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Abstract 

In this work, I describe the process of developing a cluster scalability model that 

is capable of predicting performance of a parallel rendering application running 

on a cluster while only having data that can be obtained from one of its nodes. I 

begin by studying scaling behavior of a single cluster, employing linear regression 

and neural networks to construct a cluster-specific scalability model, which im-

plicitly captures its hardware characteristics. I use this model as a foundation for 

further work, developing a hardware-agnostic cluster scalability model. 

Instead of using explicit hardware characteristics as input, the hardware-agnostic 

model takes in a distribution of node computation time, which encapsulates local 

computational load of a rendering application, enabling the model to focus on pre-

dicting communication overhead of a cluster. This allows simulation of different 

hardware by varying the node computation time, gathering enough data to train a 

neural network that predicts the overall performance of the rendering application 

on a cluster with arbitrary node hardware. 
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1. Introduction 

1.1 Motivation 

Volume rendering is a visualization technique that has found application in many 

fields, including biology, medicine, meteorology, astrophysics, etc. It enables the 

user to explore structures in three-dimensional data, a task which is common for 

natural sciences and studying physical phenomena. 

As measurement and simulation technology improves, both in methods and in 

hardware, the size of the resulting datasets keeps increasing. Combined with the 

computationally intensive nature of volume rendering and its interactivity re-

quirements, this presents a growing challenge for visualization applications. Even 

though their methods and hardware are also improving, it is not enough to keep 

up with the amount of generated data, so the parallelism of rendering tasks is ex-

ploited, solving the performance problem quantitatively, by adding more hard-

ware and parallelizing. 

Parallel volume rendering is not a trivial problem, which is demonstrated by both 

the amount of research in this field, and the number of different rendering meth-

ods developed over the years. One of the effects of this complexity is the increasing 

difficulty of making predictions about the overall performance of the application. 

Although performance prediction may appear as a secondary task, it has a number 

of important applications. First, it supports decisions made during systems design: 

a performance model can be quickly used to estimate how hypothetical changes to 

hardware or software will affect the performance of an application, without imple-

menting them. Second, it could be used for recognizing the need and driving the 

optimization process of a newly-created application. Implementation of parallel 

applications is a difficult, error-prone task, and an existing model may help find 

issues in application performance. Finally, a performance model is useful during 

equipment procurement, allowing potential performance to be estimated before 

purchasing expensive hardware, helping to achieve an optimal performance-to-

price ratio. 

Performance prediction is not a new problem; therefore, an extensive amount of 

research is already available in the field of high performance computing. However, 

volume rendering is an inherently interactive technique, with user’s input having 

a large impact on the load balance and, ultimately, application performance. This 

makes HPC models, which assume stable and repetitive performance, inapplicable 
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to parallel volume rendering, warranting development of specialized performance 

models. 

1.2 Goal of the project 

In this project, I aim to create a performance model for parallel volume rendering 

applications. The model should predict performance of a typical rendering appli-

cation under different input (dataset size, image size, etc.) and hardware (GPU, 

node number, etc.) parameters. 

The model is developed with the purpose of supporting hardware procurement 

decisions, therefore it should be capable of predicting performance of a cluster, 

while only having access to data collected on as single node of the cluster. This 

means that I can execute neither the volume rendering application, nor any bench-

marks/skeletons on the whole cluster, but can run benchmarks on one of its nodes. 

Due to this limitation and overall complexity of the problem, machine learning 

techniques are to be used as a foundation for the model, aiming to provide data-

driven decisions without requiring deep domain-specific knowledge from the 

user. 

Two multi-GPU clusters are available for collection of performance data, however 

one of them is reserved for validation of the final results, and cannot be used for 

training or tuning the model. 

In summary, the goal is to implement a typical volume rendering application, col-

lect performance data on one of the clusters, and to construct a machine learning 

model that can predict performance of another cluster, without running the ren-

dering application on that cluster. 

1.3 Outline 

In Chapter 2 I briefly discuss the fundamental concepts used in this thesis. I de-

scribe the volume rendering problem more formally, and talk about the ways to 

parallelize it. Then, I present an advanced parallel volume rendering algorithm 

that is used in my implementation and defines the communication costs of the ap-

plication. Finally, I outline the core concepts of machine learning, and a few partic-

ular techniques used in this work. 

In Chapter 3 I set out to develop a performance model of a single cluster. Since 
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only a single set of hardware is used, the model has no input features describing 

the hardware, which is implicit in the model. I construct this model to better un-

derstand the scaling behavior of a cluster, and assess suitability of various machine 

learning approaches. I begin with linear regression and its extensions, which gives 

reasonable results, but requires error-prone manual feature selection. So, I go 

through several iterations of neural networks, arriving at a model which has both 

acceptable accuracy, and better scales to a larger number of features. Although, 

neural networks show high accuracy ‘near training data’, they are not well-suited 

for extrapolation, which is the final goal of this project. I address this problem in 

the chapter 4. 

The goal of Chapter 4 is to create a general cluster performance model. I begin by 

recognizing that the problem of poor extrapolation can be solved by obtaining 

more training data, from multiple clusters with different hardware. Since only a 

single cluster is available for running experiments, the model needs to be refor-

mulated in a way that allows obtaining more data on a single set of hardware. Be-

fore, I was aiming to create a holistic model that would map application-specific 

parameters (e.g. image size, dataset size), hardware parameters (e.g. GPU specs) 

and cluster size to overall rendering time. Now, the hardware and application-spe-

cific parameters are abstracted away behind a local computation time parameter, 

which describes how much time each node takes to perform local rendering. The 

new formulation focuses on predicting the communication overhead of the cluster. 

By varying the local computation time values, it is possible to simulate different 

hypothetical hardware on a single cluster by stalling each node instead of perform-

ing actual local rendering. This way additional training data is gathered, helping to 

isolate general effects of cluster communication. Then, the final model is trained 

and validated using data obtained from a different cluster. 

Chapter 5 contains a short summary of the results, their limitations and a discus-

sion of potential future work. 
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2. Core concepts and related work 

2.1 Volume rendering 

Volume rendering is a set of techniques in scientific visualization, concerned with 

visualizing data defined on a 3D domain. This data may represent real-world phe-

nomena recorded with 3D-scanning methods, e.g. using computer tomography to 

scan human body in medicine [1], or be a result of a simulation, such as supernova 

birth simulation in astrophysics [2]. Regardless of the origin, one property is al-

ways shared: in its raw form, the data is inaccessible to humans, both due to the 

sheer number of data points and its volumetric, possibly multivariate character, 

making mapping to a 2D representation non-trivial. Thus, the goal of volume ren-

dering is to map the volumetric data to a human-accessible form, making its fur-

ther analysis possible. 

There are three main families of volume rendering methods: slicing methods, 

which visualize only 2D subsets of the volume (‘slices’). Although they do not pro-

vide overview of the data, they are still used in medicine due to their simplicity 

and lack of complex transformations, which might obscure important details. Indi-

rect methods visualize structures derived from the volume data, e.g. constructing 

a polygonal iso-surface and rendering it on an image using polygonal rasterization 

techniques. Finally, direct methods, derived from the rendering equation [3], which 

governs light transport. Direct methods aim to transform and project on the image 

the volume data itself. 

The direct methods have a common trait: since the volume data itself is ‘put’ on 

the image, there needs to be defined a mapping from the abstract physical proper-

ties, such as density, velocity, etc., to the color and transparency of the image. This 

mapping is called a transfer function. Usage of a transfer function does not only 

make the direct volume rendering possible, but also can provide further control to 

the user: by changing the function he can focus on different features and value 

ranges of the data. 

A number of direct volume rendering techniques have been developed, e.g. shear-

warp [4], volume splatting [5], texture-based methods [6]. In this work, I use a 

method called volume raycasting [7], which became more popular with the rise of 

programmable GPU shaders and general purpose GPU computing.  

When rendering an image of the volume using raycasting, one has a scene contain-

ing a bounding box of the volume and a virtual camera. Typically, a perspective 
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camera is used, because it works similarly to a human eye and produces results 

that are more intuitive. A camera can be described as a series of linear operators, 

that transform points of the scene from local coordinate system of each object to 

the image coordinate system, effectively placing every point somewhere on the 

image. The overall transformation 𝑇 is often specified in terms of three matrices 

(Equation 1). 

𝑇 = 𝑃𝑉𝑀 (1) 

Here 𝑀 is the model matrix, which transforms local coordinates of an object into 

world coordinates to bring all objects into a common coordinate system. The model 

matrix is defined for each object and depends on the object’s position, orientation 

and scale. The view matrix 𝑉 is constructed from the camera’s position and orien-

tation and transforms world coordinates into view coordinates, which are centered 

and aligned to the camera. This is done to simplify the definition of the final matrix 

– the projection matrix 𝑃, which projects the points from the view coordinates into 

image coordinates. The matrix 𝑃 is what determines the type of projection per-

formed by the camera (orthogonal, perspective, etc.). All three matrices have a 4x4 

size, representing transformations in three-dimensional projective space. The 

points in this space use homogeneous coordinates that can be represented using a 

four-component vector. Addition of the extra fourth component allows perspec-

tive projection to be expressed using linear operators. To convert a three-compo-

nent vector (𝑥, 𝑦, 𝑧) representing an affine point into homogeneous coordinates, 

one simply appends the fourth component 𝑤 equal to one: (𝑥 ∶  𝑦 ∶ 𝑧 ∶ 1). To per-

form the opposite conversion, all components are divided by the fourth compo-

nent, which is then removed (Equation 2). 

𝑝𝑝𝑟𝑜𝑗 = (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑤) ⟼ 𝑝𝑎𝑓𝑓𝑖𝑛𝑒 = (
𝑥

𝑤
,

𝑦

𝑤
,

𝑧

𝑤
) (2) 

This way of implementing the camera using transformation matrices is very com-

mon, which is why I describe it, but further details are required to apply it to vol-

ume raycasting. To perform raycasting, a ray emanating from the camera is con-

structed for every pixel of the image. The ray comprises all points that are pro-

jected onto the pixel, and it is later traversed to determine the pixel’s color. To this 

end, its origin and direction in world coordinates are computed. The origin of the 

ray lies on the image plane of the camera and can be obtained by transforming the 

point in image coordinates with the inverse view-projection matrix (𝑃𝑉)−1 effec-

tively ‘unprojecting’ the point from image back to world coordinates (Equation 3). 

