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Abstract

Automatic detection of motion in images is one of the main challenges in the field of
computer vision. It can be used in many applications to improve their results. One essential
part of motion detection is the computation of a displacement vector field (optical flow)
between consecutive image pairs. Techniques that allow the most accurate results at the time
belong to global optimization methods (variational methods). Using variational methods
one typically has to minimize energy (cost) functionals.

In this thesis we model different energy functionals and study as well as evaluate them in
terms of their accuracy with respect to motion estimation based on common test sequences.
An energy functional penalizes deviations of model assumptions. It consists of a data and a
regularization term (smoothness term). While the data term with its constancy assumptions
is used to detect corresponding structures between different images, the regularization term
allows a smoothing of the motion field to provide a dense solution. We focus on modeling
different regularizers in this work, including such ones, which were successfully used in
variational methods for other fields but not considered for motion estimation until now.

The thesis is divided into three main parts: (1) We initially present a prototypical variational
method to estimate optical flow. Starting with the continuous model, we discretize the
method and a possible solution of the resulting equations is derived. At this point, more
advanced data terms are introduced as well. (2) Afterwards, we present regularizers of
different order and combination. Furthermore, we consider an isotropic and an anisotropic
version of each regularizer. Incorporating additional image information we expect the direc-
tion-dependent smoothing of anisotropic regularizers to provide more accurate solutions.
(3) Finally, we compare the different regularizers to each other, where we also make use of
the several data terms.
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Kurzfassung

Die automatisierte Erkennung von Bewegung in Bildern ist, vor allem wegen der Nütz-
lichkeit in zahlreichen Anwendungsgebieten, eine der Hauptherausforderungen auf dem
Gebiet des Maschinensehens. Ein grundlegender Bestandteil der Bewegungserkennung
ist die Berechnung eines Verschiebungsvektorfelds (optischer Fluss) zwischen aufeinan-
derfolgenden Bildpaaren. Verfahren, die zurzeit die genaueste Berechnung des optischen
Flusses ermöglichen, gehören zu den globalen Optimierungsmethoden (Variationsansätze).
In solchen Variationsansätzen werden häufig Energiefunktionale (Kostenfunktionale) mini-
miert.

In dieser Masterarbeit werden verschiedene Kostenfunktionale modelliert und auf Basis
gemeinsamer Testsequenzen hinsichtlich ihrer Genauigkeit der Bewegungsschätzung un-
tersucht und evaluiert. Ein Kostenfunktional bestraft Abweichungen von Annahmen der
Modellierung. Es besteht typischerweise aus einem Daten- und einem Regularisierungs-
term (Glattheitsterm). Während der Datenterm mit Konstanzannahmen zur Erkennung
korrespondierender Strukturen in unterschiedlichen Bildern genutzt wird, erlaubt der
Regularisierungsterm eine Glättung des Bewegungsfelds, um eine dichte Lösung zu liefern.
Der Schwerpunkt der Modellierung in dieser Arbeit wird auf verschiedene Regularisierer
gelegt - unter anderem auch auf solche, die bisher erfolgreich in Varationsansätzen für andere
Bereiche wie dem Entrauschen oder Focus Fusion, aber noch nicht zur Bewegungsschätzung
genutzt wurden.

Die Masterarbeit lässt sich in drei Hauptabschnitte unterteilen: (1) Zunächst wird ein
variationelles Verfahren zur Schätzung des optischen Flusses vorgestellt. Vom kontinuier-
lichen Modell ausgehend wird diskretisiert und eine mögliche Lösung des Verfahrens
hergeleitet. An dieser Stelle werden auch schon weiterentwickelte Datenterme eingeführt.
(2) Anschließend werden Regularisierer unterschiedlichen Grades und Kombination präsen-
tiert. Je Regularisierer wird zudem eine isotrope und eine anisotrope Variante betrachtet.
Unter Berücksichtigung zusätzlicher Bildinformationen soll die richtungsgesteuerte Glät-
tung der anisotropen Varianten eine genauere Schätzung liefern. (3) Zum Schluss werden
die verschiedenen Regularisierer in Verbindung mit den unterschiedlichen Datentermen
miteinander verglichen.
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1 Introduction

Computer vision is a large field that is mainly concerned with image analysis and pattern
recognition. When it comes to image analysis, image sequences and estimating motion
within these sequences play an important role. To estimate motion one has to compute a
displacement vector field, which is known as optical flow in common literature. One of the
main issues of optical flow computation is to find corresponding structures between two
consecutive images. Such so-called correspondence problems are not only to be solved for
motion estimation, but also in other areas such as depth reconstruction or medical image
registration. Hence, we can say solving correspondence problems is very fundamental in
computer vision. Unfortunately, finding correspondences is not a trivial process.

Regarding optical flow estimation we distinguish between local differential and global differen-
tial methods to establish correspondences. Local methods incorporate constancy assumptions
that should apply to neighborhoods of certain size around pixels. In the next step they
minimize energy functions for each pixel locally by calculating constant parameters that
fit best to the model constraints within these neighborhoods. One major problem that
can occur here is that unique solutions do not always exist due to the nature of images
(aperture problem). In fact, we can compute only the part of the flow (normal flow) that is
orthogonal to image edges. Local methods try to tackle this problem by using the already
mentioned neighborhood, but there are still some cases where the flow cannot be computed
accurately. To overcome these situations, global methods compute a minimizer of a global
energy functional on the entire image domain. In contrast to local methods, we do not
minimize pixelwise but consider a set of functions as a minimizer and therefore determine
all parts of the flow simultaneously (variational methods). To do so, a second assumption
supplements the constancy assumption. It is known as the smoothness constraint and it
aims at regularizing the resulting optical flow. Thus, variational methods provide a unique
solution to a previous ill-posed problem.

