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Abstract

Nowadays High-Performance Computing (HPC) suffer from an ever-growing gap be-
tween computational power, I/O bandwidth and storage capacity. Typical runs of HPC
simulations produce Terabytes of data every day. This poses a serious problem when it
comes to storing and manipulating such high amount of data.

In this thesis I will present a method for compressing time-dependent volume
data using an overcomplete dictionary learned from the input data. The proposed
method comprises of two steps. In the first step the dictionary is learned over a number
of training examples extracted from the volume that we want to compress. This process
is an iterative one and at each step the dictionary is updated to better sparsely represent
the training data. The second step expresses each block of the volume as a sparse linear
combination of the dictionary atoms that were trained over that volume.

In order to establish the performance of the proposed method different aspects
were tested such as: training speed vs sparsifying speed, compression ratio vs recon-
struction error, dictionary reusabilty for multiple time steps and how does a dictionary
perform when it is used on a different volume than the one it was trained on.

Finally we compare the quality of the reconstructed volume to the original
volume and other lossy compression techniques in order to have a visual understanding
about the quality of the reconstruction.
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1 Introduction

1.1 History

When we speak about visualization scientific data most people think that this is a field
that has its roots in our modern way of representing and analyzing statistical data.
In fact visualization can be traced to the earliest forms of maps [Fri06]. One of the
earliest maps we have is a 10th century table sketch that plots the inclination of the
most prominent stars over the night sky. On the horizontal axes time is divided into 30
intervals and on the vertical axes represents the inclination of the orbit. This idea of
coordinates systems comes from the ancient Egyptian for laying down towns and it goes
back to 200 BC.

Figure 1.1: Movement of planets over time, by an unknown astronomer.[Fun36]
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1 Introduction

With time the maps got more refine and included more data and new graphic
forms. In cartography new graphic representations like isolines and contours were
invented in order to convey more information about the subject in question.

Figure 1.2: A portion of Edmund Halley’s New and Correct Sea Chart Shewing the
Variations in the Compass in the Western and Southern Ocean, 1701. Source:
Halley, E. (1701), image from [Pal]

For example in Fig.1.2 the isolines represent equal magnetic declination. With
time thematic mapping has extended to other fields such as economy, politics and
medicine, incorporating more and more data and representing it in a visually compre-
hensible and pleasing way.

A good example of this synthesis of different data into a single graph repre-
sentation is Fig.1.3. In this figure there are different features plotted of Napoleon’s
Russian campaign in 1812. The thickness of the of the lines represent the size of the
army, branches in the lines represent numbers of soldiers that have separated from the
main army at different moments in time. On the horizontal axis there is a time line
coupled with temperatures and location. Another information is stored as color and
represents the direction in which the army is advancing or retreating.

This is a good example on how to design and convey information in a visually
pleasant and engaging way by encoding information within color, thickness position and
location.
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1.2 Present advances and challenges

Figure 1.3: Graph of Napoleon’s Russian campaign of 1812.

1.2 Present advances and challenges

Visualizing data is an important tool that we have today at our disposal to better
understand phenomena and get an insight into complex data. We use visualization in
field like chemistry or biology (CT scans) to identify different conditions or potential
harmful cells like cancerous cells. In engineering we conduct simulation and then
visualize them in order to make cares safer and more reliable or in meteorology to
foresee the weather.

Figure 1.4: Visualization of a CT scan, car crash and a hurricane

As technology advances the computational power that is available is growing
almost exponentially so we can achieve more accurate simulations, we can visualize
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1 Introduction

larger data sets at interactive speeds and achieve photorealism with our reconstructions.
At the same time our tools for acquiring data are getting more precise and can scan
larger volumes in the same time interval.

For example electron microscopes can produce scan images that are between
10-40 megapixels per second and have a pixel resolution in the range of 3-5 nm. All of
this sums up to almost a Terabyte of data per day, and with the new multi-beam electron
microscope the amount of raw data that will be available will increase by 1 or 2 orders
of magnitude.

All this amount of data creates two distinct problems. One has to do with
the amount of variables that need to be depicted in a visualization and the other has
to do with the size that the data set requires to be stored. For the first problem there
have been developed techniques for representing multiple attributes of a data set as a
symbol(glyph). This has the advantage of carrying all the the information needed for
a specific point in the data set but the amount of symbols that can be placed without
inducing clutter is lower than the amount of data samples.

Figure 1.5: Superquadric Tensor Glyphs[Kin04]

In Fig.1.5 we can see a glyph representation of a diffusion tensor field of the
human brain. The glyphs encode the tensor field information and the color corresponds
to the dominant eigenvector orientation.

14



1.2 Present advances and challenges

The second problem has to do with the gap between local memory of a machine
(RAM) and the hard drive storage. There is 1 or 2 orders of magnitude between the
RAM capacity and HDD capacity. In order to solve this issue methods like data streaming
and out-of-core methods have been developed to enable interactive visualization of
large volume data. Also the speed gap at which data is accessed from local memory and
permanent memory has grown over the years.

Figure 1.6: CPU/Memory performance[JLH11]

As depicted in 1.6 the performance penalty is huge when we access memory that
is outside the cash memory and needs to be fetched from RAM. A similar performance
gap is between RAM and HDD access speed, since recently most of permanent data was
stored on mechanical disks which are very slowed in terms of latency when compared to
RAM.

Ideally we would like to have all the data that is necessary in local memory
and do as little I/O operations as possible. In order to achieve this goal there have been
developed multiple compression techniques to reduce the data footprint in memory.

15



1 Introduction

1.3 Goals of the Thesis

The focus of this thesis is to develop a method for compressing volumetric data that
come from High-Performance Computing(HPC). The goal is to reduce the storage
requirements for large-scale time dependent volumes that can be produced by HPC
computation runs.

Given the low cost of computation with respect to I/O operations we will
concern ourself with the quality of the reconstructed volume and the compression ratio
and not with the computational cost. In order to achieve a sparse representation of the
data set we will have to train a dictionary that is specific to the volume that will be
compressed and then sparsify the volume with respect to the learned dictionary.