𝑜𝑝𝑟𝑜𝑗 = (𝑃𝑉)−1(𝑥 ∶ 𝑦 ∶ 0 ∶ 1)𝑇 (3) 
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Note that depth of zero is used (i.e. point lies exactly on the image plane) and the 

fourth component equal to one is appended. To get the ray direction, another point 

lying on the ray is required. For that a point with the same pixel coordinates, but 

an arbitrary non-zero depth 𝑧 is inverse transformed (Equation 4). This corre-

spond to a point that is projected onto the same pixel, but lies some distance away 

from the camera.  Next, the two obtained points are converted to affine coordinates 

using Equation 2. Finally, the ray direction is computed as a normalized difference 

between the two points (Equation 5). 

𝑜𝑝𝑟𝑜𝑗
′ = (𝑃𝑉)−1(𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 1)𝑇 (4) 

𝑑 =
𝑜𝑎𝑓𝑓𝑖𝑛𝑒

′ − 𝑜𝑎𝑓𝑓𝑖𝑛𝑒

‖𝑜𝑎𝑓𝑓𝑖𝑛𝑒
′ − 𝑜𝑎𝑓𝑓𝑖𝑛𝑒‖

(5) 

Then, the ray is intersected with the volume box. If the ray has missed the box, then 

the corresponding pixel is assigned background color. Otherwise, the intersection 

results in two points: ray entry and ray exit. To obtain the pixel color the ray is 

traversed step-by-step, moving a fixed distance ℎ along the ray every iteration 

(Equation 6). For volume data defined on a uniform grid, it is reasonable to select 

the step size ℎ to be equal to voxel size, such that regardless of ray orientation no 

voxel can be ‘stepped over’. 

𝑝𝑖+1 = 𝑝𝑖 + 𝑑 ∙ ℎ (6) 

where 𝑝𝑖 is the current position in the i-th step of the algorithm. 

Before the first step, the position is initialized to the exit point, and the current 

color to background. As steps are taken towards the camera, the volume texture is 

sampled and resulting values are converted to color and opacity by the transfer 

function. Color and opacity obtained at each step are blended with the current 

color, effectively simulating light transport, as it passes through the volume voxel. 

The resulting change in light intensity depends on the following effects: 1) absorp-

tion of light by the volume 2) emission of light by a potentially luminous material 

3) scattering of light inside the volume [1]. If the problem is simplified to consider 

only light absorption, then the blending can be performed using the ‘over’ operator 

(Equation 7) [8].  

𝐶𝑖+1 = (1 − 𝛼)𝐶𝑖 + 𝛼𝐶 (7) 

where 𝐶𝑖  and 𝐶𝑖+1 is the accumulated color before and after i-th step respectively; 

𝐶 and 𝛼 are color and opacity obtained by sampling the volume. 

This method is known as back-to-front compositing. A common optimization is to 
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use front-to-back compositing [1] (Figure 1), starting at the ray entry point and 

traversing the ray in the opposite direction, away from the camera. The idea be-

hind this, is that parts of the volume that are far away from the camera are often 

occluded by the rest of the volume. Thus, they contribute very little to the final 

color of the pixel, and yet they are still traversed. In front-to-back compositing, the 

blending operations are reversed, which also requires the implementation to 

maintain not only the current pixel color, but also the opacity (Equation 8). This 

allows for early ray termination, stopping ray traversal when an opacity value close 

to 1 has been reached, meaning that further computation will yield very little con-

tribution to the result and can be skipped. 

𝐶𝑖+1 = 𝐶𝑖 + (1 − 𝛼)𝐶𝛼 (8) 

𝛼𝑖+1 = 𝑎𝑖 + (1 − 𝛼)𝛼    

2.2 Distributed volume rendering 

As the size of the volume dataset increases, computational power of a single GPU 

Ray missed the volume 

Exit point 

Entry point 

Reached opacity threshold and 

stopped ray traversal 

Camera 

Figure 1: Depiction of direct volume rendering with front-to-back compositing. When a ray 

emanating from the camera hits the volume, it is stepped through, starting at the entry point. 

Each step the volume density is sampled, converted to color and opacity with the transfer 

function and blended with the current result. If a high value of opacity is reached, the tra-

versal is stopped prematurely, since further steps would yield only a small contribution to 

the result. 
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becomes insufficient to render it in real-time. This presents a problem, since, vol-

ume rendering is a technique that enables a human to explore volumetric data, and 

as the frame rate drops, interaction becomes cumbersome and frustrating. 

An obvious solution is to parallelize the problem and use more hardware to per-

form the rendering. However, the details of how to parallelize the problem are not 

as obvious. A generic way of classifying parallel rendering applications has been 

developed by Molner et al. [9]. Rendering is essentially computing the effect of ge-

ometric primitives on pixels of the image, and as such can be treated as a problem 

of sorting the primitives to the image. A standard rendering pipeline consists of 

two stages: geometry processing (transformation, clipping to screen, etc.) and ras-

terization (shading, occlusion, etc.), which results in three possible places where 

the sorting can occur: during geometry processing stage (“sort-first”), during ras-

terization (“sort-last”), or in-between the two (“sort-middle”). Sort-first renderers 

distribute the primitives among the nodes according to where they fall on the 

screen. Each node is assigned a region of the image, and receives primitives that 

contribute to that region. In sort-middle approach, primitives are at first distrib-

uted randomly for geometry processing, but redistributed before rasterization oc-

curs. So, similarly to sort-first, the nodes are assigned regions of the image, but 

only for rasterization stage. Finally, in sort-last applications, the primitives are dis-

tributed arbitrarily, and all the computation is performed independently until the 

visibility resolution stage, during which the nodes exchange the pixel data to form 

the final image. 

This classification can be applied to volume rendering applications, and results in 

roughly three groups of methods, expressed in how computational load is parti-

tioned among the renderers: object-space partitioning (sort-last), image-space par-

titioning (sort-first) and hybrid, which try to find a compromise between the for-

mer two (Figure 2). Object-space methods parallelize the problem by assigning 

each rendering node a volume partition. When a frame is being rendered, each 

node simply renders its partition, but afterwards a complex composition step has 

to be performed, resolving occlusions and merging the results of each node into a 

single image. Image-space methods parallelize the problem by assigning each node 

a partition of the final image. During rendering, nodes have to determine, which 

parts of the volume contribute to their assigned image partition, and render them, 

producing a tile of the final image. No complex composition step is required, as the 

final image is assembled by simply ‘gluing’ together results from each node. 

In this project, I am investigating the performance of object-space partitioning 

methods, so I discuss them in further detail. Conceptually, the rendering process 

has two phases: local computation and composition.  



2. Core concepts and related work 

16 

First, the local computation phase is performed, during which each node renders 

its volume partition(s) into its frame buffer. If multiple partitions are to be ren-

dered, they are rendered sequentially in visibility order, compositing the results 

on-the-fly into the same buffer (assuming convex partitions without gaps between 

Figure 2: In object-space partitioning approach (top) the volume is subdivided into bricks 

and distributed among nodes. When each node has rendered its brick, all local results are 

composed into the final image. When using image-space partitioning (bottom), each node 

is assigned a region of the image and renders the whole volume into that region. Later, all 

image chunks are ‘glued’ together to form the final image. 

Scene Local node results Final result 

…  

…  
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them). Note, that since the volume is partitioned before the rendering (inde-

pendently from the current camera position), node’s volume partitions may fall 

anywhere on the final image.  

Second, the composition phase is performed, blending the local results of each node 

into the final image. After the local phase, each node has a full-sized image, but only 

with its own partition(s) rendered on it. Since it is common to use convex volume 

partitions, the nodes can be sorted according to visibility of their corresponding 

partitions. Then, a straight-forward way of performing composition is to gather all 

the local results on a single node, and blend them sequentially. However, this naïve 

approach is not scalable, since during the composition most of the nodes will stall, 

waiting for a single compositing node.  

Direct-send is a more advanced parallel composition scheme in which each node 

participates in the composition process [10]. Each node is assigned a different re-

gion of the image, so it receives a corresponding chunk of local results from each 

node, and blends them all together to get a chunk of the final image. Then, these 

final chunks are gathered on a single node and ‘glued’ together to form the final 

image (Figure 3). Although all nodes perform compositing computations, this 

Node 1 Node 2 

Node 3 Node 4 

Figure 3: Depiction of the direct-send composition scheme. Every node is assigned a region 

of the final image. It receives data falling into that region from every other node to compose 

it into a chunk of the final image. Afterwards, all chunks are sent to a single node and ‘glued’ 

together to get the final result. 
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method still may scale poorly due to the high number of messages being exchanged 

simultaneously. Specifically, if there are N nodes, then the image is partitioned into 

N chunks; every node sends out 𝑁 − 1 chunks of its local results, and receives 𝑁 −

1 chunks from other nodes, so each node communicates with every other node, 

resulting in 𝑁 × (𝑁 − 1) messages exchanged [11].  

To address the problem of simultaneous exchange of many messages, more ad-

vanced composition schemes have been proposed. In binary-swap scheme [11], 

composition is performed in steps, during which nodes exchange data in pairs, 

gradually composing the final image (Figure 4). The algorithm begins with every 

node having a full image, but only with its own local rendering results. In every 

step, each node swaps half of its image with a neighbor, for example, sending its 

top half and receiving neighbor’s bottom half. After the data has been exchanged, 

each of the two nodes composes the received image chunk with one of its own, and 

ends up with half of the image region it had before, but with ‘twice as much’ data 

rendered to it. This process is repeated until each node has a chunk of the final 

image with all possible contributions rendered to it. Similarly to direct-send, the 

chunks are sent to a single node to be ‘glued’ into the complete final image. Since 

composition takes log2 𝑁 steps, the overall number of messages exchanged is 

Node 1 Node 2 Node 3 Node 4 

Step 1 

Step 2 

Figure 4: Depiction of the binary-swap composition scheme. Each step of the algorithm 

nodes exchange and compose data in pairs. Initially, every node has data covering the 

whole image, but only with one volume partition rendered. After all the steps are finished, 

every node ends up with a small chunk of the final image, which is sent to a single node to 

form the final result. 
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𝑁 log2 𝑁, which is fewer than in direct-send scheme. Additionally, nodes exchange 

messages in pairs, resulting in fewer simultaneous messages and performing bet-

ter in networks of more complex topology, where direct node-to-node links be-

tween every node are not available. Although showing better experimental perfor-

mance [12], binary-swap scheme is limited to power-of-two cluster sizes. This 

problem is addressed in section 2.3, where a generalization of the binary-swap 

scheme is described.  