As its name implies, the smoothness constraint in its basic variant favors motion fields with
only small spatial variations (small variations of flow derivatives) and hence smoothes/reg-
ularizes the entire flow. But regularizers can be modeled in many ways depending on the
image and expected flow. For example, we can modify the regularizer with respect to flow
discontinuities by using subquadratic penalizer functions and thus better differentiate between
the motion of various objects in the image. We can use different orders of derivatives to
model different kinds of motion and even take directional constraints into account to allow
direction-dependent smoothing (anisotropy). Several combinations of these modifications are
also possible to further improve optical flow estimation. We look at them in detail later in
this work.
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1 Introduction

Fields of Application. Literature shows that optical flow estimation and the resulting
motion field can be successfully used in various areas ranging from image processing over
tracking and navigation tasks to automated driver assistance systems. If we consider image
processing for example, optical flow is used for compression of video sequences for a long
time. On the one hand, it can be used to actively reduce the amount of necessary space
to store videos. Here the basic concept is to divide a video in key frames (directly stored
images using e.g. JPEG) and store remaining frames as flow fields indicating differences
between frames [1]. On the other hand, further development of optical flow methods [2]
made it possible to speed up encoding time of High Efficiency Video Coding (HEVC), the
current state-of-the-art video coding standard [3]. Optical flow helps to decide where to
skip certain parts of the HEVC pipeline. Another prominent field of application is robot
navigation, which is not done manually but acts fully autonomously. Optical flow is used
here to determine characteristics about an a priori unknown environment such as obstacle
disposition, time to contact between robot and obstacles, and depth. Robots then utilize this
knowledge to safely navigate through the environment by avoiding obstacles [4]. Combined
with infrared cameras optical flow also allows to characterize obstacles as humans. Thus, it
provides support for surveillance tasks [5]. Detecting obstacles, to mention another practical
application of optical flow, is also of particular interest for driver assistance systems, which
may help a car driver to avoid potential accidents [6] (see Figure 1.1).

Figure 1.1: Possible application in a driver assistance system. Top: First image of one input
image pair taken from the KITTI benchmark data set [7]. Bottom: Computed
optical flow, where colors indicate the direction of motion.
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1.1 General Variational Optical Flow Model

1.1 General Variational Optical Flow Model

Before we have an introductory look on variational methods, we briefly discuss alternative
approaches [8] to find corresponding structures and thus estimate motion fields. There are
area-based techniques, which consider local image information in a neighborhood specified by
a block around a reference pixel in one image and compare them to some candidate blocks
in another image [9, 10]. On the contrary, instead of computing a dense motion field, feature-
based approaches only select a few but distinctive image features and solve correspondence
problems between them [11, 12]. Finally, we have the already mentioned local differential
methods [13], which minimize local energy functions instead of global functionals. Both local
and variational methods share the same idea how to include constancy constraints, but to
overcome the aperture problem variational methods use additional smoothness constraints
enforcing global smoothness of the optical flow.
One first approach regarding regularizers was made in the prominent work of Horn and
Schunck [14]. We consider f (x) as a scalar-valued image sequence with x := (x, y, t)>, where
(x, y)> ∈ Ω denotes a specific location within a continuous rectangular image domain
Ω ⊂ R2 and t ≥ 0 denotes time. In a discrete sense t specifies a certain image of an image
sequence. We then want to estimate the optical flow field w := (u, v, 1)>, where u(x) and
v(x), respectively, describe the displacements in x- and y-direction and 1 identifies the
subsequent image t + 1 (see Figure 1.2), by minimizing a suitable global energy functional
that can be written in its most general form as

E (u, v) =
∫

Ω
D (u, v)︸ ︷︷ ︸
Data term

+α R (∇2u,∇2v)︸ ︷︷ ︸
Regularization term

dxdy (1.1)

with the spatial gradient ∇2 := (∂x, ∂y)>. The optical flow field acts as the minimizing
function and the regularization parameter α helps to balance both terms. The data term
typically contains constancy assumptions, whereas the regularizer contains smoothness
assumptions. Both terms penalize deviations from these assumptions.

The most frequently used constraint in the data term is the so-called brightness constancy
assumption (BCA). It states that intensity values of image structures remain the same after

x1

x2

x3

x4

x1

u (x1)

x2

u (x2)

x3

u (x3)

x4

u (x4)
t + 1

Figure 1.2: Displacement vector field u := (u, v)> for corresponding pixels at position x
between two images at time t and t + 1. Left: Image t. Right: Image t + 1.
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1 Introduction

motion. We write it as
f (x, y, t) = f (x + u, y + v, t + 1) . (1.2)

