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Kurzfassung

In dieser Arbeit wird ein effizientes numerisches Verfahren zur Simulation
von kavitierenden Stromungen reiner Fluide vorgestellt. Die Simulation von
kavitierender Stromung bringt verschiedene Anforderungen mit sich. Zum
einen muss der Phaseniibergang zwischen der Dampf- und Fliissigkeitsphase
betrachtet werden und zum anderen ist eine hoch auflosende Numerik erfor-
derlich, die die auftretenden raumlichen und zeitlichen Skalen abbilden kann.
Zusitzlich konnen bei Kavitation die thermodynamischen GréBen (z. B. Dich-
te, Druck) um mehrere GroB3enordnungen iiber einen sehr kleinen raumlichen
Bereich variieren. Die starken Gradienten miissen von dem numerischen Ver-
fahren dargestellt werden konnen.

Um den Phaseniibergang zu beriicksichtigen, ist in dieser Arbeit eine rea-
listische Zustandsgleichung erforderlich, die in der Lage ist, die Dampf-,
Fliissigkeits- und Zweiphasenbereiche eines solchen Fluids aufzulésen. Cool-
Prop, eine thermodynamische Parameterdatenbank fiir tiber 100 Fliissigkeiten,
ist fiir diese Aufgabe gut geeignet, da sie die sehr genaue Helmholtz-
Energie Formulierung als Zustandsgleichung verwendet. Unter der Annahme
des thermodynamischen Gleichgewichts und der Anwendung der Maxwell-
Konstruktion im Zweiphasenbereich konnen die kompressiblen Navier-Stokes
Gleichungen durch die Zustandsgleichung aus der CoolProp-Bibliothek ge-
schlossen werden. Sowohl im Zweiphasenbereich als auch im Dampfzustand
sind Kompressibilititseffekte zu beriicksichtigen. Reibung und Wirmefluss
werden durch die Navier-Stokes Gleichungen ebenfalls dargestellt.

Aus der Klasse der numerischen Verfahren ist die diskontinuierliche Ga-
lerkin Methode ein guter Kandidat, um die auftretenden rdumlichen und zeit-
lichen Skalen abzubilden. Das hier verwendete diskontinuierliche Galerkin
Spektralelementverfahren hoher Ordnung 16st die Navier-Stokes Gleichungen
mit einer expliziten Zeitintegration. Dieses Verfahren ist fiir seine niedrige nu-
merische Dissipation und gute Skalierungsfihigkeiten auf Hochleistungscom-
putern der neuesten Generation bekannt. Ein Nachteil ist aber, dass es weder
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Kurzfassung

StoBe noch starke Gradienten behandeln kann. Diese auftretenden physika-
lischen Phianomene miissen durch eine Methode abgebildet werden, die mit
diesen umgehen kann, aber die gute Skalierungsfihigkeit nicht beeintrichtigt.
Fiir diesen Fall wird ein Finite-Volumen Subzellansatz zweiter Ordnung vor-
gestellt. Die Finite-Volume Methode ist nur in den Elementen aktiv, in denen
die diskontinuierliche Galerkin Methode nicht in der Lage ist, diese starken
Gradienten bzw. die StoBe stabil aufzulosen.

Da die Auswertung der Helmholtz-Energie Formulierung mit hoher Re-
chenzeit verbunden ist, wird die Zustandsgleichung in einem der Simulation
vorausgehenden Arbeitsschritt in eine Polynomdarstellung auf einem hierar-
chisch adaptierbaren Gitter (sog. Quadtree) gebracht. Dieser Schritt wird par-
allelisiert und kann auf einer beliebig groBen Anzahl von Prozessoren durch-
gefiihrt werden. Die Daten des Quadtree werden gespeichert und die polyno-
miale Niherung bildet die urspriingliche Losung bis zu einem frei gewéhlten
Fehler ab. Wihrend der Simulation werden die gespeicherten Quadtrees in
den Speicher jedes an der Simulation beteiligten Prozessors geladen. Dann
werden die Daten der Quadtrees ausgewertet, um die notwendigen Beziehun-
gen zwischen den thermodynamischen GroB3en bereitzustellen. Dieser Ansatz
reduziert die Rechenzeit um drei Gré8enordnungen gegeniiber der direkten
Auswertung und eignet sich somit sehr gut fiir Berechnungen auf Hochlei-
stungsrechnern.

Der hier vorgestellte Ansatz wird validiert und mit Ergebnissen aus der Li-
teratur fiir eindimensionale Simulationen verglichen. Die gewiinschte Konver-
genzrate wird erreicht und die erzielten Ergebnisse stimmen sehr gut mit den
Referenzdaten aus der Literatur iiberein. Eine zweidimensionale Simulation,
bei der Wasser um eine Tragflache stromt, zeigt die Bildung von Kavitati-
on. Die beim Zerfall der Kavitationsgebiete entstehenden starken Druckwellen
werden von der Simulation erfasst und numerisch stabil aufgelost. Abschlie-
Bend wird das hier entwickelte Verfahren fiir eine komplexe, dreidimensiona-
le Anwendung aus der Industrie benutzt, um die Giite der hier vorgestelleten
Methode zu demonstrieren und zu zeigen, dass komplexe Multiskalproble-
me auf mehreren tausend Prozessoren in angemessener Zeit berechnet werden
konnen. Fiir diese industrielle Anwendung wird auch die gute Skalierung auf
einem Hochleistungsrechner gezeigt.
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Abstract

In this thesis an efficient numerical method is presented to enable simulations
with cavitating flow for a pure fluid. The simulation of cavitating flow poses
various challenges. On the one hand, the phase transition between the vapor
and liquid phase must be considered, and on the other hand a high-resolving
numerical method is required, which can resolve the occurring spatial and
temporal scales. In addition, in the presence of cavitation, the thermodynamic
quantities (e.g. density, pressure) can vary by several orders of magnitude over
a very short distance.

To consider phase change, in this work an accurate equation of state is
needed which is able to resolve the vapor, liquid and two-phase regions of
such a fluid. CoolProp, a thermodynamic property database for over 100 flu-
ids, is well suited for this task since it uses the most-accurate Helmholtz free
energy formulation as equation of state. Assuming thermodynamic equilib-
rium and using the Maxwell construction in the two-phase region, the com-
pressible Navier-Stokes equations can be closed by the equation of state from
the CoolProp library. Compressibility effects need to be considered in the
two-phase region as well as in the vapor state. Also friction and the heat flux
are represented by the Navier-Stokes equations.

From the class of the numerical methods, the discontinuous Galerkin method
is a good candidate to resolve the occurring spatial and temporal scales. The
here used discontinuous Galerkin spectral element method solves the Navier-
Stokes equations with an explicit time integration. This method is known for
its low numerical dissipation and good scaling capabilities on state of the art
high performance computers. A disadvantage of this method is that it can
handle neither shocks nor high gradients. These occurring physical phenom-
ena must be resolved by a method which can deal with these phenomena, but
does not affect the good scaling ability. For this case a second order finite
volume sub-cell approach is presented. The finite volume method is only ac-
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Abstract

tive in those elements where the discontinuous Galerkin method is not able to
resolve the high gradients or shocks.

Since the evaluation of the Helmholtz free energy formulation is linked with
high computational effort, the equation of state is stored in a preprocessing
step as a polynomial representation on a hierarchically adaptable grid (so-
called quadtree). This step is parallelized and performs on an arbitrary number
of processors. The data of the equation of state are stored in a polynomial rep-
resentation with a user-defined error compared to the original solution. During
the simulation the stored quadtrees are loaded into the memory of each proces-
sor. Then the data of the quadtrees are used to provide the necessary relations
between the thermodynamic variables. This approach reduces the computa-
tional effort by three orders of magnitude compared to the direct evaluation
and is well suited for calculations on state of the art high performance com-
puters.

The presented method is validated and it is compared to results in literature
for one dimensional simulations. The desired convergence rate is reached and
the obtained results are in very good agreement with the reference data from
the literature. A two dimensional calculation shows water streaming around a
hydrofoil producing cavitation. The strong pressure waves arising during the
collapse of the cavitation regions are captured by the simulation and resolved
in a numerically stable manner. Finally, the framework developed here is ap-
plied to a complex, three-dimensional application from the industry to demon-
strate the quality of the method and to show that complex multiscale problems
can be calculated on several thousand processors in a reasonable time. For this
industrial application also the good scaling on a high performance computer
is shown.
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1 Introduction

In the last decades, numerical simulation has become an indispensable method
for research and development in many areas such as meteorology and finance,
but especially in the field of computational fluid dynamics (CFD). While only
simple steady-state calculations were possible in the early days of engineer-
ing applications with regard to CFD, the use of high-performance computing
(HPC) clusters and efficient methods made it possible to consider unsteady
complex multiscale problems. Such problems can be solved more and more
satisfactorily for single phase flows. The focus of academic and industrial
research moves currently also to multiphase flows, which increase the com-
plexity of numerical simulations even more. Multiphase flows occur when the
state of matter in a fluid flow changes and more than one state of matter co-
exist. Particularly two-phase flows can be observed in hydraulic system like
injection equipment of modern combustion engines as well as in high-pressure
pumps or at the propeller of ships. In all three of these examples, a significant
pressure drop can occur in the flow, due to acceleration of the fluid, which
leads to evaporation and so liquid and vapor phase coexist. These developed
evaporation areas can condensate abruptly, due to, e.g., a higher surrounding
pressure. This formation and the collapse of the evaporated areas is called
cavitation and is associated with strong gradients in the flow properties and
strong non-linear unsteady phenomema like pressure waves. The collapse of
these cavitation bubbles can lead to high pressure waves which permanently
damage parts of the injection equipment, pumps and propellers. The need for
numerical simulations is especially evident for injection components. Due to
the small size of these devices, experimental data is hard to obtain. To resolve
the change of the state of matter like evaporation, condensation and therefore
cavitation, a highly resolving numerical method is needed, which can handle
the resulting temporal and spatial scales as well as represent the behavior of
the thermodynamics in cavitating flows correctly. Due to these high require-
ments it must be assured that the numerical approach can be used efficiently
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on state of the art high performance computing clusters. The aim of this work
is to develop such a numerical approach.

1.1 Discontinuous Galerkin Methods

The class of high order discontinuous Galerkin (DG) methods has gained sig-
nificant importance during the last years. It combines the advantageous fea-
tures of a high-order approach with great flexibility and it is also an optimal
method for state of the art multiscale computations with very good paralleliza-
tion properties. These properties result from the element local structure of the
DG method. Similar to finite element (FE) methods the solution of the DG
method is approximated by a polynomial. The difference to the classical FE
methods is that the approximation is allowed to be discontinuous at element
boundaries, which is also the case for finite volume (FV) methods. A particu-
lar modification of DG methods is the discontinuous Galerkin spectral element
method (DGSEM) [30, 35]. This method is limited to hexahedral elements but
therefore it can be implemented very efficiently because a tensor product basis
can be used. Due to its mostly element local structure it is also very efficient
on high-performance computers [2]. The disadvantage of the restriction to
hexahedral elements can be limited, since the DGSEM allows to use curved
surfaces and elements as well as unstructured meshes, which makes the cal-
culation of complex geometries possible [29]. The great advantage of good
scalability on HPC-clusters is one of the main reasons why the DGSEM can
be considered for the calculation of two-phase flows, because those calcula-
tions require a lot of computing effort, due to the complexity of these flows.
Another reason to use this method is the ability to solve multiscale problems
very well [7]. Other applications for the DGSEM are direct numerical simula-
tion of laminar and turbulent single-phase flows as well as large eddy simula-
tions (LES) of turbulent flows [8] based on implicit LES models. This method
can also be used for the direct aeroacoustic simulations of turbulent flow noise
[21, 22]. Further it has been shown that the DGSEM is well suited to solve the
Maxwell equations with particle in cell methods [41, 42, 43]. The DGSEM
was also used to calculate single droplets in two-phase simulations at extreme
conditions [19].



1.2 Two-Phase Flow

1.2 Two-Phase Flow

A two-phase flow occurs when two of the three classical states of matter (lig-
uid, solid, vapor) occur side by side. In this thesis only the simultaneous
occurrence of liquid and vapor phase as well as the behavior of the two-phase
region is considered. If several fluids are present in the two-phase flow, it is
called multi-component two-phase flow. This kind of flow is not covered in
this work. The changes of state which can occur in the liquid-vapor two-phase
flows are condensation (transition from vapor to liquid phase) and evaporation
(transition from liquid to vapor phase). Of particular interest in this work is
the occurrence of cavitation.

1.2.1 Cavitation

Cavitation is derived from the Latin term cavus = hollow and describes the
appearance of vapor due to a pressure decrease and the abrupt collapse of va-
por or two-phase regions in fluids. The phenomenon of cavitation has been
studied experimentally for several hundred years and numerically for the last
decades. For the first time cavitation was observed by Sir Isaac Newton in
1704 and was later described theoretically by Leonhard Euler in 1754 [73].
By a pressure drop within the flow (for example by accelerating the fluid at
ship propellers or in throttles), the static pressure drops to the vapor pressure
and evaporation leads to the formation of cavitation regions. These areas can
have the form of single bubbles, clouds or whirls, and can collapse by con-
densation due to a pressure increase in the surrounding fluid. Cavitation is
always a highly unsteady process and the formation and collapse of the cav-
itation areas take place in a period of nano- and microseconds. In the decay
process, shock waves can occur with very large pressure amplitudes, as well
as high gradients in density and pressure. Snapping shrimps make use of these
pressure waves by generating cavitation with a specialized claw, thereby stun-
ning or killing their prey [38, 68]. In hydraulic systems, the occurrence of
cavitation has advantages and disadvantages. On the one hand the mass flow
can be controlled by targeted generation of cavitation, but on the other hand
the collapse and the associated pressure waves produce noise and damage the
components. Also on ship propellers, cavitation leads to damage and CFD
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simulations are becoming increasingly important to get a better understanding
of how to prevent cavitation [11].

1.3 Two-Phase Flow in Computational Fluid
Dynamics

Two-phase flows can be simulated in different ways. The main methods to
solve two-phase flows are the following: one class of methods takes account
of the phase boundary between the two phases and another class is based on
an average phase state.

If both phases are considered separately from each other, the phases do
not necessarily have to be in thermodynamic equilibrium since they may have
different thermodynamic states. This separation can be performed with the
diffuse interface approach or with the sharp interface approach. The diffuse
interface approach, which is characterized by a continuous transition between
the two phases, leads to a discrete thickness of the interface. A typical rep-
resentative of this method is the Baer-Nunziato model, which contains three
conservation equations for each phase and additionally a transport equation for
the volume fraction of a phase from which the velocity of the phase boundary
surface is solved [54, 55]. The difficulty of this model lies in the thermody-
namically consistent smearing of the phase boundary, since this is in reality
a discontinuity. For the sharp interface approach proposed by Fedkiw et al.
[20], the smearing is compensated by a discontinuous approximation of the
transition. These discontinuities must be resolved by the numerical method.
Appropriate jump conditions as well as the exact position of the discontinuity
must be known in the sharp interface approach. In order to determine the ex-
act position of the phase boundary, there are again several approaches. Mostly
used are the volume of fluid approach introduced by Hirt and Nichols [31],
and the level-set method introduced by Osher and Sethian [44]. Due to the
high computational effort, both approaches for resolving the phase interface
are usually used only for droplet examinations. With both approaches the in-
fluence of surface tension can be taken into account. But because of the high
computational effort, it is not used in this work.

If an average phase state is considered, the simplest model for the descrip-
tion of two-phase flows, the so-called barotropic model can be used, or alterna-
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tively the more advanced homogeneous equilibrium two-phase model. In both
methods thermodynamic equilibrium and the same velocities for both phases
are assumed. The equation of state (EOS) in the barotropic model can be ex-
pressed by p = p(p). This requirement leads to the fact that usually only the
mass and impulse equations are considered. In this case the influence of the
temperature is neglected, which in reality has an effect on the vapor pressure
and also on the density. For the homogeneous equilibrium model the EOS can
be expressed by p = p(p, T') and thus the influence of the temperature can be
taken into account. In this case, the Euler or Navier-Stokes equations (NSE)
are mostly solved. The underlying EOS must be able to represent the liquid as
well as vapor phase, but also the two-phase region. Surface tension cannot be
taken into account without resolving the interface, but since it is not essential
for the investigation of cavitating flows this is not considered in this work.

1.3.1 Equation of State

In this work the approximation of the thermodynamic relationships between
the liquid and vapor phase is an important part. This approximation depends
essentially on the chosen equation of state. While no EOS is needed in the
incompressible description, for a compressible description an EOS is neces-
sary since then the conservative equations are coupled. The task is to correctly
describe the behavior of two-phase phenomena by the EOS, whereby the res-
olution of the (weakly) compressible liquid region as well the resolution of
the compressible vapor or gas region have to be considered. Advantages and
disadvantages of different EOS are described in the literature and only a short
extract is given here. To resolve the different effects of phase transition in the
two-phase domain at least a cubic EOS must be used which can be written as
a cubic function of the density.

The class of the cubic EOS includes, e.g, the van der Waals EOS [69] and
Peng-Robinson EOS [45]. A complete overview about other variations of this
kind of EOS is given by Poling et al. [47]. The van der Waals EOS can be
solved analytically, while the Peng-Robinson EOS has to be solved iteratively
since in this EOS the temperature appears in the equation of pressure non-
linearly. The problem of all cubic EOS is, that they have negative pressure
gradients in the two-phase region, which leads to non-physical results in the
speed of sound. For all methods which resolve the phase boundary these neg-
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ative gradients are not relevant, but for the homogeneous equilibrium model,
the Maxwell construction must be performed in the two-phase domain to ob-
tain physically consistent results. The advantage of this type of EOS is its rel-
atively simple form; in some cases, even analytical descriptions can be used
to reproduce the behavior of the fluid well. Limitations are around the crit-
ical point and under extreme ambient conditions with high temperatures and
pressures, where this equation of state, due to its simplicity, cannot reflect the
physics correctly.