Another problem that commonly occurs in distributed volume rendering applica-

tions is load imbalance. Since all nodes need to finish their local computation be-

fore composition phase can occur, the overall frame time is defined by the node 

that takes the longest to perform its part. Although the volume is partitioned 

equally among the nodes, a large disparity in local rendering time is possible due 

to difference in volume bricks’ footprint. A footprint of a volume brick is its projec-

tion on the image plane of the camera. The larger the area of the footprint, the more 

pixels of the image are affected by the brick, thus more rays must be cast and more 

volume samples taken, increasing the render time. As camera moves around the 

volume, perspective projection causes volume bricks to appear larger or smaller, 

increasing or decreasing local rendering time of different nodes, and affecting the 

overall performance of the application. There are techniques designed to combat 

this flaw, dynamically assigning volume partitions to the nodes during runtime 

[13], but in this work, I focus on static object-space partitioning and its effects on 

the renderer performance. 

2.3 “2-3 swap” composition 

2-3 swap composition scheme is an extension of the binary-swap scheme [11], that 

can be used with an arbitrary number of rendering nodes. Both schemes result in 

a smaller number of messages being exchanged among nodes, compared to the 

direct-send algorithm. Albeit the overall amount of data sent is higher, by reducing 

the impact of the per-message overhead, and communicating in smaller groups of 

nodes, they show better experimental results [12]. 

In 2-3 swap composition, the composition is performed in steps, during which pro-

cessors exchange and compose data in small groups. The scheduling of composi-

tion operations is based on a pre-constructed compositing tree (see Figure 5 for 

an example). Every level of the tree represents a step of the algorithm, while nodes 

represent groups in which processors exchange data. The leaf nodes are the initial 

state of the algorithm, and each corresponds to a group with just one processor. 
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The root node represents the state after the last composition operation, in which 

each processor is left with a chunk of the final image. 

Note: to avoid confusion, in this section, I use the term “processors” to refer to the nodes of 

the rendering cluster, and “nodes” to refer to the nodes of the compositing tree. 

During the course of the algorithm, one moves from the bottom of the tree to the 

top, merging together groups of processors, and exchanging data between them. 

Initially (at the leaf node level), each processor is responsible for the whole image 

region, but has only its own volume partition(s) rendered on it. As data is ex-

changed with other processors, the image region for which the processor is re-

sponsible shrinks, while its contents become more complete, i.e. contribution of 

other volume partitions is taken into account. Until finally, each processor is left 

with a complete chunk of the final image. 

Step 2 

Step 1 

A B C D E 

A 

B 

C 

D 

E 

C 
A 
D 
B 
E 

C 

A 

D 

B 

E 

C 

D 

E 

A 

B 

after before 

C ← A 
A ← C, D 
D ← A, B 
B ← D, E 
E ← B 

 

Data ex-

change 

Figure 5: An example of 2-3 swap composit-

ing tree for 5 processors (A-E). The algorithm 

comprises two steps: during the first step, the 

processors exchange data in two groups: (A, 

B) and (C, D, E). During the second step, all 

five processors are merged into a single 

group. 

Figure 6: Group merging operation for the 

second step of the example compositing 

tree. Before the operation, processors (C, 

D, E) were responsible for thirds of the im-

age, and processors (A, B) for halves. After 

the merge, each processor becomes re-

sponsible for a fifth of the final image, and 

receives data overlapping its region from 

other processors. 
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To better illustrate this process, consider a 2-3 swap compositing tree for 5 pro-

cessors (Figure 5). In this case, the composition occurs in two steps, first merging 

data within two groups of nodes, and then merging the two groups together at the 

root node. Before the first step, every processor is responsible for the whole image 

region. During the first step, processors (A, B) exchange data to form a new group: 

processor A becomes responsible for the top half of the image, receiving top half 

of B’s buffer, and vice versa. A similar exchange happens among processors (C, D, 

E), but each of them exchanges data with two neighbors. In the second step, the 

two groups are merged to form the final group of five processors. Each processor 

becomes responsible for a fifth of the image, and receives data from those proces-

sors, who have data overlapping its new image region (Figure 6). When the second 

step is completed, each processor ends up with a finished chunk of the final image. 

All that is left is to send all these chunks to a single processor, to form the final 

image. 

An insight into scalability properties of the algorithm can be gained by examining 

the upper-bounds on the number of messages and amount of data exchanged, pro-

vided by Yu et al. [12]. It is shown, that at any step of the algorithm, a processor 

exchanges data with at most 4 other processors, thus at most 4 × ⌊log2 𝑁⌋ messages 

are sent during the whole composition process. For the amount of data exchanged, 

the upper-bound is 
4

3
×𝑃, with P being the number of pixels in the image, but the 

algorithm shows better average performance in practice. 

2.4 Machine learning 

Machine learning is a field of computer science, which is concerned with develop-

ing methods that make predictions based on data, as opposed to being explicitly 

programmed to make static decisions. Machine learning is closely related to the 

fields of mathematical optimization and computational statistics, which serve as 

its theoretical and methodological foundation. 

The input for a typical machine learning problem is a set of data points, called the 

training set. The data points could be either scalars or N-dimensional vectors, in 

which case the input data is said to have N input features. Tasks where the input is 

accompanied by its corresponding target outputs are instances of supervised learn-

ing, where a machine learning model is given examples of correct answers and is 

expected to learn the general dependency between inputs and outputs. This is op-

posed to unsupervised learning, where the model is given no target outputs, and is 

supposed to find generic patterns in the data. 
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Based on the desired output, machine learning tasks can be further classified into 

the following categories [14]: 

 Classification 

 Regression 

 Clustering 

 Density estimation 

 Dimensionality reduction 

In classification problems, the machine learning model, given an input data point, 

has to assign it to one of predefined classes. Clustering problems are defined simi-

larly, but the classes are not specified before-hand. Regression tasks are supervised 

and require the model to learn the dependency between the input and one or more 

continuous output variables. 

In a standard machine learning workflow, one begins by selecting a model, that is 

believed to be capable of capturing the relationship between the input and the out-

put. Then, the model is trained by fitting its parameters to the input data, i.e. find-

ing such model parameters, that minimize the value of the loss function on the 

training set. The loss function, given a set of data points and their target outputs, 

expresses how good the model is at predicting the output. 

After training is complete, the quality of the model’s prediction should be evalu-

ated. As it is desirable for the model to generalize beyond the training data and 

give accurate predictions for all possible inputs, it is important to perform evalua-

tion on the data that wasn’t included in the training. A dataset used for evaluation 

is called the test set; a common strategy known as holdout is to simply split the 

input data into training and test sets before training the model (often in 2:1 pro-

portion). To evaluate the model, one or more accuracy scores are computed on the 

test set, by using the loss function used to train the model, or other scores that 

capture different notions of “accuracy”. In this work, I use a Mean Squared Error 

loss function and the R2 score (coefficient of determination), that shows how much 

of the variation of the output is captured by the model [15]: 

𝑅2 = 1 −
𝑆𝑟𝑒𝑠

𝑆𝑡𝑜𝑡𝑎𝑙

= 1 −
∑ (𝑦𝑖 − 𝑜𝑖)2

𝑖

∑ (𝑦𝑖 − 𝑦̅)2
𝑖

(9) 

where 𝑜𝑖 is the output of the model, 𝑦𝑖  is the target output and 𝑦̅ is its mean. 

Results of the validation can often be used to diagnose some broad classes of prob-

lems with the resulting model. Poor accuracy on both the training and the test sets 
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suggest that the model might be underfitted, meaning that it is too simple to cap-

ture the relationship between the input and the output, for example when using a 

linear model to fit non-linear data. If only the test set accuracy is low, the model 

might be overfitted, capturing not only the general trends of the data, but also any 

noise and variation specific to the training set. In general, one wants the accuracy 

to be low both on the training and the validation datasets, which is indicative of a 

model that is not only capable of fitting the training data, but also generalizes well 

to previously unseen input. 

In this work, I rely on linear regression and neural networks for performance pre-

diction, thus I discuss them in closer detail. 

2.4.1 Linear regression 

Linear regression model assumes a linear relationship between input and output 

variables, and thus uses a linear function to predict the output value. Conceptually, 

this corresponds to fitting the “best” line to the training set of points, and then us-

ing this line to predict the output. What exactly is meant by the “best” line is deter-

mined by the estimator, i.e. the algorithm used for determining parameters of the 

model.  

More formally, given a set of 𝑁 data points with 𝑚 features, and a single dependent 

variable 𝑦: 

{𝑦𝑖 , 𝑥𝑖1, 𝑥𝑖2 … 𝑥𝑖m}𝑖=1
𝑁  (10) 

The following linear relationship is assumed to hold for all 𝑁 data points: 

𝑦𝑖 = 𝒙𝒊
𝑻𝒘 + 𝜀𝑖 (11) 

where 𝒙𝒊
𝑻 = (1, 𝑥𝑖1, 𝑥𝑖2 … 𝑥𝑖m)𝑇 is a vector of input variables, 𝒘 is a vector of model 

parameters, and 𝜀𝑖  is a scalar residual term, which models deviation of the input 

data from the linear relationship. The same relationship can be expressed in ma-

trix form: 

𝒚 = 𝑿𝒘 + 𝜺 (12) 

Using Ordinary Least Squares estimator, the goal is to find 𝒘 that minimizes the 

sum of squared residual terms: 

min
𝒘

𝜺𝑻𝜺 (13) 

 

which corresponds to computing [15]: 
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𝒘 = (𝑿𝑻𝑿)−1𝑿𝑻𝒚 (14) 

Yielding a line through the training set, which minimizes average vertical distance 

to the training data points. 