The dictionary will start as an overcomplete DiscreteCosineTransform(DCT)
and the it will be trained over a set of samples that are taken from the volume. This
is done in multiple iterations each time with the goal of improving the sparsity of the
training data with respect to the previous dictionary. Considering that the resulting
overcomplete dictionary will need to be saved in memory the final dictionary will
be stored as a sparse representation of the original overcomplete DCT dictionary. By
doing so we would just need to multiply the base dictionary with the sparse matrix
representation in order to retrieve the learned dictionary when we reconstruct the
volume and thus the space needed for storing it is greatly reduced.

After the dictionary is trained on the volume the sparsifying step is next. In
this part of the process the volume is decomposed into blocks that have the size of the
dictionary atoms. Each block will be reconstructed as a combination of dictionary atoms
with a preset tolerance. This step is known as vector quantization. Setting the error
tolerance gives us a trade off between compression and fidelity to the original input
data.

Finally the sparse dictionary and the information needed for reconstruction are
put together and written to the HDD to be later reconstructed and visualized.

16



2 Related Work

2.1 Sparse Coding

Sparse Coding is a method for finding the representation of an input vector over a basis
to represent data efficiently. The set of basis vectors form a dictionary which can be
overcomplete, meaning that the number of basis vectors is larger than the dimension of
the signal that needs to be represented.

min
x

∥∥∥x
∥∥∥

0
subject to y = Dx, (2.1)

where x represents the coefficients of the dictionary atoms that reconstruct the
input signal y. The dictionary is a matrix in which the columns are basis vectors and
are denoted by dj. The length of the input signal is equal to the length of the dictionary
atoms.

When an approximate solution is sufficient the minimization becomes

min
x

∥∥∥x∥∥∥
0 subject to

∥∥∥y - Dx
∥∥∥
2 ≤ ϵ, (2.2)

by setting ϵ we can determine how close we want to reconstruct the input
signal to the original one.

The minimization is usually done by a pursuit algorithm. Finding the minimal
amount of atoms to reconstruct the input data is an NP hard problem so most algorithms
are greedy. The solutions that are generated are feasible but there is no guarantee with
respect to optimality.

The next sections will focus on how to choose a dictionary that is suitable for
our needs and what minimization techniques we have at our disposal that offer a feasible
decomposition.
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2 Related Work

2.2 Choosing the right Dictionary

There is a wide variety of dictionaries to choose from that have been developed over
the years. Just to name some wavelets[Mal99], curvelets[CD99], contourlets[DV05],
discrete cosine transform, Fourier transforms and more. The quality of a dictionary
is tightly related to how good it can sparsify the input signal. So for different signals
different dictionaries perform better.

Wavelet-based dictionaries are very popular in image compression and can
approximate an input image with few coefficients. The discrete cosine transform (DCT)
has been used with noticeable success in audio and image compression and is one of the
most popular base used. Currently DCT is used in different image and video compression
standards like JPEG and MPEG.

Furthermore a dictionary can be overcomplete. This implies that there are
multiple ways of representing an input signal. Also a dictionary can be generic like DCT
or wavelet, meaning it can be described by a mathematical formula and have fast ways
of evaluating. Other dictionaries are learned from a set of input signals in order to better
fit the data and produce sparser results.

In the next sections we will take a look at some of the most popular dictionar-
ies.

2.2.1 Discrete Cosine Transform

The DCT is comparable to the discrete Fourier transform (DFT) the difference being that
DCT works only in the real domain. The input signal is expressed as a linear combination
of cosine functions that have different frequency and amplitudes.

Due to boundary conditions there are eight standard DCT variants. The most
common one is the type-II DCT [ANR74] and is defined as follows

Xk =
N−1∑
n=0

xncos[
π

N
(n+ 1

2)k] where k = 0,..., N-1 (2.3)

where N is the length of the input signal, xn is the nth sample point of the signal and Xk

is the Kth coefficient of the transform.

In this way we can express a 1D signal as a sum of cosine functions, but the
DCT is not limited just to 1D input data. There are multidimensional variants of the
DCT that can express input data of higher dimensions. Those transforms are simply an
separable product of DCTs along each dimension.

18



2.2 Choosing the right Dictionary

Xk,l =
N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2cos[
π

N1
(n1 + 1

2)k1]cos[
π

N2
(n2 + 1

2)k2] (2.4)

Applying 2.4 on a 2D input data, like an image, will produce a matrix of coeffi-
cients that will reconstruct the initial image when applied to the inverse transform.

An example of two dimensional DCT basis of length eight can be seen in 2.1.
Every entry of the dictionary is an 8x8 matrix that represents the dictionary atom. In
total there are 64 dictionary atoms. This is used for compression in JPEG.

Figure 2.1: Two dimensional DCT dictionary[Wika]

We can see that DCT is separable, when we traverse the dictionary atoms from
left to right the frequency increases in the X direction and when we iterate over the
atoms from the top to the bottom the frequency increases in the Y axes.

19



2 Related Work

By splitting an image into blocks of 8x8 pixels and then expressing each block
in terns of the DCT dictionary atoms we get a different representation of the image.

Figure 2.2: DCT of an image[Lea]

In Fig2.2 we have on the left the image on which we will apply the discrete
cosine transform. On the right we can see the representation of each 8x8 block as an
8x8block of coefficients corresponding to the DCT atoms. The image is still discernible
due to the fact that the first atom of the dictionary corresponds to the DC component of
the signal so the top left coefficient of each block represents the average color in the
block that it encodes.

After we have this representation of the image we can perform lossy compres-
sion by eliminating coefficients from each block that correspond to high frequency signals.
The high frequency coefficients are responsible for the fine details in the image.

Figure 2.3: Image compressed with different ratios using JPEG
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2.2 Choosing the right Dictionary

As we can see in Fig2.3 the quality of the image is slowly decaying from left to
right. On the left there is the original image of size 37Kb, the next image contains only
half of the DCT coefficients and has 18Kb. The last two images only keep 25% and 10%
of the DCT coefficients and have 9.8Kb and 4.2Kb respectively.