Setzmann und Wagner [59, 60] have presented a more complex method
which represents the reality more precisely, even at the critical point as well
as in extreme environmental conditions, bringing the approximation error to
below 1% for all phases. Around the critical point normally the largest ap-
proximation error is found, the other areas can usually be approximated with
an error around 1 %o. The so-called Helmholtz free energy formulation con-
tains 65 terms for water (with the IAPWS-95 standard [70]) to represent the
realistic behavior of the fluid in all phases. For many fluids parameters are
available and also calculation programs such as CoolProp [9] and Refprop
[36]. These programs can be used to evaluate the equation of state. The major
deficit of these programs is the high computation time needed to evaluate the
EOS.

In this thesis, the Helmholtz free energy formulation is used to ensure a pre-
cise description of the fluid in all areas. The high computing time is drastically
reduced by a special preprocessing step explained in this work.

1.3.2 Cavitation in Computational Fluid Dynamics

Many studies have dealt with the calculation of two-phase flows with the ap-
pearance of cavitation in order to obtain a better understanding of this phe-
nomenon [15, 17, 18, 24, 32, 53, 63, 71]. Most of these approaches are based
on the barotropic two-phase model. To take into account the influence of the
temperature in the case of cavitating flows, the homogeneous two-phase model
with a high-precision EOS is applied in this work. The NSE are solved with
the DGSEM to be able to resolve friction effects and the influence of the heat
flux.
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1.4 Shock Capturing

Caused by cavitation or other flow conditions high pressure or density gradi-
ents and shocks can occur in two-phase flows. The DG method cannot resolve
these effects, because a polynomial representation of a discontinuity does not
converge and leads to oscillations. If no special care is taken against the oscil-
lations, it is not possible to assure that the positivity of density and pressure can
be maintained, which is necessary to represent the physics correctly. Without
any care it leads to the termination of the simulation. It is necessary to resolve
these high gradients and shocks using a shock capturing technique.

One idea to put this into practice originally comes from the FV method and
is called artificial viscosity, see, e.g., Jameson et al. [34]. This theory has been
extended in recent years to the context of the DG procedures by Persson and
Perraire [46] and they provide a consistent treatment of the artificial viscosity
terms in the volume and surface integrals. The idea is to add the viscosity
to the discontinuities in order to be able to solve them directly with a high-
order method. This approach smears the discontinuity in order to be able to
represent it with a polynomial and in addition the time step becomes smaller
than without artifical viscosity.

Another idea to solve those problems is the ENO / WENO reconstruction.
Low order information is used to reconstruct high order data and by choosing
the least oscillating polynomial it is guaranteed that the reconstruction pro-
cess takes care of the oscillation behavior. In case of oscillation, all the high
order information which causes the oscillations is removed. In this case a way
of reconstruction could be, e.g., instead to take into account all information
covering the discontinuity, only one-sided data can be used. Essentially non-
oscillatory (ENO) [25] and weighted ENO (WENO) [37] include the measure-
ment of oscillations for the shock capturing.

The h/p-adaption is a promising approach to establish shock capturing in
a DG method by reducing the order of the polynomial and simultaneously
refining the grid [6, 10]. Huerta et al. [33] described an idea for DG methods,
in which the space for the polynomial approach was extended by piecewise
constant functions in sub-cells of the original DG element. Another procedure
in which the DG element is replaced by finite volume sub-cells is presented by
Sonntag et al. [62]. In their approach the number of degrees of freedom is kept
constant. In general the reduction of the polynomial degree leads to a decrease
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of oscillation but also to a decline in the solution quality. This decline can be
prevented by increasing the resolution with h-refinement.

In this thesis the method of Sonntag et al. [62] is used in a slightly modified
form. It can be implemented very efficiently and does not greatly reduce the
performance on high-performance computers. And more importantly, it does
not affect the time step negatively. The FV method is used with a second order
reconstruction where the reconstructed gradients are limited. The class of total
variation diminishing (TVD) limiters has proved to be very robust. Among
others the minmod and the superbee limiter of Roe [50] are well-known TVD
limiters in the FV context. In this work the minmod limiter is used. As all
TVD limiter, it falls back to a first order FV method if new extrema would
be generated. Since this can lead to a loss of accuracy, care must be taken in
which areas the FV sub-cell process is active. This is implemented in this work
with an indicator of Persson and Peraire [46], which detects DG elements with
oscillations and activates the FV sub-cell procedure if necessary.

1.5 High Performance Computing

HPC is widely used in the CFD community, because the calculation of un-
steady multiscale problems are computation time consuming due to the ne-
cessity to resolve all scales or at least to model them. Over the last years
the resolution of CFD calculations raised from thousands of solution points to
millions and even over several hundred million points. The ability to split the
problem into subproblems and solve these subproblems on many cores in a
parallel fashion makes such big calculations possible in a reasonable amount
of time. Many industrial companies installed HPC clusters with several thou-
sand processors. In order to solve the simulations, which are presented in this
work, in an acceptable time, a good scalability on several thousand proces-
sors is required. The scalability of a software describes the behavior of its
parallel performance. An ideal scaling is realized if by doubling the number
of cores, the simulation time is halved. The DGSEM is known to be efficient
on high-performance computers [2] and also the shock capturing used here is
very suitable in the HPC context [62]. For the two-phase flow simulations the
use of the highly-accurate EOS may not lead to a significant performance loss
on HPC clusters. In this work a main focus is to solve industrial two-phase
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flows almost as efficiently as the single-phase flow on several thousands of
processors. All simulations shown in this work are calculated on the Cray
XC40 "HAZELHEN’ of the High Performance Computing Center Stuttgart
(HLRS) of the University of Stuttgart.

1.6 The HONK Project

The Federal Ministry of Education and Research (BMBF) supported in the
third BMBF HPC-Call the project HONK “Industrialization of high-resolution
numerical analysis of complex flow phenomena in hydraulic systems”. The
aim of the HONK project was to simulate and analyze complex flow phenom-
ena, like cavitation, in an industrial application context. Four project partners
have worked three years to reach this goal. Partners of the project were the
Robert Bosch GmbH, Dept. CR/ARF, the Visualisation Research Centre, the
High Performance Computing Center Stuttgart and the Institute of Aerody-
namics and Gas Dynamics (IAG). The last three are all institutes of the Uni-
versity of Stuttgart. This thesis was written during my work for the HONK
project at the IAG.

1.7 Objectives

The aim of this work is the development of a high order DGSEM for indus-
trial two-phase flow applications with cavitation. In this context the following
aspects are covered:

» Extending the DGSEM for the compressible Navier-Stokes equations to
two-phase flows with the thermodynamic equilibrium assumption.

« Efficient implementation and usage of the Helmholtz free energy for-
mulation as EOS

* Implementation and verification of the FV sub-cell
shock capturing method

* Demonstrate the performance for an industrial application on a HPC
cluster
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1.8 Outline

The structure of this thesis is as follows: in Chapter 2 the underlying equations
and their numerical discretization are explained. This includes the NSE as
well as the Helmholtz free energy formulation. Also the DGSEM is described
with the FV sub-cell shock capturing. In Chapter 3 an efficient storage and
evaluation technique for the Helmholtz free energy formulation is presented
which reduces the evaluation time for the accurate EOS by several orders of
magnitude. The validation of the CFD solver and simulations in one, two and
three dimensional space are shown in Chapter 4 as well as the scaling on a
HPC machine. The thesis ends with a conclusion and the outlook on future
work in Chapter 5.

10



2 Numerics

In this chapter the fluid flow equations used for the CFD simulations and also
the numerical methods are described. The compressible Navier-Stokes equa-
tions are closed with a realistic equation of state, namely the Helmholtz free
energy formulation. This equation of state gives a very good approximation
to the gas and liquid phase. Especially the two-phase region, where gas and
liquid coexist, is approximated with a thermodynamic equilibrium assumption
and Maxwell construction. The main method to solve this equation system im-
plemented in this work is a Discontinuous Galerkin Spectral Element Method,
but since during phase change high gradients can occur, a shock capturing
technique is needed. In the elements containing the gradients a 2"¢ order fi-
nite volume method is activated, if necessary, to handle these gradients. For
both methods Riemann solvers are needed and two of them are explained in
more detail. Also the used boundary conditions are explained as well as the
time integration scheme. At the end of this chapter a short overview over the
parallelization technique is given.

2.1 Navier-Stokes Equations

The three dimensional compressible Navier-Stokes equations can be written
as

U - - Lo
%—t 4V, F.(U)-V, F,(U,V,U) =P, (2.1)

where U is the vector of conservative variables U = (p, p7, p E)T, where
p is the density, 7 = (v1,v2,v3)T is the velocity vector in three space di-
mensions and F is the specific total energy. P € R is the source term vec-
tor, F, = (F.,,Fa,,Fa,)T € R3*5 are the inviscid or advection fluxes and
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F, = (F,,,F,,,F,,)7 € R3*® are the viscous or diffusion fluxes in three-
dimensional space. The gradient operator V, is defined as

T
ﬁw:(a 9 a). (2.2)

8x1 ’ 8x2 ' or 3
The notation is as follows: bold characters (like U) represent a vector of con-
servative or primitive variables needed for the Navier-Stokes equations. All
vectors in space directions are symbolized with an arrow (like ¥). This means
that the flux (like F') is a vector with components in each space direction where
each direction contains a vector of needed Navier-Stokes variables. The vector
of the advection fluxes is given by

P Va
pPUIVg + 014 P
F.,(U)=| pvovg+doap |, d=1,2,3, (2.3)
P U3V + 034 P
pEvq+pug

with §;; being the Kronecker delta function. The viscous fluxes vector can be
written as

0

T1d

= T2d
F,,(U,V,U) = o ,d=1,2,3. 2.4)

3
> " T4v; —
=1

The viscous stress tensor 7 is given as (with the viscosity x and the unit matrix

D
v = p(Fo 0+ (Vo) — 2(Ve- D)D), 2.5)

and ¢ = (q1,q2,q3)" is the heat flux where )\ is the heat conductivity and the
flux is proportional to the gradient of the temperature (T) ,

G=—-AV,T. (2.6)

12
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When the viscosity p and the heat conductivity A are zero, the system reduces
to the Euler equations. In this work the NSE are used and the source vector P
is set to zero if not mentioned otherwise. This means that gravitation for ex-
ample is not considered, which is allowed because the effect of the gravitation
is negligible in the performed calculations in this work.

2.2 Equation of State

The most well known equation of state is the ideal gas EOS. This is mostly
used in CFD calculations for a variety of applications and can be written as
follows:

p(p,T) = pRT, (2.7)
R, T
e(T) = 1)’ (2.8)

co(T) = VKrRT, (2.9)

where p is the pressure, e the specific internal energy and c is the sound speed.
The adiabatic coefficient x and the specific gas constant R, are parameters
varying for each gas. The ideal gas EOS is only used for validation calcula-
tions in this work but the focus lies on a realistic EOS, namely the Helmholtz
free energy formulation. With this the liquid, vapor and two-phase region of
a fluid can be approximated very accurately. This realistic EOS is evaluated
by the CoolProp library [9] which is used in this work. CoolProp is a fluid
library with over 100 fluids in its database, like dodecane or water as example.
In this work however only water applications are investigated, but other fluids
are also possible as seen in [26, 28], where the fluid is methane. CoolProp
(version 4.2.6) has the ’International Association for the Properties of Water
and Steam formulation 1995’ (IAPWS-95) [70] implemented. This standard
describes the Helmholtz free energy formulation and the needed parameters
for water. This formulation is described shortly in this section. The Helmholtz
free energy formulation can be written in the reduced form and consists of two
parts:

®(7,6) = @°(7,6) + @"(7,9), (2.10)

13
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®° represents the ideal gas part and ®” the residual part. 7 is the inverse re-
duced temperature 7T, /T and the reduced density p/p, is denoted by §. These
parameters are usually taken as the critical states (7, = T¢., p, = p.) [9, 64].
As seen in Equation (2.10) this EOS is written as a function depending on the
density and temperature of a fluid. The ideal gas part can be written as [65]:

Tpol Ipor+TExp
®° =In (0)+c T +c! r4coIn (7 —&—ZC Th+ Z m; In (1 — exp (—77)).
i=1Ipoi+1

(2.11)
Here, c¢!!, ¢!, ¢, ¢, t;, m; and ¢ are parameters fitted for each fluid. Ipy
is the number of polynomial terms and gy, is the number of the exponen-
tial ones, depending on the thermodynamic state (e.g. liquid) and the fluid.
For water in the IAPWS-95 standard the ideal gas part does not contain the
polynomial term and is defined as follows:

8
DY or = 0 (0) +nJ+ngT+ngIn (1) —|—Z n?ln (1 —exp (—y77)), (2.12)
i=4
where the n¢ and 7 are shown in Table 2.1.
The residual part contains again a polynomial and exponential part,

Ipol Ipo1+Texp
an igdi 4 Z n;Ti 6% exp (—6P%). (2.13)
i=1Ipo+1

Here, n;, t;, d; and p; are coefficients which are determined by nonlinear fits
of analytically or experimentally gained thermodynamic properties. For water

Table 2.1: Coefficients for ®°

water

o ; o o
n; Yi t n; Vi

<.

1 —8.32044648201 - 5 097315  3.53734222
2 6.6832105268 - 6 1.27950  7.74073708
3 3.00632 - 7 0.96956  9.24437796
4 0.012436 1.28728967 | 8 0.24873  27.5075105
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described by the IAPWS-95 standard, Ipo and [gy, are independent of the
thermodynamic state and the residual part can be written as:

Dl ier = Zn 0%irti 4 anéd 7' exp (—0%) (2.14)
56
+ Z n; 0%t exp a; (0 — ez) — Bi(r — % Z n;Abi 01,
1=52 1=55
(2.15)
with

A=0*+B; [(6 - 1)%]™, (2.16)

0=(1—71)+ 4 [(6—1)2]"*) 2.17)

Y =exp (—Ci(6 —1)? — Dy(1 — 1)2. (2.18)

The needed coefficients (-); are listed in [70]. Using Equation (2.10) all other
state variables, like pressure, specific internal energy, speed of sound, etc., can
be evaluated by analytic differentiation with respects to density and tempera-
ture:

pO.7) | 5O, (2.19)
P
e(6,7)
—7(®° + D" 22
RT T( T + T)’ ( 0)
2(6,7) . (14095 — 6795, )?

=1+ 260% 4 6° (2.21)

(D, + o1,)
The needed derivatives can also be found in [70]. The Helmholtz free energy
formulation for water is built out of 65 terms. For other fluids this number of
terms is different. Methane as example needs 49 terms [58].

In the two-phase region, where vapor and liquid exist at the same time,
it is necessary to evaluate the phase equilibrium. For a given temperature
the pressure and Gibbs free energy (g) are constant in the two-phase region
for a pure fluid. These leads to a system of equations for a given saturation
temperature T’

p(Ts, p") = p(Ts, p"), (2.22)
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9(Ts,p") = 9(Ts, p"). (2.23)

To solve this equation system a method proposed in [1] is used by the Cool-
Prop library [9]. The saturated vapor and liquid density, p”” and p/, as well as
the saturation pressure ps can be calculated for a given temperature 7 by this
method. CoolProp also provides the quantities (e, p, ¢, 1, A) in the two-phase
region needed by the NSE.

For the Navier-Stokes equations, the specific internal energy e can be cal-
culated from the conservative variables: ¢ = E — 0.5 2. Since the Helmholtz
free energy formulation uses the density and temperature as input, the corre-
lation between these quantities must be evaluated. An easy way to do this is
to iterate the temperature to find the corresponding specific internal energy.
The starting point is determined by the given specific internal energy e, and
density pg:

F(T) = ey — e(pg, T) =0, (2.24)

where e(pg, T') can be evaluated with Equation (2.20). The bisection method
[72] is used in this work to find the correct temperature since Newton’s method
does not converge at the transition between different phases. After the bisec-
tion algorithm has finished, the corresponding temperature is known and with
pg and T' all other parameters can be calculated easily. The same technique is
needed to use the density and pressure as given parameters and calculate the
corresponding temperature.

This procedure is very robust but numerically very time consuming. In
Chapter 3 an idea is explained, which uses this method in a preprocessing step
to build a highly accurate quadtree for the EOS, which can later be used during
the calculation and postprocessing.