If we assume the motion to be small and f is sufficiently smooth and differentiable, we can
perform a first order Taylor expansion around a point x to linearize the BCA

f (x + u, y + v, t + 1) ≈ f (x, y, t) +
u1

1
fx +

v1

1
fy +

11

1
ft (1.3)

where the abbreviations fx, fy and ft denote partial derivatives with respect to x, y and
t. The linearization is done to manage the implicitness and nonlinearity of u and v in
Equation 1.2. Approximation 1.3 applied to Equation 1.2 yields the linearized optical flow
constraint (OFC)

fxu + fyv + ft = ∇3 f>w = 0 (1.4)

with ∇3 := (∂x, ∂y, ∂t)> as spatiotemporal gradient operator. That way, our data term reads

D (u, v) :=
(
∇3 f>w

)2
. (1.5)

Since we penalize all deviations from zero (positive and negative values), the constraint
gets squared. As we can see in Equation 1.4 there are two unknowns u and v but only one
single equation, hence infinitely many solutions for the flow components exist. This is the
aforementioned aperture problem. Without additional constraints the OFC only allows to
compute flow components parallel to the spatial image gradient ∇2 f . These components
are called normal flow [15] which is defined as

wn :=
(

u>n , 1
)>

:=
(
− ft

|∇2 f |
∇2 f>

|∇2 f | , 1
)>

. (1.6)

To tackle the aperture problem a second constraint is introduced in our variational model:
the smoothness constraint. It regularizes the flow field at locations where the data term does
not contribute to the solution (|∇2 f | ≈ 0). A filling-in effect occurs at such locations taking
neighborhood information into account and adapting the local flow to fulfill the constraint
in the best way possible. This effect is closely related to an implicit diffusion process to
achieve dense flow fields. Mathematically, this is realized by penalizing deviations from the
squared magnitude of the spatial flow gradient. The resulting smoothness term reads [14]

R (∇2u,∇2v) := |∇2u|2 + |∇2v|2 . (1.7)

This constraint ends up in a homogeneous diffusion that smoothes the entire flow field the
same way without adapting to image or flow data.

Data and smoothness term applied to our general variational optical flow model in Equa-
tion 1.1 yields the Horn and Schunck energy functional

E (u, v) =
∫

Ω

(
∇3 f>w

)2
+ α

(
|∇2u|2 + |∇2v|2

)
dxdy. (1.8)

Later in this work we will discuss many modifications of the data and the smoothness term,
especially of the latter. Instead of ∇2 we will often just use the shorter notation ∇.

12



1.2 Related Work and Our Contribution

1.2 Related Work and Our Contribution

Both the data and the smoothness term of variational methods and their interaction are
subject to many studies in research. It is often the case that literature focuses on how to
design either the data or the smoothness term. Therefore, it makes sense to consider them
here separately as well.

Data Term. Regarding design of data terms, one is interested in modifying constraints in
such a way that qualitative performance is increased under varying conditions of a captured
scene like illumination changes, which can be very challenging to face. One simple extension
to the data term in Equation 1.5 that is proposed by Uras et al. [16] is to consider constancy
of the spatial brightness gradient ∇2 f instead of constant brightness f . Contrary to the BCA
we obtain two equations for two unknowns this time, which may allow to overcome the
aperture problem. Papenberg et al. [17] even examine higher order derivatives to be used
in the data term. However, one cannot automatically assume the higher the derivative, the
better is qualitative performance of motion estimation. Instead of utilizing higher order
derivatives to achieve invariance under illumination changes, Demetz et al. [18] suggest
novel descriptors based on the order of gray values in a neighborhood. Despite being
relatively easy and intuitive to understand, this approach yields good results in experiments.
Due to the linearization we mentioned in Section 1.1 a strictly convex energy functional is
obtained. That means, each minimization strategy that is globally convergent can find a
unique solution since a global minimum exists. However, linearization is only valid for small
displacements. In image sequences with very fast motion or coarse temporal sampling this
condition is violated. It is possible to postpone the linearization to the numerical scheme, but
in this case we have to minimize a nonconvex energy functional with multiple local minima,
that may cause algorithms to get trapped there. Brox et al. [2] alleviate this problem by
presenting a multiscale coarse-to-fine warping approach. To determine a global minimum
they start to work on coarse versions of the input images and then successively compute
minima on each coarse-to-fine hierarchy level until the original problem is solved.
Since we penalize deviations from constancy assumptions in a quadratic way (see Equa-
tion 1.5), outliers caused by noise and occlusions get much higher influence on the solution
than they originally should. To reduce their influence a subquadratic penalizer function
such as the regularized L1 norm is applied to the data term by Brox et al. [2]. Originally, the
idea to penalize deviations less severely comes from robust statistics as discussed by Black
and Anandan [19]. Furthermore, if multiple constancy assumptions are used within the
data term and they can be fulfilled independently, Bruhn and Weickert [20] use a separate
penalization (robustification). Unfortunately, these penalizer functions require the minimiza-
tion to solve a nonlinear system of equations which is mathematically and computationally
more challenging.

