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	 I	

Abstract 
	

Over	 the	 past	 years,	 the	 number	 of	 location-based	 applications	 have	 been	 increasing	 due	 to	 the	
advancement	 of	mobile	 computing	 technology	 and	 the	 sensors	 built	 in	 the	mobile	 devices.	 These	
applications	grant	individuals	to	locate	one	another,	and	benefit	from	services	and	information	those	
are	 delivered	 according	 to	 individuals’	 location.	However,	 despite	 the	 popularity	 of	 location-based	
applications,	they	are	increasingly	criticised	for	putting	user	privacy	at	risk	by	disclosing	location	data	
mistakenly	to	undesired	parties.	Adapting	and	predicting	changes	of	user’s	sharing	attitude	over	time	
in	order	to	overcome	possible	leakages,	presents	challenging	problem	for	location-based	applications	
and	location	privacy	approaches.	

In	this	thesis,	we	extended	an	existing	work	on	detecting	routine	and	out-of-routine	location	events	of	
a	user	based	on	entropy	estimation,	 to	present	a	 control	mechanism	 that	 can	discover	 correlation	
between	sharing	behaviour	and	routineness	of	a	location	for	individuals.	It	is	designed	as	supportive	
mechanism	 that	 aims	 to	 prevent	 possible	 leakage	 induced	 by	 location	 privacy	 approaches.	 We	
additionally	extended	an	existing	policy	generation	algorithm	to	evaluate	proposed	control	mechanism	
by	identifying	optimal	privacy	preferences	for	users.	

The	 proposed	 approaches	 were	 evaluated	 and	 implemented	 in	 Python	 environment.	 We	 ran	
simulations	with	different	metrics	to	test	the	overall	performance	of	the	system.	
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1. Introduction 
	

	

Due	to	the	increasing	demand	for	mobility,	mobile	devices	have	started	to	play	a	key	role	in	people’s	
daily	life	by	allowing	them	to	store	and	exchange	their	personal	information	with	no	time	and	location	
barrier.	In	2016,	global	revenues	from	mobile	application	has	reached	$44.8	billion	[3].	The	capability	
of	mobile	devices	to	pinpoint	users’	location	with	the	help	of	the	embedded	GPS	sensor,	cell	towers,	
wireless	 positioning	 and	 IP	 location	 has	 promoted	 development	 of	 location-sharing	 applications.	
Moreover,	adoption	of	location-sharing	technologies	retains	its	importance	for	mobile	industry	as	they	
want	to	offer	advertisements	and	services	designated	by	users’	recent	or	most	visited	locations.		

Approximately	 one	 hundred	 location-based	 applications	 (LBAs)	 have	 developed	 [1]	 and	 become	
prevalent	with	the	fast	adoption	of	location-enabled	devices	such	as	smart	phones.	A	typical	example	
of	these	applications	is	geo-social	networks	such	as	Facebook,	Google+	and	Swarm	where	users	share	
their	 location	data,	along	with	other	content,	with	their	 family	and	friends.	However,	LBAs	disclose	
users’	contextual	and	location	information,	and	sharing	personal	information	with	non-trusted	service	
providers	as	well	as	malicious	acquaintances	can	be	detrimental	to	a	user's	privacy.	A	malicious	entity	
with	 access	 to	 the	 user's	 location	 data	may	 infer	 their	 interests,	 political	 affiliations,	 and	 religious	
inclination	etc.,	resulting	in	serious	privacy	concerns.		

	

1.1 Privacy Concerns & User Burden 
	

Despite	the	popularity	of	location-based	applications,	they	are	increasingly	criticised	for	putting	user	
privacy	at	risk	[4].	Further,	privacy	concern	of	the	users	 is	often	observed	as	a	reason	of	their	slow	
adoption	[1,5,6].	Accordingly,	LBAs	have	started	to	implement	and	offer	different	privacy	mechanisms	
so	concerns	toward	location	privacy	may	shift	over	time.	

The	most	commonly	used	privacy	settings	by	popularly	adopted	methods	which	are	based	on	location-
sharing	rules	[6,	8]	to	avoid	location	privacy	concerns,	are	the	following:		

• Blacklist:	One	of	the	least	complex	setting	type	enables	users	to	restrict	specific	individuals	
from	viewing	their	location	updates	at	all	times.	They	are	easy	to	define	and	user	friendly	
and	require	only	single	rule.	
	

• Whitelist:	Other	least	complex	setting	type	allows	users	to	grant	specific	individuals	viewing	
their	location	updates	at	all	times.	Similar	to	blacklists,	they	are	easy	to	define	and	user	
friendly.	
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• Location:	This	privacy	setting	allows	users	to	reveal	only	specific	locations	with	target	
individuals.	Compared	to	whitelists	and	blacklists,	they	require	a	rule	for	single	location	
which	user	is	comfortable	to	share.	
	

• Granularity:	This	more	advanced	form	of	location	setting	allows	users	to	define	at	which	level	
of	detail	they	would	reveal	their	location	updates	to	specific	individuals.	
	

• Time:	Users	can	define;	when	and	for	which	period	of	time	in	a	day,	they	would	like	to	
disclose	their	location	updates	with	individuals.	Similar	to	location	setting,	time	setting	is	
more	complex	and	may	require	multiple	rules	for	every	different	time	and	period	of	time	set	
(i.e.	different	start	and	end	time).	
	

• Group:	Users	are	able	to	define	groups	of	individuals	and	policies	explicitly	generated	for	
those	groups.	

Users	can	often	indicate	several	rules	described	by	one	or	union	of	multiple	privacy	setting	which	also	
increases	the	required	number	of	rules	for	decent	privacy.	These	rules	define	a	geographical	region	or	
a	time-span	(or	both)	inside	which	a	particular	LBA	may	be	given	access	to	the	location	data	of	a	user.	
Since	these	rules	are	defined	by	the	user,	they	have	various	disadvantages.	First,	the	privacy-preserving	
definition	of	rules	requires	the	users	to	foresee	complex	situations	where	their	location	privacy	may	
be	 breached.	 It	 has	 already	 been	 shown	 in	 [9]	 that	 user-defined	 rules	 are	 usually	 insufficient	 to	
preserve	user	 privacy	 as	 they	do	not	 cover	 all	 scenarios	under	which	privacy	breaches	may	occur.	
Secondly,	the	definition	of	location-sharing	rules	burdens	the	users	as	they	have	to	invest	considerable	
time,	concentration,	and	effort.	

As	an	example,	let’s	assume	a	user	who	wishes	to	share	his	location	only	when	he	is	at	his	home	and,	
that	also,	only	in	the	evening	time.	If	the	user	defines	a	time-based	rule	to	allow	access	to	his	location	
in	the	evening	time,	this	rule	alone	may	be	insufficient	to	meet	his	sharing	preferences	as	the	user	may	
also	 be	 present	 at	 other	 locations	 (than	 just	 home)	 during	 evening	 times.	 While	 adding	 another	
location-based	rule	to	specify	sharing	only	when	at	the	home	location	may	overcome	this	problem,	it	
burdens	 the	 user	 with	 definition	 of	 an	 additional	 rule.	 Since	 users	 typically	 find	 rule-definitions	
burdensome	[6],	they	define	a	limited	number	of	location-sharing	rules	which	typically	may	result	in	
false-positives	 (i.e.	 incorrect	sharing	decisions)	where	 the	user	actually	does	not	want	 to	share	 the	
current	location	event.	

	

1.2 Out-of-routine Events 
	

In	order	 to	 reduce	 the	number	of	 false-positives	 in	 sharing	decisions,	 an	 interesting	direction	 is	 to	
augment	location-sharing	rules	with	additional	algorithms.	The	basic	idea	behind	such	algorithms	will	
be	 to	 address	 the	 expected	 short-comings	 of	 location-sharing	 rules,	 i.e.,	 to	 identify	 those	 location	
events	 for	 which	 these	 rules	 generate	 false-positive	 decisions.	 In	 this	 regard,	 one	 promising	
methodology	 is	 to	 differentiate	 between	 routine	 location	 events	 (representing	 typical	 user-
movements)	and	out-of-routine	location	events	(representing	a-typical	movements)	of	the	user.	Here,	
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the	underlying	assumption	is	that	users	define	their	location-sharing	rules	based	on	the	knowledge	of	
their	routine	movements.	For	instance,	in	the	above	given	example,	the	user	expected	himself	to	be	
at	home	in	the	evening	times	and	therefore	defined	a	time-based	rule	as	per	this	expected	knowledge.	
By	defining	 these	 rules	based	on	expected/routine	movements,	 users	 typically	 ignore	 their	 out-of-
routine	movement	behaviour,	which	may	be	one	of	the	major	reasons	of	the	resulting	false	positive	
sharing	decisions.	

This	thesis	therefore	investigated	whether	there	is	a	correlation	between	location	events	of	the	user	
which	are	out-of-routine	and	those	for	which	the	location-sharing	rules	generate	false	positives.	Our	
results	 of	 evaluation	 show	 that	 learning	 subject’s	 correlation	 between	 routineness	 and	 sharing	
behaviour	for	specific	locations	can	provide	detection	of	probable	privacy	leaks	in	general.			

	

1.3 Thesis Outline and Contributions 
	

In	detail,	this	thesis	consists	of	the	following	tasks:	

• Design	of	an	adaptive	algorithm	 for	defining	 limited	 location-sharing	 rules	given	 the	actual	
sharing-behaviour	of	the	users.	
	

• Design	of	an	adaptive	algorithm	for	detecting	out-of-routine	events.	
	

• Preparation	and	processing	of	large-scale	dataset	in	order	to	implement	and	evaluate	above	
algorithms.	
	

• Analysis	and	evaluation	of	implemented	approach.	

At	the	remaining	part	of	the	thesis;	we	present	background	information	and	related	works	on	location	
privacy	mechanisms	and	mobility	analysis	mechanisms	in	Chapter	2.	Later	in	Chapter	3,	we	introduce	
our	 system	model	 and	 provide	 a	 formal	 specification	 of	 the	 problem	 statement.	 Chapter	 4	 gives	
detailed	 description	 on	 an	 algorithm	 for	 identification	 of	 best	 policy	 for	 a	 user	 [6],	 and	 the	
optimizations	applied	on	the	algorithm.	In	Chapter	5,	we	discuss	a	study	for	out-of-routine	detection	
based	 on	 conditional	 trajectory	 entropy	 estimation,	 and	 define	 adaptive	 algorithm	 for	 real-time	
trajectory	entropy	estimation.	Chapter	6	describes	preliminary	data	processing	applied	on	the	dataset	
before	the	evaluations.	Then,	we	present	the	simulation	setup,	and	a	thorough	analysis	of	the	location-
dataset	for	studying	the	correlation	between	out-of-routine	events	and	false-positives	generated	by	
location-sharing	 rules	 in	 Chapter	 7.	 Finally,	 Chapter	 8	 concludes	 this	 thesis	 and	 proposes	 possible	
future	works.	 	
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2. Related Work 
	

	

This	chapter	is	intended	to	provide	a	basic	understanding	of	the	key	aspects	and	concepts	that	form	
the	basis	of	this	thesis,	while	giving	overview	of	the	previous	work	done	in	the	area.	In	the	following	
sections,	 we	 will	 first	 discuss	 location	 privacy	 mechanisms	 including	 different	 approaches	 and	
researches	done	relevant	to	the	topics.	Later,	we	will	give	brief	overview	on	calculation	of	trajectory	
entropy	 with	 and	without	 conditions,	 and	 an	 approach	 that	 enables	 detection	 of	 waypoints	 from	
mobility	of	the	users	utilizing	entropy	of	trajectories.	

	

2.1 Location Privacy mechanisms 
	

Location	 privacy	mechanisms	 are	 the	 systems	 those	 intend	 to	 reveal	 location	 events	 of	 a	 user	 as	
accurate	 as	 possible	 by	 adopting	 user’s	 privacy	 preferences,	 and	 autonomously	 resolving	 user’s	
intention	 towards	 sharing.	 This	 section	discusses	 two	 common	approaches	utilized	by	 the	 location	
privacy	mechanisms	in	order	to	prevent	probable	privacy	leaks.	

2.1.1 Static Mechanisms 
	

Systems	using	 static	mechanisms	 commonly	 adopt	 location	 sharing	 rules	 [6,	 8]	 to	 represent	users’	
privacy	 preferences	 or	 policies.	 Since	 rules	 are	 defined	 by	 the	 user	 once,	 system	 cannot	 react	 to	
changes	of	users’	sharing	attitude	over	time.	The	rules	should	be	updated	by	the	user	repeatedly	to	
prevent	potential	privacy	leaks.	Because	most	users	are	not	good	at	expressing	location-sharing	rules,	
and	their	privacy	preferences	are	not	stable	over	long	periods	of	time,	privacy	concerns	are	inevitable.	
Another	approach	[5]	which	built	upon	[8]	has	shown	that	giving	daily	feedback	of	location	disclosure	
history	 to	 users,	 has	 reduced	 privacy	 concerns.	 Knowing	 log	 of	 information	 disclosure	 every	 day	
enables	users	to	act	before	vast	leaks,	and	give	them	more	control.	However,	it	increases	user-burden.	

2.1.1.1 Approaches 
	

The	 authors	 in	 [6]	 have	 investigated	 the	 trade-offs	 between	 accuracy	 and	 user-burden	 consisting	
different	privacy	setting	types	with	27	participants	on	over	7.500	hours	of	data.	In	contrast	to	utilizing	
end	system,	they	aimed	to	analyse	required	number	of	rules	in	order	to	achieve	decent	accuracy	(i.e.	
how	much	scope	is	covered	correctly	in	history	of	participants’	location	sharing	behaviour)	for	each	
privacy	setting	they	have	introduced.	In	additional	to	whitelist,	location	and	time;	the	following	privacy	
setting	types	were	conducted:	
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- Time	with	weekends	(Time+):	This	setting	is	similar	to	time,	but	they	additionally	allow	users	
to	indicate	defined	time	duration	in	either	weekdays	or	weekend,	as	a	flag	label.	
	

- Location	and	Time	(Loc/Time):	Union	of	location	and	time	setting.	Users	are	granted	to	
specify	location	additionally.	
	

- Location	and	Time	with	weekends	(Loc/Time+):	Union	of	location	and	time	with	weekends	
setting.	

Participants	have	been	asked	if	they	are	comfortable	revealing	their	location	events	to	four	different	
social	 target	groups	(e.g.	 friends	&	family,	Facebook	friends,	university	community	and	advertisers)	
instead	of	individuals.	In	short,	the	common	privacy	setting	‘group’	had	been	implemented	in	all	other	
policy	settings	evaluated.	

For	the	experiment	setup;	firstly,	location-tracking	software	has	been	installed	on	participants’	smart	
phones.	 It	 ran	 continuously	 in	 the	 background	 and	 receives	 updates	 from	GPS	 and	Wi-Fi	module.	
Locations	were	 afterwards	 filtered	 if	 user	 not	 remained	 stationary	 for	 at	 least	 15	minutes	 in	 that	
location.	Secondly,	web-application	has	been	developed	where	participants	required	to	visit	every	day	
to	audit	the	locations	they	visited	that	day.	Web-application	asks	whether	or	not	the	subject	would	
have	 been	 comfortable	 sharing	 presented	 location	with	 the	 target	 social	 group,	 and	 during	which	
period	of	time.	

For	 the	evaluation,	 representation	of	 rules	 for	each	privacy	setting	 types	were	generated	 from	the	
feedback	 given	 in	 web-application.	 Later,	 these	 rules	 were	 compressed	 if	 they	 had	 shared	 same	
location,	same	time,	same	group	or	etc.	Then,	from	the	pool	of	compressed	rules,	A*	search	algorithm	
is	utilized	to	find	best	policy	(i.e.	user’s	privacy	preference	or	set	of	rules)	with	k	rules.	The	results	show	
that	with	5	or	more	rules	it	is	possible	to	reach	70%	accuracy	using	loc/time+	setting.	

On	the	other	hand,	PeopleFinder	[8]	is	an	end-user	application	which	can	be	used	on	smart	phones	
and	laptops	by	users	to	share	their	locations	with	others.	In	PeopleFinder,	a	user	can	be	both	a	target	
user	who	is	queried	for	location	information	by	others,	and	requester	who	query	location	information	
from	others.	The	system	is	utilized	with	centralized	approach	to	store	location	information	on	their	
server.	Although	central	 server	 is	a	potential	privacy	vulnerability	 (those	may	 require	k-anonymity,	
location	obfuscation	etc.	which	are	not	covered	in	this	thesis),	application	is	able	to	provide	requesters	
to	 enquire	 last	 stored	 location	 of	 targets	 when	 the	 target	 is	 not	 available,	 and	 more	 demanding	
processes	can	be	executed	more	efficiently	than	on	distributed	and	mobile	platform.		

Each	user	has	their	agent	on	the	server	which	lets	users	request	for	location	information,	and	every	
agent	 owns	Policy	 Enforcing	Agents	 (PEA)	 that	 handles	 queries	 and	operates	 according	 to	 a	 policy	
preferences	 of	 the	 user.	When	 requester’s	 agent	 invokes	 target’s	 agent,	 PEA	 checks	 whether	 the	
location	disclosure	is	allowed	by	the	privacy	preferences.	If	 it	 is,	 it	forwards	location	information	to	
requester.	

The	privacy	setting	types	included	in	definition	of	rules	are	location	and	time	with	days.	Instead	of	only	
weekend	flag	used	in	previously	presented	approach,	time	with	days	covers	every	day	in	a	week.	

Relatively	important	point	is;	during	their	initial	lab	experiments,	they	have	found	that	the	number	of	
the	 rules	and	 the	 time	spend	by	participants	defining	and	 tinkering	 the	 rules	has	 slight	 correlation	
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between	policy	accuracy.	Most	users	are	not	able	to	define	highly	accurate	policies,	and	their	decisions	
often	have	conflicting	rationales.	

2.1.2 Dynamic Mechanisms 
	

In	 order	 to	 overcome	 these	 users’	 ineffectiveness	 and	 evolving	 privacy	 preferences,	 dynamic	
mechanisms	have	been	applied	to	improve	the	decision-making	process.	Dynamic	mechanisms	based	
on	machine	 learning	 or	 similar	 algorithms,	 target	 to	 disclose	 information	 as	 possible	 and	 prevent	
privacy	leaks	by	adapting	to	user’s	sharing	behaviour	and	sometimes	predicting	possible	alterations	on	
it,	using	different	number	of	features.	In	those	systems,	users	don’t	require	to	define	detailed	privacy	
preferences	 with	 complex	 privacy	 settings.	 Semi-supervisedly	 trained	 (semi-autonomous)	 systems	
[10,12]	rather	needs	to	learn	from	either	from	audit	of	user	(e.g.	feedback,	survey	information)	or	only	
user’s	 manual	 decisions	 without	 bothering	 them,	 in	 order	 to	 label	 the	 data.	 Number	 of	 different	
required	input	features	can	be	taken	from	mobile	device	of	the	user	during	labelling	process.	For	some	
systems	to	being	able	to	make	accurate	decisions,	more	features	might	be	required	compared	to	static	
mechanisms.	On	the	other	hand,	unsupervised	(autonomous)	methods	[11]	pursue	extracting	privacy	
preferences	automatically	from	social	context	of	users	by	grouping	them,	without	needing	to	labelled	
data.	It	can	also	be	addressed	as	using	crowdsourcing	to	gather	information	from	the	public	[28].	

2.1.2.1 Approaches 
	

SPISM	[10]	was	presented	as	one	of	the	privacy-aware	information-sharing	system	that	are	employed	
with	 machine-learning	 techniques,	 including	 cost-sensitive	 classifiers	 based	 on	 support	 vector	
machines	and	naïve	Bayes.	Similar	to	PeopleFinder	[8],	a	user	can	be	both	a	target	user	and	requester.	
Different	 than	 previously	 introduced	 approaches;	 it	 is	 able	 to	 decide	 different	 levels	 of	 detail	 of	
disclosed	information	(i.e.	granularity)	at	each	sharing	decision,	allows	users	additionally	to	share	time-
schedule	availability,	and	grants	third-party	services	to	request	information.		

The	platform	consists	of	the	Information	Sharing	Directory	(ISD)	and	the	subscribers	of	the	service.	As	
would	be	expected,	ISD	is	centralized	server	where	subscribers	connect	to	and	credentials	are	stored	
on.	But,	classifiers	are	implemented	in	mobile	devices	with	the	help	of	WEKA	[13]	library.	