2.3 Discontinuous Galerkin Spectral Element
Method

In context of this CFD method the computational domain is split into non-
overlapping hexahedral elements, called mesh, where the system of governing
equations are solved. For the DGSEM unstructured meshes can be used with
curved hexahedral elements. An example of such a domain is seen in Figure
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2.1. This picture shows a slice of a 3D physical domain, which represents a
throttle. DGSEM is derived for the NSE, a system of hyperbolic-parabolic

Figure 2.1: Schematic mesh of a channel flow

conservation equations, in one 3D element following [30, 35],

oU - - Lo
o T Ve Fa(U) — V. Fy(U,V,U) = 0. (2.25)

V. -F(U,V,U)

Equation (2.25) is written in physical space but for efficiency every element
from the mesh, which discretizes the calculation domain, is mapped to a refer-
ence element & € [—1,1]3 using the reference coordinates £ = (&1, &2, &3)7 .
An illustration of this is shown in Figure 2.2. It shows a curved element of the
physical domain on the left and the reference element on the right side. The
black and gray dots are symbolizing the solution points or degrees of freedom
(DOF). A polynomial mapping function 173(€) is used to map from the refer-
ence element to the one in physical space. But to express Equation (2.25) in
reference space, also the gradients have to be considered. Following [35] this
is achieved with

—

L o1. o
Vg -F = jV5 -F. (2.26)
The above equation introduces the transformed fluxes F:

Fa=(Jag)-F, d=1,23, (2.27)
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T2 &2
xr

1

Figure 2.2: Transformation from physical to reference space

with the covariant basis functions

am
ag=—, d=1,2,3. 2.28
Qq 8§du ) 4y ( )

These basis functions are defining the Jacobian matrix J = (a1, @2, d3)” and
the determinant J = det(J) of that matrix which is called Jacobian. Also
needed by Equation (2.26) is the gradient operator in reference space:

- o o o0\
= —, —, — . 2.29
Ve (351’5'527 353) (229)

Now transforming Equation (2.25) into reference space yields

1
J

1

U;+ 7

Ve F(U,V,U) = U+~ V- (G(U)-#H (U, V,U)) = 0. (2.30)
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2.3 Discontinuous Galerkin Spectral Element Method

The contributions of inviscid and viscous terms to the flux are the terms G (U)
and H (U, V,U), respectively. In each element the solution vector is approx-
imated by a tensor product of 1D Lagrange polynomials ¢V of degree N,

N

U t) =~ Z Ui (O)vD,(€) N (€) = Y (€)Y (£2)08 (€3) .
i,5,k=0

’ (2.31)
This is a nodal interpolation ansatz and I]'ijk(t) are time-dependent nodal
DOF representing the solution at the solution points . In Figure 2.2 the lo-
cations of these are visualized by dots. As basis functions the Lagrange
polynomials are used and defined by a set of arbitrarily chosen nodal points
{&}N., € [-1,1] in each spatial direction. The Lagrange polynomials are
given by:

H 5 El j=0,...,N, (2.32)
= O];éz
with the Lagrange property
V(&) =06, i,j=0,...,N. (2.33)

di; is the Kronecker delta. In this work, following [30] and [35], the NV + 1
Gauss-Legendre points are used as the interpolation node set {¢;}¥ for a
polynomial degree of N. The flux F is also approximated by a polynomial

Fam~ > Fa, b, d=1,2,3 (2.34)
i,5,k=0
Fae = 9a(U) |z —Ha(U,V,U) [¢ . (2.35)

Multiplying Equation (2.30) by the Jacobian J it leads to
JU, + Ve - F(U,V,U) = 0. (2.36)

To achieve the variational formulation the projection of the approximated so-
lution (Equation (2.36)) to the exact solution (which equals 0) is build

(JU, + Ve - F(U,V,U), )1, 6) = (0, D)i,e)s (2.37)
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where the Lo inner product (f, g)1, (o) in an area @ is defined as

9y = /Q J(@)g(@)de. 2.38)

—

The test functions ¢ () are from the same space as the polynomial interpola-
tion basis function 1. Rewriting Equation (2.37) the variation formulation can
also be written as follows

—

/ (JUt + Ve F(U, %U)) o) dE = 0. (2.39)
£

By using integration by parts for the flux term, the weak formulation of the
variational formulation is achieved

/JUt¢d€+}[ (G: — ) ¢d€s—/i-'(U, V.U)-Ve ¢ dE = 0. (2.40)
&

& o0& Fr

The solution U is allowed to be discontinuous over the element interface
OE. Therefore a Riemann solver (see Section 2.5 for more details) is used
to approximate the inviscid numerical flux function normal to the surfaces
G: = G;(U*T U~). The superscripts + stand for the solution at the €l-
ement surface of the neighbor element and the local one, respectively. To
derive the viscous flux terms M., the governing equations are rewritten with
an additional variable S as an approximation to the solution gradients as a
corresponding system of first order equations:

U, +V, -F(U,S)=0,

oL (2.41)
S-V,U=0.

Following the steps from above, the equation system leads to

/ JUdE+ 75 (G5 — H:) & — / F(U.S) VepdE =0, (242)
£ £

o0&

/Jsd¢d5— j[uquad{s ¥ /ﬁd VepdE=0. (2.43)
£ oE g
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Ld
The Equation (2.43) is given for each spatial direction d, withtd = (Jay)U.
The numercial flux for the additional equation is Llﬁll and

H: =H:(UH, U, S8T,87)

stands for the numerical flux function for the viscous terms in reference space
in normal direction to the surface. Since at the surface the solution is double
valued an approximation of these fluxes is needed. As introduced in [5], these
approximations are given by

H = (a H, (U, 5H) + (1 — anise) Ha (U™, §*)) L (244
L = (aie UT + (1 = aise) U™ ) g, (2.45)
where 7 is the surface normal vector pointing outwards. «s is chosen to

be % this method is named BR1 (first method of Bassi and Rebay [5]). With

this method the gradients V,U = (ﬁi P, ﬁwm—)’ ﬁwa ) can be approximated.
But for Equation (2.4) the velocity gradients are needed as well as the temper-
ature gradient V .T'. For the ideal gas EOS (see Equation (2.7)) V /T" can be
calculated using the gradients of the conservative variables as follows:

k—1 - - k—1
T = S VLT = (V. , 2.46
‘R (Vze) . (2.46)
1 1o
- o - - T
pE = pe + §p|v| —  VupE =V pe + 3 E Vazpv;. (2.47)

i=1

Applying the product rule to Equation (2.47) and rearranging it leads to the
desired derivatives V  e:

3
- 1(,= 1 V.
V.e= ; ((Vgg e+ 5 Z ( mpvz)vz (v Ul)pvl) - (VIPE)>
=1
(2.48)
with 1
ﬁwvi = *(ﬁxlmi - (ﬁzp)vl) (2.49)

P
Inserting Equation (2.48) and (2.49) into the right part of Equation (2.46) the
temperature gradient can be expressed by the gradients of the conservative
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variables. Since in this work the Helmholtz free energy formulation is used as
EOS the approach with the gradients of the conservative variables is not appli-
cable, because T'(p, e) is not given as an analytical equation (see Section 2.2).
In a first step the temperature is calculated with the use of the conservative
variables in the volume and at the interface of an element and then the tem-
perature gradient is approximated with Equation (2.43). But Equation (2.49)
is necessary also for the approach with the Helmholtz free energy formulation
since for the diffusion fluxes only the velocity gradient V,v; for all spatial
directions and the temperature gradient ﬁxT are needed (see Section 2.1).

2.3.1 Semi-Discrete Formulation

To derive the semi-discrete formulation of Equations (2.42) and (2.43) an ap-
proximation of the integrals is introduced in this subsection by using Gauss-
Legendre quadrature. The efficiency of the DGSEM is partly achieved by
collocating the integration nodes and the interpolation nodes. This means the
Gauss-Legendre nodes are used for integration nodes as well as interpolation
nodes in this work. For a function g(¢) the Gauss-Legendre quadrature reads:

1 N
/g@w§=§:g@wwm (2.50)
Z1

k=0

where wy, are Gauss-Legendre weights which are defined analytically by
1
/ﬁ@%:w, (2.51)
-1

where (2 is given by the corresponding Lagrange polynomial. g(&) is repre-
sented by a Lagrange polynomial according to Equation (2.31) and the approx-
imation of g(&) is done by projection which leads to the following equation:

1
/g( )dé ~ Zg & wk—ZZgJ fk W (2.52)
-1
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Since the same node sets are used for interpolation and integration the La-
grange property is used to reduce Equation (2.52) to:

L N
/ 9(&)dE = > grewr. 2.53)
k=0

-1

This integration is exact for all polynomials of degree 2N + 1. Applying the
above described process to the time derivative integral part of Equation (2.42)

and setting the test function equal to one basis function ¢ = 1/)5}’ &> this leads
for one DOF at the 1, j, k-position to

11 -
JU ¢ d€ = Z ﬁdef(t)wévef(_j> PN (€)derdéades
[ros=[ [ ]0(3,5, f

N N
= 0 N o
~ Y I 5 D> Uaer ) 6 (61,) £ (62;) €Y (€35) | 0k (i) wiwjwnc
1,j,k=0 d,e,f=0 ——N———

=6ai =65  =bsx

Z J(Snﬂ() Ui (t) £ (€1;) 0 (62;) £F (€3,) wiwjwic
1,5, k=0 T\TH{—/
=0ii =4, =O0kk

0 -~

= J(gijk)wiijk

(2.54)

For the surface integral, applying the same steps as for the time derivative
integral, the outcome for the ¢, j, k-DOF is

}{TZM@ ~ ([3"'2; Serlinli(+1) + [Fy- §§1—]jk£i(_1)) Wik

1

+ ([.’Fz;, §§2+]ikéj(+1) +[Fg 5 ]mf (— )) Wi (2.55)

+ (IFe e sli(+1) + [F & gfg]ijgk(—l)) wiw;
Ei stand for the normal directions, + pointing inwards and — outwards. §

denotes the surface element, which is the correlation between the physical and
the reference surface. In Figure 2.3 the DOF distribution for a polynomial
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* ® o af
i o * o
I | LY
e 2 2 2/

Figure 2.3: DOF distribution for a DG element for N = 3

degree of N = 3 is shown. The black and gray dots represent the DOF. The {3
is only drawn for half of the element for a better understanding. The position
of one 1, j, k-position is illustrated as well as the connection to the surface.
The squares denote the position of the interface fluxes .. Using the same
steps as above for the discretization of the volume integral, the result is (again
for the i, j, k-DOF):

N N
/ﬁ(U, ﬁiU) . 65 ¢d5%ijk Z Diijflhjkwi + w;Wk Z DjjﬁgijkWJj
Z i—0 i=0

N
—I—wiwj E Dk]kj:Sij]kW]k?

k=0
(2.56)
with the differentiation matrix
de;
D;; = 6(6) , 4,j=0,..,N. (2.57)
d §=&i
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The complete derivation of the surface and volume integral can be found in
[29]. Inserting Equations (2.54), (2.55) and (2.56) into Equation (2.42) the
semi-discrete formulation for one DOF is achieved

7.jk ( Uk) ZDznj:ank 51’ égf]]k‘é’b(+1) + []:2; §§;]]kél(71)

DjsFog + 1 F iy 3 liels(+1) + [F - 3wl (-1)

2ijk

&'MZZ

J

- (2.58)
with the weighted differentiation matrix and the weighted basis functions

D DiacFs e+ [F s e ligle(#1) + [F 8- )isbi(=1)
k=0

i :_D]L;‘Za [2W) :Oa"'a (2 59)

S

For Equation (2.43) also a semi-discrete formulation can be derived, following
the same steps which are needed to derive Equation (2.58), yielding for each

spatial direction d

ZJdeuk = (Z D”unjk + Dﬂuznk + Dknufjf)

UG S linli(+1) + (U 8- ]juli(—1) (2.60)
+[ﬂdi Selinly(+1) + [qu g;hkéj(*l)

2.4 Finite Volume Subcell Approach

A shock capturing technique is needed because strong gradients during phase
change can occur and also ordinary shocks have to be resolved without oscil-
lation. A high-order method like the above described DGSEM cannot resolve
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those. The strong gradients and shocks would lead to oscillations in the poly-
nomial. A shock capturing technique can be split into two parts: at first the
elements containing oscillating polynomials have to be identified and in a sec-
ond step the elements have to be treated in a way to reduce the oscillations.
In this work the first part is done by an indicator proposed by Persson and
Peraire [46]. This indicator calculates for each element a scalar value depend-
ing on the oscillation of the polynomial representation of the solution. With
this indicator-value and a chosen indicator-limit, elements can be found which
need treatment to reduce the oscillations. In this work the treatment is done by
reducing the polynomial order of the solution but at the same time increasing
the spatial discretization. The DG element is split into (N + 1)® equidis-
tant sub-cells. In these cells a second-order finite volume method is used to
solve the NSE. The FV method is well-known for handling strong gradients
and shocks. In every Runge-Kutta time step (see Section 2.7) the indicator-
value is calculated. Then for each element it is known whether it can use the
DGSEM or the FV sub-cell approach to solve the NSE for this time step. This
can vary for each time-step for an element. The building blocks needed for
this ’switching’ between these two methods are explained in this section as
well as the FV method.

The number of DOF is kept the same for both methods as seen in Figure
2.4. The figure shows the DG distribution on the left and the FV on the right
side. The black dots symbolize the solution points for both methods. With
the polynomial degree N = 3 as an example there are 4 points in each di-
rection making it 43 = 64 in total for both methods. In the figure only half
of the &3 direction is drawn to avoid visual clutter. The DG solution points
are Gauss-Legendre distributed, as stated earlier, and the FV ones are placed
equidistantly. The dashed lines in the right picture outline the FV cells. The
open squares represent the locations where the flux ), needs to be evaluated
via a Riemann solver (see Section 2.5). This flux is calculated over two con-
junct elements. The black filled squares denote the inner element flux needed
by the FV method.

For switching between the DG and FV sub-cell method the solution has to
be converted between the different point distributions. This conversion can
be reduced to a matrix-vector multiplication. In 3D this multiplication can be
applied dimension by dimension in a tensor product fashion. In this case it is
adequate to derive the conversion in one dimensional space. Since the FV sub-
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Figure 2.4: DOF distribution for a DG element (left) and FV cells (right) for
N=3

cells are equidistantly spread in the DG element, the FV sub-cells are defined
by:
sub-cell; =[-1+lw, -1+ (I+1)w] 1 =0,...,N. (2.61)

The length of the sub-cell in one spatial direction is @ = 2/(N + 1). The
important part for changing the solution distribution is to keep the integral
mean value constant. To achieve this the polynomial DG solution has to be
integrated for each FV sub-cell

N (_1+(l+1)w)

1
5/ Ud¢ = /1 ud¢ = ; / uUds. (2.62)

—1+lw

Replacing the solution by interpolation with Lagrange basis functions (see
Section 2.3), the last term of Equation (2.62) leads to

(=1+(+1)w)

N N .
> > Uahi(€)de. (2.63)
=0

—1+ilw 3
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To integrate over the sub-cells, integration points in each sub-cell are intro-
duced, where &, are again the Gauss-Legendre nodes

N
L, ={1+m+E+1T} . 1=0..N @6

- r=0
with /2 as scaling factor between the length of the reference interval and the
subintervals. This leads to a total of (N + 1)? integration nodes for the DG
element in 1D. Using these nodes for numerical integration of Equation (2.63)

leads to
o N N N R
JLZED 99 3) DU CAN 265
< =0 =0

a=0

The Lagrange property cannot be achieved here, because the interpolation and
integration points are not the same. For the FV sub-cell distributed solution
the integral mean value can be calculated as follows (using the midpoint inte-
gration rule and the mean value for each FV sub-cell U)):

N
/ Udé ~ ) Ui, (2.66)
< =0

To keep the integral mean value constant, Equation (2.65) and (2.66) have to
be equal

N - N N N )
Z Uw = 5 Z Z Z UV (€ )wa. (2.67)
=0 =0 =0 i=0

Each FV sub-cell mean value can now be calculated from the DG solution
with
T
T P N (gl
U, = 3 370 E_O U6 (&) wa- (2.68)

To transform the FV sub-cell solution back to the DG solution the transforma-
tion matrix in 1D

N

1 N
Viy = [Q >y <£é)wa] : (2.69)
a=0

i,1=0
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is inverted V .y and multiplied with Equation (2.69)
Vin{UtYo = {U}Y,. (2.70)

As mentioned earlier for the transformation in three-dimensional space this
procedure can be applied dimension by dimension in a tensor product way.
This holds for both conversion directions DG — FV and FV — DG. Not only
the solution needs to be converted but also the fluxes, because if an element
solved via DG method and an element solved via the FV sub-cell method
are conjunct to each other the flux point representation is different for both
methods (see Figure 2.4). This flux conversion is done by a transformation
matrix not for the volume but for the surface of an element which can be
derived using the same steps described above.

The derivation of the FV approach starts with the Navier-Stokes equations
in reference space and integration over the sub-cell element C at the [, m,n
position

/ JU, d¢ + Ve F(U,V,U,)dE =0 I,m,n=0,...,N.
C

lmn Cimn
(2.71)
All gradients used in the FV method are constructed and limited in primitive
variables U, = (p, ¥, T)T where T is the temperature. Applying the Gauss-
theorem on the flux term the FV method is written as

J

F is the numerical flux for each FV cell interface multiplied with the normal
direction, which can be split into advection G, and diffusion # part. The
FV approach can be written in a discrete way as

JU, d§+j{

(6:(U) - #,(U,¥.1,)) ds=0.  272)
9Clmn

Imn

x
T’Vl

_Jlmn(ﬁlmn)t = Srv [T;f;mn + -7:*751 :|

l+%,m,n

s [FrS L+ FE 2.73)

l,m—%,n l,m+%,n

+8py [f'*:fz ) _’_.7:'*753 } ’
3

1
lmmn—s3 l,m,n+5
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2
where sp, = <Ni+1> stands for the surface of one FV-subcell. The subscript

n for the F, was omitted here for the sake of simplicity. If Equation (2.73)
and Eq. (2.58) are compared it shows that these two can be exchanged for
calculating the time derivative of the solution vector Uj.

As mentioned earlier, a second-order reconstruction is implemented in this
work, which is illustrated in Figure 2.5. The figure shows the nodal points of
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Figure 2.5: Inner-cell and over-interface reconstruction

the FV sub-cells and all their connections for the reconstruction. The arrows
are representing the necessary reconstructions. The green and red arrows show
the inner cell reconstruction. The blue arrows symbolize the across element
reconstruction. The values needed from the neighboring elements have to be
distributed equidistantly, this means that an DG element, which is conjunct
to a FV sub-cell element, has to convert its solution to the FV distribution.
The gradients used for the calculation of the values U on the FV sub-cell in-
terface for the advection flux G (U) are limited with the MinMod-Limiter
[50], which gives this approach the total variation diminishing property. For
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the viscous fluxes H: (U, V,U,), in the FV method the mean value of two

. . . = V., Ul+V,U, . .
neighboring gradients are calculated, V, U, = ——>5——", in each direc-

tion. The superscripts + and — denote the left and right side of a surface. A
more detailed description of this shock capturing method can be found in [62].

2.5 Riemann Solvers

As seen in Equation (2.40) and Eq. (2.72), G, needs to be evaluated. This
is not trivial since the solution on the interface is double valued and therefore
also the normal flux. U™ and U™ are the two contributions from the two con-
junct surfaces, which imposes that the normal component of the flux on the
surface needs to be approximated because it is not uniquely defined. This ap-
proximation is commonly done by defining the unique flux as a solution of a
Riemann problem. A Riemann problem is an initial value problem with piece-
wise constant states, see Equation (2.78). This approach originates in the FV
method community [67]. In this work only the approximation to the Riemann
problem is considered, since the evaluation of the exact solution (Godunov
flux functions) needs too much calculation time.