Smoothness Term. Similar to data terms we can apply subquadratic penalizers to the
regularizer. While the quadratic term in Equation 1.7 performs a homogeneous diffusion,
subquadratic penalizers allow piecewise smooth flow fields and hence adaptively smooth

13



1 Introduction

flow discontinuities, which usually occur at object boundaries. As in the case of data terms
one possible choice is the regularized total variation (TV) regularization. It was first used in
context of noise removal by Rudin et al. [21]. First order derivatives allow to model edges in
the solution but also produce staircasing effects (oversegmentation in constant stairs) with
TV regularization. To reduce such artifacts Chambolle and Lions [22] use direct first and
second order derivative regularization in an infimal convolution (INF) of energy functionals.
Second order derivatives favor affine motion (Demetz et al. [23]), i.e. allow kinks in the
solution. Trobin et al. [24] employ only deviations from second order derivatives as a prior
to regularize the flow field. Since second order derivatives are not orthogonal, they use a
new operator to set up a norm that prevents a biased behavior of preferring some certain
affine flows. A more generalized variant of TV regularization, the so-called total generalized
variation (TGV), proposed by Bredies et al. [25] also involves higher order derivatives. TGV2,
a second order case of TGV, penalizes first and second order derivatives as INF, but contains
a coupling term that gives indirect access to second order derivatives. Such indirect, coupled
approaches model discontinuities for each order explicitly.
All of the introduced smoothness terms so far do not incorporate directional information
and smoothing only depends on the location. Such regularizers that treat diffusion in all
directions equally are called isotropic. If methods steer diffusion across and along edges
differently, they are said to be anisotropic. Zimmer et al. [15] present an anisotropic extension
to TV regularization by integrating directions to the smoothness term. Similarly, Hafner et
al. [26] modify TGV2 to regularize the solution in an anisotropic way. Another anisotropic
second order TV approach is proposed by Lenzen et al. [27]. Their regularization depends
on a locally adaptive change of regularization parameters depending on image location.

Interaction. The connection between data and smoothness term and their interplay is
subject to the work proposed by Zimmer et al. [28]. Usually most data terms constrain
the flow in one direction (normal flow). Homogeneous and isotropic diffusion approaches,
however, also smooth in direction of data constraints. Anisotropic methods that utilize
directional information taken from the structure tensor [29] smooth along image edges but
keep discontinuities across them. If the data term contains the BCA, the data term and
the anisotropic version of the Horn and Schunck smoothness term complement each other
well. Since the structure tensor considers brightness edges only, advanced data terms like
gradient constancy are not consistent with the directional information, though. The authors
suggest to use directions derived from the motion tensor instead, i.e. from the constancy
assumptions in the data term. Doing this, constraint edges and not images edges influence
the regularization process.

Our Contribution. The aim of this thesis is to compare optical flow estimation quality of
variational methods with various advanced data and smoothness terms on a common set
of suitable image sequences. In this context we will consider higher order direct/coupled
isotropic/anisotropic regularizers as introduced before. Since some of these regularizers
were applied for other tasks, we need to properly adjust them for our needs. Therefore,
the isotropic optical flow approaches and their anisotropic counterparts are studied and
implemented based on the framework of the department, followed by an in-depth evaluation.
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1.3 Organization

1.3 Organization

This thesis is organized as follows: Chapter 2 provides some theoretical foundations about
images, notation and minimization. Furthermore, a metric is introduced to evaluate the
flow estimations of the several methods. Chapter 3 is about optical flow and the variational
method in general. We learn about the different data terms, a basic smoothness term, how to
minimize and discretize them and, eventually, solve the resulting linear system of equations.
After presenting the different smoothness terms in detail in Chapter 4, we show some
experiments, evaluate the flow estimations and compare the different approaches to each
other in Chapter 5. Finally, the thesis ends in Chapter 6 with a conclusion and an outlook
on future work.
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Before we go into detail with variational optical flow methods, we first need to present some
foundations and mathematical concepts. In Section 1.1 functions representing images are
already mentioned but in addition to a formal definition we cover some discretization aspects
in Section 2.1. Throughout this thesis some notation is used - its meaning is explained next
in Section 2.2. We then continue with what needs to be considered when minimizing energy
functionals and how the resulting equations can be solved in a discrete way. Therefore, we
specify possible discretizations of derivatives in Section 2.3. Section 2.4 is about deriving the
final system of equations based on calculus of variations. Eventually, we introduce some
suitable evaluation metrics to measure the quality of our flow estimations in Section 2.5.

2.1 Images

Continuous. In our theoretical context we often consider images, also called frames, as
continuous functions. They assign values of the co-domain R to various locations from the
image domain Ω. Let Ω ⊂ R2 be a rectangular image domain, then such image function f
reads

f : Ω→ R. (2.1)

In this case the co-domain specifies scalar values, e.g. gray values. In order to work with
color images one has to extend Function 2.1 to a vector-valued function, i.e.

f : Ω→ Rn (2.2)

with n ∈N representing the number of image channels. For example, if one uses the HSV
or the RGB color representation, n = 3 applies.

Discrete. In order to use functions as frames in practice the image domain needs to
discretized. We call this step sampling. Using step sizes h := (hx, hy)> ∈ N2 in an
equidistant, rectangular grid of size m · n, we can discretize an image position (x, y)> with[(

x
y

)]
i,j
=

(
i · hx
j · hy

)
. (2.3)

Thus, for each index pair (i, j) we get m · n possible grid cells (pixel positions) in the
discretized image domain

[Ω] = {1, . . . , m} × {1, . . . , n} . (2.4)
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Usually, pixels are quadratic, of same size and have the same distance to each other. For
this reason hx = 1 and hy = 1 applies. Now we can evaluate an image f at the discretized
locations by

[ f ]i,j = fi,j = f
(
[(x, y)]i,j

)
. (2.5)

Not only the image domain needs to be discretized, but also the co-domain. During this
quantization a certain amount of storage is assigned to each pixel. For RGB images 24bits are
used frequently. Each pixel of one channel is then mapped to

[ f c]i,j ∈ {0, . . . , 255} (2.6)

where c denotes a certain color channel. Figure 2.1 shows an RGB image and its channel
representations.