2.2.2 Discrete Wavelet Transform

In the previous section we had a look on how to represent signals with cosine functions.
There is a limitation when we want to extract meaning from a local region of the input
signal when we look at one DCT coefficient because the basis functions have infinite
support. Now we will see another way of representing signals that gives us besides the
frequency information also local information about the structures.

Wavelet transforms analyze data at different scales and different location. This
is done by adopting a prototype wavelet function, also known as mother wavelet, and
then shifting and scaling it. Wavelet functions have finite support as opposed to the
Fourier or Cosine transform, so the information that we get from these functions is
localized.

High frequency wavelets are used to get temporal information and are a
contracted version of the mother wavelet. Frequency analysis is achieved by using low
frequency wavelets which are dilations of the prototype wavelet. Using this approach
has proven very useful and efficient when analyzing data that has sharp discontinuities.
Furthermore if the mother wavelet is suited for your dataset then the results will be
sparse which makes wavelet decomposition an excellent tool for compression.

The first and most simple wavelet appeared in the appendix of Alfred Haar’s
thesis in 1909. The mother wavelet is a step function with mean 0 defined as:

ψ(x) =


1 for 0 ≤ x ≤ 1

2 ,

−1 for 1
2 ≤ x ≤ 1,

0 else

(2.5)

with its scaled and shifted versions

ψj,k(x) = 1
2j/2ψ( x2j

− k) (2.6)

Here the shift is controlled by k and the scale is specified by j. The wavelet
function ψj,k has width 2j and range [− 1

2j/2 ,
1

2j/2 ], starting at k2j and ending at (k + 1)2j

as shown in 2.4.
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2 Related Work

Figure 2.4: Haar wavelet ψj,k. Author: M. Mainberger (2008)

The factor 1
2j/2 ensures that ψj,k has norm 1,

∥ψj,k∥ =
√

⟨ψj,k, ψj,k⟩ = 1, (2.7)

if j and k are integer numbers, the Haar wavelets are orthonormal:

⟨ψj,k, ψn,m⟩ =
{

1 for(j, k) = (n,m)
0 else.

(2.8)

Similar to the first DCT dictionary atom that represents the DC component of a
signal the Haar transform has a scaling function:

Φ =
{

1 for 0 ≤ x ≤ 1
0 else

(2.9)

that can also be shifted and scaled

Φj,k = 1
2j/2 Φ( x2j

− k) (2.10)

To represent any discrete signal of length 8 we need 8 orthonormal functions,
one scaling function and 7 wavelets, that form a basis as seen in Fig.2.5

Comparable to the case of multidimensional DCT the Haar transform is also
separable. For example if we want to decompose a 2D signal we first do a decomposition

22



2.2 Choosing the right Dictionary

Figure 2.5: Scaling function and Haar wavelets needed to represent discrete signals of
length 8. Author: S. Zimmer (2002)

in the x direction, then in the y direction. After this step we perform a decomposition
only in the low-frequency parts(scaling coefficients). This procedure is repeated until a
single pixel is reached.

Figure 2.6: Distribution of the coefficients of the first two decomposition steps. Author:
M. Mainberger (2008).

After we achieve this decomposition of the data compression is achieved like in
the case of DCT by supressing coefficients that are small in magnitude. This reduces the
memory needed for storing without introducing severe visual degradation.
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2 Related Work

Figure 2.7: Example of 2D discrete wavelet transform.[Wikb]

Other types of wavelets have been developed over time like the Daubechies
wavelets[Dau88] which describes a whole family of functions.

Figure 2.8: Daubechies mother wavelet functions of different order

24



2.3 The Sparsity Problem

2.2.3 Overcompleteness

All the bases that we have seen by now were complete. This means that every possible
data input can be represented as a unique linear combination of the dictionary atoms.

Dx = y (2.11)

If we think of the 3D space R3 the dictionary(D) atoms are e1 = {1, 0, 0},
e2 = {0, 1, 0} and e3 = {0, 0, 1}. The number of basis vectors is equal to the dimension
of the input data. Using just these three we can represent any point in 3D space in a
unique way.

Now if we add more atoms to this already complete dictionary the dictionary
becomes overcomplete. The number of basis vectors is larger than the dimension of the
input data. This means that now the input signals can be represented in more than one
way(infinitely many), due to the fact that the atoms are not linearly independent.

Having more representations of data gives us the possibility to choose the one
that best fits us. In terms of data compression we would like to see the input data
expressed with as few dictionary atoms as possible.

2.3 The Sparsity Problem

Taking a look back at equation 2.11 we know the dictionary D and the input data y,
the only unknown is the vector x which stores the coefficient of each atom in order to
reconstruct y. Our goal is to find x with the most amount of 0’s or the lowest amount of
non zero elements.

Formally speaking we have to minimize the x vector with respect to the l0 norm
such that equation 2.11 holds.

min
x

∥∥∥x
∥∥∥

0
subject to y = Dx (2.12)

Finding the sparsest representation is a NP-hard problem as shown by G. Davis
et. al. [DMA97]. Because of this impediment greedy algorithms have been developed in
order to obtain an approximate solution in reasonable time. In the next sections we will
take a look at two pursuit algorithms used to solve the sparsity problem.
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2 Related Work

2.3.1 Matching Pursuit (MP)

Matching Pursuit is a step-wise greedy algorithm that tries at each step to choose the
best fitting dictionary atom to the input signal. This is done by computing the inner
product with each dictionary atom and then choosing the atom that gives the highest
result. For this to work the atoms have to be normalized.

ik = argmaxw| < rk−1, dw > | (2.13)

The next step is to update the signal by removing the weighted value of the selected
atom and then go back to the first step. This cycle is repeated until we have a good
approximation of the input data or for a certain number of steps. The residual is
calculated at each step by subtracting the contribution of the best fitting atom from the
previous residual

rk = rk−1 − ikdik, (2.14)

where rk is the residual at step k, ik is the coefficient of the atom dik chosen at
step k.