Since the Euler equations are rotationally invariant a flux normal to a surface
can be calculated,

G =G, =T "G (TU). (2.74)

The transformation matrix 7~ from the reference system to the coordinate sys-
tem normal to the surface is given by

1 0 0 0 O
0 ni1 no ns 0
I: 0 tll t12 t13 O 3 (275)
0 tgl t22 t23 0
0 O 0 0 1

where 7 is the normal vector to the surface and #; together with 5 define
the surface. These three vectors are orthogonal to each other. By rotating
the solution Uy = T U to the normal direction, only one flux vector has
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to be evaluated instead of three. To determine the unique flux a non-linear
hyperbolic system has to be solved

Ur)+G7(Ur),=0 or (Ur)+A(Ur)Ur, =0. (2.76)

A linearization is introduced Uy|sp= U = INJ(U},U;C) and a Riemann
problem for the linearized system is solved

(Ur): + A(U) U7, =0. 2.77)

With the set of right eigenvectors R of A(INJ) the above equation can be di-
agonalized by transforming it to characteristic variables W = RUq, lead-
ing to five decoupled scalar linear advection equations (in case of the Euler-
Equations) of the form

wy + My =0 (2.78)

w” forx <0
2t =0) = 7 2.79
( ) {w+forx>0, (279)

The eigenvalues of A are the advection speeds A. Each decoupled equation
represents a Riemann problem. The solution of each problem is given by

1 1
Fo(u) _ 5(Fa(tf) + F,(u™)) — ai(qu —u). (2.80)
These solutions can be rotated back from the characteristic variables, which
gives the exact solution for the linearized Riemann problem (Equation (2.77)).
This exact solution approximates the solution for the desired Riemann prob-
lem of Equation (2.76)

~ 1 1
G7(Ur)|, ~AU)5(Us +Uy) - SRTAR(US — Uy).  (281)

The diagonal matrix with the eigenvalues of the matrix A (INJ') is denoted by A
with the eigenvalues Ay = U1 — ¢, A234 = ¥1 and A5 = ¥; + ¢. Different
choices for the linearization state U can be found in [67]. The characteristic
wave pattern, which illustrates the solution of the Riemann problem can be
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seen in Figure 2.6. The eigenvalue A; is the advection speed for the rarefac-
tion wave and )5 is the advection speed for the shock wave. The eigenvalues
A2,A3 and A4 have the same value and are the advection speed for the contact
discontinuity. Over the rarefaction wave and the shock wave all state vari-
ables change, but over the contact discontinuity the pressure and the normal
velocity stay constant. The region between the rarefaction and shock wave
is the so-called star region. All possible solutions for the Riemann problem
depending on the states U~ and U;C are illustrated in [67]. Two different

t

X234 s
: U
/

A

— / +
U Ut

n

Figure 2.6: Characteristic waves depending on the — and + state

approximations of Equation (2.81) are used in this work, namely the Local-
Lax-Friedrich (LLF or Rusanov flux) and the Harten-Lax-van Leer-Contact
(HLLC) Riemann solver. Both are widely used for DG implementations. The
choice was driven by the fact that the LLF is the simplest Riemann solver and
the HLLC is the best choice when efficiency and accuracy are compared [48,
49]. All these shown Riemann solvers can be used with the equation of state
introduced in Section 2.2 but they are not specially adapted for the highly ac-
curate EOS. A more accurate Riemann solver for the used EOS is proposed in
[16].

2.5.1 Local-Lax-Friedrich

For this simple Riemann solver only the fastest wave speed of both states is
used

S = max(|vr |, |v;1 |) + max(c, ct). (2.82)
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This leads to the highest amount of numerical viscosity compared to other
Riemann solvers [67]. With this maximum wave speed the numerical flux for
the local Lax-Friedrich Riemann solver can be computed with the mean value
of the fluxes and a penalty term

1 1
Gr= 5(g;jug;) - §S(UJTF—U}). (2.83)

2.5.2 Harten-Lax-van Leer-Contact

This kind of Riemann solver approximates the wave speeds for the rarefaction
and shock wave and also estimates the wave speed for the contact discontinu-
ity. For the rarefaction and shock wave the Davis wave speed estimates [14]
are used

57 =min(vy —c¢ v} —ct), (2.84)
St = maX(v}*'—1 + c+,v7_—1 +c). (2.85)

The advection speed for the contact discontinuity is estimated as follows:

PT =P Ao (ST — ) — prun (ST —vg)

o= o (5 —u7) —p (5T —ufy) (250
With this the corresponding numerical flux can be calculated
Gy |if 0< S,
G+t if 0>8"t,
where the fluxes in the star regions are given as
G =g+ 5*(Uf - UL). (2.88)
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Furthermore the solutions in the star regions can be calculated with

1

S

UE = pt (Si—vf) vy
S+ — S, v%t_g

+
E* + (8. = v7) | Se + —zgiory
1 P (S 7”7'1)
(2.89)
The interested reader finds a detailed explanation in [66].

2.6 Boundary Conditions

As explained earlier the elements of the calculation domain are only coupled
by the normal surface flux ) (see Eq. (2.40) and Eq. (2.72)). This is a weak
coupling and is also used for the boundary conditions. For a Dirichlet bound-
ary type this means that the boundary state Uy, is necessary to calculate the
corresponding flux along with the inner state. With these two states the nor-
mal surface flux can be calculated via a Riemann solver. This type of boundary
condition is used for inflow and outflow in this work. For the wall boundary
a full-slip-wall is implemented, which by default works with the equation of
state described in Section 2.2. It is reasonable to neglect the friction at the
wall, because the influence of the boundary layer is insignificant for the inves-
tigated phenomena. This means that the boundary layer is not resolved in the
calculations performed in this work..

2.7 Time Integration

For time integration, a low-storage explicit Runge-Kutta 4" order (LSERK4)
algorithm is used [12]. In algorithm 1 the vector K has the same dimension as
the solution vector U. The constants a;, b; and ¢; can be taken from Table 2.2.
ts is the stage time and can be used for time dependent boundary conditions
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K = 0;

ts =1

for i < 1to5do
K =a; K+ U (U, ty);
U=U+bpAtK;
ts =t + Aty

end

Algorithm 1: Low storage Runge-Kutta 4th order algorithm

and ¢ is the current simulation time. The time step At is calculated with the
advection time step for a DGSEM approach

1 Az
Attt = —_ 2.
tl’l’lln Aa 2N + 1 ? ( 90)

max

where Az is the element length and A% . the maximum eigenvalue of the flux

Jacobian matrix for advection. Also the diffusion time step is needed

1 Az \?
Atdy, = — 291
=iz (aver) 2o
where A4 is the maximum eigenvalue of the diffusion matrix [13]. At is the
minimum out of At¢, and At . Since the DG time step is more restrictive

than the FV time step [62] it can be taken for both methods to integrate over
time.
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Table 2.2: Coefficients for the LSERK4 algorithm [12]

a; b; Ci
0 1432997174477 0
0575080441755

567301805773 5161836677717 1432097174477
1857537059087  13612068292357 9575080441755
2404267990393 1720146321549 2526269341429
2016746695238 2000206949498 6820363962396
3550918686646 3134564353537 2006345519317
2001501179385 4481467310338 3224310063776
1275806237668 2277821191437 2802321613138
842570457699  14882151754810 2924317926251

2.8 Parallelization

The parallelization of the described CFD solver is done with message passing
interface (MPI) routines. It is designed to handle one DG element per core at
its limit. As it is presented from Atak et al. [4] super-scaling can be achieved
on the HLRS Cray XC40 for polynomial degrees higher then six for the one
element per core limit. This can be achieved with a communication-hiding
technique.

At the beginning of the parallelization the mesh needs to be distributed on
the processors used for the simulation. As described in [29] a space-filling
curve (SFC) is generated in a preprocessing step which gives each element
a unique position on a 1D curve. A SFC has the property that neighboring
elements in 2D and 3D spaces are mapped as close as possible on the 1D
curve. For each mesh the SFC needs to be build only once and than can be
used for any calculation with an arbitrary amount of processors up to the limit
of one element per processor. In a first step of the simulation the SFC is cut
into equidistant parts where the number of parts equals the number of pro-
cessors which can vary for each simulation. If the SFC can not be separated
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equidistantly, because the number of elements cannot be divided by the num-
ber of processors in whole numbers, some parts of the SFC contain a few more
elements than others. Each part represents a domain of the mesh and this in-
formation is distributed to the processors, therefore each processor calculates
a specific number of elements. For the DGSEM only communication with von
Neumann neighbors are necessary for one element, because each face needs
only the solution from the conjunct face to calculate the fluxes (see Section 2.5
and Equations (2.44) and (2.45)). The rest of the DGSEM operator, namely the
volume integral, is an element local operation and does not depend on infor-
mations from other elements. But communication is only needed for conjunct
faces which are located on different processors, so called MPI-faces. The eval-
uation of the volume terms as well as the calculation of the fluxes for conjunct
faces on one processor can be used to hide the communication for MPI-faces.
This can be achieved with non-blocking communications [39]. A more de-
tailed explanation for structured meshes is given in [2] and the extansion for
the used unstructured meshes in this work is given in [29].

For the used kind of FV shock capturing the memory layout does not change
and the parallelization technique can be easily adapted [62]. As well as for
the DGSEM implementation the sending of MPI-face date can be hidden by
evaluating the inner element sub-cells in between. Since the reconstruction
for the 2" order FV scheme is also done over MPI interfaces this leads to an
additional communication of the needed neighboring mean value to construct
the gradient. This communication is again hidden by local processor work
and this hiding technique contributes to an efficient method on state of the arts
HPC clusters.
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Equation of State

To resolve effects like cavitation and shock condensation as well as evapora-
tion in a CFD-simulation, an EOS, which can handle fluid, gas and two-phase
states, has to close the Navier-Stokes equations. In this work the CoolProp
library [9] in version 4.2.6 is used which evaluates the Helmholtz free energy
formulation described in Section 2.2. For water, as an example, the ITAPWS-
95 [70] standard with thermodynamic equilibrium and Maxwell construction
in the two-phase region is implemented in the library. In CoolProp more then
100 fluids are included and could be used for numerical calculations, but the
focus in this work lies on water as a fluid. The easiest way to implement the
EOS would be to couple CoolProp with the DG solver directly during calcula-
tion. That involves also the temperature iteration explained in Subsection 2.2,
which is not part of CoolProp. This iteration is needed for density and specific
internal energy as input values. The library can handle these values, but in this
work control over the iteration process is needed (see Subsection 3.3.3) and
this process is also used in a different context explained in Section 3.4.

If one compares the evaluation time between a perfect gas and realistic EOS
it is easy to see why a different approach is needed. Table 3.1 shows the eval-
uation time for density and specific internal energy as input parameters. Both
types of EOS use these two inputs and calculate the following output parame-
ters: temperature ("), pressure (p), speed of sound (c), viscosity (u) and heat
conductivity (A). All these parameters are needed by the CFD solver explained
in Chapter 2. The evaluation of the perfect gas EOS is several orders of mag-
nitude faster then the direct CoolProp evaluation with temperature iteration.
Also the evaluation time for the realistic EOS varies for the thermodynamic
state of the fluid. This means, by using the realistic EOS directly, the perfor-
mance of the code will drop significantly. This is not usable in a CFD context.
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In the next subsections an approach is explained, which reduces this factor
extremely, and is labeled "’EOS-quadtree’ in Table 3.1.

Table 3.1: Comparison of evaluation time (us) of perfect gas and realistic EOS

Perfect Gas 0.01712

Vapor  Two-Phase  Liquid
direct EOS 232.015  2392.149  260.016
EOS-quadtree | 0.32402  0.36802  0.30002

3.1 Quadtree Approach

In this work a quadtree approach is used to reduce the evaluation time over-
head of the realistic EOS. The idea originates from [17] and is adapted for
the efficient use with the numerical method presented in Chapter 2. The con-
cept is to store the data of the EOS in a quadtree as a preprocessing step and
use this quadtree later for several calculations to evaluate the EOS. To build
such a quadtree, which stores the information of the realistic EOS, the mini-
mum and maximum values for the input parameters define a two-dimensional
space. This area is divided into 2! x 2! quadratic identical elements. [ is
an integer and stands for the level of the quadtree and normally the build
process starts at level 1. A typical resolution required to obtain sufficient
accuracy is [ > 15. Without further procedures over 10? (21° x 21%) ele-
ments for level 15 would be needed. To overcome this problem an adaptive
quadtree refinement is implemented. The boundaries for this area are defining
the computational domain Q = [@min, @max] X [Omins Omax]. @ and b are the in-
put parameters for the EOS and as explained in Section 2.2 (a = p,b = e),
(a=T,b=p)or(a=p,b=p)canbe used. The reason why in the second
case a = T and b = p is explained in Section 3.4. Each element has the
size [Al, Al] = [@mestuin Iuabun] depending on the level. Very similar to
the DG method explained in Section 2.3, every element is mapped to a unit
element £ € [0, 1]? with the coordinates &; and &,. For each element a poly-
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nomial representation of the thermodynamic variables in the unit element is
built by

N (&,6) = quwu (61,&), vy =Y (&) (&) 3.1)

1,7=0

This is again a nodal interpolation ansatz (see Section 2.3) with a tensor prod-
uct of 1-D Lagrange polynomials ¢/~ of degree N as basis functions. The
nodal value ¢;; is evaluated with the help of the EOS library and two input
values

Gij = alasger + €1, A0, bioar + €2,A,). (3.2)

N is again the polynomial degree. The root of each element is the lower left
corner which is denoted by the minimum values for ¢ and b in this element.
The used nodal Lagrange basis functions (&1, £2) are build with Chebyshev-
GauB nodes. These are defined in the interval [—1,1] and a mapping to the
desired unit space is given by

glcc +1
2

€2cc +1

&= >

and & = (3.3)
The polynomial degree IV can vary for each element. The maximum polyno-
mial degree of an element can be choosen from 1 to 10 at the beginning of
the building process. This chosen degree is only the upper limit. For each
polynomial degree from 1 to the chosen upper limit the L, -error is calculated

for every element

an(&1,&2) — q(&1,62)
q(gla 52)

The lowest polynomial degree, which satisfies the L.-error, is used in the
corresponding element. By adapting the polynomial degree for each ele-
ment the quadtree storage size is reduced. The infinity norm error-criterion
(Loo) is checked on 20 x 20 equidistant points in each element, by using
the interpolation (q) (see Equation (3.1)) and evaluating the EOS directly
(q) at these points. The equidistant points also include the element bound-
aries, which ensures that the jump of the solution over element interfaces is

L, = max ( ) <€, &,&€]0,1]. (3.4)
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lower than €;. In case Equation (3.4) is not satisfied by any polynomial de-
gree for an element, this element is going to be refined by dividing itin 2 x 2
new quadratic elements. All four new elements are in the next level (I + 1)
compared to the refined element, which is in level [. This procedure is re-
peated for each element until the error is lower than €; or the maximum level
is reached. With this technique not every level contains 2 x 2! elements,
instead the amount depends on ¢; and the chosen upper limit for the poly-
nomial degree. In this implementation L, = 32 is the maximum level be-
cause the element localization, e.g., finding the root of an element, is done
with a 64-bit binary number. Figure 3.1 shows the 1°' and 2" level of a

0101 [ OI11 [ 1101 ] 1111

01 11

0100 [ 0110 | 1100 | 1110

0001 {0011 | 1001 | 1011

00 10

0000 [ 0010 | 1000 | 1010

Figure 3.1: Level 1 and 2 with identification numbers

table with the corresponding identification (ID) binary number B. This fig-
ure illustrates an example where all elements in level 1 needed refinement.
The number B is read from left to right. The first two digits correspond to
level one. The second pair of numbers belongs to the second level and so on.
This approach is similar to the Morton numbering [40]. Algorithm 2 shows a
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way to calculate the root values for each element by using the ID number B.

elem __ L.
Aroot — Amins

elem __ .
br()()t - bmi,na

for[ <+ 1tol, do

Al — Omaz—%min .
a ~ 2l >

Aé — bnlaz_lbmin.
2 >
alm = g0 + B[21 — 1]AL;

Toot

bf})%‘t“ = broot + B2 Z]Aé;
end

Algorithm 2: Finding the root for an identification number N

In this algorithm [ is the level of the element. B[i] denotes the bit at the
i position and the value of B[i] is either 0 or 1. A schematic example of a
quadtree is shown in Figure 3.2 with the connections to the previous levels.
The top plane represents a level [ with four equidistant elements. The middle
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Figure 3.2: Schematic quadtree with level connections

plane shows level [ 4 1. For this schematic example only three elements need
to be refined from level [ to level [ + 1 and one satisfies the error criterion
stated by Eq. (3.4). The bottom plane shows level [ + 2 and displays the
refined elements from the previous level. The top view is visible in the lower
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right of the picture. From level [ 4 1 to level [ + 2 four elements do need
refinement in this example.

Figure 3.3 shows a quadtree for water build with the above described method
for (a,b) — q = (p,e) = T, with p € [pmin = 1, pmax = 1330] kg/m? and
e € [emin = —9.9, emax = 4.056 - 103] kJ/kg.The building error was set to
e = 1-1077 and L, = 17 for this quadtree. The black dot in Figure 3.3
is situated in the two-phase region, which is enveloped by the saturation lines
and shows one root of an element given by following ID number B

B= 00 11 10 11 01 — pdm = 582.44 k—% , edem — 1387.76 Loh
TYYYY ™ ke
= (3.5)
Because of very high gradients at the liquid and vapor saturation line the algo-
rithm has to refine along these lines to reach the desired L, -error. To reduce
the amount of elements due to refinement at these lines, a cut-cell approach
is implemented and explained in Section 3.4, which was also used to build
Figure 3.3. Every element of such a quadtree is saved during the build process
even if it does not satisfy Equation (3.4). This is done to be able to load the
quadtree with a higher error than for the build process to save memory during
runtime. The memory usage is lower for a higher error since a lower amount
of elements has to be loaded.