SPISM	predicts	whether	or	not	to	reveal	location	and	the	granularity,	based	on	personal	and	contextual	
features	and	past	decisions	of	users.	These	features	are;	

- Familiarity	of	requester	(if	requester	is	user)	
- Social	tie	of	requester	(if	requester	is	user)	
- User	ID	of	requester	(if	requester	is	user)	
- Service	category	of	requester	(if	requester	is	third-party	online	service)	
- Service	ID	of	requester	(if	requester	is	third-party	online	service)	
- Information	type	
- Details	of	information	
- Latitude	
- Longitude	
- Semantic	
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- Time	
- Weekday	
- Daytime	
- Activity	
- Neighbours	of	requester	
- Neighbours	type	
- Time	since	last	request	
- Details	of	last	request	

These	18	features	are	extracted	from	the	request	forwarded	to	the	target	user’s	device,	and	fed	to	the	
decision	core.	If	SPISM	is	able	to	make	the	decision	with	enough	confidence,	the	request	is	processed	
automatically.	Otherwise,	 the	 target	user	needs	 to	decide	manually.	After	every	manual	 input,	 the	
decision	 along	 with	 the	 request	 is	 added	 into	 ground-truth	 data.	 Events	 in	 ground-truth	 data	 are	
weighted	as	descending	fashion	from	newest	to	oldest,	and	later	fed	to	a	classifier	in	order	to	train	
decision	 core.	Weighted	 events	 allow	 classifier	 to	 dynamically	 adapt	 to	 the	 changes	 in	 the	 users’	
sharing	attitude	by	prioritizing	latest	decisions.	

Performance	of	the	SPISM	were	measured	in	the	binary	case	(without	level	of	detail	i.e.	granularity)	
with	 and	 without	 active	 learning.	 Without	 active	 learning;	 classifier	 is	 trained	 from	 different	
percentages	of	the	dataset,	and	is	tested	on	remaining	part.	The	results	show	that	when	classifier	has	
learned	from	forty	and	higher	percentage	of	the	dataset,	median	of	correct	decisions	made	remained	
still	at	approximately	75%.	Percentage	drops	from	under-share	and	over-share	were	evenly	distributed	
when	no	cost	classifier	was	used.	Over-share	caused	by	classifier	were	less	likely	to	happen	while	cost	
factor	was	increasing,	but	correct	decisions	have	dropped	to	60%	because	of	under-share.	With	active	
learning;	the	classifier	was	initialized	with	some	percentage	of	the	dataset	and	dynamically	learn	from	
remaining	while	in	testing	state	using	confidence	interval.	When	classifier	has	not	enough	confidence	
on	its	decision,	it	requires	manual	input	from	the	user	and	actively	train	itself.	When	fifty	percent	of	
the	dataset	was	used	to	initialize	classifier,	correct	decisions	were	made	almost	85%	times	and	over-
share	cases	were	encountered	in	significantly	less	rate.	

Another	interesting	experiment	was	training	one-size-fits-all	classifier	from	all	but	one	user	data,	and	
testing	it	on	remaining	user.	Median	of	67%	of	correct	decisions	were	preserved.	

The	approach	in	[12]	that	aimed	high	correct	prediction	rate	and	a	low	privacy	leak	rate,	has	evaluated	
simple	classifiers	with	different	methods,	and	machine	learning	classifiers	with	different	algorithms	at	
once	in	the	paper.		

The	default	privacy	preferences	defined	by	the	users	resulted	in	correct	predictions	68%	and	privacy	
leaks	11%	of	time.	Simple	classifiers	were	able	to	reach	%76	correct	decision	rate	and	11%	privacy	leak	
rate.	On	the	other	hand,	machine	learning	classifier	with	Rotation	Forest1	algorithm	has	obtained	85%	
correct	decision	rate	and	3%	privacy	leak	rate.	The	considered	dataset	attributes	were;	

- User	ID	
- User	feedback	
- Time	of	day	

1	Rotation	Forest	algorithm	is	 improved	form	of	J48	algorithm.	It	sacrifices	computational	efficiency	
for	the	sake	of	increased	performance.	
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- Type	of	location	
- A	Facebook	friend-list	ID	(a	social	group	which	user	wants	to	share	or	not)	
- Flag	for	the	decision	
- Co-location	
- Four	other	attributes	from	the	pre-briefing	data	

Along	those	features,	according	to	Weka’s	attribute	selection	classifiers,	the	most	important	attributes	
were	Facebook	friend-list	ID	and	size	of	the	list.	When	only	these	two	attributes	were	used,	Rotation	
Forest	has	achieved	76%	correct	predictions	and	12%	privacy	leaks.	

Similar	 to	 previously	 presented	 approach,	 they	 have	 additionally	 included	 Cost	 Sensitive	 option	 in	
machine	learning	classifiers,	where	over-share	decisions	are	weighted	as	ten	times	more	than	under-
share.	With	the	option,	maximum	achievable	correct	prediction	and	privacy	leak	rates	were	67%	and	
1%	respectively.	

Considering	all	presented	static	or	dynamic	approaches,	the	generic	conclusion	reached	was;	privacy	
policies	defined	by	users	never	match	the	actual	user	preferences.	Using	different	number	of	privacy	
setting	types	allows	more	accurate	policies	but	causes	more	complexity	and	user-burden	 in	return.	
However,	active	learning	algorithms	those	are	able	to	adapt	changes	in	users’	attitude	with	the	help	
of	 methods	 such	 as	 confidence	 interval	 has	 obtained	 better	 correct	 decision	 rates	 than	 static	
mechanisms.		

This	thesis	aimed	to	investigate	and	develop	a	scheme	that	can	be	used	as	confidence	interval	for	static	
mechanisms.	Accordingly,	we	first	need	to	examine	entropy	of	trajectories.	

	

2.2 Mobility Analysis mechanisms 
	

Mobility	of	the	users	is	one	of	the	key	aspects	that	enables	us	to	discover	people’s	behavioral	data.	
Extracting	meaningful	 locations	 (waypoints)	 from	 their	mobility	 trajectories	 is	 crucial	 for	 location-
based	applications	 in	order	to	provide	context-aware	services,	since	those	reveal	more	 information	
about	the	person	and	their	lifestyle.	Waypoints	are	the	places	people	try	to	reach	and	spend	their	time	
(e.g.	restaurant,	café,	shop,	cinema	etc.),	and	they	move	on	intermediate	points	(e.g.	highway,	street,	
train	 station,	 airport	 etc.)	 to	 reach	 their	 destination	 as	 efficiently	 and	 quickly	 as	 possible.	 These	
important	 locations	 can	 contribute	 to	 predicting	 person	 or	 crowd	 next	 location	 [20,	 21]	 or	 whole	
trajectory	[16],	revealing	popular	locations	in	a	geospatial	region,	travel	recommendation	etc.		

2.2.1 Approaches 
	

The	interface	model	in	[18]	has	been	developed	based	on	Hypertext	Induced	Topic	Search	(HITS);	a	link	
analysis	algorithm	that	rates	Web	pages,	was	used	to	rate	and	extract	interesting	waypoints	from	GPS	
trajectories.	The	authors	have	first	constructed	a	tree-based	Hierarchical	graph	(TBHG)	from	the	stay	
points	obtained	from	GPS	 logs,	using	a	density-based	clustering	algorithm.	They	have	used	HITS	on	
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TBHG	to	estimate	users’	travel	experiences	and	location	interests	in	a	region.	Later,	these	parameters	
are	used	to	extract	interesting	locations	in	a	region.		

On	 the	 other	 hand,	 entropy	 is	 the	 most	 fundamental	 quantity	 estimating	 the	 randomness	
characterizing	a	time	series,	hence	it	can	also	allow	us	to	extract	the	meaningful	locations	and	predict	
waypoints	or	trajectories	of	users.	For	example,	by	using	the	entropy,	Song	et	al.	 [21]	have	studied	
mobility	 pattern	 dataset	 of	 45,000	 mobile	 phone	 users	 and	 shown	 that	 average	 user	 mobility	
predictability	rate	was	93%	independent	of	the	significant	differences	in	the	travel	patterns	and	the	
distance	of	the	trajectories.	They	have	used	three	different	entropies	to	predict	user’s	next	location;	
the	 random	entropy	which	 estimates	 the	 predictability	 of	 the	 user’s	 actual	 location,	 the	 temporal	
uncorrelated	 entropy	 which	 characterizes	 the	 heterogeneity	 of	 visitation	 patterns,	 and	 the	 actual	
entropy	of	the	trajectory.		

Similar	 to	 [21],	 an	 algorithm	 has	 been	 proposed	 in	 [7]	 to	 calculate	 instantaneous	 entropy	 of	 an	
individual	by	using	real-time	estimator	based	on	Lempel-Ziv	measure	for	uncovering	the	behaviour	and	
predictability	of	the	users.	They	have	showed	by	applying	their	algorithm	on	Nokia	Lausanne	dataset,	
that	when	instantaneous	entropy	of	user	was	high,	mobility	patterns	were	more	alternating	and	had	
low	predictability.	They	have	also	found	that	behaviour	of	mobile	application	usage	is	correlated	with	
instantaneous	entropy	of	the	users,	which	proves	that	users	behave	differently	in	unfamiliar	situations	
or	out-of-routine	events.	

The	authors	in	[16]	went	beyond	the	research	of	predictability	of	mobility	in	[21]	or	individuals	in	[7]	
and	were	able	to	measure	the	predictability	of	the	whole	trajectory	using	the	entropy	of	conditional	
Markov	 trajectories	 that	allows	 them	to	compute	 the	extent	 to	which	an	event	 is	different	 from	a	
normal	event.		

Users	 often	 reveal	 their	 trajectory	 information	 through	 a	 sequence	 of	 check-ins	 via	 services	 (e.g.	
Swarm,	Facebook	or	Twitter	etc.),	or	from	geo-tagged	photos.	But	those	check-ins	do	not	necessarily	
include	information	of	time	spent	by	the	user,	making	the	discovery	of	waypoints	tougher.	Waypoints	
play	important	role	in	individuals’	lives	since	they	spend	more	time	at	those	locations;	those	therefore	
reveals	more	 information	about	 the	person	and	their	 lifestyle.	The	work	 [16]	 focuses	on	extracting	
waypoints	 and	 segmentation	 of	 trajectories	 on	 user’s	 mobility	 trajectory	 data	 only	 from	 spatial	
information,	not	requiring	timing	information	on	location	events.	

The	model	is	built	based	on	the	work	[15].	They	implied	that	given	two	waypoints	(a	starting	location	
and	final	destination),	the	intermediate	location	that	most	increases	–conditional–	trajectory	entropy	
is	 presumably	 another	waypoint	between	 those	 two,	 and	 the	user	would	 spend	more	 time	at	 this	
waypoint	than	the	average	time	spent	at	other	intermediate	locations.	They	have	tested	their	model	
with	 randomly	 90%-10%	 divided	 into	 train-test	 dataset,	 and	 achieved	 improvement	 on	 baseline	
methods.	Namely,	 43%	more	 accurate	 than	 geo-stretch	 and	 20%	more	 accurate	 than	 path-stretch	
approaches.	
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3. System Model and 
Problem Statement 

	

In	this	chapter,	we	will	first	discuss	system	model	for	location-sharing	system.	In	the	second	part,	we	
will	define	the	problem	statement	for	our	modified	decision-making	system.	

	

3.1 System Model 
	

	

Figure	3.1	-	System	Models.	Distributed	approach	(left)	and	centralized	approach	(right)	

	

The	privacy	systems,	whether	they	have	been	developed	based	on	static	or	dynamic	mechanisms,	have	
two	common	schemes	as	shown	in	Figure	3.1.	Each	scheme	has	their	own	benefits	and	disadvantages.	
While	centralized	approach	in	Figure	3.1(b)	is	offering	computationally	light-weight	clients	on	mobile	
devices	and	logging	of	user’s	location	events	so	that	requesters	are	able	to	fetch	last	actual	location;	
distributed	(peer-to-peer)	approach	in	Figure	3.1(a)	is	easier	to	secure	since	it	has	not	central	server	
as	potential	privacy	vulnerability	[8,19].	Centralized	scheme	is	often	preferred	for	complex	dynamic	
systems	because	of	energy	efficiency	of	mobile	devices	while	providing	required	computation	power.	
Furthermore,	a	hybrid	scheme	has	been	proposed	by	several	approaches	[25,26]	which	relies	on	both.	
In	all	 schemes,	users	directly	or	 indirectly	generate	privacy	preferences	which	disclose	 information	
only	when	certain	conditions	are	met.		

Mobile	device	in	the	Figure	3.1,	is	the	key	instrument	of	the	system	model	used	to	track	user,	capture	
user’s	 location	events	 and	allow	 interaction	of	user	 to	define	privacy	policies.	 In	 Figure	3.1(a),	 the	
privacy	 policy	 and	 location	 updates	 are	 stored	 in	 the	mobile	 device	 of	 the	 user.	When	 requester	
queries	target	location,	he	communicates	with	target’s	mobile	device	and	reply	is	sent	according	to	
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the	policy	of	the	user.	On	the	other	hand,	in	Figure	3.1(b),	mobile	device	captures	user’s	location	events	
and	 sends	 them	 to	 the	 trusted	 location	 server	 where	 they	 along	 with	 privacy	 policy	 are	 stored.	
Requester	queries	target’s	 location	from	the	server	and	reply	is	sent	if	privacy	preferences	allow	it.	
When	server	or	mobile	device	cannot	decide	itself,	they	often	notify	user	to	acquire	manual	decision.	

In	the	system	model,	we	can	ponder	over	many	privacy	aspects	such	as	security	of	communication	
channel;	reliability	of	parties,	systems	or	servers	etc.	However,	these	aspects	are	beyond	the	scope	of	
our	 study	and	can	be	addressed	 in	other	works.	 In	 this	 thesis,	we	will	 focus	on	extending	decision	
making	competence	of	the	privacy	policy.	

	

Figure	3.2	-	Common	model	for	Decision	Making	Process	

Typically,	decision	making	process	of	the	LBA	consists	of	only	privacy	policy	which	trained	either	by	
machine-learning	algorithms	or	rule-based	approach.	When	requester	queries	location,	privacy	policy	
collects	attributes	depending	on	privacy	setting	type;	such	as	requester-ID	(or	social	group	he	is	in),	
time	information	(time,	weekend,	day,	month	etc.)	and	location	information	(spatial	or	granularity)	as	
shown	 in	Figure	3.2.	 If	 those	attributes	match	with	 the	 rules,	or	decided	as	 sharable	by	classifiers;	
private	location	information	is	sent	to	requester.	

	

Figure	3.3	-	Offered	model	for	Decision	Making	Process	
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Built	upon	typical	decision-making	strategy,	we	propose	new	system	includes	routine	aware	control	
mechanism	as	shown	in	Figure	3.3.	Similar	to	the	system	in	Figure	3.2,	privacy	policy	collects	attributes	
such	as	location,	time,	and	requester-ID,	and	predict	decision	depending	on	those.	Conversely,	in	order	
to	generate	final	decision,	proposed	system	also	requires	confirmation	from	the	routine	and	out-of-
routine	control	mechanism.	By	storing	history	of	location	events,	the	mechanism	is	able	to	resolve	if	
recent	location	event	was	occurred	from	routine	or	out-of-routine	series	of	events.	If	 it	 is	a	routine	
event,	mechanism	grants	permission	and	system	replies	back	to	the	requester.	If	it	is	an	out-of-routine	
event,	then	mechanism	may	notify	user	in	order	to	get	manual	decision.	

As	for	control	mechanism,	we	have	used	similar	technique	from	[16]	for	determining	the	out-of-routine	
nature	 of	 user	 events	 utilizing	 conditional	 entropy	 of	 trajectories	 [15].	 The	 technique	 is	 based	 on	
information-theoretic	algorithm	for	distinguishing	routine	and	non-routine	location	events	in	a	data-
stream,	which	can	be	adapted	into	real-time	entropy	estimator.	Fortunately,	the	authors	in	[7]	found	
that	mobile	application	usage	was	correlated	with	instantaneous	(recent)	entropy	of	the	users.	In	other	
words,	 they	were	 using	 applications	 differently	when	 they	were	 in	 out-of-routine	 nature.	We	 can	
exploit	that	fact	and	approve	the	possible	changes	on	location	sharing	behaviour	in	a	similar	way.	

Additionally,	in	spite	of	dynamic	mechanisms	like	SPISM	[10]	which	require	a	number	of	attributes	to	
train	classifiers,	entropy	based	decision	making	system	only	requires	trajectory	information	to	train	
mobility	markov	chain.	Yet,	constructing	mobility	Markov	chain	from	location	events	 is	not	an	easy	
task	and	requires	significant	amount	of	user	data,	even	for	a	low-order	Markov	chain.	Consequently,	
we	need	to	train	and	simulate	privacy	policy	of	users	from	a	large	dataset.	The	approach	in	[6]	thereby	
is	chosen	to	construct	best	privacy	policy	given	location	history	dataset	of	each	user.	

	

3.2 Problem Statement  
	

Static	 mechanisms	 offer	 rule-based	 privacy	 preferences	 defined	 by	 the	 users.	 However,	 they	 are	
lacking	to	detect	changes	of	user	attitudes	that	may	lead	to	potential	privacy	leaks	if	the	rules	are	not	
redefined	over	time.	The	more	detailed	privacy	settings	induce	more	complex	interfaces	and	causes	
more	user-burden.	Further,	most	users	are	not	able	 to	define	highly	accurate	and	 long-time	stable	
policies	even	with	complex	settings	[5,6,8,9,10].		

Our	 objective	 is	 adding	 dynamic	 depth	 to	 typical	 rule-based	 approaches	 in	 order	 to	 prevent	 over-
sharing	while	not	requiring	an	extra	user	input,	by	using	entropy	for	determining	the	out-of-routine	
nature	of	user	events.	This	approach	has	never	been	addressed	before.	This	thesis	does	not	engage	
with	 developing	 novel	 end-system,	 but	 addresses	 following	 problems	 and	 evaluates	 the	 proposed	
approach	accordingly.	

• Over-sharing	is	mistakenly	revealing	private	information	which	was	not	intended	by	the	user	
(false-positives	 if	 policy	 shares,	 false-negatives	 if	 policy	 withholds	 information).	 The	 main	
reason	 over-sharing	 occurs	 with	 static	 privacy	 policies	 is	 that	 they	 cannot	 predict	 user	
behaviour	change	and	redefined	over	time.	Privacy	would	not	be	a	problem	if	there	were	no	
risks	or	bad	consequences	of	sharing	location	information.	However,	bad	consequences	can	
occur	 due	 to	 leak	 of	 location	 information	 to	 unscrupulous	 groups	 or	 an	 individual.	 As	 an	



	 -	13	-	

example,	PleaseRobMe	[23]	has	demonstrated	risks	of	undesirable	privacy	leaks	by	publishing	
the	location	of	unoccupied	homes	using	Foursquare	and	Twitter	data.	

Therefore,	 our	main	 problem	 is	 to	 decrease	 over-sharing	 rate	 of	 a	 defined	 privacy	
policy.	The	over-sharing	metric	(as	false-positives)	of	policy	p	is	defined	in	the	thesis	as	follows;		
	

• Under-sharing	is	preventing	the	sharing	of	location	information	when	it	was	intended	to	be	
shared	(false-negatives	if	policy	shares,	false-positives	if	policy	withholds	information).	It	may	
not	pose	the	same	privacy	risk	as	over-sharing	but	higher	under-sharing	rate	deprives	purpose	
of	LBAs.	Therefore,	our	second	problem	is	to	keep	under-sharing	to	the	minimum.	The	under-
sharing	metric	(as	false-negatives)	of	policy	p	is	defined	in	the	thesis	as	follows;		

where	total_hours_to_be_revealed	is	total	hours	intended	to	be	shared	by	the	user	
during	test	period.		
	

• Accuracy	metric	is	considered	in	the	thesis	with	penalty	term	cn	in	order	to	put	weight	on	risks	
of	accidently	sharing	information.	In	other	words,	we	have	merged	above	two	problems	and	
defined	an	accuracy	metric	accordingly.	