Some of the matching pursuit advantages are its simplicity and control over the
desired outcome either by setting the maximum number of iterations or by providing a
threshold for the residual. As a disadvantage we have to search over all the dictionary
atoms in each iteration. This introduces computational complexity.Because this is a
greedy algorithm we also have no guarantee that we will get the optimal solution.

2.3.2 Basis Pursuit (BP)

Another popular solver for the sparsity problem is Basis Pursuit in which we replace
the l0 norm in equation 2.12 with an l1 norm. Because of this change the intractable
expression becomes now solvable by means of linear optimization. We can formulate
the optimization term as:

min
x

{
∥∥∥y - Dx

∥∥∥2
+ λ

∥∥∥x
∥∥∥

1
} (2.15)

The first term of the minimization represents the constraint and the second
term the objective function. The parameter λ is a penalty term that allows us to choose
between the importance of sparsity of the result and the error of the reconstruction.
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2.3 The Sparsity Problem

For this kind of problems there are general solvers such as interior point
methods or for larger problems other methods like LASSO(least absolute shrinkage and
selection operator).

When compared to the matching pursuit algorithm the basis pursuit has soft
thresholding. The solution is globally optimal as opposed to the greedy optimization
performing at each step in the MP algorithm. As a disadvantage the BP needs to choose
the penalty parameter λ appropriate in order to force N-sparsity while in MP we get it
simply by stopping after N steps.
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3 Methods Used

3.1 Overview

The proposed method for sparsifying time dependent volume data sets uses an over-
complete dictionary that is trained over patches extracted from the data that will be
compressed. The dictionary is trained over a set of examples using the K-SVD algorithm
proposed by Michal Aharon et. al.[AEB06].

Training is done in an iterative manner, updating each time the dictionary atoms
in order to get a better sparse representation of the training examples. Dictionaries
that are obtained using machine learning algorithms like Principal Component Analysis
(PCA), Method of Optimal Directions (MOD), K-SVD and others give better results than
analytical dictionaries. However these unstructured dictionaries are more costly to
apply. Also the size of the dictionary is limited by complexity constraints since the
approximation methods like Matching Pursuit have to compare the signal at each step
with all the dictionary atoms.

After the learning step is done the volume is broken down into blocks and
expressed in terms of the dictionary atoms using Orthogonal Matching Pursuit in order
to obtain a sparse representation. All the coefficients are stored as column vectors and
form a sparse matrix that will be saved for reconstructing the volume.

Due to the fact that the dictionary is unstructured we need to store it in order
to reconstruct the volume after we obtain its representation over the dictionary. In order
to reduce the size needed to save the overcomplete dictionary we compute each atom
as a sparse representation over a generic base dictionary, thus storing just the sparse
matrix used to reconstruct the dictionary.

In the next section we will take a closer look on how the K-SVD algorithm
works and how we express the final dictionary as a sparse representation over a generic
one.
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3 Methods Used

3.2 K-SVD Algorithm

3.2.1 K - Means

The first part of the algorithm is a clustering method called K - Means. There is a close
relation between sparse representation and clustering. K - Means is a method of vector
quantization(VQ) in which we have a number of input signals (vectors) Y = { yi}N

i=1 and
we want to find K codewords that best fit the data. Here the number of input signals is
larger than the number of codewords (N ≫ K). The codewords are column vectors and
form the codebook matrix C = [c1, c2, ..., cK ]. In the case of vector quantization each
signal is associated to the closest codeword (under l2 norm distance).

If we think about the sparsity problem we can write yi = Cxi, where xi = ej is
a vector from the trivial basis with one at position j and zero everywhere else. This is an
extreme version of sparse coding where only one atom is allowed for the reconstruction
of the original signal. The index j is chosen such that

∀k ̸=j ∥yi − Cej∥2
2 6 ∥yi − Cek∥2

2 (3.1)

After every input signal is assigned to a codeword we can compute the error
for each signal yi as e2

i = ∥yi − Cxi∥2
2 and the overall MSE is

E =
K∑

i=1
ei = ∥Y − CX∥2

F (3.2)

We are interested in finding the best possible codebook C such that the overall
error is minimized. To achieve this goal K - Means works in an iterative manner and
has two steps. The first step is the one described above where every input signal yi is
assigned a codeword and the second step updates the codewords in order to reduce the
overall error term.

min
C,X

{∥Y − CX∥2
F } subject to ∀i, xi = ek for some k (3.3)

For the second step we fix X and update the codebook C(J−1), where C(J−1)

represents the codebook at iteration step j of the algorithm. Each codeword ck is updated
by averaging over all input signals yi that have been assigned the codeword ck.

c
(J)
k = 1

|Rk|
∑

iϵR
(J−1)
k

yi (3.4)
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3.2 K-SVD Algorithm

where Rk is the set of all indices of the input signals that were assigned to ck.

At each iteration the overall error is reduced or stays the same. Since the
error is lower bounded at zero and in each step of the algorithm we have a monotonic
decrease of the MSE we are guaranteed convergence to at least a local minimum.

3.2.2 Generalized K - Means

We have seen how the K - Means algorithm works in a two-step iterative manner
for vector quantization (VQ). The sparse representation problem can be seen as a
generalization of VQ in which the input signal can be obtained by a linear combination
of codewords, which we will call dictionary atoms from now on and the dictionary is
equivalent to the codebook. Now the coefficient vector can have more than one non-zero
element and for this case we express the minimization to search for the best dictionary
D and sparsest coefficient vector X in order to represent the input signals Y.

min
D,X

{∥Y − DX∥2
F } subject to ∀i, ∥xi∥0 ≤ T0 (3.5)

There are two goals that need to be optimized D and X. As in the case of K -
means we will consider first that the dictionary is fixed and in this stage we will try to
find the sparsest representation of Y over D which optimizes X. This is the sparse coding
stage and can be expressed as

∥Y − DX∥2
F =

N∑
i=1

∥yi −Dxi∥2
2 (3.6)

this can be decoupled into N distinct problems

min
xi

∥yi −Dxi∥2
2 subject to ∥xi∥0 ≤ T0 (3.7)

We have seen that this set of problems can be solved by different pursuit
algorithms in Chapter 2.

