RI
SI

 0

 20

 40

 60

 80

 100

1k 2k 4k 8k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Subscriptions - (d)

RI
ASI

 0

 20

 40

 60

 80

 100

1k 2k 4k 6k 8k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Subscriptions - (e)

RI
ASI

Figure 3.10: Performance Evaluations: Workload-based indexing

68

3.5 Performance Evaluations

up to 8 hotspot regions around which it generates subscriptions and events using zip-
fian distribution. We use synthetic data to especially highlight certain properties of
the designed algorithms by adjusting correlation between dimensions, matching traffic
variances, number of correlated dimensions, etc. We also use real-world workload in the
form of stock quotes procured from Yahoo! Finance containing a stock’s daily closing
prices [CJ11] to show the performance of our algorithms in a realistic environment. In
the following evaluations, we show the effectiveness of our techniques even when the
number of available bits for spatial indexing is restricted to just 23 bits as available in
IPv4 multicast addresses.

3.5.2 Workload-based Indexing

The first set of experiments evaluates the behavior of the selective indexing (SI) ap-
proach when subjected to both uniform as well as zipfian data. Figure 3.10(a) plots the
false positive rate with increasing number of subscriptions for both selective indexing
as well as regular indexing (RI) when uniform data is used. Figure 3.10(b) shows the
same when zipfian data is used instead. These plots show that indexing within MBRs
has significant benefits over regular indexing. For both uniform and zipfian data and
for every subscription count, SI results in a lower false positive rate when compared to
RI.

The effectiveness of selective indexing, however, depends largely on the number of
MBRs used. As a result, our next set of experiments evaluates the behavior of this
approach with increasing number of MBRs. We use zipfian distribution to generate
events and subscriptions around 8 hotspots and then measure the false positive rate
while varying the number of MBRs. Figure 3.10(c) clearly shows that the false positive
rate reduces rapidly when the number of MBRs is varied between 1 to 8. After 8 MBRs,
the rate reduces less rapidly because clustering of data generated around 8 hotspots
into more than 8 MBRs does not have as significant additional benefit as before.

We, also, conducted a set of experiments to evaluate the impact of adaptive spatial in-
dexing (ASI) on false positive rate of a system. We evaluated the effect of this technique
when both uniform and zipfian data are used to generate events and subscriptions. Fig-
ure 3.10(d) (uniform) and Figure 3.10(e) (zipfian) clearly show that in-network filtering
gains from the use of adaptive spatial indexing as opposed to regular indexing. For
both uniform and zipfian data and for every subscription count, ASI results in a lower
false positive rate when compared to RI and the plots behave similar to SI.

3.5.3 Dimension Selection

We conducted a series of experiments to evaluate the behavior of all presented dimen-
sion selection algorithms when subjected to various types of workload. In the following

69

3 Expressive Mapping of Content Filters

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Selected Dimensions - (a)

EVS
RS

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Selected Dimensions - (b)

EVS
RS

EMCS

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Selected Dimensions - (c)

EMCS
CS

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Selected Dimensions - (d)

EMCS
CS

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Selected Dimensions - (e)

GS
CS

70

3.5 Performance Evaluations

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Selected Dimensions - (f)

GS
BRS

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5 6

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Selected Dimensions - (g)

GS
BRS

Figure 3.11: Performance Evaluations: Dimension Selection - False Positive Rate

experiments, we primarily calculate the false positive rate at the subscribers of the
system when the number of selected dimensions is gradually reduced for a specific
workload. We also evaluate the runtime of each approach to compare their complexit-
ies.

3.5.3.1 False Positive Rate

While generating workload (i.e., subscriptions and events), we mainly specify two
factors. The first is the variance factor which can be either random or uniform. Ran-
dom variance factor means that the variance of events in certain dimensions may be
high whereas they may be low in others, and this is decided at random. Uniform vari-
ance factor signifies similar variance of events across all dimensions. The second factor
that we define is the correlation factor. Here, a high correlation factor implies high
correlation between multiple dimensions while very few dimensions are independent
whereas a low correlation factor signifies low correlation between very few dimensions
while most dimensions are completely independent.

The first set of experiments is dedicated to evaluating the performance of the least com-
plex algorithm, Event Variance-based Selection (EVS). These experiments not only
highlight the benefits of dimension selection on reduction of false positives but also
show that even a simple approach like EVS performs better than a random dimension
selection (RS) approach. Figure 3.11(a) plots false positive rate when EVS and random
selection approaches are employed on multiple data sets having 8 dimensions with a
random variance factor. The figure shows that, when EVS is used, reducing dimensions
up to a point reduces false positives, but, after that, false positives rise again. This is
because, for example, in the case of Figure 3.11(a), EVS benefits by removing 3 less

71

3 Expressive Mapping of Content Filters

selective dimensions and assigning the additional bits to the 5 more selective dimen-
sions. However, ignoring one or more of these 5 dimensions implies major information
loss which again increases the false positive rate. EVS performs better than a random
selection approach as it takes advantage of the random variance factor which allows
certain dimensions to have higher selectivity than the others.

We evaluated the next set of experiments, however, with uniform variance factor instead
of a random variance factor as before. We again plot the performance of EVS in such
a scenario and as expected, due to uniform event variance in all dimensions, it does
not succeed in reducing false positives as can be seen in Figure 3.11(b). In fact, its
performance can be compared to random selection. However, in such a scenario, the
Event Match Count-based Selection (EMCS) approach performs much better than
EVS, providing a significant benefit in terms of reduction of the false positive rate (cf.
Figure 3.11(b)). When event distribution alone cannot differentiate between selectivity
of dimensions, then it is necessary to look at both events and subscriptions to determine
selectivity, and this is the reason why EMCS performs much better in this case.

EMCS works very well in the previous scenario. However, in the following experiments
we compare its performance to Correlation-based Selection (CS) when the correlation
factor is both high and low. Figure 3.11(c) plots false positive rate when selected di-
mensions are gradually reduced for data with high correlation factor. The figure clearly
shows that CS gains significantly over EMCS in the presence of high correlation. When
the correlation factor is low, quite understandably EMCS and CS perform similarly as
depicted in 3.11(d). However, please note that even with low correlation CS does not
perform worse than EMCS.

The next set of experiments compares the performance of the greedy selection (GS)
algorithm with CS when a high correlation factor is used while data generation. Fig-
ure 3.11(e) shows that GS outperforms CS even in the very best case for CS, i.e., high
correlation. Since GS is an evaluation-based technique, it performs in most cases better
than the other techniques and is very close to the performance of ideal selection, i.e.,
Brute-Force Selection (BRS), as can be seen in Figure 3.11(f) and Figure 3.11(g) for
uniform and zipfian data, respectively. BRS, of course, produces the most optimal set
of dimensions but, as can be seen from the evaluation results, the performance of GS
is almost equivalent to this optimal.

3.5.3.2 Runtime Overhead

The dimension selection evaluation results show the performance of the selection al-
gorithms in increasing order of effectiveness, i.e., EVS, EMCS, CS, GS, and BRS.
However, better the performance, higher is the time complexity of the selection al-
gorithm. This is visible in the next set of experiments that we conducted. The first
set of experiments shows the impact of increasing the number of events on the time
required to select a set of 4 dimensions from a set of 8 dimensions when the number

72

3.5 Performance Evaluations

 0

 10

 20

 30

 40

 50

 60

 70

 80

10k20k 40k 100k

T
i
m
e

(
s
e
c
o
n
d
s
)

of Events - (a)

EVS
EMCS
CS
GS

 0

 10

 20

 30

 40

 50

 60

 70

 80

1k 2k 4k 6k 8k 10k

T
i
m
e

(
s
e
c
o
n
d
s
)

of Subscriptions - (b)

EVS
EMCS
CS
GS

 0

 10

 20

 30

 40

 50

4 5 6 8 10

T
i
m
e

(
s
e
c
o
n
d
s
)

of Original Dimensions - (c)

EVS
ECMS
CS
GS

 0

 50

 100

 150

 200

3 4 5 6 7

T
i
m
e

(
s
e
c
o
n
d
s
)

of Original Dimensions - (d)

GS
BRS

Figure 3.12: Performance Evaluations: Dimension Selection - Runtime Overhead

of subscriptions is fixed to 1000. Figure 3.12(a), clearly shows that EVS and EMCS
require least computation time (in the order of milliseconds), whereas CS takes signi-
ficantly more time than them with GS requiring most. Similarly, the impact of number
of subscriptions on computation time, with the event count set to 100,000, can be seen
in Figure 3.12(b). As expected, again EVS performs fastest, followed by EMCS, CS,
and finally GS. The impact of number of original dimensions on computation time can
also be seen in Figure 3.12(c) when number of subscriptions is set to 1000 and events
set to 100,000. We, also, conducted evaluations to compare computation time between
GS and BRS with increasing number of original dimensions. Figure 3.12(d) shows that
for BRS computation time increases, as expected, rapidly with increasing number of
input dimensions.

73

3 Expressive Mapping of Content Filters

3.5.4 Combining Approaches

The next set of experiments are dedicated to highlighting the effect of combining various
algorithms. We used zipfian distribution to generate data for these experiments with
a random selectivity factor. Figure 3.13(a) shows the performance of CS and GS both
independently and when combined with adaptive spatial indexing. As expected, the
combinations perform much better than CS or GS alone. In fact, for GS+ASI, the
false positive rate goes down from 80% (if regular spatial indexing is performed on 8
dimensions) to merely 3.33%.

Figure 3.13(b) shows the performance of CS and GS both independently and this time
when combined with selective indexing. Here too, the combined approaches outperform
the others. In fact, GS+SI reduces false positive rate in the system from 80% (if regular
spatial indexing is performed on 8 dimensions) to an almost negligible 2% (v97%
reduction in false positive rate).

To ensure that our approaches are effective in realistic scenarios, we conducted experi-
ments to show their effects on real-world stock data. As can be seen in Figure 3.13(c),
our algorithms are capable of significantly reducing false positives in a real-world sys-
tem. This time we combine EVS, CS, and GS with selective indexing. The plots show
that even an approach combined with EVS reduces false positive rate by 48% when 2
dimensions are selected. Also, in this case, GS , CS, and EVS, when combined with SI,
have very similar performances. GS successfully reduces the false positive rate by up
to 53%. These evaluation results further highlight the applicability of the approaches
presented in this chapter.

3.5.5 Handling Dynamics

The final set of experiments have been conducted to show the dynamic behavior of
the system with the passage of time in Figure 3.14. So, we start evaluating false
positive rate for a system on which CS has been recently employed and then plot its
behavior with changing dynamics over time. Initially, the false positive rate is quite
low due to the recent execution of CS that selected dimensions based on the recent
traffic distribution. However, around the 95th second the traffic distribution changes
because of which the dimensions chosen in the previous period become less effective.
As a result, the false positive rate goes up significantly in the system. Around the
350th second, CS is again executed, and indexing is done based on the current selected
dimensions chosen according to the current traffic distribution. Now, new flows are
installed in the system following the light-weight approach. Here, we define the term
false negative rate as the percentage of events dropped in the network that should have
been forwarded to interested subscribers. Our evaluation results confirm that there
are no false negatives in the system when LWA is employed. As expected, during this
process, the false positive rate is very high as the fine-grained filters are temporarily

74

3.5 Performance Evaluations

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Selected Dimensions - (a)

CS
CS+ASI

GS
GS+ASI

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Selected Dimensions - (b)

CS
CS+SI

GS
GS+SI

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

(
%
)

of Selected Dimensions - (c)

EVS+SI
CS+SI
GS+SI

Figure 3.13: Performance Evaluations: Combined Approaches 75

3 Expressive Mapping of Content Filters

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

50100 200 300 400

Fa
ls
e
Po
si
ti
ve
 R
at
e
[%
]

Fa
ls
e
Ne
ga
ti
ve
 R
at
e
[%
]

Time (sec)

FPR
FNR

Figure 3.14: Performance Evaluations: Handling Dynamics

replaced by filters representing the entire event space. However, around the 410th

second, the deployment of the new flows is complete, and the false positive rate goes
down significantly as indexing is now according to the current traffic distribution.

3.5.6 Discussion

Our evaluation results show the huge potential of the proposed algorithms in improving
expressiveness of content filters installed on TCAM. When evaluated with different data
distributions, in every scenario, both workload-based indexing approaches outperform
regular spatial indexing in the context of bandwidth efficiency. The dimension selection
algorithms, also, show promising results, where the evaluation-based techniques, i.e.,
BRS and GS, reduce most number of false positives in the system, followed by CS,
EMCS, and EVS. Of course all these algorithms perform significantly better than a
random selection approach. While the performance w.r.t. bandwidth efficiency of
the algorithms decreases in the aforementioned order, the runtime overhead associated
with their computation increases in the reverse order. Our evaluations show that, with
increasing number of events or subscriptions or original dimensions, always EVS has
the least runtime overhead (in the order of milliseconds) which is closely followed by
EMCS and CS. As expected, the evaluation-based techniques, GS and BRS have higher
runtime overhead (in the order of seconds) with BRS being the most computationally
intensive algorithm. Moreover, our results show that false positive rate in PLEROMA
can be further reduced by up to v97% on combining the workload-based indexing
approaches with dimension selection algorithms. Finally, our evaluation results confirm
that, on employing the light-weight approach during transition from one network state
to another, no false negatives occur in the system.

76

3.6 Related Work

3.6 Related Work

The past decade has seen a significant amount of effort being devoted to the realiza-
tion of scalable and bandwidth-efficient publish/subscribe systems [CRW01,VRKS06,
RLW+02b, BCM+99, MPP15, PB02]. The primary focus of most of these systems has
been efficient communication that not only ensures scalability, but also preserves ex-
pressiveness of content in order to avoid unnecessary traffic in the system. A very
widely used technique employed to reduce false positives in overlay networks is sub-
scription clustering where events are flooded within clusters [RLW+02b, BCM+99,
CMTV07, PRGK09]. Riabov et al. perform clustering for content-based pub/sub
systems by grouping subscribers into multicast channels and performing IP multicast
thereafter [RLW+02b]. However, this approach largely depends on the similarity of
subscriptions within generated clusters and may fail to ensure minimal false posit-
ives as multicasting is employed eventually within a cluster. Please note that, in this
chapter, we combine the concept of subscription clustering (essentially an overlay-level
mechanism) with in-network filtering on a software-defined network to avoid unneces-
sary traffic. Such a combination largely preserves expressiveness of a content-based
subscription model.

Another technique based on workload and most often used for load balancing in overlays
is content space partitioning. Content space partitioning is a much researched topic in
various fields of computer science [Van91,WQA+04,CS04]. Although these techniques
are not directly applicable in content-based routing using SDN, the notion can be used
for workload-based indexing.

Linearizing content space (e.g. hashes, bit strings, etc.) for fast matching of events
with subscriptions while balancing the load in structured P2P overlay network has been
much researched in the past [GSAA04, AT06, BMVV05, MJ14]. Most of these works
are based on distributed hash tables (DHT) that are load-balanced and self-organizing.
Baldoni et al. in [BMVV05], realize a Chord-based [SMK+01] publish/subscribe where
events and subscriptions are mapped to bit strings. Where on one hand, [BMVV05]
maps subscriptions and events to multiple nodes, on the other hand, Muthusamy et al.
in [MJ14] design a protocol that primarily indexes subscriptions at a single node. Of
course, linearizing content space is also of extreme relevance to content-based routing in
software-defined networks. However, in order to directly employ the above techniques,
the SDN-compliant switches would have to support far more expressive operations. As
a result, none of these linearizing techniques can be directly deployed in an SDN-based
pub/sub system.

While attempting efficient content-based routing, considerable work has been dedic-
ated to subscription summarization techniques that compact subscription information.
With regards to this, various data structures and matching algorithms have been de-
veloped. For example, Jerzak et al., in [JF08], use Bloom filters [Blo70] to encode
subscriptions and events. While this expedites content-based routing, it suffers from

77

3 Expressive Mapping of Content Filters

the inherent limitations of a Bloom filter w.r.t. presence of considerable amount of
false positives in the system. Again, the system MICS [JMVM09] uses Hilbert space
filling curve to generate a one-dimensional representation of events and subscriptions.
However, MICS too suffers from false positives in the system.

While dealing with data plane consistency in SDN, we come across a considerable
amount of work in literature [RFR+12, JLG+14, MW13, KDR15]. For example, Re-
itblatt et al. [RFR+12] propose the method of versioning, which allows both the old
as well as the new network states to be installed in the network simultaneously with
different version numbers. A packet with one of the two version numbers is forwarded
by the old or the new network state, depending on its version number, but is never
forwarded by a mixture of both. However, this implies that each switch will require
almost double the number of flows to accommodate both the old as well as the new
version. Of course, this is a very resource-intensive method, and, as a result, we provide
a more resource-efficient light-weight approach in this chapter.

3.7 Conclusion

In this chapter, we attempt to mitigate the limitations of an SDN-based pub-
lish/subscribe middleware w.r.t. expressiveness of content filters. We present a series
of algorithms that improve the bandwidth efficiency of such a system and provide
extensive evaluation results to analyze their behavior. The workload-based indexing
approaches and dimension selection techniques complement each other and can build
on top of each other to considerably impact unnecessary traffic in the middleware.
Our evaluation results show that these strategies can significantly reduce false pos-
itive rate in the system (up to 97%) when subjected to various kinds of workload.
Each of these algorithms preserve the benefits of using SDN for pub/sub by ensuring
line-rate forwarding of events directly on switches while also preserving the benefits of
content-based routing by focusing on bandwidth-efficient communication. Moreover,
we present a light-weight approach to ensure data plane consistency in the presence
of significant amount of network updates that are necessary in order to preserve the
effectiveness of the algorithms introduced for expressive filtering of content.

78

Chapter 4
Expressive Filtering by Combining
Application Layer

The algorithms presented in the previous chapter (cf. Chapter 3) significantly reduce
false positives in the system. However, these solutions, also, come with significant over-
head of deploying a completely different set of flows (due to change in the mapping of
content to dz strings) in the data plane with each content mapping decision. Especially,
with rapidly changing event distribution, the algorithms may need to be executed fre-
quently as the previous decisions would not be as effective. As a result, in this chapter,
we present a complementary method to reduce false positives in the system which in-
volves making relatively fewer changes to the data plane. Please note that the methods
presented in this chapter can, also, be employed together with the algorithms presented
in the previous chapter (i.e., Chapter 3) to further enhance bandwidth efficiency of the
system.

So, in this chapter too, we attempt to reduce bandwidth usage in the network but
approach the target without considering any changes to the content mapping process.
In fact, in this chapter, in order to increase bandwidth efficiency of PLEROMA, we
attempt to involve traditional filtering methods at overlays while carefully considering
their advantages and disadvantages. Where on one hand event forwarding in overlay
networks provides possibilities of accurate filtering but suffers in terms of responsive-
ness to event delivery, on the other hand an SDN-based middleware provides line-rate
performance but suffers in terms of bandwidth efficiency. So, while considering these
two state-of-the-art implementations independently, we are tempted to ask the ques-
tion, can we do any better? Is it possible to make these two radically different filtering
approaches meet in the middle? And this is where we attempt to combine the benefits
of both application layer filtering and network layer filtering in realizing a content-
based pub/sub middleware that provides hybrid filtering of events. Therefore, in this
chapter, we focus on designing an SDN-based pub/sub that not only aims at line-rate

79

4 Expressive Filtering by Combining Application Layer

Stock Value : [$100-$200]

Stock Value : [$150-$200]

R5

R6

P1

R1

R2

R3

R4

R7

S2

S1

Controller

Control Plane Data Plane

Application
Layer

Figure 4.1: Hybrid Content-based Routing

performance but also bandwidth efficiency by providing a mechanism to filter events
both in software (application layer) and on hardware (network layer). We provide se-
lection mechanisms to determine the layer in which each event gets filtered in order
to minimize unnecessary traffic in the network while also considering latency require-
ments of the middleware. Our hybrid approach offers complete flexibility to control
the amount of filtering to be performed at each of the layers where the two extreme
cases are pure software filtering and pure hardware filtering, thereby providing a com-
plete degree of freedom to select the performance of the system in terms of latency and
bandwidth efficiency. In summary, the contributions of this chapter are the design,
implementation, and detailed performance evaluation of a hybrid SDN-based pub/sub
middleware, the first of its kind, that provides event selection techniques to enable
filtering of events both in the application layer as well as in the network layer in a
latency and bandwidth-efficient manner.

4.1 System Architecture

The architecture of the designed hybrid middleware is very similar to the PLEROMA
middleware except that it has an additional component in the form of the Applica-
tion Layer. Figure 4.1 illustrates a hybrid approach to content-based filtering where
events are filtered both in the network as well as in the application layer. We realize
the application layer in our middleware as a pub/sub cloud service similar to Blue-
Dove [LYK+11]. We perform multi-dimensional subscription space partitioning and
distribute them among multiple servers (or matchers) that parallelize event filtering.
Let us understand how events can be filtered at both layers with an example depicted
in Figure 4.1. In Figure 4.1, the filters for subscriber S1 are completely installed on the

80

4.2 Filter Selection Problem

network layer, whereas the filter corresponding to the subscription of S2 at R2 sends
all events matching this filter to the application layer which enables accurate filtering.
Only matched events are then injected back to the network at R7 and forwarded to
S2, resulting in no false positives for this subscriber and subsequently no false positives
along the path from R2 to S2 in the network. However, there may be false positives
along the path between P1 and S1 depending on the expressiveness of the filters for S1

on the switches. Where on one hand, application layer filtering has a distinct advantage
over network layer filtering, in terms of reduced false positives, it loses out in matters
of end-to-end latency/delay incurred for the delivery of events. Forwarding of events to
S1 occurs at line-rate, whereas that to S2 is delayed due to filtering in software. Thus,
there is a trade-off between reduction in false positives and end-to-end latency in the
network as the improvement in one adversely affects the other.

4.2 Filter Selection Problem

Due to the aforementioned trade-off between end-to-end latency and bandwidth ef-
ficiency, the selection of filters that forward events to the application layer is very
crucial. In fact, the main problem that we tackle in our hybrid approach to filtering
is the selection of filters in the network layer that forward events to the application
layer for more accurate filtering in the attempt to reduce the overall false positives in
the network. However, we do so while ensuring that the average end-to-end latency of
events in the system stays within the application-specified threshold. More formally,
let F be the set of all filters on all switches in the network, where fi ∈ F . Also, let
rfpi be the number of false positives reduced in the system if filter fi is chosen to
send matched events for further filtering in the application layer. Let S be the set of
all subscribers in the system, where Sk ∈ S. Again, let δk be the average end-to-end
latency at subscriber Sk. Finally, let ∆ be the average end-to-end latency threshold to
be maintained in the system.

Our objective is to determine the subset SF ∈ F that forwards events to the application
layer such that the combined effect of the filters in SF results in maximum reduction of
false positives in the network while staying within a given average end-to-end latency
threshold, i.e.,

Maximize
∑
i∈SF

rfpi

subject to (

|S|∑
k=1

δk)/|S| ≤ ∆

This is an optimization problem. Let there be a total of m filters on n switches
constituting the network, where m ranges from 0 to

∑|S|
j=1 |DZ|j. Then, to arrive at

the optimal solution, all combinations of filters, i.e., 2m possible subsets SF have to

81

4 Expressive Filtering by Combining Application Layer

be calculated and considered. Also, it should be noted that the value of m can be in
the order of hundreds of thousands, making the optimal solution impractical and not
scalable in a realistically large network.

The above problem may look seemingly like the Knapsack Problem [KPP04] where the
value (i.e., benefit) of each item in the Knapsack Problem may be compared to the
false positives reduced by each filter and the weight (i.e., penalty) of each item may
be compared to the increase in average end-to-end latency on selecting a filter. The
goal in the Knapsack Problem is to maximize the total value of items selected for the
knapsack while the total weight of the knapsack remains within a given threshold. This
is similar to our problem where the goal is to maximize the total false positives reduced
by selected filters while the total delay penalty incurred by them remains within a given
threshold.

However, there is a major difference between the two problems that sets them apart.
If an item gets selected for the knapsack, this selection has no influence on the values
and weights of the remaining items to be considered for selection. This is where our
optimization problem differs. In our optimization problem, if a filter gets selected, this
may influence the false positives reduced by the remaining filters and the increase in
average end-to-end latency on selecting each of these filters. Due to this significant
difference, approaches for solving the Knapsack Problem cannot be directly employed
to our problem. As a result, in this thesis, we propose two selection algorithms with
varying degrees of complexity and benefits, in terms of bandwidth efficiency, to solve the
filter selection problem. Till now, we have made the assumption that the false positives
reduced and the increase in end-to-end latency on selection of every individual filter are
already known. However, the process of determining these values is not straightforward.

So, to arrive at a scalable solution to our optimization problem, we have to tackle three
subproblems – (i) detect false positives due to each filter on each link of the network such
that rfpi for each filter fi, i.e., benefit, can be determined (Section 4.3.1), (ii) determine
the increase in the average end-to-end latency of the system, i.e., penalty, on selecting
each filter (Section 4.3.2), and (iii) with the knowledge of these calculated benefits
and penalties for all filters in the network, design efficient filter selection algorithms
(Section 4.4).

4.3 Filter Benefit and Penalty Calculation

In this section, we provide the means of calculating benefit and penalty associated
with the selection of each filter. These metrics form the basis of the filter selection
algorithms.