	

	 	

𝑜𝑣𝑒𝑟𝑠ℎ𝑎𝑟𝑒(𝑝) = 	
𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡_ℎ𝑜𝑢𝑟𝑠(𝑝)

𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_ℎ𝑜𝑢𝑟𝑠(𝑝)
	

	 	 	 	 	 	 	 	 	 	 			 												(3.1)	

𝑢𝑛𝑑𝑒𝑟𝑠ℎ𝑎𝑟𝑒(𝑝) = 	
𝑡𝑜𝑡𝑎𝑙_ℎ𝑜𝑢𝑟𝑠_𝑡𝑜_𝑏𝑒_𝑟𝑒𝑣𝑒𝑎𝑙𝑒𝑑	– 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_ℎ𝑜𝑢𝑟𝑠(𝑝)

𝑡𝑜𝑡𝑎𝑙_ℎ𝑜𝑢𝑟𝑠_𝑡𝑜_𝑏𝑒_𝑟𝑒𝑣𝑒𝑎𝑙𝑒𝑑
	

	 	 	 	 	 	 	 	 	 	 	 												(3.2)	

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑝) = 	
𝑐𝑜𝑟𝑟𝑒𝑐𝑡_ℎ𝑜𝑢𝑟𝑠(𝑝)	– 	𝑐8 ∗ 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡_ℎ𝑜𝑢𝑟𝑠(𝑝)

𝑡𝑜𝑡𝑎𝑙_ℎ𝑜𝑢𝑟𝑠_𝑡𝑜_𝑏𝑒_𝑟𝑒𝑣𝑒𝑎𝑙𝑒𝑑
	

	 	 	 	 	 	 	 	 	 	 	 												(3.3)	
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4. Simulating Privacy 
Policy 

	

In	this	chapter,	we	will	discuss	in	detail	the	approach	[6]	used	to	simulate	best-user	policy	given	set	of	
user	 rules.	 Later,	we	explain	 the	modifications	we	have	done	on	 this	approach	 in	order	 to	make	 it	
usable	on	an	extensive	dataset.	

	

4.1 Background 
	

The	system	presented	in	[6]	aimed	to	find	the	best	user	policy	with	k-rules	that	best	fits	their	ground-
truth	gathered	throughout	3-week	user	study.	The	main	purpose	of	that	study	was	to	evaluate	the	
different	 privacy	 settings	 on	 static	 mechanisms	 in	 terms	 of	 user-burden	 and	 possible	 reachable	
accuracy,	rather	than	developing	a	novel	location-sharing	system.	

	

Figure	4.1	-	Evaluation	model	for	the	system	in	[6]	

Before	the	study,	each	of	the	phones	was	equipped	with	location-tracking	program	that	recorded	the	
phone’s	location	and	sent	it	to	web	servers	at	all	times.	During	the	study,	all	participants	were	required	
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to	visit	web	interface	where	they	have	been	asked	whether	or	not	they	would	had	been	comfortable	
sharing	presented	location	with	the	target	social	group,	and	during	indicated	period	of	time.	

After	the	study,	from	all	gathered	participant	behavioural	data,	ground-truth	space	and	rule	space	of	
users	were	generated	according	to	the	privacy	setting	types	wanted	to	be	tested.	For	example,	time	
was	discretized	into	half-hour	blocks	(i.e.	the	size	of	time	dimension	of	ground-truth	space	was	48)	and	
rules	were	losslessly	compressed	by	merging	the	location	rules	which	are	parts	of	same	time	interval	
and	target	group,	or	the	time	rules	which	have	same	locations	and	target	group	attributes.	Later,	best	
k-rules	 those	 together	 form	best	policy,	 are	 selected	 from	 rule	 space	using	 combinatorial	 problem	
approach.	

To	explain	these	steps	 in	more	detail,	we	will	now	define	some	necessary	terms	as	are	used	 in	the	
system	[6],	as	well	as	in	the	implementation	(Chapter	7.1)	of	this	thesis.	

4.1.1 Preliminary definitions 
	

	

Figure	4.2	-	Ground-Truth	space	and	policy	example	

• Ground-Truth	of	the	User	is	a	multi-dimensional	space	whose	dimensions	are	the	attributes	
in	considered	by	a	privacy	setting.	For	example	in	Figure	4.2	the	privacy	setting	has	so	and	so	
privacy	attributes.	A	policy	is	set	by	the	user	by	defining	his	sharing	(Boolean)	decision	about	
whether	he	wishes	to	share	or	hide	his	location	information	for	specific	combinations	of	the	
attribute	values.	In	other	words,	during	the	time	of	gathering	location	events,	how	many	times	
user	presented	his	location	being	sharable	or	not.	The	used	weight	function	w(s)	is;	

𝑤(𝑠) = 	
∑ 𝑠<=>?@?ABC?@ − 𝑐 ∗ ∑ 𝑠8BEF@?ABC?@

∑ 𝑠C?@
	

	 	 	 	 	 	 	 	 	 	 	 												(4.1)	
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where	c	 is	the	cost	which	is	used	to	alter	the	balance	between	over-share	and	under-share	
cases.	 For	 example,	 in	 Figure	 4.2,	 weight	 of	 red	 samples	 are	 below	 zero	 while	 the	 green	
samples	are	above	zero.	

Number	of	dimensions	are	directly	proportional	to	number	of	privacy	setting	type,	and	
the	size	of	a	dimension	increases	while	more	discretisation	is	applied	in	corresponding	privacy	
setting	 type.	 As	 example,	 time	 is	 discretized	 into	 16	 slots	 in	 Figure	 4.2	 and	 16	 different	
locations	are	considered	for	the	user.	Different	granularity	level	used	by	the	privacy	system	or	
user	visits	to	more	distinctive	locations	would	increase	size	of	area	dimension	as	well	as	the	
effort	imposed	on	the	user	in	specifying	his	sharing	behaviour.	
	

• Rule	is	the	Boolean	cluster	of	sample	points	on	the	ground-truth	space.	It	may	overlap	positive,	
negative	or	both	sample	points.	However,	once	the	rule	 is	appended	into	privacy	policy,	all	
overlapped	sample	points	should	be	behaved	by	the	location-sharing	system	as	either	positive	
or	 negative	 and	 not	 both.	 Changes	 in	 user	 attitudes	 may	 cause	 a	 rule	 to	 over-share.	 For	
example,	Rule	3	in	Figure	4.2	had	been	initially	specified	by	the	user	as	he	wanted	to	share	his	
seven	locations	at	given	timeslots,	but	he	later	decided	to	not	closure	two	locations,	leads	Rule	
3	to	over-share.	
	

• Privacy	Policy	is	a	collection	of	the	rules.	Often,	they	consist	of	only	positive	rules	that	share	
information	or	negative	rules	which	hide	it.	Addition	of	the	accuracies	of	multiple	rules	in	a	
policy	may	not	be	correct,	since	sample	points	from	overlapping	rules	are	considered	twice	
resulting	 in	 false	accuracy	estimation.	For	example	 in	Figure	4.2,	Rule	2	 is	overlapping	with	
Rule	1	and	Rule	3,	naïve	approach	to	sum	accuracy	of	all	rules	can	cause	approximately	9%	
false	accuracy	improvement	on	policy	in	case	each	sample	is	considered	as	Boolean	point.	

	

• A*	 Search	Algorithm	 is	 a	method	 to	 find	 shortest	 find	 paths	 in	 graphs	 and	 offers	 a	 faster	
version	of	the	Dijkstra's	algorithm.	Rather	than	expanding	the	search	onto	all	possible	nodes	
until	goal	node	is	reached,	it	starts	from	specific	node	and	estimate	cost	to	goal	node	d	for	all	
neighbouring	nodes	at	each	step.	Then,	the	node	that	minimizes	the	cost	to	the	destination	
most	is	selected	to	expand	the	path.	Hence,	it	iterates	faster	compared	to	Dijkstra's	algorithm.	
It	uses	cost	function	to	estimate	cost	of	each	node.	The	cost	function	f(n)	is;	

where	n	is	the	node,	g(n)	is	the	total	cost	so	far	acquired	by	the	path	and	h(n)	is	the	heuristic	
function.	The	heuristic	 function	estimates	the	cost	of	the	shortest	path	from	node	n	to	the	
final	node	d.	It	is	problem-specific	and	must	be	admissible,	i.e.	it	must	not	estimate	the	cost	
higher	than	the	actual	cost	to	reach	a	goal.	Otherwise,	A*	algorithm	may	overlook	the	optimal	
solution.	

4.1.2 Formal Definition 
	

When	there	is	no	limit	on	the	number	of	rules	that	form	the	privacy	policy,	finding	the	best	policy	that	
matches	user	behaviour	 is	easy.	The	best	policy	 for	a	user	can	be	 identified	by	greedily	generating	

𝑓(𝑛) = 	𝑔(𝑛) + ℎ(𝑛)	
	 	 	 	 	 	 	 	 	 	 	 												(4.2)	
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atomic	rules	for	each	sample	in	ground-truth	space	and	adding	them	to	the	policy.	However,	a	user	
himself	may	not	able	to	define	a	large	number	of	rules	since	rule	definition	cause	user-burden.	Hence	
it	is	not	reasonable	to	use	the	greedy	approach	to	represent	an	actual	user.	On	the	other	hand,	with	
limit	 on	 the	 total	 number	 of	 rules,	 say	 ‘k',	 identifying	 the	 best	 policy	 for	 a	 given	 privacy	 type	 is	 a	
combinatorial	problem	(e.g.	traveling	salesman	problem,	knapsack	problem).	In	order	to	address	this	
problem,	authors	[6]	have	developed	a	tree-search	technique,	based	on	the	A*	search	algorithm.		

Each	level	of	the	search	tree	represents	a	rule	of	the	policy	and	each	edge	resembles	a	particular	rule	
as	can	be	seen	in	Figure	4.3.	For	example,	when	search	algorithm	expands	the	path	until	depth	3,	the	
path	corresponds	a	policy	with	3	rules.		

	

	

Figure	4.3	-	Part	of	a	search	tree	for	identifying	a	user’s	most	accurate	privacy	policy	with	Loc/Time+	settings	[6]	

The	search	starts	at	the	root	node	(Rule	1	at	depth	0	in	Figure	4.3)	and	constructs	child	nodes	for	every	
remaining	feasible	rule	at	each	depth.	Then,	heuristic	function	approximates	the	cost	of	the	child	nodes	
and	they	are	added	to	a	priority	queue.	When	next	node	is	popped	off	from	the	queue,	the	algorithm	
repeats	the	same	procedure	and	find	next	rule	to	include	in	the	policy.	A	rule	is	considered	feasible	if	
it	does	not	overlap	with	any	rule	which	is	already	included	in	the	search	path	(already	added	to	the	
incomplete-end-policy).	Two	rules	overlap	if	they	cover	same	sample	points	in	the	ground-truth	space	
of	the	user.	

The	heuristic	function	approximates	the	accuracy	of	any	policy	with	k	rules	originating	from	a	node	at	
depth	level	n	as	the	total	accuracy	of	rules	included	so	far	at	the	path	(an	incomplete-end-policy	with	
n-1	rules),	plus	the	accuracy	of	the	policy	generated	from	all	remaining	feasible	rules	with	no	rule	limit.	
This	strategy	of	heuristics	ensures	that	any	node	contained	in	the	search	path	has	a	lower	or	equal	cost	
than	any	previously	contained	node2,	therefore	guarantees	the	path	first	reached	to	the	depth-k,	 is	
most	accurate	one	possible.		

2	Using	greedy	solution	on	remaining	nodes	except	the	particular	node	j	at	the	depth	n,	determines	
the	total	accuracy	when	rule	j	is	missing.	Hence,	this	technique	guarantees	that	the	node	which	has	
most	impact	on	the	accuracy	is	chosen	at	each	depth	
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The	 accuracy	 function	 defined	 calculates	 correct	 and	 incorrect	 hours	 caused	 by	 the	 policy	 p	 of	
participant	i,	with	target	social	group	G.	Later,	it	is	normalized	by	each	participant’s	optimal	policy	p*	
which	perfectly	fits	the	participant’s	privacy-preferences.	

	where	c	is	associated	with	the	cost	of	accidently	disclosing	a	location.	

	

4.2 Optimizations 
	

Converting	 construction	 of	 policy	 into	 combinatorial	 problem	 and	 solving	 it	 with	 A*	 algorithm,	 is	
definitely	a	favourable	approach	to	simulate	best	possible	policy	with	k-rules	given	the	feedback	from	
participant	himself.	The	authors	have	achieved	accuracies	of	policies	defined	using	this	algorithm	in	
the	range	60%	up	to	80%	on	a	three-week	long	user-data.	They	have	also	explained	that	splitting	rules	
into	atomic	ones	(i.e.	a	rule	for	each	sample	in	ground	truth)	greedily	adding	them	into	policy	whenever	
they	would	result	 in	positive	accuracy,	 is	an	option	to	 identify	the	most	accurate	policy,	but	causes	
policy	to	include	excessive	number	of	rules	and	is	not	reasonable	for	expressing	user	attitude.	

Applying	A*	algorithm	on	three-week	long	data	with	participants’	labelling	oriented	direct	feedbacks,	
is	adequate	to	reach	decent	accuracies	with	least	number	of	rules	since	ground	truth	space	of	users	
are	not	massive	and	users’	behaviours	towards	sharing	would	not	show	sharp	changes	in	three	weeks.	
However,	participants	would	demonstrate	more	attitude	changes	in	a	dataset	whose	span	is	a	year	or	
more.	Along	with	the	excessive	scale	of	the	ground	truth	spaces	and	highly	dispersed	positive	samples	
in	the	space,	it	is	not	feasible	to	reach	decent	accuracy	with	naïve	compression	of	rule	space	based	on	
their	location	or	time,	and	with	reasonable	number	of	rules.		

In	order	to	address	this,	we	have	run	A*	algorithm	twice;	first	for	compressing	rule	space	and	second	
for	generating	policy.	

4.2.1 Compressing the Rule Space 
	

A	ground-truth	space	compiled	 from	a	year-long	 feedback	or	sharing	behaviour	of	users	hosts	pre-
defined	rules	(clusters	of	samples	of	ground-truth	space)	with	varying	scopes.	Over	time,	majority	of	
these	 rules	cause	over-sharing	 if	 their	coverage	over	 the	attribute	space	 is	broad.	Otherwise	when	
their	coverage	is	narrow,	the	required	number	of	those	rules	becomes	very	large	for	generating	the	
best	policy	that	may	cover	majority	of	the	positive	sample	points	in	the	ground-truth	space	of	a	user.	
This	 problem	 can	 be	 solved	 by	 defining	 anew	 rules	 from	 ground-truth	 space	 directly	 using	
combinatorial	 problem	 approach	 and	 A-star	 search	 algorithm.	 Our	 aim	 at	 compressing	 rule	 space	
phase	is,	identifying	partitions	as	broad	and	as	accurate	as	possible.	In	other	words,	generating	as	least	
as	possible	rules	with	decent	accuracy	from	the	ground-truth	space.	

𝑎𝑐𝑐(𝑖, 𝑝, 𝐺, 𝑝∗) = 	
𝑐𝑜𝑟𝑟𝑒𝑐𝑡_ℎ𝑜𝑢𝑟𝑠(𝑖, 𝑝, 𝐺) − 𝑐 ∗ 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡_ℎ𝑜𝑢𝑟𝑠(𝑖, 𝑝, 𝐺)

𝑐𝑜𝑟𝑟𝑒𝑐𝑡_ℎ𝑜𝑢𝑟𝑠(𝑖, 𝑝∗, 𝐺)
	

	 	 	 	 	 	 	 	 	 	 	 												(4.3)	
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Different	than	generating	best	policy	from	pre-defined	rules,	grouping	sample	points	into	clusters	is	
approximating	as	closely	as	possible	of	partitions	in	ground-truth	space.	If	these	partitions	have	well-
formed	 boundaries	 with	 each	 other,	 rules	 produced	 will	 be	 deterministic	 and	 the	 best,	 and	 not	
depends	on	the	root	node.	Otherwise,	if	partitions	are	intersecting	with	each	other	and	have	not	strong	
boundaries,	 rules	generated	will	be	non-deterministic	and	possibly	 the	best	depending	on	the	root	
nodes	and	cost	factor.	

	

Figure	4.4	-	Clustering	of	samples	in	ground-truth	space.	Left-middle	cluster	is	non-deterministic	because	root	node,	cost	
factor	and	iteration	

Figure	4.4	shows	2D	ground-truth	spaces	as	example.	While	the	right-above	group	has	not	variations	
and	would	form	same	cluster	not	depending	on	the	root	node	or	iteration,	left-middle	group	can	form	
varying	clusters	depends	on	cost	factor,	root	node	and	iteration,	and	therefore	is	non-deterministic.	

Total	coverage	of	a	rule	(number	of	sample	points	it	covers)	for	Loc/Time+	settings	(4D	space)	is	given	
as;	

4.2.1.1 Algorithm 
	

Before	running	A*	search	algorithm,	ground-truth	space	is	constructed	for	each	user	given	part	of	the	
dataset	(training	proportion).	The	following	formula	is	used	to	score	a	sample	s	in	dataset	similar	as	
previously	discussed.	Score	function	is	different	than	weight	function	because	we	required	to	prioritize	
most	popular	rather	than	most	accurate	samples	for	covering.	The	total	score	is	later	normalized	in	
cost	function.	

where	Cn	and	Cp	can	be	tinkered	in	order	to	tamper	over-share	and	under-share	ratios	caused	
by	generated	rule.	We	will	later	discuss	this	values	in	evaluation	Chapter	7.	

Since	it	is	not	possible	for	A*	algorithm	to	reach	destination	(maximum	achievable	accuracy)	with	only	
one	rule,	we	should	define	a	maximum	depth	and/or	maximum	iteration	that	algorithm	runs	until.		

Similar	to	original	algorithm	from	[6],	our	search	starts	at	the	root	node	and	builds	a	child	node	for	
each	feasible	positive	sample	in	constructed	ground-truth.	A	child	node	is	a	rule	alone	that	covers	the	

𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = ΣM8?NMBFOBF> ∗ ΣM8?NMB@?PB> ∗ ΣM8?NMB@FOEB@> ∗ ΣM8?NMBQBBRB8STUFE>	
	 	 	 	 	 	 	 	 	 	 	 												(4.4)	

𝑠𝑐𝑜𝑟𝑒(𝑠) = 	 𝑐< ∗V𝑠<=>?@?ABC?@ − 𝑐8 ∗V𝑠8BEF@?ABC?@	
	 	 	 	 	 	 	 	 	 	 	 												(4.5)	
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partition	whose	boundaries	are	properties	of	previously	added	samples	+	a	child	node	itself.	The	nodes	
are	added	to	a	priority	queue	along	with	their	cost	from	the	heuristic	function,	and	then	are	popped	
off	the	queue	one	at	each	step	until	maximum	depth	or	iteration	is	reached.	The	best	combination	of	
boundaries	 is	 recorded	 at	 each	 step,	 in	 case	 the	 algorithm	 overestimates.	 A	 sample	 is	 considered	
feasible	if	it	is	not	covered	by	the	rule	boundaries	of	parent	node.	A	sample	which	has	not	received	a	
hit	(i.e.	was	not	in	ground-truth	space	of	a	user)	is	acknowledged	as	void	point	and	has	not	influence	
on	accuracy.	Hence,	they	can	be	covered	by	the	rule	when	required.	

After	each	rule	generation,	the	samples	which	are	not	covered	previously	created	rules	are	considered	
remaining	 samples	 and	 further	 rules	 are	 searched	 through	 those	 samples.	 In	other	words,	 already	
covered	samples	whether	their	score	was	positive	or	negative,	are	considered	void	points	and	will	not	
have	 positive	 or	 negative	 effect	 on	 generation	 of	 further	 rules.	 False	 accuracy	 estimation	 of	
overlapping	rules	is	thus	avoided,	it	results	broad	clusters	at	each	generation	step	and	affects	positively	
identifying	the	policy	at	later	phase.	

Unfortunately,	since	generation	of	rule	space	phase	has	distributed	processing	of	A*	algorithms,	their	
exclusive	 information	 exchange	 is	 set	 of	 remaining	 samples.	 The	 destination	 of	 each	A*	 algorithm	
computation	 varies	 with	 root	 nodes,	 maximum	 iteration	 and	 maximum	 depth	 hence	 it	 is	 non-
deterministic,	so	that	the	policy	identified	later	is	probably	the	best.	However,	our	aim	is	to	simulate	a	
user	policy	with	decent	accuracy	and	reasonable	number	of	 rules,	and	not	 to	 identify	best	set	of	k	
rules.	Therefore,	following	simple	cost	function	have	been	used	to	allow	search	algorithm	advancing.	

where	N	is	sample	space	covered	by	node	n,	and	𝔭	is	sample	space	covering	all	samples	with	
positive	scores.	

With	this	technique,	cost	of	a	node	is	guaranteed	to	decrease	at	each	depth	if	a	rule	generated	so	far	
results	in	better	accuracy.	