To evaluate the quadtree during computation the first step is to load the
saved quadtree into memory. For the loading process the error can be set
higher than the build error ¢; > ¢;. Starting at level one each element in
the first level is checked if the desired error is reached by the polynomial ap-
proximation inside the element. For each element where the desired error is
not reached the next level is examined and the connection to the upper level
is built. This is repeated until the maximum level of the table is reached or
all elements satisfy the error ¢;. After the table is loaded into memory a fast
quadtree bisection method shown in Algorithm 3 is used to find the corre-
sponding element for a given input set (a4,b,). In this algorithm INT()
symbolizes a integer devision, (a24"* p3%9"*¢) is the middle point of the
quadtree. In the first level the element is set to the corresponding ¢, j ele-
ment. The row ’elem — elem%connection;;” changes the current element to
the element one level below the current element by using the 7, j connection.

The point (a P8 <™ pUPPerelem) js the middle point of the element one level
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Figure 3.3: A visualization of the quadtree for water (Lq=17).
p € [1,1330] kg/m? and e € [—9.9,4.056 x 10°] kl/kg

up, which is connected to the current element. An example for Algorithm
3 is given in Table 3.2 with the given values a, = p, = 582.5kg/m? and
by = e, = 1338kJ/kg. The element ID corresponding to the given values
is B = 00111011 01. This element can have two states, the first is that it
contains a approximated solution to the desired variable ¢ and the second state
is that this element does not contain a approximated solution. If the first state
is true than the approximated solution is evaluated at (£, §2,) with Equation
(3.1), where &3, and &, are given by the transformation from physical space
to reference space

elem b — belem
9

Qg — Ay T
b, =L, &, = oot (3.6)

AL Al
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INT ( quadlree) ;

mld

j = INT (= )

mld

elem — elem;;;
while elem has connections do

1 = INT (W)’
Anig
j =INT <W>,

mld

elem — elem%connection; s
end

Algorithm 3: Finding the element for a given input set (a,, by)

To accelerate the evaluation of Equation (3.1) the following property is used

N
P =V Tp(&) or =) V"6 3.7)
n=0
where ¢(z) = (1,z,2%,...,2)T is the monomial basis and V the so called

Vandermonde matrix
Rewriting Equation (3.1) the result is:

Qibv (£1g7§2 = Z qu Z Vm, On 51 Z ¢m 52 (3.9)

4,7=0 n=0

The terms ¢, (&1, ) and ¢, (&2, ) can be precomputed. The evaluation of Equa-
tion (3.9) is by a factor of 1.3 faster compared to the evaluation of Equation
(3.1) with the Lagrange basis function. This is due the higher computational
cost of evaluating the Lagrange basis (see Equation (2.32)). The time to cal-
culate the needed variables temperature, pressure, speed of sound, viscosity
and heat conductivity from density and specific internal energy with Equation
(3.9) for the quadtree approach can be seen in Table 3.1 compared to the per-
fect gas equation and the EOS library. If the second state of the element is
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3.2 Parallelization

Table 3.2: Example for finding the corresponding element for
ag = pg = 582.5kg/m? and b, = e, = 1338kJ /kg

Level | Middle value integer division | Element ID
| pgnd:: = 665.5kg/m? i=0 00
em“id = 2023.05kJ /kg j=0
5 pmld = 333.25kg/m? i=1 "’
e®, = 1006.58 kJ /kg j=1
3 p:))m(())l(il: = 499.38 kg/m3 i= 1 10
e® I = 1514.82kJ /kg j=0
4 PR IO = 582.44 kg /m? i=1 1
e 1110 — 1260.7kJ /kg j=1
5 pom({“lo“ 623.97 kg/m?3 i=0 o1
eQITI0TT — 1387.76 kJ /kg j=1

true, which means that it does not contain a approximate solution, then the
calculation stops and a better resolved table has to be used. This second state
occurs if the maximum level during loading the quadtree is reached and the
approximated solution of the element does not satisfy the loading-error ¢;.

3.2 Parallelization

The building process of the quadtree is fully parallelized. It can be build with
any number of processors. The parallelization is done level by level. The
root core is setting up each level by creating the unique ID numbers B for all
elements, which need to build the approximated solution in one level. The
amount of the elements, and therefore the amount of identification numbers
B, is divided by the number of cores. Each core knows the minimum and
maximum of the input variables (e.g. density and specific internal energy).
The ID numbers for each core and the current level are broadcasted by the
root core to every core. This is illustrated in Figure 3.4 with 4 CPUs. The
upper right part of this exemplary quadtree does not need to be evaluated,
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3 Efficient Implementation of the Equation of State

because the upper level element satisfies the desired error. Also in Figure 3.4
the black line inside the right picture shows the Morton or Z-curve [40]. This
space filling curve aligns all elements on a 1D line and is used to distribute
the elements over the available cores. With these ID-numbers each core can

Root Core Core distribution

01010111 . Root Core #0
e

0100|0110 . Core #1
e

000100 11]1001[1011 . Core #2
—

00 00|00 10]/1000{10 10 D Core #3

Figure 3.4: Exemplary element distribution

evaluate the polynomial functions to approximate the EOS for each element
it received from the root core. When all elements are done the cores send the
data back to the root. They send back the following information: maximum
error norm for each element, polynomial representation for quadratic element
and the needed data for the cut-cell approach if necessary (see Section 3.4).
The root collects all this information and builds the quadtree for each level and
saves it to disk. If a new refinement level is needed it builds the identification
numbers for the new level and sends it evenly distributed to the used cores. If
the number of cores is higher than the number of elements some of the cores
idle.

The scaling is shown in Figure 3.5. The figure shows with the solid line
the scaling of the (p,e) — T-table with the ranges mentioned in Section
3.1. The ideal scaling is shown by the dashed line. For the scaling 262 144
elements were evaluated on different number of cores. This is the amount of
elements added to the above mentioned quadtree from level 16 to level 17.
The core number ranges from 24 to 6144 on the CRAY XC40 of the HLRS
and for calculating the speed up, the run on one 24 core node is the reference
value. The numbers of cores are doubled for each run, starting at 24 cores.
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Figure 3.5: Scaling for the table approach

The calculation time for this level needs 3535.21 s on 24 cores and 23.54 s on
6144 cores. Keep in mind that this is for one level and the amount of elements
is increasing for higher levels. As seen the scaling is not optimal. There are
reasons for the scaling drop to 60% on 6144 cores. One reason is the cut-cell
approach explained in Section 3.4. This produces load imbalances between
the cores, which is more relevant on higher number of cores, because it can
happen that one core only evaluates cut-cells and another has only to evaluate
normal elements at the same level. A further reason is the communication to
the root core. For higher number of cores the CPUs are more separated from
each other, which produces higher communication time between them. Also
for the 24-core calculation this time is reduced to a minimum, because the
CPUs are on a single computation node.

3.3 Quadtree Types

During calculation different quadtree types are needed. As seen in Equation
(2.1) the density p and the specific total energy E are conservative variables
during calculation. As explained in Section 2.2 the specific internal energy
e = E — 0.5 ©? is needed to calculate the primitive variables. For the Navier-
Stokes equations these are the temperature 7', pressure p, speed of sound c,
viscosity p and heat conductivity A\. The conversion (p,e) — T,p,c, u, A
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3 Efficient Implementation of the Equation of State

is required and since the FV approach uses primitive variables for the recon-
struction (see Section 2.4) (T, p) — e is also needed. This means that at
least two quadtrees have to be built, neglecting boundary conditions. With
a density range of p = [1 x 107*,1330] kg/m? and a specific internal en-
ergy range e = [—9.9,4.056 x 103 kJ /kg as well as the temperature range
T = [277,1273] K some benchmarks were made. The triple point for water
is at (T, p) = (273.16K,4.8 x 10~3kg/m?). For a temperature lower then
the triple point water only exist in solid state which can not be handled in this
work. To reduce unnecessary refinement, the lowest temperature is set to 277
K. A density of 1 x 10"*kg/m?® can be reached at higher temperatures but
lower then that is not needed in this work.

The main task for the performed benchmarks was to find a optimal ratio
between build time and memory usage. The best ratio on build time and
used memory during calculation is achieved if the needed quadtree (p,e) —
T, p,c, i, A is split into several parts. At first the output variables are reduced
to the minimum, which is the temperature. This leads to a (p, e) — T quadtree
and reduces the amount of elements per level since only the temperature is
used as a variable for Equation (3.4). Further benchmarks revealed that the
refinement needed between the density from 1 x 10~ kg/m? to 1kg/m? was
very high. At levels above 15 half of the elements were located in this density
range. The reason for this is, that even level 20 (Aio ~ 1 x 1073kg/m?)
cannot resolve the lower density regime. To calculate higher levels than level
20 for this kind of quadtree takes several hours on 4800 cores. To overcome
that problem the (p,e) — T is split again into two parts. One (p,e) — T
quadtree from p = [1,1330]kg/m? and one (V,e) — T quadtree, where
V = 1/p is the specific volume with the range V = [1,10000] m®/kg. This
reduces the needed elements. In addition to the last two presented quadtrees a
(T, p) — e,p,c, u, A quadtree is needed to evaluated the other variables. For
this quadtree the range for the density is again p = [1 x 107%,1330] kg/m?
since levels higher than 20 can be built in less than 10 minutes on 4800 cores.
The higher levels can be achieved because the temperature iteration is not
needed (see Section 2.2) for this quadtree. As seen in Table 3.3 the benefit
of splitting the (p, e)-quadtree into several parts causes a memory profit dur-
ing runtime. All the quadtrees are build until level 17 to be comparable. The
amount of used memory is measured per core. The uncovered quadtree area
is the sum of all element areas, which do not satisfy the L,-norm, divided by
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3.3 Quadtree Types

Table 3.3: Benefit of splitting the table into parts

Level 17

nput o) | moamd(V,e) | (1)
Output p,T,c, p, A T €, P, C,y by A
Lo limit 10°° 1077 10°°
uncovered quadtree area [%) 2.58 x 1073 2.56 x 107? 1.87 x 1074
building time (4800 Cores) [s] 752.6 711.22 48.62

# Cells x # Variables 3375755 884 761 742775
Runtime Memory usage [MB] 583 512

the whole quadtree area. By adding the building times of the three quadtrees
they are almost as fast as building the single quadtree (see Table 3.3). But the
main advantage is seen in the memory usage per core during runtime, this can
be reduced by 14 % just using three quadtrees instead of one for the above
mentioned quadtree ranges. This memory reduction is due to the lower total
amount of variables shown in Table 3.3. By building the (7, p)-quadtree it in-
cludes the (T, p) — e which is needed because of the primitive reconstruction
in the FV sub-cell approach. This was not considered in Table 3.3 which in-
creases the benefit even more by using three quadtrees. A L, -error lower than
1075 seems unnecessary but various calculations showed that this is a good
error margin to keep the calculation thermodynamically consistent. Higher
building errors are not essentially making the calculation unstable but the ther-
modynamic error adds up with the numerical one. The evaluation time during
a simulation is the same since the temperature evaluation for every DOF is
mandatory for calculating the temperature gradient. Later in the implementa-
tion this temperature can be used to evaluate the other needed variables.

It has to be mentioned that the error for building the (p, e), (V,e) — T has
to be lower than for the single quadtree, because the evaluated temperature is
reused in the (T, p)-quadtree. To get the same accuracy in all variables the
accumulated error has to be considered for the quadtree approach where the
temperature is reused in another table. By knowing the error for the tempera-
ture, the error for evaluating the other variables correlates with their normal-
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3 Efficient Implementation of the Equation of State

ized gradients. In the (7, p)-quadtree the highest normalized gradient for all
output parameters is

_ pr 1 : op
=—| ~10— thpr = —| . 3.10
prl, vl g Vithpr = o , (3.10)

The gradient was built with a second-order finite difference approach

p(T + 3¢4,p) = (T = 3¢er,p)
prl, = 29 - 2 , (3.11)
g

where €, is set close to the machine precision which is around 10714, This
leads with a build error for the (p, ¢) quadtree of ¢, = 10~ to an accumulated
error

e= 2| xea 1076 (3.12)
P
which is in the same range than the error of the single quadtree.

The quadtrees used during calculation in this work were built with N = 4
and are listed in Table 3.4. The table shows the input and output variables.
The used quadtree dimensions are stated in x and y direction. The used target
error for the building process and the used numbers of cores are also listed
in the table. With these used parameters the corresponding building time and
the area size which could not be resolved can be found in the table infor-
mation. Even with the highest level some elements still do not satisfy the
error criterion. Since the elements are getting smaller in each level the un-
covered area becomes very tiny but is still important because the calculation
stops when it tries to evaluate an uncovered area. Since the density range
is over seven orders of magnitude, the (T, p)-quadtree is built until level 22
since then A? = 3.17 x 10~*kg/m? is achieved, which is needed to cover
most of the area lower than p < 1kg/m?3. In the *purpose’-row C' stands for
the conservative variables and P for the primitive ones. The arrow shows the
conversion directions for which the quadtree is used. One quadtree is used
for both directions as mentioned earlier. For the C' — P calculation first
the (p,e) — T quadtree is evaluated and with the received temperature the
(T, p) — (e, p, a, u, A) quadtree calculates the primitive variables. In the other
direction the density and temperature are the primitive inputs and the specific
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Table 3.4: Quadtrees for water used in this work

Input (p,€) (V.e) (T, p)
Output T T €, D,y by A
x-value range [1,1330] % [1,10000] "l:—: [276,1273] K
y-value range [-9.9,4056] i [~9.9,4056] iz [0.0001, 1330] Xy
error € 1x1077 1x1077 1x1077
build time [min] 7.2 13.4 5

# cores 4800 4800 4800
uncovered area 1.36 x 1073%  2.98 x 107*% 9.7 x 1075%
Purpose C—P C—P C+ P
storage size [MB] 175 908 3933
max. quadtree level 17 19 22

total elements 723912 3517520 4838668
Valid elements 43% 52% 39%
Memory usage [MB] 2321

internal energy is an output. The storage size specifies the needed space on
a hard disk. Keep in mind, that all elements are saved to disk regardless the
error. The percentage of valid elements shows the amount of elements which
satisfy the desired L.-error criteria. This means that the needed amount of
used memory per core during calculation is lower then the storage size on
disk. The percentage lower than 50% needs explanation, which is given with
the (T, p) quadtree. For a maximum level of 22 this table contains 4 838 668
elements from which 1 907 526 satisfy the L..-error criteria. These almost 2
million elements are covering 99.9999903% of the desired quadtree area but
also 1 721 476 elements are in the 9.7 x 107%% uncovered area. If the next
level is built, 1 721 476 x 4 = 6 885 904 elements need to be evaluated. This
is more than the quadtree contains in level 22 and this is only for a very small
area. With a maximum level of 23 the quadtree would contain 11 724 572 el-
ements and only 3 098 736 are valid elements. This means a bit more than 1
million elements are satisfying the desired error out of these almost 7 million
elements, which have been evaluated for level 23. The area covered by the
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3 Efficient Implementation of the Equation of State

valid elements is increasing slightly to 99.9999904%. This explains why the
percentage for the valid elements is below 50% for higher levels.

3.3.1 Quadtree for Post-Processing

For post-processing a quadtree can be used with a lower error and more output
variables which are not needed during calculation. The lower error reduces the
needed disk space drastically. This leads to a very high uncovered area, but
for evaluation of the quadtree during post-processing an interpolation is done
for these areas. This interpolation is not thermodynamically consistent but
sufficient for e.g. visualization. In Table 3.5 more information about such a
quadtree is given.

Table 3.5: Post-processing quadtree for water

Input (T, p)
Output €,D,Cy by Ay S, q
x-value range 0.0001, 1330] X&
y-value range [274,1273] K
error 1x1073
build time [min] 10

# cores 48

area not covered [%] 0.19
Purpose Post-processing
size [GB] 0.2

max. quadtree level 14

Valid elements [%)] 51

3.3.2 Quadtree for Slip-Wall Boundary Condition

For the slip-wall boundary condition an extra quadtree is needed. Since the
pressure at the wall and the density are known, the temperature and specific in-
ternal energy have to be evaluated. This leads to the (p, p) — (T, e)-quadtree.
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The information for the quadtree are illustrated in Table 3.6. The reason why
the uncovered area is very big and why the valid elements in the quadtree are
only at 17% is explained in Subection 3.3.3.

Table 3.6: Quadtree for water at slip-wall

Input
Output

(p;p)
T, e

z-value range
y-value range

eITOr €4

build time [min]

# cores

area not covered [%)]
Purpose

size [MB]

max. quadtree level
Valid elements [%)]

[10~*,1330] kg/m’
[0.01, 10000] MPa
1076
10
4800
0.1
BC
519
15
17
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3.3.3 Limitation of the Quadtree Approach

As described in Section 2.2 the temperature and the density are the primary
input parameters for the Helmholtz free energy formulation. The CoolProp-
library in the used version states the minimum usable temperature as T, =
273.16K and the maximum 7p,,x = 1273.0 K for water. Also for the density
the maximum value is given as pma. = 1332.409kg/m>. With these values
a quadratic shape is represented by the quadtree which is visualized in the
middle picture of Figure 3.6. This is the base for the left and the right picture.