82

4.3 Filter Benefit and Penalty Calculation

R5

R6

S1
P1

P2

R1

R2

R3

R4

R7

S3

S2

sub1
Stock Value : [$100-$200]

sub2
Stock Value : [$150-$180]

sub3
Stock Value : [$250-$300]

P1 : 50
P2 : 30

P1 : 40
P2 : 20

P1 : 20

80

60

60

60

80

60

60

40

20

20
20

Figure 4.2: False Positive Detection

100

0
0

50

50

0011

0010 1000

1011

25 75
d1 = A

d
2

 =
 B

1001

100

sub1 : { A = [25,75], B = [0,50] }

sub2 : { A = [50,100], B = [25,50] }

Figure 4.3: Partial Overlap

4.3.1 Benefit

To determine the false positives reduced on selection of each filter, it is imperative to
first calculate false positives on each link of the network due to each filter. To do so,
each subscriber needs to periodically send the false positives received by it from all
its associated publishers to the controller such that the controller can determine false
positives along each path between publishers and subscribers. More specifically, the
controller calculates false positives on each link of the network for each filter by back-
tracking on the paths from subscribers to publishers while aggregating false positives
on links. However, containment relations between subscriptions, i.e., (i) disjoint, (ii)
complete overlap, and (iii) partial overlap, need to be considered during aggregation.
The method to handle these three cases is described as follows.

83

4 Expressive Filtering by Combining Application Layer

(i) In the scenario where false positives of two subscriptions that are completely
disjoint are disseminated over a link, the aggregation over this link will be a sum
of the false positives of both subscribers.

(ii) However, if one of the subscriptions is contained by the other or both are equal,
then a simple sum will account for more than the actual false positive count over
the link. In this case, false positives for the broader subscription (or one of the
subscriptions in case of equality) should only be considered over the link as all
other false positives are either already accounted for in the broader subscription
or are events that should be forwarded along this link as they match the broader
subscription.

This can be further understood with an example in Figure 4.2 where subscribers
S1 and S2 subscribe for sub1 and sub2, respectively, and sub1 � sub2. Let us
start the backtracking process from S1 by aggregating the false positives along
the paths to publishers P1 and P2. This is straightforward, until we reach switch
R5 as R5 also forwards false positives to S2 which might need to be aggregated for
the link between R4 and R5. However, since sub1 � sub2, only the false positives
of the broader subscription sub1 will be considered for this link.

(iii) In the case of a partial overlap between two subscriptions, we mainly identify 3
subspaces, i.e., the overlapping subspace and the 2 disjoint subspaces. Now, if
false positives for the overlapping parts and the disjoint parts for each subscription
can be identified, then the aforementioned mechanisms can be employed to detect
false positives on network links.

For example, Figure 4.3 depicts two subscriptions sub1 and sub2 with a partial
overlap. Now, if the two subscribers divide the subscriptions into subspaces of
finer granularity (as depicted in the figure) and locally detect false positives cor-
responding to each subspace, then the controller would have to only deal with
complete overlaps and disjoint relations. So, while calculating false positives over
a link delivering events to sub1 and sub2, for the subspace {1001} (i.e., overlapping
subspace), false positives for only one subscription are counted. Again, the false
positives for the other disjoint subspaces can be simply aggregated. Of course,
here, there is a trade-off between the accuracy of the false positive count and
the granularity at which detection occurs at the subscriber. Finer the granular-
ity, greater is the accuracy as well as the overhead of management at both the
subscriber and the controller. Analyzing this trade-off has been the subject of
previous research [JMVM09] and is not the focus of this thesis. Instead, we focus
on the challenging issue of performing efficient hybrid content-based filtering.

With the knowledge of the number of false positives on each link of the network due to
each filter, we can calculate the benefit of a filter, i.e., the false positives reduced by it
in the network, by aggregating all false positives forwarded by it along its downstream
paths.

84

4.4 Selection Algorithms

4.3.2 Penalty

The delay penalty incurred by a filter on its selection primarily deals with the number
of paths between publishers and subscribers along which it forwards events. On its
selection, a filter, say fi, will forward events to the application layer, increasing the
end-to-end latency for these events along all paths that fi is associated to. This means
that while calculating the new average end-to-end latency for the system on selection of
fi, the specific network delays along each path that fi affects have to be replaced with
application delays. Naturally, there is an increase in the average end-to-end latency
and this increase is the calculated penalty for fi.

For the sake of simplicity and without loss of generality, to explain our selection al-
gorithms, we represent penalty in terms of the number of affected paths between pub-
lishers and subscribers as this number directly affects the average end-to-end latency.
Let us assume that the average end-to-end latency of events in the network is Nd,
average end-to-end latency of events when the application layer is involved is Ad, and
total number of paths between publishers and subscribers in the network is TP . Now,
if x is the number of paths involving application layer filtering, then the average end-
to-end latency in the network is [(x ∗Ad) + ((TP −x) ∗Nd)]/TP . Also, the calculation
of ∆ (i.e., average end-to-end latency threshold) in terms of the maximum number
of paths that can be allowed to be affected by application layer filtering delay, say
APTh, follows directly from the previous formulation, and can be calculated as APTh =
(TP ∗ (∆−Nd))/(Ad−Nd). Note that we calculate penalty and the penalty threshold
(i.e., average end-to-end latency threshold) here w.r.t. average delays and represent
them as affected paths for the sake of better understanding of the following sections.
However, in reality, while calculating the penalty, our system can consider the exact
network delay incurred along each path between publishers and subscribers and can
calculate penalty as the exact increase in average end-to-end latency of the system as
described earlier.

4.4 Selection Algorithms

After determining the benefits and penalties for each individual filter in the network,
we proceed to propose two selection algorithms—the Switch Selection Algorithm and
the Cluster-based Selection Algorithm—that differ in time complexity as well as in
quality w.r.t. reduction in false positives.

4.4.1 Switch Selection Algorithm

We can simplify our problem by selecting switches in place of filters that forward events
to the application layer. However, even in this case, we must consider 2n possible

85

4 Expressive Filtering by Combining Application Layer

Algorithm 4 Switch Selection Algorithm

1: R← Set of all switches in the network
2: APTh ← Penalty threshold
3: SR = ∅ // Set of selected switches
4: while R 6= ∅ || APTh 6= 0 do
5: for all R ∈ R do
6: benefitR ← Aggregate benefits of flows on R // Total benefit of R
7: penaltyR ← Aggregate penalties of flows on R // Total penalty of R
8: noBenefit SwitchSet = {R ∈ R : benefitR = 0}
9: APTh exceeded SwitchSet = {R ∈ R : penaltyR > APTh}

10: R = R \ (APTh exceeded SwitchSet ∪ noBenefit SwitchSet)
11: if R 6= ∅ then
12: selectedSwitch = {R ∈ R : benefitR = maxBenefit(R)}
13: SR = SR ∪ selectedSwitch
14: R = R \ selectedSwitch
15: APTh = APTh − penaltyselectedSwitch

subsets of the entire set of n switches in the network for an optimal solution w.r.t.
switches. The question is, can we do something better to reduce this complexity?
The main idea behind the Switch Selection Algorithm (SSA) is to iteratively select
switches, such that the most beneficial switch gets selected in each iteration, till the
given penalty threshold is reached and eventually obtain a subset of switches SR ∈ R
that forward incoming events to the application layer.

We provide a detailed description of the steps of SSA as follows and a formal description
in Algorithm 4. SSA starts by considering the set R, consisting of all switches in the
network, and calculates the benefit and penalty of each switch (cf. Algorithm 4, lines
5-7). The benefit and penalty of each switch is the aggregation of the benefits and
penalties of all filters on it. Next, all switches with no benefit are removed from R.
Also, all switches whose penalty violates the average end-to-end latency (or available
path) threshold are removed from further consideration for selection (cf. Algorithm 4,
lines 8-10). From the remaining switches, the switch with the highest benefit within
the penalty threshold is selected and added to the subset SR and removed from R (cf.
Algorithm 4, lines 12-14).

If the penalty threshold has not been reached, then all remaining switches in R are
again considered for the next cycle. Please recall that the selection of a switch for
application layer filtering may change the number of false positives reduced and the
additional delay incurred by other switches due to the filters on the selected switch.
Assume, a switch Ri having a filter fi, is added to SR. Now, for another switch Rj

∈ R having a filter fj, the benefit and penalty additionally offered by fj need to be
recalculated. Otherwise, the same false positives already reduced by fi will again be
considered for fj. Also, the same path already considered for application layer delay
may again be counted in the delay penalty for fj. So, after determining the benefit and
penalty for fi, all false positives for filters corresponding to fi on subsequent switches
along the downstream paths of fi must be set to zero and the paths marked as already

86

4.4 Selection Algorithms

P1 : 50
P2 : 30

P1 : 40
P2 : 20

60

80

S1

P1

P2

40

40 60

20

R1

R2

R3

R4

R7

R5

R6

S2

80

60

S3

sub1
Stock Value : [$100-$200]

sub2
Stock Value : [$150-$180]

40

R8 R9

6020

R1:{Benefit=340, Penalty=2} R2:{Benefit=300, Penalty=2}

R3:{Benefit=0, Penalty=0} R4:{Benefit=400, Penalty=4}

R5:{Benefit=340, Penalty=4} R6:{Benefit=120, Penalty=2}

R7:{Benefit=80, Penalty=2} R8:{Benefit=160, Penalty=2}

R9:{Benefit=60, Penalty=2}

Figure 4.4: Switch Selection

considered. Now, while calculating the benefit and penalty of fj, none of the false
positives and paths already considered for fi will be reconsidered. So, for each cycle,
the benefits and penalties of all filters on the remaining switches in R are recalculated
based on the filters on switches in SR. The cycles continue until the penalty threshold
is reached, or would be potentially exceeded with any further selection, or if R is empty.

To further explain the aforementioned algorithm, we use an example from Figure 4.4,
where the initially calculated benefits and penalties for each switch ∈ R are depicted.
Let us assume that the average latency threshold ∆ when mapped to the affected
paths threshold APTh (cf. Section 4.2) has the value 3. Of all the switches in R, R4

and R5 get removed as they violate the threshold. Also, R3 can be removed as it
has 0 benefit. According to the algorithm, R1 gets selected as it has maximum benefit
within the given threshold. As a result, at the end of this cycle, R={R2, R6, R7, R8, R9}
and SR={R1}. Since, APTh has not been reached yet, another cycle will commence.
Now, since R1 has already been selected, it will send all events received by it to the
application layer, resulting in no or fewer false positives on its downstream paths. As
a result, the benefits and penalties of the remaining switches need to be recalculated.
In this case, the recalculated benefits and penalties for R2 are 0 and 0, R6 are 40 and

87

4 Expressive Filtering by Combining Application Layer

Algorithm 5 Cluster-based Selection Algorithm

1: R← Set of all switches in the network
2: SB ← Set of all subscriptions
3: APTh ← Penalty threshold
4: CL = clusterFilters(SB,R) // Create a set of dissemination trees
5: SRCl = ∅ // Selected set of switch-filter clusters
6: while APTh 6= 0 do
7: RCl = ∅ // Switch-filter cluster set refreshed every cycle
8: for all cl ∈ CL do
9: R cl← Select switch in cl with highest benefit of filters within penalty threshold

// cf. Algorithm 4
10: RCl = RCl ∪ R cl
11: if RCl 6= ∅ then
12: SRCl = KnapsackSolution(RCl,APTh)
13: updateClusters(CL, SRCl) // Remove already selected switch-filter clusters in

CL from further consideration
14: APTh = APTh −

∑
R cl∈SRCl

penaltyR cl

15: else
16: APTh = 0

1, R7 are 30 and 1, R8 are 160 and 2, and R9 are 20 and 1, respectively. As per the
algorithm, in this cycle, R8 gets removed from further consideration as it violates the
threshold, while R6 gets selected and added to SR. Finally, since the penalty threshold
of 3 is reached, the algorithm terminates with the final set of selected filters returned
as SR={R1, R6}. The switch selection algorithm has a complexity of O(n2).

4.4.2 Cluster-based Selection Algorithm

In SSA, we selected switches instead of filters as a solution considering individual
filters is impractical. However, a solution which is in the middle of these two, would be
interesting to analyze. As a result, in our next algorithm called Cluster-based Selection
Algorithm (CSA), we select filters rather than switches but this time we consider
a group of filters based on the subscriptions they represent. We provide a detailed
description of the steps of CSA as follows and a formal description in Algorithm 5.
In CSA, first, we cluster all binary filters (representing subscriptions on the network
layer) based on their similarity into spatially disjoint groups (cf. Algorithm 5, line
4). There are many subscription clustering techniques proposed in literature and any
one of them may be selected for the clustering of filters [RLW+02b,Gut84]. Since the
filter clusters (i.e., CL) are spatially disjoint, each cluster disseminates a disjoint set
of events in the network, thus giving the notion of separate event dissemination trees
embedded in the network for each cluster. Therefore, in the following description, we
consider each cluster to have its own dissemination tree disjoint from those of other
clusters such that an event gets disseminated along only a single cluster’s tree and can
only affect the false positive count along the links of this tree. For example, Figure 4.5

88

4.4 Selection Algorithms

S1

P1

P2

R1

R2

R3

R4

R7

R5

R6

S2

S4 S3

sub2
Stock Value : [$150-$180]

sub4
Stock Value : [$0-$50] sub3

Stock Value : [$300-$400]

sub1
Stock Value : [$100-$200]

filtersub1
filtersub2

filtersub4 filtersub3

cl3

R1

R2 R4

R7

R5

R6

cl2

R1

R2

R3cl1

cl2cl1

R1

R2 R4

R7

R5

cl3

Figure 4.5: Cluster-based Selection

89

4 Expressive Filtering by Combining Application Layer

illustrates a scenario where 4 subscribers S1, S2, S3, and S4 subscribe for sub1, sub2,
sub3, and sub4, respectively, where the containment relations between subscriptions and
consequently the filters they represent are depicted. Here, we consider a very simple
case with 3 clusters, cl1, cl2, and cl3, that are disjoint in space as can be seen in the
figure. Also, there are three dissemination trees embedded in the network for each of
these clusters.

After clustering of filters, in each cluster ∈ CL, we identify the switch with maximum
benefit within the penalty threshold. So, if a switch Ri gets selected in the cluster clj,
we represent this switch-filter cluster as Ri clj. This process of identifying the most
beneficial switch within each cluster is identical to calculating the benefits and penalties
of each switch in R and selecting the most beneficial and feasible switch as discussed
in details in Section 4.4.1. In this approach, all filters of a switch do not get selected
but only a filter set representing a cluster on the switch gets selected for application
layer filtering. As a result, we get a total of |CL| switches from all the clusters and add
them to a switch-filter cluster set RCl (cf. Algorithm 5, lines 8-10). Let R1, R4, and
R1 be selected in cl1, cl2, and cl3, respectively such that RCl = {R1 cl1, R4 cl2, R1 cl3}.
Note that even though the same switch R1 gets selected for two clusters, the switch-
filter cluster makes each pair unique. Now, we try to find the subset SRCl ∈ RCl that
maximizes the combined reduction of false positives in the network due to all selected
switch-filter cluster pairs ∈ SRCl while ensuring the average end-to-end latency of the
system within ∆.

If all combinations of switch-filter clusters are considered for the solution, then the com-
plexity is O(2|CL|). It should be noted that unlike our original optimization problem,
selection of a particular switch-filter cluster pair for forwarding events to the applica-
tion layer does not affect the reduction in false positive count and the delay penalty of
the other switch-filter cluster pairs as the clusters are disjoint. So, no recalculation of
benefit and penalty need to be done at the switches. This problem can now be solved
by directly mapping it to the Knapsack Problem.

The aforementioned steps produce the subset SRCl that maximizes reduction in false
positives while staying within ∆. However, if the threshold has not yet been reached,
then the entire cycle has to be repeated. In the next cycle, again the benefits and
penalties of switches have to be recalculated for clusters that are part of SRCl. This
is because the selection of a switch from a cluster will affect the benefits and penalties
of switches within the same cluster. Based on the new values, again, |CL| switch-
filter clusters are selected from all the clusters, and the cycle progresses as before with
a new set RCl (cf. Algorithm 5, lines 6-16). The cycles continue till the threshold is
reached or would be potentially exceeded with any further selection. As a result, CSA
has a complexity of O(n2 + n ∗ 2|CL|).

90

4.5 Further Optimizations

4.4.3 Network Updates

Once the filters for forwarding events to the application layer are selected, the controller
makes the necessary changes to the network by modifying the action field of each flow
representing the selected filters. As a result, all events that match these filters get
forwarded to the application layer as dictated by the action field of the flows. Clearly,
the event distribution and the current subscriptions in the system might change over
time degrading the performance of our deployed solution to forward events to the
application layer. So, in order to adapt to changes, the controller periodically collects
information about the false positives (in the recent time window) from the subscribers,
recalculates the most beneficial set of filters, and deploys the changes in the network.

4.5 Further Optimizations

The complexity of both the proposed algorithms depend on the number of switches in
the network, i.e., n. So, these algorithms may be further optimized if we reduce the
search space, i.e., reduce the number of switches on which they operate. In fact, we
identify those switches that would add value to the solution and will be candidates
for the desired solution while neglecting all other switches. A switch is selected as a
candidate if no other switch in the network reduces more false positives than this one
for the same set of paths that this switch affects. In doing so, we identify 3 types of
switches as candidates for selection—a leaf switch connected directly to a publisher, a
switch with two or more ingress ports, a switch connected directly to a switch with two
or more egress ports. All other switches in the network may be ignored. The reason
why these switches are the only ones that make a difference to the solution is because,
due to their ingress ports, they are the starting points of new combinations of paths
and, therefore, will always reduce the most false positives on these path combinations.
This can be understood in the following example depicted in Figure 4.4.

Figure 4.4 shows false positives on each link of the network when two subscribers S1

and S2 subscribe and two publishers P1 and P2 publish events. Let us focus on switch
R1 which is directly connected to P1. If R1 is selected to forward events for further
filtering, the number of false positives it will decrease in the network is 340. Also,
selection of R1 introduces application filtering delay along two paths, i.e., between
P1—S1 and P1—S2. For the same two paths, we need to check if any other switch
reduces more false positives. In fact, R2 reduces 300 false positives while incurring a
delay penalty of 2 for the same two paths. As R1 is the starting point of the path
combination consisting of these two paths, it will always reduce more false positives
than R2 for the same penalty. As a result, R1 gets selected as a candidate while switches
like R2, which are guaranteed to have less benefit for the same penalty, can safely be
ignored for further consideration as they will never be a part of the desired solution.
A switch like R4 with two or more ingress ports, however, must be considered as it

91

4 Expressive Filtering by Combining Application Layer

is a switch where multiple paths join. As a result, for this new combination of paths
(P1—S1, P1—S2, P2—S1, and P2—S2), this switch will always have the most benefit
as it is the starting point of this path combination in the switch network. So, a switch
like R5, with two or more egress ports makes no difference to the solution as its benefit
is less than R4, while it affects the same paths as R4. Again, a switch like R6 that is
directly connected to a switch with two or more egress ports that splits paths, poses as
the source of a new combination of paths, i.e., P1—S1, and P2—S1, and therefore must
be considered for further processing. The example shows how the aforementioned three
types of switches should only be considered for further processing without adversely
affecting quality of the solution. Pruning the network has a complexity of O(n) and
can reduce the runtime of SSA and CSA without degrading their quality. Of course,
the effectiveness of this optimization depends largely on the paths between publishers
and subscribers.

4.6 Performance Evaluations

This section is dedicated to an analysis of the proposed hybrid pub/sub middleware
and its comparison to purely network layer-based and purely application layer-based
implementations. A series of experiments are conducted to understand the effects of
the design on performance metrics such as end-to-end latency for event dissemination
and bandwidth efficiency in terms of false positives disseminated in the network. We
further compare the performances of the two proposed selection approaches, SSA and
CSA, in terms of benefit and complexity.

4.6.1 Experimental setup

The following experiments have been evaluated under two test environments (cf.
Chapter 2)—1) the SDN-testbed (SDN-t-hswitch) comprising a hardware Whitebox
Openflow-enabled switch from Edge-Core and commodity PC hardware, and 2) emu-
lated networks running on a single machine using Mininet (SDN-m). The latency-
related experiments were conducted on SDN-t-hswitch. Besides the SDN-testbed, we
used SDN-m to experiment with up to 337 switches and 729 end-hosts on different
topologies.

We used a content-based schema that contains up to 6 attributes, where the domain of
each attribute varies in the range [0,1023]. We use both real-world workload as well as
synthetic workload to conduct our experiments. For synthetic data, we, again, use both
uniform and zipfian distributions. Also, for real-world workload, we, again, use data
in the form of stock quotes procured from Yahoo! Finance containing a stock’s daily
closing prices. Such real world data further highlights the performance and importance
of the hybrid approach under realistic scenarios.

92

4.6 Performance Evaluations

4.6.2 Comparing with State-of-the-Art

1e+6

2e+6

3e+6

4e+6

5e+6

6e+6

1k2k 4k 8k 16k

To
ta
l
Ne
tw
or
k
FP
s

of Subscriptions - (a)

PLEROMA
HYB-M

1k

2k

3k

4k

5k

6k

1k2k 4k 8k 16k

En
d-

to
-E

nd
 L

at
en

cy
(μ
s)

of Subscriptions - (b)

APP-M
HYB-M

PLEROMA

Figure 4.6: Performance Evaluations : Comparing with State-of-the-Art

The first set of experiments compares the performances of the hybrid middleware
(HYB-M), a purely network layer-based middleware (PLEROMA), and a purely applic-
ation layer-based middleware (APP-M). PLEROMA, of course, implements SDN-based
in-network filtering. Moreover, please recall from Chapter 2 that we implemented the
purely application layer-based middleware APP-M as a parallelized matching pub/sub
service where we divided the event-space into 16 partitions and assigned them to 16
matchers running on 16 cores to enable one-hop forwarding of events as performed in
Bluedove [LYK+11]. All measurements in the application layer have been performed
corresponding to this configuration. Also, the application layer has been hosted on a
3.10 GHz machine with 40 cores.

93

4 Expressive Filtering by Combining Application Layer

Please recall that the performance of the hybrid middleware can be regulated by ad-
justing the value of ∆. In the following experiments we represent this threshold value
in terms of a factor of the application layer filtering delay, such that a factor of 0 implies
pure network filtering and a factor of 1 implies pure application layer filtering. Also,
HYB-M uses SSA for switch selection such that we can compare the performance of
a pessimistic hybrid approach with state-of-the-art solutions, rather than CSA which
outperforms SSA w.r.t. reduction in false positives as can be seen later in this section.

Figure 4.6(a) depicts the performance of HYB-M and PLEROMA w.r.t. total false
positives in the network, i.e., the sum of all false positives on all links, with increasing
number of subscriptions when 10,000 events are disseminated. Since APP-M performs
accurate filtering of events in software, we do not plot its performance in this graph.
For a threshold factor of 0.6, the figure shows that the false positives for HYB-M are
much less in every case than those for pure in-network filtering. Even though the
hybrid middleware performs better as compared to PLEROMA in terms of bandwidth
efficiency, it comes with a price. Figure 4.6(b) depicts the plots for average end-to-end
latency with increasing subscriptions for all 3 systems. The figure shows that pure
network-layer filtering has minimum latency in the order of a few microseconds. Also,
the increase in number of subscriptions has no influence on latency. On the other
hand, APP-M has the worst performance with latency, in the order of milliseconds,
which increases with increasing number of subscriptions because, in software, more the
number of subscriptions, more will be the time needed to match events. The figure
shows that hybrid filtering results in latency less than that of APP-M but greater than
that of PLEROMA, as a certain percentage of events are now affected by application
layer filtering delay. However, both bandwidth efficiency and latency of the hybrid
approach may be regulated by adjusting the threshold factor, i.e., ∆, which is clearly
visible in the following set of experiments.

4.6.3 Impact of Threshold Factor

Figure 4.7(a) and Figure 4.7(b) show the effects on bandwidth efficiency and latency
in a system with 8000 subscriptions when the threshold factor is increased from 0 to 1.
In Figure 4.7(a), the term benefit signifies the percentage of false positives reduced by
HYB-M w.r.t. the false positives occurring in PLEROMA. With the threshold factor
set to 0, HYB-M has no benefit as it is comparable to pure in-network filtering. With
increasing threshold factor, the benefit gradually increases. However, this also implies
an increase in average end-to-end latency, as depicted in Figure 4.7(b). It should be
noted that a factor of 1 is comparable to APP-M w.r.t. latency. However, even in
this case the benefit will not be 100% as the false positives on the links between the
publishers and the switches they are directly connected to will remain in the system.

94

4.6 Performance Evaluations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

B
e
n
e
f
i
t

[
%
]

Threshold Factor - (a)

Hybrid

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.2 0.4 0.6 0.8 1

E
n
d
-
t
o
-
E
n
d

L
a
t
e
n
c
y
(

μs
)

Threshold Factor - (b)

Hybrid

Figure 4.7: Performance Evaluations: Impact of Threshold Factor

4.6.4 SSA vs CSA

The next set of experiments evaluates and compares the performance, in terms of
benefit and complexity, of the two proposed selection algorithms – SSA and CSA. Fig-
ure 4.8(a) depicts the benefit of SSA and CSA with increasing number of subscriptions.
For these experiments, we used 16 clusters for CSA. The figure shows that, in each
case, CSA has higher benefit than SSA. This is because CSA has higher flexibility w.r.t.
selection of filters as it chooses groups of filters within a switch rather than all filters
on it as is the case in SSA. We also conducted experiments to see the behavior of both
methods when the threshold factor is gradually increased in the system. Figure 4.8(b)
shows that with increasing threshold, the benefit increases in both approaches and
CSA performs consistently better than SSA.

Please note that the performance of CSA largely depends on the number of clusters
used by it and as a result our next set of experiments is conducted to analyze the
effect of increasing clusters on CSA. Figure 4.8(c) clearly depicts that, with increasing
number of clusters, the performance of CSA improves further as its flexibility of filter
selection increases manifold. Of course, when a single cluster is used, CSA is essentially
reduced to SSA. We conducted the above experiments using real-world workload which
clearly highlights the bandwidth efficiency achievable by the hybrid middleware under
realistic scenarios even for a threshold factor of just 0.4.