2.4.2 Artificial neural networks 

Artificial neural networks are a machine learning technique that was inspired by 

the structure of a biological brain. An ANN is a network of interconnected neurons, 

in which a signal flows from the input neurons through the whole network to the 

output neurons, being transformed on the way. A neuron can be viewed as a unit 

which outputs a nonlinear weighted sum of the incoming signals (𝑧𝑗): it sums the 

incoming signals (𝑧𝑖) according to weights of the connections (𝑤𝑖𝑗), and then ap-

plies the activation function (𝑔) to the result (Equation 15) [16]. The activation 

function is a nonlinear function which enables ANNs to model complex nonlinear 

input data. Without it, the whole network could be reduced to a single linear oper-

ator.  

𝑧𝑗 = 𝑔(𝑎𝑗) = 𝑔 (∑ 𝑤𝑖𝑗𝑧𝑖

𝑑

𝑖=0

) (15) 

The architecture of a network, i.e. the number of neurons and the way they are 

… 

𝑤𝑖𝑗𝑥𝑖  

𝑥𝑖  

𝑧𝑗  𝑤𝑗𝑘𝑧𝑗  

Input 
layer 

Hidden layers Output 
layer 

Figure 7: An example of ANN architecture, with an input layer, an output layer and a set of 

hidden layers shown. The input data enters the network as the signal coming from the input 

layer and propagates through the network left-to-right, until the final output value is com-

puted. 
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connected, varies from network to network. A common architecture, which I use 

in this work, is series of fully interconnected layers of neurons (Figure 7). The first 

fictitious layer is an input layer, and has a neuron for every input feature. The last 

layer is the output layer, and has a single neuron (when doing regression with a 

single dependent variable). The rest of the layers are called the hidden layers. 

Their number and the number of neurons they contain can be varied to control the 

complexity of the network. 

During the training, input data is ‘fed’ to the network, gradually adjusting connec-

tion weights to improve network’s prediction accuracy. First, all the weights are 

initialized with random values. Care must be taken, as the details of initialization 

technique used may significantly affect the effectiveness of the training process. 

Next, the network is evaluated on the input data, making a left-to-right pass 

through the network, called forward-propagation. Next, the back-propagation al-

gorithm [17] is used to compute all the gradients of the network, i.e. how much the 

overall loss is changed when changing each weight of the network. The algorithm 

is based on the chain rule of differentials and computing the derivative of the loss 

function w.r.t. to weights of the network. Considering a network with one output 

neuron (which is a case for univariate regression), the squared error loss function 

for a single data point can be written as: 

𝐸 =
1

2
(𝑦𝑡 − 𝑦𝑜)2 (16) 

with 𝑦𝑡 being the target output of the network (provided with the input data) and 

𝑦𝑜 being the actual output, computed with forward-propagation. To compute the 

derivate of the loss w.r.t. to a weight, considering Equation 15 and applying the 

chain rule: 

𝜕𝐸

𝜕𝑤𝑖𝑗

=
𝜕𝐸

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑤𝑖𝑗

(17) 

The last term, for the derivative of neuron’s activation 𝑎𝑗 w.r.t. to the weight, can 

be simplified to i-th neuron’s output 𝑧𝑖 , since only one term in the sum depends on 

the weight 𝑤𝑖𝑗: 

𝜕𝑎𝑗

𝜕𝑤𝑖𝑗

=
𝜕

𝜕𝑤𝑖𝑗

(∑ 𝑤𝑖𝑗𝑧𝑖

𝑑

𝑖=0

) = 𝑧𝑖 (18) 

The second term (the derivative of neuron’s output w.r.t. to its activation, i.e. the 

weighted sum of the input signals) is simply the derivative of the activation func-

tion: 
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𝜕𝑧𝑗

𝜕𝑎𝑗

=
𝜕𝑔(𝑎𝑗)

𝜕𝑎𝑗

(19) 

In case the neuron with output 𝑧𝑗  resides in the last layer of the network (immedi-

ately before the output neuron), the first term representing the derivative of the 

loss w.r.t. to the neuron’s output is: 

𝜕𝐸

𝜕𝑧𝑗

=
𝜕𝐸

𝜕𝑦𝑜

= 𝑦𝑜 − 𝑦𝑡 (20) 

However, if the neuron is not located in the last layer, the derivative has to be com-

puted as a total derivative w.r.t. 𝑧𝑗 , considering influence of every neuron in the 

next layer (having neurons with indices 𝐿 = {𝑚, 𝑛 … }): 

𝜕𝐸

𝜕𝑧𝑗

= ∑ (
𝜕𝐸

𝜕𝑎𝑙

𝜕𝑎𝑙

𝜕𝑧𝑗

)

𝑙∈𝐿

= ∑ (
𝜕𝐸

𝜕𝑧𝑙

𝜕𝑧𝑙

𝜕𝑎𝑙

𝑤𝑗𝑙)

𝑙∈𝐿

(21) 

Derivatives w.r.t. to any weight in any layer of the network can be computed by 

recursively applying Equation 21. Each step, starting with the last layer, deriva-

tives for the weights of the next layer are computed, moving backwards through 

the neural network (hence the name back-propagation). In the end, the derivatives 

can be used to update the weights, moving in the direction of decreasing loss, ef-

fectively performing gradient descent: 

Δ𝑤𝑖𝑗 = −𝛼
𝜕𝐸

𝜕𝑤𝑖𝑗

(22) 

with manually chosen parameter 𝛼 called the learning rate, which controls the 

speed of the descent. 

In the simplest case, the gradient is computed for the whole training dataset, aver-

aging all individual gradients resulting from each data point, after which a single 

update of the weights is performed. In order to improve memory requirements of 

this procedure, and to decrease chances of being ‘stuck’ in local minima of the loss 

function, often stochastic gradient descent is used. In this algorithm, one does not 

compute the gradient of the loss function on the whole dataset simultaneously, but 

splits the dataset into batches of 16 data points, and makes steps along gradient 

evaluated on these small subsets, iterating through the whole input dataset. It is 

stochastic, because the path taken in the parametric space depends on the order 

and contents of the batches that are chosen randomly. The idea is, that this ap-

proach introduces ‘jittering’ which can help to get out of local minima, but given a 

large enough batch size, the algorithm still moves towards the global optimum. 
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Furthermore, stochastic gradient descent can be parallelized to accelerate the 

training process [18]. 

Another improvement to the algorithm concerns adjustment of the learning rate. 

In this work, I use Root Mean Square Propagation (RMSProp) approach, in which 

the learning rate is adjusted separately for each weight, using a running average 

of its corresponding gradient. Dynamic learning rate adjustments allows a larger 

learning rate to be used in the beginning of training, gradually lowering it towards 

the end. 

A problem common to most machine learning methods is the problem of overfit-

ting. As the complexity of a neural network is increased by adding more neurons 

and layers, it becomes capable of fitting the training data so well, that it learns even 

the random noise present in the data, and becomes worse at generalizing to unob-

served data. A typical solution to this problem is to introduce a regularization term 

to the loss function, penalizing large network weights: 

𝐸𝑟 = 𝐸0 +
𝜆

2
∑ 𝑤𝑖𝑗

2

𝑖,𝑗

(23) 

where 𝐸0 is the non-regularized loss and 𝜆 is the regularization parameter, which 

controls the amount of regularization. The idea is that this change to the loss func-

tion makes the gradient descent ‘compromise’ between a close fit and small net-

work weights. This results in more weights having near-zero values, reducing the 

complexity of the network and alleviating overfitting. 

The last element of neural network’s implementation that remains to be covered 

is the activation function. The activation function is what allows the network to 

model nonlinear dependencies in the input data. When an output of a neuron 𝑧𝑗  is 

computed, the activation function 𝑔 is applied to the linear combination of the in-

coming signals (neuron’s activation 𝑎𝑗 , see Equation 15). A typical choice of acti-

vation function is to use the 𝑡𝑎𝑛ℎ function [19]. However, many other functions 

have been proposed, among them is the rectified linear unit (ReLU) [20]: 

𝑔𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (24) 

however, since max function is not differentiable, a smooth approximation is often 

used: 

𝑔𝑅𝑒𝐿𝑈(𝑥) = ln(1 + 𝑒𝑥) (25) 

ReLU activation helps with the problem of vanishing gradients that occurs in neu-

ral networks with many layers: a large number of layers implies many derivative 



2. Core concepts and related work 

28 

terms being multiplied together when computing the loss gradient using the chain 

rule (see Equation 17). If the derivatives are small (which is often the case for neu-

rons with tanh activation), then their product is smaller still, resulting in only a 

tiny change of network’s weights in every step of the gradient decent. This results 

in very slow training or even hinders the training completely, as gradients ap-

proach numerical precision of the floating-point numbers. ReLU on the other hand, 

always has a relatively large derivative, which both makes larger neural networks 

feasible and results in faster training time. 

2.5 Related work 

Performance prediction for parallel computing has many useful applications, such 

as runtime prediction for load balancing, informing system design and hardware 

procurement, or supporting performance tuning. So, it is not surprising that there 

is an ample amount of research investigating various performance prediction tech-

niques. 

Yang et al. [21] present an observation-based technique for predicting perfor-

mance of an application on a different platform. They argue, that due to iterative 

structure of most scientific computation programs, a short partial execution of an 

application is sufficient to predict its overall performance. They develop a simple 

API to mark and time iterations within a running application, and use it to perform 

a partial execution of the same application on different hardware, collecting data, 

which is later transformed into an approximation of the overall performance. 

Bailey and Snavely [22] developed a method for predicting application perfor-

mance without running the application on the target system. They combine static 

source code analysis and code instrumentation to obtain an application signature 

that characterizes its computation load. Together with results of low-level bench-

marks from the target machine, this allows for simulation-based performance pre-

diction, obtaining an estimate of application performance on the target system. 

A related approach is investigated by Sodhi et al. [23]. They predict performance 

of a parallel application using application skeletons. An application skeleton is a 

small program that represents a fraction of the overall computational load of the 

actual application. It is automatically generated through analysis of an execution 

trace and can be quickly run on a target system to estimate the performance of the 

whole application. 