(p,e) — Tp = €,D,C, 1, A (p,p) = Te

Figure 3.6: Shapes of the different quadtree types based on the (T, p)-
quadtree colored by the temperature from 277 K (blue) to 1273 K
(red)

For the left picture the y-axis is the specific internal energy and for the right
picture the y-axis is the pressure. For all three pictures in Figure 3.6 the x-axis
is the density. The coloring is the temperature range from blue (277 K) to red
(1273 K). In the middle picture this is of course constant across the xz-axis
because the y-axis is the temperature. In the left and right pictures of Figure
3.6 the colored area is the region which is generated by evaluating the quadtree
shown in the middle picture of this figure. This means that only the colored
area has to be enveloped by the (p, €)- or (p, p)-quadtree to be consistent. But
this curvy shaped area cannot be handled by the presented quadtree approach
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so in addition to the colored area the gray one has to be built on top. In the gray
area the CoolProp-library cannot evaluate the needed variables in every point.
To solve this problem and avoid unnecessary refinement the temperature is
forced to be the maximum or the minimum value in the gray area depending
on its location.

This procedure is only done to avoid needless refinement in the quadtree
building process. It does not influence the calculation since the colored area
is assembled with the correct values and the gray area is not reached because
the (T, p)-quadtree does not cover that region anyway. For the (p, ¢)-quadtree
this approach works well, but for the (p, p)-quadtree the algorithm still refines
slightly at the boarder between gray and colored area which causes higher
uncovered area in this quadtree as seen in Table 3.6. Since this quadtree is
only suitable for one type of boundary condition the uncovered area between
the important and unimportant regions does not affect the calculation.

3.4 Cut-Cell Approach

To reduce the number of elements and the building time of each quadtree a cut-
cell approach is also implemented in the quadtree algorithm. The mechanism
was proposed in [17]. To find a cut-cell the saturation lines and the current
element are checked for intersection points. These points can be found for
the (p, e)-quadtree with a given density and the vapor quality (or vapor mass
fraction) x for the liquid or vapor saturation line, where x = 0 and x = 1,
respectively. To find the line cutting an element, the saturation temperature has
to be iterated to find the corresponding temperature 7'(p, x). This iteration has
to be done, because the used CoolProp version can not handle this two input
parameters. The iteration function used is similar to Equation (2.24) and is
solved with the same algorithm

F(T) = p(T, xq) — pg = 0. (3.13)

For each element two saturation temperatures for each x have to be evaluated
with the density p, given by the minimum and maximum values for one ele-
ment, (01 = Pmin and P2 = Pmin + Alp). Two points are found in each element
for each saturation line. These two point are connected by a linear line. This
line is checked if it is cutting the element. Figure 3.7 illustrates the procedure
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#1
P1 P2

Figure 3.7: Finding cutcells

of finding the cutting line. In this example element number 2 and 3 are cut
by the liquid saturation line. For the (p, e)-quadtree the found temperature
and the given density denote the specific internal energy which is needed for
the cutting line. Of course this is a linear approximation to a curved line, but
at higher levels the saturation line gets better approximated because the ele-
ments are becoming very small. For the (7, p)-quadtree the iteration is not
needed, because the corresponding saturation density on the saturation lines
can be evaluated directly by the CoolProp library with the temperature and the
vapor quality as input parameters. This is the reason why the (7', p)-quadtree
is built and not the (p, T')-quadtree. As mentioned earlier CoolProp can not
handle (p, x) as input parameters and an additional iteration would be needed
if a (p, T')-quadtree were used. In Figure 3.8 the four possible cut-cell types
are illustrated neglecting the rotation. The saturation line cuts the element into
two parts €27 and 2 also seen in Figure 3.8. For each part an approximated
polynomial solution is build with the Ly projection (see Equation (2.38))

(qns D)L @) = (@ D)Lo()s (3.14)
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Figure 3.8: 4 possible cut-cells types

with g the approximation to the exact solution g and ¢ is a basis function.
In the cut-cell case each (2 part is divided by .S sub-triangles, where .S ranges
from one to three as seen in Figure 3.8. At first the exact solution is derived

S
(@ o) = /Q a(Er, £2) (61, E2)de1dE :; /A (e eh)atel ehyactaeh

(3.15)
In Equation (3.15) the integration domain is divided into S triangles. For the
basis function ¢ a monomial representation of degree N = 2 is used, which
in the case of a triangle leads to (N + 1)(N + 2)/2 functions

D(&1,6) = (1,&,67,6,66,6)T. (3.16)

An integration on a triangle can be exchanged with

/ HEd ER) (e ED ) det e /Jq D (e €7 )de D deS!
Ay

(3.17)
where J = J(&; o ) is the Jacobian of the mapping. In this case again the
unite space [0, 1] is used. The mapping is then defined as

o o
FA _ 1
5 L(é‘ z)_( Dl(]__ 1Dl)>’ (318)
which leads to the Jacobian:
m] m] fAL m]
J(&11, &) = det 5 =1-&0 (3.19)
1
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Inserting this into Equation (3.17) leads to
[ dedctag = [ a-endatag. G
1 8]

To integrate the above equation, the Jacobi-Gauss quadrature is well suited

1 1
/ / F&L &) (1=&) " (14&1)%a (1—- &) (1+&) P2 dérdés, (3.21)
0 0

with the coefficients ag, = 1, B¢, = 0, ¢, = 0 and B¢, = 0. Normally this
is defined in [—1, 1] and a mapping is needed:

glJG +1
2

£QJG +1

&1 = and & = 5 (3.22)

With these coefficients the integration is done with

N+1N+1

//ffl,fz 1= &)d&dés =Y > wilwi'f(é,,,&,), (3.23)

m=1 n=1

where w}? and w2? are the integration weights for the chosen « and 3 also
mapped to the desired space:

1 1
w0 = ijlGO and w”’ = Qw?Go (3.24)

Now the Equation (3.20) can be integrated using the explained Jacobi-Gauss
quadrature with the corresponding Jacobi-Gauss nodes, assuming O; € [0, 1],

N+1N+1

/D<1— Dl pdedes = 3 S whOulOg (el €9 p(eR €5,

m=1 n=1

(3.25)
Inserting the above steps into Equation (3.15) leads to
S N+1N+1
Brae) =D Y, Y Awlund (€, &) &), (3.26)
I=1 m=1 n=1
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with A! being the percentage area covered by each triangle in the cut-cell. The
exact solution ¢! can be calculated with the EOS presented in Section 2.2.
The approximated solution is calculated by

<N+1)2(N+2>
m= Y, a¢;=a-g, (3.27)
i=j

using the same monomial basis

an = a0 + a1&y + a2&] + aséo + aséibo + as3 = a- @(1, &), (3.28)
Applying the same steps as for the exact solution this leads to

S N+1N+1

(an: B)aey = Y D > Alww%a- (&7, &) B(ET", £50). (3.29)

=1 m=1 n=1

To find the unknown a, an equation system needs to be solved
Ma=b-—sa=M 'b, (3.30)
where b; = (q, ¢s)1,(q) and M is the so called mass matrix defined by

S N+1N+1
Mig =% > Alwpfun® (&) )ai6r) .60 (3D
I=1 m=1 n=1
As mentioned earlier two polynomial representations for the solution in each
cut-cell are built. For the part {); the a; are calculated and for {2;; the a;;.
The inversion of the mass matrix (Equation (3.30)) for each part is done with
the use of LAPACK [3].

To evaluate the approximate solution in the cut cells the scalar product seen
in Equation (3.28) is calculated. Depending on the location of the desired
evaluation point, a; or aj; is used. Also for the cut-cell the maximum error
is evaluated on 20 x 20 equidistant points containing the edges of the ele-
ment. This evaluation is done on the quadratic uncut element using a; and
ay; depending on the location of the equidistant point. If the element fulfills
the condition of Equation (3.4), the element does not need more refinement
and is saved to the quadtree. The cut-cell approach is only used if the normal
polynomial representation (see Section 3.1) does not satisfy the desired error.

61



3 Efficient Implementation of the Equation of State

3.4.1 Performance Gain with Cut-Cells

To show the importance of the cut-cell approach, the building process of EOS-
quadtrees is compared with and without (w/0) the use of cut-cells. To build
each quadtree 4800 cores were used. The maximal polynomial degree is set
to N = 4 for the calculations. The desired error was set to e, = 10~7 for both
types. For higher levels the gain of the cut-cells gets bigger because cut-cells
found in early levels reduce the amount of normal elements significantly. The
quadtree dimensions are

K KJ
(p,e) = <1 t0 1330 m—%, ~9.9 to 4056 kg) (3.32)
K
(T, p) = (277 0 1273K, 1 x 10~ to 1330m§> . (3.33)

In Table 3.7 the result for the above mentioned quadtrees is shown. The

Table 3.7: Compare EOS-quadtrees without and with cut-cells

Level 17 (p,e) =T

w/o cut-cells with cut-cells | reduction
# elements 658 012 309 971 2.12
Uncovered Area | 2.33 x 1073% | 1.37 x 1073% 1.7
# cut-cells 0 2 499 -
build time 757.47s 464.49s 1.63
Level 22 (T, p) = e,p, ¢, p, A

w/o cut-cells with cut-cells | reduction
# elements 13702 089 1903 821 7.18
Uncovered Area | 4.18 x 107°% | 6.73 x 107%% 6.211
# cut-cells 0 154 284 -
build time 989.69s 250.51s 3.95

(p, €) quadtree is built until level 17. The algorithm finds 2499 cut-cells which
satisfy the build error. By using the cut-cell approach the build time of this
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3.5 Efficient Implementation of the Equation of State in Brief

table is reduced by a factor of 1.63, the uncovered area is reduced by a factor
of 1.7 and in total less than half of the elements, compared to the quadtree
without cut-cell approach, are needed. For the (T, p) quadtree, which is built
until level 22, these reductions are even higher as seen in Table 3.7.

3.5 Efficient Implementation of the Equation of
State in Brief

The implemented quadtree approach reduces the evaluation time of the accu-
rate EOS by a factor up to 6500. In a preprocessing step the quadtree is built
on an arbitrary number of cores with a good scaling capability. The data of the
EOS is stored with a nodal polynomial representation. Over 100 fluids can be
used to build a quadtree provided by the CoolProp library. During calculation
the quadtree is loaded into the memory of each processor and evaluated with
a bisection quadtree algorithm as well as a fast interpolation of the polyno-
mial solution. For boundary conditions and post processing of the CFD data
also special quadtrees can be built. This approach is not limited to a special
thermodynamic property library and any EOS could be stored in a quadtree.
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4 Results

The Chapters 2 and 3 explained the numerical method and the essential equa-
tion of state. These are now used in this chapter to solve numerical calcu-
lations. To show that these components work well together at first the con-
vergence is demonstrated in one- and three-dimensional (3D) space. In 1D
validation calculations are performed which are taken from two publications
showing two-phase flows. In the work of Dumbser et al. [17] the focus lies
on two-phase flows and cavitation and also in the work of Saurel et al. [56]
shock condensation is considered. With some of these calculations the Rie-
mann solvers are compared, described in Section 2.5. After these validations
a two-dimensional (2D) space calculation is demonstrated. A 2D hydrofoil,
where cavitation occurs, is used as showcase. Since the EOS-quadtree im-
plementation increases the calculation time a very good parallel computing
performance is needed to reduce the overall computation time. This is shown
with a 3D industrial application. A water throttle, where cavitation occurs, is
used for this purpose. Also for this industrial application the benefit of the
coupled DG/FV approach is shown, compared to a pure FV method.

4.1 Convergence

To show the correct implementation of the methods convergence studies are
made. For this purpose a manufactured solution [52] is built. As explained in
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4 Results

[23] an arbitrary smooth solution has to be chosen which is inserted into the
Navier-Stokes equations to calculate the source term P. The solution is set to:

v+2 |, .1

d
where § = k ) x; — wt. The constants +, k and w are set to v = 0.1 and
j=1
k = w = 27 in this work. The variable d represents the space dimension.
Inserting this solution into Equation (2.1) the source term is derived as:

cos(p) (dk — w)

cos(B) A +sin(28)yk (k — 1)
P=y cos(B) A +sin(28)vk (k — 1) . (42)
cos(B) A+sin(28)vk (k — 1)

cos(B) B + sin(28)y (d kk — w) + sin(8) (%)
with
A= fw+% (-0 '+ k(2d-1)),
((d* + k(6 +3d) k — 8w).

4.3)
B=

To perform a convergence test the initial solution of the test is Equation (4.1)
with ¢ = 0s. The CFD method described in Chapter 2 solves the NSE with
the source term introduced above. Since the exact solution is know for every
time ¢ an error between the calculated and exact solution can be evaluated.
This test is performed in 1D and also in 3D setups to show correct imple-
mentation in both spaces. By increasing the number of elements the spatial
convergence can be evaluated. All convergence tests are done with periodic
boundary conditions. As equation of state the quadtree back-end is used with
the perfect gas EOS. For this EOS the fluid properties = 1.4 (heat capacity
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4.1 Convergence

ratio), Pr = 0.72 (Prandtl number) and p (viscosity) are constant which is
necessary to derive Equation (4.2). If the desired convergence is reached with
the perfect gas EOS it can be assumed that the implementation for all equa-
tions of state is correct since only the quadtree has to be exchanged and this
has been tested in Chapter 3. For each test two convergence-rates are shown.
The first is achieved by setting the viscosity ©# = 0 so that the Navier-Stokes
equations are reduced to the Euler equations and only the advection problem
is solved. The second test solves the full Navier-Stokes equation by setting
1 in a way that the viscous terms dominate (+ = 20). This is stated as a
diffusion problem in the next subsections. This test cannot be achieved with
water as a test fluid since the viscosity cannot be chosen arbitrarily and x as
well as Pr are not constant with the explained EOS in Section 2.2. By doing
this the implementations of F, (U) and f‘d(U, V. U) (see Equation (2.1)) are
checked separately. The DG and FV methods are tested each on its own and
in combination. The experimental order of convergence (EOC)

(4.4)

should converge to EOC ~ N + 1 for the DG method and EOC =~ 2 for
the FV and mixed ansatz. In the equation above Lo stands for the calculated
error norm and Ax for the length of one DG element on a coarse and a fine
resolution. Keep in mind that for the pure FV method the DG elements are
split into equidistant sub-cells. Therefore Az is also the length of one DG
element even if the NSE is solved only by the FV sub-cell method. The mixed
approach is tested in a way that no DG element is connected to an other DG
element, there is always a FV sub-cell element in between. This is also true
for all directions in 3D. For all tests the LLF Riemann solver was used. In
this work only convergence rates for N = 3 and N = 4 are shown. Rates for
higher polynomial degrees with the pure DGSEM implementation are shown
in [30] and for the FV method in [62] but those rates were built without the
EOS-quadtree approach.
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4.1.1 1D Convergence

For the 1D convergence setup a domain is used with the edge length of 2.
With the above described manufactured solution the pure DG method, the
pure FV approach and the mixed ansatz are calculated. The first is a pure
DG mesh. The result is shown in Table 4.1. For both polynomial degrees
the EOC reaches the correct value. It has to be mentioned that for high order
simulations the order of the time discretization (see Section 2.7) can limit
the overall convergence. This happens if the spatial discretization error is
lower than the temporal one, which is the case in the pure DG calculation
with N = 4 if no special care is taken: by multiplying the minimum time
step with 0.1 the accuracy of the time integration is increased and the spatial
error dominates the calculation which leads to the correct convergence rate for
N = 4. To check the convergence for the FV scheme all elements are forced
to be represented as FV sub-cells. As seen in Table 4.2 an order of up to 1.69
is reached for both the advection and diffusion dominated convergence. As
mentioned in Section 2.4 for the second order reconstruction and the advection
flux the MinMod-limiter is used. This decreases the theoretical order and is
well known for a reconstruction with TVD limiter [51]. The important part
of this code is the combination of the DG and the FV method. Since both
methods reach convergence on their own, it has to be shown that it also holds
for the combination. For the third test in 1D a mixed mesh is used. This means
that every other element uses the DG method and the rest of the elements uses
the FV sub-cell approach. By comparing the results for the advection EOC
and diffusion EOC in Table 4.3 we see the influence of the gradients for the
viscous flux calculation (see Subsection 2.4). The second order can be reached
because of the combination of the DG method and central evaluated gradients
in the FV approach. Here only half of the elements are FV sub-cells and the
error gets smaller because of this. Also the advection part still reaches around
1.7 and the EOC is slightly better than for the pure FV sub-cell test-case, see
Table 4.3.
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4.1 Convergence

Table 4.1: L, errors and convergence rates of the density for Eq. (4.1) for the

pure DG method.
advection diffusion
# elements Lo EOC Lo EOC
24 8.17 x 1078 7.77 x 1078
48 480 x 1077  4.09 | 523 x107° 3.89
N=3 96 299 x 10719 401 | 2.89 x 10710 4.18
192 1.87 x 10~ 4.00 | 1.81 x 10~'1  4.00
Ned 24 1.15 x 107° 1.90 x 10~?
48 4.02 x 10711 484 | 6.45 x 10~ 4.88
96 1.27 x 1072 498 | 2.00 x 1072 5.01

Table 4.2: Lo errors and convergence rates of the density for Eq. (4.1) for
pure FV sub-cells method.

advection diffusion

# elements Lo EOC Lo EOC

24 1.65 x 103 3.61 x 10~°
48 514 x107* 1.68 | 1.20x 10~ 1.58
N=3 96 1.60 x 107*  1.69 | 3.99 x 106 1.59
192 5.00x107° 1.67 | 1.31 x10~% 1.60

24 1.13 x 1073 2.54 x 1075
48 3.52x107* 1.69 | 845 x107% 1.59
N=4 96 1.10 x 107*  1.68 | 2.79x 107% 1.60
192 3.44x 1075 1.67 | 9.18 x 1077 1.61
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4 Results

Table 4.3: Lo errors and convergence rates of the density for Eq. (4.1) for
mixed DG and FV sub-cells method.

advection diffusion

# elements Lo EOC Lo EOC

24 1.26 x 1073 3.46 x 10~°
48 445x107% 150 | 1.04 x 1075 1.74
N=3 926 1.27x107* 1.81 | 288 x 1079 1.85
192 3.61x107° 1.81 | 7.33x10°7 1.97

24 9.78 x 1074 2.37 x 10~°
48 3.06 x 107* 1.67 | 6.92x 106 1.78
N=4 96 832x107° 1.88 | 1.87 x10~% 1.89
192 247 x107° 175 | 4.72x 1077 1.98
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4.1 Convergence

4.1.2 3D Convergence

Table 4.4: L? errors and convergence rates of the density for Eq. (4.1) for DG
and FV sub-cells method with a polynomial degree N = 3 of the
DG elements.

advection diffusion
# elem. Lo EOC Lo EOC
123 2.28 x 1076 2.18 x 1076

DG 243 141 x 1077 4.02 | 1.43x1077 3.93
483 8.88x 107 399 | 9.90 x 102 3.86

123 1.46 x 1073 2.50 x 1074

FV 243 520x 107% 149 | 7.62x10° 1.71
483 1.59 x 10* 1.70 | 2.20 x 107°> 1.79
123 1.85 x 1073 2.06 x 10™4

DG/FV 243 6.99 x 107% 140 | 6.46 x 1075  1.67
483 238x107% 155 | 1.94x 107° 1.74
963 715 x 107 173 | 5.53x 107% 1.81

It is very important to check the convergence behavior also in 3D, since in 1D
only the code implementation in one space direction is investigated. But for
the 3D convergence test the spatial resolution is lower than for the 1D cases
because of the higher computational costs. A diagonally moving sine wave
with constant velocity passes through a cubic mesh with an edge length of 2.
The pure DG and FV test cases generate good results (see Table 4.4). For the
mixed mesh in 3D again no DG element is adjacent to another DG element
which results in a 3D checker board pattern. If these rates are compared with
the 1D results, they show the same behavior and the Lo error is in the same
range. This proves the correct behavior of the implemented code.
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4.2 1D Validations

For validation of the used EOS approach a couple of 1D calculations are dis-
cussed in this section. Five Riemann-Problems for water are described by
Dumbser et al. [17]. Each is defined by a left and a right initial state, U and
Urieht - All of the states are either in liquid or two-phase region. In the work by
Dumbser et al. the Euler equations are used but in this work the Navier-Stokes
equations are solved instead. Three additional calculations are performed.
Two which produce evaporation by rarefaction or strong heating are also taken
from Dumbser et al. [17], the third one is a shock condensation test-case taken
from [56]. For all 1D validations the FV sub-cell approach is active and the
chosen indicator-limit is set in a way that some FV sub-cells occur to stabilize
the calculations. The adjustment of the indicator-limit is not perfect and more
FV sub-cells occur than needed for the presented simulations. In Subsection
4.2.1.8 the influence of the chosen indicator-limit is shown and for one calcu-
lation it is adjusted to reduce the amount of FV sub-cells. This validates the
complete setup between CFD solver and EOS-quadtree approach.