Even though CSA offers higher benefit than SSA, it loses out to SSA in terms of runtime
overhead. We conducted experiments to compare the runtime of both algorithms.
Figure 4.8(d) shows that with increasing number of subscriptions, the runtime of both
approaches increases. This is because, higher the number of subscribers in the system,
higher will be the number of paths and filters on switches to be considered, thus

95

4 Expressive Filtering by Combining Application Layer

 0

 10

 20

 30

 40

 50

 60

 70

1k2k 4k 8k 16k

B
e
n
e
f
i
t

[
%
]

of Subscriptions - (a)

SSA
CSA

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
e
n
e
f
i
t

[
%
]

Threshold Factor - (b)

SSA
CSA

 0

 20

 40

 60

 80

 100

1 4 8 16 32

B
e
n
e
f
i
t

[
%
]

of Partitions - (c)

CSA

 0

 200

 400

 600

 800

 1000

 1200

2k 4k 6k 8k 10k

R
u
n
t
i
m
e

[
m
s
]

of Subscriptions - (d)

SSA
CSA

Figure 4.8: Performance Evaluations: SSA vs CSA

increasing the runtime. Also, the runtime of CSA is consistently higher than that
of SSA, as in each iteration of CSA, not only does the most beneficial switch get
determined in each partition, but also all combinations of switch-filter clusters are
considered to achieve a high quality solution.

4.6.5 Discussion

Our evaluation results clearly show that the designed hybrid middleware can explore
the entire range of performances (w.r.t. bandwidth efficiency and end-to-end latency)
between those of PLEROMA and APP-M by adjusting the threshold factor. The
results provide a clear insight into the performances of all three systems, highlighting
their benefits and drawbacks. Moreover, results confirm that CSA has higher benefit

96

4.7 Related Work

than SSA. However, as expected, the runtime overhead of CSA is higher than that of
SSA. So, while choosing between SSA and CSA, one needs to consider the trade-off
between quality and complexity.

4.7 Related Work

The importance of a scalable and elastic pub/sub middleware providing high through-
put and low end-to-end latency has always been impressed upon. In recent times,
significant contributions in this respect have been made possible with the emergence
of cloud computing which has driven the idea of realizing pub/sub middleware as a
cloud service. Li et al. present BlueDove [LYK+11], an attribute-based pub/sub ser-
vice, that targets parallelism of the event filtering process. Bluedove organizes multiple
servers into a scalable overlay as candidates for one-hop forwarding of events. Based
on a multi-dimensional subscription space partitioning technique for the distribution
of subscriptions between servers, BlueDove exploits skewness in data distribution for
performance-aware event filtering at the least loaded servers. In fact, we use similar
techniques to implement our application layer.

Similarly, Barazzutti et al., also, focus on parallelizing the event filtering process by
designing StreamHub [BFF+13], a scalable pub/sub service based on a tiered archi-
tecture. StreamHub comprises a set of independent operators that take advantage of
multiple cores on multiple servers to perform pub/sub operations which include sub-
scription partitioning, event filtering, and event dispatching. Scalability of StreamHub
is further supported with elasticity in e-StreamHub [BHM+14], which is capable of
scaling in and scaling out depending on load observations of the system to improve
system throughput. Although the performance of these services is ahead of traditional
broker-based overlay implementations, they are curbed by the limitations of filtering
in software.

As mentioned earlier, in literature, we find efforts towards realizing a topic-based
pub/sub middleware that performs event filtering and routing within the network.
As discussed in the previous chapters, LIPSIN [JZER+09] proposes an efficient multic-
ast strategy to route events on the network layer using Bloom filters. LIPSIN performs
routing similar to source-routing where the set of links to be traversed by the packet
is encoded in the packet header. This encoding is restricted by the available bits in
the packet header, resulting in the generation of fixed length Bloom filters. The use of
fixed length Bloom filters to encode links implies the presence of false positives in the
network impeding bandwidth efficiency of the system. Clearly, the data plane limita-
tions highlight the cost that network layer implementations need to bear in order to
achieve line-rate performance. Thus, the need to combine filtering at both layers, to
strike a balance between their performances, is quite apparent.

97

4 Expressive Filtering by Combining Application Layer

4.8 Conclusion

In this chapter, we propose, implement and thoroughly evaluate the performance of a
hybrid content-based pub/sub middleware. To the best of our knowledge, we are the
first to combine filtering of events in application and network layers in the context of
content-based pub/sub. We provide algorithms with various associated complexities
and benefits to determine the layer in which each event gets filtered such that the
overall false positives in the system can be minimized while staying within an average
end-to-end latency threshold. The evaluation results show that our hybrid middleware
can be configured by an application to various settings ranging from pure network layer
filtering to pure application layer filtering by adjusting the average end-to-end latency
threshold in order to achieve desired performance.

98

Chapter 5
Addressing TCAM Limitations

The previous chapters focus on in-network content-based filtering on software-defined
networks and the problems (in terms of expressiveness) faced by content filters due to
hardware limitations with respect to limited number of bits available for representation
of each filter in match fields of flows. However, so far, we have not considered another
very crucial limitation of hardware switches that can have a serious impact on PLER-
OMA. This happens to be the limitation on the number of flow table entries available
for content-based filtering in the TCAM of switches.

TCAM is an expensive, power-hungry resource and as a result the number of flow
table entries (forwarding rules) available for content-based filtering is limited in hard-
ware switches. Most switch vendors design Openflow-enabled switches that typic-
ally support up to a few thousand flow entries per switch [CMT+11, KARW16], and
such a hardware limitation has already been the subject of much research in the
past [KLRW13, CMT+11, KARW16]. The main reason behind the design of TCAM
with such limited space is the inherent trade-off between table size and other factors
such as power and cost. In fact, studies show that compared to conventional RAM,
TCAM consumes almost 100 times more power [STT03] and has almost 100 times
more cost [100]. As a result, applications should only rely on a limited number of flow
entries for their design.

Interestingly, the growth of routing table is a common problem faced by most routers
and switches today. For example, in August 2014, Microsoft Cloud, Ebay, Lastpass
along with some others were hit by outages as a result of full BGP routing tables [512].
The TCAM in affected Cisco routers had a default limit of 512k entries for IPv4
routes which was exceeded, causing a spillover effect. So, with a growing demand
in connectivity, the limited TCAM resources must be judiciously utilized. In fact,
the number of available flow entries largely depend on the match fields used. For
example, in an Openflow-enabled switch such as NEC PF5240, the TCAM size for IPv6
traffic is further reduced as compared to the TCAM size for IPv4 traffic. Moreover,

99

5 Addressing TCAM Limitations

considering traffic from various applications being routed over the switches of a network,
the number of flow entries reserved for content-based routing is merely a fraction of
the entire capacity of TCAM on a switch. As a result, to abide by the limit on number
of available flow entries on TCAM, expressiveness of content filters may need to be
compromised to allow for limited flows representing multiple aggregated filters.

So, in this chapter, given the constraint on available flow table entries, we propose the
deployment of aggregated filters (i.e., merged flows) on switches. However, aggregation
(or merging) of filters may compromise preciseness of the filters w.r.t. the subscriber
interest they represent, increasing unnecessary traffic in the network. This may signi-
ficantly impact bandwidth efficiency in a content-based pub/sub system where much
of the benefit provided by content-based routing would be rendered less effective due
to the aggregation of filters. As a result, this chapter focuses on minimizing bandwidth
usage by unnecessary traffic in the network despite the given constraint on available
TCAM for pub/sub traffic by judiciously making filter aggregation decisions based on
multiple factors. In particular, we design techniques that use the knowledge of advert-
isements, subscriptions, and global network state to optimize the aggregation process
such that the overall amount of unnecessary traffic in the network can be kept to a
minimum. We realize and thoroughly evaluate, in both emulated environments and a
real SDN testbed, a filter aggregation algorithm with different flavors having varying
degrees of accuracy and complexity. Our evaluation results show that, in order to
respect TCAM constraints of individual switches, the designed algorithm can perform
efficient aggregation decisions that result in almost negligible unnecessary traffic in the
network under realistic workload. In fact, it reduces unnecessary traffic introduced in
the network due to aggregation by a baseline approach by up to 99.9%.

5.1 Impact of TCAM Limitations on PLEROMA

From the discussion on spatial indexing of content and its subsequent conversion to
flow entries in Chapter 2, it is quite evident that more expressive representation of sub-
scriptions demands the installation of multiple flows on a switch. In fact, as mentioned
before, even a single subscription may yield multiple dzs which results in multiple flow
entries (cf. Figure 2.2). Also, typically, applications using content-based pub/sub may
have up to millions of subscribers which might require deployment of millions of filters.
With such high demand of TCAM resources, it is very natural to run out of TCAM
space in such applications. A limited number of available flow table entries implies two
paths of action—ignoring any subsequent subscription filters once TCAM capacity is
reached, or aggregating flows to reduce occupied TCAM space. The former will lead
to false negatives (i.e., events that are not forwarded to interested subscribers), which
is of course not acceptable in the context of this pub/sub middleware, and the latter
may result in false positives (i.e., events that are forwarded to uninterested subscribers)

100

5.2 Filter Aggregation Problem

which means unnecessary bandwidth usage. In this chapter, we employ the latter, i.e.,
aggregate or merge filters, while also striving for bandwidth efficiency.

Before we discuss the details of the filter aggregation problem, it is important to un-
derstand the manner in which we can merge flows and the impact of these merges.
When a flow fli is merged with a flow flj, the match field of the resultant flow flr has
a dz that covers both dzfli and dzflj . In the context of spatial indexing, this effectively
means that the resultant dz is the longest common prefix of the two dzs. For example,
if dzfli={1101} and dzflj={1110}, then dzflr={11}. Also, the instruction set for flr
will be the union of outgoing ports (i.e., oP) of fli and flj. So, if oPfli={1,2} and
oPflj={2,3}, then oPflr={1,2,3}. Note, according to the previously defined flow con-
tainment relations (cf. Chapter 2), flr � fli and flr � flj irrespective of the relation
between fli and flj. Here, we also define two other operations ‘+’ and ‘-’ in the con-
text of dzs. The expression dz1 + dz2 simply refers to the two subspaces representing
the two dzs being addressed together. The expression dz1 - dz2 refers to that part of
the subspace representing dz1 that does not overlap with dz2. In this example, after
the aggregation, flr forwards all traffic matching {11} through ports {1,2,3} which
means that all traffic lying in the subspace {11-1101} are false positives forwarded by
port 1, all traffic lying in the subspace {11-1110} are false positives for port 3, and all
traffic lying in the subspace {11-(1101+1101)} are false positives for port 2. So, we see
how even a single merge (merely aggregating two flows) can result in forwarding of a
significant amount of false positives in the network.

5.2 Filter Aggregation Problem

It is clear from the above discussion that it is very important to select the combination
of flows that should be merged on a switch as the decision directly impacts false posit-
ives in the system. As a result, in this thesis, we address the filter aggregation problem.
More specifically, we consider a given system where switches may need to install sets
of flows that are more than the TCAM capacity available to them and attempt to
aggregate flows from the given set of original flows to meet the capacity requirements
of individual switches in a bandwidth-efficient manner. Note that different switches
may have different TCAM capacities available to pub/sub traffic, depending on other
applications using these switches, as specified by the system administrator.

5.2.1 Problem Statement

More formally, let R be the set of all switches in the network and FRi
be the set

of all flows (or filters) that should be deployed for a given set of advertisements and
subscriptions on switch Ri where fl ∈ FRi

. Let capRi
be the maximum TCAM capacity

of switch Ri available for pub/sub traffic. For each switch Ri, we need to determine a

101

5 Addressing TCAM Limitations

S2

P1
S1 sub1

sub2

2

3
1 R3R1

2
1

R2
21

fl1 1 1101* 2

fl2 1 1110* 2

iP dz oP

fl1 1 1101* 2

fl2 1 1110* 2

iP dz oP

fl1 1 1101* 2

fl2 1 1110* 3

iP dz oP

1101

1110

S2

P1
S1 sub1

sub2

2

3
1 R3R1

2
1

R2
21

fl1 1 1101* 2

fl2 1 1110* 3

1101

1110

S2

P1
S1 sub1

sub2

2

3
1 R3R1

2
1

R2
21 1101

1110
flr 1 11* 2

fl1 1 1101* 2

fl2 1 1110* 2

flr 1 11* 2

flr 1 11* 2

flr 1 11* 2,3

adv1
11

(a)

(b)

(c)

Figure 5.1: Importance of upstream switch filters

set of flows SFRi
belonging to and aggregated from FRi

that is within the given TCAM
capacity. Let CRi

be the aggregation cost, in terms of unnecessary traffic forwarded due
to aggregation of filters, of Ri. So, our objective is to determine the set SFRi

subject

to |SFRi
| ≤ capRi

for each Ri ∈ R such that
∑|R|

i=1 CRi
, i.e., overall unnecessary traffic

in the network due to aggregation of filters, is minimum.

5.2.2 Problem Analysis

The defined problem specifies minimizing the aggregation cost on each individual switch
such that the overall false positives in the network also get minimized. The aggregation
cost of a switch is nothing but the sum of the aggregation cost of all the flow merges

102

5.2 Filter Aggregation Problem

made on that switch to meet the TCAM capacity of that switch. As a result, while
deciding on the filters to be aggregated on a switch, the aggregation cost of each possible
merge should be calculated. However, just looking at the flow information local to a
switch for a possible local merge is not the optimal way to determine its cost as our
investigation into the defined problem shows that existing filters on other switches in
the network have a significant role to play on the aggregation cost of a merge. In
fact, the main challenge in the filter aggregation problem is the determination of the
aggregation cost of each possible merge on a switch which depends largely on the
already installed filters on switches in the upstream paths of the aggregated filter.

To understand the importance of filters on switches in the upstream paths of a filter
being considered for a merge, we look at an example depicted in Figure 5.1. Fig-
ure 5.1(a) shows a system with a publisher and two subscribers and their respective
advertisement and subscriptions which result in the deployment of the depicted flows
on the three switches. Each flow is depicted by the flow name, incoming port (iP),
dz constituting the destination IP address, and the outgoing ports (oP) in IS. Let us
assume that R2 can only accommodate a single flow. As a result, fl1 and fl2 on R2

are merged, in the manner explained in Section 5.1, to compose flr as depicted in
Figure 5.1(b). fl1 and fl2 had the same incoming and outgoing ports and as a result
only the filter subspace in flr gets expanded. Now, R2 will forward all traffic matching
{11*} instead of just {1101*} and {1110*}. However, if we look upstream, we see that
R1 will already filter out any traffic that does not lie within the subspaces {1101} and
{1110} in Ω. As a result, the merge at R2 does not impact the false positives in the
system as R2 does not receive any additional false positives from its upstream path
and acts only as a forwarder in Figure 5.1(b). However, the scenario is different in
Figure 5.1(c) where there is a need to merge the two flows on R1. In this case, not only
does R1 forward all traffic matching {11*} but also these false positives get forwarded
by R2 due to the aggregation of its filter. At R3 too, owing to a merge, these false
positives from previous switches do not get filtered out. In fact, as the resultant flow
combines the outgoing ports of the two original flows fl1 and fl2 on R3, false positives
are now forwarded along both downstream links of R3. Port 2 forwards false positives
lying within the subspace {11 - 1101} and port 3 forwards those lying within {11 -
1110}. If the upstream filters at R1 or R2 were precise, then flr on R3 would only
forward false positives lying within {1110} through port 2 and {1101} through port 3
as the remaining would be filtered out upstream. This example clearly indicates that
(i) even if filter expansion occurs, false positives forwarded by a merged flow depends
on the filter aggregation on upstream switches. Also, (ii) even if no filter aggregation
occurs on the upstream path, an aggregation involving merging of two or more flows
whose outgoing ports are not subsets of each other will result in traffic, meant to be
forwarded by one port, being forwarded by the remaining ones as well. This will always
result in false positives along all involved outgoing ports (cf. R3 in Figure 5.1(c)).

Clearly, due to the importance of flows in the upstream paths, a merge on a switch

103

5 Addressing TCAM Limitations

based on flow information local to that switch is not the most optimal solution. As
a result, while calculating the cost of a possible merge on a switch, we propose to
consider the global view of the network state to avoid as much unnecessary traffic as
possible due to aggregation.

5.3 Filter Aggregation Algorithm

While defining our filter aggregation problem, we specify that the input to the problem
is a set of flows which need to be aggregated to meet the TCAM capacity of the
switches, and this set of flows is maintained by the controller based on the current
subscriptions and advertisements in the system. Let us assume that ER ∈ R is the
set of switches in the network where one or more flow(s) need to be aggregated, i.e.,
∀Ri ∈ ER, |FRi

| > capRi
. So, now, we need to reduce the number of flows according to

the given capacity on each switch in ER.

Approach Overview: As discussed in the previous section, our objective is to reduce
the combined aggregation cost of all switches in the network. So, it is important to
reduce the aggregation cost of each individual switch. While doing so, we try to
aggregate those flows that result in minimum aggregation cost for the switch while
staying within the maximum available TCAM capacity. As a result, the main idea
behind the filter aggregation algorithm is to calculate the aggregation cost of each
possible flow merge on a switch R ∈ ER, and then select a combination of those flow
merges that would result in minimum combined aggregation cost for the switch below
its designated capacity. As we saw in the previous section, the aggregation cost of
a possible merge depends on filters installed on previous switches. In fact, the main
challenge that the filter aggregation algorithm faces is the determination of an efficient
cost function for a possible merge that captures various factors of the aggregation cost,
including dependencies on upstream switch filters.

So, in the remaining part of this section, we introduce the details of the mechanisms
used to (i) identify the possible combinations of flow merges on each switch, (ii) cal-
culate the cost and benefit for each of these flow merges, (iii) select the set of merges
resulting in minimum aggregation cost for the switch such that the resulting number
of flows is within the capacity threshold for the switch.

5.3.1 Filter Aggregation on a Switch

While discussing the details of our proposed filter aggregation algorithm, we, first, ex-
plain the method of determining all possible flow merges on the switch being considered
for aggregation, and then provide methods to select merges from these possibilities such
that minimum aggregation cost is incurred for that switch.

104

5.3 Filter Aggregation Algorithm

*

0 1

mk

fl3

fl1 fl2

fli flj

1 : 0000101 : 2,3 1 : 00001111 : 3

flm1
= 1 : 00001 : 2,3

1 : 0001101 : 2

flm2
= 1 : 000 : 2,3

m2

000

m1

00001

Figure 5.2: Merge Point Tree for Incoming Port 1

5.3.1.1 Determining Possible Flow Merges

When a switch exceeds its flow limits, various combinations of flows may be merged
to reduce the flow count on that switch. We denote every possible merge as a merge
point. So, the objective is to select an ideal set of merge points on a switch that has
minimum combined aggregation cost. In fact, to determine all possible merge points on
a switch, we create a prefix tree called the merge point tree which contains all possible
merge points. However, not all flows can be merged to create a merge point. Two
flows cannot be merged if one of the outgoing ports of a flow is the incoming port of
the other. This will lead to cycles in the network and we call these flows with such a
conflicting relation as conflicting flows. So, clearly, merge points are only possible for
non-conflicting flows. For the sake of simplicity, we create a separate merge point tree
for every incoming port of a switch, i.e, merge points in the tree merge flows that have
the same incoming port. This ensures the absence of conflicting flows within each tree
as this eliminates the possibility of merging two flows where the incoming port of one
is among the outgoing ports of the other. Of course, while selecting the ideal set of
merge points for a switch, all merge points across all trees are considered.

So, a merge point tree is a prefix tree where every non-leaf node is a merge point
and every leaf node is a flow. In the tree, a merge point signifies the minimum filter
expansion required to cover two or more unrelated filters. So, a flow is merged with
another flow if this results in minimum filter expansion for this flow as compared to
the filter expansion when merged with others. The first step towards creating a merge

105

5 Addressing TCAM Limitations

point tree is to identify the flows ∈ F with the longest common prefixes among all
flows and perform their respective merges to create merge points. So, within the tree
these identified flows with longest common prefixes form the lowest level nodes and the
newly created merge points form the nodes at the immediate upper level of the tree.
At the following upper levels, merging according to longest common prefix continues,
this time with not only the remaining flows but also the merge points from the lower
levels, until we finally arrive at the root of the merge point tree which represents a filter
covering the entire event space Ω. For example, Figure 5.2 depicts a merge point tree
aggregating all flows with a specific incoming port 1. This merge point tree depicts
merge points and flows where flows have the format iP : dz : oP . In this example, let
us assume that fl1 and fl2 have the longest common prefix, i.e., {00001}, among all
flows and, therefore, reside on the lowest level of the tree. So, when they are merged,
their immediate merge point is m1 with a dz of {00001}. So, the resultant flow at
m1, i.e., flm1 , represents the filter with minimum expansion required to forward the
traffic for both fl1 and fl2. We continue building the tree upwards, now, with not
only remaining flows but also all newly created merge points from the already existing
levels. So, let us assume that a flow fl3 shares the longest common prefix with m1.
So, at the next upper level, m1 and fl3 are merged to create m2. Please note that two
merge points of a level may similarly be merged based on their common prefixes. The
entire merge point tree is built once the root representing the entire space is reached.
A merge point tree contains all flows on the switch and all possible merges signified by
the merge points. Since a merge point merges all flows belonging to its child nodes,
clearly, a merge point in the upper level of the tree merges more flows as compared to
a merge point at a relatively lower level. For example, aggregation at m1 reduces the
flow count on the switch by 1 as flm1 aggregates 2 flows. However, aggregation at m2

at an upper level reduces flow count by 2 as flm2 aggregates 3 flows fl1, fl2, and fl3.
Even though m2 reduces more flows, there is a possibility that it forwards more false
positives as the filter expansion for fl1 and fl2 is more at m2 than at m1.

5.3.1.2 Selecting Flow Merges on a Switch

We provide a detailed description of the steps of the flow selection process as follows
and a formal description in Algorithm 6. Once the set of all merge points (M) across
all merge point trees are determined for the switch being processed, the aggregation
cost (denoted by C) for each of them is calculated to determine the final set of merges
on the switch. We explain the cost calculation at each merge point in details in the
following Section 5.3.2. Having calculated the aggregation cost (C) for every possible
merge point across all merge point trees of a switch, we also determine the benefit
(denoted by B) of each merge. The benefit is, simply, the number of flows reduced on
the switch due to the merge, i.e., Bm = number of flows covered by merge point m - 1
(cf. Algorithm 6, line 4). Next, we calculate the cost per benefit of each merge point
m, i.e., Cm/Bm (cf. Algorithm 6, line 5). For a switch, say Ri, we start selecting merge

106

5.3 Filter Aggregation Algorithm

Algorithm 6 Selection of Flow Merges on a Switch Ri

1: M ← Calculate all merge points on Ri
2: for all m ∈M do
3: Cm ← Calculate aggregation cost of m (cf. Algorithm 7)
4: Bm = |Fm| - 1
5: costPerBenefitm = Cm/Bm
6: SFRi

= FRi

7: while |SFRi
| > capRi

do
8: C per B Set = {costPerBenefitm : m ∈M}
9: mselected = {m ∈M : costPerBenefitm = min(C per B Set)}

10: SFRi
= SFRi

\ Fmselected

11: SFRi
= SFRi

∪ flmselected

12: Update M

points with minimum cost per benefit for the final set of selected flows (i.e., SFRi
) on

Ri.

We start by initializing SFRi
to the set of all original unaggregated flows (cf. Al-

gorithm 6, line 6). Then, we select the merge point, say mselected, with minimum cost
per benefit from the set of all merge points (cf. Algorithm 6, line 9). Once mselected

gets selected, (i) all original flows covered by mselected are removed from SFRi
, (ii) the

flow flmselected
at mselected is added to SFRi

, (iii) the next step depends on one of the
following three scenarios—(a) if a merge point mj is covered by the selected merge
point mselected (i.e., mselected � mj), then mj is removed from the set of merge points as
it is now redundant, (b) if a merge point mj covers the selected merge point mselected

(i.e., mj � mselected), then mj cannot be removed but its cost and benefit get reduced
as some of its cost and benefit have already been considered when selecting mselected,
and (c) if mselected has no relation with any other merge point then no action is taken.
After each selection, the next merge point with least cost per benefit is selected until
|SFRi

| ≤ capRi
, i.e., the number of flows on Ri is within the TCAM capacity of the

switch (cf. Algorithm 6, lines 7-12).

Once the final set of flows for every switch which exceeds TCAM capacity is determined,
the flow changes are pushed onto the physical network and all hardware switches in the
network are updated accordingly. This concludes the final step of the filter aggregation
algorithm.

5.3.2 Aggregation Cost at a Merge Point

As the final selection of merge points on a switch depends largely on their cost per
benefit value, determination of the cost (in terms of false positives forwarded by the
aggregated filter) for each merge is an integral part of this algorithm. The aggregation
cost of a possible merge is nothing but the amount of additional network false positives
that the merge could introduce in its downstream paths.

107

5 Addressing TCAM Limitations

So, in order to calculate the cost of a merge point, say m, we need to, firstly, identify
the incoming traffic at the incoming port of the merged flow flm at m as only this
traffic is relevant for forwarding by flm. With regards to incoming traffic, note, there
may be multiple incoming paths (iPaths) from multiple publishers that forward traffic
to the incoming port of flm. The key factors in determining the incoming traffic are the
traffic load of each publisher intended to be forwarded along iPaths and the upstream
switch filters which influence the filtering of this published traffic.