On	the	other	hand,	because	root	node	has	perceivable	influence	on	identifying	best	boundaries	for	
partition,	they	are	chosen	randomly	from	remaining	samples	whose	attributes	are	in	the	intersection	
space	of	five	or	less	most	occurred	time	and	locations,	at	each	rule	generation.	If	the	union	is	empty	
then	root	node	is	chosen	randomly	from	all	remaining	samples.	

All	created	rules	are	later	fed	into	A*	algorithm	for	policy	generation	phase.	

	

	

	

	

𝒮O==@8=SB> = 𝒮P=>@=YYMOBS@?PB>U=@> 	∩ 	𝒮P=>@=YYMOBSU=YF@?=8> 	
	 	 	 	 	 	 	 	 	 	 	 												(4.7)	

𝑓(𝑛) = 1 −	
∑ 𝑠𝑐𝑜𝑟𝑒(𝑠 ∈ Ν)
∑ 𝑠𝑐𝑜𝑟𝑒(𝑠 ∈ 𝔭)

	

	 	 	 	 	 	 	 	 	 	 	 												(4.6)	



	 -	21	-	

Algorithm	4.1:	Generating	Rules	
	
	
	
1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	
11:	
12:	
13:	
14:	
15:	
16:	
17:	

Input:	dataset	for	a	user,	cost	factor	c,	maximum	depth	k,	maximum	iteration	i	
Output:	set	of	rules	ruleset	
	
begin	
initialize	groundtruth	with	cost	c	from	dataset	
ruleset	=	[]	
remainingsamples	=	groundtruth	
while	remainingsamples	
	 ST	=	five	or	less	most	occurred	times	in	remainingsamples	
	 SL	=	five	or	less	most	occurred	locations	in	remainingsamples	
	 RS	=	ST	∩	SL	
	 if	RS	not	empty	then	
	 	 rootnode	=	randomly	choose	from	RS	
	 else	
	 	 rootnode	=	randomly	choose	from	remainingsamples		
	 rule,	remainingsamples	=	ASTAR(rootnode,remainingsamples,k,i)	
	 ruleset	ß	rule	
end	
return	ruleset	
end	

	

4.2.2 Identifying Policy 
	

Compared	to	compressing	rule	space,	identifying	policy	from	generated	rules	is	more	straightforward.	
Root	node	is	opted	empty,	since	one	instance	of	algorithm	will	run	during	whole	phase.	At	each	step,	
child	nodes	are	generated	for	all	remaining	nodes,	they	are	added	to	priority	queue	along	with	their	
cost	from	heuristics,	and	later	are	popped	off	the	queue	until	maximum	depth	is	reached.	In	the	end,	
an	optimal	policy	(privacy	preferences	for	a	user,	set	of	k-rules)	is	identified.	The	privacy	is	not	the	best	
but	the	optimal,	because	two	A	star	algorithm	runs	separately.	The	rules	generated	from	first	A	star	
algorithm	aims	to	be	best	clusters,	however,	when	identifying	privacy	policy,	they	may	not	result	in	
best	possible	policy	for	a	user	with	k-rules.	The	same	cost	function	from	Section	4.2.1	is	used.	

	

Algorithm	4.2:	Identifying	Policy		
	
	
	
1:	
2:	
3:	
4:	
5:	
6:	

Input:	dataset	for	a	user,	cost	factor	c,	set	of	rules	ruleset,	rule	limit	k	
Output:	policy	P	
	
begin	
initialize	groundtruth	with	cost	c	from	dataset	
rootnode	=	[]	
P	=	ASTAR(rootnode,groundtruth,ruleset,k)	
return	P	
end	
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5. Detecting out-of-
routine Events 

	

This	 chapter	 will	 discuss	 in	 detail	 the	 approach	 [16]	 which	 utilized	 conditional	 trajectory	 entropy	
estimation	in	order	to	distinguish	waypoints	on	the	user	trajectory	and	segment	the	trajectories.	Their	
research	has	shown	that	conditional	trajectory	entropy	value	of	locations	can	be	used	as	indicator	of	
routine	and	out-of-routine	events,	and	users	are	prone	to	expose	behaviour	changes	(e.g.	spend	more	
time)	 at	 the	 locations	 with	 higher	 entropy	 values.	 Later	 in	 the	 chapter,	 we	will	 explain	 necessary	
modifications	we	applied	on	 their	work	 in	order	 to	detect	 entropy	 values	 instantly,	 and	 adapt	 the	
system	into	decision	making	process.	

	

5.1 Background 
	

5.1.1 Computation of Entropy 
	

The	entropy	in	Information	theory,	is	the	measurement	which	used	to	estimate	amount	of	information	
(i.e.	amount	of	surprise)	of	the	stochastic	source	of	data,	which	is	explicity	written	as;	

where	P	is	probability	distribution	matrix	of	a	source	of	data.	

Alternatively,	 the	 entropy	 expression	 for	 the	 trajectories	 is	 used	 to	 quantify	 the	 randomness	 of	
trajectories	of	an	irreducible	finite	state	Markov	chain	with	given	initial	state	s	and	final	state	d.	Instead	
of	 estimating	 entropy	 of	 one	 state,	 Ekroot	 et	 al.	 [14]	 has	 proposed	 a	method	which	 can	 estimate	
entropy	value	of	transition	𝐻>S 	between	state	s	and	d	from	probability	distribution	of	every	possible	
trajectories	between	each	state.	

Number	of	applications	in	graph	theory	and	in	statistical	physics	require	computation	of	the	entropy	
of	Markov	trajectories.	Yet,	some	of	them	demands	calculation	of	the	entropy	of	markov	trajectories	
with	specified	intermediate	states	as	studies	of	random	walks	on	graphs	do.	Consequently,	another	

𝐻(𝜒) = −V𝜇?𝑃?b log 𝑃?b
?,b

	

	 	 	 	 	 	 	 	 	 	 	 												(5.2)	

𝐻(𝑋) = −V𝑃(𝑥?) log 𝑃(𝑥?)
?

	

	 	 	 	 	 	 	 	 	 	 	 												(5.1)	
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expression	for	entropy	of	conditional	markov	trajectories	was	later	proposed	by	Kafsi	et	al.	[15]	which	
builds	on	top	of	the	definition	from	Ekroot	et	al.	[14].	

	

Figure	5.1	-	An	irreducible	5-state	Markov	Chain	example	as	given	in	[15]	

Unfortunately,	conditional	entropy	𝐻>S|M	is	not	computationally	easy	since	it	is	not	the	entropy	of	the	
random	variable	sd	given	random	variable	u	but	given	realization	of	random	variable	u.	Furthermore,	
simply	using	additivity	property	does	not	hold.	When	we	consider	the	example	from	[15]	in	Figure	5.1,	
if	we	would	like	to	compute	entropy	of	trajectory	1-5	conditional	on	4	(𝐻ij|k),	simply	calculating	𝐻il +
	𝐻lk + 	𝐻kj = 4.03	or	𝐻ik + 	𝐻kj = 3.18	gives	inaccurate	results	because	𝐻ij|k	should	be	zero	since	
only	one	path	exists	supporting	the	condition,	which	is	1-3-4-5.	

However,	 according	 to	 the	 authors,	 the	 conditional	 entropy	 of	 trajectory	 where	 s	 is	 source,	 d	 is	
destination	and	𝑢	 = 	 𝑢i	𝑢r	. . . 𝑢U	is	sequence	of	intermediate	states,	can	be	measured	using	the	chain	
rule	for	entropy	as;	

where	𝑢s = 𝑠.	In	order	to	compute	𝐻MtMtuv|S,	𝑃R
w 	matrix	was	defined	as	

α>MS 	expresses	 the	probability	 that	 the	 random	trajectory	Tsd	goes	 through	 the	state	u	 at	
least	 once;	 and	 can	 be	 computed	 making	 states	 u	 and	 d	 absorbing	 and	 calculating	 the	
probability	to	be	absorbed	by	state	u	from	starting	state	s,	as	technique	from	[17]	indicates.	

𝐻>S|M = 𝐻(𝑇>S|𝑇>S ∈ 	𝑇>SM ) = V𝐻MtMtuv|Sz + 𝐻M{S

U|i

R}s

	

	 	 	 	 	 	 	 	 	 	 	 												(5.3)	

(𝑃Rw )?b = 	

⎩
⎪
⎨

⎪
⎧
0																																										𝑖𝑓	𝑖 = 𝑢R�i, 𝑑	𝑎𝑛𝑑	𝑖	 ≠ 𝑗
1																																											𝑖𝑓	𝑖 = 𝑢R�i, 𝑑	𝑎𝑛𝑑	𝑖 = 𝑗
𝑃?b																												𝑖𝑓	𝑖 ≠ 𝑢R�i, 𝑑	𝑎𝑛𝑑	𝛼?SMtuv = 1
1 − 𝛼bSMtuv
1 − 𝛼?SMtuv

𝑃?b						𝑖𝑓	𝑖 ≠ 𝑢R�i, 𝑑	𝑎𝑛𝑑	𝛼?SMtuv < 1

	

	 	 	 	 	 	 	 	 	 	 	 												(5.4)	
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Being	 absorbed	 by	 intermediate	 state	 u	 before	 destination	 state	 d	 guarantees	 that	 the	
trajectory	goes	state	u	before	d,	and	it	may	afterwards	finish	up	at	d	in	finite	time.	

After	the	transformation	(5.4)	is	applied	on	P,	𝑃Rw 	is	not	necessarily	irreducible	anymore	and	conflicts	
with	closed-form	expression	from	[14].	Therefore,	new	expression	for	the	entropy	of	the	trajectory	
has	been	proposed	by	[15];		

where	P	is	the	transition	probability	matrix	of	a	finite	state	such	that	there	exists	a	path	from	
any	state	to	d,	and	

where	𝐻(𝑃R∙)	is	the	local	entropy	of	state	k.	

In	order	to	calculate	𝐻MtMtuv|S;	we	transform	matrix	P	into	𝑃Rw 	at	first.	Let’s	assume	S1	and	S2	are	two	

subsets	 of	𝑃Rw 	where	𝑆i = 	 𝑖 ∈ 𝑆 ∶ 𝛼?Mtuv > 0 	and	𝑆r = 	 𝑖 ∈ 𝑆 ∶ 𝛼?Mtuv = 0 .	 S1	 and	 S2	 does	 not	
intersect	with	each	other	and	they	are	clearly	a	partition	of	𝑃Rw ,	because	𝑃?bw = 1 − 𝛼bSMtuv 	/	 1 −
𝛼?SMtuv 	𝑃?b 	= 0	if	𝑖	 ∈ 𝑆i	𝑎𝑛𝑑	𝑗	 ∈ 𝑆r.	Then,	Qu+1	which	is	extracted	from	S1,	can	be	used	in	(5.6)	to	
calculate	𝐻MtMtuv|S.	

Finally;	𝐻M{S 	in	(5.3),	can	be	calculated	directly	from	P	using	(5.5)	and	(5.6).	

	

Algorithm	5.1:	Conditional	entropy	calculation	as	given	in	[15]	
	
	
	
	
1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	

Input:	Transition	probability	matrix	P,	source	state	s,	destination	state	d,	sequence	of	
intermediate	states	u	=	u1	.	.	.	ul	
Output:	𝐻>S|M	
	
u0	=	s	
sum	=	0	
for	k	=	0	to	l	–	1	do	
	 Compute	𝑃Rw 	from	P	using	(5.4)	
	 Compute	𝐻MtMtuv|S 	from	𝑃Rw 	using	(5.5-5.6)	
	 sum	=	sum	+	𝐻MtMtuv|S 	
end	
Compute	𝐻M{S 	from	P	using	(5.5-5.6)	
𝐻>S|M = 𝑠𝑢𝑚 +	𝐻M{S 	
return	𝐻>S|M	

	

	

𝑃 = 	�𝑄𝑑 𝑃iS
𝑃Si 𝑃SS

�		

	 	 	 	 	 	 	 	 	 	 	 												(5.5)	

𝐻>S = 	V((𝐼 − 𝑄S)|i)>R𝐻(𝑃R∙)
R�S

	

	 	 	 	 	 	 	 	 	 	 	 											(5.6)	
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5.1.2 Related Work 
	

An	application	[16]	discussed	previously,	was	successfully	implemented	a	system	that	detects	possible	
intermediate	waypoints	 on	 subject’s	 trajectories.	However,	 to	 being	 able	 to	 train	 feasible	mobility	
Markov	chain	that	captures	the	patterns	of	mobility,	and	evaluate	the	system;	large-scale	dataset	is	
one	prerequisite.	Therefore,	they	have	used	GPS	trajectories	within	the	city	of	Beijing,	China	 in	the	
Geolife	dataset	[18]	which	collected	mobility	traces	of	182	subjects	for	five-year	period	and	includes	
approximately	18,000	trajectories,	as	can	be	seen	in	Figure	5.2.		

	

Figure	5.2	-	GPS	trajectories	within	the	city	of	Beijing,	China	[16]	

In	order	to	train	mobility	Markov	chain;	they	first	have	discretized	the	GPS	records	into	squares	whose	
side	 lengths	 are	1km	and	encloses	 set	of	 locations	 as	 graph	abstraction	of	 the	world.	 Examples	of	
representation	of	squares	were	shown	in	Figure	5.4.	Secondly,	a	weighted	graph	G(V,E)	was	formed	
whose	vertices	represent	discretized	areas	previously,	edges	represent	transition	between	areas	and	
weight	of	the	edge	denotes	count	of	the	transition	occurred.	Jumps	due	to	loss	of	GPS	signal	and	self-
transitions	 were	 excluded	 from	 the	 graph.	 Finally,	 the	 first	 order	Markov	 chain	 that	 captures	 the	
patterns	of	population	mobility,	was	constructed	from	G(V,E)	using	a	maximum	likelihood	estimator	
because	available	train	data	was	not	sufficient	to	train	high	order	high	order	Markov	chain.		

Before	evaluation	phase,	they	have	distinguished	intermediate	waypoints	from	intermediate	points	in	
the	dataset	using	the	residence	time	a	subject	spent.	Secondly,	they	conducted	an	experiment,	where	
average	 time	 𝜇� 	spent	 at	 intermediate	 locations	 which	 satisfy	 the	 inequality	 𝐻>S|M > 𝛼𝐻>S 	is	
calculated	with	different	values	of	𝛼.	𝑠	 → 𝑑	traces	were	 frequently	associated	with	home	 to	work,	
however,	shopping	and	sightseeing	were	also	included	as	starting	or	destination	points	at	times.	
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Figure	5.3	-	Average	residence	time	μ	̂α	of	remaining	locations	increases	with	a	filter	factor	α	[16]	

The	results	in	Figure	5.3	showed	that	average	time	𝜇� 	increases	with	𝛼,	and	there	was	sharp	transition	
in	the	value	of	𝜇� 	as	soon	as	𝛼	is	considered	as	greater	than	one	(i.e.	the	intermediate	locations	where	
conditional	trajectory	entropy	is	less	than	trajectory	entropy,	are	filtered	out).	Since	residence	time	
quantifies	the	importance	of	the	location,	the	intermediate	locations	withheld	with	high	values	of	𝛼	
were	considered	most	likely	waypoints.	

For	 trajectory	 segmentation	by	extracting	 intermediate	waypoints,	 they	have	proposed	a	 recursive	
algorithm.	The	algorithm	first	tries	to	find	a	waypoint	(line	9)	that	may	segment	the	trajectory,	and	if	
it	 is	succeed,	other	possible	waypoints	are	searched	through	trajectories	split	 (line	12-17).	 In	every	
step,	the	waypoint	that	most	increases	the	conditional	entropy	were	taken	into	consideration	(line	21).	
A	sensitivity	parameter	a	is	used	to	make	algorithm	more	selective	at	extracting	waypoints	(line	23).	
Average	time	𝜇� 	spent	at	intermediate	locations	which	satisfy	the	inequality	𝐻>S|M > 𝛼𝐻>S 	,	increases	
with	𝛼.	Higher	a	values	ensure	selection	of	more	significant	waypoints.		

	

Algorithm	5.2:	Trajectory	segmentation	as	given	in	[16]	
	
	
	
1:	
2:	
3:	
4:	
5:	
6:	
7:	
	
8:	
9:	
10:	
11:	
12:	

Input:	trajectory	traj,	transition	probabilities	matrix	P,	sensitivity	a	
Output:	indices	of	waypoints	U	
	
begin	
U	=	[]	
if	len(traj)	>	2	then	
	 segment(traj,	0,	len(traj)	-	1)		
end	
return	U		
end	
	
Function	segment(traj,	i,	j)	
k	=	partition(traj,	i,	j)		
if	k	>=	0	then	
	 append(U,	k)		
	 if	i	+	1	<	k	then	
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13:	
14:	
15:	
16:	
17:	
18:	
	
19:	
20:	
21:	
22:	
23:	
24:	
25:	
26:	
27:	

	 	 segment(traj,	i,	k)		
	 end	
	 if	k	+	1	<	j	then		
	 	 segment(traj,	k,	j)	
	 end	
end	
	
Function	partition(traj,	i,	j)	
s	=	traj[i],	d	=	traj[j]	
k	=	argmaxi<k<j	Hsd|traj[k]		
u	=	traj[k]	
if	Hsd|u	>	aHsd	then	
	 return	k		
else	
	 return	1		
end	

	

	

Figure	5.4	-	Intermediate	location	near	to	the	starting	location	has	almost	no	effect	on	the	conditional	entropy.	Revealing	
an	intermediate	point	along	popular	trajectories	decreases	conditional	entropy	at	high	amount.	However,	revealing	the	

intermediate	location	in	the	lower-right	corner	increases	the	conditional	entropy	most	[16]	

In	Figure	5.4,	all	raw	trajectories	between	initial	waypoint	(green	square)	and	destination	(red	square)	
were	shown.	The	conditional	entropy	of	intermediate	points	(blue	squares)	near	to	starting	point	were	
equal	to	non-conditional	entropy	Hsd.	While	approaching	to	the	destination,	conditional	entropy	value	
of	 intermediate	 points	 was	 decreasing	 and	 lower	 than	 Hsd;	 meaning	 they	 significantly	 increased	
trajectory	predictability	and	were	less	likely	intermediate	waypoints.	However,	the	intermediate	point	
in	the	lower-right	corner	maximized	conditional	entropy	by	increasing	randomness	of	the	trajectory;	
meaning	this	point	was	not	on	the	most	popular	paths	between	source	and	destination	and	possibly	
were	not	just	an	intermediate	point	on	route	to	the	destination	but	intermediate	waypoint	instead.	
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5.2 Optimizations 
	

The	routine	aware	control	mechanism	presented	 in	Chapter	3	should	be	able	 to	 instantly	calculate	
entropy	of	each	location,	using	only	available	information	which	is	recent	location,	history	of	location	
activity	and	Markov	chain	generated	based	on	location	activity.	However,	the	presented	work	from	
Kafsi	 et	 al.	 [16]	 is	 aimed	 to	 extract	 waypoints	 and	 segment	 trajectories	 given	 start	 and	 final	
destinations,	which	is	not	appropriate	for	real-time	estimating	because	final	destination	information	
would	not	be	known	by	the	system.	

In	 order	 to	 address	 this,	 we	 have	 modified	 the	 original	 algorithm	 where	 each	 recent	 location	 is	
considered	as	a	destination	waypoint	and	previously	visited	locations	are	either	intermediate	points	
or	source	location.	If	a	location	loc	visited	had	been	logged	before	in	the	location	history	traj	at	position	
i	or	as	a	source	at	position	0,	intermediate	point	ui+1	is	assigned	as	a	new	source	location,	and	new	path	
information	is	constructed	as	newtraj	=	ui+2	ui+3	…	un	where	un	is	previously	visited	location	before	loc.	
The	example	is	given	in	Figure	5.5.	Once	user	visits	a	location,	the	entropy	can	be	calculated	instantly	
given	the	trajectory	history.	Other	difference	from	the	original	algorithm	is,	intermediate	locations	are	
not	 fed	 into	entropy	calculation	one	by	one	but	as	a	whole	trajectory,	since	our	aim	 is	 to	estimate	
entropy	of	destination	utilizing	whole	location	history	log.	