4.2.1 Riemann Problems

All Riemann problem calculations are performed on a 50 element DG mesh
with a polynomial degree of N = 3. This leads to 200 DOF. The Riemann
problems for water are named RP-W1 to RP-W5. To solve those the Local-
Lax-Friedrich Riemann solver is used. The exact solution for comparison is
taken from [17]. Also a comparison of the different Riemann solvers intro-
duced in Section 2.5 is made.

In the top plot of Figure 4.1 a phase diagram for water is shown. The dashed
line is the vapor saturation line and the dotted line is the liquid saturation
line. The horizontal dash-dotted line denotes the critical temperature. Above
this temperature water is in the supercritical phase. The vapor, two-phase
and liquid phase are separated by the saturation lines. The critical point is
labeled "CP’ in this plot. In the same plot all locations of RP-W1 to RP-W5
are shown by rectangular shapes. These rectangles give an overview which
phases (liquid, vapor and two-phase) are possible during each RP-W. RP-W1
is nested in the region of RP-W3. In Figure 4.1 also all zooms into the RP-
W regions are illustrated. Each plot for a single RP-W in Figure 4.1 shows
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4.2 1D Validations

the thermodynamic path by evaluating each DOF at a certain time and plot
the temperature and density for each DOF. Also in each plot the locations of
the left shock wave (between L and L,), the contact discontinuity (between
L, and R,) and the right shock wave (between R and R,) are plotted. For
the different waves and states of a Riemann Problem see Section 2.5. For the
RP-Ws no evaporation wave occurs.
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Figure 4.1: Phase diagram of water and locations of the 5 Riemann problems
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4.2 1D Validations

4.2.1.1 RP-W1

For RP-W1 the given states are

985.9853 kg/m? 983.7899 kg/m?
Ut = 6.4656 m/s , Uit = [ 2.44908m/s |, (4.5)
329.9096 K 332.8354K

in primitive variables U, = (p, v1,T'). The initial location of the discontinuity
is z = 0.5m in a tube with a length of 1 m. The calculation is performed to
an end time of t = 2 x 10~*s. Both initial states are in the liquid region
and also the intermediate states. This is also shown in the zoom of RP-W1 in
Figure 4.1. The left (L) and right (R) state are very close located to the liquid
saturation line. The intermediate states L, and R, are further away from the
saturation line. In this Riemann problem no phase change occurs because
all the four states are in the liquid phase. The solid black line in the zoom
of RP-W1 in Figure 4.1 represents the thermodynamic path of this Riemann
problem for the specified end time. The path is drawn over the complete tube
length. On the path the location of the left shock wave (x = 0.19m) and
contact discontinuity (x = 0.5 m) as well as the right shock wave (x = 0.81 m)
are marked. These waves and the discontinuity are also plotted in Figure 4.2
where the numerical (black solid line) and exact solution (dashed line) for
the primitive variables and the pressure are compared. The lines match very
well, but of course the intermediate contact is smeared by this kind of Riemann
solver. In the density plot in top right corner of Figure 4.2 also the elements are
shown where the FV sub-cell approach is active. The activation is visualized
by thick horizontal line segments at the top region of the plot. The indicator-
limit for switching from DG representation to the FV sub-cell approach is
adjusted very sensitively and all three discontinuities are resolved with the FV
sub-cell scheme.
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Figure 4.2: Riemann Problem RP-W1 at ¢ = 2 x 10~%s: comparison of the
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4.2 1D Validations

4.2.1.2 RP-W2

For the RP-W?2 the initial discontinuity is again at x = 0.5m and the given
states are located in the two-phase region,

0.376413kg/m? 0.08458825 kg/m?
U= | 676.6966m/s |, Ut = [ —1523.296m/s | . (4.6)
358.9432 K 310.7925K

This can be seen in the zoom for RP-W2 in Figure 4.1. The left state is located
right under the vapor saturation line. The intermediate states are located in
the vapor phase. This means the states in the Riemann problem are crossing
the vapor saturation line during calculation. This involves a phase change.
From the left state L to the intermediate state L, (over the left shock wave)
evaporation occurs as well as over the right shock wave (from R to R,). The
black solid line denotes the calculation with 50 elements and N = 3. As seen
in the zoom for RP-W2 in Figure 4.1 the thermodynamic path has kinks at
the locations of the shock waves (z = 0.25m and z = 0.815m) which are
not on the vapor saturation lines. By increasing the resolution by a factor of
5 the kinks are only located on the saturation line because the thermodynamic
behavior changes since only phase change occur in the two-phase region. The
dotted line shows the results with 200 elements and N = 4 in the zoom for RP-
W2 in Figure 4.1. In Figure 4.3 the agreement of the numerical solution with
50 elements and N = 3 (black solid line) and the exact solution (dashed line)
is compared. The contact discontinuity is smeared out because of the used
Riemann solver. For the shock waves the match is very good. This shows that
for computations with a high accurate equation of state, like it is used in this
work, also the thermodynamic path needs to be checked for a better validation.
The FV sub-cell method resolves all three discontinuities as seen in the density
plot where the horizontal lines at the top represents the activation of the FV
sub-cell method.
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4.2.1.3 RP-W3

RP-W3 is again calculated in a tube with the length of 1 m and the initial
discontinuity located at = 0.5 m. The initial states are given by

976.0968 kg/m> 971.2215kg/m?
U= | —187.4091m/s |, U =| —208485m/s |, (4.7)
324.6175K 349.4697K

again in primitive variables. The initial states are located in the two-phase
region but the intermediate states are in the liquid area as seen in Figure 4.1
in the plot for RP-W3. In this test-case over the left shock wave (L to L)
condensation occurs as well as over the right shock wave (R to R,). For the
phase change the pressure jumps from the vapor pressure to the pressure in
the liquid phase. This is a jump over three orders of magnitude because the
initial pressure is p'" = 1.328 x 10 Pa and p"ght = 4.078 x 10* Pa whereas
for the intermediate pressure p, = 1 x 107 Pa is reached. In Figure 4.4 the
numerical and exact solutions are compared. The agreement is again reason-
able. Some oscillations occur for the pressure. These are also seen in [17] but
can be prevented there by using a different Riemann solver. The FV sub-cell
method is active as seen in the density plot visualized by thicker horizontal
lines.
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4.2.1.4 RP-W4

The initial states in a tube of length 1 m with the initial location of the discon-
tinuity at z = 0.7 m are given by

53.97074kg/m? 1.96013kg/m?
U= | 3.63214m/s Uneh = | —76.32555m/s | . (4.8)
331.9906 K 315.4950 K

In this test-case all states are located in the two-phase region as seen in the
bottom plot of Figure 4.1. In this Riemann problem the saturation lines are not
crossed by the thermodynamic path but nevertheless phase change occurs in
this example, because the vapor quality changes. The lowest vapor quality ()
is reached at R, with y = 4.098 x 1072 and the highest at R with x = 0.029.
This means condensation occurs from R to R, and also from L to L,. In this
test-case phase change occurs even over the contact discontinuity (R, to L).
In Figure 4.5 two numerical solutions are compared with the exact one (dashed
line). The blue solution represents a resolution of 200 DOF and the red one
was calculated on 500 DOF with 100 elements and N = 4. This increase
of resolution shows that the calculation converges to the exact one. To show
also the effect of the FV sub-cell method on the solution, the area where it
is active, seen as thick horizontal lines in the density plot, is reduced for the
higher resolved calculation. This lower percentage of used FV sub-cells leads
to higher oscillations in the density plot. In this case the higher resolution does
not change the thermodynamic path significant and is not shown in Figure 4.1
because of that. In [17] also a calculation with the Rusanov Riemann solver
is shown. Comparing the solutions it can be seen in the density plot of Figure
4.5 that they match well. The green line represents the calculation presented
in [17].
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Figure 4.5: Riemann Problem RP-W4 at ¢ = 0.5s: comparison of the exact
solution (dashed) with the numerical solution (blue = 200 DOF,
red = 500 DOF). FV sub-cells and ADER-FV P, P, Rusanov flux

% [17] are shown in density plot (green).



4.2 1D Validations

4.2.1.5 RP-W5

For RP-WS5 the tube length is 2m from —1 m to 1 m. The given states are

998.23739 kg/m3 996.55634 kg /m3
Ut = 100.0m/s , U= 100.0m/s . (4.9)
293.0K 300.0K
The initial location of the discontinuity is = —0.5 m. It demonstrates a iso-

lated moving contact discontinuity and as seen in Figure 4.1, the initial states
and the thermodynamic path are very close to the liquid saturation line but the
values always remain in the liquid region which indicates that no phase change
occurs. As mentioned in [57] the use of highly non-linear EOS, which is done
in this work, can produce oscillation in pressure and velocity for moving con-
tact discontinuities. As seen in Figure 4.6 this is true for this calculation. The
oscillations are more noticeable at the location of the discontinuity for pres-
sure and velocity but almost not visible for the velocity. For the pressure they
are around 1 %o of the initialized data. Compared to the results in [17] the
oscillations are around the initial state but the present work shows no jump in
the velocity or pressure.

4.2.1.6 Computational Cost of the Quatree Evaluation

Table 4.5: Comparison of the PID for perfect gas and EOS-quadtree

RP-W1 RP-W2 RP-W3 RP-W4 RP-W5
Perfect Gas [us] 11.305 14.765 11.228 15.575 11.052
EOS-quadtree [us] 39.089  50.049 36.713  49.222  36.764
Factor 3.46 3.39 3.27 3.16 3.33

Table 4.5 compares the average performance index (PID) for the perfect gas
and EOS-quadtree approach over five runs. The PID is defined as

computation-time X #cores
#DOF x #time-steps

PID = (4.10)
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Figure 4.6: Riemann Problem RP-W5 at ¢ = 1 x 10™2s: comparison of the
exact solution (dashed) with the numerical solution (solid). FV
sub-cells are shown in density-plot

The PID shows the time needed to update one DOF to the next physical time
level. In this comparison the quadtree evaluation is exchanged with the direct
analytically evaluation of the perfect gas EOS. Of course the perfect gas EOS
cannot solve the presented Riemann problems for water but in this case only
the computational cost is of interest. If the used DG method with FV sub-cell
approach is optimized for the perfect gas EOS the lowest PID ranges from 5 ps
to 6 us [62] measured also on the Cray XC40 of the HLRS. This means that
compared to an optimized code the EOS-quadtree approach is around a factor
6 to 10 slower. But this comparison is inappropriate since the optimized code
is only able to solve the perfect gas equation whereas the code presented in
this work is able to change the EOS easily. This capability produces a factor
around two overhead which can be seen if the PIDs of both implementations
of the perfect gas EOS are compared.
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4.2.1.7 Comparison of Different Riemann Solvers

In Section 2.5 two Riemann solvers are described which can work with a
highly accurate EOS. Both are compared with the RP-W1 and RP-W?2 in this
work. The amount of FV sub-cells are the same for both Riemann solver sim-
ulations. In Figure 4.7 the solution for RP-W1 and the density are shown. The
LLF produce a good result but the HLLC resolves the contact discontinuity
much sharper. In Figure 4.8 the solution for RP-W2 is shown and again the
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Figure 4.7: RP-W1 (t = 2 x 10~*5s) with LLF (long dashed,black), ADER-
FV PyP, FORCE flux [17] (blue) and HLLC (red) Riemann
solvers. Exact solution is dashed. 50 elements were used with
N = 3. FV sub-cells are shown in density-plot.

density is plotted. Here again the LLF produces a good result but the shock
waves as well as the contact discontinuity are better approximated to the exact
solution by using the HLLC Riemann solver. The HLLC can handle all five
Riemann problems described in the last subsections but for the RP-W4 the
time-step needs to be reduced by a factor of 0.4 compared to the LLF calcu-
lation otherwise the calculation is unstable. But despite this reduced time step
the solution for RP-W4 and the HLLC Riemann solver is still oscillating and
differs from the exact solution. In total the solution quality gets better by using
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Figure 4.8: RP-W2 (t = 1.25 x 1073s) with LLF (long dashed,black),
ADER-FV Py P, FORCE flux [17] (blue) and HLLC (red) Rie-
mann solvers. Exact solution is dashed. 50 elements were used
with N = 3. FV sub-cells are shown in density-plot.

the HLLC Riemann solver but it tends to more oscillations and is not as robust
as the LLF Riemann solver. For a robust calculation the LLF should be used
but for higher solution quality the HLLC is the superior choice. To compare
the computational cost between the LLF and HLLC Riemann solver all five
Riemann problems are computed. The average PID over five runs is compared
in Table 4.6. The increase of computational cost is due to the HLLC needing
to evaluate the pressure for the left and right state as described in Section 2.5.

Table 4.6: Comparison of the PID for the LLF and HLLC Riemann solver

RP-W1 RP-W2 RP-W3 RP-W4 RP-W5
LLF [us] 39.089  50.049 36.713 49.222  36.764
HLLC [ps] 44.502 62.224 44.694 64.245  48.456
Factor (HLLC/LLF) 1.14 1.24 1.22 1.31 1.32
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4.2.1.8 Influence of the Indicator-Limit

As described in Section 2.4 the switching between the DGSEM and the FV
sub-cells approach depends on the chosen indicator-limit. This means that the
FV sub-cells used during a simulation can be adjusted. As an example RP-
W1 with the LLF Riemann solver is chosen. In Figure 4.9 three simulations
are plotted with different indicator-limits. The black line is the same solution
as seen in Figure 4.2. The red line is the result of RP-W1 with the indicator
value adjusted so that just no oscillations occur and the blue line in Figure
4.9 represents the calculation for the pure DGSEM without shock capturing.
The bars at the top of the plot represent the elements where the FV sub-cell
approach is active at this specific time t = 2 x 10~*s. By adjusting the in-
dicator value the solution quality is increased until a certain value when the
oscillations starts. If the results are compare with the exact solution (dashed
line) in Figure 4.9 the result with the perfect adjusted indicator-limit resolves
all three discontinuities much sharper than the one with less adjustment. The
pure DGSEM solution resolves the discontinuities even sharper but the solu-
tion is not oscillation free. This means that not only the Riemann solver can
decrease the solution quality but also a poorly adjusted indicator value. But
the perfect value is hard to find and for more complex simulations also varies
over time.

4.2.2 Strong Rarefaction

A different validation calculation is presented in this subsection. The initial
states are given as

997.0854 kg/m3 997.0854 kg/m3
lef righ
Ut = —10m/s , U = 10m/s , (4.11)
298.0K 298.0K

and the initial position of this discontinuity is z = Om in a tube from —1m
to 1 m. The initial states have the same thermodynamic state but the velocities
are pointing away from each other in the outward direction of the tube which
leads to a strong rarefaction. This causes evaporation since the pressure drops
to the vapor pressure. Due to a significant reduction in the speed of sound
the evaporation wave moves very slowly and far behind the rarefaction wave.

&7



4 Results

987.5
987
986.5
986
985.5
985
984.5
984
983.5

.

01 02 03 04 05 06 07 08 09 1
@ [m]

Density [kg/m?]