Secondly, we need to identify the false positives (fp) from this incoming traffic that
flm forwards along its downstream paths. While calculating downstream false positives
forwarded by flm for a specific path, note that each outgoing port, op ∈ oP , of flm has
its own set of downstream paths to subscribers. Let the number of downstream links of
the downstream paths of an outgoing port be denoted by dLinks. Also, each outgoing
port forwards its own share of false positives after the merge based on the traffic it was
meant to forward as per the original flows. For example, at m1 in Figure 5.2, outgoing
port 2 forwards false positives lying within the subspace {00001-0000101} after the
merge as this port originally forwarded events matched only by fl1. On the contrary,
all traffic lying within {00001-(0000101 + 00001111)} are false positives for outgoing
port 3 after the merge, as this port originally forwarded events matched by both fl1
and fl2.

So, with regards to the amount of false positives forwarded by each outgoing port,
op ∈ oP , of flm, the key factors are, first and foremost, the expansion in filter space
due to the aggregation of the original filter spaces, the incoming traffic along each path
∈ iPaths, and the number of downstream links along the downstream paths of op. So,
broadly speaking, the aggregation cost of a merge point is as follows :

C =
∑

p∈iPaths

∑
op∈oP

fppop ∗ dLinksop (5.1)

In fact, the two flavors of cost calculation proposed in this chapter—load-based method
and pattern-based method—differ only in the manner of determining the false positive
value, i.e, fp in Equation 5.1 as discussed later in this section. The load-based method
estimates resultant network false positives due to the merge by using the knowledge of
incoming traffic load, whereas the pattern-based method collects and inspects published
event packets to accurately determine network false positives introduced due to the
merge by not only using the knowledge of traffic load but also traffic pattern in Ω.

In the remaining part of this section, we introduce the details of (i) determining the
incoming traffic at a merge point and (ii) determining false positives from this incoming
traffic along the downstream paths of the merge point. As explained above, these two
steps together determine the aggregation cost, C, of a merge point. In the following, we
provide a detailed description of the steps of aggregation cost calculation along with a
formal description in Algorithm 7.

108

5.3 Filter Aggregation Algorithm

Algorithm 7 Aggregation cost calculation at a merge point m

1: procedure calculateAggregationCost(m) do
2: pubSet← Set of all upstream publishers with advertisements overlapping with dzflm
3: C = 0 // Aggregation cost
4: for all P ∈ pubSet do
5: C+ = computeCostOnPath(P, flm)
6: return C
7: procedure computeCostOnPath(P, flm) do
8: uFilters← Get all relevant path filters between P and flm // Set of upstream filters

with flow relations to flm along the path to P
9: mfgDzs = {dzfl : fl ∈ uFilters}

10: for all fli ∈ uFilters do
11: for all flj ∈ uFilters do
12: if fli 6= flj ∧ dzfli � dzflj then
13: mfgDzs = mfgDzs \ dzfli
14: mfgDzs = mfgDzs ∩DZ(P) ∩ dzflm // dzs of most fine-grained upstream filters
15: costOnPath=0
16: for all oP ∈ flm do
17: FoP = {fl ∈ Fm : oPfl = oP} // set of flows being merged (Fm) at m that have oP

among their out ports
18: fpSpace = mfgDzs \ (∪fl∈FoP

dzfl ∩mfgDzs) // False positive subspace
19: dLinks← No. of downstream links of oP
20: if Load-based Method then
21: adSpace =

∑
dz∈DZ(P) dz // advertised subspace

22: ptraffic ← Traffic published in the advertised subspace
23: costOnPath+ = (fpSpace/adSpace) ∗ ptraffic ∗ dLinks
24: if Pattern-based Method then
25: pb fp← Calculate false positives through oP from fpSpace and event history
26: costOnPath+ = pb fp ∗ dLinks
27: return costOnPath

5.3.2.1 Incoming Traffic

Let us calculate the aggregation cost (Cm) at a merge point, say m, of a switch Ri which
aggregates a set of flows denoted by Fm. As mentioned earlier, in order to calculate
the aggregation cost of m, the first step is to determine the incoming traffic at the
incoming port of the newly aggregated flow flm at m. So, first, we identify all relevant
publishers publishing events that will arrive at this incoming port. If DZ(P) is the
set of dzs representing an advertisement of publisher P , then P is a relevant publisher
even if one of the dzs ∈ DZ(P) covers or is covered by dzflm and there is a path from P
to the incoming port of flm. So, by identifying all relevant publishers, we also identify
all paths, i.e., iPaths from these publishers to the incoming port of flm. Next, we
proceed to determine the incoming traffic from each path p ∈ iPaths so that we can
eventually calculate the aggregation cost for each path depending on the amount of
traffic each upstream path forwards to flm and the amount of false positives among
this traffic that flm forwards to its downstream paths.

As mentioned earlier, the amount of incoming traffic along a path depends on the fil-

109

5 Addressing TCAM Limitations

2

3
1 R3R1

3
1

R2
21

fl1 1 010* 3

fl2 1 001* 3

iP dz oP

fl3 1 010* 2

iP dz oP

fl5 1 0100* 2

fl6 1 0010* 3

iP dz oP

fl4 1 00* 2

flm 1 0* 2,3

010

0100

00

001

0100

0010

dzflm = 0

ΩΩ

(b)(a)

0010

Ω

(c)

fpSpace
for oP=2

of flm

2

0010

0100

Figure 5.3: Cost Calculation

ters installed on the upstream paths of the merge point. So, for a path p ∈ iPaths,
first, we determine the set of all upstream filters, i.e., uFilters. This is, effectively,
the set of filters on all upstream switches on the current path that forward events
to flm. As explained in Section 5.2, these upstream filters/flows are of utmost im-
portance in determining the aggregation cost. In fact, the most fine-grained filters
among this set dictate the incoming traffic for flm as these filters already filter out
the bulk of unnecessary traffic. So, it is imperative to only identify the set of most
fine-grained filters, i.e., mfgFilters ∈ uFilters, as the traffic forwarded by them is the
only traffic that reaches flm. We denote the set of dzs representing the filter subspaces
of mfgFilters as mfgDzs (cf. Algorithm 7, lines 8-14). Let us look at an example
from Figure 5.3 where the aggregation cost of m needs to be calculated on switch R3

and Fm = {fl5, f l6}. The set of relevant flows on upstream switches, i.e., uFilters, of a
path p that connects a publisher P to flm, consists of fl1, f l2, f l3, and fl4 as depicted
in the figure. Figure 5.3(b) illustrates the event subspace representation of each of the
filter dzs of uFilters and Figure 5.3(a) depicts that of flm. From the figure, it is quite
clear that {dzfl4 = 00} � {dzfl2 = 001}. This means that fl2 already filters out events
lying in the subspace {00 - 001} depicted by the yellow subspace in Figure 5.3(a). As

110

5.3 Filter Aggregation Algorithm

a result, all events lying within the yellow subspace do not reach the incoming port
of flm, and so, this subspace cannot be considered as a false positive subspace in the
aggregation cost of flm. So, in this example, mfgFilters = {fl1, f l2, f l3} and the ef-
fective subspaces they represent, i.e., the most fine-grained dzs, mfgDzs = {001, 010}.
Also, only those subspaces in mfgDzs are considered to contribute to the incoming
traffic that lie within the advertised subspace of the current publisher as the remaining
subspace cannot be accounted for any incoming traffic of flm due to the absence of
published events lying within them. So, all traffic lying within mfgDzs can now be
considered as the incoming traffic at a merge point m for a path p.

5.3.2.2 False Positives on Downstream Paths

Having identified the subspaces that forward traffic to the incoming port of flm along
a specific path, we proceed to calculate the false positives lying within these subspaces
that will be forwarded by the current merged filter flm along its downstream paths.
However, before we do so, please recall that if flm aggregates original flows which have
different outgoing ports, then the false positives for one outgoing port may be different
from those of the others. As a result, we calculate the amount of false positives that
may be forwarded by each outgoing port of flm separately and compute the sum of
the individual costs of each outgoing port ∈ oP of flm to obtain the total aggregation
cost of flm for the specific path (cf. Algorithm 7, lines 15-26). So, for each outgoing
port, op ∈ oP , we identify the original flows, i.e. Fop ∈ Fm, that should forward traffic
through the current outgoing port op. With the information of the dzs of the flows
that are originally supposed to forward events through the current port, it is easy to
determine the false positive subspace (fpSpace) for op. So, the effective false positive
subspace (fpSpace) for each port of an aggregated filter can be computed by removing
the dzs of all flows belonging to Fop from the subspace representing mfgDzs. Events
lying in fpSpace are the only unnecessary events that will be forwarded by the current
outgoing port of the aggregated flow flm. For example in Figure 5.3(c), the gray area is
the effective fpSpace for outgoing port 2 of flm. All events, published by the publisher
P , that lie in this subspace account for the aggregation cost of port 2 for the specific
path p.

Once we calculate fpSpace, we use this information to calculate the actual number of
false positives along all downstream links (dLinks) of the outgoing port in consideration
to determine the aggregation cost at this port. Here, we differentiate between the two
flavors of cost calculation, i.e., load-based method and pattern-based method.

Load-based Method (FA-LB): The load-based method uses the traffic load of
the publisher along the current path in consideration and the value of fpSpace to
estimate the false positives of the outgoing port. More specifically, it collects statistics
related to the total number of events (ptraffic) published by the current publisher in
the advertised subspaces (adSpace) and estimates the false positives within fpSpace.

111

5 Addressing TCAM Limitations

To calculate this estimated number of false positives, we quantify (qt) subspaces as a
fraction of the entire event space Ω. So, in Figure 5.3, while calculating false positives
forwarded by port 2, the qt value for the subspaces representing mfgDzs is 1/4, that
of the subspace representing the dz of Fop, i.e.,{0100}, is 1/16, and, therefore, that of
fpSpace = 3/16. So, using the quantified values for the subspaces, the estimated false
positives within fpSpace are (fpSpace/adSpace)*ptraffic.

As mentioned earlier, the aggregation costs of all outgoing ports of flm are summed
up to calculate the aggregation cost of a path, and then the aggregation costs of all
paths are summed up to calculate the total aggregation cost of a merge point. So,
we formally define the aggregation cost of a merge point using load-based method by
extending Equation 5.1 as follows:

C =
∑

p∈iPaths

∑
op∈oP

(fpSpacepop/adSpace
p) ∗ pptraffic ∗ dLinksop (5.2)

Pattern-based Method (FA-PB): While the load-based cost calculation method
factors in all key aspects of aggregation to compute the aggregation cost, it does not
consider the actual distribution or pattern of published events. The load-based method
estimates false positives by considering traffic published by each relevant publisher to
be uniformly distributed over the event space. However, published events are not
necessarily distributed uniformly within Ω. As a result, we introduce another flavor of
cost calculation which determines the amount of false positives that could be forwarded
by the aggregated filter more accurately by looking at the content of past events and
determining the event distribution. Our evaluation results show that even though
the pattern-based method has more overhead, it is more bandwidth-efficient than the
load-based method.

More specifically, in this method, we collect published events from all publishers. For a
given path p, the exact number of forwarded false positives (pb fppop) can be determined
for each op ∈ oP of flm depending on the calculated fpSpace and the events published
on that path by investigating the content of each event and determining whether it lies
within the fpSpace in question. So, we define the aggregation cost of a merge point
using pattern-based method by again extending Equation 5.1 as follows:

C =
∑

p∈iPaths

∑
op∈oP

pb fppop ∗ dLinksop (5.3)

Collecting events from all publishers, maintaining the set of all events, and considering
the content of every event comes with its share of overhead. As a result, we introduce
the sampling factor, denoted by sfr, which determines the fraction of events to be
collected and considered for cost calculation from the set of all published events. So,
if sfr = n, only every 1/nth event from a publisher is collected and considered for
cost calculation. Of course, here, a sampling factor of 1 implies the collection and
consideration of every event from all publishers. A smaller sampling factor may reduce
overhead significantly while a higher sampling factor may provide much more accuracy.

112

5.3 Filter Aggregation Algorithm

5.3.3 Resolving Dependencies Between Switches

In our filter aggregation algorithm, we have considered that, while calculating the
aggregation cost at a merge point on a switch, all upstream filters are already known.
However, it may so happen that one or more switches in the upstream paths of a
merge point also belong to ER on which the final set of flows is yet to be decided. This
highlights the importance of having an order of processing switches belonging to ER in
this algorithm as each switch is dependent on other switches in the network. As a result,
we start processing switches in ER from publishers to subscribers. However, depending
upon the locations of publishers and subscribers in the network, it may so happen that
two or more switches have inter-dependencies, i.e., switches in ER may belong to each
others upstream paths. For instance, switch R1 may be an upstream switch for one or
more flows on a switch R2 and vice versa. To this end, our algorithm enforces a random
processing order on such switches by selecting one of the inter-dependent switches, say
R1, and calculating the cost of merge points at R1 while assuming the worst case at
R2 , i.e., R2 installs the coarsest filters. Once the order of processing switches in ER
has been decided, the main flow aggregation decision-making process of the algorithm
commences on each switch R ∈ ER in the determined order.

5.3.4 Handling Dynamics

The filter aggregation algorithm, discussed in this section, is not applied to the system
for every incoming subscription and advertisement that results in the exceeding of
capacity in network switches as this would prove to be expensive. As a result, it runs
periodically in the system. In the meantime, when a subscription or advertisement
arrives and its arrival results in exceeding of capacity by just a few flows in one or
more switches, an immediate aggregation must be done to avoid false negatives in the
system. For this purpose, we design two flavors of a local aggregation approach—basic
local aggregation (LA-B) and cost-based local aggregation (LA-C), varying in quality
and overhead—just for the affected switches to ensure dynamic behavior of the system
till the filter aggregation algorithm is again applied to the system.

So, when a subscription/advertisement arrives at the controller, the usual flow installa-
tion is performed for each dz representing it. While installing a flow for a particular dz,
say dzsub, on a specific switch, say R, the controller discovers that the capacity of that
switch is already full. As a result, to accommodate the new flow, an aggregation of at
least 2 flows must be performed on R, and a local aggregation approach is employed
for this purpose.

113

5 Addressing TCAM Limitations

Algorithm 8 Cost calculation at a merge point m in Cost-based Local Aggregation

1: C = 0 // Initialize aggregation cost
2: for all op ∈ oPflm do
3: Fop = {fl ∈ Fm : op ⊆ oPfl} // Set of flows being merged (Fm) at m that have op

among their out ports
4: tpSpace = {dzfl : fl ∈ Fop}
5: fpSpace = dzflm \ tpSpace
6: C+ = fpSpace // Quantified value of false positive subspace

5.3.4.1 Basic Local Aggregation (LA-B)

We, first, explain the basic local aggregation approach (LA-B). The main idea behind
LA-B is to simply merge two flows without conflicting relations (cf. Section 5.3.1.1)
on a switch with exceeded capacity such that only the knowledge of the state local to
a switch is required for aggregation. We, again, use the merge point trees local to the
switch for this purpose. As only a single flow needs to be reduced, only the merge points
connected to the leaf nodes (flows) in the lowest level of the tree are considered for
aggregation. Please recall that filter expansion of involved flows is the least in the lowest
level and increases as we go up the tree towards the root. So, the local aggregation
approach selects any one of these merge points merging flows at the lowest tree level
whenever a switch exceeds its capacity on advent of a subscription or advertisement.
Such an approach portrays an aggregation technique with least overhead.

5.3.4.2 Cost-based Local Aggregation (LA-C)

The cost-based local aggregation approach (LA-C) builds on the same lines as LA-B
and, also, only considers state local to the switch. However, it does not merely select
a merge point connected to leaf nodes, but instead calculates the cost of the merge
points based on local switch state and selects the merge point with the least cost. This
may sound similar to the described filter aggregation algorithm except for the fact that
the state on other switches and traffic statistics are not considered for a local merge to
keep the overhead to a minimum. Here too, we make use of the merge point trees at
the switch. However, the cost calculation of each merge point in LA-C is much simpler.
The only factor taken into consideration for calculating the cost is subspace expansion
of the original flows at a merge point.

Similar to LA-B, in LA-C, as only a single flow needs to be reduced, only the merge
points connected to the leaf nodes (flows) in the tree are considered for aggregation,
reducing computation overhead significantly. Let the set of these merge points be LM .
Now, for each m ∈ LM , we calculate the aggregation cost. The local cost calculation
algorithm is formally explained in Algorithm 8 and described in details as follows.

Let Fm be the set of flows being merged at m. Again, while calculating the cost (Cm)
at a merge point m, we calculate the aggregation cost for each outgoing port of the

114

5.3 Filter Aggregation Algorithm

merged flow flm and sum up the costs of all the outgoing ports to get the overall
aggregation cost of m. For each outgoing port op, we find the set of flows Fop ∈ Fm

that are supposed to forward events through op. The subspaces represented by the
dzs of the flows in Fop constitute the true positive subspace for m as these represent
the original filters that should forward events through op (cf. Algorithm 8, line 4). Of
course, the remaining subspace within dzflm is the false positive subspace for op (cf.
Algorithm 8, line 5). The quantified value of this false positive subspace is effectively
the filter expansion measure, and this is considered as the aggregation cost of op (cf.
Algorithm 8, line 6).

As mentioned earlier, the sum of the costs of all outgoing ports of flm provides C for m.
Once C for all merge points in LM is calculated, the merge point with least aggregation
cost is selected and accordingly the flows on the switch are modified. This is how the
cost-based local aggregation algorithm preserves the dynamic behavior of the system
by avoiding false negatives with very low overhead till the filter aggregation algorithm
is performed. LA-C proves to be more bandwidth-efficient than LA-B but has a higher
computation overhead than it, as shown in Section 5.4.

5.3.5 Ensuring Data Plane Consistency

The aggregation algorithms, especially filter aggregation algorithm, performs a signi-
ficant amount of changes to the data plane once the most bandwidth-efficient set of
flows, i.e., SFRi

is determined for each switch Ri belonging to ER. As discussed earlier,
frequent and significant changes to the existing flows on the switches of the network
brings forth the issue of ensuring data plane consistency. Again, in this scenario of filter
aggregation, false negatives may occur due to packet drops in the network while the
flows on the switches (i.e., the data plane of the software-defined network) are being
modified. Event packets that are in transit while flows are being removed and added
may be dropped in case they do not find a matching flow.

Of course, where TCAM table size is the primary constraint, a method similar to ver-
sioning [RFR+12] cannot be applied as it is extremely resource intensive. Instead, the
method used to ensure data plane consistency in Chapter 3, i.e., the use of temporary
multicast flows forwarding all pub/sub traffic during the transition from one network
state to the other may be used. This implies that, during filter aggregation, when flows
are being modified on a switch, temporarily the use of multicast flows will result in the
switch forwarding all pub/sub traffic for a short period of time. The question is, can
this be avoided for the filter aggregation algorithm? Can we do better in this case?

Please recall that the algorithms in Chapter 3, largely, needed to wipe out the entire
old network state and reinstall all flows based on the new content representation. The
old and the new set of flows are semantically very different in such a scenario and bear
no relation to each other. However, the scenario is very different in the case of filter
aggregation where not all flows need to be modified on a switch. Also, the existing

115

5 Addressing TCAM Limitations

flows and the new flows have the same semantics and bear flow containment relations
as defined in Chapter 2.

So, in our system, we resolve the problem of data plane consistency with minimum
effort by simply ordering the switch updates in a strategic manner. In fact, we ensure
that the selected aggregated flow flm is installed first on the switch, and then, all flows
covered by it that are now redundant, i.e., redundant flows in Fm, are removed. By
doing so, we ensure that the events matching the original flows in Fm already have an
alternate path through the aggregated flow before their former paths are removed. We
deploy one aggregation at a time, i.e., only once a merged flow for a selected merge is
installed and all its original flows removed, do we proceed to install the next merged
flow and so on. This ensures that only one additional flow on the switch is required
at a time for ensuring data plane consistency. This simple approach to tackle the
consistency problem is only possible here as we can take advantage of the containment
relations between the new aggregated flows and the existing flows covered by them.

Please note that it may so happen that while periodically employing the filter ag-
gregation algorithm, a few merged flows, currently installed on the switch, need to be
replaced by their original flows (i.e., unmerged) depending on the latest set of flows
selected and aggregated by the latest execution of the algorithm. In such a scenario,
all latest merged flows are, first, serially deployed (and the flows covered by them are
removed), thus making enough space in TCAM to perform unmerges. While unmer-
ging as well, first, the original flows are deployed and then the merged flow containing
them is removed to ensure that there is always a path for relevant events. We con-
tinue to ensure that only one additional flow on the switch is required at a time for
ensuring data plane consistency by performing one unmerge at a time. In this manner,
we completely avoid false negatives in the network with minimum overhead by simply
ordering the necessary switch updates.

5.4 Performance Evaluations

In this section, we evaluate and analyze the various aspects of the presented filter
aggregation algorithm. More specifically, we conduct a series of experiments to measure
and compare, primarily, the impact on overall false positives in the network and the
runtime overhead of the two flavors of filter aggregation algorithm (FA), i.e., the load-
based method (FA-LB) and the pattern-based method (FA-PB), with the two flavors
of local aggregation, i.e., basic local aggregation (LA-B)—which we consider to be a
baseline approach—and cost-based local aggregation (LA-C), to show the potential of
each of the proposed methods.

116

5.4 Performance Evaluations

5.4.1 Experimental Setup

We perform our performance evaluations mainly under two test environments (cf.
Chapter 2)—1) SDN-m, for emulating a variety of networks and 2) SDN-t-hswitch
consisting of the Whitebox Openflow-enabled EdgeCore switch and commodity PC
hardware. To show the impact of severe TCAM limitations on the performance of the
system and how the designed aggregation ensures bandwidth efficiency despite severe
constraints, we constrain the TCAM capacity (i.e., cap) of each switch to up to 600
flows. While using SDN-m, we experiment with up to 300 switches and 4402 end-hosts
on different topologies. In fact, to capture the false positives along every link of the
network and gather the overall network false positives, we also implement our own
analyzer.

We use both synthetic and real-world data for our experiments. To generate synthetic
data, we use a content-based schema that uses up to 5 attributes, where the domain of
each attribute varies between the range [0,1023]. Our evaluations include up to 15,000
subscriptions and up to 100,000 events. To generate synthetic data, we, again, use
uniform and zipfian distributions. Also, we, again, use real-world workload in the form
of stock quotes procured from Yahoo! Finance containing a stock’s daily closing prices
to show the performance of our system in a realistic environment.

5.4.2 Comparing Network False Positive Rate

We define the term false positive rate as the percentage of total number of events
forwarded in the network that are unnecessary (i.e., network false positives). The first
set of experiments compares the network false positive rate for the various aggregation
methods with increasing number of subscribers where the TCAM capacity of each
switch in the network is constrained. We compare the load-based method (FA-LB), the
pattern-based method (FA-PB) of our filter aggregation algorithm with the two local
aggregation methods, basic local aggregation (LA-B) and cost-based local aggregation
(LA-C). Please note that, here, we consider a sampling factor of 1 for the pattern-based
method which means that every published event is considered to determine the event
distribution for cost calculation of each merge point.

Figure 5.4(a) and Figure 5.4(b) show the false positive rate when each of the aggreg-
ation algorithms are applied to a network having a regular tree topology for different
workload distributions. Figure 5.4(a) depicts a scenario where workload is generated
using uniform distribution whereas Figure 5.4(b) shows the behavior of the algorithms
when zipfian distribution is used. In both scenarios, the local aggregation methods are
heavily outperformed by the other two as a result of performing aggregation based on
local switch state as compared to the two flavors of the filter aggregation algorithm
which consider a holistic view of the network for filter aggregation for both distribu-
tions. The amount of false positives in the network on using, especially, LA-B for

117

5 Addressing TCAM Limitations

 0

 5

 10

 15

 20

2k 3k 4k 5k 6k 7k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (a)

LA-B
LA-C
FA-PB
FA-LB

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2k 3k 4k 5k 6k 7k
F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (b)

LA-B
LA-C
FM-PB
FM-LB

 0

 5

 10

 15

 20

 15 20 25 30 35 40 45 50 55

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

% of merged Flows [%] - (c)

LA-B
LA-C
FA-PB
FA-LB

 0

 5

 10

 15

 20

 25

 30

 35

 40

1k 5k 10k 15k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (d)

LA-B
LA-C
FM-PB
FM-LB

 0

 5

 10

 15

 20

 25

 30

 35

 40

1k 5k 10k 15k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (e)

LA-B
LA-C
FM-PB
FM-LB

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 20 30 40 50 60 70 80

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

% of merged Flows [%] - (f)

LA-B
LA-C
FA-PB
FA-LB

Figure 5.4: Performance Evaluations: False Positive Rate

118

5.4 Performance Evaluations

aggregation clearly shows the importance of having a more refined algorithm for ag-
gregation. The plots show that, in every scenario, LA-C outperforms LA-B. This is
expected as LA-C selects a merge based on calculated local aggregation cost as opposed
to LA-B which makes aggregation decisions with least overhead. In case of uniform
distribution in Figure 5.4(a), we see that the performances of FA-LB and FA-PB are
almost equivalent. The main difference between FA-LB and FA-PB is that FA-PB ana-
lyses each of the event packets to determine the amount of false positives along each
path. By contrast, FA-LB determines the amount of traffic on each path and then
estimates the amount of false positives while considering the traffic to be distributed
uniformly over the advertised subspace for that path. As a result, the two methods be-
have very similarly for uniform distribution as the estimate of false positives is almost
identical to the actual false positives in the network. However, for the same reason,
the advantage of FA-PB over FA-LB is very apparent in Figure 5.4(b) where FA-PB
clearly outperforms FA-LB as the decision-making process in FA-PB considers the ex-
act nature of published events that follow a zipfian distribution. In fact, when using
FA-PB, the false positive rate is reduced by up to 99.9% as compared to LA-B and is
almost non-existent even on aggregating a large number of subscription filters in the
system, highlighting the effectiveness of the filter aggregation algorithm proposed in
this chapter. This is mainly because, with zipfian distribution, FA-PB can take effi-
cient decisions to merge flows which do not experience too much traffic and, therefore,
less false positives while preserving flows relevant to event traffic hotspots. In fact,
we depict the false positive rate vs total percentage of merged flows in the network in
Figure 5.4(c) for zipfian distribution. This graph shows the impact of flow aggregation
on false positives. Of course, more the number of merged flows (i.e., aggregation) in
the network, more is the false positive rate. The plots show that even when a large
percentage of flows are aggregated, it results in very low false positives for FA-PB. In
fact, even when over 50% of flows are merged, the false positives in the network are
negligible implying that the TCAM constraint does not adversely impact the system
if FA-PB is used for aggregation. The performance of FA-PB is closely followed by
FA-LB, followed by LA-C, and finally LA-B.