After obtaining a sparse representation of Y over D we can proceed to the next
step which will update the dictionary atoms one atom at a time. In this stage we consider
X to be fixed as well as all atoms of D except one dk which represents the kth column
of the dictionary. Here xj

T represents the coefficients that correspond to the dictionary
atom dk and not the kth column vector of X.
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∥Y - DX∥2
F =

∥∥∥∥∥∥Y −
K∑

j=1
djx

j
T

∥∥∥∥∥∥
2

F

(3.8)

we can isolate the term which contains the dictionary atom that we are inter-
ested in ∥∥∥∥∥∥(Y −

∑
j ̸=k

djx
j
T ) − dkx

k
T

∥∥∥∥∥∥
2

F

=
∥∥∥Ek − dkx

k
T

∥∥∥2
F

(3.9)

Here Ek represents the error matrix for all N examples where the contribution
of atom dk has been removed. We could apply here the SVD to find an alternative for
dk and xk

T . SVD will find the closest rank-1 matrix that approximates the error matrix
Ek and thus minimizing the error. Although this would minimize the error term it is
a mistake to apply here the SVD low rank matrix approximation because we can not
enforce the sparsity of xk

T and it would probably be filed with non-zero values.

In order to avoid this problem we define ωk which is the group of indices of the
examples yi which use the atom dk in their reconstruction.

ωk = {i|1 ≤ i ≤ K,Xk
T (i) ̸= 0}. (3.10)

Define Ωk which is a N × |ωk| matrix that has ones at (ωk(i), i) positions and
zero elsewhere. When multiplying xk

R = xk
T Ωk only the non-zero entries of xk

T remain
and the length of xk

R becomes equal to |ωk|. Also we can select only the examples that
use the dictionary atom dk, Y R

k = Y Ωk this matrix has size |n × ωk|. Similarly we can
select only the error columns that correspond to dk by multiplying Ωk with the error
matrix ER

k = EkΩk.

Now if we go back to eq. 3.9 and minimize with respect to dk and xk
T forcing

the solution x̃k
T to have the same support as the original xk

T we get the following
minimization ∥∥∥Ek − dkx

k
T

∥∥∥2
F

=
∥∥∥ER

k − dkx
k
R

∥∥∥2
F

(3.11)

applying SVD on the restricted error matrix ER
k = U∆V will give us the solution for

d̃k as the first column of U and for x̃k
R the first column of V multiplied by ∆(1,1). The

resulting solutions have the following properties: d̃k is normalized due to the fact that
the U matrix is orthonormal and the support of x̃k

R stays the same or shrinks due to
possible nulling of terms.

These two steps, sparse coding and dictionary update are repeated until we
obtain the desired error or after a certain number of steps if we get stuck in a local
minimum. Due to the fact that the error is lower bounded by zero and in every update
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step the error decreases or stays the same convergence is assured. The convergence
relies on the success of the sparse coding stage which for small enough T0 algorithms
like matching pursuit or base pursuit perform well. An important aspect of the K-SVD
algorithm is the fact that with every dictionary atom update the coefficients are also
updated. This leads to a convergence than requires on average 4 times less iterations
and provides a better solution than updating just the atoms and keeping the coefficients
fixed. A disadvantage of this approach is that parallel update of the dictionary atoms is
prohibited.

3.3 Learning Sparse Dictionaries

We have seen how a dictionary can be trained over several examples to better sparsify
the data. In order to reconstruct the sparsified data we need the coefficients of the
dictionary atoms that comprise each input signal and the learned dictionary. Due to the
fact that the dictionary is overcomplete and is learned from examples there is no efficient
way of generating it from a mathematical formula like the cosine or wavelet dictionaries
are. This means that we need to also store the dictionary along with the reconstruction
coefficients. To reduce the amount of memory needed to store the dictionary we can
learn a sparse representation of it over a generic dictionary as shown in [RZE10].

D = Φ A (3.12)

where Φ is a generic dictionary and A is a sparse matrix.

Similar to the K-SVD algorithm we have to solve the following minimization
problem

min
A, Γ

∥X − ΦAΓ∥2
F

Subject to

 ∀i ∥γi∥0
0 ≤ t

∀j ∥aj∥0
0 ≤ p, ∥Φaj∥2 = 1

(3.13)

what differs from the original K-SVD algorithm is that the dictionary atom is
constrained to d = Φa with ∥a∥0

0 ≤ p. The first step of sparse coding the signal is similar
to the original algorithm but the dictionary atom update step becomes

{a, g} := Argmin
a, g

∥∥∥E − ΦagT
∥∥∥2
F

Subject to ∥a∥0
0 ≤ p, ∥Φa∥2 = 1

(3.14)
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To solve this minimization problem an alternating minimization over a and g is
applied in order to get the sparse dictionary representation over the base dictionary Φ.
An in-depth method of solving the minimization problem can be found in [RZE10].

After we obtain the matrix A we no longer need to store the whole dictionary
but only A that reconstructs the learned dictionary D from Φ. At this point we have all
the tools that are needed to understand the flow of the algorithm.

3.4 Algorithm

The algorithm is implemented in MATLAB and has three sections: Setup, Dictionary
learning, Sparsification of the volume. In the first section all the parameters that set
how accurate we want the learning and sparsification are defined and also the size and
the type of the generic dictionary are fixed. In the second section the dictionary learning
process determines A and stores it. In the last part of the algorithm the volume is divided
into n3 size blocks and sparsified using the dictionary learned previously.

3.4.1 Setup

The first step in the setup process is to fetch the volume data from external sources and
store it in an array. After the data is loaded a matrix, which has the size that the volume
has in each dimension in voxels, will be filled. I also normalize the range of the data to
fit into [0,255] interval.