O [T T T T T T

Figure 4.9: RP-W1 with different indicator values. More FV sub-cells are ac-
tive for the black line whereas for the red line these are reduced to
the necessary minimum. The blue line shows the solution without
shock-capturing.The dashed line represents the exact solution

Here 2500 elements and a polynomial degree of 3 is used with the LLF Rie-
mann solver. As seen in Figure 4.10 due to the opposite velocity directions the
water reaches the two-phase area. The sound speed drops by several orders of
magnitude which is normal for multiphase problems and this drop must be
captured with the FV sub-cell approach which is again plotted in the density
graph of Figure 4.10. Also a zoom is shown in the density graph which visual-
izes the rarefaction wave. The bottom plot shows the solution in the two-phase
region. The initial states (zx = —1 m and x = 1 m) are in the liquid region and
the density drops almost to the vapor saturation line (z = Om). The results
are in excellent agreement with those presented in [17] where the Rusanov
Riemann solver is used.
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Figure 4.10: 1D evaporation by strong rarefaction att = 5 x 10™%s

4.2.3 Strong Heating
In this test-case the tube is filled completely with the initial condition
998.2374kg/m?

U, = 0.0m/s . 4.12)
293.0K

For the calculation the source term P is not zero (see Section 2.1). A heat
source is considered which is active between 7, = 0.45m and zg = 0.55m
in a tube of length 1 m. The heat energy is ¢ = 5 x 1012 J and is applied to the
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area from the beginning of the calculation for At"® = 6 x 10~ s. Due to the
heating the temperature and the pressure rise. When the heating stops the high
pressure region collapses and the pressure falls below the vapor pressure and
evaporation occurs. The duration of the total simulation is tepg = 2 X 10~%s.
The results are shown in Figure 4.11. The temperature plot shows the rise of
the temperature due to the heating. In the pressure plot the dotted line indicates
the vapor pressure for the temperature at the corresponding x location in the
tube. When the vapor pressure is reached the water starts to evaporate and
then the two-phase region is reached as seen in the phase diagram. Since it is
a symmetric problem the thermodynamic state for z = Om and = 1 m are
the same as well as the state for v = 0.23m and x = 0.77 m. In the density
plot the location where the FV sub-cell method is active is also shown. In this
calculation 250 elements and a polynomial degree of N = 3 with the LLF
Riemann solver is used. The match with the calculation in [17] is very good.
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Figure 4.11: Strong heating at t = 2 x 1074
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4.2.4 Shock Condensation

This test-case is taken from [56] and it calculates a shock condensation. The
given states are

1200.0 kg /m? 500.0 kg/m?
lef righ
Ut = 0.0m/s , Ut = 0.0m/s : (4.13)
300.0K 300.0K

The left state is filled with liquid and the right with liquid-vapor mixture with
a vapor volume fraction of a = 0.5. The vapor volume fraction can be calcu-
lated with the vapor quality

_ Pliq — Px

. (4.14)
Pliq — Pvap |

Here piiq and py,p are the liquid and vapor saturation density for a given tem-
perature and p,, is the density for a specific vapor quality at the same temper-
ature. A slight adjustment to the initial discontinuity location has to be made
because of the different EOS used in both methods. In [56] a barotropic EOS
is used which approximates the sound speed differently as the one used in this
work. Due to different sound speed assumptions in this case the initial dis-
continuity is located at x = 0.64 m. With this a very good result is reached
compared to the original results in [56]. Figure 4.12 shows the obtained result
with a resolution of 50 elements and N = 3. The thermodynamic path is only
plotted at t = 150 x 10~%s. Condensation occurs over the shock wave which
can be seen with the help of the thermodynamic path plot. In this case the LLF
Riemann solver is used again.
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Figure 4.12: Condensation over time. 75 us (blue), 150 ps (red), 225 pus
(brown) and 300 ps (black)

4.3 2D Calculations: Hydro-Foil

For a 2D test case a NACA-0012 airfoil is used as a hydrofoil. It is surrounded
by water at a temperature of 330 K and a pressure of p;, = 5 x 10° Pa. This
leads to a density of p = 984.9608 kg/m>. The angle of attack is 8° and the
cavitation number » »
in — Psat

o= W 1. (4.15)
The saturation pressure at the given temperature is pg, (330 K) = 17213.15 Pa
and the norm of the free-stream velocity vector is |0|= 15.655m/s. A grid
with 12 194 elements is used with a polynomial degree of N = 4. This leads
to ca. 0.3 million DOF. The simulation runs on 240 cores and the LLF Rie-
mann solver is used. The chord length is 0.1334 m and the domain has a radius
of one meter. This simulation is a show-case to demonstrate the capability
of the code to run such simulations with DG and FV coupling. Figure 4.13
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shows the cavitation region which develops from the leading edge of the foil.
The white area shows the elements which are using the FV method. The rest
of the computational domain uses the DGSEM at this particular time frame.
Since a indicator is used to switch between these methods the distribution of
the FV sub-cell elements changes for every time step. In Figure 4.13 several

Vapor Quality
0.0000 0.002 EEEREN ‘0.004‘ ENEREE 0.006 0.0075

10|

-

Figure 4.13: Hydro-Foil Naca-0012 at ¢ = 0.03423s. The white area high-
lights where the FV sub-cell method is active. The coloring vi-
sualizes the vapor quality

areas with cavitation are visible. The color represents the vapor quality. The
highest amount of vapor is at the leading edge of the hydrofoil. To demon-
strate the collapse behavior two additional pictures at a later time are shown
in Figure 4.14. The right most cavitation area in Figure 4.13 has collapsed in
the right picture of Figure 4.14. The pressure distribution is colored in Fig-
ure 4.14 and it can be seen that a very low pressure region is located at the
leading edge of the hydrofoil. If a cavitation area leaves this region and is
transported into a higher pressure region, this area collapses. The left pic-
ture in Figure 4.14 shows the pressure distribution before the collapse. The
collapse takes place very close to ¢ = 0.0342379 s with a pressure peak of
Dpeak = 4.247 X 10%Pa and a temperature of Tpeax = 330.26 K which leads
to a density of ppeax = 986.46 kg/m?>. The right picture in that figure shows
the time shortly after the collapse. The pressure wave generated from the col-
lapse moves through the water. In this calculation the water is liquid or in the
two-phase state but never reaches the vapor state. This calculation proves that
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Figure 4.14: Cavitation: One cavitation bubble collapses. The pressure dis-
tribution is plotted. Left picture is at ¢ = 0.03473 s and the right
picture at ¢ = 0.03474 s

the setup is very well suited for resolving cavitational flows. The average time
step is At = 1.65 x 10~% s and the average PID is 42.888 us. For a calcula-
tion duration of ¢ = 0.03474 s around 2.1 million time-steps are needed which
leads to a overall calculation cost of 7 645 CPUh for this specific duration.

4.4 3D Calculation

With the described method in Chapter 2 and Chapter 3 an industrial applica-
tion is calculated. This application is a 3D calculation for a micro-channel flow
with water. This micro-channel is a test geometry for throttle valves which can
be found in fuel injection systems. The geometry can be seen in Figure 4.15
and is used to investigate cavitation inside the throttle. The length of the throt-
tleis { = 1073 m and the height and the width are both h = w = 3 x 104 m.
The beginning of the throttle has a radius of » = 4 x 10~°m. The aim of
this calculation is to predict cavitation inside engine injections and to help in
the design of engines with reduced cavitation. In [18] this geometry was used
with a barotropic EOS and the energy function was neglected since for the
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barotropic EOS the pressure is only a function of the density. In the present
work the full NSE are solved with the explained quadtree EOS approach. The
throttle is filled with liquid water at p = 107 Pa and T = 330K also the in-
let pressure is higher than the outlet pressure. Due to this pressure gradient
the water streams through the throttle and inside the throttle it starts to cav-
itate. The inlet is pressurized with p;; = 3 x 10" Pa and a temperature of
Tin = 330 K. The outlet has a pressure of po,; = 107 Pa and the same temper-
ature as the inlet. Due to the acceleration of the fluid the pressure is reduced.
Inside the throttle cavitation occurs because of this pressure drop. Further up-
stream the two-phase area collapses due to the higher pressure around it. In
this work the scaling of a high-performance computer is shown and the benefit
of the DG and FV coupling. The analysis of this calculation and comparison
with other results is done in the PhD thesis of Fabian Hempert [27] who also
kindly provided the mesh and the restart file needed for the calculations in this
section.

Figure 4.15: Mesh for the throttle flow with 46 592 elements
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4.4.1 Scaling

To show the scaling the above described industrial application is used. The
mesh for this calculation can be seen in Figure 4.15. As seen in this figure non-
conforming elements are allowed. The implementation of these is explained in
[61]. The mesh has a total of 46 592 elements which leads to almost 3 million
DOF for N = 3 and 10 million DOF for N = 5. These two polynomial
degrees are both used for the scaling test. For this test a operating point is
needed where cavitation occurs in the throttle. This can be seen in Figure
4.16. Keep in mind that in this picture only one slice in the middle plane of the
throttle is shown but the water cavitates over the complete depth of the throttle.
An operation point near the saturation lines is chosen on purpose, because
there the EOS-quadtree has the highest refinement level and the computational
cost for its evaluation is maximal. Also in this test the coupling of the DG and
FV scheme is active. All boundary conditions are full-slip walls, except for
the inlet and outlet boundary conditions which are of the Dirichlet type. The
LLF Riemann solver is used in this calculation.

Figure 4.16: Cavitation inside the throttle at t=7.5 x 1075 s
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For the scaling the amount of cores ranges from 24 up to 6 144. With each
run the number of used cores are doubled. The speed up of all calculations is
calculated relative to the 24 core run. 100 time-steps are evaluated at each run.
The average PID ranges from 39.1 ps to 58.8 us as seen in Table 4.7. Also the
average calculation time is shown in that table. By increasing the number of
cores this time can be reduced drastically. The scaling can be seen in Figure

Table 4.7: Comparison of the PID and calculation time for different number

of cores
N=3 N=5
# cores 24 6144 24 6144
PID [us] 41.0 58.8 39.1 58.7
Calc. time [s] | 509.4 2.85 | 1639.2 9.615

4.17. The minimum load per core are 7 to 8 elements which leads to 448 DOF
(N = 3) and 1 512 DOF (N = 5) per core at a core number of 6 144. The
lowest scaling compared to the 24 core run is still at 70 % which is normal
with the DG and FV coupling, see [62]. The decrease of the ideal speed-up is

256 -

128

Speed-Up

| |
24 768 1536 3072 6144
# cores

Figure 4.17: Scaling with N = 3 (blue) and N = 5 (red) from 24 to 6 144
cores

due to a load-imbalance between the cores. There are several reasons for this:
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* the DG elements cannot be distributed evenly on the cores.

* the FV sub-cells are more computation-time consuming than the DG
elements by a factor of around 1.5 [62].

* the table approach also adds an imbalance because the time to evaluate
the quantities depends on the level and polynomial degree of the evalu-
ated table element.

* an DG element which has a boundary condition face needs slightly more
time than an element without it.

If we compare this scaling to a pure DGSEM solver [4] with ideal gas EOS or
the DG method with FV sub-cell approach with the ideal gas EOS [62] it has
to be mentioned that in this work no scaling above 100 % (super-scaling) is
achieved. In both of those works super-scaling is reached due to cache effects
but this is not possible in the current implementation with the quadtree EOS
because the amount of data needed with the quadtree EOS does not fit in the
cache of a core.

4.4.2 High Resolved Simulation

For this calculation 630 448 elements with N = 4 are used with leads to
78 806 000 DOF. For this calculation the HLLC Riemann solver is used. Fig-
ure 4.18 shows results at £ = 5 x 10 ° s in the center plane of the throttle.
The picture in the middle of this figure illustrates the DGSEM with the FV
sub-cell approach. Fine structures and waves due to the collapse of cavita-
tion areas are visible. The bottom picture shows the elements where the FV
sub-cell approach is active. It can be seen that the used indicator captures
the important cavitation areas. In the bottom picture of Figure 4.18 it is also
visible that the FV sub-cell approach is also active in elements where no cav-
itation occurs. This can be reduced by adjusting the indicator-limit but not
avoided completely. Since this is the first high resolved simulation with this
implementation, the indicator-limit is not perfectly adjusted. The top picture
of Figure 4.18 shows a result where all elements where forced to use the FV
sub-cell approach. For ca. 7 000 time steps the pure FV method was solved
fromt = 4.9 x 1075stot = 5 x 1075 s. As seen in the top picture the fine
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structures and waves cannot be resolved by the pure FV method. Even for this
short time period the solution quality decreases significantly and the benefit of
coupling the DGSEM with the FV sub-cell approach can be seen. The time
step for the DGSEM calculation is around At = 9.9 x 107! s and the PID is
at 69 ps for a calculation on 8 400 cores. This leads to a computational cost
around 765 000 CPUh for the mentioned physical time of At =5 x 1075 s.

4.5 Results summary

The coupling of the DGSEM and the FV sub-cell approach as well as the im-
plemented EOS-quadtree is validated with convergence tests and a variety of
1D calculations. The results are in good agreement with the literature. The
two investigated Riemann solvers can be used for the shown simulations but
the choice between robustness and solution quality has to be made. By using
the indicator by Persson and Peraire for the density as indicator variable the
calculations can be stabilized. The indicator-limit has a significant influence
on the solution quality. Hence, it must be very finely tuned. The 2D and 3D
calculations are showing the ability of the approach to solve complex multi-
phase simulations with cavitation. The scaling on HPC clusters is good and
due to this, highly resolved 3D calculations can be performed in a reasonable
amount of computational time.
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Figure 4.18: Cavitation inside the throttle. Top picture: pure FV methode.
Middle picture: DGSEM with FV sub-cell approach. Bottom
picture: elements where the FV sub-cell approach is active. All
three pictures att = 5 x 10™°s
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S5 Conclusion and Prospects

5.1 Conclusion

The aim of this work was to present an efficient and accurate numerical method
for two-phase flow simulations in which cavitation, shock condensation and
evaporation occur. This method is based on a high-order DGSEM discretiza-
tion of the compressible NSE with a complex EOS. We have chosen the DG-
SEM because of its low numerical dissipation and its very good scalability on
high performance computers. To take effects like cavitation into account, the
evaluation of the most-accurate Helmholtz free energy formulation as equa-
tion of state is provided by the CoolProp library. Thermodynamic equilibrium
is assumed between the phases. We have chosen CoolProp because it pro-
vides very accurate data for more than 100 fluids which can be used in CFD
simulations and it is an open-source library. We have investigated that the
computational cost for directly evaluating the CoolProp library is not feasible
in the context of a CFD simulation. To reduce this computational cost, we
have stored the data of the library to hard-disk in a polynomial representation
on a quadtree domain. The building of a quadtree is fully parallelized for an
arbitrary number of cores. We have implemented a fast quadtree evaluation
algorithm and with this the stored data can be used during simulations. By
this the evaluation time has been reduced by a factor up to 6500 compared to
the direct evaluation. Single phase calculations can be performed without any
special treatment to the DGSEM but when phase change is involved high gra-
dients occur, especially in the pressure and speed of sound variables. We have
captured these gradients and we also have been able to resolve shocks by using
a 2" order finite volume scheme, which we have implemented in a way that
the spatial operator can be calculated either by the DGSEM or FV scheme,
depending on the value of an indicator. For both methods the memory lay-
out and the parallelization technique have been kept unchanged which leads
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to an efficient shock capturing approach on HPC clusters, because the com-
munication hiding technique implemented in the DGSEM could be used in a
straightforward manner. We have found out that the shock capturing shows
a strong sensitivity to the indicator. To find a good choice, where the simu-
lation is still stable and the solution quality decent, some a priori parameter
studies are needed. Since cavitating flows need a very fine time resolution to
resolve the collapses of a cavitation area accurately, we have implemented an
explicit time stepping, which shows good results in resolving the time scales
of cavitating flows.

We have validated the described method with convergence tests and 1D
test-cases. The results are in very good agreement compared to other publi-
cations and these results show that shock condensation and evaporation can
be well resolved with this method. The two described Riemann solvers can
both be used to solve cavitating flows. We have found out, that the HLLC
Riemann solver is less dissipative but the LF Riemann solver is more robust
for two-phase flow calculations. As an example for cavitating flows we have
simulated a 2D hydrofoil in water and the results show that cavitation occurs
and collapses as postulated. With an industrial 3D application we have veri-
fied the good performance on state of the art high performance computers and
also we have demonstrated the benefit of the high-order approach. With these
results the method shows the capability to simulate highly resolved two-phase
applications correctly in a reasonable amount of time.

In conclusion we have introduced a very scalable high order CFD solver in
this work which can handle two-phase phenomena like e.g. cavitation for over
100 fluids due to the easily exchangeable equation of state. The performance is
promising and the achieved results are in good comparison with the literature.

5.2 Prospects

In the long term, the aim is to use this method for more complex industrial
applications like fuel injection systems and hydraulic pumps where cavitation
occurs. The method has been shown to be suitable for two-phase calculations,
however, some further improvements are necessary, e.g. a better approxima-
tion of the physics and performance optimization if more complex calculations
are simulated. In this context the following aspects could be considered:
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5.2 Prospects

The presented Riemann solvers are not especially adapted for two-phase
flows. This could be done following [16] by implementing a more ac-
curate HLLEM Riemann solver.

In this work only walls without friction are considered. For a better
comparison with experiments isothermal and adiabatic wall boundary
conditions can be implemented. This is a challenging task since be-
sides the vapor and liquid phase also the two-phase region needs to be
considered for these boundary conditions.

To compare the simulations with experiments the dissolved gas in lig-
uids needs to be considered. The outgassing can not be prevented in
experiments since a small amount of gas is always dissolved in the lig-
uid.

Since the coupling between DGSEM and FV method as well as the
quadtree approach are introducing load imbalances between the CPUs,
a load balancing algorithm is needed to improve the scalability of the
approach. During the simulation the load for each CPU core could be
calculated and the elements could be distributed in a way that every core
has the same load. Since cavitation for example is very unsteady, an ef-
ficient load balancing algorithm is needed which can be applied several
times during calculation.

The quadtree approach could be improved by building thermodynamic
consistent quadtrees which are not rectangular by default. This could
save building time and memory during calculation.

A Large eddy simulations model could improve the calculation. Fol-
lowing [8] the application of an implicit model is straightforward.
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