Figure 2.1: RGB image (Lena) and its separate color channels. From Left to Right: Full
image, red channel, green channel and blue channel.

2.2 Norms

This section is about different notation for vector and matrix norms.

p-Norm. A p-norm of a vector a ∈ Rk is defined by

‖a‖p :=

(
k

∑
i=1
|ai|p

) 1
p

(2.7)

where p ≥ 1. A special case of this norm that we use in this thesis often is the Euclidean
norm with p = 2. We abbreviate it with

‖a‖2 = |a| =

√√√√ k

∑
i=1

(ai)
2. (2.8)
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Matrix norm. We can extend p-norms to define matrix norms by considering all entries ai,j

of a matrix A ∈ Rk×l as entries of a vector with equal length. Such a norm is then defined as

‖A‖p :=

(
k

∑
i=1

l

∑
j=1

∣∣ai,j
∣∣p) 1

p
. (2.9)

Again, a special case is given for p = 2. It is called Frobenius norm:

‖A‖2 = ‖A‖F =

√√√√ k

∑
i=1

l

∑
j=1

(
ai,j
)2. (2.10)

2.3 Derivatives

Derivatives play a major role in variational methods. Hence, we cover notations, their
meaning and possible ways to discretize them in this section.

Partial Derivatives. Given a multivariate scalar-valued function g : Rn → R, the gradi-
ent describes all possible partial derivatives with respect to the function’s variables x =
(x1, . . . , xn) ∈ Rn as a vector:

∇g (x) :=
(

∂g (x)
∂xi

)>
i=1,...,n

=


∂g (x)

∂x1
...

∂g (x)
∂xn

 . (2.11)

It points in the direction of the steepest ascend. Applying the gradient to a scalar-valued
function yields a vector-valued function ∇g := h : Rn → Rn. The divergence of such a
function h is defined by

div (h (x)) :=
n

∑
i=1

∂hi (x)
∂xi

= ∂x1 h1 + · · ·+ ∂xn hn. (2.12)

Since we have a special case of vector fields with h = ∇g, Equation 2.12 also defines the
Laplacian:

4g (x) := div (∇g (x)) =
n

∑
i=1

∂2hi (x)
∂xi∂xi

. (2.13)

Jacobian. Gradients of multivariate vector-valued functions g : Rn → Rm give the Jacobian

Jg (x) :=
(

∂gj (x)
∂xi

)
i=1,...,n;j=1,...,m

=

∇g1 (x)
>

...
∇gm (x)>

 =


∂g1 (x)

∂x1
· · · ∂g1 (x)

∂xn
...

. . .
...

∂gm (x)
∂x1

· · · ∂gm (x)
∂xn

 . (2.14)
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Hessian. All second-order partial derivatives of an at least two times differentiable scalar-
valued function g : Rn → R define the Hessian

Hg (x) :=
(

∂2g (x)
∂xj∂xi

)
i,j=1,...n

=


∂2g (x)
∂x1∂x1

. . .
∂2g (x)
∂x1∂xn

...
. . .

...
∂2g (x)
∂xn∂x1

· · · ∂2g (x)
∂xn∂xn

 . (2.15)

Note that Jacobian and Hessian are directly related for J∇g (x) = Hg (x).

Discretization. To solve derivatives in a numerical way we need to discretize them first.
They can be approximated by finite difference schemes. Using step sizes h ∈N2 as defined
in Section 2.1 the approximations of first order derivatives of an image f : Ω→ R are given
by forward differences, e.g.

∂ f
∂x

= fx ≈
fi+1,j − fi,j

hx
, (2.16)

∂ f
∂y

= fy ≈
fi,j+1 − fi,j

hy
(2.17)

or central differences, e.g.

∂ f
∂x

= fx ≈
fi+1,j − fi−1,j

2hx
, (2.18)

∂ f
∂y

= fy ≈
fi,j+1 − fi,j−1

2hy
. (2.19)

Second order derivatives can be approximated with central differences, e.g.

∂2 f
∂x2 = fxx ≈

fi+1,j − 2 fi,j + fi−1,j

h2
x

, (2.20)

∂2 f
∂y2 = fyy ≈

fi,j+1 − 2 fi,j + fi,j−1

h2
y

(2.21)

or in case of mixed derivatives, e.g.

∂2 f
∂x∂y

=
(

fy
)

x ≈

(
fy
)

i+1,j −
(

fy
)

i−1,j

2hx

≈
fi+1,j+1 − fi+1,j−1 − fi−1,j+1 + fi−1,j−1

4hxhy
. (2.22)
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2.4 Calculus of Variations

Variational methods compute solutions by minimizing suitable energy functionals. We
introduced such an energy functional in Section 1.1 to solve correspondence problems
between images. While functions depend on various scalar values, functionals map entire
functions to an output. In order to find such minimizing functions we use the theory of
calculus of variations [30]. It is concerned with determining extrema of functionals and thus
states necessary conditions a minimizer needs to satisfy. The conditions are expressed
in form of the so-called Euler-Lagrange equations, which are about vanishing of the first
variation.