Several researchers have developed methods for extrapolating performance of a 
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parallel application on a cluster, from measurements made on smaller number of 

its nodes. Barnes et al. [24] propose a regression-based method capable of extrap-

olating performance to a larger number of computational nodes. Zhai et al. [25] 

created a framework, which first collects nodes’ computation time sequentially on 

a single machine, and then uses it in a trace-driven simulation for estimating per-

formance of a full cluster of nodes. 

Although a lot of different methods have been designed for predicting perfor-

mance of HPC applications, they are difficult to apply to visualization. Most of the 

methods make an explicit assumption that scientific applications are iterative, 

highly repetitive and have stable performance after the initialization phase. How-

ever, visualization applications are interactive, and can have a large performance 

variation depending on the user’s choice of visualization parameters, such as cam-

era orientation. Moreover, standard performance metrics, such as computation 

time, do not fully represent the performance of an interactive application, with la-

tency being another important factor to consider. Finally, due to development in 

the field of general-purpose GPU computing, many visualization applications are 

now utilizing the computational capabilities of GPUs, which not only introduce an-

other layer of parallelism, but also rely on SIMT architecture [26] and differ dras-

tically from CPUs in performance. 

On the topic of GPU performance models, Schaa and Kaeli [27] presented an ana-

lytical model for predicting execution time of a multi-GPU systems, with varying 

number of GPUs and the input data set size. Baghsorkhi et al. [28] developed a 

compiler-based approach for analyzing GPU kernel code and modelling its perfor-

mance, which can be used for guiding performance optimization. Zhang and Ow-

ens [29] utilize micro-benchmarks to accurately measure various aspects of GPU 

performance and construct a model that guides GPU application optimization pro-

cess. 

In recent years, there has been some research on performance of parallel visuali-

zation applications, and volume rendering in particular. Rizzio et al. [30] con-

structed an analytical model for performance of a GPU cluster, separately consid-

ering different frame rendering phases. Larsen et al. [31] developed a performance 

model for rasterization, ray tracing and volume rendering algorithms to inform 

decision regarding feasibility of in-situ visualization. They have first constructed 

an analytical model of performance of every application being executed on a single 

machine, and used statistical methods to determine the constants. Later, they have 

extended the model to parallel execution by introducing a similar model for image 

composition performance. 
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Overall, despite abundant work in studying parallel application performance, only 

a limited number of researchers have attempted modelling and prediction of par-

allel visualization applications. Furthermore, a few, if any, investigated the effects 

of using hybrid parallelism, i.e. multi-GPU clusters, on the overall performance of 

an application.  
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3. Cluster scalability model 

In this chapter, I report the process of constructing a scalability model that extrap-

olates performance of a rendering application to a larger number of nodes. Alt-

hough the model is limited by the fact that it requires running the renderer on the 

actual cluster to obtain the training data, it represents scaling behavior of a typical 

distributed volume rendering application and serves as a foundation for a more 

generic model presented in chapter 4. 

I begin by describing the volume rendering application and its capabilities. Then, I 

proceed to experiment setup and results of scalability testing. Finally, I use the 

data obtained and train several iterations of statistical models to predict perfor-

mance of the renderer. 

3.1 The rendering application 

For the purpose of studying performance and scaling behavior of distributed vol-

ume rendering applications, and for collecting data required for training and even-

tual evaluation of prediction models, I have implemented a typical distributed vol-

ume rendering application.  

My implementation utilizes Nvidia CUDA platform [32] for volume raycasting on 

GPUs, which allows usage of the same language and environment when writing 

both CPU and GPU code. CUDA comes with an extensive set of debugging and pro-

filing tools, simplifying performance optimization critical for computation-inten-

sive applications. It also provides the means for collecting various GPU metrics 

that could be used for performance prediction and explicit assignment of tasks to 

GPUs in multi-GPU systems. 

For implementation of inter-node communication within the cluster, I use MS-MPI 

– Microsoft’s implementation of MPI standard [33]. MPI provides a simple inter-

face and covers most typical cluster communication patterns, making for a faster 

and more reliable application development. It specifies a set of asynchronous op-

eration that can be used to decrease communication latency. Finally, it leaves the 

implementation details out of the standard, allowing vendors to make platform-

specific performance optimizations, which are, again, critical for parallel volume 

rendering applications.  

The rendering application can be classified as a sort-last renderer [9], and per-

forms object-space partitioning to distribute the volume partitions among the 
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nodes of the cluster. Partitioning is performed recursively using a Kd-tree: starting 

with the whole volume and all cluster nodes, each step the volume is split along X, 

Y or Z axis into two partitions, with each partition being assigned half of the cluster 

nodes. If some of the partitions are still assigned more than one cluster node, the 

process is repeated recursively for those partitions. The splitting axis is changed 

on every recursion level, to keep partitions closer to a cubic shape. If the current 

number of cluster nodes is divisible by two, then the splitting is done exactly in the 

middle. Otherwise, the split point is shifted to keep the number of voxels in the two 

partitions proportional to the number of their corresponding cluster nodes. For 

example, if at some recursion level a partition corresponding to five cluster nodes 

is being split, the partition with three cluster nodes will be one and a half times 

larger than the partition with two cluster nodes. This way when the partitioning is 

done, all the partitions will have approximately the same number of voxels. Parti-

tion-to-node assignments are static and do not change during the rendering pro-

cess. After each node has finished local rendering, the results are exchanged 

among the nodes to perform composition, with details depending on the composi-

tion scheme. Four composition schemes are implemented: naïve, direct-send [10], 

binary-swap [11] and 2-3 swap [12]. In naïve scheme, complete local rendering 

results from each node are sent directly to the master node for composition, i.e. 

composition tasks are not distributed among the nodes. 

The renderer supports direct volume rendering by performing raycasting on 

Figure 8: An example of the rendering results: chameleon dataset (left), engine dataset 

(right) 



3.2 Experiment setup and results 

33 

GPUs.  Each node of the cluster can utilize multiple GPUs for rendering its volume 

partition, in this case, the partition is further subdivided among the GPUs. During 

frame rendering, after each GPU has finished rendering its part, an inter-GPU com-

position step is performed, either using a binary tree to schedule composition 

among the GPUs in parallel, or sequentially on the CPU. The renderer can also work 

in metrics-mode, performing multiple runs of GPU kernels to collect GPU perfor-

mance metrics, such as the number of memory read/write transaction, texture 

cache hit rate, processor occupancy etc. 

As described later in section 4.1, my application supports simulation of local node 

computation, which is later used to simulate rendering performance of a cluster 

with different GPUs. Simulation can be performed either with node time vectors, 

specifying fixed amount of time each node should stall simulating local computa-

tion, or with node time histograms, where each node stalls for a random amount of 

time sampled from a given distribution. 

The rendering application is accompanied by the operator program, which per-

forms remote camera control and live streaming of the rendering results from the 

main application. The operator program is used for validation of rendering results, 

and could also be used for studying human-related effects of volume rendering 

performance such as responsiveness. 

3.2 Experiment setup and results 

For running scalability experiments and obtaining training data I have used a clus-

ter of 33 nodes, each equipped with: 

 Two NVIDIA GeForce GTX 480 GPUs   

 Two Intel Xeon E5620 2.40GHz CPUs 

 Supermicro X8DAH motherboard 

 24Gb 1066 Mhz RAM 

 Mellanox ConnectX IPoIB 16 Gb/s network adapter 

For final validation of results, measurements have been performed on another 

cluster of 20 nodes with following hardware: 

 NVIDIA Quadro M6000 GPU 

 Two Intel Xeon E5-2640 v3 2.60Ghz CPUs 

 ASUS Z10PG-D16 motherboard 

 128Gb 2400 Mhz RAM 
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 Mellanox ConnectX-3 IPoIB 54 Gb/s network adapter  

Both cluster have full bidirectional interconnectivity (each node has a connection 

to every other node). 

A full suite of performance experiments includes executing the rendering applica-

tion on the cluster for every combination of the following input parameters: 

 Composition scheme C ∈ {‘naïve’, ‘direct-send’, ‘binary-swap’, ‘2-3 swap’} 

 Image resolution R ∈ {10242, 20482, 30722, 40962, 51202, 61442} 

 Volume dataset size S ∈ {2563, 5123, 10243} 

 Node number N ∈ {1, 2, …, 33} 

Square image resolutions with fixed aspect ratio of 1:1 have been used to remove 

any effects that image aspect ratio could have on the renderer performance 

(changing the aspect ratio affects the proportion of rays that hit the volume box, 

changing the amount of computation performed). During all the runs the same 

‘chameleon’ dataset has been used, scaled to different sizes. A single run consists 

of rendering 72 frames, while orbiting the camera twice around the volume in hor-

izontal XZ-plane. During execution, on each node the renderer collects various CPU 

and GPU timings (and optionally GPU-metrics), and after all the frames have been 

rendered, writes the raw data to disk. When all the runs are completed, a post-

processing step is executed, collecting and aggregating the raw data for further 

analysis. 

Next I present a concise account of the renderer’s performance. I begin by exam-

ining relative performance of four implemented composition schemes (Figure 9, 

top-left). As expected, 2-3 swap scheme demonstrates the best performance, while 

also supporting non-power-of-two number of nodes. For this reason, I assume it 

to be a typical choice for parallel volume rendering applications, and use for all 

experiments in the rest of this work. Wherever composition scheme is not speci-

fied, usage of 2-3 swap is implied.  

On Figure 9 top-right, I depict the dependency between median frame time and 

image size. The error bars represent minimal and maximal frame time that oc-

curred in that renderer run. The disparity between minimal and maximal frame 

time can be better understood by looking at how the frame time changes during a 

run (Figure 9, bottom-right). One can clearly see, how camera rotation causes re-

petitive variation in performance. When a node’s partition is closer to the camera, 

the partition covers more pixels in the image, resulting in more rays being cast 

through the volume. This causes some of the nodes to take a considerably longer 

time to render their partitions, which leads to load imbalance and overall worse 
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performance. I show scaling behavior of the renderer on Figure 9 bottom-left, by 

plotting average frame time for large image and dataset sizes, measured with var-

ious number of nodes. 

Having a basic understanding of the rendering application’s scaling behavior, and 
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some of the factors that define it, I now begin the development of a cluster-specific 

performance model. 