After the data is loaded and reshaped the dictionary size is chosen. I have
chosen to set the dictionary atom to be of size 83 for two reasons. The first one has to do
with performance due to the fact that each block of the volume has to be compared to
the dictionary atoms at every step. For example if we chose a dictionary atom of size
83 and the dictionary to be two times overcomplete we end up with 1024 dictionary
atoms, if we chose the atom to be 163 we get 8192 atoms. At each step of the dictionary
learning phase we would need to update the dictionary atoms and sparsify the training
examples which is an expensive process.

The second argument for choosing a smaller dictionary size is the training data
that needs to be provided. In the case of the dictionary with the 83 atom size which has
1024 atoms we provide 80.000 training examples. If the atom size would be 163 we
would have to provide proximately 660.000 training blocks from the input data which
would make the dictionary learning running time impracticable and for smaller volumes
there are not that many blocks in the volume.
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Due to this considerations I have chosen a two times overcomplete dictionary
with the dictionary atom size 83, 8 in each direction. As for the base dictionary Φ I have
chosen the DCT dictionary.

The second part of the setup is reserved for setting the error σ for the recon-
struction, the sparsity of each trained atom, number of training samples, number of
iterations for the dictionary training and other parameters.

3.4.2 Dictionary training

At this stage the original volume is broken into 83 blocks. Depending on the number of
training examples that were set blocks are chosen from the volume equidistantly and
serve as input for the K-SVD algorithm. Before passing the blocks to the K-SVD algorithm
the DC component is calculated and removed because we are training the dictionary
over the DCT dictionary and this saves memory.

At each step of the K-SVD dictionary update the mean number of atoms needed
per block is displayed. The update algorithm will run for a number of iterations or can
be stopped when the average number of atoms required per training block no longer
decreases from one iteration to another. As output the learning algorithm provides the
sparse A matrix, Γ and the general error. The sparse matrix A is the one that we are
interested in and it will be saved along with the coefficients for reconstruction.

After obtaining the sparse matrix A from the learning algorithm we have the
final representation of the dictionary D. Due to the fact that we are working on time
dependent volume data sets we can use the A matrix from one time step as a starting
point for the dictionary learning algorithm for the next time step thus reducing the
number of iterations needed for convergence. This can be done every time we get
to a new frame of the time dependent volume or after the compression performance
degrades over a preset threshold.

3.4.3 Volume Sparsification

Sparsification is a straight forward operation in which each block of the volume is
expressed as a linear combination of the learned dictionary atoms. We can choose in
which manner we would like to break up the volume into blocks of the atom size. If we
set the distance between blocks to be equal to the dimension of the dictionary atom then
no block will overlap and we will end up with the lowest amount of coefficients for the
whole volume. On the other hand if we set the distance between blocks to be less than
the atom size we will get overlapping blocks which will offer us a greater fidelity of the
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original volume but we will take a penalty in terms of number of coefficients needed to
reconstruct the volume.

For sparsifying the volume I have used Orthogonal Matching Pursuit(OMP)
which is very similar to MP with the mention that instead of projecting the residual on
the best fitting atom the input signal is projected on atoms that were chosen by that
point and then the residual is obtained. Another observation is that this process of
sparsifying the volume which is broken down into blocks is embarrassingly parallel due
to the fact that in order to obtain the sparse representation we only need access to the
dictionary and the block in question. There is no interaction between two OMP runs so
adding more processing units will decrease the time needed to sparsify the volume in a
linear manner.

After all the blocks have been sparsified the algorithm provides the sparse Γ
matrix which will be stored along with A and the DC component of every block. Having
all this information stored we can reconstruct the volume blocks by multiplying each
column of Γ with the dictionary and adding the corresponding DC component. This is
also a very easily parallelizable problem.
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In this chapter we will analyze the results that were obtained over two time-dependent
volume data sets. The first data set is a physics simulation capturing the core-collapse
of a supernova [BM07]. The simulation has 60 time steps in which it captures the first
second of a supernova explosion. The volume is a scalar field of size 432×432×432. The
second data set is a Turbulent Combustion Simulation [YCS07] where different aspects
of turbulent flames are simulated. In this data set multiple scalar fields are provided
conveying different aspects of the simulation like temperature, mixing rates and species
concentration. Each time frame of the simulation has five scalar fields carrying different
information about the simulation and has size 480 × 720 × 120.

On this data sets I have performed different tests to evaluate the performance
of the algorithm in terms of compression ratio, error, time needed to train the dictionary
and to sparsify the volume, reusability of the dictionary over different time steps and
viability of the dictionary in other volumes unrelated to the one that it was trained.

4.1 Compression Vs Quality

The first thing that we will take a look at is the trade-off between compression and
quality of reconstruction. This is a typical decision that needs to be taken in lossy
compression algorithms. Usually we can choose one at the expense of the other. If we
want a high rate of compression the quality of the reconstruction will take a hit as we
have seen with the DCT and Wavelet transform, on the other hand if we want a very
good reconstructed volume we need to store more coefficients and thus the compression
ratio will drop. Depending on the desired outcome and specific needs a trade-off can be
found.

The following results are from the supernova data set, frame 1295, which is
314928KB on disk in its original form. For this test I have varied the amount of error that
we allow for each reconstructed block by changing the values of σ. I have recorded the
resulting size of the compressed volume, the peak signal to noise ratio(PSNR), number of
non zero(NNZ) entries in the Γ matrix as well as the average number of atoms required
per block in order to reconstruct the volume.
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Table 4.1: Compression Vs Quality on supernova data set frame 1295
Sigma NNZ(Gamma) Avg dict atom PSNR Size(Kb) Size ratio
1 1378983 9 56.7 13796 1:22
2 615639 3.9 51 6855 1:45
3 334934 2 47.8 4378 1:71
4 181261 1 45.8 3017 1:104
5 105078 0.58 44.4 2311 1:136

As we can see in Table 4.1 as we increase the error that we tolerate the
compression ratio grows from 22, when σ is equal to one, to 136 when σ is equal to
five. At the same time the PSNR drops from 56.7dB to 44.4dB. We can also observe how
the amount of coefficients needed for reconstruction decrease when we allow a higher
error which is what we would expect. The most eloquent indicator of the final size of
the sparsified data is the average number of dictionary atoms needed per block followed
by the number of non-zero entries of the Γ matrix.