	

Figure	5.5	-	Entropy	is	calculated	at	each	location	update	of	a	user	

Since	 series	 of	 locations	 are	 not	 generated	 randomly	 but	 from	user	mobility	 behaviour,	 and	holds	
information	about	the	routineness	of	the	trajectory	towards	destination,	this	approach	guarantees	to	
find	if	recent	location	is	reached	by	using	the	routine	or	out-of-routine	trajectories.	However,	because	
system	 considers	 the	 trajectory	 routineness,	 it	 cannot	 differentiate	 a	 routineness	 specific	 to	 one	
location.	In	other	words,	once	a	location	which	emits	high	entropy	is	visited,	all	further	locations	will	
emit	high	entropy	as	well,	until	path	information	is	overwritten.	This	effect	would	be	avoided,	if	we	
could	precisely	predict	subject’s	destination	location	at	a	specific	time,	and	estimate	entropy	between	
initial	and	destination	location	given	condition	on	the	recent	location.	

In	 the	optimized	Algorithm	5.2,	 time	tolerance	 tol	 is	additionally	designated	 in	order	 to	distinguish	
occurrence	of	missing	location	updates,	and	specify	the	entropy	value	missent	of	location	update	after	
the	missing	update.	
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Algorithm	5.2:	Entropy	of	Locations	
	
	
	
1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	
11:	
12:	
13:	
14:	
15:	
16:	
17:	
18:	
19:	
20:	
21:	
22:	
23:	
24:	
25:	
26:	
27:	

Input:	trajectory	traj,	transition	probabilities	matrix	P,	recent	location	L,	time	tolerance	tol,	
missing	entropy	value	missent	
Output:	entropy	of	recent	location	ent,	updated	trajectory	newtraj	
	
begin	
destination	=	L	
prevlocupdatetimestamp	ß	traj	
range	=	currenttime	–	prevlocupdatetimestamp	
if	range	<	tol	then	
	 if	destination	in	traj	then	
	 	 get	location	index	i	from	traj	
	 	 source	ß	traj[i+1]	
	 	 path	ß	traj[i+2:]	
	 	 ent	=	compute_cond_entropy(source,destination,path)	
	 	 newtraj	ß	traj[i+1:]	
	 end	
	 else	
	 	 source	ß	traj[0]	
	 	 path	ß	traj[1:]	
	 	 ent	=	compute_cond_entropy(source,destination,path)	
	 	 newtraj	ß	traj	
	 end	
	 newtraj	ß	destination	
else	
	 source	ß	L	
	 ent	=	missent	
	 newtraj	=	ø	
	 newtraj	ß	source	
return	ent,	newtraj	
end	
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6. Data processing 
	

As	 indicated	 in	 [16],	 constructing	mobility	Markov	 chain	 from	 location	 events	 requires	 large-scale	
dataset	to	accurately	cover	all	possible	trajectories	and	probabilities.	Thus,	we	have	used	anonymized	
version	of	Reality	mining	dataset	[24]	from	MIT	Human	Dynamics	Lab,	generated	by	interoperating	of	
94	participants	(90%	student	and	10%	staff)	over	a	ten-month	period	between	2004	and	2005.	The	
dataset	contains	phone	logs,	Bluetooth	scans,	application	usage,	location	events	including	cell	tower	
IDs	 and	 cell	 tower	 area-IDs,	 phone	 status	 and	 survey	 data	 of	 the	 users.	 However,	we	will	 require	
location	event	and	phone	(call)	log	attributes	for	the	implementation	and	evaluation	of	the	system,	as	
discussed	next	sections.	

Data	continuity	(i.e.	having	less	missing	data)	plays	an	important	role	in	the	training	and	testing	phase.	
The	continuity	of	dataset	for	users	is	shown	in	the	Figure	6.2	where	the	black	line	stands	for	a	location	
event,	 green	 line	 for	 outgoing	 or	 incoming	 communication	 and	 red	 line	 for	 declined	 or	 missed	
communication.	Furthermore,	distribution	of	time	interval	(hours)	between	each	location	event	in	the	
dataset	for	users	is	given	in	Figure	6.1.	Overall,	majority	of	participants	can	provide	important	insights	
in	our	implementation	and	evaluation.		

Following	 sections,	 we	will	 discuss	 required	 pre-processing	 and	 processing	 on	 the	 dataset	 for	 the	
evaluation.	

	

Figure	6.1	-	Distribution	of	inter-arrival	time	(IAT)	of	location	updates	(samples)	per	participant	
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Figure	6.2	-	Continuity	chart	of	Reality	Mining	dataset.	Blacks	are	for	location	updates	(samples),	greens	are	for	
incoming/outgoing	call	events,	reds	are	for	missed/declined	calls	
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6.1 Pre-processing Dataset 
	

In	this	section,	we	will	discuss	the	required	attributes	and	pre-processing	of	the	dataset	before	we	
could	utilize	it	for	our	evaluations,	and	how	we	have	applied	them.	

	

6.1.1 Required Attributes 
	

Concerning	evaluation	and	training	of	the	system,	we	will	need	extensive	series	of	location	events	of	
users	including	the	timestamp	and	spatial	information	to	construct	mobility	Markov	chain,	and	their	
sharing	behaviour	or	feedbacks	(i.e.	labelled	data)	with	detailed	properties	according	to	privacy	setting	
types	used	(i.e.	target	social	group,	time,	day,	location	etc.)	in	order	to	extract	the	ground	truth	and	
generate	best	possible	policy.	Unfortunately,	most	of	large-scale	datasets	does	not	come	with	labelled	
data	 that	 shows	 participants’	 sharing	 behaviour	 and	 Reality	 mining	 dataset	 is	 hardly	 different.	
However,	we	 can	 take	 advantage	 of	 phone	 log	 data	 of	 each	 user	 and	 imitate	 the	 ground	 truth	 as	
explained	in	next	sub-section.	

	

6.1.2 Pre-processing Location Samples 
	

	

Table	6.1	-	Sample	from	location	updates	(samples)	dataset	

Reality	mining	dataset	consists	of	series	of	location	samples	(Table	6.1)	as	data-stream	whose	average	
estimated	 inter-arrival	 time	 for	 participants	 are	 shown	 in	 Figure	 6.1.	 Because	 the	 dataset	 is	
anonymized,	area	ID	of	cell	towers	and	cell	tower	IDs	are	covered	instead	of	spatial	reference	system.	
Even	though	it	would	not	be	sufficient	for	detailed	study	or	analysis,	considering	area	IDs	as	collection	
of	spatial	coordinates	at	low	granularity	level	is	to	our	advantage	considering	size	of	the	dataset,	and	
hinders	 the	 requirement	 of	 running	 accurate	 classification	 algorithm.	 Using	 low	 granularity	 level	
lowers	the	size	of	the	ground	truth	making	it	more	authentic	to	simulate	user’s	best	policies,	and	eases	
construction	of	Markov	chain.	Therefore,	we	have	avoided	using	cell	tower	IDs	and	processed	area	IDs	
directly.	
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In	order	to	process,	evaluate	the	system	and	be	able	to	label	the	dataset,	we	require	the	locations	with	
residence	 time	 information	 instead	 of	 series	 of	 location	 samples.	 Hence,	 we	 have	 pre-processed	
sequence	 of	 location	 samples	 and	 construct	 location	 events	 with	 residence	 time	 feature	 using	
Algorithm	 6.1.	 The	 input	 tol	 allows	 us	 to	 define	 tolerance	 interval	 for	 missing	 samples	 between	
sequence	of	same	location	samples.	Sample	table	from	pre-processed	location	dataset	with	tolerance	
time	of	thirty	minutes	is	shown	Table	6.2.	

Algorithm	6.1:	Constructing	location	events	with	residence	time	
	
	
	
1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	
11:	
12:	
13:	
14:	
15:	
16:	
17:	
18:	
19:	
20:	
21:	
22:	

Input:	unlabelled	location	samples	dataset	ULSD	of	user,	tolerance	time	tol	
Output:	unlabelled	location	events	dataset	ULD	of	user	
	
begin	
sort(ULSD)	
initialize	prevarea,RS,RE	
for	sample	in	ULSD	
	 if	sample[‘areaID’]	==	prevarea	then	
	 	 if	sample[‘date’]	–	RE	>	tol	then	
	 	 	 ULD	ß	areaID,	RS,	RE	
	 	 	 RS	=	sample[‘date’]	
	 	 	 RE	=	sample[‘date’]	
	 	 end	
	 	 else	
	 	 	 RE	=	sample[‘date’]	
	 	 end	
	 else	
	 	 ULD	ß	areaID,	RS,	RE	
	 	 RS	=	sample[‘date’]	
	 	 RE	=	sample[‘date’]	
	 	 prevarea	=	sample[‘areaID’]	
	 end	 	 	
end	
return	ULD	
end	

	

	

Table	6.2	-	Sample	from	location	events	dataset	

6.1.3 Labelling Location Events 
	

The	 authors	 in	 [27]	 have	 presented	 a	work	 including	 42	 participants	 that	 explores	which	 possible	
features	of	interpersonal	relationships	influence	sharing	and	at	which	extent.	Their	results	show	that	
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closeness	of	participant	with	an	individual	is	the	strongest	indicator	of	willingness	to	share	his	location,	
and	frequency	of	communication	approximates	closeness	and	willingness	to	share.	Along	similar	lines,	
another	research	[29]	has	found	that	the	most	important	factors	were	the	requester’s	identity	and	the	
reason	behind	his	query.	By	referencing	these	findings,	we	have	correlated	communication	events	of	
subject	with	their	intention	of	sharing.	

6.1.3.1 Pre-processing Phone Logs 
	

	

Table	6.3	-	Sample	from	phone	logs	dataset	

A	communication	event	in	dataset	consists	of	date,	hash	of	phone	number,	contact	ID,	type,	direction	
and	 duration	 as	 can	 be	 seen	 in	 Table	 6.3.	 There	 are	 5	 unique	 types	which	 are	 packet	 data,	 short	
message,	voice	call,	data	call	and	MMS,	and	3	unique	directions	which	are	outgoing,	 incoming	and	
missed.	We	have	first	filtered	some	events	in	dataset	considering	following	steps;	

- The	events	whose	contact	is	-1	(i.e.	the	number	was	not	in	participant	contact	list),	are	thought	
as	they	represent	negative	influence	of	closeness	and	filtered.		

- Data	calls	are	filtered	because	they	were	not	towards	actual	individuals	and	occurrence	rate	
was	0.01%	in	whole	dataset.	

- MMSs	are	filtered	because	direction	information	was	missing	and	occurrence	rate	was	0.01%	
in	whole	dataset.	

- Packet	data	is	filtered	because	target	information	was	missing.	Moreover,	internet	messaging	
over	mobile	devices	was	not	popular	among	users	throughout	the	collecting	period	of	dataset	
(2004-2005).	

- Short	messages	are	filtered.	There	are	several	reasons	of	this	action;	first,	only	0.04%	of	events	
in	whole	short	message	event	set	had	contact	information.	Second,	we	cannot	extract	neither	
closeness	nor	accurate	sharing	behaviour	since	declining	or	missing	 incoming	messages	are	
not	an	option.	

After	 application	 of	 above	 steps,	 only	 voice	 call	 events	 were	 remained.	 Yet,	 we	 had	 470	 unique	
contacts	(average	45	contacts	per	participant),	and	defining	accurate	policy	with	least	number	of	rules	
was	not	feasible	since	‘target’	dimension	of	ground	truth	would	have	long	length,	and	dataset	is	not	
sufficient	 to	 reveal	 detailed	 requester	 profile	 for	 each	 contact.	Moreover,	 users	 often	 have	more	
generic	social	groups	with	different	levels	of	closeness.	
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6.1.3.2 Clustering contacts 
	

Defining	 and	 identifying	 community	 structure	 in	 networks	 is	 an	 important	 issue	 and	 addressed	 by	
algorithmic	methods	such	as	spectral	graph	partitioning	or	hierarchical	clustering	[30].	Although,	 in	
our	 study,	 we	 aim	 to	 cluster	 contacts	 of	 a	 participant	 in	 terms	 of	 closeness	 level	 by	 exploiting	
communication	 frequency.	 Hence,	 knowledge	 of	whole	 network	was	 not	 necessary,	 and	we	 could	
apply	simple	clustering	algorithms	based	on	K-Means,	DBSCAN,	Mean-shift,	Affinity	Propagation	and	
such,	by	using	features	in	Table	6.4	for	a	classifier.	

	

Co
nt
ac
t	 Major	features	 Minor	features	

Communication	
frequency	

Total	duration	of	
calls	

Morning		
communication	

ratio	

Afternoon	
communication	

ratio	

Evening	
communication	

ratio	
Table	6.4	-	Major	and	minor	features	used	for	the	classifier.	The	major	features	are	weighted	more	than	minor	features	

Before	training	classifier,	major	features	are	transformed	individually	by	using	Formula	6.1	(minimum-
maximum	scaler)	so	that	they	will	be	 in	range	between	zero	and	one,	and	they	are	then	optionally	
weighted	more	than	minor	features.	The	algorithms	thereby	prioritize	clustering	using	major	features,	
but	if	samples	are	closely	distributed	on	major	features	space,	then	minor	features	will	help	to	further	
categorize	of	contacts.	Aledavood	et	al.	[31]	has	proposed	a	research	shows	that	daily	call	patterns	of	
an	individual	in	mobile	phone	communication	differs	towards	different	groups	of	people	by	dividing	
day	into	6-hour	time	spans.	We	have	used	similar	approach	to	cluster	individuals	further	by	dividing	
day	into	8-hour	time	spans.	

Including	declined	or	missed	calls	(i.e.	negative	behaviour)	in	our	classifier	training	dataset	would	not	
be	fair	at	evaluation	of	the	main	system,	hence	they	are	not	included	in	the	training	data.	Additionally,	
the	participants	who	are	missing	adequate	communication	data	for	clustering	as	well	as	evaluation	of	
the	system,	were	filtered	ahead.		

Discovering	number	of	groups	(determining	number	of	clusters)	for	each	participant	is	another	issue	
in	actually	solving	the	clustering	problem.	Hierarchical	clustering	algorithms	avoid	this	issue	by	building	
a	 hierarchy	 of	 clusters	 in	 greedy	manner,	 and	 determine	 number	 of	 cluster	 itself.	 However,	 each	
participant	has	their	own	unique	contact	network	structure	resulting	varying	number	of	groups	with	
default	classifier.	 It	would	be	also	an	option	which	may	require	additional	study	but	we	decided	to	
abide	common	pattern	adopted	by	the	 introduced	papers	 in	Chapter	2.	Preferred	number	of	social	
groups	by	these	papers	are	commonly	between	three	and	five,	and	they	are	addressed	as	 ‘Family’,	
‘Close	Friends’,	’Friends’,	’Colleagues’	and	occasionally	’Advertisers’.	Therefore,	K-Means	classifier	with	
four	clusters	were	applied	on	the	dataset	and	contacts	of	participants	were	grouped	into	four	different	
social	groups.	In	Figure	6.3,	contacts	of	participants	7	and	56	are	shown	as	example	before	classifier	
are	applied	on	them.	Then,	application	of	classifier	with	major	features	weighted	two	times	more	than	
minor	features,	is	shown	in	Figure	6.4.	 	

	

𝑋 = 	�	
𝑋 − min	(𝑋)

max(𝑋) − 	min	(𝑋)
	�	

	 	 	 	 	 	 	 	 	 	 	 												(6.1)	
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Figure	6.3	-	Distribution	of	contacts	for	participant	7	(left)	and	56	(right)	

	

	

Figure	6.4	-	Distribution	of	contacts	after	classifier	was	applied,	for	participant	7	(left)	and	56	(right).	Labels	(colours)	
indicate	different	social	groups	

	

6.1.3.3 Labelling 
	

Labelling	is	done	by	merging	phone	logs	dataset	and	location	events	dataset	utilizing	Algorithm	6.2.	
The	phone	logs	dataset	has	data	samples	with	three	main	event	types	which	are	call,	missed	call	and	
declined	call.	Call	samples	are	considered	as	fair	indicator	of	positive	sharing	behaviour.	Missed	calls	
on	the	other	hand,	are	treated	as	negative	attitude	only	if	participant	has	not	called	back	to	or	took	
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other	 calls	 from	 same	 social	 group	 throughout	 his	 stay,	 in	 order	 to	 depreciate	 the	 influence	 of	
involuntary	missing	calls.	Yet,	categorization	of	declined	calls	is	discretionary	because	people	declines	
call	either	to	let	requester	know	their	unavailability	(i.e.	positive	behaviour),	or	to	demonstrate	their	
unwillingness	towards	talking	(i.e.	negative	behaviour).	Ultimately,	optimistic	approach	has	been	taken	
towards	declined	calls	and	they	are	labelled	as	positive	behaviour.	

It	is	probable	participant	would	not	have	received	or	forwarded	a	voice	call	during	his	stay.	That	cases	
are	treated	as	‘non-behaviour’	and	will	be	discussed	next	chapter.	

	

Algorithm	6.2:	Labelling	location	events	
	
	
	
	
1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	
11:	
12:	
13:	
14:	
15:	
	
16:	
17:	
18:	
19:	
20:	
21:	
22:	
23:	
24:	
25:	
26:	
	
27:	
28:	
29:	
30:	
31:	
32:	

Input:	pre-processed	phone	logs	dataset	CD	of	user,	unlabelled	location	events	dataset	ULD	
of	user	
Output:	labelled	location	events	dataset	LD	of	user	
	
begin	
LD	=	ULD	
for	sample	in	ULD	
	 S	=	sample[‘arrive	date’]	
	 E	=	sample[‘leave	date’]	
	 actions	=	get_actions(S,E,CD)	
	 if	len(actions)	>	0	then	
	 	 LD[sample][‘actions’]	=	actions		
	 end	
	 else	
	 	 LD[sample][‘actions’]	=	‘Non’		
	 end	
end	
return	LD	
end	
	
Function	get_actions(S,	E,	CD)	
U	=	[]	
samples	=	CD[(date	>	S)	&	(date	<	E)]		 #check	communication	events	between	given	dates	
for	sample	in	samples	
	 actiontype	=	check_action_type(sample)	
	 target	=	sample[‘target’]	
	 U.append([actiontype,target])	
end	
remove	duplicates	in	U	
remove	‘Neg’	action	for	a	target	who	has	both	‘Neg’	and	‘Pos’	actiontype	in	U	
return	U	
	
Function	check_action_type(sample)	
A	=	sample[‘type’]	
if	A	==	‘outgoing’	or	‘incoming’	or	‘declined’	then	
	 return	‘Pos’		 #positive	behaviour	
if	A	==	‘missed’	then	
	 return	‘Neg’		 #negative	behaviour	
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6.2 Initializing Ground-truth Space 
	

Ground-truth	space	of	a	user	is	the	key	instrument	to	evaluate	accuracy,	under-share	and	over-share	
rates	of	the	decision-making	system.	It	is	generated	from	the	partition	(train	set)	of	labelled	locations	
events	dataset	of	a	user,	given	choice	of	the	discretisation	being	used	in	the	evaluation.	Loc/Time+	
privacy	settings	type	from	[6]	is	considered	to	extract	features	and	form	dimensions	of	the	ground-
truth.	These	features	include	time,	location,	target	social	group	and	weekend	flag.	

In	order	to	initialize	ground-truth	space;	first,	the	arrive	time	and	leave	time	of	an	event	are	rounded	
to	the	nearest	discretised	time	slot	to	perfectly	distribute	event	into	time	dimension	of	ground-truth.	
Later,	event	is	discretised	into	several	samples	based	on	time	feature,	and	each	sample	is	labelled	with	
weekend	indicator,	target	social	group,	area	ID	and	the	behaviour	of	user.	

Even	after	pre-processing	phase	of	location	samples,	some	location	events	with	immensely	narrow	or	
zero	residence	time	remained	if	they	were	intermediate	point	in	the	trajectory	or	covered	by	missing	
data.	Therefore,	filtering	is	applied	on	these	events	before	the	final	step.	