To show the effectiveness of the proposed algorithms irrespective of the type of topology,
we also conducted experiments on a random topology as depicted in Figure 5.4(d) and
Figure 5.4(e). Here too, we see the same behavior of the algorithms as in the tree
topology. As before, FA-PB and FA-LB perform similarly in the case of uniform
distribution as depicted in Figure 5.4(d). In the case of zipfian distribution, again,
on performing aggregation using FA-PB, the false positives in the network are almost
negligible despite aggregating a large number of subscription filters as depicted in
Figure 5.4(e). We, also, show a graph to depict false positive rate vs total percentage
of merged flows in the network in Figure 5.4(f) for the random topology when zipfian
distribution is used. As can be seen in the figures, the comparison of performance in
terms of false positive rate of the various algorithms is similar to that for the other
topology which implies that the behavior of the algorithms is not specific to a type of

119

5 Addressing TCAM Limitations

topology.

5.4.3 Comparing Runtime Overhead

 0

 5

 10

 15

 20

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

T
i
m
e

[
s
]

of Subscriptions - (a)

FM-PB
FM-LB

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

T
i
m
e

[
s
]

of Switches - (b)

FM-PB
FM-LB

Figure 5.5: Performance Evaluations: Runtime Overhead

The effectiveness of the algorithms w.r.t. bandwidth efficiency is clear from the above
discussion. However, where FA-PB outperforms the others in bandwidth efficiency,
the others come with lower overhead. The higher overhead in FA-PB is not only
due to the fact that published events need to be collected from the publisher but
also due to a higher runtime overhead than the others. We confirm the same in our
next set of experiments depicted in Figure 5.5(a) where we compare the two flavors
of filter aggregation algorithm. We measure the runtime overhead with increasing
number of subscriptions. Again, note, FA-PB has a sampling factor of 1 in this set
of experiments. As depicted in the figure, FA-PB has a higher runtime overhead
than FA-LB consistently as it additionally considers event traffic patterns for cost
calculation. Our evaluations also show that the average runtime overhead for LA-C is
merely 500 microseconds which further goes down for LA-B to a mere 200 microseconds
on a switch. So, we see that there is a trade-off between quality and overhead as the
improvement in one adversely affects the other.

We also evaluate the runtime overhead of the two flavors of filter aggregation algorithm
with increasing topology size. In this experiment we keep the number of publishers and
subscribers fixed and expand the topology in terms of number of switches. Of course,
more the number of switches more will be the overhead for both FA-PB and FA-LB as
the cost calculation has to be done over more switches with each calculation considering
longer paths (more upstream filters). Such a behavior is visible in Figure 5.5(b) where

120

5.4 Performance Evaluations

the overhead for both FA-PB and FA-LB increases with increasing number of switches.
Again, FA-PB has higher overhead than FA-LB due to the aforementioned reasons.

5.4.4 Impact of Sampling Factor

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.2 0.4 0.6 0.8 1

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

Sampling Factor - (a)

FA-PB

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 0.2 0.4 0.6 0.8 1

T
i
m
e

[
s
]

Sampling Factor - (b)

FA-PB

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 0.2 0.4 0.6 0.8 1

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

Sampling Factor - (c)

FA-PB: Real Data Set

 0

 5

 10

 15

 20

0 0.2 0.4 0.6 0.8 1

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

F
a
l
s
e

N
e
g
a
t
i
v
e

R
a
t
e

[
%
]

Sampling Factor - (d)

SDN Testbed-FPR
SDN Testbed-FNR

Figure 5.6: Performance Evaluations: Impact of Sampling Factor

To reduce the overhead of collecting published events and cost calculation of FA-PB,
we introduced the sampling factor (i.e., sfr) in Section 5.3. In the next set of ex-
periments, we show the behavior of our system when subjected to various sampling
factors. Figure 5.6(a) plots the false positive rate with increasing value of sfr for
zipfian distribution. As expected, more the value of sfr, fewer are the false positives
as FA-PB is more accurate in its cost calculation when it considers more past events.

121

5 Addressing TCAM Limitations

However, higher the sampling factor of FA-PB, higher is the overhead as depicted in
Figure 5.6(b) where we plot the runtime overhead for increasing values of sfr.

To ensure that our aggregation algorithm is effective in realistic scenarios, we conducted
experiments to show its behavior on real-world stock data. Figure 5.6(c) plots the false
positive rate with increasing sampling factor for the real-world data set. The plot
clearly shows that, even for a sampling factor of just 0.4, the network false positives
due to aggregation are almost non-existent. These evaluation results further highlight
the applicability and efficiency of the algorithm presented in this chapter.

For our next set of experiments, we measure the false positives and false negatives at
the subscribers when the aggregation algorithm is deployed on the real SDN testbed
SDN-t-hswitch. So, Figure 5.6(d) plots the false positive rate when FA-PB aggregates
flows for increasing sampling factors for workload generated using zipfian distribution.
The graph shows that on the real SDN testbed, the algorithm behaves as expected and
the false positive rate decreases rapidly with increasing sampling factor. Moreover, we
also measure the false negative rate (FNR) in the system. Figure 5.6(d) shows that, on
the real testbed, our mechanisms to ensure data plane consistency successfully avoid
packet drops in the network even while the data plane is being modified by the filter
aggregation algorithm. As a result, there are no false negatives in the network due to
the presented aggregation algorithm.

5.4.5 Dynamic Behavior

In our next set of experiments, we evaluate the performance in terms of false positive
rate of our system in a dynamic environment. We progressively introduce subscriptions
in the system and apply our aggregation algorithm for handling dynamics. So, in Fig-
ure 5.7(a), in general, the basic local aggregation approach (LA-B) is applied whenever
switches exceed their capacity on introduction of a new subscription as explained under
handling dynamics in Section 5.3. Additionally, FA-PB is employed after every 3000
subscriptions as depicted in Figure 5.7(a). The figure shows that the false positive rate
gradually increases with more and more subscriptions when LA-B is used till FA-PB
is performed which makes the false positives in the system almost negligible. Again,
the false positive rate keeps increasing on using LA-B till the next application of FA-
PB. We, also, plot the behavior of the system if only LA-B is employed. This clearly
shows the amount of false positives reduced in the system at every step due to the
intermittent application of FA-PB.

Figure 5.7(b) shows a similar dynamic scenario where this time LA-C is used for local
aggregation whenever switches exceed their capacity. We see that even though LA-C
keeps the false positive rate lower than when LA-B is used, the intermittent use of the
filter aggregation algorithm, clearly improves bandwidth efficiency significantly in the
system.

122

5.4 Performance Evaluations

 0

 5

 10

 15

 20

 25

 30

 35

3k 6k 9k 12k 15k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (a)

LA-B+FA-PB
LA-B

 0

 5

 10

 15

 20

 25

 30

 35

3k 6k 9k 12k 15k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (b)

LA-C+FA-PB
LA-C

 0

 2

 4

 6

 8

 10

100k 200k 300k 400k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Events - (c)

FA-PB

Figure 5.7: Performance Evaluations: Dynamic Behavior

In our final set of experiments, we show the impact that change in event traffic dis-
tribution has on the false positive rate of a system and the manner in which FA-PB
adapts to these changes to reduce false positives. In these experiments, in a system
with a constant number of subscriptions, events are generated using a zipfian distribu-
tion where the hotspots are randomly shifted by up to 10% every 10,000 events. So,
Figure 5.7(c) depicts the behavior of the system when the event distribution gradu-
ally changes with time and FA-PB is employed periodically. The figure shows that,
as a result of gradually shifting the hotspots, the aggregation decisions taken by the
latest execution of FA-PB are no longer ideal and the false positive rate increases. The
farther the hotspots are shifted from their original positions, the higher is the false
positive rate until FA-PB is executed again such that aggregation decisions are taken

123

5 Addressing TCAM Limitations

based on the most recent event distribution. FA-PB reduces the false positives in the
system to a negligible amount which, however, again gradually starts rising with the
gradual change in event distribution. This experiment highlights the importance of
the periodic execution of the filter aggregation algorithm in a system with dynamically
changing event distribution.

5.4.6 Discussion

Our evaluation results show the huge potential of the proposed filter aggregation al-
gorithm in improving bandwidth efficiency of the system while being restricted in
TCAM capacity. When evaluated with different data distributions and network topo-
logies, in every scenario, despite performing significant number of aggregations in the
network, the filter aggregation algorithm proves to be extremely bandwidth-efficient
with a very low network false positive rate. In fact FA-PB outperforms all the other
proposed aggregation techniques and reduces false positives introduced in the net-
work due to aggregation by a baseline approach (i.e., LA-B) by up to 99.9%. The
performance of FA-PB is closely followed by FA-LB, which is followed by LA-C, and
finally LA-B. Of course, more bandwidth-efficient the aggregation technique, more is
the runtime overhead. As a result, the runtime overhead of both variants of the filter
aggregation algorithm is higher than that of both variants of local aggregation with
FA-PB having the highest runtime overhead and LA-B having the lowest. We, also
show the impact of sampling factor on the performance of FA-PB where an increase
in sampling factor reduces false positive rate but increases the runtime overhead. The
impact and practicality of the filter aggregation algorithm on a real SDN testbed and
on a real data set is also shown in the evaluation results. Finally, the dynamic beha-
vior of the proposed aggregation techniques with increasing subscriptions and changing
event traffic patterns clearly impresses upon their importance and applicability in an
SDN-based pub/sub middleware.

5.5 Related Work

In the past couple of decades, a significant amount of research has been dedicated to
broker-based middleware implementations of content-based pub/sub [CRW01, JJE10,
Müh02] that focus on achieving scalability. In this context, techniques for subscrip-
tion summarization that include subscription covering [CRW01] and subscription mer-
ging [Müh02] are widely employed to realize scalable systems. Subscription summaries
not only help in filtering out of events from the parts of the broker network without
interested users but also ensure forwarding of new subscriptions only to brokers which
previously do not receive subsuming (or covering) subscription summaries. So, these
systems, primarily, use subscription summarization to reduce unnecessary message
overhead in the broker network. Also, much effort [CS04, JJE10, CFMP04] has been

124

5.6 Conclusion

devoted to reduce the overhead of maintenance of these subscription summaries but
from the context of efficiently handling dynamically changing subscription requests in
the broker network. Implemented in the application layer, these systems do not need
to address the problems of limited hardware space in the network layer to accommod-
ate the subscription filters and subscription summarization is primarily performed to
achieve bandwidth efficiency in broker networks.

In general, the problem of limited flow table entries in TCAM of SDN-compliant
switches is well-known and much researched [KARW16,KLRW13,VPMB14,GXC+15].
For example, Katta et al. [KARW16] in CacheFlow use rule dependencies to cache
the more popular flows on the limited TCAM, while the remaining traffic is left to
rely on software. As is the case with filtering in software, here, too, the perform-
ance of the traffic forwarded by the software switch will suffer. Significant amount
of work in literature deals with optimizing rule placement in a software-defined net-
work [KLRW13, NSBT14, KHK13]. For example, OneBigSwitch [KLRW13] uses end-
point policy and routing policy to aggregate sets of rules in order to take decisions on
distributing them over network switches. However, it is incapable of handling scenarios
where the rule sets are larger than the aggregate table size.

Also, considerable amount of work has been done in the lines of compacting the rep-
resentation of flow rules for the purposes of reducing TCAM space [LMT10, MLT12].
Although, these systems target efficient network provisioning and compressing rules on
a switch, the proposed solutions are not applicable to our problem in the context of
content-based routing. Also, systems, such as SmartTime [VPMB14], use an adaptive
timeout technique to pro-actively evict flow rules while ensuring that there is minimum
TCAM misses. Since, we consider a system that does not allow false negatives and
filters can only be removed on account of an unsubscription or unadvertisement, a
timeout-based heuristic is not ideal for our problem.

5.6 Conclusion

In this chapter, we design techniques to mitigate the problems associated with limited
TCAM space in an SDN-based publish/subscribe middleware. We propose, implement,
and thoroughly evaluate a filter aggregation algorithm that not only respects TCAM
space limitations on individual switches but also successfully minimizes false positives
in the network, despite merging of flows. To this end, we introduce two flavors of
this algorithm and compare various aspects of their performance. Our evaluations
include experiments on a real SDN testbed and with real-world workload. Evaluation
results show that the designed filter aggregation algorithm reduces the false positives,
introduced in the network when a baseline approach is used for aggregation, by up to
99.9%.

125

Chapter 6
Scaling the Control Plane

As discussed in Chapters 1 and 2, preserving the benefits of SDN in a highly dynamic
environment in PLEROMA is rather challenging. For example, applications such as
financial trading, traffic monitoring, online gaming and electronic auctions are not only
latency sensitive but also very dynamic in terms of number of application users and
their interactions. As a consequence, the control plane has to engage in very frequent
network topology updates, and this is where the traditional design of SDN, consisting
of a single controller instance, does not scale well. The bottleneck at a single controller
instance results in increased response times to requests for network updates, rendering
the middleware less responsive to dynamics.

Not surprisingly, in the past, research efforts [TG10, KCG+10, HYG12, DHM+13,
DHM+14] propose a distributed implementation of the control plane, which essentially
operates as a logically centralized controller. A distributed control plane hosts multiple
controller instances capable of performing concurrent network updates, thus improving
responsiveness and throughput of the control plane. While increasing the rate at which
network reconfigurations can be realized, it has been well established in literature that
a distributed control plane is subject to inconsistencies [LWH+12,BRKB13]. Inconsist-
encies may arise due to unsynchronized global network state views at the distributed
controller instances. Every controller instance maintains a data structure representing
the view of the global network state. This implies that the network acts as a shared
resource. Depending on the nature of the application, network updates are made by
each controller instance based on the state of its local data structure. Inconsistencies
between the global network state maintained at each controller may lead to incorrect
application-specific behavior. Performing updates based on a stale copy of the network
view may result in routing loops and black holes in the data plane. Existing literat-
ure [LWH+12] shows the severity of degraded application performance in the absence
of strong consistency.

To ensure strong consistency of network state, synchronization mechanisms must be

127

6 Scaling the Control Plane

employed among all controller instances such that all network updates are coordin-
ated. Synchronization involves state distribution and, depending on the desired level
of consistency, various classical approaches available in the field of distributed sys-
tems may be used for the same [KCG+10,BRKB13]. However, synchronization tech-
niques always come with a cost that may compromise responsiveness to data plane
requests. For instance, according to literature [KCG+10], synchronization techniques
using transactional persistent database backed by a replicated state machine yields
severe performance limitations for applications requiring frequent network updates.

In the aforementioned systems, the significant overhead in synchronization cost can
be attributed to the attempt of designing a general-purpose distributed control plane
capable of supporting any SDN use-case. However, to render the control plane of
PLEROMA more responsive, it is worth exploring how application-aware control dis-
tribution can help to reduce this overhead. So, in this chapter, we illustrate the benefit
of application-aware control distribution in the context of our PLEROMA middleware,
to allow for increased responsiveness while ensuring strong consistency (in the context
of control plane) even in the presence of failures.

In this chapter, we propose to scale the control plane by introducing multiple control-
lers, which may reside on a single physical machine with a multi-core architecture (i.e.,
vertical scaling) or on separate physical machines in a physically distributed setting
(i.e., horizontal scaling), to improve the responsiveness and throughput of network up-
dates handled by the PLEROMA middleware. We design two approaches – shared
everything and shared nothing – each reaping the benefits of vertical and horizontal
scaling, respectively. Moreover, we address limitations of SDN-compliant switches
w.r.t. the rate at which flow updates are performed, again by exploiting application-
awareness. Our evaluations show that application-aware control distribution allows to
significantly increase responsiveness to control requests for both vertical and horizontal
scaling while ensuring control plane consistency.

6.1 Distributed Control Plane - System Architecture

In general, the topology reconfiguration efforts are significant in PLEROMA (cf.
Chapter 2). As discussed earlier, in a scenario with frequent concurrent control re-
quests from multiple participants, a design with a single SDN controller will result in
very poor control plane responsiveness. Here, we define response time as the time from
the issuance of a control request by a participant till the completion of all topology
reconfiguration associated with this request by the control plane. For example, the
response time to a subscription is the time elapsed from the issuance of the subscrip-
tion until the subscriber starts receiving events. As a single controller processes each
control request sequentially, the response time increases significantly in the face of high
dynamics. This problem motivates us to introduce multiple controller instances in the
control plane, enabling concurrent processing of control requests.

128

6.1 Distributed Control Plane - System Architecture

Monitor

Control Requests

Configurators

Network Updates

Dispatcher

c1 c2 cn

DATA PLANE

CONTROL PLANE

Figure 6.1: System Architecture

Figure 6.1 depicts a two-tiered architecture in the control plane; a dispatcher col-
lects control requests from publishers and subscribers in a software-defined network,
and a set of components, known as configurators (denoted by C), processes these re-
quests and carries out network updates accordingly. SDN allows the dispatcher and
the configurators, residing in the control plane, to acquire a global view of the entire
network and configure it as needed. The dispatcher serves as the entry point to the
control plane. It collects all data plane control requests and forwards them to the
configurators. The configurators serve as the main workers that are capable of modi-
fying the state of every switch in the network. Each of them receives control requests
forwarded by the dispatcher and processes them as described in Chapter 2.

The monitor is an additional component connected to the configurators and the
dispatcher. It plays an important role in maintaining load statistics of each configurator,

129

6 Scaling the Control Plane

Universität Stuttgart

IPVS

Research Group

“Distributed Systems” 1

Configurators
c1 c2 cn

DATA PLANE

CONTROL PLANE

CP-config

DP-config

Figure 6.2: Concurrent Access to CP-config and DP-config

which contributes to improved system performance. The relevance of the monitor, in
the context of our designed middleware, will be explained in details later in this chapter.

In this chapter, we scale the control plane both vertically and horizontally. Vertical
or horizontal scaling is mainly achieved by scaling up or out the configurators. Here,
vertical scaling means hosting multiple configurator instances on multiple cores of a
single machine. In contrast, horizontal scaling involves hosting multiple configurator
instances on cores of physically distributed machines. Irrespective of the scaling type,
the introduction of multiple configurators implies concurrent processing of requests for
improved responsiveness which in turn raises questions on control plane consistency.

In the subsequent sections, we first discuss control plane consistency in the context of
pub/sub middleware and identify conflicting actions that may induce inconsistencies
(cf. Section 6.2). Afterwards, we present approaches for vertical and horizontal scaling
of the control plane that ensure strong consistency by enabling concurrency control for
conflicting actions with low synchronization overhead (cf. Section 6.3).

6.2 Control Plane Consistency in Pub/Sub

Please recall from Chapter 2 that the network configuration is maintained both at the
data plane and the control plane of a software-defined network. On the one hand, the
network configuration at the data plane, known as DP-config, is maintained implicitly

130

6.2 Control Plane Consistency in Pub/Sub

as a result of pub/sub flows deployed in the TCAM of hardware switches. On the other
hand, the control plane network configuration, known as CP-config, is maintained by
the controller and serves as a reflection of DP-config. CP-config is maintained by the
controller so that it does not need to query the switches in the data plane and read
their states for processing every control request. When a control request arrives at a
controller, since the controller assumes CP-config to be identical to DP-config, it uses
CP-config to read existing flows and decide on flow changes. On taking a decision, the
controller sends the new flow changes to the hardware switch, resulting in a change in
DP-config. Meanwhile, the controller also performs these flow changes in the CP-config
to ensure that it remains consistent with DP-config. While in Chapter 2, we mentioned
that the two configurations are kept consistent in the aforementioned manner, in this
chapter (cf. Section 6.4), we discuss the protocol for ensuring consistency between
CP-config and DP config (even in the presence of failures) in more details.

In the context of a distributed control plane with multiple configurators, each
configurator processes each control request similar to the process discussed in Chapter 2.
However, we need to consider that, in order to concurrently process control requests,
all configurators will need to concurrently read from CP-config. Moreover, they will
need to perform concurrent changes to DP-config and subsequently CP-config (to keep
CP-config consistent with DP-config). Such concurrent access to the configurations by
configurators is depicted in Figure 6.2.

As a result, two important problems have to be addressed to ensure control plane
consistency in PLEROMA. These problems are

(i) maintaining consistent network configuration at the control plane (i.e., CP-config)
in the presence of concurrent updates by multiple configurators.

(ii) keeping CP-config consistent with DP-config (even in the presence of failures).

In this section and Section 6.3, we strictly focus on the first problem and address
the second problem in Section 6.4. For simplicity and without loss of generality, we
discuss the first problem only with respect to CP-config as consistent maintenance of
CP-config, in the face of concurrency, eventually results in a consistent DP-config.

In more detail, the configurators execute the same control logic and operate on the same
CP-config concurrently. As discussed in details in Chapter 2, in order to process a
control request, a configurator performs a set of actions consisting of operations
on switches along the paths between publishers and subscribers. More specifically, at
each switch along the paths, the configurator performs an action that consists of an
ordered sequence of three operations. The three operations include

(i) reading flows from a switch,

(ii) deciding on the changes to be made to the flows, and

(iii) writing these changes back to the switch.

131

6 Scaling the Control Plane

Push new
flow entry

fl3 = Match : 00* Action : outport :1, 3

fl2 = Match : 00* Action : outport :1, 2
Packet
matches
single entry

fl´2 = Match : 00* Action : outport :1, 2, 3

fl1 = Match : 00* Action : outport :1

Concurrent read





Push new
flow entry

c1
c2

1

2 3

CONTROL PLANE

CP-config

sub1 = (00, S1) sub2 = (00, S2)

S1
S2Rt

Figure 6.3: Control Plane Inconsistency

The concurrent execution of such actions by two or more configurators can result in
their sequences being interleaved. This raises concurrency related issues resulting in
false negatives or false positives in the system.

Figure 6.3, depicts an example of a simple case of false negatives at a subscriber due to
the interleaving of sequences of operations constituting two actions and belonging to
two configurators. Let us suppose that two overlapping subscription requests sub1={00}
from subscriber S1 and sub2={00} from subscriber S2 are simultaneously dispatched to
configurators c1 , c2 ∈ C, respectively. Both follow the aforementioned request handling
process and perform actions on relevant switches. We specifically focus on the terminal
switch Rt which already has a flow, fl1, to match event packets for subspace {00} (cf.
Figure 6.3). We consider a case where both configurators perform concurrent read on
this switch in CP-config. On reading the state, c1 and c2 independently decide on
required flow updates and replace the existing flow (fl1) by adding two new flows fl2
and fl3, respectively (cf. Figure 6.3). As a consequence, there now exists two flows
with the exact same match field but with different IS at Rt. Since deploying flows
on CP-config implies deploying them on DP-config, now, if an event packet lying in
subspace {00} arrives at Rt in the data plane, it follows the instruction set of either fl2
or fl3, but never both as the matching of a packet at a switch is terminated as soon as
the first match is found. In either case, one of the two subscribers is affected by false

132

6.3 Scaling Approaches

negatives compromising correctness of the system. This can be avoided if mechanisms
to guarantee strong consistency at the distributed control plane are employed.

Clearly, false negatives at a subscriber in Figure 6.3 occurred because flows fl2 and
fl3, concurrently added by c1 and c2, are in aforementioned partial flow containment
relation (i.e., v), which essentially results in updating the same flow in Rt. In general,
concurrent updates of the flows with containment relations (i.e., � or v) have an effect
of one of the updates being overwritten by the other.

While understanding the above mentioned concurrency issues, we define conflicting
actions in the PLEROMA middleware as follows.

Two different actions are in conflict if (i) both of them access the same switch and (ii)
both of them affect flows that are bound by the flow relations, i.e., complete containment
(�) and partial containment (v).

If no precautions are taken, the concurrent execution of conflicting actions can result
in inconsistencies. This is where we draw parallels between our defined action and the
very widely used transaction from the field of databases [BHG86,HR83,BG81,Ske81].
In transaction processing, it is widely known that every serial execution of transactions
is defined to be correct (assuming the transactions themselves are correct) [BHG86,
BG81]. In fact, it has been established that ‘an execution (concurrent) is serializable
if it is computationally equivalent to a serial execution, that is, if it produces the same
output and has the same effect on the database as some serial execution. Since serial
executions are correct and every serializable execution is equivalent to a serial one,
every serializable execution is also correct’ [BG81]. As a result, in order to ensure
correctness in our distributed control plane, all concurrent conflicting actions must be
serialized.

6.3 Scaling Approaches

Having identified conflicting actions, we propose two approaches—shared everything
and shared nothing—that scale the control plane both vertically as well as horizontally
while avoiding concurrent processing of conflicting actions.