3.3 Prediction model 

After obtaining the experimental data from running the volume renderer on the 

cluster, I can proceed to constructing a model that is capable of predicting ren-

derer performance, both matching the training data and extrapolating to a larger 

number of nodes. More formally, I aim to construct a model that maps image res-

olution (R), volume dataset size (S), cluster node number (N) and the GPU of the 

nodes (G) to cluster frame time (𝑇𝑐) (Equation 26). Note, that since the training 

data is obtained on a single cluster, the node GPU parameter is implicit in the 

model, i.e. the model represents scaling behavior of a concrete cluster. 

(𝑅, 𝑆, 𝑁) → 𝑇𝑐 (26) 

3.3.1 Linear regression 

To better understand scaling behavior of the volume rendering application, and to 

determine suitable complexity of a statistical model used for performance predic-

tion, I begin by applying simple linear regression to the experimental data. I am 

using the implementation of linear regression provided by the scikit-learn library 

[34]. 

The training dataset includes 594 data points, obtained by running the volume 

rendering application with every combination of the following input parameters: 

 Image resolution R ∈ {10242, 20482, 30722, 40962, 51202, 61442} 

 Volume dataset size S ∈ {2563, 5123, 10243} 

 Node number N ∈ {1..33} 

Each data point passed as input to the model consists of four features: 

 Image width 

 Volume width 

 Node number 

 Frame time 

Since I am using square image resolutions and cubic volume sizes, there is no need 

to pass every image/volume dimension to the model, as they all have similar val-

ues. The model is a standard linear regression, fit using Ordinary Least Squares 



3.3 Prediction model 

37 

estimator [15]. 

A subset of results is presented on Figure 10, having a residual MSE loss of 

2.512·105 and an R2 score of 0.66. A slight improvement could be made by intro-

ducing three new features: pixel number, voxel number and a product of the two. 

The logic behind it is that most volume rendering applications are limited by the 

memory read operations, the number of which scales linearly with the product of 

the number of pixels and voxels. This results in a model with a residual MSE loss 

Figure 10: Cluster frame time prediction using a standard linear regression model. 
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of 1.986·105 and an R2 score of 0.73. 

Noticing that the frame time graphs (Figure 10) have hyperbola-like shape sug-

gests that I could further improve accuracy of the linear model by using frames-

per-second value (i.e. the inverse of frame time) as dependent variable for the re-

gression, since a linear hypothesis should yield better results approximating a lin-

ear function. The model resulting from this improvement is presented on Figure 

11, and has an R2 score of 0.86. (Note, that since the dependent variable has been 
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changed the residual loss cannot be meaningfully compared.) 

Although I have improved the quantitative results, the graphs indicate that the lin-

ear hypothesis is far too simple to approximate the non-linear input data. The 

problem is further aggravated by high dimensionality and large range of the data, 

making a fit using a single hyper-plane particularly challenging. 

3.3.2 Nonlinear extensions 

To cope with non-linearity of the measured performance data, I extended the lin-

ear regression model with a data pre-processing step, during which I generate ad-

ditional polynomial features based on the original data. First, I manually select a 

subset of features to participate in non-linearization and a set of possible degrees. 

Then, I take pairs of features out of the preselected subset, raise each of them to 

one of the degrees and multiply them together to get a new polynomial feature. 

This process is repeated for every possible combination of features and degrees. A 

more formal description is presented on Figure 12. 

The resulting model is using the following input features: 

 Image width 
 Volume width 
 Node number 

 

 Pixel number 
 Voxel number 
 Product of pixel and voxel number 

 
Which then all undergo non-linearization step with a degree set of (−1, 1, 2), re-

sulting in a total of 276 input features (for this particular model, usage of all the 

input features and the three degrees showed best experimental results). This data 

GenereatePolynomialFeatures(data, featureSet, degrees) 

 

foreach featureA in featureSet 

   foreach featureB in featureSet 

      if featureA == featureB 

            continue 

      foreach degreeA in degrees 

         foreach degreeB in degrees 

            newFeature = multiply(power(data[featureA], degreeA), 

                                  power(data[featureB], degreeB)) 

            data.insert(newFeature) 
  

 

end 

Figure 12: Algorithm for generating additional polynomial features from the original input 

data. 
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is then used to fit a standard linear regression model, producing a residual MSE 

loss of 4.978·103 and an R2 score of 0.99. The graphs are presented on Figure 13. 

Now that I have obtained a model capable of representing scaling behavior of a 

cluster, I need to further validate the results by testing its extrapolation properties. 

For this I train the model using half of the data: data points that have node number 

smaller or equal to sixteen serve as the training set, and rest of the data corre-

sponding to larger cluster sizes is used for validation. The results are presented on 
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Figure 13: Cluster frame time prediction using linear regression, with additional polynomial 

features generated from the original data. 
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Figure 14, having an MSE loss of 3.071·104 and an R2 score of 0.89 on the validation 

dataset. As evident from the graphs, in most cases the model generalizes to a larger 

number of nodes reasonably well, but might behave erratically in some scenarios. 

Since no data for larger cluster sizes has been observed by the model during train-

ing, its behavior on the validation dataset can be arbitrary. The situation is some-

what alleviated by the simplicity of the model (the degree of the polynomial fea-

tures cannot exceed four), thus the results are acceptable in most cases, but still 
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Figure 14: Testing extrapolation properties of the linear regression model with additional pol-

ynomial features: the first half of the data is used for training the model, the second half is used 

for validation. 
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the prediction is not reliable. 

Although the model developed in this section is capable of representing perfor-

mance of a cluster and has some extrapolating potential, there is a limitation that 

prevents it from generalizing it to arbitrary clusters. As new features describing 

cluster hardware are introduced, not only the amount of polynomial data that 

needs to be generated increases exponentially, but more importantly, the results 

become more dependent on the choice of hyper-parameters, such as the number 

and degrees of the generated features, requiring manual experimentation and fea-

ture selection. Thus, I continue with the search for a cluster scalability model that 

both matches the results of linear regression models and does not require the 

manual error-prone process of feature selection. 

3.3.3 Neural network 

To address the shortcomings outlined in the previous section, I move to using neu-

ral networks as a foundation of the model. Neural networks are capable of approx-

imating functions of higher complexity without the need to manually select the in-

put features and generate their polynomial combinations. I am using implementa-

tion of neural networks provided by the keras library [35], which in turn relies on 

the Theano framework [36]. 

To begin with, I construct a basic fully-connected neural network, consisting of a 

single hidden layer that has 16 neurons using tanh activation function. Since, in 

contrast to linear regression, I have less control over the complexity of the model, 

I add L2 regularization as means of managing potential overfitting. I use the same 

dataset comprising 594 data points, but with the following input features: 

 Image width 
 Image height 
 Node number 

 

 Volume width 
 Volume height 
 Volume depth 

 
The results after 50000 epochs of training with RMS propagation are presented on 

Figure 15 with a residual MSE loss of 8.649·103 and an R2 score of 0.99. As can be 

seen, this neural network is capable of representing the scaling behavior of the 

cluster without overfitting the training data, thus matching the results achieved 

with linear regression in section 3.3.2. However, in case of the neural network I do 

not need to manually choose the feature subset or generate polynomial features, 

making further generalization of the model easier. 
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In line with the overall goal of the project, having constructed a neural network 

model that matches the accuracy of the earlier linear regression model, I proceed 

to testing its extrapolation properties. I repeat the experiment, using half of the 

data: data points that have node number smaller or equal to sixteen serve as the 

training set, and rest of the data corresponding to larger cluster sizes is used for 

validation. The result can be seen on Figure 16 with an MSE loss of 4.502·104 and 
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Figure 15: Cluster frame time prediction using a neural network. The network comprises one 

hidden layer of 16 neurons with ‘tanh’ activation and L2 regularization. 
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an R2 score of 0.84 achieved on the validation dataset. As with the linear regression 

model, despite the overall accuracy of the prediction, the model has large error in 

some of the cases. More importantly, it doesn’t capture the general trend of the 

scalability curves, which tend to reach a plateau or even degradation of perfor-

mance after a certain number of nodes has been reached. Ability to model this be-

havior is important for prediction of an optimal cluster size for a particular volume 

rendering application. 
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Figure 16: Testing extrapolation properties of the single-layer neural network model: the 

first half of the data is used for training the model, the second half is used for validation. 
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An improvement that can be made to the neural network is to use an unbounded 

activation function, such as ReLU (Rectified Linear Unit) coupled with strong reg-

ularization to allow the output function to better ‘extend’ into regions outside of 

the training data. Experiments have also shown that I need to add another hidden 

layer to the network, to avoid piece-wise linear character of the resulting predic-

tion curve, caused by ReLU activation. Figure 17 depicts extrapolation results of a 

network comprising two hidden layers of 16 and 8 neurons with ReLU activation 
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Figure 17: Testing extrapolation properties of the neural network model: the first half of the 

data is used for training the model, the second half is used for validation. The network uses 
2 hidden layers of neurons with ReLU activation. 
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and L2 regularization (lambda of 1.0); on the validation dataset, the network 

achieves an MSE loss of 2.141·104 and an R2 score of 0.93. 

As can be seen, the model is capable of limited extrapolation, however, as it is sam-

pled further away from the training data, the quality of prediction degrades signif-

icantly. The effect is further aggravated when I decrease the maximum number of 

nodes used for generation of the training data, which presents a problem for fur-

ther generalization of the model, i.e. being able to predict performance of the 

whole cluster from data obtained on just a single node. 

Neural networks are inherently an interpolation (approximation) technique and, 

notwithstanding limited potential improvements, are ill-suited for extrapolation 

purposes. In order to generalize a neural network model to arbitrary clusters I 

need to obtain training data from executing the volume renderer on multiple clus-

ters. This, however, presents a problem, since I only have access to a single cluster 

and am unable to collect the data for training a general model. A solution lies in 

changing the way I define the cluster scalability model and separating parts of it 

that I can train using data obtained on a single cluster. This process is presented 

in more detail in the next chapter. 