Finally,	all	distributed	samples	with	same	attributes	are	grouped	and	simplified	into	one	sample	point	
with	additional	attributes	such	as	how	many	times	it	has	received	positive,	negative	and	neutral	hits.	
Therefore,	these	extra	attributes	can	later	be	used	in	A*	algorithm		

	

Table	6.5	-	Sample	from	ground-truth	space	of	participant	39.	Positive	is	for	number	sharing	behaviour,	negative	is	for	
number	of	intentionally	withholding	information,	and	neutral	is	for	number	of	unintentionally	withholding	information	

In	Table	6.5,	sample	from	generated	ground-truth	space	of	participant	39	is	given.	Total	represents	the	
overall	hits	the	location	received	given	time	and	weekend	indicator.	Positive	and	negative	shows	how	
many	 times	 a	 target	 received	 hits	 at	 location	 and	 given	 time.	 Neutral	 hits	 are	where	 participants	
haven’t	shown	any	attitude	towards	target	social	group.	
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Algorithm	6.3:	Generation	of	Ground-truth	
	
	
	
	
1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	
11:	
12:	
13:	

Input:	labelled	location	events	dataset	LD	of	user,	tolerance	time	tol,	time	discretization	
factor	Td	
Output:	Ground-truth	GT	of	a	user	
	
begin	
filteredLD	=	[]	
for	event	in	LD	
	 if	event[‘leave	time’]	–	event[‘arrive	time’]	>	tol	then	
	 	 filteredLD	ß	event	
end	
round	boundaries	of	events	in	filteredLD	according	to	Td	
GT	ß	discretize	events	in	filteredLD	according	to	Td	
extract	totalhits	from	GT	for	each	location,time,weekend	
extract	positivehits	and	negativehits	from	GT	for	each	target,location,time,weekend	
GT	ß	totalhits,positivehits,negativehits	
return	GT	
end	

	

6.3 Constructing Mobility Markov Chain 
	

Mobility	Markov	chain	(MC)	is	required	for	our	routine	aware	control	mechanism	to	estimate	entropy	
of	recent	locations.	

After	pre-processing	location	dataset	as	explained	in	previous	section,	we	construct	a	weighted	graph	
G(V,E)	from	given	partition	of	the	dataset	TS	(train	set)	of	a	user.	Vertices	of	the	graph	represents	area	
IDs,	edges	represent	transition	between	those	areas	and	weight	of	an	edge	is	number	of	transitions	
occurred	between	vertices	throughout	span	of	TS.	However,	we	have	excluded	following	transitions;	

• Missing	state.	If	the	interarrival	time	between	sequential	location	events	is	higher	than	given	
tolerance	 time	 difference	 t,	 then	 the	 transition	 is	 ignored.	 However,	 because	 entropy	
estimation	requires	irreducible	Markov	chain	(i.e.	MC	without	partitions)	and	we	required	high	
order	Markov	chain;	degraded	transition	is	added	to	the	weight	of	the	edge	in	order	to	prevent	
partitioning,	 and	 the	end	effect	 on	overall	weighted	 graph	 is	 insignificant.	 For	most	of	 the	
users,	the	distribution	of	interarrival	time	between	location	events	is	approximately	1	hour	as	
can	be	seen	in	Figure	6.5.	
	

• Loops.	 Self-transitions	 of	 areas	 are	 ignored;	 additionally,	 because	 of	 pre-process	 phase	 of	
location	dataset,	sequential	occurrences	of	same	locations	are	rare.	The	evaluation	using	non-
processed	location	dataset	shown	that	using	self-transitions	increases	conditional	entropy	of	
trajectory	approximately	0.1%,	hence,	 the	effect	 is	minimal.	On	 the	other	hand,	we	aim	to	
estimate	trajectory	entropy	without	including	the	influence	of	residence	time	of	locations.	
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Figure	6.5	-	Distribution	of	inter-arrival	time	(IAT)	of	location	events	per	participant	

Later	from	the	weighted	graph,	transition	matrix	and	indexes	of	areas	are	obtained.	Laplace	smoothing	
(additive	 smoothing)	 is	 not	 applied	 beforehand	 on	 weighted	 graph	 since	 it	 consumes	 valuable	
trajectory	information	and	is	observed	as	it	greatly	affects	entropy	calculation	of	trajectories.	Rather	
than	low-order	MC	(that	captures	all	user’s	mobility	pattern),	we	have	obtained	high-order	MC	that	
explicit	to	a	user,	because	granularity	level	of	dataset	was	low	and	we	required	a	mobility	pattern	that	
explicit	to	a	user.	

Obtained	sample	MC	for	participant	7	using	whole	dataset	is	shown	in	Figure	6.6	as	example.	States	
represent	 area	 IDs	 and	 size	 of	 states	 indicates	 number	 of	 incoming	 and	 outgoing	 edges.	 Edges	
represent	transition	between	states	and	value	of	edges	is	equal	to	the	transition	probability	between	
two	states.	

Algorithm	6.4:	Constructing	MC		
	
	
	
	
1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	
11:	
12:	
13:	
14:	
15:	

Input:	labelled	location	events	dataset	LD	of	user,	tolerance	time	tol,	degraded	transition	
score	scr	
Output:	transition	probability	matrix	P,	area	indexes	IND	
	
begin	
initialize	prevarea,	prevtime,	G(V,E)	
for	event	in	LD	
	 area	=	event[‘areaID’]	
	 time	=	event[‘leave	time’]	
	 if	prevarea	!=	area	then	
	 	 if	time	–	prevtime	<	tol	then	
	 	 	 G(V,E)	ß	E(area,	prevarea)	+=	1	
	 	 else	
	 	 	 G(V,E)	ß	E(area,	prevarea)	+=	scr	
	 prevarea	=	area	
	 prevtime	=	time	
	 end	
end	
P,	IND	=	maximum_likelihood_estimation(G(V,E))	
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16:	
17:	

return	P,	IND	
end	

	

	

Figure	6.6	-	Markov	Chain	for	participant	7.	Vertexes	represent	areas,	edges	show	direct	transition	between	areas	and	
edge	weights	are	equal	to	direct	transition	probabilities	
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7. Implementation and 
Evaluation 

	

In	this	chapter,	we	first	present	the	simulation	setup	and	implementation	environment.	Then,	types	
and	results	of	evaluations	are	discussed.	

	

7.1 Implementation 
	

All	 implementations,	evaluation	environment	and	evaluations	are	done	using	Python	3	and	Jupyter	
Notebook	[22].	The	evaluation	environment	seen	in	Figure	7.1	is	generated	to	establish	several	tests.	
The	 diagram	 shows	 the	 steps	 applied	 onto	 dataset	 according	 to	 the	 previously	 explained	 pre-
processing	and	processing	steps.	With	the	introduced	evaluation	environment,	we	can	evaluate	the	
cases	with	different	variables.	
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Figure	7.1	-	Implementation	of	evaluation	environment	
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7.2 Evaluations 
	

This	chapter	divided	 into	several	sections	for	different	evaluations.	We	will	discuss	the	aim	of	each	
evaluation	and	the	results	received.	The	test	cases,	and	at	which	point	they	have	been	applied	are	
shown	 in	 Figure	 7.1.	 For	 the	 Evaluation	 B	 and	 C,	whole	 dataset	 is	 used	 in	 order	 to	 show	 entropy	
distribution	 of	 users	 and	 influence	 of	 possible	 entropy	 system	 designs	 on	 detecting	 non-sharing	
behaviour.	In	Evaluation	A,	we	have	utilized	part	of	the	dataset	in	order	to	identify	optimal	policy	for	
subjects,	and	same	part	is	also	used	in	order	to	train	different	entropy	systems.	Later	in	Evaluation	D,	
the	policies	and	entropy	systems	are	applied	together	on	the	remaining	part	of	the	dataset.	

However,	before	test	cases	are	applied,	analysis	of	positive	and	negative	sharing	behaviour	of	subjects	
are	done	in	Figure	7.2	considering	calls	and	declined	calls	as	positive	sharing	behaviour	and	missed	
calls	as	negative	sharing	behaviour.	Unfortunately,	the	dataset	was	not	sufficient	to	test	accurately	
and	fairly	our	system	model.	Maximum	count	of	negative	sharing	behaviour	was	34,	and	this	would	
give	invariably	affirmative	results	in	every	test	case	we	applied.	

	

Figure	7.2	-	Total	shared	and	non-shared	hours	per	subject	in	the	whole	dataset	

In	 order	 to	 address	 this,	 we	 additionally	 consider	 an	 event	 where	 subject	 has	 not	 shown	 any	
communication	behaviour	(i.e.	neutral	hit)	as	negative	sharing	behaviour	towards	all	social	groups.	For	
this	 setting,	 further	 filtering	 based	 on	 residence	 time	 for	 evaluations	 is	 introduced	 to	 not	 include	
events	where	user	had	not	sufficient	time	to	expose	sharing	behaviour.	Although	it	 is	highly	biased	
approach,	it	can	allow	us	to	estimate	influence	of	routine	aware	decision-making	system.	After	filtering	
events	with	narrow	residence	time	(less	than	2	minutes),	new	occurrences	of	positive	and	negative	
sharing	behaviours	are	shown	in	Figure	7.3.	

	

Figure	7.3	-	Total	shared	and	non-shared	hours	per	subject	in	the	whole	dataset	with	biased	approach	
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Despite	 occurrences	 of	 negative	 hours	 are	 relatively	 higher	 than	 the	 positive,	we	 can	 still	 identify	
optimal	policy	 and	 test	 it	 together	with	 the	entropy	 system.	Therefore,	 throughout	 the	evaluation	
section,	we	 consider	 answered	 incoming	 calls,	 outgoing	 calls	 and	declined	 calls	 as	 positive	 sharing	
behaviour	towards	social	groups	as	mentioned	in	Section	6.1.3.3.	If	there	was	no	communication	event	
during	subject’s	stay	at	location	towards	a	social	group,	or	if	he	intentionally	missed	a	call	from	a	social	
group	(i.e.	he	did	not	respond	or	call	back	later	during	his	stay);	we	consider	these	actions	as	negative	
behaviour	towards	social	groups.	

Occasionally,	one	drawback	of	biased	approach	is	that	maximum	achievable	accuracies	for	participants	
are	considerably	low	when	there	is	overlapping	between	positive	and	negative	samples.	To	illustrate	
this,	maximum	achievable	accuracies	with	most	accurate	greedy	policies	those	covers	every	sample	
with	positive	accuracy	 in	ground-truth	space,	with	 loc/time+	privacy	 type	and	mistakenly	 revealing	
cost	of	one	are	shown	in	Figure	7.4	as	example	using	Formula	3.3	given	in	Chapter	3.	The	ratios	are	
generated	using	whole	dataset	without	including	out-of-routine	events.	For	the	participants	which	are	
not	shown,	it	is	not	possible	to	construct	a	sharing	policy	because	their	rate	of	withholding	information	
for	 every	 location	 and	 time	 is	 more	 than	 their	 sharing.	 Simply	 using	 blacklists	 would	 give	 higher	
accuracies	than	positive	sharing	rules	for	most	of	the	participants	with	biased	approach.		

	

Figure	7.4	-	Maximum	achievable	accuracies	(with	cn	=	1)	per	participant	using	greedy	policy,	with	biased	approach	

Furthermore,	following	attributes	and	values	are	used	in	our	implementation	and	evaluation;	

• IAT	Tolerance	 is	needed	to	define	missing	samples	and	form	more	accurate	location	events	
with	 residence	 time,	as	previously	discussed	 in	Section	6.1.2.	As	 can	be	 seen	 in	Figure	6.1,	
average	inter-arrival	time	of	samples	are	approximately	thirty	minutes	for	most	of	the	users.	
Hence,	we	have	defined	thirty	minutes	tolerance,	so	that,	 if	 there	was	no	sample	for	more	
than	thirty	minutes	during	participant’s	stay	at	a	location,	we	close	previous	event	and	start	
new	event.	
	

• Number	of	Clusters	is	defined	as	four	as	previously	explained	in	Section	6.1.3.1.	
	

• Missing	State	Tolerance	is	minimum	required	time	between	location	events	in	order	to	add	
degraded	transition	to	an	edge	of	weighted	graph	as	discussed	in	Section	6.2.2.	We	have	used	
1	hour	to	indicate	if	there	was	possibly	a	missing	state	between	two	states.	On	the	other	hand,	
the	same	value	is	also	used	to	label	location	updates	with	entropy	as	described	in	Section	5.2.	
If	 time	difference	between	two	 location	updates	 is	higher	 than	given	tolerance	value,	 then	
recent	 location	 overwrite	 stored	 trajectory	 information	 and	 entropy	 of	 recent	 location	 is	
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recorded	as	Missing	State	Entropy,	which	can	be	defined	at	below	zero	to	identify	these	events	
later	(entropy	value	should	be	not	below	zero).	
	

• Missing	State	Value	is	degraded	transition	value	added	to	the	edge	weight	in	case	of	missing	
states,	aims	to	prevent	partitions	in	transition	probability	matrix.	
	

• Tolerance	for	insufficient	residence	time	is	used	to	filter	location	events	those	have	zero	or	
narrow	residence	time	where	participant	would	not	be	able	to	share	his	location,	as	discussed	
in	Section	6.2.1.	The	important	aspect	is,	filtering	applied	after	all	location	updates	are	used	
to	 generate	 markov	 chain	 and	 label	 updates	 with	 entropy	 values.	 In	 other	 words,	 whole	
location	 updates	 are	 used	 as	 trajectory	 data	 but	 is	 not	 considered	 as	 shareable	 locations,	
hence	they	are	not	used	to	train	user	policy	or	evaluate	accuracy	of	the	policies.	To	justify	this,	
system	would	be	allowed	to	share	participant	recent	location	only	after	his	stay	time	exceeds	
tolerance	time.	In	evaluations,	two	minutes	is	used	as	tolerance.	
	

• Tolerance	for	insufficient	number	of	location	events	 is	used	to	filter	participants	who	does	
not	have	sufficient	variety	and	number	of	location	events	to	present	informative	evaluations.	
Participants	whose	number	of	location	events	are	less	than	20,	are	filtered	in	all	evaluations.	
	

• Two	different	Cost	values	are	used	to	grade	samples	in	ground-truth	in	order	to	tinker	balance	
between	over-share	rate	and	under-share	rate	of	the	generated	rules	and	policies.	One	is	the	
penalty	 of	 mistakenly	 revealing	 information,	 and	 the	 other	 is	 reward	 of	 correctly	 sharing	
information.	Reward	factor	is	only	used	in	generating	rules	and	identifying	policy	step,	and	not	
included	in	accuracy	calculations.	
	

• Train	 percentage	 is	 used	 to	 divide	 whole	 dataset	 into	 separate	 train	 and	 test	 sets.	 The	
important	point	is	dataset	is	not	shuffled	beforehand,	in	order	to	correctly	estimate	entropy	
values	and	transitions.	In	other	words,	dataset	is	divided	from	its	timespan	into	two	sets	such	
as	 past	 and	 future.	 In	 Evaluation	 A,	we	 have	 used	 70%	 of	 the	 dataset	 in	 order	 to	 identify	
optimal	policy	for	the	participants,	and	train	entropy	systems.	Later,	in	Evaluation	D,	we	have	
used	remaining	30%	of	the	dataset	to	test	our	system.	

	

7.2.1 Evaluation A – Identifying Participants’ Policy 
	

In	 the	 first	 evaluation	 section,	 we	 will	 discuss	 and	 identify	 policies	 for	 participants	 utilizing	 the	
optimized	algorithm	as	proposed	in	Chapter	5.	As	privacy	setting	type,	Loc/Time+	is	used	with	area,	
time,	weekend	and	target	social	group	dimension.	The	algorithm	first	approximates	best	clusters	of	
sample	points	based	on	given	score	function.	Later,	it	identifies	optimal	policy	from	generated	rules.	
The	score	function	used	in	both	heuristic	function	is;	

𝑠𝑐𝑜𝑟𝑒(𝑠) = 	 𝑐< ∗V𝑠<=>?@?ABC?@ − 𝑐8 ∗V𝑠8BEF@?ABC?@	
	 	 	 	 	 	 	 	 	 	 	 												(7.1)	



	 -	47	-	

as	given	in	Chapter	5.	Because	maximum	achievable	accuracy	for	large-scale	dataset	is	low	and	users’	
attitude	 change	 is	 eminent,	we	 introduced	 a	 variable	 cost	 Cp	 in	 order	 to	 simulate	 varying	 realistic	
policies	 those	users	might	have	defined	by	 themselves.	With	both	cost	 factors,	we	can	 tinker	end-
policy	to	share	more	in	exchange	for	over-share	rate,	or	leak	less	in	exchange	for	under-share	rate.	
This	grants	us	to	identify	more	strict	or	loose	policies	on	accuracy.	In	this	evaluation,	we	have	identified	
policies	with	four	different	setting	types.	

Before	the	evaluation,	dataset	has	been	divided	into	separate	train	and	test	sets.	Train	set	consists	of	
70%	of	the	whole	dataset	and	the	location	updates	are	not	shuffled	beforehand,	therefore,	accurate	
entropy	calculation	for	both	sets	can	be	applied.	If	a	covered	sample	point	by	rule	or	policy,	has	been	
never	occurred	in	train	dataset,	it	is	considered	as	void	point	and	does	not	affect	under-share,	over-
share	or	accuracy.	

In	our	first	A	star	algorithm	run	for	cluster	generation,	we	have	used	Cp:1	and	Cn:5	as	cost	factors.	The	
iteration	phase	for	first	and	second	shaping	rules	for	participant	7,	are	given	in	Figure	7.5.	Both	rules	
are	 achieved	 their	 maximum	 score	 before	 heuristic	 function	 over-estimates,	 at	 sixth	 and	 seventh	
iteration	 correspondingly;	where	 they	 are	 recorded	 to	 be	 later	 used	 in	 identification	 phase	 of	 the	
policy.	 Because	 the	 A	 star	 is	 strict	 on	 accuracy	 factor	 given	 cost	 setting,	 while	 over-share	 rate	 is	
remained	still	at	 lowest	 level,	under-share	rate	decreases	slightly	until	maximum	score	 is	achieved.	
Therefore,	algorithm	defines	boundaries	of	rules	cautiously,	and	number	of	covered	samples	at	each	
iteration	shows	slight	increment.	In	these	setting,	reaching	maximum	achievable	accuracies	given	in	
Figure	7.4	is	possible.		

	

Figure	7.5	-	From	left	to	right:	First	rule	generation,	second	rule	generation	for	participant	7	with	Cp	=	1	and	Cn	=	5	
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In	 the	second	setting,	Cp:1	and	Cn:1	cost	 factors	are	used.	Hence,	algorithm	grades	each	sample	 in	
ground-truth	space	equally.	With	relaxed	constraint,	first	shaping	rule	in	Figure	7.6	have	achieved	its	
maximum	achievable	score	at	higher	 iteration	 levels	compared	to	previous	setting.	 In	exchange	for	
over-share	 rate,	 rules	 are	 able	 to	 reach	 slightly	 better	 under-share	 rate.	 Over-share	 ratio	 for	 the	
shaping	rules	are	observed	to	reach	approximately	0.2,	meaning	the	rule	generated	reveals	location	
information	mistakenly	at	20%	rate,	and	80%	of	 times	 it	 shares	correctly.	While	over-share	 ratio	 is	
remained	under	0.5	rate,	accuracy	(with	Cn:1)	caused	by	rule	will	always	higher	than	zero,	but	lower	
than	previous	A	star	setting	which	tries	to	avoid	over-share	as	much	as	possible.	

	

Figure	7.6	-	From	left	to	right:	First	rule	generation,	second	rule	generation	for	participant	7	with	Cp	=	1	and	Cn	=	1	

On	the	next	setting	type,	we	have	configured	cost	function	of	A	star	with	Cp:5	and	Cn:1.	When	higher	
Cp	is	used,	A	star	bias	shifted	towards	extracting	samples	if	they	have	some	amount	of	positive	sharing	
behaviour.	Algorithm	tries	to	avoid	missing	samples	which	contains	positive	behaviour	than	omitting	
samples	with	negative	behaviour.	Since	cost	ratio	is	not	equal,	shaping	rules	causes	low	or	negative	
accuracy.		

In	 Figure	 7.7,	 first	 two	 shaping	 rules	 of	 A	 star	 algorithm	 with	 given	 cost	 factors	 are	 shown.	
Approximately	80%	of	 shared	events	with	 the	 rules	are	mistake.	However,	because	 rules	are	more	
audacious	to	share	events,	under-share	rate	chart	presents	sharper	reductions	 for	both	generation	
phases.	The	other	observed	outcome	is	that,	the	first	phase	of	rule	generation	is	prone	to	covers	all	
possible	samples	and	reach	greater	scores,	which	leaves	fewer	remained	samples	for	other	rules.	This	
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outcome	is	not	observed	in	our	first	setting	with	Cp:1	and	Cn:5	because	boundaries	of	every	possible	
clusters	 in	 ground-truth	 space	were	more	 distinct.	When	more	 relaxed	 constraint	 is	 applied,	 new	
comprised	clusters	start	to	intersect	with	each	other,	that	cause	first	generated	rule	to	cover	samples	
at	maximum	level.	