6.3.1 Shared Everything Approach

The shared everything approach (SEA) works on the principle that all configurators
share CP-config among themselves. This implies that all of them read from as well as
write to every switch in CP-config. Section 6.2 explained the undesirable consequences
of such concurrent access of shared state which means that the SEA approach must
employ certain additional mechanisms for concurrency control. SEA uses a locking
mechanism that allows a configurator to acquire exclusive access on CP-config at various

133

6 Scaling the Control Plane

c1 c2 cn

Dispatcher

Read / Write

pt1
pt2 ptk

Global Queue

Figure 6.4: Shared Everything Approach

granularity levels. This means that no other configurator can access the locked part of
CP-config unless the configurator holding the lock relinquishes it. Locks can be held
at different levels of granularity in CP-config. In the absence of application knowledge,
a plausible strategy is to assign locks at the granularity of switches. For example,
with the advent of a subscription, a configurator can determine the paths between the
associated subscriber and all relevant publishers, acquire locks on all switches in these
paths, perform the necessary actions (i.e., read, decide on flow changes, deploy changes
on the switches), and finally release the locks. Acquiring locks at switch level, however,
would imply that no other configurator can execute an action on a locked switch even
if its action does not conflict with the current action being executed. So, with respect
to our definition of conflicting actions (cf. Section 6.2), locking at switch-level may not
be ideal.

Here, we propose an application-aware method that uses knowledge of advertisements
and subscriptions to control the granularity at which CP-config can be accessed con-
currently. Since the dzs representing the subscriptions/advertisements (in control re-
quests) are directly mapped to flows added to switches (cf. Chapter 2), two control
requests where one dz covers or is identical to the other (overlapping subspaces in Ω)
yield flows related (� and v) to each other. This means that concurrent processing
of overlapping control requests at a switch will result in conflicting actions and must
be ordered sequentially. Control requests with non-overlapping subspaces in Ω, how-

134

6.3 Scaling Approaches

ever, can undergo concurrent processing without any issues. For example, concurrent
processing of two subscriptions {00} and {000} which results in state modification of
at least one common switch will lead to incorrect system behavior as {00} � {000}.
However, two unrelated subscriptions, {00} and {11}, can be processed concurrently
by two configurators without any issues as processing will not yield any related flows.
This directly leads us to the idea of partitioning the event space in a disjoint way such
that flows corresponding to different partitions in Ω are maintained in separate CP-
configs. This enables concurrent processing of disjoint control requests that operate
on different CP-configs. Locking would only be required at the level of a CP-config to
ensure sequential processing of overlapping control requests as only overlapping control
requests can result in conflicting actions.

So, we divide the event space into multiple disjoint, continuous partitions. A partition
is nothing but a subspace in Ω and may be represented in the same way, i.e., by a
dz. Disjoint event space partitioning may yield equal or unequal partitions depending
on the partitioning criteria. However, it is important to note that, in any case, the
partition set, denoted by PT, is non-overlapping and fully covers Ω. Mechanisms for
content or event space partitioning have been extensively researched in various fields
of computer science [Van91,WQA+04] and will not be discussed further in this thesis.
Henceforth, we assume that PT consists of k partitions and k >> n where n denotes
the total number of configurators.

The middleware maintains a set of independently configurable CP-configs (denoted by
CP) having a one-to-one mapping with these partitions. This results in the creation
of k CP-configs where each configuration, cp ∈ CP , is represented by the dz of the
corresponding partition. Again, each switch in each cp contains only those flows that
are associated with the event space partition that this configuration represents. This
implies that the spanning tree maintained by CP-config is responsible for the dissem-
ination of only a set of events that lies in its designated subspace. In the remaining
part of this chapter, a CP-config (cpi ∈ CP) is considered to be synonymous with a
partition (pti ∈ PT).

We focus on an SEA approach where locking is carried out at the level of a cp ∈
CP which essentially means locking a set of flows across all switches that correspond
to a partition in Ω. This ensures concurrent access of unrelated flows on the same
switch. Each configurator maintains a pointer to each CP-config/ partition. Figure 6.4
illustrates the same with n configurators, c1,.., cn, operating on k partitions, pt1,...,
ptk. SEA ensures serial processing of requests within a single partition while allowing
concurrency otherwise. This implies serial execution of conflicting actions.

The dispatcher collects all control requests from the data plane and adds them to a
global queue accessible to all configurators. But before adding them, it performs an
additional step to prepare the requests for further processing. Let us denote the dz
representing a control request by dzc and that representing any partition pti by dzpti .
When a control request arrives at a dispatcher, it is processed by the dispatcher in two

135

6 Scaling the Control Plane

ways depending on whether (i) dzpti � dzc or, (ii) dzc � {dzpti ,...,dzptj}. In the first case,
the dispatcher simply adds the request to the global queue as the request is contained
by one partition and affects a single CP-config. However, the second scenario portrays
a case where the control request subspace spans more than a single partition. Under
such circumstances, the dispatcher splits up the request into multiple dzs depending
upon the nature of the partitions and adds these partial requests to the queue. For
example, if we consider a system with 4 partitions—00, 01, 10, 11—and a request with
dz {001101} arrives at the dispatcher, the dispatcher immediately adds the request to
the global queue as {00} � {001101}. However, if the request corresponds to {0}, the
dispatcher first splits it up into two partial requests {00}, {01} and then adds them to
the queue as {0} � {00, 01}. Consequently, two CP-configs are reconfigured for this
single request. Processing of a control request is considered complete only when all its
partial requests have been processed.

As soon as a request is available in the global queue, an idle configurator tries to
dequeue it and process it. However, before dequeuing the request, it would first need
to acquire an exclusive lock on the CP-config to be reconfigured for this request. Since
a request is already preprocessed by the dispatcher, it will always correspond to a single
CP-config, requiring the configurator to acquire the lock on this configuration alone. If
it is possible to acquire the lock, the configurator dequeues the request from the global
queue and proceeds with reconfiguration of the locked CP-config. Reconfiguration
follows the usual mechanisms discussed in Chapter 2. Once all actions corresponding
to this request are performed, the configurator releases the lock on the configuration.
On the contrary, if a configurator is unable to acquire a lock on a CP-config for a
particular request, it simply continues traversing the queue for a request belonging to
a partition on which it can acquire a lock till it reaches the end of the queue. So, a
configurator does not get blocked if requests affecting unlocked partitions are available
in the queue for further processing. It should be noted that a configurator ensures that,
if it acquires a lock on a partition, it always processes the first request waiting in the
queue for that partition. This ensures fairness of request processing at least within a
partition. SEA enables the configurators to actively look for a request to process as
soon as they are idle, resulting in implicit load balancing among them. Also, multiple
partitions where k >> n allows for a possibility of a certain degree of concurrency
despite ensuring strong consistency.

The advantages of using such an approach for increased responsiveness in a vertically
scaled control plane are significant. This is because vertical scaling works with a
shared memory architecture where sharing of multiple CP-configs does not cause much
overhead. However, horizontal scaling implies repeated remote access of multiple CP-
configs by every configurator. This involves transfer of large amount of data over
the control network, resulting in severe performance limitations. Not surprisingly,
SEA cannot match up to the requirements of a horizontally scaled control plane. To
overcome these limitations and exploit the benefits of horizontal scaling, we propose

136

6.3 Scaling Approaches

0010111111

001101

10010111111

c1 c2 cn

Dispatcher

Partition-specific
dispatch

000

0011

0010 10011

100101

Figure 6.5: Shared Nothing Approach

the shared nothing approach which is the subject of discussion in the remaining part
of this section.

6.3.2 Shared Nothing Approach

The shared nothing approach (SNA) also operates with multiple disjoint CP-configs or
partitions. However, in this approach, each partition is assigned exclusively to exactly
one configurator. To ensure consistency, each configurator is restricted to performing
reconfigurations on its assigned partitions only. So, two or more configurators may pro-
cess different requests concurrently as they operate on completely different subspaces
in Ω, i.e., they may modify the flows on the same switch concurrently without any
inconsistencies as the flows affected in each case are completely unrelated. This en-
sures that no two configurators interfere with each other while performing concurrent
topology reconfigurations on the same network. As our design assumes k >> n, each
configurator may be responsible for multiple partitions. It is important to note that
each configurator needs to maintain only those CP-configs that have been assigned to
it. By employing such a mechanism, we avoid all kinds of coordination overhead among
configurators while ensuring control plane consistency in a distributed setting.

Figure 6.5 depicts a middleware where each configurator has one or more partitions
assigned to it and each partition is represented by its corresponding dz. Such a repres-
entation enables the direct mapping of advertisements/subscriptions (represented by

137

6 Scaling the Control Plane

one or more dzs) to partitions. For example, two partitions {000}, {0010} have been
assigned to c1 ∈ C, implying that c1 only maintains CP-configs for these two partitions,
affecting flows related to these subspaces.

6.3.2.1 Topology Reconfiguration

The dispatcher plays a significant role in this approach. It maintains a map of the
configurators and their associated partitions and performs partition-specific dispatch
of control requests. Again, the dispatcher first prepares a control request for further
processing by splitting it into partial requests, if necessary, depending on the partitions
(cf. Section 6.3.1). This guarantees the mapping of a request to a single partition
enabling the dispatcher to directly forward a request to a configurator responsible for
the corresponding partition. For example, as per Figure 6.5, if a request corresponds
to {00}, the dispatcher first splits it up into three requests {000}, {0010}, {0011} and
then dispatches them to c1 and c2 as {00} � {000, 0010, 0011}. Consequently, all three
CP-configs are reconfigured for this single request.

Each configurator maintains a request queue for each partition it is responsible for.
Processing of control requests within a configurator takes place sequentially. This, in
turn, ensures strong consistency within each partition as all conflicting actions are
serially processed. Once a request is dispatched, it gets enqueued to the relevant queue
and waits for the configurator to dequeue it for further processing. While choosing
the next queue from which to dequeue a request, a configurator considers the order
in which requests for all its assigned partitions arrived, ensuring request processing
fairness. After dequeuing a request, it proceeds with reconfiguration of a specific CP-
config corresponding to the request dz. Topology reconfiguration follows the usual
mechanisms discussed in Chapter 2.

The shared nothing approach enables concurrent processing of requests (i.e., concurrent
execution of actions) corresponding to disjoint partitions at multiple configurators, thus
reaping the benefits of scaling. However, the true potential of this design can be realized
if the workload can be balanced between configurators. There may be scenarios where
the workload is much higher for certain partitions which burdens a few configurators
while others remain idle. This degrades the responsiveness of the control plane to
control requests. For this reason, adaptive load balancing among configurators bears
considerable significance and features as the subject of discussion in the remaining part
of this subsection.

6.3.2.2 Adaptive Load Balancing

In the face of a dynamic incoming workload, an adaptive policy is central to the load
balancing approach. We identify load of a configurator at a given time by request queue

138

6.3 Scaling Approaches

lengths of all partitions assigned to it. A request queue, specific to a partition (say
ptj), consists of all control requests waiting to be processed by the configurator for an
assigned partition. So, load at a configurator ci may be defined as,

li =
m∑
j=1

QLj (6.1)

where m is the number of partitions assigned to ci and QLj represents queue length at
ptj.

When an overload condition is detected at a heavily loaded configurator, one or more of
its assigned partitions is migrated to a configurator with current minimum load. This
implies that the task of processing all current and future requests for the migrated
partitions now lies with the newly chosen configurator. An overload detection is carried
out by the monitor component. The monitor periodically collects load information of
every configurator and hence can easily identify an overload condition. With every
periodic collection, the monitor calculates the average queue length at a configurator,
denoted by lavg. If the ratio of the load at a configurator, i.e., li, to lavg is greater than
a threshold value, then the monitor detects an overload and proceeds with partition
migration. More formally, an overload is detected if,

li
lavg

> threshold (6.2)

where lavg =
∑n

s=1 ls
n

. However, in order to avoid partition thrashing, the monitor
initiates migration only if the overload condition at a configurator is monotonically
increasing with time. Initially, the most heavily loaded partition at the overloaded
configurator is selected for migration and the effects of migrating it to the minimally
loaded configurator is calculated. If this results in a potential overload condition at
the minimally loaded configurator, the monitor proceeds to calculate the feasibility
of migration of the next most heavily loaded partition until a balanced migration is
achieved or all partitions considered for migration.

Migration of a partition, say pti, essentially means transfer of state from one configurator
to another. This state includes the CP-config, cpi, associated with pti and all pending
requests related to it in the queue of the overloaded configurator. Also, while this
transfer is underway, all new requests corresponding to pti that arrive at the dispatcher
need to be stalled to avoid unnecessary state transfer. Once migration is completed,
the dispatcher forwards the pending requests and all corresponding ones associated
with pti to the newly assigned configurator.

It should be noted that SNA is suitable for both vertical as well as horizontal scaling.
However, in the case of vertical scaling, it may perform worse than SEA in the presence
of fluctuating unevenly distributed workload. Subject to such workload, adaptive load
balancing of SNA will always be outperformed by the implicit optimal load balancing
achieved in SEA. This is further confirmed by our evaluation results (cf. Section 6.6).

139

6 Scaling the Control Plane

6.4 Keeping DP-config Consistent with CP-config

So far, we have considered that CP-config is a reflection of DP-config, i.e., when an
action is executed on a switch, the resulting flow changes get reflected on both DP-
config and CP-config before another action which is in conflict (cf. Section 6.2) with
the previous action is executed by a configurator. In this section, we provide details
about the protocol that ensures the same.

Please recall that an action consists of operations that include reading the current
switch state, making decisions to modify this state, and deploying these flow modifica-
tions to the switch maintained at both the DP-config (physical network) and CP-config.
In order to ensure consistency between CP-config and DP-config, an action must be
considered to be completely executed only when both DP-config and CP-config have
been updated as otherwise there may be inconsistencies between the two configura-
tions. We demonstrate the same with an example where two conflicting actions are
serially processed at the control plane. So, first, a configurator sends flow modification
requests for this action to the physical switch (i.e., DP-config) and also updates the
CP-config with the same changes. Let us assume that, at this point, the action is con-
sidered complete and the next action which is in conflict with the first one is similarly
executed. While the flow modifications for the two conflicting actions are performed
in order at the switch in CP-config (which resides in the control plane), they may have
been executed in the reverse order (or not at all) on the switch in the physical network
(i.e., DP-config). This will lead to inconsistencies between CP-config and DP-config,
resulting in incorrectness in the system. As a result, it is crucial to ensure that the flow
changes are also executed on the switch in the physical network before the execution
of an action is considered to be complete.

So, our middleware pushes out the flow modification requests, generated while execut-
ing an action, to the switch and waits until the switch acknowledges the successful
completion of these updates within a given timeout. The flow monitoring functionality
introduced by OpenFlow version 1.4 can be efficiently used to allow a configurator to be
notified by a switch about flow operations (addition/modification/deletion) performed
on its tables. Such switch notifications can serve as acknowledgments of completed
flow table updates. On receiving an acknowledgment from the switch, the configurator
writes these changes to the CP-config and considers the action as fully executed. The
following action can now be executed without any inconsistencies. This ensures that
all changes are made to DP-config in the same order as CP-config and CP-config can
be considered as a reflection of DP-config.

However, if an acknowledgment does not arrive at a configurator within the given
timeout, the configurator marks all the unacknowledged flow changes as undefined in
CP-config and the action is considered as incomplete. An acknowledgment may not
have arrived at the configurator due to multiple reasons. For example, the reason
could be the presence of a failure such as a lost connection between the configurator

140

6.5 Reducing Flow Operations

and the switch. In such a scenario, the configurator cannot be certain that the flow
modifications that were sent to the switch were actually executed by the switch. As
a result, the status of the flow changes are kept as undefined till an acknowledgment
to repeated requests is received from the switch. Please recall that the processing of a
control request consists of executing an action on each switch between publishers and
subscribers relevant to this control request. So, even if one of the actions is incomplete,
the processing of the control request is considered incomplete. The processing of all
subsequent control requests that have containment relations with the incomplete con-
trol request must be stalled till the incomplete control request is fully processed. This
implies that, for both SEA and SNA, the processing of control requests in the partition
containing the incomplete request is stalled till the processing of the incomplete request
is completed. Meanwhile, concurrent processing of control requests belonging to other
partitions continue.

Inconsistencies between CP-config and DP-config may arise due to other failures such as
switch failures. In case of a switch failure, the spanning tree maintained by CP-config
has to be modified accordingly, which means that all paths need to be recalculated
according to the new topology. The same has to be done in case of a switch recovery as
this also involves a change in the network topology and must be reflected in CP-config
to ensure consistency. The control plane itself may fail as a result of which CP-config
may be lost. In such a scenario, on recovery, a configurator must explicitly read the
current status of the switches in the network using the OpenFlow standard in order to
ensure consistency between CP-config and DP-config.

6.5 Reducing Flow Operations

Increasing responsiveness of the control plane to control requests also increases the
rate at which network updates are pushed to the switches by multiple configurators.
With today’s hardware switches supporting around 40-50 flow-table updates per
second [HYS13], it would be really beneficial if the total number of flow updates could
be reduced. However, this would have to be achieved without degrading the perform-
ance of the system, i.e., without introducing false positives and false negatives.

We claim that the number of network updates can be reduced by exploiting the know-
ledge of advertisements and subscriptions and their relations yet again. Using the
relations, processing of control requests can be ordered to optimize the network update
procedure. We explain the optimization process at a switch level w.r.t. subscriptions
and identify two relations that make a difference in the ordering of control requests. If
two subscriptions subi and subj, where subi � subj, independently produce two new
flows fli and flj, respectively, then the two relations between the flows that ordering
would benefit from are complete containment, i.e., fli � flj, and partial containment,
i.e., fli v flj.

Referring to the two subscriptions in the above example and their relations, we, first,

141

6 Scaling the Control Plane

fl1 fl2

1) sub1 : 00  sub2 : 000
Add (Match : 00* Outport :2)

2) sub2 : 000  sub1 : 00
Add (Match : 000* Outport :2)
Add (Match : 00* Outport :2)
Delete (Match : 000* Outport :2)

1

2 S1

R1

S231 2

sub1 : 00

sub2 : 000

R2

fl1 fl2

1) sub1 : 00  sub2 : 000
Add (Match : 00* Outport :2)
Add (Match : 000* Outport :2, 3)

2) sub2 : 000  sub1 : 00
Add (Match : 000* Outport :3)
Add (Match : 00* Outport :2)
Modify (Match : 000* Outport :2, 3)

1

2 S1

S231 2

sub1 : 00

sub2 : 000

R1 R2

Figure 6.6: Reducing Flow Operations

look at complete containment between flows. The following updates would be done on a
switch depending on the order in which the two subscriptions are processed. 1) If subi
is processed before subj, subi first produces one add flow (fli) operation on the switch.
When subj is processed, it does not produce any other flow updates on the switch as
fli fully covers all events that need to be forwarded in response to subj. 2) If subj is
processed before subi, subj also produces one add flow (flj) operation on the switch.
After this, when subi is processed another flow (fli) add operation has to be performed
to cover forwarding of all events matching subj and also those matching subi but not
subj. Also, a delete operation has to be performed on flj as it is now redundant. Given
the limitations of the flow table size on a switch, redundant flows cannot be afforded.
This, clearly, indicates that the first ordering yields two operations less as compared
to the second. Figure 6.6 illustrates the above discussion with an example where the
ordering of two subscriptions sub1 ({00}) and sub2 ({000}) that would independently
produce fl1 and fl2 yield different number of operations on switch R1 as fl1 � fl2.

Let us now consider the second relation of partial containment between the flows.
Again, we look at the number of operations required on ordering subi and subj differ-

142

6.6 Performance Evaluations

ently. 1) If subi is processed before subj, subi produces one add flow (fli) operation.
When subj is processed, a second flow (flj) add operation needs to be performed as
this time the flows are only partially related and a different out port needs to be added
only for subj. 2) However, if subj is processed before subi, subj produces one add flow
(flj) operation on the switch. Now, when subi is processed, first a flow (fli) gets added
for this subscription. Also, since the events relevant to flj are also relevant to fli (as
subi � subj), a modify operation is performed on flj to accommodate the out port for
subi. Again, the first ordering yields lesser operations as compared to the second. This
is again illustrated in Figure 6.6, and this time the operations w.r.t. both orders are
tracked on switch R2 where a partial containment relation between fl1 and fl2 (fl1 v
fl2) occurs.

It is important to note that the reordering of subscriptions does not have an impact on
the correctness of the system. This is because, no matter how processing of requests is
ordered, the final set of flows deployed on the switches is always the same. In Figure 6.6,
at the end of processing sub1 and sub2, both switches have the same flows irrespective
of the order in which they were processed. However, ordering may have an effect on
the response time to certain requests that get scheduled later (cf. Section 6.6).

Similarly, efficient ordering of advertisements, unadvertisements, and unsubscriptions
that have overlapping switches and are bound by the above relations reduce the number
of network updates significantly. However, ordering of two control requests of different
types should never be done. For example, the order of processing a subscription with an
unsubscription must not be changed as this may result in undesirable system behavior.
Both our designed approaches benefit from relevant ordering of control requests of the
same type in the waiting queues of the configurators.

6.6 Performance Evaluations

This section is dedicated to an analysis of the design and implementation of our archi-
tecture and related approaches. A series of experiments are conducted to understand
the effects of the design of the control plane on performance metrics such as (i) control
plane throughput, (ii) average processing latency of control requests, and (iii) required
number of flow operations on switches. We evaluate our approaches w.r.t. vertical and
horizontal scaling of the control plane in order to understand the benefits of scaling up
and scaling out.

6.6.1 Experimental Setup

We scale the control plane both vertically and horizontally on a testbed consisting
of a small local area network which includes a cluster of physical machines capable
of hosting each component of the proposed architecture. Vertical scaling is realized

143

6 Scaling the Control Plane

by hosting multiple configurators on a single physical machine with 4 cores, 3.4 GHz
processor and 8 GB of RAM. On the other hand, horizontal scaling is achieved by
hosting multiple configurators on multiple physical machines where each machine in
the cluster has 4 cores, 3.4 GHz processor, and 8 GB of RAM. Two separate machines
host the dispatcher and the monitor.

The aforementioned setup deals with the control plane. In order to realize the data
plane, our setup uses Mininet. Since we use a very large fat-tree topology with 64
hosts (publishers and/or subscribers) and 102 OpenFlow-enabled switches for all our
experiments, Mininet is an ideal choice. It is also important to note that since our
evaluations focus on control plane performance, they are independent of a real or
emulated data plane.

We use a content-based schema that consists of up to 10 attributes for our event space,
where the domain of each attribute varies in the range [0, 1023]. Again, experiments
are performed using two different models of data distribution for generating control re-
quests ((un)advertisement/(un)subscription). So, the uniform model generates control
requests uniformly over Ω, whereas, the interest popularity model chooses 8 hotspot
regions around which control requests are generated using the widely used zipfian distri-
bution. The rate at which control requests are sent by the participants (i.e., publishers
and subscribers connected to a software-defined network) to the dispatcher also follows
two models of distribution, i.e., uniform and poisson. A uniform rate implies that the
occurrences of incoming requests at the dispatcher are distributed uniformly on an in-
terval of time. However, poisson rate involves a fluctuating workload while maintaining
an average rate of incoming requests at the dispatcher within a given interval of time.
So, there may be bursts of incoming requests from time to time along with lull periods
to ensure an average rate at the dispatcher.

6.6.2 Vertical Scaling

In this section, we evaluate throughput and average processing latency of a vertically
scaled control plane following the shared everything (SEA) and shared nothing with
load balancing (SNA-LB) approaches. We partition the event space into 64 disjoint
partitions on which each approach operates. Additionally, in SNA-LB, we randomly
assign partitions to the configurators on system start-up. Also, 64 subscribers issue up
to 200,000 subscriptions and unsubscriptions at various uniform and poisson rates to
generate load at the control plane.

The first set of experiments measures the maximum rate at which the control plane
can process control requests, i.e., throughput, with increasing number of configurators.
It is important to note that control requests may be further broken down into partial
requests to contain them in different partitions. A control request is considered to
be processed only when all its partial requests have been processed. Figure 6.7(a) and
6.7(b) show that, with increasing number of configurators, the throughput of the control

144

6.6 Performance Evaluations

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1 2 4 6 8

T
h
r
o
u
g
h
p
u
t

[
r
e
q
u
e
s
t
s
/
s
e
c
]

No. of Configurators - (a)

SEA(uniform)
SNA-LB(uniform)

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1 2 4 6 8

T
h
r
o
u
g
h
p
u
t

[
r
e
q
u
e
s
t
s
/
s
e
c
]

No. of Configurators - (b)

SEA(zipfian)
SNA-LB(zipfian)

0

5

10

15

20

25

30

35

1 2 4 6 8A
v
g
.

P
r
o
c
e
s
s
i
n
g

L
a
t
e
n
c
y

[
s
]

No. of Configurators - (c)

SEA(uniform)
SNA-LB(uniform)

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 4 6 8A
v
g
.

P
r
o
c
e
s
s
i
n
g

L
a
t
e
n
c
y

[
m
s
]

No. of Configurators - (d)

SEA(zipfian)
SNA-LB(zipfian)

Figure 6.7: Performance Evaluations : Vertical Scaling

plane increases significantly for both uniform and zipfian data till the control plane is
scaled up by 4 configurators for both approaches. Not surprisingly, as the configurators
are hosted by a machine with a 4-core architecture, there is not much benefit if the
control plane is scaled beyond 4. Figure 6.7(b) shows that, for control requests following
zipfian distribution, the throughput of SEA is higher as compared to SNA-LB. This is
because, for zipfian data, the workload is not evenly distributed among the partitions.
This means that in SNA-LB, some configurators may be more heavily loaded while
others remain relatively idle. Even though SNA-LB tries to balance this load, it does
so only after a threshold limit is crossed, while SEA ensures that no configurator is ever
idle unless there are no more requests to process. SEA implies optimal load balancing
among configurators. In case of uniform data, where all partitions are equally loaded,
Figure 6.7(a) shows that the performance of SEA is slightly worse than the other
as once the benefits of load balancing are not visible, the additional synchronization

145

6 Scaling the Control Plane

overhead required in SEA renders it less effective as compared to SNA-LB.