  

Technique MSE loss R2 score 

Fitting the whole training set 

Standard linear regression (LR) 2.512·105 0.66 

LR with pixel/voxel number features 1.986·105 0.73 

LR with pixel/voxel number features, predicting FPS n/a 0.86 

LR with generated polynomial features 4.978·103 0.99 

Neural network, 1 layer, tanh activation 8.649·103 0.99 

Extrapolation to a larger number of nodes, trained with half of the data 

LR with generated polynomial features 3.071·104 0.89 

Neural network, 1 layer, tanh activation 4.502·104 0.84 

Neural network, 2 layers, ReLU activation 2.141·104 0.93 

 
Table 1: comparison of developed performance prediction models. First, w.r.t. to their ability 

to fit the whole dataset (top). Next, w.r.t. to their ability to extrapolate performance to a 
larger number of nodes, being trained with only half of the data (bottom). 



3.3 Prediction model 

47 

4. Hardware-agnostic cluster scalability model 

The purpose of the work presented in this chapter is to construct a general model 

capable of predicting performance of a distributed volume rendering application 

on an arbitrary cluster given information about the rendering task and the cluster 

hardware. In more formal terms, I seek a model that would map image resolution 

(𝑅), dataset (𝐷), number of nodes in the cluster (𝑁) and the GPU of a single node 

(𝐺) to cluster render time (𝑇𝑐). 

(𝑅, 𝐷, 𝑁, 𝐺) → 𝑇𝑐 (27) 

Although the neural network model presented in section 3.3 shows reasonable 

performance at interpolating (technically, approximating) the experimental data, 

its shortcomings become apparent when doing extrapolation, evaluating the 

model for input points that do not lie in the vicinity of the training data. Thus, to 

train a model capable of predicting performance on a wide range of hardware I 

need to perform measurements on that hardware, and then feed the resulting data 

to the model. The more general I want the model to be, the more hardware I would 

need for collection of training data. This presents a problem, since there are only 

two clusters at my disposal, one of which is reserved for model validation, leaving 

just one. 

A solution to this problem is to abstract away the application-specific details of 

local computation and only model the scaling behavior of the cluster, i.e. the com-

munication overhead. This way I can encapsulate the hardware characteristics of 

a node and application-specific parameters such as dataset size into a ‘local com-

putation time’ input variable. More specifically, instead of the model from Equa-

tion 27, I use a model mapping node number, image resolution and local node ren-

der time (𝑇𝑛) to cluster render time (Equation 28). Although image resolution 

could be considered an application-specific parameter, it also determines the com-

munication load and thus remains among the model parameters. 

(𝑅, 𝑁, 𝑇𝑛) → 𝑇𝑐 (28) 

Since the model no longer depends neither on the hardware of a cluster node, nor 

on application-specific parameters, I can simulate local computation phase by 

simply stalling for a specified amount of time on each node of the cluster. The com-

position step is performed as usual, because the overhead introduced by the com-

munication is precisely the effect that I am trying to predict. Varying the local com-

putation time parameter, I can perform a large number of experiments, simulating 
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various hypothetical node hardware (but not network hardware: since experi-

ments are run on a single cluster, the model implicitly assumes a specific network 

hardware and topology). 

It is important to note, that the local computation time parameter does not repre-

sent time it takes to perform the whole computation on a single node (a ‘single-

node cluster’ time). It represents the time it takes for a single node of a cluster, 

which comprises N nodes, to perform its part of computation. So, this parameter 

is influenced by both the number of nodes and the partitioning scheme used by the 

application. 

Furthermore, the local computation time is not a scalar but a vector of values, each 

corresponding to one of the nodes of the cluster. Usage of a vector allows for mod-

eling load imbalance that occurs in a distributed application and might have sig-

nificant impact on the performance of the cluster. 

The decision of using local computation time as an input parameter for the model 

has not only been made out of necessity of acquiring a larger training dataset, but 

also in consideration that the values of this parameter for concrete rendering ap-

plications can be measured on a single node of a cluster. This holds true even 

though a vector of values might need to be obtained: local computation time of a 

node does not depend on results from other nodes, thus the computation of each 

node of the cluster can be performed and measured sequentially on a single ma-

chine. Additionally, the values could also be predicted by yet another statistical 

model that maps application-specific details and node hardware to local computa-

tion time:  

(𝑅, 𝑁, 𝐷, 𝐺) → 𝑇𝑛 (29) 

Combining it with the hardware-agnostic cluster model (Equation 28) would re-

sult in a complete cluster model (Equation 27). I also discuss this possibility in the 

future work section (Chapter 5). 

4.1 Rendering simulation 

Switching to the hardware-agnostic cluster model requires modifications to the 

distributed renderer application. The renderer should be able to take a vector of 

local computation time values as input, and simulate local computation by stalling 

a node for a specified amount of time. 

Although the new cluster model takes abstract computation time as input and uses 
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data obtained through simulation, it should still serve the underlying goal of pre-

dicting performance of concrete rendering applications. Therefore, I must make 

sure that the simulation technique accurately mimics the performance of concrete 

rendering applications, so that when the model predicts performance of a simula-

tion, the result can be used for actual applications. 

To this end, I have measured local computation time vectors by running a concrete 

volume rendering application on a cluster. Specifically, for each combination of 

renderer input parameters (node number, image size, dataset size) I have per-

formed a renderer run, during which 72 frames have been rendered, while orbit-

ing the camera twice around the dataset. For each node, its local computation time 

has been measured and averaged over all the frames, resulting in a vector of N 

values. Then, this vector is used to perform a simulation run under the same con-

ditions, the only difference being that no actual local computation is performed 

and the nodes are stalling instead. 

This experiment allows collecting the cluster performance of both a real and a sim-

ulated rendering application, and assessing the accuracy of the simulation tech-

nique. The results are presented on Figure 18. Albeit the curves are similar in char-

acter, there is a severe disparity between the simulated and the actual perfor-

mance, which is especially pronounced with larger image sizes. Most importantly, 

the simulation does not reproduce the characteristic ‘steps’ in performance of a 

Figure 18: Comparison of real and simulated performance. Simulation using local computa-

tion time vectors, with each node stalling for the average amount of time taken by this node 

during a real renderer run. 
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real application, which are an important feature of cluster scaling behavior. 

The problem occurs because the technique does not properly simulate load imbal-

ance. In a distributed rendering application with static object-space partitioning 

every node is assigned a fixed volume brick, which does not change during execu-

tion. As the perspective-transforming camera orbits the volume, distance from a 

volume brick to the image plane changes, so does its footprint, i.e. the number of 

screen pixels covered by the volume brick. Increase in the footprint causes an in-

crease in node’s local computation time, affecting the overall load balance. Profil-

ing of the rendering application shows (see Figure 19) that the overall cluster 

frame time is defined by a few nodes with large load, as the whole cluster must 

wait for all the nodes to finish their local computation, before proceeding to the 

composition phase.  

When using average node time for simulating local computation this load imbal-

ance effect is lost, since every node takes the same amount of time each frame to 

perform its computation. The net result is that the cluster frame time of a simula-

tion is lower than that of a real rendering, which is precisely the problem seen in 

Figure 18. 

Since the overall cluster frame time is defined by the node that takes the longest 

to perform its local computation, a naïve attempt at improving the current tech-

nique would be using maximum and not average local computation time for each 
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node. More precisely, when constructing a local computation time vector, instead 

of averaging computation time of a node over all frames, take the maximum com-

putation time that occurred on that node during a run of the renderer. 

The results of a simulation with such parameters are presented in Figure 20. Every 

node of the cluster during every frame simulates its own worst-case scenario, i.e. 

conditions under which its brick has the largest footprint. This results in overall 

cluster frame time being exaggerated compared to the baseline of the real meas-

ured performance. Nevertheless, this technique has smaller absolute disparity 

than the average node computation time approach, and has yet another advantage: 

it preserves and amplifies the effects of the communication overhead on the over-

all frame time. One can see the ‘steps’ in the frame time graph, which occur due to 

interplay between cluster size and the “2-3 swap” composition scheme, with frame 

time being lower for cluster sizes resulting in favorable communication patterns, 

e.g. power-of-two cluster sizes (see section 2.3 for the description of the “2-3 

swap” composition scheme). 

After studying the results of the above-mentioned simulation approaches, it be-

comes evident that to eliminate the cluster frame time disparity between the real 

and the simulated performance, I need to move away from using a static prede-

fined amount of time that a node is being stalled for during the whole simulation 

run, and instead use a representation of local computation time that is capable of 
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capturing dynamic load imbalance present in a given rendering application. 

One such representation is a distribution of local computation time, which can be 

expressed as a histogram and randomly sampled during simulation, to replicate 

the varying character of local computation time and maintain an approximate pro-

portion of load-heavy nodes during each frame.  

To collect this local computation time histogram, I have run an actual rendering 

application on a cluster. (Remember, although not implemented in this project, lo-

cal computation time can be measured even on a single machine, since it does not 

depend on inter-node communication.) Then, the observed local computation time 

of each node, during each frame, is interpreted as a sample of a random variable 

that is local computation time. Next, all these samples are aggregated into a histo-

gram of 𝑀 bins, which is subsequently normalized to represent a probability dis-

tribution. The histogram is stored as 𝑀 bin values, together with a minimum and 

a maximum local computation time values that capture the domain of the histo-

gram. Thus, for each run of the renderer, i.e. for each combination of renderer in-

put parameters (node number, image size, dataset size) I obtain a local computa-

tion time histogram, which captures the unique load balance conditions that oc-

curred during the run. 

During the simulation, the local computation time histogram is sampled once for 
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each node, to decide how long the node will stall during the current frame. The 

histogram simulation approach (Figure 21) has a very small disparity between the 

real and the simulated results, and thus, it is suitable for the purposes of decou-

pling the cluster scalability model from cluster node hardware. It allows simula-

tion of different hardware and rendering applications to obtain more training data 

for the prediction model. 

4.2 Prediction model 

Now that I have defined the hardware-agnostic scalability model and have devel-

oped a reasonably accurate simulation technique, one step remains before training 

the model: I need to use the simulation to obtain more training data to make sure 

that the model ‘learns’ general effects of cluster communication, and not peculiar-

ities of a particular cluster or application. Measurement of additional training data 

in turn requires more node time histograms. The histograms can be obtained ei-

ther by measuring them on different hardware, or constructing artificially, repre-

senting some hypothetical combination of node hardware and a rendering appli-

cation. I follow the latter approach, since it allows usage of the existing hardware 
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and does not require any modifications to the rendering application. 