The Euler-Lagrange Equation. Before we go into detail with multiple functions and vari-
ables, a simple energy functional in 1-D space is considered first. It is given by

E (u) =
∫ b

a
F (x, u (x) , ux (x))dx (2.23)

where u(x) ∈ C1 [a, b] as space of all one time continuously differentiable functions defined
on [a, b] ∈ R. Finding u as minimizer of the functional E with the integrand F comes down
to solving a partial differential equation

0 = Fu −
d

dx
Fux (2.24)

also known as Euler-Lagrange equation. If we have a strictly convex energy functional E,
then u is a global minimum which is moreover unique. Additionally, Neumann boundary
conditions must hold

Fux (a, u (a) , ux (a)) = 0,
Fux (b, u (b) , ux (b)) = 0 (2.25)

which specify the values of derivatives of u at the boundary of the closed interval [a, b] [30].

Multiple Functions of Multiple Variables. Instead of using only one function depending on
one variable, we extend our previous approach to 2D space and looking for two minimizers
u and v as it is the usual case for the methods proposed in this thesis. The new energy
functional reads

E (u, v) =
∫

Ω
F
(

x, y, u (x, y) , ux (x, y) , uy (x, y) , v (x, y) , vx (x, y) , vy (x, y)
)

dxdy. (2.26)
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For each minimizer we get an additional Euler-Lagrange equation. Hence, we have to solve
two equations

0 = Fu −
∂

∂x
Fux −

∂

∂y
Fuy , (2.27)

0 = Fv −
∂

∂x
Fvx −

∂

∂y
Fvy (2.28)

in the image region Ω. With n as normal vector at the image boundary ∂Ω the Neumann
boundary condition reads

0 = n>
(

Fux

Fuy

)
, 0 = n>

(
Fvx

Fvy

)
. (2.29)

Functionals with Higher Order Derivatives. We cannot only modify the Euler-Lagrange
equations with respect to functions or variables, but also with respect to higher order
derivatives. This is necessary if the energy functional contains such derivatives. For an
energy functional

E (u, v) =
∫

Ω
F
(

x, y, u, ux, uy, uxx, uxy, uyx, uyy, v, vx, vy, vxx, vxy, vyx, vyy
)

dxdy (2.30)

the Euler-Lagrange equations are given by

0 = Fu −
∂

∂x
Fux −

∂

∂y
Fuy +

∂2

∂x2 Fuxx +
∂2

∂x∂y
Fuxy +

∂2

∂y∂x
Fuyx +

∂2

∂y2 Fuyy , (2.31)

0 = Fv −
∂

∂x
Fvx −

∂

∂y
Fvy +

∂2

∂x2 Fvxx +
∂2

∂x∂y
Fvxy +

∂2

∂y∂x
Fvyx +

∂2

∂y2 Fvyy (2.32)

with Neumann boundary conditions

0 = n>

Fux −
∂

∂x
Fuxx −

∂

∂y
Fuxy

Fuy −
∂

∂x
Fuyx −

∂

∂y
Fuyy

 , 0 = n>

Fvx −
∂

∂x
Fvxx −

∂

∂y
Fvxy

Fvy −
∂

∂x
Fvyx −

∂

∂y
Fvyy

 ,

0 = n>
(

Fuxx

Fuxy

)
, 0 = n>

(
Fuyx

Fuyy

)
, 0 = n>

(
Fvxx

Fvxy

)
, 0 = n>

(
Fvyx

Fvyy

)
(2.33)

as derived in [30] with n as normal vector at the image boundary ∂Ω. Note that we omitted
the function’s variables in Functional 2.30 for convenience.
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2.5 Quality Measures

To evaluate the estimated motion fields in a quantitative way some appropriate metrics are
necessary. Most of them rely on having correct reference data (ground truth) available and
computing differences between this data and the estimations of optical flow vectors. The
following two methods are frequently used to measure the quality of resulting motion fields:

1. Spatiotemporal Average Angular Error (AAE): With this metric that is used in litera-
ture often we measure errors as angular deviations from orientation of estimated and
correct motion vectors in space-time. The AAE [31] is defined as

AAE (wc, we) =
1

N ·M
N

∑
i=1

M

∑
j=1

arccos
(

w>c we

|wc| |we|

)
(2.34)

with wc = (uc
i,j, vc

i,j, 1)> as ground truth vector and we = (ue
i,j, ve

i,j, 1)> as estimated
optical flow vector, respectively. N and M denote the image size in both directions.

2. Average Endpoint Error (AEE): The AEE is used to measure differences of the end-
points between estimation and ground truth directly. It is given by

AEE (wc, we) =
1

N ·M
N

∑
i=1

M

∑
j=1
|wc −we| (2.35)

where wc, we, N and M are the same as in the AAE case. Since the AAE only considers
angular differences between vectors but not their magnitude, estimated motion vectors
may point in the correct direction of the ground truth vectors - especially in cases of
large displacements (leads to a low AAE) - but still differ in motion length which is not
covered by the AAE. Therefore, the AEE is not only employed during our evaluation
but also generally preferred.