In the context of our work, responsiveness is directly related to the overall time it takes
for a control request to be processed by the control plane (i.e., processing latency). We
define processing latency as the time elapsed from the issuance of the request by a
publisher/subscriber to the time when all partial requests for this request have been
processed by the control plane. In this experiment, we plot the average processing
latency of control requests with increasing number of configurators in a vertically scaled
control plane. We show a comparison of both the approaches when subscription and
unsubscription requests are generated using both uniform and zipfian distributions and
are sent by the subscribers to the dispatcher at a poisson rate of 2500 requests/sec.
Figure 6.7(c) and Figure 6.7(d) show that, for both uniform and zipfian data and for
both approaches, the average processing latency reduces significantly with increasing
number of configurators till 4 configurators. Again, scaling beyond 4 configurators may
not have any benefits due to the reason mentioned above. Figure 6.7(c) suggests that
there is not much difference in performance between the approaches for uniform data
as all partitions get similar amount of workload. This implies that all configurators get
similar amount of workload in SEA and SNA-LB. However, the difference in benefits
between the approaches is visible for zipfian data and as a result we focus on comparing
their performances by zooming the graph in Figure 6.7(d). In general, with dynamic-
ally changing incoming workload, SEA performs better as compared to SNA-LB as it
ensures optimal load-balancing. As mentioned before, with uneven load corresponding
to different partitions, and a poisson rate of incoming request, the queues formed at
different configurators are of different lengths for SNA-LB. This implies much longer
waiting times for some requests waiting at the end of long queues, resulting in a higher
average processing latency.

6.6.3 Horizontal Scaling

We also evaluate throughput, average processing latency, and required number of flow
operations in a horizontally scaled control plane. We especially compare the perform-
ances of shared nothing without load balancing (SNA) and shared nothing with load
balancing (SNA-LB) approaches in order to show the effects of load balancing on this
approach. As SEA does not scale well in a physically distributed setting, our evalu-
ations in this section do not include this approach. As in the experiments for vertical
scaling, we partition the event space into 64 disjoint partitions unless otherwise spe-
cified. Also, 64 subscribers issue up to 200,000 subscriptions and unsubscriptions at
various uniform and poisson rates to generate load at the control plane.

Figure 6.8(a) and Figure 6.8(b) show the throughput of a horizontally scaled con-
trol plane for uniform and zipfian data, respectively. In both SNA and SNA-LB, the
throughput increases with increasing number of configurators for both distributions as
a horizontally scaled setup does not suffer from the limitations of a vertically scaled one

146

6.6 Performance Evaluations

0

2k

4k

6k

8k

10k

12k

1 2 4 8 12

T
h
r
o
u
g
h
p
u
t

[
r
e
q
u
e
s
t
s
/
s
e
c
]

No. of Configurators - (a)

SNA(uniform)
SNA-LB(uniform)

0

1k

2k

3k

4k

5k

6k

7k

8k

9k

1 2 4 8 12

T
h
r
o
u
g
h
p
u
t

[
r
e
q
u
e
s
t
s
/
s
e
c
]

No. of Configurators - (b)

SNA(zipfian)
SNA-LB(zipfian)

0

10

20

30

40

50

1 2 4 8 12A
v
g
.

P
r
o
c
e
s
s
i
n
g

L
a
t
e
n
c
y

[
s
]

No. of Configurators - (c)

SNA(uniform)
SNA-LB(uniform)

0

10

20

30

40

50

1 2 4 8 12A
v
g
.

P
r
o
c
e
s
s
i
n
g

L
a
t
e
n
c
y

[
s
]

No. of Configurators - (d)

SNA(zipfian)
SNA-LB(zipfian)

0

200

400

600

800

1k

4 8 16 32 64 128 256A
v
g
.

P
r
o
c
e
s
s
i
n
g

L
a
t
e
n
c
y

[
m
s
]

No. of Partitions - (e)

250k

300k

350k

400k

450k

500k

550k

600k

4 8 16 32 64 128 256

N
o
.

o
f

F
l
o
w

O
p
e
r
a
t
i
o
n
s

No. of Partitions - (f)

Figure 6.8: Performance Evaluations : Horizontal Scaling

147

6 Scaling the Control Plane

in terms of number of cores. Scaling out provides a lot of flexibility and can be used
effectively to increase control plane throughput as shown in the graphs. Not surpris-
ingly, there is not much difference between the plots of SNA and SNA-LB for uniform
data. However, the benefits of load balancing are again visible for zipfian data where
SNA-LB outperforms SNA.

We also conducted experiments which measure average processing latency of control
requests with increasing number of configurators when subscriptions and unsubscrip-
tions are generated using both uniform and zipfian data and sent to the dispatcher at
a poisson rate of 5000 requests/sec. Figure 6.8(c) and Figure 6.8(d) show behavior
similar to that obtained in vertical scaling where the average processing latency re-
duces significantly with scaling. The plots for uniform distribution are similar for both
SNA and SNA-LB, whereas SNA-LB performs better, when zipfian data is used, due to
additional load balancing. This means that SNA-LB provides a possibility to migrate
partitions to manage the maximum length of the waiting queues, whereas SNA has no
such possibility, because of which the average processing latency for SNA-LB is mostly
lower than that of SNA.

It is also interesting to observe the average processing latency of a control request with
increased partitioning of the event space when SNA-LB is used. More the number
of partitions, more is the possibility of load balancing in SNA-LB, when dealing with
requests following zipfian distribution. If a configurator has a large partition with very
high load, moving it to any other configurator will not balance the load. However,
if the partitions are smaller, the possibility of the load being distributed among these
partitions is more, which increases the flexibility of balancing the load between multiple
configurators. Figure 6.8(e) shows that, for zipfian data, the average processing latency
reduces significantly with increasing number of partitions up to a point. However,
beyond this point further partitioning has no benefits as no further load balancing
is possible for the considered workload. In fact, the graph indicates that once these
benefits are no longer applicable, further partitioning may increase the average latency
to some extent. This is because increased partitioning has an effect on the number of
partial requests that are constructed from control requests. If the partitioning is more
fine granular, the probability of a control request spanning multiple partitions is higher.
This means that multiple CP-configs will be affected resulting in increased number of
flow operations. Figure 6.8(f) plots the effects of partitioning on total number of flow
operations. The graph clearly shows that partitioning increases the number of flow
operations significantly which can have an impact on the flow updates on the network.

6.6.4 Reducing Flow Operations

In order to reduce the number of flow operations on switches, we order control requests
as discussed in the previous section. However, continuous sorting of a waiting queue
at a configurator not only poses a significant overhead but also results in starvation for

148

6.6 Performance Evaluations

95k

100k

105k

110k

115k

120k

125k

130k

135k

140k

110 50 100 200

N
o
.

o
f

F
l
o
w

O
p
e
r
a
t
i
o
n
s

Slice Size - (a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

110 50 100 200A
v
g
.

P
r
o
c
e
s
s
i
n
g

L
a
t
e
n
c
y

[
m
s
]

Slice Size - (b)

Avg. Latency
Max. Latency

Figure 6.9: Performance Evaluations : Reducing Flow Operations

some fine-grained subscription requests that get continuously pushed down in the sorted
queue. As a result, we sort only slices of contiguous subscriptions at a time and not the
complete waiting queue. This set of experiments plots the number of flow operations
required to process a set of 5000 subscriptions with increasing slice size. Figure 6.9(a)
clearly shows that with increasing slice size, the number of flow operations reduces.
However, Figure 6.9(b) shows that due to starvation of certain requests, the average
latency is affected on increasing the slice size. We also plot the maximum processing
latency for each slice size that contributes to increasing the average processing latency.
So, there is always a trade-off between the slice size and fairness in request processing
that directly affects the responsiveness to certain requests. It is important to note that
a slice size of 1 implies an unsorted queue.

6.6.5 Discussion

Our evaluation results show the importance and the advantages of both vertical and
horizontal scaling in the control plane. Both SEA and SNA-LB increase the throughput
of the control plane manifold while reducing the average processing latency by up to
99% as compared to a centralized controller. In the context of vertical scaling, both
SEA and SNA-LB perform very well with SEA having an additional edge due to its
implicit load balancing property. In the context of horizontal scaling, where SEA
would incur too much overhead, the importance of SNA and SNA-LB is evident. In
fact, evaluation results show that adaptive load balancing can further improve the
performance of SNA in most cases. Moreover, the evaluations show the impact of
partition size on the performance of SNA-LB w.r.t. average processing latency and
number of required flow operations. The results clearly show the trade-off between
the two with increasing number of partitions. Finally, our evaluations, also, show that

149

6 Scaling the Control Plane

reordering the handling of control requests can reduce the required flow operations in
the network by up to 28%.

6.7 Related Work

Efficient maintenance and handling of dynamically changing subscriber interests has
also been a subject of much research in overlay-based pub/sub middleware [CS04,
JJE10, CFMP04]. For instance, Jayaram et al. [JJE10] propose mechanisms to effi-
ciently handle subscriptions that change dynamically w.r.t. various parameters (such
as location) by introducing the concept of parametric subscription. These methods,
however, cannot be directly applied to the problem addressed in this chapter.

As discussed in Chapter 4, the importance of a scalable and elastic pub/sub with
high throughput has been impressed upon in literature. But the question is, can
these mechanisms be employed in the context of scaling the control plane in software-
defined networking? Please recall, Li et al., present an attribute-based pub/sub service,
BlueDove [LYK+11], that organizes multiple servers into an overlay and achieves high
throughput filtering (or matching) of events by forwarding events to be matched to
the least loaded servers. Likewise, Barazzutti et al. design a scalable pub/sub service,
StreamHub [BFF+13] and e-StreamHub [BHM+14], where a set of independent operat-
ors take advantage of multiple cores on multiple servers to perform pub/sub operations
which include subscription partitioning and event filtering. In fact, e-StreamHub sup-
ports both scaling in and scaling out depending on the load observations of the system.
However, it is important to note that all these systems target parallelism of event fil-
tering and do not need to take care of concurrency control as the servers enabling
concurrent filtering of events do not share any resources.

Scaling the control plane in SDN, however, involves concurrent access to the network,
acting as a shared resource, and has been the subject of much research in recent
times [YG16,TG10,BRKB13,KCG+10]. Levin et al. [LWH+12] explore the trade-offs of
state distribution in a distributed control plane and motivate the importance of strong
consistency in their work. They investigate the impact of eventual consistency on the
performance of a load-balancer implemented using SDN and infer that the lack of strong
consistency severely degrades application performance. To ensure strong consistency
of network state between multiple controller instances, Onix [KCG+10] provides a
transactional persistent database backed by a replicated state machine. However, it
claims that, for applications requiring frequent network updates, dissemination of state
updates using this technique yields severe performance limitations. As a result, to
accommodate such applications, Onix also proposes a mechanism for obtaining eventual
consistency using a memory-only DHT which has its limitations w.r.t. consistency
guarantees. Similarly, Hyperflow [TG10] only provides guarantees of maintaining weak
consistency by passively synchronizing the global network views of all controllers. On

150

6.8 Conclusion

the other hand, Botelho et al. [BRKB13] show that by using a classical state machine
replication technique the cost of coordination to guarantee strong consistency may
become bearable for certain SDN applications, but not in general. This chapter, in
contrast to the aforementioned literature, not only focuses on line-rate forwarding of
events in the data plane but also on achieving high responsiveness while ensuring strong
consistency on the control plane.

6.8 Conclusion

In this chapter, we have proposed an application-aware control for software-defined net-
works that is capable of enhancing the responsiveness of the control plane by allowing
concurrent network updates while ensuring consistent changes to the data plane with
low synchronization overhead even in the presence of network failures. In particular,
we have designed two complementary approaches in the context of event-based mid-
dleware that take into account interests of publishers and subscribers in order to reap
the benefits of horizontal and vertical scaling of the control plane. Moreover, we have
proposed reordered (yet consistent) handling of control requests at the control plane to
mitigate the limitations of current SDN switches w.r.t. number of supported flow up-
dates per second. Our evaluations show that the application-aware control distribution
drastically decreases the response time to control requests (up to 99% in comparison to
a centralized controller) for both vertical and horizontal scaling while ensuring control
plane consistency. Furthermore, reordered handling of control requests results in up to
28% less flow updates on the SDN switches.

151

Chapter 7
Summary and Future Work

This chapter summarizes the main contributions of this thesis and also provides a brief
outlook on possible future work.

7.1 Summary

The growing amount of large-scale dissemination of information between participants
of modern applications has made paradigms such as content-based publish/subscribe
highly significant in today’s world. For example, Google uses Cloud Pub/Sub to ‘con-
nect anything to everything’ in an IoT environment [Goo]. Also, Microsoft uses Azure
Event Hubs, a highly scalable pub/sub service to connect devices and applications
across platforms [Eve]. Similarly, communication in Amazon Web Services IoT Plat-
form heavily relies on the MQTT pub/sub protocol [AWS]. In fact, for the past few
decades, content-based routing has been the popular choice for dissemination of con-
tent from publishers to subscribers in a loosely-coupled manner. Most traditional
content-based pub/sub middleware implementations rely on an overlay network of soft-
ware brokers that perform content-based filtering and routing to ensure loose-coupling
between publishers and subscribers. However, due to filtering and routing being per-
formed in the application layer, i.e., in software, their performance cannot match up to
that of communication protocols implemented on the network layer w.r.t. throughput
rates, end-to-end latency, and bandwidth efficiency. As a result, the following are the
main contributions of this thesis.

1. We propose methods to implement the basic functionalities of the content-based
publish/subscribe paradigm on the network layer by utilizing the capabilities of
software-defined networking. In fact, our designed system, PLEROMA, pushes
filtering and routing of events to the network layer, thus enabling line-rate for-
warding of events. To this end, we provide mechanisms to represent content

153

7 Summary and Future Work

filters that are capable of being installed in the TCAM of hardware switches.
Our designed algorithms use these content filters to establish paths between pub-
lishers and subscribers for dissemination of published events to interested sub-
scribers. Moreover, we provide methods to efficiently reconfigure the network in
the presence of dynamic subscriptions and advertisements. We perform a series
of experiments to evaluate the behavior of the designed system. Our evaluation
results show that the filtering performance of the network layer (w.r.t. end-to-end
latency) is significantly better than that of the application layer.

2. While PLEROMA manages to achieve line-rate performance of events, express-
iveness of content filters installed in TCAM suffers due to inherent hardware
limitations w.r.t. number of bits available on hardware switches to represent
these filters. As a result, we explore various techniques to represent content fil-
ters expressively despite being limited by hardware in order to reduce unnecessary
traffic in the network. Our designed techniques i) use workload, in terms of events
and subscriptions, to represent content, and ii) efficiently select attributes to re-
duce redundancy in content. Moreover, these techniques complement each other
and can be combined together to further reduce false positives in the system.
Our detailed performance evaluations show the potential of these techniques in
reducing unnecessary traffic (up to 97%) when subjected to different workloads.

3. In order to further increase expressiveness of content filters, we propose methods
to strike a balance between purely application-layer-based and purely network-
layer-based implementations of content-based pub/sub. In fact, we realize a
hybrid content-based middleware that enables filtering of events in both software
(i.e., application layer) and hardware (i.e., network layer). Moreover, we provide
algorithms with various associated complexities and benefits to determine the
layer in which each event gets filtered such that unnecessary network traffic can
be minimized while also considering latency requirements of the middleware.
In fact, depending on the performance requirements of the system, our hybrid
middleware provides a full range of configurations between a pure application-
layer-based implementation and a pure network-layer-based implementation. We
provide a detailed performance evaluation of the proposed selection algorithms
to determine their impact on the performance of the designed hybrid middleware
which we further compare to a state-of-the art solution.

4. We, also, address another hardware limitation, i.e., limited number of flow table
entries available to pub/sub traffic in TCAM of hardware switches. We design
a filter aggregation algorithm that merges filters on individual switches to re-
spect TCAM constraints while ensuring minimal increase in unnecessary network
traffic due to the merges (i.e., reduced expressiveness of aggregated filters). Our
algorithm uses the knowledge of advertisements, subscriptions, and a global view
of the network state for taking aggregation decisions that would have minimum
adverse impact on the bandwidth efficiency of the system. We provide different

154

7.2 Future Work

flavors of this algorithm and thoroughly evaluate and compare their perform-
ances under realistic workload. Our evaluation results show that our designed
aggregation algorithm successfully meets TCAM constraints on switches while
also reducing unnecessary traffic introduced in the network due to aggregation
by a baseline approach by up to 99.9%.

5. An important requirement of a pub/sub middleware is high responsiveness to
dynamically changing advertisement and subscription requests (i.e., control re-
quests). So, we present a distributed control plane that is capable of both vertical
and horizontal scaling. Our scaling methods not only improve responsiveness by
enabling concurrent network updates in the presence of high dynamics but also
ensure consistent changes to the data plane. To this end, our proposed methods
use knowledge of the application semantics that is available in the design of the
data plane of the pub/sub middleware, e.g., subscriptions and advertisements,
to perform concurrent and consistent network updates. Our detailed evaluations
show that the designed scaling methods drastically decrease response time to
control requests by up to 99% in comparison to a centralized controller while
ensuring control plane consistency. Moreover, we also propose a method to con-
sistently reorder processing of control requests at the control plane which would
reduce the number of necessary flow updates in the network in order to mitigate
the limitation on hardware switches w.r.t. number of supported flow updates per
second. The designed method ensures that reordering the handling of control
requests does not impact the correctness of the system, i.e., it does not introduce
any additional false positives or false negatives in the system. Our evaluation
results show that the proposed reordered handling of control requests reduces
flow updates on the SDN switches by up to 28%.

In conclusion, this thesis realizes a content-based pub/sub middleware on software-
defined networks. It addresses various limitations on both the data plane as well as
the control plane in order to provide a high performance solution.

7.2 Future Work

There are several possible directions in which the work presented in this thesis can
be extended as part of future research. The following includes a brief outlook on the
most promising research directions in the context of content-based routing on software-
defined networks.

• In Chapter 2 we provide methods to map content to binary strings that are
capable of being installed in TCAM using spatial indexing. However, it would
be interesting to explore other techniques such as bloom filters, hashes, one-
dimensional representation using space-filling curves, etc., to transform content
to binary strings. The practicality of these techniques and how they compare to

155

7 Summary and Future Work

spatial indexing, that generates dz strings in PLEROMA, can prove to be very
interesting. In fact, with the recent advent of various programming abstractions
in SDN [BBBS16,BDG+14], other techniques that look into the manner in which
content filters are mapped to match fields of flows in TCAM can also be ex-
plored. For example, the flexibility offered by P4 [BDG+14] to implement new
protocols and headers may be harnessed to process event packets independent of
any hardware target.

• While PLEROMA offers line-rate forwarding of events, it does not provide hard
latency guarantees. A significant number of modern applications, however, are
highly time-sensitive and demand stringent real-time guarantees such as bounded
latency and jitter from the underlying network. While there has been signific-
ant research in the field of time-sensitive software-defined networks for real-time
applications [NDR16, DN16], time-sensitive content-based routing on software-
defined networks is yet to be explored in literature. The aforementioned work
in time-sensitive software-defined network has been designed primarily for cyber-
physical systems where Integer Linear Program formulations are used by the
logically centralized control plane to compute transmission schedules for time-
sensitive traffic. The question is, can these methods be adopted in content-based
pub/sub on software-defined networks? Are additional mechanisms required to
enable loose-coupling between publishers and subscribers while they remain ob-
livious to the underlying middleware? Can knowledge of application semantics
aid the process? Considering the demanding requirements of modern applica-
tions that use content-based routing, venturing into time-sensitivity in pub/sub
systems can prove to be a very promising area of research.

• We have already identified and discussed the inherent scalability limitations of
a single controller instance with respect to reconfiguration efforts in the face
of high dynamics in this thesis. In fact, in Chapter 6, we provide methods to
scale the control plane where every control element has a view of the entire
network. But what if multiple controllers were responsible for separate adminis-
trative domains where each controller performs reconfiguration in its designated
domain? PLEROMA could further offer interoperability between multiple net-
work domains. Independently managed network domains naturally arise in many
business scenarios, for instance to avoid interference of manufacturing processes
and enforce security policies in accessing events [PEB07, SKPR10]. In addition,
partitioning of a large network can further increase the scalability by perform-
ing multiple concurrent network updates without worrying about consistency as
the network is, in this case, no longer a shared resource. While this has been
briefly discussed in [TKBR14,Bho13], domain-specific control should be further
explored to understand the behavior of such designs w.r.t. responsiveness to
control requests within a domain, responsiveness in the presence of inter-domain
communication, etc. In fact, determining the participants for each administrat-

156

7.2 Future Work

ive domain and efficiently partitioning the underlying network to be configured
by the corresponding domain-specific controller can be scope for much research.
Moreover, combining scaling techniques, presented in this thesis, within a domain
of a multi-domain architecture could result in some interesting findings.

157

Bibliography

[100] SDN system performance. http://www.pica8.com/pica8-deep-dive/

sdn-system-performance/.

[512] 512K-Day, Firstpost Article. https://goo.gl/gC77Hk.

[AT06] Ioannis Aekaterinidis and Peter Triantafillou. PastryStrings: A compre-
hensive content-based publish/subscribe DHT network. In In Proceedings
of the 26th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS 2006), Lisboa, Portugal, 2006.

[AWS] Amazon Web Services. https://aws.amazon.com/iot/how-it-works/.

[Azu15] Report from Open Networking Summit: Achieving Hyper-Scale with Soft-
ware Defined Networking, 2015.

[Bal17] Alexander Balogh. Addressing TCAM limitations in an SDN-based
pub/sub system. Master thesis, University of Stuttgart, Germany, 2017.

[BBBS16] Roberto Bifulco, Julien Boite, Mathieu Bouet, and Fabian Schneider. Im-
proving SDN with inspired switches. In Proceedings of the Symposium on
SDN Research, SOSR ’16, 2016.

[BBQ+07] Roberto Baldoni, Roberto Beraldi, Leonardo Querzoni, Antonino Virgil-
lito, and Roma Italia. Efficient publish/subscribe through a self-organizing
broker overlay and its application to SIENA. The Computer Journal, 2007.

[BCM+99] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman. An efficient multicast protocol
for content-based publish-subscribe systems. In Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems, 1999.

[BDFG07] Silvia Bianchi, Ajoy Kumar Datta, Pascal Felber, and Maria Gradinariu.
Stabilizing peer-to-peer spatial filters. In 27th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS 2007), June 25-29, 2007,
Toronto, Ontario, Canada, 2007.

[BDG+14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jen-
nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Var-

159

http://www.pica8.com/pica8-deep-dive/sdn-system-performance/
http://www.pica8.com/pica8-deep-dive/sdn-system-performance/
https://goo.gl/gC77Hk.
https://aws.amazon.com/iot/how-it-works/

Bibliography

ghese, and David Walker. P4: Programming protocol-independent packet
processors. SIGCOMM Computer Communication Review, 2014.

[Bet00] Katherine Betz. A scalable stock web service. In Proceedings of the 2000
International Workshop on Parallel Processing, ICPPW 2000, Toronto,
Canada, August 21-24, 2000, 2000.

[BFF+13] Raphaël Barazzutti, Pascal Felber, Christof Fetzer, Emanuel Onica,
Jean-François Pineau, Marcelo Pasin, Etienne Rivière, and Stefan Wei-
gert. Streamhub: A massively parallel architecture for high-performance
content-based publish/subscribe. In Proceedings of the 7th ACM Interna-
tional Conference on Distributed Event-based Systems, 2013.

[BFG07] Silvia Bianchi, Pascal Felber, and Maria Gradinariu. Content-based pub-
lish/subscribe using distributed R-trees. In Proceedings of 13th Interna-
tional Euro-Par Conference, 2007.

[BFP10] Silvia Bianchi, Pascal Felber, and Maria Gradinariu Potop-Butucaru. Sta-
bilizing distributed R-trees for peer-to-peer content routing. IEEE Trans-
actions on Parallel and Distributed Systems, 21(8):1175–1187, 2010.

[BG81] Philip A. Bernstein and Nathan Goodman. Concurrency control in dis-
tributed database systems. ACM Computing Surveys, 13(2), June 1981.

[BHG86] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley Long-
man Publishing Co., Inc., 1986.

[BHM+14] Raphaël Barazzutti, Thomas Heinze, André Martin, Emanuel Onica,
Pascal Felber, Christof Fetzer, Zbigniew Jerzak, Marcelo Pasin, and
Etienne Rivière. Elastic scaling of a high-throughput content-based pub-
lish/subscribe engine. In Proceedings of 34th IEEE International Confer-
ence on Distributed Computing Systems, 2014.

[Bho13] Sukanya Bhowmik. Distributed control algorithms for adapting pub-
lish/subscribe in software-defined networks. Master’s thesis, University
of Stuttgart, November 2013.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 1970.

[BMVV05] Roberto Baldoni, Carlo Marchetti, Antonino Virgillito, and Roman Viten-
berg. Content-based publish-subscribe over structured overlay networks.
In Proceedings of the 25th IEEE International Conference on Distributed
Computing Systems, ICDCS ’05, 2005.

[BRKB13] Fábio Andrade Botelho, Fernando Manuel Valente Ramos, Diego Kreutz,
and Alysson Neves Bessani. On the feasibility of a consistent and fault-
tolerant data store for SDNs. In Second European Workshop on Software
Defined Networks, EWSDN, 2013.

160

Bibliography

[BTBR17] Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, and
Kurt Rothermel. Addressing TCAM limitations of software-defined net-
works for content-based routing. In Proceedings of the 11th ACM Interna-
tional Conference on Distributed Event-based Systems, DEBS 2017, 2017.