	

Figure	7.7	-	From	left	to	right:	First	rule	generation,	second	rule	generation	for	participant	7	with	Cp	=	5	and	Cn	=	1	

In	the	last	setting,	Cp:10	and	Cn:1	is	used	in	Figure	7.8.	At	first	rule	generation,	almost	60%	of	positive	
samples	are	covered	by	the	shaping	rule	at	twenty-fifth	iteration	and	approximately	50%	of	total	score	
points	reached,	which	caused	second	shaping	rule	to	reach	only	4%	of	total	score	points.	This	means	
that	 the	 largest	 possible	 cluster	 is	 seized	 by	 the	 first	 rule.	 Further,	 the	more	 relaxed	 constraint	 is	
applied,	the	more	iteration	it	takes	for	a	rule	to	reach	its	maximum	achievable	score.		

Later,	all	generated	rules	for	users	per	setting	type,	are	fed	into	another	A	star	algorithm	to	identify	
optimal	settings	with	each	setting	type.	As	for	an	example,	we	have	provided	policy	generation	phase	
for	participant	7	and	34	in	Figure	7.9	and	Figure	7.10.	For	the	accuracy	presentation	chart,	Cn:1	cost	is	
used.	
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Figure	7.8	-	From	left	to	right:	First	rule	generation,	second	rule	generation	for	participant	7	with	Cp	=	10	and	Cn	=	1	

As	expected	for	both	examples,	reached	accuracy	drops	while	Cp	is	increasing	and	Cn	is	decreasing.	The	
strict	 setting	 with	 Cn:5	 causes	 most	 accurate	 policies	 possible,	 in	 contrast,	 under-share	 rate	 is	
increasing	with	accuracy.	Because	it	is	biased	approach	as	discussed	at	the	beginning	of	the	chapter,	
they	are	anticipated	results.	One	interesting	outcome	is,	number	of	rules	required	by	the	policies	to	
reach	maximum	achievable	results	differs	from	user	to	user.	It	shows	us	that	the	distinction	of	clusters’	
boundaries	in	ground-truth	space	differs	greatly	from	subject	to	subject.	In	other	words,	while	some	
subjects	 (e.g.	 participant	 34)	 have	 more	 predictability	 towards	 sharing	 preferences	 (i.e.	 common	
patterns),	 others	 (e.g.	 participant	 7)	 have	more	 complex	 sharing	 behaviour	 patterns	 because	 they	
require	more	distinct	rules	to	correctly	define	their	sharing	preferences	and	cover	all	samples.	

All	identified	policies	with	different	setting	types	are	tested	later	on	test	set	in	Evaluation	D.	
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Figure	7.9	-	Policy	generation	phase	for	participant	7.	Clockwise:	Policy	with	Cp:1-Cn:5,	Cp:1-Cn:1,	Cp:5-Cn:1	and	Cp:10-Cn:1	
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Figure	7.10	-	Policy	generation	phase	for	participant	34.	Clockwise:	Policy	with	Cp:1-Cn:5,	Cp:1-Cn:1,	Cp:5-Cn:1	and	Cp:10-
Cn:1	
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7.2.2 Evaluation B – Correlation between Entropy and 
Sharing Behaviour 

	

The	evaluation	is	applied	at	lifespan	EB	at	evaluation	environment,	using	whole	dataset	which	labelled	
with	entropy	values	beforehand.	Our	aim	at	this	point	is	to	discover	correlation	between	entropy	value	
and	 participants’	 sharing	 behaviour.	 The	 location	 updates	 which	 are	 labelled	 with	missing	 state	
entropy,	are	not	included	in	the	evaluation.	In	the	figures,	green	circles	(value=1)	indicates	that	call	
event	 (except	missed	calls)	occurred	during	participant’s	 stay	at	 location	and	at	estimated	entropy	
value,	and	red	circles	(value	=	0)	represents	that	missed	calls	or	no	call	event	occurred	during	the	stay	
at	estimated	entropy;	all	without	discretization	of	target	dimension.	Radius	of	the	circles	shows	the	
total	number	of	events	occurred	at	same	entropy	value.	The	residence	time	filtering	is	applied	before	
the	 evaluation;	 therefore,	 events	 where	 user	 had	 no	 sufficient	 time	 to	 expose	 accurate	 sharing	
behaviour,	are	filtered	and	not	included	in	the	tests.	

The	first	chart	with	lowest	degree	of	detail	(for	all	population	and	all	areas)	for	different	entropy	ranges	
is	given	in	Figure	7.11.	The	first	noticeable	detail	would	be	that	most	of	the	sharing	and	non-sharing	
behaviours	are	gathered	at	lowest	entropy	levels.	The	Reality	Mining	dataset	includes	students	and	
faculty	members	from	MIT,	and	the	results	show	that	students	often	expose	routine	events	or	rather	
use	routine	trajectories	between	home	and	school/work.	Furthermore,	another	reason	can	be	given	
as	that	even	if	a	user	would	have	visited	a	location	once	throughout	1	year	period	or	more	than	once	
but	using	same	trajectory,	entropy	of	that	location	will	appear	as	zero	in	the	dataset	because	of	only	
one	known/appeared	trajectory.		

At	the	lowest	degree	of	detail,	we	can	think	of	defining	routine	aware	system	that	will	not	allow	sharing	
location	updates	if	they	are	above	30,000	or	150,000	entropy	value.		
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Figure	7.11	-	Call	indicator	vs	entropy	value	for	all	users	and	areas,	for	different	entropy	ranges.	Range	decreases	from	
left	to	right	and	above	to	bottom.	Radius	of	circle	indicates	total	number	of	events	at	same	entropy	value	

		

At	 one	 step	 higher	 degree	 (exclusively	 for	 users	 but	 includes	 all	 areas),	maximum	 entropy	 values	
reached	by	users	are	varying	as	can	be	seen	in	Figure	7.12.	Hence,	previously	proposed	naïve	entropy	
filtering	 approach	 would	 not	 work	 on	 all	 participants	 and	 each	 participant	 has	 different	 mobility	
pattern.	However,	most	of	the	participants	has	similar	pattern	as	the	population	that	their	majority	of	
location	events	are	gathered	in	lower	entropy	values.	In	other	words,	they	are	prone	to	sharing	their	
locations	at	 lower	entropy	values.	At	 this	degree,	 identifying	entropy	 filtering	 levels	exclusively	 for	
users	would	 results	 in	 lower	 over-share	 rates	 than	 a	 system	 based	 on	 entropy	 of	 the	 population.	
Additionally,	since	maximum	entropy	value	for	a	user	varies,	normalization	and	defining	common	‘the	
high	value’	is	hardly	applicable.	
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Figure	7.12	-	Call	indicator	vs	entropy	value	for	randomly	selected	participants	8,	11,	31,	36	and	all	areas.	Radius	of	circle	
indicates	total	number	of	events	at	same	entropy	value	

Another	chart	is	rendered	for	participant	8	in	different	entropy	ranges	in	Figure	7.13.	Despite	its	lower	
zoom	levels	where	filtering	higher	entropy	values	seems	reasonable;	at	higher	zoom	levels,	it	can	be	
observable	that	not	only	filtering	higher	entropy	values	but	also	specific	entropy	ranges	would	give	
better	results	on	accuracy.	

	

Figure	7.13	-	Call	indicator	vs	entropy	value	for	participant	8	and	all	areas,	for	different	entropy	ranges.	Range	decreases	
from	left	to	right.	Radius	of	circle	indicates	total	number	of	events	at	same	entropy	value	

At	higher	degree	of	detail	where	entropy	values	and	calling	indicator	are	distributed	on	exclusively	a	
user	and	an	area;	more	diverse	patterns	are	appeared.	
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Figure	7.14	-	Call	indicator	vs	entropy	value	for	participant	8	and	area	5119-5193	pairs.	Radius	of	circle	indicates	total	
number	of	events	at	same	entropy	value	

In	Figure	7.14,	where	chart	is	rendered	from	participant	8	and	area	5119-5193	pairs,	sharing	and	non-
sharing	 behaviours	 are	 appeared	 almost	 symmetrical	 to	 each	 other.	 Filtering	 which	 is	 applied	
according	to	exclusively	users	and	locations,	is	hardly	applicable	for	those	and	similar	pairs,	and	would	
not	result	in	better	accuracy.	

However,	not	all	areas	from	participant	8	have	similar	patterns.	For	example,	sharing	behaviours	 in	
area	5113	and	5187	are	not	distributed	symmetrically	as	can	be	seen	in	Figure	7.15.	While	positive	
behaviour	 is	 gathered	 at	 narrow	 entropy	 ranges,	 negative	 behaviour	 spread	 broad	 entropy	 range.	
Corresponding	entropy	filtering	may	induce	increase	in	accuracy	and	decrease	in	over-sharing	rates.	
Another	interesting	aspect	is	that	some	areas	including	the	ones	given	in	the	Figure	7.15,	do	not	share	
expected	pattern	which	is	previously	observed	in	population	or	user	entropy	charts.	Positive	sharing	
behaviours	were	occurred	relatively	high	entropy	values.	It	may	show	us	that,	subjects	are	more	willing	
to	share	certain	locations,	when	their	visit	to	that	location	was	not	a	routine	event.	

	

Figure	7.15	-	Call	indicator	vs	entropy	value	for	participant	8	and	area	5113-5187	pairs.	Radius	of	circle	indicates	total	
number	of	events	at	same	entropy	value	

On	the	other	hand,	it	is	not	uncommon	to	detect	participant-area	pairs	those	share	similar	patterns	as	
in	population	entropy	chart.	For	example,	participant	36,	area	5113	and	5193	pairs	are	given	in	Figure	
7.16,	where	majority	of	positive	sharing	behaviour	are	occurred	at	lower	entropy	values	compared	to	
negative	behaviour.	
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Figure	7.16	-	Call	indicator	vs	entropy	value	for	participant	36	and	area	5113-5193	pairs.	Radius	of	circle	indicates	total	
number	of	events	at	same	entropy	value	

After	inspecting	charts	for	participant-area	pairs,	we	can	indicate	that	entropy	value	ranges	of	sharing	
behaviour	of	a	user	vary	with	different	areas	which	user	often	visits,	and	 likely	 to	vary	with	higher	
degree	of	level	(i.e.	with	weekend	indicator	or	time	dimension).	Users	are	not	always	prone	to	share	
their	locations	at	lower	entropy	levels	but	at	specific	entropy	ranges	relevant	to	areas.	Unfortunately,	
the	 dataset	 does	 not	 allow	 us	 to	 analyse	 entropy	 values	 at	 higher	 degrees	 of	 level	 because	 of	
insufficiency	of	data	samples.	However,	current	degree	grants	us	an	insight	to	develop	routine	aware	
control	system	with	various	probable	settings	which	are	tested	in	next	evaluation.	

	

7.2.3 Evaluation C – Impacts of Different Entropy Systems 
on Correct and Incorrect hours of a Policy 

	

In	 this	section,	we	have	evaluated	different	entropy	systems	with	naively	generated	policies,	 those	
cover	all	 correct	hours	 and	 cause	0%	under-share	 rate.	With	 the	evaluation,	we	 can	 simulate	how	
policy	would	have	 revealed	 location	 information	 if	a	proposed	entropy	system	type	existed.	As	we	
mentioned	earlier,	because	participants	may	intend	to	show	great	amount	of	sharing	attitude	changes	
through	one	year,	the	naively	generated	policy	results	in	high	overshare	rates,	and	total	negative	hours	
caused	by	the	policy	is	higher	than	total	positive	hours	for	majority	of	participants	as	well.	In	Figure	
7.17,	total	positive	and	negative	hours	caused	by	the	policy	is	given.	Our	aim	is	to	decrease	negative	
hours	and	protect	positive	hours	as	much	as	possible.	However,	the	location	updates	whose	entropy	
values	are	equal	 to	missing	state	entropy,	 are	not	 included	neither	at	 training	nor	 filtering	phases.	
Hence,	it	is	not	possible	to	achieve	100%	drop	rate	on	positive	or	negative	hours	if	the	participant	had	
missing	location	update	between	events.	Maximum	achievable	average	drop	rate	of	negative	hours	
was	thereby	48.58%,	and	average	positive	drop	rate	was	45.11%.	This	signifies	that	majority	of	location	
events	are	dropped	in	missing	state	entropy	value.	The	events	whose	residence	time	were	less	than	
tolerance	time	are	filtered	out	before	the	evaluation.	
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Figure	7.17	-	Total	positive	and	negative	hours	caused	by	the	policy	for	each	participant	

The	first	two	entropy	system	we	have	tested	is	based	on	population	entropy	values	as	mentioned	in	
previous	evaluation.	The	Figure	7.18	(ES1)	shows	the	positive	and	negative	hour	change	ratios	if	an	
entropy	system	which	 filters	events	above	30,000	entropy	value	 for	all	 subjects,	would	be	applied.	
Even	though	it	implies	suitable	based	on	Figure	7.11,	this	setting	type	affected	only	one	user	positively,	
others	have	lost	more	positive	hours	than	the	negative.	The	result	implies	that	majority	of	negative	
sharing	behaviour	occurrences	above	30,000	value	belongs	to	one	specific	participant,	and	reached	
entropy	values	by	other	participants	throughout	one-year	period	were	lower.	

	

Figure	7.18	–	Change	rates	of	positive	and	negative	hours	on	naive	policy	when	events	above	30,000	entropy	value,	are	
filtered	(ES1)	

Another	entropy	system	type	which	is	applied	in	Figure	7.19	(ES2),	learns	the	population	mean	entropy	
value	of	positive	sharing	behaviour	and	 filter	 location	events	above	the	mean.	However,	 it	has	not	
resulted	in	better	results	for	any	subjects.	The	result	implies	that	the	difference	between	high	and	low	
entropy	values	is	excessive	and	users	are	prone	to	share	their	locations	at	higher	entropy	values	on	
occasions.	Similar	results	can	be	observed	in	Figure	7.20	(ES3)	where	similar	entropy	system	is	applied	
exclusively	for	participants	based	on	participants’	mean	entropy	value	of	positive	sharing	behaviour.	
For	majority	of	 subjects,	 it	 caused	more	positive	hours	drop	 than	 the	negative.	While	 the	average	
positive	hours	drop	rate	was	7.42%,	average	negative	hours	drop	rate	was	equal	to	4.32%.	Hence,	the	
presented	systems	so	far	were	not	reasonable.	
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Figure	7.19	-	Change	rates	of	positive	and	negative	hours	on	naive	policy	when	events	above	mean	entropy	value	of	
population,	are	filtered	(ES2)	

	

Figure	7.20	-	Change	rates	of	positive	and	negative	hours	on	naive	policy	when	events	above	mean	entropy	value	
exclusive	to	participants,	are	filtered	(ES3)	

	

Figure	7.21	-	Above;	range	based	entropy	system.	Below;	point	based	entropy	system	

Before	 introducing	other	possible	 entropy	 systems,	we	define	 two	preliminary	 terms;	 range	based	
entropy	systems	and	point	based	entropy	systems.	In	Figure	7.21,	examples	for	both	cases	are	given.	
When	the	system	consists	of	entropy	ranges,	it	will	filter	other	events	which	are	out	of	boundaries	of	
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the	range.	On	the	other	hand,	if	entropy	system	consists	of	entropy	points,	events	which	do	not	have	
exact	entropy	value	recorded	on	the	system,	are	filtered.		

Another	user	exclusive	entropy	system	based	on	ranges,	is	applied	in	Figure	7.22	(ES4)	where	events	
between	a	user’s	maximum	and	minimum	sharing	entropy	values	are	remained	and	others	are	filtered.	
As	 expected,	 drop	 rates	 are	 only	 occurred	 in	 negative	 events.	 Average	 drop	 rate	 was	 0.15%	 and	
maximum	occurred	drop	rate	was	4.11%,	which	was	positive	but	not	sufficient.	

	

Figure	7.22	-	Change	rates	of	positive	and	negative	hours	on	naive	policy	when	events	between	maximum	and	minimum	
entropy	value	of	positive	sharing	behaviour	exclusive	to	participants,	are	remained	(ES4)	

As	a	next	step,	we	applied	similar	min-max	entropy	system	based	on	participant	and	area	exclusively	
in	Figure	7.23	(ES5).	First,	we	have	fetched	minimum	and	maximum	entropy	values	for	each	location	
of	a	participant	as	training,	and	then	filtered	events	which	are	out	of	boundaries.	The	results	were	
better	 compared	 to	 lower	 degree	 system	 in	 Figure	 7.22,	 which	 implies	 that	 a	 subject	 may	 have	
different	entropy	sharing	boundaries	for	different	areas.	Because	the	system	covers	all	positive	sharing	
behaviours,	 in	 the	 end	we	 got	 0%	 drop	 rates	 on	 positive	 hours	 and	 average	 2.31%	 drop	 rates	 on	
negative	hours.	Maximum	drop	rate	occurred	was	19.82%.	

	

Figure	7.23	-	Change	rates	of	positive	and	negative	hours	on	naive	policy	when	events	between	maximum	and	minimum	
entropy	value	of	positive	sharing	behaviour	exclusive	to	participants	and	areas,	are	remained	(ES5)	

As	we	have	seen	in	Evaluation	B	section,	min-max	entropy	value	range	of	sharing	behaviour	of	some	
areas	can	be	divided	into	more	sections	where	more	events	with	negative	sharing	behaviours	can	be	
filtered	out.	Hence,	we	have	trained	another	entropy	system	in	Figure	7.24	(ES6)	based	on	points,	that	
records	every	entropy	value	those	resulted	in	positive	sharing	behaviour	for	each	area	and	participant.	
The	location	updates	are	filtered	out	if	their	entropy	value	has	never	caused	positive	sharing	behaviour	
given	a	participant	and	an	area.	We	got	0%	positive	hour	drop	rate	as	expected,	and	average	3.62%	
drop	rate	on	negative	hours.	Maximum	achieved	drop	rate	was	21.62%.	
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Figure	7.24	-	Change	rates	of	positive	and	negative	hours	on	naive	policy	when	events	those	were	at	entropy	value	of	
positive	sharing	behaviour	exclusive	to	participants	and	areas,	are	remained	(ES6)	

In	the	last	step,	we	have	developed	similar	entropy	system	but	promoted	with	the	same	score	function	
used	in	training	user’s	policy.	The	system	(ES7)	first	discovers	entropy	values	which	results	in	positive	
sharing	behaviour,	however,	it	only	records	an	entropy	value	if	its	score	is	higher	than	zero.	With	score	
function,	we	can	tinker	cost	for	positive	(Cp)	and	negative	(Cn)	hit	in	order	to	approximate	intended	
negative	hours	drop	rate	and	to	sacrifice	positive	hours.	

In	table	7.1,	the	results	of	the	entropy	system	with	different	cost	factors	are	given.	The	most	efficient	
range	of	Cp	appears	between	5	and	10,	where	difference	between	average	positive	and	negative	hours	
drop	rate	reached	approximately	9%.	However,	because	naïve	policies	have	higher	negative	hours	than	
the	positive,	first	option	with	Cp:1	and	Cn:1	factors	would	give	better	accuracy	rates	in	exchange	for	
under-share	rate.		

Cp	 Cn	
Average	

Positive	Hours	
Drop	

Maximum	
Positive	Hours	

Drop	

Average	
Negative	Hours	

Drop	

Maximum	
Negative	Hours	

Drop	
1	 1	 41.27%	 94.24%	 47.23%	 89.83%	
5	 1	 18.53%	 86.83%	 27.62%	 86.83%	
10	 1	 8.12%	 65.84%	 16.00%	 74.33%	
15	 1	 3.83%	 63.85%	 9.92%	 74.33%	
20	 1	 2.70%	 63.85%	 8.00%	 74.33%	

Table	7.1	-	Results	of	entropy	system	(ES7)	with	given	cost	variables	

	

Figure	7.25	-	Change	rates	of	positive	and	negative	hours	on	naive	policy	when	entropy	system	with	score	function	(ES7)	
given	Cp	=	5	and	Cn	=	1	is	applied	

𝑠𝑐𝑜𝑟𝑒(𝑒) = 	 𝑐< ∗V𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒ℎ𝑖𝑡 − 𝑐8 ∗V𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒ℎ𝑖𝑡	
	 	 	 	 	 	 	 	 	 	 	 												(7.2)	
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Figure	7.26	-	Change	rates	of	positive	and	negative	hours	on	naive	policy	when	entropy	system	with	score	function	(ES7)	
given	Cp	=	10	and	Cn	=	1	is	applied	

Unfortunately,	because	dataset	has	several	missing	location	updates,	and	is	not	sufficiently	extensive;	
tests	with	higher	degree	of	detail	could	not	be	applied	(e.g.	entropy	systems	exclusive	for	participant,	
area,	and	weekend	or	time).		