4.2 Training and Sparsifying Time

Another important metric is the time it takes to train and then sparsify the volume. The
tests were done on the same frame of the supernova data set on a machine with two
Intel Xeon processors each having 12 cores and 24 threads.

Table 4.2: Dictionary and Sparsifying times
Sigma Dictionary time(sec) Sparse time(sec) Sparse time parallel(sec)
1 1005 1195 28
2 275 548 13.7
3 126 315 11
4 74 200 8.3
5 54 148 6

In Table 4.2 we can see the time it takes to train a dictionary and sparsify the
volume. We can see here that the time it takes to train the dictionary is very high for
low error due to the fact that in each step we need more coefficients to get the learned
dictionary from the base dictionary in that error limit. Also this training time can not be
avoided since in the update stage every dictionary atom update causes also an update
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in the coefficients matrix so in order to have a coherent dictionary atoms need to be
updated sequentially.

On the other hand the sparsification time is highly parallel and here we can
reduce the time needed by adding more processing units. We can see that for low error
where there are a lot of coefficients to be determined the improvement we get from
48 threads is ×40, which is almost linear. As the error increases and the number of
coefficients drops the gain from adding more processing units drops a bit due to the
fact that operations like dictionary copying now take a larger percentage of the whole
sparsification process.

4.3 Dictionary Reusability

An interesting question in the context of time-dependent volumes is the reusability of
a dictionary learned in the previous time step. The next set of tests will give us an
insight on the feasibility of using one dictionary across multiple time frames. In order
to determine this we are interested in how the compression ratio and quality of the
reconstruction evolves across different time steps when we don’t learn the dictionary at
each time step.

In Table 4.3 we have listed on the second column all the PSNR values for
dictionaries learned at each frame and the third column shows the PSNR values for the
same frames but this time the dictionary used for sparsifying the volume was trained in
the first frame and then reused in all the next time steps.

This is not surprising since the sparsification process does not stop until the
residual is under the desired threshold thus resulting in a similar PSNR even though the
dictionary was not the best fit for the current frame.

Now we would like to analyze what happens to the compression ratio when we
reuse the same dictionary over multiple time frames. We would expect, since it is not
learned on the current frame of the volume, to take a penalty in terms of compression.

The next set of tests were done on the second data set of the turbulent flames
in which we compared different update strategies to see how the dictionary update will
affect the compression. For this test we propose three strategies to compare. The first is
to update the dictionary every time frame of the volume, second learn the dictionary on
the first frame and then use it for all other frames and third update the dictionary every
ten frames.

In Fig 4.1 we can see how the memory footprint of the reconstructed volume
changes over different time frames. In the first graph we see how the compression of the
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Table 4.3: Quality of reconstructed volume when reusing dictionary
Frame Relearned Dict PSNR(dB) Reused Dict PSNR(dB)
1 50.93 50.93
2 50.84 50.84
3 50.78 50.78
4 50.8 50.78
5 50.83 50.81
6 50.81 50.81
7 50.81 50.79
8 50.77 50.75
9 50.66 50.65
10 50.59 50.58
11 50.50 50.50
12 50.41 50.41
13 50.33 50.33
14 50.26 50.27
15 50.21 50.21
16 50.13 50.14
17 50.12 50.12
18 50.08 50.08
19 49.98 49.97
20 49.87 49.87
21 49.78 49.78
22 49.7 49.7
23 49.62 49.62
24 49.56 49.55
25 49.51 49.5
26 49.51 49.49
27 49.54 49.52
28 49.56 49.54
29 49.57 49.55
30 49.6 49.57
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Figure 4.1: Compression results for different dictionary update strategies.
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vorticity of the flow is compressed and in the second we can see how the chi component
of the flow is compressed.

The red line in both graphs represent the size in KB of the sparse coded volume.
We can see that in the first ten frames the size needed for representing the volume
increases due to the fact that at first the flames begin to burn and the flames gradually
fill the volume. After that a repeating pattern of the burn appears and the space needed
to sparsely code the volume oscillates around a value.

The second strategy is to learn the dictionary on the first time frame and then
reuse it for the upcoming frames without update. The blue line shows the outcome of
this strategy. Due to the fact that we learned the dictionary at the first time step when
not much is happening the dictionary trains mostly on empty samples and thus we get a
worse compression. Nevertheless we can still observe the trend that we saw in the first
strategy where we have an increase in size in the first ten frames and then oscillation.

The yellow line represents the third strategy in which the dictionary is relearned
every ten frames. We can see that on the first ten frames we obtain the same outcome as
the previous strategy since both have as support a dictionary learned in the first frame.
After frame ten the dictionary is updated and it will be used for the next ten frames. As
we can see the result is much closer to the result obtained by learning the dictionary
on each frame. This is a very important result since it means that we can reuse the
dictionary from previous frames when the volume does not drastically change with low
penalty in terms of compression performance. By doing so we spread out the high cost
of training the dictionary, which can not be done in parallel, over multiple frames thus
improving the performance.

The last series of tests are represented by the green line in the graph. For this
set of tests I have used the dictionary trained on the 10th frame of the vorticity volume
for the whole time steps of the chi series and vice versa. I have chosen the 10th time
step because from that point forwards the simulation is entering an oscillation phase. As
we can see the green line follows more closely the red line as oppose to the blue line
which is also a one time learned dictionary. Even more interesting is the fact that the
dictionary was trained on another volume than the one it was used for sparse coding.