After we have learned some principles about continuous and discrete images, discussed
higher order derivatives and possible approximations, presented basic aspects with respect
to minimization of energy functionals, and chose error metrics for evaluation, let us now
deal with details of variational optical flow estimation and how to realize it based on a
prototypical approach in the following chapter.
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Introduced in Section 1.1, we extend the basic Horn and Schunck model [14] in this chapter
using various constancy assumptions in the data term and a slight modification of their
regularizer. Following these modifications, we describe a suitable minimization strategy to
find minimizing functions based on the Euler-Lagrange equations covered in Section 2.4.
Afterwards, we discretize and explain how to solve the final equation system. We recall that
the basic variational model has the form

E (u, v) =
∫

Ω
D (u, v)︸ ︷︷ ︸
Data term

+α R (∇u,∇v)︸ ︷︷ ︸
Regularization term

dxdy. (3.1)

Gaussian Presmoothing. Before we go into a detailed description of data and smoothness
term though, we introduce a preprocessing step, that is frequently performed before doing
optical flow computation. It is about convolving the original image sequence f0 with a
spatial Gaussian Kσ of standard deviation σ (in this context also known as noise scale [32])
which smoothes the input images. This presmoothing step is given by

f = Kσ ∗ f0 (3.2)

with ∗ as convolution operator and f denotes smoothed images. Presmoothing is done
because: (1) It removes high-frequency noise that can negatively influence the estimation.
(2) Images are in C∞-space, which is an important property for calculation of derivatives.
One has to take care of choosing appropriate values for σ, since if σ is too large, crucial
image features may be wiped out and hence the results deteriorate. Figure 3.1 visualizes the
presmoothing step and the influence of increasing σ.

3.1 Data Term

The data term incorporates information about assumptions that have to be made to find
corresponding features and structures between consecutive images as precise as possible.
In doing so, the difficulty is to determine such features, which are robust (invariant) to
certain alterations of a scene, i.e. they should not change if the illumination of the scene
changes. In the following we use non-linearized assumptions to permit the estimation of
large displacements. Linearization is then deferred to the numerical scheme to handle the
nonconvex energy functional.
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Figure 3.1: Gaussian presmoothing. Top Left: Frame 10 of the RubberWhale sequence
taken from the Middlebury benchmark data set [33]. Top Right: Presmoothed
image with σ = 1. Bottom Left: Presmoothed image with σ = 5. Bottom Right:
Presmoothed image with σ = 10.

3.1.1 Gray Value Constancy

Most commonly used in the data term is the gray value constancy assumption. Applying
this assumption, the brightness of objects in a scene captured by cameras is supposed to be
constant if motion occurs. Thus, our data term reads

D1 (u, v) := ( f (x + w)− f (x))2 . (3.3)

Typically, motion in images can happen for two reasons. The first and intuitive cause is that
objects are really moving. Second, due to motion of the capturing camera it only appears as
if objects are moving. Since motion - either real or apparent - can cause varying reflections,
gray value constancy can be violated in many cases. For example, shadows or shades may
arise resulting in slight changes of brightness. Moreover, time differences between captured
images can make for various illumination of the scene which also changes gray values. Thus,
we need other assumptions that are invariant under gray value changes.
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3.1 Data Term

3.1.2 Gradient Constancy

To tackle changing illumination [2] make use of the gradient constancy assumption. Instead
of comparing raw gray values, they take their spatial gradients into account now. That
results in the new data term

D2 (u, v) := |∇ f (x + w)−∇ f (x)|2 . (3.4)

This assumption provides invariance under global additive illumination changes, but since
gradients contain implicit information about the direction, invariance under rotation is lost.
Compared to the gray value constancy it is also more sensitive under noise. Invariance
always comes down to losing some kind of information, which makes such descriptors less
unique and more ambiguous instead.

3.1.3 Complete Rank Transform

Being robust under global illumination changes while at the same time obtaining maximal
amount of local image information, the complete rank transform [18] uses descriptors based
on the order of gray values to provide more accurate motion estimation. The basic principle
using this constancy assumption is to compare gray values of a neighborhood’s pixel, i.e.
count all neighbor pixels which have a lower gray value than the reference pixel (rank
transform). We call this count rank of a pixel. To compute the complete rank this transform is
applied not only to the reference pixel but also to each pixel in the neighborhood. Eventually,
the result is stored in the reference pixel’s signature sCRT = {0, . . . , κ− 1}κ, where κ denotes
the size of a neighborhood. Figure 3.2 shows a visualization of the complete rank transform
yielding the signature sCRT = (4, 5, 13, 18, 22, 2, . . . , 20, 0, 5, 12, 17, 20)> for a given pixel. The
signature is then used as constancy assumption in the data term

D3 (u, v) :=
1
κ
|g (x + w)− g (x)|2 (3.5)

with signature length κ and a vector-valued function g : Ω× [0, ∞) → {0, . . . , κ − 1}κ :=
(g1, . . . , gκ)>, that maps the input images to the signatures. The high amount of spatial
information in the neighborhood may also cause poor results in regions with rotations due
to implicit constraints on feature orientation similar to gradient constancy, but we expect
better results for translational and divergent motion because these kinds of motion influence
the orientation only slightly.
An overview of the data terms D1, D2 and D3 is given in Table 3.1.