[BTGR16] Sukanya Bhowmik, Muhammad Adnan Tariq, Jonas Grunert, and Kurt
Rothermel. Bandwidth-efficient content-based routing on software-defined
networks. In Proceedings of the 10th ACM International Conference on
Distributed Event-based Systems, DEBS 2016, 2016.

[BTHR16] Sukanya Bhowmik, Muhammad Adnan Tariq, Lobna Hegazy, and Kurt
Rothermel. Hybrid content-based routing using network and application
layer filtering. In Proceedings of 36th IEEE International Conference on
Distributed Computing Systems, ICDCS ’16, 2016.

[BTK+15] Sukanya Bhowmik, Muhammad Adnan Tariq, Boris Koldehofe, André
Kutzleb, and Kurt Rothermel. Distributed control plane for software-
defined networks: A case study using event-based middleware. In Proceed-
ings of the 9th ACM International Conference on Distributed Event-Based
Systems, DEBS ’15, 2015.

[BTK+17] Sukanya Bhowmik, Muhammad Adnan Tariq, Boris Koldehofe, Frank
Dürr, Thomas Kohler, and Kurt Rothermel. High performance pub-
lish/subscribe middleware in software-defined networks. IEEE/ACM
Transactions on Networking, 25(3):1501–1516, 2017.

[CDNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI
event-based infrastructure and its application to the development of the
OPSS WFMS. IEEE Transactions Software Engineering, 27(9):827–850,
2001.

[CFMP04] Gianpaolo Cugola, Davide Frey, Amy L. Murphy, and Gian Pietro
Picco. Minimizing the reconfiguration overhead in content-based publish-
subscribe. In Proceedings of ACM Symposium on Applied Computing
(SAC), 2004.

[CJ11] Alex King Yeung Cheung and Hans-Arno Jacobsen. Green resource alloc-
ation algorithms for publish/subscribe systems. In In Proceedings of the
31st International Conference on Distributed Computing Systems, 2011.

[CLS03] Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh. Content
distribution for publish/subscribe services. In Proceedings of the
ACM/IFIP/USENIX 2003 International Conference on Middleware, 2003.

[CMT+11] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagan-
dula, Puneet Sharma, and Sujata Banerjee. Devoflow: Scaling flow man-
agement for high-performance networks. In Proceedings of the ACM SIG-
COMM 2011 Conference, SIGCOMM ’11, 2011.

161

Bibliography

[CMTV07] Gregory Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg.
Spidercast: A scalable interest-aware overlay for topic-based pub/sub com-
munication. In Proceedings of the International Conference on Distributed
Event-based Systems, 2007.

[Com12] ONF Market Education Committee. Software-defined Networking: The
New Norm for Networks. Open Networking Foundation, 2012.

[CRW00] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achiev-
ing scalability and expressiveness in an internet-scale event notification
service. In Proceedings of the 19th Annual ACM Symposium on Principles
of Distributed Computing, 2000.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
and evaluation of a wide-area event notification service. ACM Transactions
on Computer Systems, 19(3):332–383, 2001.

[CS04] Fengyun Cao and Jaswinder Pal Singh. Efficient event routing in content-
based publish-subscribe service networks. In Proceedings of 23rd IEEE
INFOCOM Conference, 2004.

[DHM+13] Advait Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and Ramana
Kompella. Towards an elastic distributed SDN controller. In Proceedings
of 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, 2013.

[DHM+14] Advait Abhay Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and
Ramana Kompella. Elasticon: An elastic distributed SDN controller. In
Proceedings of the Tenth ACM/IEEE Symposium on Architectures for Net-
working and Communications Systems, ANCS ’14, 2014.

[DN16] Frank Dürr and Naresh Ganesh Nayak. No-wait packet scheduling for
IEEE time-sensitive networks (TSN). In Proceedings of the 24th Inter-
national Conference on Real-Time Networks and Systems, RTNS 2016,
Brest, France, 2016.

[DXG+11] C Dong, Q Xiuquan, J Gelernter, L Xiaofeng, and M Luoming. Mining
data correlation from multi-faceted sensor data in the internet of things.
In China Communications, 2011.

[ECG09] Christian Esposito, Domenico Cotroneo, and Aniruddha Gokhale. Re-
liable publish/subscribe middleware for time-sensitive Internet-scale ap-
plications. In Proceedings of the 3rd ACM International Conference on
Distributed Event-Based Systems (DEBS), 2009.

[Edg] Hardware Switch Edge-Core AS5712-54X. http://www.edge-core.com/.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Sur-
veys, 35(2):114–131, 2003.

162

http://www.edge-core.com/

Bibliography

[ES14] Mohamed El-Shamouty. Efficient content-based routing using OpenFlow.
Bachelor thesis, University of Stuttgart, Germany, 2014.

[Eve] Microsoft Event Hubs. https://azure.microsoft.com/en-us/

services/event-hubs/.

[Goo] Google Cloud Pub/Sub. https://cloud.google.com/pubsub/.

[Gru14] Jonas Grunert. Increasing bandwidth efficiency of content-based routing
in software-defined networks. Bachelor thesis, University of Stuttgart,
Germany, 2014.

[GSAA04] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Ab-
badi. Meghdoot: Content-based publish/subscribe over p2p networks. In
Proceedings of the 5th ACM/IFIP/USENIX International Conference on
Middleware, Middleware ’04, 2004.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial search-
ing. In Proceedings of the 1984 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’84, 1984.

[GXC+15] Zehua Guo, Yang Xu, Marco Cello, Junjie Zhang, Zicheng Wang, Mingjian
Liu, and H. Jonathan Chao. Jumpflow. Computer Networks, 92(P2):300–
315, December 2015.

[Heg16] Lobna Hegazy. Evaluation and analysis of realizing broker-based content
routing protocols in SDN. Master thesis, University of Stuttgart, Germany,
2016.

[Hof09] Todd Hoff. Latency is everywhere and it costs you
sales -how to crush it. http://highscalability.com/

latency-everywhere-and-it-costs-you-sales-how-crush-it, 2009.

[HR83] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys, 15(4), December 1983.

[HYG12] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A framework for
efficient and scalable offloading of control applications. In Proceedings of
the 1st Workshop on Hot Topics in Software Defined Networks, 2012.

[HYS13] Danny Yuxing Huang, Kenneth Yocum, and Alex C. Snoeren. High-fidelity
switch models for software-defined network emulation. In Proceedings of
2nd ACM SIGCOMM Workshop on Hot Topics in SDN, 2013.

[JCL+10] Hans-Arno Jacobsen, Alex King Yeung Cheung, Guoli Li, Balasub-
ramaneyam Maniymaran, Vinod Muthusamy, and Reza Sherafat Kazemz-
adeh. The PADRES publish/subscribe system. In Principles and Applic-
ations of Distributed Event-Based Systems. 2010.

163

https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://cloud.google.com/pubsub/
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it

Bibliography

[JF08] Zbigniew Jerzak and Christof Fetzer. Bloom filter based routing for
content-based publish/subscribe. In Proceedings of the 2nd International
Conference on Distributed Event-based Systems, 2008.

[JJE10] K. R. Jayaram, Chamikara Jayalath, and Patrick Eugster. Parametric
subscriptions for content-based publish/subscribe networks. In Proceedings
of 11th International Conference on Middleware, 2010.

[JKM+13] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Pou-
tievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min
Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Ex-
perience with a globally-deployed software defined wan. In Proceedings of
the ACM SIGCOMM 2013 Conference, 2013.

[JLG+14] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul
Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. Dy-
namic scheduling of network updates. In Proceedings of the 2014 ACM
Conference on SIGCOMM, 2014,.

[JMVM09] Hojjat Jafarpour, Sharad Mehrotra, Nalini Venkatasubramanian, and
Mirko Montanari. MICS: An Efficient Content Space Representation
Model for Publish/Subscribe Systems. In Proceedings of the 3rd ACM
International Conference on Distributed Event-Based Systems, 2009.

[Jol86] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[JPMH07] Michael A. Jaeger, Helge Parzyjegla, Gero Mühl, and Klaus Herrmann.
Self-organizing broker topologies for publish/subscribe systems. In Pro-
ceedings of the 2007 ACM Symposium on Applied Computing (SAC), 2007.

[JZER+09] Petri Jokela, András Zahemszky, Christian Esteve Rothenberg, Somaya
Arianfar, and Pekka Nikander. LIPSIN: line speed publish/subscribe inter-
networking. ACM SIGCOMM Computer Communication Review, 2009.

[KARW16] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker.
Cacheflow: Dependency-aware rule-caching for software-defined networks.
In Proceedings of the Symposium on SDN Research, SOSR ’16, 2016.

[KCG+10] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, and Scott Shenker. Onix: A distributed control platform
for large-scale production networks. In Proceedings of USENIX Conference
on OS Design & Implementation, 2010.

[KDR15] Thomas Kohler, Frank Dürr, and Kurt Rothermel. Update consistency
in software-defined networking based multicast networks. In Proceedings
of the IEEE Conference on Network Function Virtualization and Software
Defined Networks, NFV-SDN 2015, San Francisco, CA, USA, 2015.

164

Bibliography

[KDT13] Boris Koldehofe, Frank Dürr, and Muhammad Adnan Tariq. Tutorial:
Event-based systems meet software-defined networking. In Proceedings of
the 7th ACM International Conference on Distributed Event-based Sys-
tems, DEBS ’13, 2013.

[KDTR12] Boris Koldehofe, Frank Dürr, Muhammad Adnan Tariq, and Kurt Rother-
mel. The power of software-defined networking: line-rate content-based
routing using Openflow. In Proceedings of the 7th Workshop on Middle-
ware for Next Generation Internet Computing, MW4NG ’12. ACM, 2012.

[KHK13] Yossi Kanizo, David Hay, and Isaac Keslassy. Palette: Distributing tables
in software-defined networks. In Proceedings of the IEEE INFOCOM Con-
ference, Turin, Italy, 2013.

[KLRW13] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. Optim-
izing the ”one big switch” abstraction in software-defined networks. In
Proceedings of the 9th ACM Conference on Emerging Networking Experi-
ments and Technologies, CoNEXT ’13, 2013.

[KORR12] Boris Koldehofe, Beate Ottenwälder, Kurt Rothermel, and Umakishore
Ramachandran. Moving Range Queries in Distributed Complex Event
Processing. In Proceedings of the 6th ACM International Conference on
Distributed Event-Based Systems (DEBS)., Berlin, 2012.

[KPP04] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,
Berlin, Germany, 2004.

[KTKR10] Gerald G. Koch, Muhammad Adnan Tariq, Boris Koldehofe, and Kurt Ro-
thermel. Event processing for large-scale distributed games. In Proceedings
of the Fourth ACM International Conference on Distributed Event-Based
Systems, DEBS ’10, 2010.

[LCZT07] Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian. Feature selection
using principal feature analysis. In Proceedings of the 15th ACM Interna-
tional Conference on Multimedia, MM ’07, 2007.

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. A network on a laptop:
Rapid prototyping for software-defined networks. In Proceedings of 9th
ACM Workshop on Hot Topics in Networks, 2010.

[LMT10] Alex X. Liu, Chad R. Meiners, and Eric Torng. TCAM razor: a system-
atic approach towards minimizing packet classifiers in tcams. IEEE/ACM
Transactions on Networking, 2010.

[LWH+12] Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol, and Anja
Feldmann. Logically centralized?: State distribution trade-offs in software
defined networks. In Proceedings of Hot Topics in Software Defined Net-
works, 2012.

165

Bibliography

[LYK+11] Ming Li, Fan Ye, Minkyong Kim, Han Chen, and Hui Lei. A scalable and
elastic publish/subscribe service. In Proceedings of IEEE International
Parallel & Distributed Processing Symposium, 2011.

[Mar07] Richard Martin. Wall street’s quest to process data at the speed of light.
Information Week, 2007.

[MC02] René Meier and Vinny Cahill. STEAM: event-based middleware for wire-
less ad hoc network. In Proceedings of the 22nd International Conference
on Distributed Computing Systems, Workshops (ICDCSW ’02), Vienna,
Austria, 2002.

[MFB02] Gero Mühl, Ludger Fiege, and Alejandro P. Buchmann. Filter similar-
ities in content-based publish/subscribe systems. In Proceedings of the
International Conference on Architecture of Computing Systems: Trends
in Network and Pervasive Computing, ARCS ’02, 2002.

[MG04] Arnaz Malhi and Robert X. Gao. PCA-based feature selection scheme for
machine defect classification. IEEE T. Instrumentation and Measurement,
2004.

[Mis13] Gagan Bihari Mishra. Providing in-network content-based routing using
OpenFlow. Master thesis, University of Stuttgart, Germany, 2013.

[MJ14] Vinod Muthusamy and Hans-Arno Jacobsen. Infrastructure-free content-
based publish/subscribe. IEEE/ACM Transanctions on Networking, 2014.

[MLJ10] Vinod Muthusamy, Haifeng Liu, and Hans-Arno Jacobsen. Predictive pub-
lish/subscribe matching. In Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems, DEBS ’10, 2010.

[MLT12] Chad R. Meiners, Alex X. Liu, and Eric Torng. Bit weaving: A non-
prefix approach to compressing packet classifiers in TCAMs. IEEE/ACM
Transactions on Networking, 20(2), April 2012.

[MPP15] Gero Mühl, Helge Parzyjegla, and Matthias Prellwitz. Analyzing content-
based publish/subscribe systems. In Proceedings of the 9th ACM Interna-
tional Conference on Distributed Event-Based Systems, DEBS ’15, Oslo,
Norway, 2015.

[MSRS09] Anirban Majumder, Nisheeth Shrivastava, Rajeev Rastogi, and Anand
Srinivasan. Scalable content-based routing in pub/sub systems. In Pro-
ceedings of the 28th IEEE International Conference on Computer Com-
munications, joint conference of the IEEE Computer and Communications
societies (INFOCOM), 2009.

[Müh02] Gero Mühl. Large-Scale Content-Based Publish-Subscribe Systems. PhD
thesis, TU Darmstadt, November 2002.

166

Bibliography

[MW13] Ratul Mahajan and Roger Wattenhofer. On consistent updates in software
defined networks. In Proceedings of the Twelfth ACM Workshop on Hot
Topics in Networks, HotNets-XII, 2013.

[NDR16] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. Time-sensitive
software-defined network (TSSDN) for real-time applications. In Proceed-
ings of the 24th International Conference on Real-Time Networks and Sys-
tems, RTNS 2016, Brest, France, 2016.

[NSBT14] Xuan-Nam Nguyen, Damien Saucez, Chadi Barakat, and Thierry Turletti.
Optimizing rules placement in openflow networks: Trading routing for
better efficiency. In Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, HotSDN ’14, 2014.

[Ope] Open vSwitch. http://openvswitch.org/.

[Ope13] Open Networking Foundation. OpenFlow management and configuration
protocol (OF-CONFIG v1.1.1). Technical report, March 2013.

[PB02] Peter R. Pietzuch and Jean Bacon. Hermes: A distributed event-based
middleware architecture. In ICDCSW ’02: Procs. of the 22nd Interna-
tional Conference on Distributed Computing Systems, 2002.

[PC05] Olga Papaemmanouil and Ugur Centintemel. Semcast: Semantic mul-
ticast for content-based data dissemination. In Proceedings of the 22nd
International Conference on Data Engineering (ICDE), 2005.

[PEB07] Lauri I. W. Pesonen, David M. Eyers, and Jean Bacon. Encryption-
enforced access control in dynamic multi-domain publish/subscribe net-
works. In Proceedings of the inaugural international conference on distrib-
uted event-based systems (DEBS), 2007.

[Pic] PicOS Version 2.6. http://www.pica8.com/documents/

pica8-datasheet-picos.pdf.

[PRGK09] Jay A. Patel, Étienne Rivière, Indranil Gupta, and Anne-Marie Kermar-
rec. Rappel: Exploiting interest and network locality to improve fairness
in publish-subscribe systems. Computer Networks, 53(13):2304 – 2320,
2009.

[PW02] Lothar Pantel and Lars C. Wolf. On the impact of delay on real-time
multiplayer games. In Proceedings of the 12th International Workshop
on Network and Operating Systems Support for Digital Audio and Video,
NOSSDAV ’02, 2002.

[RFR+12] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and
David Walker. Abstractions for network update. In Proceedings of the
ACM SIGCOMM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, 2012.

167

http://openvswitch.org/
http://www.pica8.com/documents/pica8-datasheet-picos.pdf
http://www.pica8.com/documents/pica8-datasheet-picos.pdf

Bibliography

[RLW+02a] Anton Riabov, Zhen Liu, Joel L. Wolf, Philip S. Yu, and Li Zhang. Clus-
tering algorithms for content-based publication-subscription systems. In
Proceedings of the 22 nd International Conference on Distributed Comput-
ing Systems (ICDCS), 2002.

[RLW+02b] Anton Riabov, Zhen Liu, Joel L. Wolf, Philip S. Yu, and Li Zhang. Clus-
tering algorithms for content-based publication-subscription systems. In
Proceedings of the 22nd International Conference on Distributed Comput-
ing Systems, ICDCS, 2002.

[sen] Intel Research Berkeley Lab Sensor Data Set. http://www.cs.cmu.edu/

~guestrin/Research/Data/.

[Ske81] Dale Skeen. Nonblocking commit protocols. In Proceedings of the 1981
ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’81, 1981.

[SKPR10] Björn Schilling, Boris Koldehofe, Udo Pletat, and Kurt Rothermel. Dis-
tributed heterogeneous event processing: Enhancing scalability and in-
teroperability of cep in an industrial context. In Proceedings of the
Fourth ACM International Conference on Distributed Event-Based Sys-
tems, DEBS ’10, New York, NY, USA, 2010.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications,
SIGCOMM ’01, 2001.

[Sri17] Deepak Srinivasan. Ensuring data plane consistency in SDN-based pub-
lish/subscribe systems. Master thesis, University of Stuttgart, Germany,
2017.

[sto] Correlation in Stock Exchange Data. http://www.investopedia.com/

articles/technical/02/010702.asp.

[STT03] Ed Spitznagel, David Taylor, and Jonathan Turner. Packet classification
using extended TCAMs. In Proceedings of the 11th IEEE International
Conference on Network Protocols, ICNP ’03, 2003.

[TA90] B. H. Tay and A. L. Ananda. A survey of remote procedure calls. SIGOPS
Operating Systems Review, 24(3), 1990.

[Tar13] Muhammad Adnan Tariq. Non-functional requirements in publish, sub-
scribe systems. PhD thesis, University of Stuttgart, 2013.

[TBF+03] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and
Alejandro P. Buchmann. A peer-to-peer approach to content-based pub-
lish/subscribe. In Proceedings of the 2Nd International Workshop on Dis-
tributed Event-based Systems, DEBS ’03, 2003.

168

http://www.cs.cmu.edu/~guestrin/Research/Data/
http://www.cs.cmu.edu/~guestrin/Research/Data/
http://www.investopedia.com/articles/technical/02/010702.asp
http://www.investopedia.com/articles/technical/02/010702.asp

Bibliography

[TG10] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control
plane for OpenFlow. In Proceedings of Internet Network Management
Conference on Research on Enterprise Networking, 2010.

[TKBR14] Muhammad Adnan Tariq, Boris Koldehofe, Sukanya Bhowmik, and
Kurt Rothermel. PLEROMA: A SDN-based high performance pub-
lish/subscribe middleware. In Proceedings of 15th International Middle-
ware Conference, 2014.

[TKK+11] Muhammad Adnan Tariq, Boris Koldehofe, Gerald Georg Koch, Imran
Khan, and Kurt Rothermel. Meeting subscriber-defined QoS constraints
in publish/subscribe systems. Concurrency and Computation: Practice
and Experience, 2011.

[TKKR09] Muhammad Adnan Tariq, Boris Koldehofe, Gerald Koch, and Kurt
Rothermel. Providing probabilistic latency bounds for dynamic pub-
lish/subscribe systems. In Proceedings of the 16th ITG/GI Conference
on Kommunikation in Verteilten Systemen (KiVS), 2009.

[TKKR12] Muhammad Adnan Tariq, Boris Koldehofe, Gerald G. Koch, and Kurt Ro-
thermel. Distributed spectral cluster management: A method for building
dynamic publish/subscribe systems. In Proceedings of the 6th ACM Inter-
national Conference on Distributed Event-Based Systems (DEBS), 2012.

[TKR13] Muhammad Adnan Tariq, Boris Koldehofe, and Kurt Rothermel. Efficient
content-based routing with network topology inference. In Proceedings of
the 7th ACM International Conference on Distributed Event-Based Sys-
tems, 2013.

[tOMG] OMG: Object Management Group. Common object request broker archi-
tecture specification. http://www.omg.org/spec/CORBA/.

[Van91] George Vaněček, Jr. BRep-Index: A multidimensional space partitioning
tree. In Proceedings of 1st ACM Symposium on Solid Modeling Founda-
tions and CAD/CAM Applications, 1991.

[VPMB14] Anilkumar Vishnoi, Rishabh Poddar, Vijay Mann, and Suparna Bhat-
tacharya. Effective switch memory management in openflow networks.
In Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems, DEBS ’14, 2014.

[VRKS06] Spyros Voulgaris, Etienne Rivière, Anne-Marie Kermarrec, and
Maarten Van Steen. Sub-2-sub: Self-organizing content-based publish
subscribe for dynamic large scale collaborative networks. In the 5th Inter-
national Workshop on P2P Systems, 2006.

[WQA+04] Yi Wang, Lili Qiu, Dimitris Achlioptas, Gautam Das, Paul Larson, and
Helen J. Wang. Subscription partitioning and routing in content-based

169

http://www.omg.org/spec/CORBA/

Bibliography

publish/subscribe systems. In Proceedings Of International Symposium
on Distributed Computing, 2004.

[YG16] Soheil Hassas Yeganeh and Yashar Ganjali. Beehive: Simple distributed
programming in software-defined networks. In Proceedings of the Sym-
posium on SDN Research, SOSR ’16, 2016.

[ZJ13] Kaiwen Zhang and Hans-Arno Jacobsen. SDN-like: The next generation
of pub/sub. CoRR, 2013.

[ZKV13] Ye Zhao, Kyungbaek Kim, and Nalini Venkatasubramanian. Dynatops: A
dynamic topic-based publish/subscribe architecture. In Proceedings of the
7th ACM International Conference on Distributed Event-based Systems,
DEBS ’13, 2013.

170

	Abstract
	Zusammenfassung
	Introduction
	State-of-the-Art Content-Based Pub/Sub Systems
	Software-Defined Networking
	Research Statement
	Provision of In-network Content-based Filtering
	Addressing Data Plane Limitations
	Handling Control Plane Overhead

	Contributions
	Structure of the Thesis

	In-network Content-based Filtering
	The PLEROMA Middleware
	Content Representation
	Spatial Indexing
	Mapping a dz

	Topology Reconfiguration
	Maintenance of flow tables
	Advertisements and Subscriptions
	Flow installation
	Unsubscriptions and Unadvertisements

	Performance Evaluations
	Experimental Setup
	End-to-End Latency
	False Positive Rate
	Control Overhead
	Discussion

	Related Work
	Conclusion

	Expressive Mapping of Content Filters
	Limitations of Content Representation
	Workload-based Indexing
	Selective Indexing
	Adaptive Spatial Indexing

	Dimension Selection
	Event Variance
	Subscription Matching
	Correlation
	Calculating Covariance Matrix
	Performing Principal Component Analysis

	Evaluation-based Techniques

	Handling Dynamic Network Updates
	Data Plane Consistency in PLEROMA
	Light-Weight Approach

	Performance Evaluations
	Experimental Setup
	Workload-based Indexing
	Dimension Selection
	False Positive Rate
	Runtime Overhead

	Combining Approaches
	Handling Dynamics
	Discussion

	Related Work
	Conclusion

	Expressive Filtering by Combining Application Layer
	System Architecture
	Filter Selection Problem
	Filter Benefit and Penalty Calculation
	Benefit
	Penalty

	Selection Algorithms
	Switch Selection Algorithm
	Cluster-based Selection Algorithm
	Network Updates

	Further Optimizations
	Performance Evaluations
	Experimental setup
	Comparing with State-of-the-Art
	Impact of Threshold Factor
	SSA vs CSA
	Discussion

	Related Work
	Conclusion

	Addressing TCAM Limitations
	Impact of TCAM Limitations on PLEROMA
	Filter Aggregation Problem
	Problem Statement
	Problem Analysis

	Filter Aggregation Algorithm
	Filter Aggregation on a Switch
	Determining Possible Flow Merges
	Selecting Flow Merges on a Switch

	Aggregation Cost at a Merge Point
	Incoming Traffic
	False Positives on Downstream Paths

	Resolving Dependencies Between Switches
	Handling Dynamics
	Basic Local Aggregation (LA-B)
	Cost-based Local Aggregation (LA-C)

	Ensuring Data Plane Consistency

	Performance Evaluations
	Experimental Setup
	Comparing Network False Positive Rate
	Comparing Runtime Overhead
	Impact of Sampling Factor
	Dynamic Behavior
	Discussion

	Related Work
	Conclusion

	Scaling the Control Plane
	Distributed Control Plane - System Architecture
	Control Plane Consistency in Pub/Sub
	Scaling Approaches
	Shared Everything Approach
	Shared Nothing Approach
	Topology Reconfiguration
	Adaptive Load Balancing

	Keeping DP-config Consistent with CP-config
	Reducing Flow Operations
	Performance Evaluations
	Experimental Setup
	Vertical Scaling
	Horizontal Scaling
	Reducing Flow Operations
	Discussion

	Related Work
	Conclusion

	Summary and Future Work
	Summary
	Future Work

	Bibliography