Another scenario in which we tested how the trained dictionaries perform is
when we use them on volumes that are unrelated to the volume that they were trained
on. In Fig.4.2 we have used dictionaries trained at different time steps of the turbulent
combustion volume, on the vorticity scalar field, and used them in the supernova volume.
The compression results were compared with the original results obtained by training
dictionaries at every frame of the supernova data set.
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Figure 4.2: Compression results when reusing dictionaries on other volumes.

We can see the compression performance of the dictionaries trained on the
supernova volume in dark blue. In terms of compression those are the most efficient.
The other lines that are plotted in the graph belong to dictionaries that were learned
from different frames of the turbulent combustion data set. The best dictionary out
of those is the one learned on time-step 10 and is depicted with a green line. The
worst dictionary in terms of compression is the one learned on the first time-step of the
combustion simulation, where not much is happening.

The size of the compressed volume varies from 10% to 40% more than the
original depending on the dictionary that was chosen. Another interesting correlation
seems to be between the size of the reconstruction and how well the dictionary fits the
new data set. The first frame of the turbulent combustion has the lowest reconstructed
size and is the worst performing dictionary in the supernova data set and the 10th frame
has the largest reconstructed size and is the best fitting dictionary.

As we can see from this graph dictionaries trained on one data set can be used
on other data sets with varying degrees of success but are worse than dictionaries trained
on the same volume and used for multiple time-steps.
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4.4 Visualizing the results

Now we will take a look on how the reconstructed volume compares to the original one
another lossy compression ZFP [LI06]. ZFP is an open source library for floating-point
data compression. In the next panels we will see a reconstruction of the supernova
data set with K-SVD and ZFP. The original volume weighs 315MB the K-SVD sparsified
volume weighs 7MB and the ZFP 10MB.

Figure 4.3: Visual comparison of compression results.
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In each panel of Fig.4.3 and Fig.4.4 the top left image is the uncompressed
volume, followed by the K-SVD compression on the right and ZFP compression on the
bottom left. The transfer function that was used can be seen in the bottom right part of
each panel.

Figure 4.4: Visual comparison of compression results.

We can see from Fig.4.3 and Fig.4.4 that the K-SVD reconstruction preserves
more details than the ZFP compression. In the second panel of Fig.4.3 that both methods
present block artifacts but in our reconstruction the artifacts are less accented and
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also the fine details are better preserved. The red spot that appears on the left of the
supernova is better preserved in our reconstruction while lost in the ZFP.
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5.1 Summary

Simulations obtained by HPC runs produce high amounts of data which pose a problem
when it comes to storing the data for later analysis and visualization. Compression is
used in order to reduce the size of memory needed to store this simulations. Due to the
fact that computation is getting more and more cheap when compared to I/O operations
we can afford to spend more on computing a good compression in order to reduce the
I/O operations needed for storing the results.

In the second chapter we have reviewed some classical methods in which
compression can be achieved. DCT and Wavelet transform are two classic techniques
that use a dictionary as support and express blocks of the input data as linear combination
of the dictionary atoms. These dictionaries can be overcomplete which leads to a better
sparsification of the data but at the same time introduces a NP hard problem.

The problem arises from the fact that in the context of an overcomplete dictio-
nary there is no unique representation of the input signal and a choice has to be made
with the goal of obtaining the sparsest representation possible. For this problem two
greedy algorithms were presented, Matching Pursuit and Basis Pursuit, which produce a
sparse representation of the input signal within a reconstruction tolerated error.

In chapter three we have seen how a dictionary can be trained over a set of
examples from the volume we want to sparsify using the K-SVD algorithm. K-SVD is
computationally more complex than classical compression techniques, trading speed
for a better sparsification of the data. Since computation is cheap we can afford such
a trade-off with the goal of obtaining a more sparse result. In order to further reduce
the size in memory needed for storing, the learned dictionary can be expressed as a
sparse representation over a generic dictionary. By doing so we will store just the sparse
representation over the base dictionary and at reconstruction compute the learned
dictionary.

Testing the proposed method on time-dependent data sets gave us a perspective
on the performance we can expect from it. In terms of speed there are two different
components that give us the final performance of the method. The training stage is a
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lengthier process and can not be run in parallel due to the way that dictionary atom
updates also change sparse representation of the training signals. The second component
is the sparsifying stage which is less demanding and highly parallel. From tests we have
seen that adding more processing units to the task increases performance in a linear
manner. We have also seen the quality of reconstruction and compression ratio we can
expect depending on the different errors we tolerate in our reconstructed volume.

Reusing the dictionary trained at one time step for the next steps proved to
be a viable strategy thus reducing the average time needed for the dictionary training
phase. Also using one dictionary on different scalar fields of the same volume proved to
be a viable option. Using dictionaries on completely different data sets turned out to
have varying degrees of success depending on what frame the dictionary was trained
on.

Finally we compared our reconstructed volume to another lossy compression
method. We have seen that our reconstruction has less block artifacts and maintains
more high frequency details than the other method.
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5.2 Future work

There are a few directions that I would like to pursuit in order to improve and continue
the current work. Testing more data sets to observe the behavior of the method in more
situations will give us a better understanding about the reusability of dictionaries in
other data sets.

Devise new metrics that can tell us beforehand how a dictionary will fit another
data set and how similar two dictionaries are to one another. These metrics would help
us to identify the best dictionary from one data set that can be reused in another data set
and thus reducing the trial and error process of finding a good dictionary from another
data set.

Another improvement that can be brought is to reduce the sparsification time
by migrating the OMP work from CPU to GPU. This will take full advantage of the
parallel nature of this problem and will make the compression of larger volumes a much
faster process. Furthermore in order to assure an even load we could do a dictionary
update step at each frame instead of relearning the whole dictionary every ten frames.

By scaling the dictionary atoms and then reconstructing the volume with
original coefficients we could have a representation of the volume at different resolutions.
This is particularly interesting since we would have for each block of the volume a
different scaling function given by the reconstruction coefficients as oppose to classical
rescaling algorithms. This could be used as a starting point for simulations at a larger
scale.
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