4.2.1 Artificial generation of node time histograms  

Before I begin generation of artificial node time histograms I first need to examine 

the histograms obtained from running an actual volume rendering application, 

presented on Figure 22. As seen from the graphs, most distributions produced by 

volume rendering tend to have a single peak, resembling normal distribution. 

Although it is not strictly necessary to give any particular shape to the generated 

node time histograms, as I could attempt to train a neural network that can predict 

performance for any possible distribution, this would require generation of large 

amounts of training data, for many possible distributions. Instead, knowing that 

the goal is to predict performance of volume rendering, I generate only a few his-

tograms, which resemble distributions observed while running the renderer. 

Specifically, when generating artificial histograms, I sample a Gaussian curve cen-

tered near the middle of the histogram (mean of 0.5, relative to the histogram do-
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main; standard deviation of 0.2), and then perturb it slightly using a uniform dis-

tribution in the range (-30%, 30%). To define the domain of the histogram, i.e. the 

minimal and maximal local computation time, I simply take the value observed 

during a real renderer run under the same input parameters (image/volume size, 

node number) and scale it by a constant. Note, that the details of this method are 

fairly arbitrary, but ultimately not very important: I only aim to provide variation 

in the input features, so that the model can be trained to predict their effect on the 

overall cluster time. Examples of generated histograms can be seen on Figure 23. 
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Figure 24: Evaluation of the final model on the validation dataset, which was measured on 
a different cluster. Best out of three runs, with MSE loss of 5.127·103 and R2 score of 0.96. 
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I repeat this procedure for every possible combination of renderer input parame-

ters, thus generating 594 node time histograms, which will be used in the simula-

tion to measure 594 data points, with a full run of the rendering simulation. I refer 

to this set of data points as the generated-histogram dataset.  

There exists yet another way of increasing the amount of training data I have. After 

changing the model to represent only the communication overhead of a cluster I 

do not need to treat the number of GPUs on a node as an input parameter for the 

model, since it is abstracted away behind the local computation time histograms. 

Now I can perform measurements on the ‘training cluster’ twice: once in double-

GPU mode, and once in single-GPU mode, effectively giving me two sets of node 

time histograms. I can then use these histograms to perform simulation on the 

cluster, obtaining another two datasets, representing performance of two different 

clusters. I refer to these datasets as measured-histogram datasets. 

4.2.2 Final model 

The final model uses a neural network consisting of two hidden layers of 16 and 8 

neurons with ReLU activation and L2-regularization. The model uses the following 

input features: 

 Image size (width, height) 

 Node number 
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 Avg., min and max node time (histogram domain) 

 Ten histogram bins (histogram values) 

Out of the generated-histogram dataset and two measured-histogram datasets, de-

scribed in previous section, I use two datasets for training, reserving one meas-

ured-histogram dataset as a test dataset for automatically choosing the best value 

for the L2-regularization parameter. For final validation, I have also performed 

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19

Fr
am

e 
ti

m
e 

[m
s]

Node number

10242 image size, 2563

volume size

Predicted performance

Measured performance

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19

Fr
am

e 
ti

m
e 

[m
s]

Node number

10242 image size, 10243

volume size

Predicted performance

Measured performance

Figure 26: Evaluation of the final model without the ‘bin features’ of node time histograms, 

to check if the model utilizes the node time histograms in its prediction. MSE loss of 2.179·104 

and R2 score of 0.83 
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measurements on a different cluster. Since the goal is to validate the quality of the 

developed performance prediction technique, not just how well the model predicts 

the simulation performance, I use the measurements from a different cluster di-

rectly, without putting them through simulation. 

The results are presented on Figure 24. As can be seen, the model exhibits some 

jittering when predicting performance for smaller image/volume sizes, but the 

overall accuracy is reasonable, with an MSE loss of 5.127·103 and an R2 score of 

0.96 on the validation dataset. I also construct learning curves, plotting MSE and 

R2 score against the training set size on Figure 25. As more data is added, one can 

see an expected increase of the error on the training set (as it gets harder to fit 

more data points) and an improvement in accuracy on the validation data set (as 

the model becomes more general with more data), confirming that adding addi-

tional simulation data improves the prediction. 

Another interesting test to perform is to try removing the ‘bin features’ of the node 

time histograms from the input data, i.e. training the neural network which relies 

on node number, image size and min/max/avg. node time, to see if the final model 

is actually using the load balancing information contained in the histogram to im-

prove the prediction. The results are shown on Figure 26, with an MSE loss of 

2.179·104 and an R2 score of 0.83 on the validation dataset. The model displays 

less jittering, trading off higher variance for higher bias, but resulting in overall 

lower accuracy. This result suggests that the model does rely on the node time his-

tograms, when predicting the overall performance of the cluster. 
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5. Conclusions and future work 

5.1 Summary 

In this work, I aimed to construct a performance model that can predict perfor-

mance of a parallel volume rendering application running on a cluster, given data 

obtained on one of its nodes.  

To better understand the cluster performance and assess suitability of various ma-

chine learning methods, I began by studying and predicting performance of a sin-

gle concrete cluster. First, simple linear regression has been considered. However, 

the model turned out to be far too simple for high-dimensional performance data 

that also deviated too much from the theoretical best-case scenario of linear per-

formance scaling. Several slight improvements have been made, such as introduc-

ing extra features proportional to the number of GPU memory accesses, and using 

frames-per-second instead of frame time as the target variable for regression, but 

none of them yielded acceptable results, suggesting that the complexity of the 

model needs to be increased. 

Next, I have extended the linear model with automatic generation of polynomial 

features from the original data, using linear regression solver to fit a non-linear 

function to the data. Careful adjustment of the model’s hyper-parameters (such as 

the number and the degrees of generated features) yielded a model capable of rep-

resenting performance of a single cluster. However, the process of manually selec-

tion model’s hyper parameters proved to be cumbersome and ill-suited for da-

tasets with a larger number of features (which would be inevitably introduced to 

generalize the model to arbitrary hardware). This motivated a search for a more 

automated data-driven technique, leading to investigation of neural networks. 

Neural networks were utilized to train a model that matches the accuracy of linear 

regression techniques, while simultaneously not requiring feature generation and 

manual adjustment of many hyper-parameters. Yet, despite the benefits of neural 

networks, they also hold a disadvantage: unlike the linear regression model they 

exhibit very erratic behavior ‘outside of training data’, which makes it hard to ap-

ply them to performance extrapolation, and generalize to arbitrary hardware hav-

ing only a small amount of training data. An obvious solution is to perform meas-

urements on many different clusters, but only a single cluster was available for 

running the experiments. For this reason, before approaching generalization of the 

model, the cluster scalability model had to be reformulated. 
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Initially, I sought a holistic model that would map cluster size, node hardware and 

application-specific parameters (dataset size, image size, etc.) to overall frame 

time of the cluster. To address the training data problem, hardware and applica-

tion-specific parameters have been abstracted away behind a local computation 

time parameter, which represents how much time each node of the cluster re-

quires to perform its local rendering. This allows to avoid local rendering com-

pletely when running experiments, simply stalling the nodes instead. Various hy-

pothetical combinations of hardware and application parameters can be simulated 

by choosing different local computation time values. And, the effects of communi-

cation and composition algorithms are still captured in the training data, enabling 

training of a model that predicts the ‘cluster overhead’. Furthermore, the local 

computation time can be measured on a single node of a cluster by sequentially 

timing the rendering of each volume partition. 

Noticing in simulation results, that the local computation time does not faithfully 

represent the load imbalance inherent for parallel volume rendering, it was refor-

mulated into local computation time histograms, which represent a probability dis-

tribution of local computation time, rather than its average value. Sampling this 

distribution to determine how much each node of the cluster should stall during 

the local computation phase allows for situations, where a few nodes take signifi-

cantly longer time to render their volume partitions than others, mimicking load 

imbalance. 

Using this simulation technique, I have gathered more training data and trained a 

neural network, which is capable of predicting cluster performance. The model has 

been tested with a validation dataset acquired on a cluster with different node 

hardware. Although the model displays some jittering on smaller problem sizes, it 

shows high overall accuracy, achieving an MSE loss of 5.127·103 and an R2 score of 

0.96 on previously unobserved data. 

5.2 Current limitations and future work 

I proceed to discuss current limitations and potential further improvements of the 

model. First, as mentioned before, the prediction on smaller image and volume 

sizes shows some jittering. Although usage of percentage-based loss functions, or 

dependent variable normalization somewhat alleviates the problem, it results in 

overall less accurate prediction, which is not acceptable. Looking for another solu-

tion, one can note, that removing the histogram ‘bin features’ yields a more stable 
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prediction curve, albeit less accurate. This warrants a further investigation of his-

togram representations, perhaps one could find a representation that is more suit-

able for a neural network, to give the result more stability, while maintaining its 

accuracy. 

Second, the current model implicitly assumes 2-3 swap being used as the compo-

sition algorithm. As the rendering application already implements several other 

composition schemes, one could collect more data and try to generalize the model 

to accept composition scheme as one of its parameters.  

Perhaps, it is even possible to devise a general way of succinctly representing the 

communication pattern of various composition schemes, and simulate their per-

formance, similarly to how local computational load is captured in a node time his-

togram. This could allow an extension of the model from covering a fixed set of 

parallel volume rendering algorithms, to other parallel applications. 

Another direction, in which further work could be conducted, is to create a more 

holistic model of parallel volume rendering performance. Currently, the model 

uses distributions of local computation time as its input, focusing on predicting 

communication overhead of the cluster. One could construct yet another model, 

which would predict local computation time, based on application-specific param-

eters, such as dataset size, transfer function, and hardware characteristics of a 

node. Then, the two models could be combined into a single holistic model of par-

allel volume rendering performance, that could predict performance of a cluster 

based solely on a priori data, without performing any measurements, even on a 

single node of the cluster. 

Overall, performance prediction remains a challenging, but rewarding problem, 

due to its many useful applications in systems design, equipment procurement and 

performance optimization. Numerous other prediction techniques have been suc-

cessfully employed for HPC applications, and might be applicable to parallel visu-

alization domain. In this work, I have focused on machine learning. Although ma-

chine learning methods, especially neural networks, at time might feel as a ‘black 

box’, I have shown, that through careful iteration they can be successfully applied 

to parallel volume rendering, and yield useful results. 
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