7.2.3.1 Results of Entropy Systems without Missing State Entropy 
	

In	this	section,	we	have	applied	all	previously	discussed	entropy	systems	with	naively	generated	user	
policies,	without	using	missing	state	tolerance	time.	Therefore,	each	location	update	in	the	dataset	has	
received	entropy	value.	Even	though	the	destination	location	were	missing	a	path	information,	entropy	
calculation	of	the	location	would	be	still	accurate	if	not	precise.	In	Table	7.2	and	Table	7.3,	the	results	
of	previously	mentioned	entropy	systems	are	given.	This	setting	grants	us	the	ability	to	apply	filtering	
on	all	location	events,	independent	from	their	inter-arrival	times.	

Entropy	
System	

Average	
Positive	Hours	

Drop	

Maximum	
Positive	Hours	

Drop	

Average	
Negative	Hours	

Drop	

Maximum	
Negative	Hours	

Drop	
ES1	 3.47%	 83.90%	 1.79%	 84.00%	
ES2	 0.37%	 18.31%	 0.16%	 8.72%	
ES3	 13.04%	 97.74%	 8.50%	 92.64%	
ES4	 0%	 0%	 0.19%	 6.30%	
ES5	 0%	 0%	 1.97%	 10.79%	
ES6	 0%	 0%	 4.41%	 23.90%	

Table	7.2	-	Results	of	entropy	systems	previously	discussed,	when	applied	on	location	events	without	missing	state	
entropy	

Cp	 Cn	
Average	

Positive	Hours	
Drop	

Maximum	
Positive	Hours	

Drop	

Average	
Negative	Hours	

Drop	

Maximum	
Negative	Hours	

Drop	
1	 1	 77.68%	 98.50%	 83.53%	 99.59%	
5	 1	 35.97%	 98.50%	 47.24%	 96.76%	
10	 1	 12.74%	 87.11%	 23.32%	 96.76%	
15	 1	 7.04%	 83.13%	 15.93%	 96.76%	
20	 1	 4.42%	 83.13%	 11.70%	 96.76%	
Table	7.3	-	Results	of	entropy	system	(ES7)	with	score	function	previously	discussed,	when	applied	on	location	events	

without	missing	state	entropy	
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7.2.4 Evaluation D – Results of Proposed Decision-Making 
System 

	

In	this	last	evaluation	section,	identified	policies	and	entropy	systems	from	the	train	set,	are	applied	
on	the	test	set,	first	alone	and	then	together.	Throughout	this	section,	penalty	of	accidently	revealing	
information	cost	 in	accuracy	function	 is	determined	as	one.	We	define	abbreviations	for	previously	
discussed	policies	and	entropy	systems	to	be	used	in	this	section;	

- Policy	A:	Set	of	policies	identified	with	Cp:1-Cn:5	score	setting	type.	
- Policy	B:	Set	of	policies	identified	with	Cp:1-Cn:1	score	setting	type.	
- Policy	C:	Set	of	policies	identified	with	Cp:5-Cn:1	score	setting	type.	
- Policy	D:	Set	of	policies	identified	with	Cp:10-Cn:1	score	setting	type.	
- ES5:	Entropy	system	based	on	range	that	is	trained	according	to	the	minimum	and	maximum	

entropy	values	of	shared	events,	explicitly	for	a	user	and	an	area.	
- ES7-11:	Entropy	system	based	on	points	that	is	trained	according	to	exact	entropy	values	of	

shared	events	utilizing	score	function	with	Cp:1	and	Cn:1,	explicitly	for	a	user	and	an	area.	
- ES7-51:	Entropy	system	based	on	points	that	is	trained	according	to	exact	entropy	values	of	

shared	events	utilizing	score	function	with	Cp:5	and	Cn:1,	explicitly	for	a	user	and	an	area.	
- ES7-101:	Entropy	system	based	on	points	that	is	trained	according	to	exact	entropy	values	of	

shared	events	utilizing	score	function	with	Cp:10	and	Cn:1,	explicitly	for	a	user	and	an	area.	

One	 detail	 required	 to	 be	 highlighted	 is,	 the	 locations	 visited	 only	 in	 test	 set	 of	 subjects	 are	 not	
reckoned	in	evaluations	and	entropy	calculations.	

7.2.4.1 Testing Identified User Policies 
	

First,	identified	policies	with	different	types	are	applied	on	the	test	set	without	using	entropy	system.	
The	results	are	given	in	separate	charts	whose	y-axis	is	limited	between	1	and	-2	for	better	comparison,	
in	Figure	7.27.	The	chart	axis	 is	 limited	because	accuracy	values	may	drop	notably	 low	values	if	the	
user	withheld	information	at	any	time.	

According	to	the	charts,	Policy	B	leads	most	accurate	results	among	other	policies,	and	Policy	D	is	the	
policy	with	least	under-share	but	highest	over-share	rates.	Though	it	is	expected	from	Policy	C	and	D	
to	 deliver	 lower	 accuracy	 values	 than	 zero	 considering	 their	 sharing	 nature	 (i.e.	 share	 as	much	 as	
possible),	 it	 is	unexpected	 for	Policy	A	and	B	to	yield	 lower	accuracy	values	 than	zero.	The	policies	
those	have	received	zero	under-share	and	accuracy	values,	imply	that	they	couldn’t	manage	to	hit	any	
samples	in	ground-truth	space,	and	this	situation	occurred	in	Policy	A	the	most.	In	other	words,	subject	
never	visits	some	of	his	popular	locations	at	his	usual	time	in	the	test	set,	but	he	has	exposed	utterly	
opposite	behaviour	in	train	set.	

The	policies	 in	Policy	A	were	 identified	strictly	on	the	samples	which	hold	highest	scores	after	high	
penalty	of	mistakenly	sharing	is	applied.	They	have	reached	their	maximum	achievable	accuracies	in	
the	train	set,	yet,	they	are	not	able	to	predict	subject’s	sharing	attitude	in	test	set.	Four	of	the	possible	
sources	of	this	situation	are	given	below.	
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- Call	events	have	more	unpredictable	pattern	than	actual	location	sharing	behaviour,	which	is	
more	difficult	to	predict	precisely	with	static	mechanisms.	

- Because	 the	 dataset	 is	 highly	 (negatively)	 biased	 as	 previously	 discussed,	 it	 influences	 the	
evaluation.	

- Considering	the	train	and	test	sets	are	separated	without	shuffling	the	dataset	beforehand,	
subjects	might	have	relocated	or	had	semester	holidays	(majority	of	the	subjects	are	students).	

- Subjects	might	have	been	prone	to	drastic	sharing	attitude	changes.	

Bearing	all	probable	reasons	in	mind,	next	we	discuss	how	different	entropy	systems	affects	the	test	
set.	

	

Figure	7.27	-	Results	of	policies	with	different	setting	types	applied	on	test	set	
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7.2.4.2 Testing Trained Entropy Systems 
	

In	this	section,	the	proposed	entropy	systems	which	are	trained	using	train	set,	are	applied	on	the	test	
set	and	percentage	of	drop	on	overall	positive	and	negative	hours	of	subjects	are	recorded	similar	to	
Evaluation	C.	However,	we	define	an	additional	 term	success	rate	 (SR)	used	to	show	percentage	of	
users	benefitted	from	the	system.		

where	P(ES)	is	total	number	of	participants	who	benefitted	from	the	entropy	system	ES	more	
(i.e.	they	received	higher	negative	hour	drop	rate	than	the	positive)	and	N(ES)	is	total	number	
of	participants	who	suffered	from	the	entropy	system	more	(i.e.	they	received	higher	positive	
hour	drop	rate	than	the	negative)	

Entropy	
System	

Average	
Positive	Hours	

Drop	

Maximum	
Positive	Hours	

Drop	

Average	
Negative	Hours	

Drop	

Maximum	
Negative	Hours	

Drop	
SR	

ES5	 13.85%	 81.81%	 19.08%	 87.50%	 61.53%	
ES7-11	 45.21%	 100%	 49.99%	 90.75%	 53.66%	
ES7-51	 28.86%	 100%	 35.96%	 89.52%	 61.25%	
ES7-101	 21.58%	 100%	 29.11%	 87.50%	 63.75%	
Table	7.4	-	Results	of	different	entropy	systems	applied	on	the	test	set,	when	missing	state	tolerance	is	considered	

For	the	first	scenario,	we	have	labelled	sequence	of	locations	utilizing	missing	state	entropy.	Meaning	
that,	if	sequential	location	events	have	less	time	than	pre-defined	missing	state	tolerance	time,	then	
recent	 location	 receives	missing	 state	 entropy	 and	 path	 information	 is	 cleared	 for	 further	 entropy	
calculations.	The	 location	events	which	received	missing	state	entropy	 is	not	considered	at	training	
phase,	and	not	filtered	in	any	case	at	test	phase.	

For	the	evaluation,	the	entropy	systems	are	applied	on	the	test	set	alone	and	drop	rates	on	positive	
and	negative	hours	are	recorded	for	each	subject.	The	average	drop	ratios,	maximum	drop	ratios	and	
SR	values	caused	by	the	entropy	system	for	first	scenario	is	given	in	Table	7.4.	Success	rate	for	each	
entropy	system	is	above	50%	and	approximately	at	60%	level,	which	demonstrates	that	more	than	half	
of	 the	subjects	benefitted	 from	the	entropy	systems.	The	average	drop	ratios	show	similarities	 the	
rates	presented	utilizing	whole	dataset	 in	Evaluation	C.	Average	and	maximum	drop	ratios	present	
increments	compared	to	previous	evaluation,	average	negative	hours	drop	rates	are	still	higher	than	
the	positive.	However,	in	point	based	entropy	systems,	100%	maximum	positive	drops	are	observed	
in	some	subjects.	The	reasons	may	be	similar	to	the	ones	discussed	in	evaluation	of	the	policies	section.	
If	subjects	rarely	expose	sharing	behaviour	in	test	set,	or	if	they	have	changed	their	usual	paths	towards	
locations,	those	may	cause	high	positive	hour	drop	rates	on	point	based	system	because	they	require	
precise	entropy	value	to	avoid	withholding	information.	

Because	newly	introduced	locations	those	are	visited	by	subjects	only	in	test	set,	are	not	considered	
in	 evaluation	 and	 entropy	 estimation,	 this	 situation	 may	 cause	 high	 amount	 of	 missing	 state	
occurrences	 between	 two	 sequential	 location	 events.	 Therefore,	 we	 additionally	 trained	 entropy	
systems	 which	 estimate	 trajectory	 entropies	 independent	 from	 inter-arrival	 times	 as	 discussed	 in	

𝑆𝑅(𝐸𝑆) = 	
𝑃(𝐸𝑆)

𝑁(𝐸𝑆) + 𝑃(𝐸𝑆)
	

	 	 	 	 	 	 	 	 	 	 	 												(7.3)	
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Section	7.2.3.1.	This	setting	grants	us	the	ability	to	apply	filtering	on	all	location	events.	For	the	second	
scenario,	we	applied	those	systems	on	the	test	set.	

Entropy	
System	

Average	
Positive	Hours	

Drop	

Maximum	
Positive	Hours	

Drop	

Average	
Negative	Hours	

Drop	

Maximum	
Negative	Hours	

Drop	
SR	

ES5	 22.86%	 96.25%	 28.90%	 98.98%	 60.25%	
ES7-11	 76.56%	 100%	 82.34%	 99.87%	 32.50%	
ES7-51	 48.64%	 100%	 57.31%	 99.46%	 57.69%	
ES7-101	 35.97%	 100%	 45.30%	 99.46%	 59.49%	
Table	7.5	-	Results	of	different	entropy	systems	applied	on	the	test	set,	when	missing	state	tolerance	is	not	considered	

In	 Table	 7.5,	 the	 results	 of	 entropy	 systems	 independent	 from	 inter-arrival	 times	 are	 given.	 The	
influence	of	 limitless	 filtering	capabilities	granted	to	 the	system,	 is	observed	as	 rate	 increments	on	
each	drop	rate.	However,	except	for	ES7-11,	success	rates	are	slightly	decreased.	Because	nature	of	
ES7-11	is	similar	to	strictness	of	Policy	B,	it	avoids	revealing	location	information	if	its	confidence	for	
estimated	entropy	value	was	not	sufficiently	high	during	training	phase.	

	

Figure	7.28	-	Example	drop	rate	chart	for	ES7-101	independent	from	inter-arrival	times	

Compared	 to	 static	 rule	mechanism,	 trained	entropy	 systems	 could	 adapt	 subjects’	 overall	 sharing	
behaviour	more	successfully	 in	given	dataset,	and	manage	to	 lower	 false-positives	more	than	true-
positives	successfully	at	approximate	60%	of	times.	Another	 important	argument	is;	because	of	the	
biased	dataset,	the	non-normalized	value	of	negative	drops	is	relatively	higher	than	the	positive	drops	
for	every	subject.	

In	the	following	section,	we	applied	both	systems	together	on	test	set.	

7.2.4.3 Testing Decision-Making System 
	

In	this	section,	we	test	the	proposed	entropy	systems	together	with	identified	policies	for	participants.	
Because	total	negative	hours	revealed	by	majority	of	policies	are	drastically	dominant	on	total	positive	
hours,	normalization	of	even	slightest	change	occurred	in	positive	hours	after	entropy	system	applied	
can	be	unfair	 to	 compare	with	normalized	 change	occurred	 in	negative	hours.	 Therefore,	we	have	
defined	 new	metric	 for	 fair	 comparison	 of	 influence	 of	 entropy	 system	 on	 identified	 policies	with	
different	setting	types.	
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where	 x	 can	 be	 either	 negative	 or	 positive	 hours,	 xold	 is	 total	 negative	 or	 positive	 hours	
revealed	by	 the	policy	 before	 entropy	 system	 is	 applied,	xnew	 is	 total	 negative	or	 positive	
hours	revealed	by	the	policy	after	entropy	system	is	applied,	and	Poldtotal	is	total	number	of	
hours	revealed	by	the	policy	before	entropy	system	is	applied.	

By	utilizing	proposed	normalization	function,	it	is	certain	that	non-normalized	change	values	of	both	
negative	and	positive	hours	will	be	equal,	and	we	can	deliver	fair	comparison.	

In	 Figure	 7.29,	 caused	 change	 ratios	 which	 are	 normalized	 using	 given	 Formula	 (7.4)	 for	 each	
participant	are	given	for	different	kind	of	policies	and	entropy	systems.	Entropy	systems	independent	
from	inter-arrival	time	are	used	in	performance	test,	in	order	to	avoid	areas	recently	introduced	in	test	
set	specifically.	Furthermore,	the	plots	are	divided	with	a	line	(y=x)	and	each	scattered	point	represents	
policy	for	a	subject.	The	region	(y<x)	is	considered	poor	where	entropy	system	restrains	more	positive	
sharing	than	the	negative	of	a	policy,	and	reduces	overall	accuracy	of	a	policy.	However,	points	in	the	
region	(y>x)	receive	accuracy	improvement	compared	to	standalone	evaluation	done	previously,	by	
being	prevented	to	leak	location	information	more	than	share	correctly.	

Because	Policy	A	and	B	are	able	to	rarely	reveal	location	information,	the	influence	of	entropy	system	
is	not	observed	significantly.	However,	majority	of	the	policies	which	were	able	to	hit	samples	in	test	
set,	are	enhanced	with	all	entropy	system.	The	points	are	farther	dispersing	in	ES7-11,	and	gathering	
towards	origin	while	strictness	of	entropy	system	is	decreasing	with	higher	Cp.	According	to	the	results,	
in	general	ES7-51	had	highest	number	of	policies	those	were	affected	in	positive	manner.	

𝑅𝑎𝑡𝑒(𝑥) = −	
𝑥=US − 𝑥8BQ
𝑃=US��� {

	

	 	 	 	 	 	 	 	 	 	 	 												(7.4)	
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Figure	7.29	-	Normalized	drop	rates	using	Formula	(7.4)	for	each	kind	of	Policy	and	Entropy	System	combination	

	  



	 -	69	-	

8. Summary and Future 
Work 
	

8.1 Conclusion 
	

The	change	of	individuals’	sharing	attitude	over	time	presents	a	challenge	of	adaptation	for	location-
based	 applications,	 especially	 for	 the	 ones	 which	 use	 static	 mechanisms.	 In	 this	 thesis,	 we	 first	
presented	an	optimization	on	algorithm	in	[6]	that	identifies	optimal	policy	for	a	subject	utilizing	long-
period	 training	 set.	 Four	 policies	 per	 subject	 is	 defined	 in	 different	 levels	 of	 strictness	 in	 order	 to	
simulate	sharing	preferences	of	individuals	with	diverse	confidence	intervals.	Second,	we	presented	
routine	aware	 control	mechanism	at	decision-making	process	of	 location	privacy	applications,	 that	
detects	probable	false-positives	caused	by	user-defined	privacy	preferences.	The	system	is	based	on	
estimation	of	 conditional	 trajectory	entropy,	and	 similar	 to	approach	proposed	 in	 [16].	 In	order	 to	
evaluate	our	approaches,	we	have	used	Reality	Mining	dataset	[24]	on	which	communication	events	
are	used	as	reference	for	sharing	behaviour.	

During	 the	 evaluation	 phase,	 it	was	 discovered	 that	 even	 policies	 those	 are	 trained	 aiming	 higher	
accuracy	value	rather	than	the	most	sharing,	was	not	able	to	cover	subjects’	sharing	attitude	in	test	
set	 successfully.	However,	 overall	 performance	of	 routine	aware	 control	mechanism	 together	with	
rules	 which	 have	 static	 nature,	 has	 implied	 improvement	 on	 prevention	 against	 false-positives.	
Further,	 in	standalone	evaluation,	entropy	systems	had	positive	 influence	on	approximately	60%	of	
subjects.	 The	 results	 indicate	 that	 considering	 given	 dataset,	 entropy	 value	 of	 locations	was	more	
informative	 to	 distinguish	 false-positives	 and	 true-positives	 than	 the	 rules	 in	 policies,	 and	 entropy	
systems	can	play	supportive	role	in	location	privacy	mechanisms.	

	

8.2 Future Work 
	

As	 discussed	 in	 Chapter	 4,	 using	 two	A	 star	 algorithms	with	 separate	 heuristic	 functions	 results	 in	
identifying	not	the	best	but	the	optimal	policy	for	a	subject.	The	reason	is,	heuristic	function	of	first	A	
star	algorithm	is	able	to	measure	cost	in	its	own	domain,	but	unable	to	measure	in	second	algorithm’s	
domain.	This	implies	that	first	ran	tries	to	form	clusters	in	ground-truth	space	as	broad	as	possible,	but	
do	not	consider	if	generated	clusters	would	form	the	best	policy	given	cluster	limit	in	second	algorithm.	
The	future	work	on	heuristic	function	may	provide	identification	of	best	policy	given	rule	limit	using	
large-scale	datasets.	



	 -	70	-	

Further,	estimating	entropy	of	a	location	by	utilizing	trajectory	entropy	of	previously	visited	locations	
has	 a	drawback	which	 is,	 once	 trajectory	 is	 affected	by	 surprise	 location	or	 sequence	of	 locations,	
system	cannot	accurately	differentiate	farther	 locations	whether	they	are	routine	or	out-of-routine	
events	 until	 path	 information	 is	 overwritten.	 To	 overcome	 this	 situation,	 system	 should	 able	 to	
recognize	initial	and	future	destination	locations.	Further	research	on	probabilistic	system	which	can	
predict	destination	location	given	time	slot,	and	construction	of	a	joint	system	together	with	entropy	
mechanism	can	restrain	this	influence.	

Finally,	 another	 implementation	 may	 be	 considered	 together	 with	 routineness	 aware	 control	
mechanism	and	dynamic	location	privacy	system	adopts	machine-learning	algorithms.	That	being	said,	
dynamic	learning	was	not	in	the	scope	of	this	thesis.	Further	evaluations	can	be	applied	using	dynamic	
learning	approach	with	 real-time	markov	chain	updates,	which	can	adapt	mobility	pattern	changes	
(e.g.	relocation	or	holiday	situations)	of	subjects.	On	the	other	hand,	the	entropy	systems	with	higher	
degree	of	detail	 (e.g.	entropy	systems	exclusive	for	participant,	area,	and	weekend	or	time)	can	be	
trained	 and	 tested	mining	 larger	 datasets.	 Because	 individuals	 are	 prone	 to	 use	 different	mobility	
patterns	on	weekdays	and	at	weekends,	more	detailed	conclusion	can	be	reached.		 	
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