3.1.4 Color Images

So far we discussed data terms with various constancy assumptions based on different image
descriptors, but they have one property in common: they all rely on single-channel images
(e.g. gray value images) as information source to constrain the optical flow, which limits the
estimation accuracy somewhat, since more information can be used if multiple channels
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5 15 22 24 37

4 17 18 22 38

4 19 20 25 41

2 19 22 22 33

2 15 21 23 33

4 5 13 18 22

2 7 8 13 23

2 9 11 19 24

0 9 13 13 20

0 5 12 17 20

Figure 3.2: Complete rank transform applied to a gray colored reference pixel with κ = 25.
Left: Gray values. Right: Complete rank.

are available. Nowadays, even mobile phones have the ability to capture high quality color
images. Therefore, we extend our previous data terms to accommodate multi-channel
images using the example of gray value constancy. We consider f(x, y, t) : Ω× [0, ∞)→ Rn

as multi-channel images with n different channels f 1, f 2, . . . , f n. The generalized data term
incorporating RGB color constancy then reads

D4 (u, v) :=
3

∑
c=1

( f c (x + w)− f c (x))2 . (3.6)

Gradient constancy and complete rank can be extended analogously:

D5 (u, v) :=
3

∑
c=1
|∇ f c (x + w)−∇ f c (x)|2 , (3.7)

D6 (u, v) :=
1
κ

3

∑
c=1
|gc (x + w)− gc (x)|2 . (3.8)

That way the additional constraints of each channel are combined in one data term looking
for a motion field that satisfies them jointly.

Data Term
Constancy

Assumption
Illumination

invariant
Motion Type

D1 ( f (x + w)− f (x))2 Gray Value - any

D2 |∇ f (x + w)−∇ f (x)|2 Gradient global additive
translational

divergent

D3
1
κ |g (x + w)− g (x)|2 Complete Rank

global additive
global multiplicative

translational
divergent

Table 3.1: Overview of the introduced data terms D1, D2 and D3.
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3.1.5 Normalization

By rewriting the quadratic data term, e.g. containing gray value constancy, Zimmer et al.
[28] showed that not only the distance between estimated flow u := (u, v)> and normal
flow un (see Section 1.1) is penalized as in the ideal case, but the data term is also implicitly
weighted by the squared spatial image gradient ∇ f :

D1 (u, v) =
(
∇ f>u + ft

)2

=

[
|∇ f |

(
∇ f>u
|∇ f | +

ft

|∇ f |

)]2

= |∇ f |2
[
∇ f>

|∇ f |

(
u +

ft∇ f

|∇ f |2

)]2

= |∇ f |2︸ ︷︷ ︸
implicit
weight

(
∇ f>

|∇ f | (u− un)︸ ︷︷ ︸
=:d

)2

. (3.9)

Note that we used a linearized data term to illustrate the problem. The distance d can be
interpreted as the projected difference between u and un in direction of the gradient. Due to
this implicit weighting the data term has a varying influence on the solution depending on
image regions with different gradients, e.g. larger ones caused by noise. We do not want
noise and other unreliable structures to have such an increased effect on the estimation,
hence [28] propose a normalization by multiplying the data term with a factor

θc
• :=

1

|∇?c
•|

2 + ζ2
(3.10)

with ?c
• ∈

{
f c, f c

x , f c
y , gc

k

}
, k ∈ {1, . . . , κ} and a small ζ > 0 to avoid division by 0. Using a

more generalized notation the normalized data terms incorporating color information for
the various constancy assumptions read

D7 (u, v) :=
3

∑
c=1

θc ( f c (x + w)− f c (x))2 , (3.11)

D8 (u, v) :=
3

∑
c=1

∑
∗∈{x,y}

θc
∗ ( f c
∗ (x + w)− f c

∗ (x))
2 , (3.12)

D9 (u, v) :=
1
κ

3

∑
c=1

κ

∑
k=1

θc
k (gc

k (x + w)− gc
k (x))

2 . (3.13)

The generalized notation reveals that the structure of the data terms is rather similar, which
allows straightforward extensions.
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3.1.6 Robustification

Until now we penalized deviations from our previous constancy assumptions in a quadratic
way. Considering noise and other image distortions or preservation of discontinuities, it
is of great interest to reduce the influence of such outliers on the estimation. This can be
achieved by using subquadratic penalizing functions Ψ

(
s2), e.g. the regularized L1 norm

Ψ
(
s2) :=

√
s2 + ε2 (3.14)

with a small regularization parameter ε > 0 [8] to guarantee a strictly convex and differen-
tiable penalizer after linearization of the respective constancy assumption.
In Figure 3.3 different plots of some penalizers are visualized. In addition to quadratic and
linear penalization, an example of a nonconvex function is given. Nonconvex penalizers
cause the final energy functional to have multiple local minima and thus complicate to find
a globally minimal solution. For that reason such penalizers are usually avoided. Applying
Function 3.14 to the quadratic data terms D7 (color constraints), D8 (gradient constraints)
and D9 (rank constraints) yield the new linear data terms

D10 (u, v) := Ψ
( 3

∑
c=1

θc ( f c (x + w)− f c (x))2
)

, (3.15)

D11 (u, v) := Ψ
( 3

∑
c=1

∑
∗∈{x,y}

θc
∗ ( f c
∗ (x + w)− f c

∗ (x))
2
)

, (3.16)

D12 (u, v) := Ψ
(

1
κ

3

∑
c=1

κ

∑
k=1

θc
k (gc

k (x + w)− gc
k (x))

2
)

. (3.17)

which are more robust regarding outliers. Since multiple constancy constraints, e.g. color
images, are combined and their deviations are penalized together here, we speak of joint
robustification [2]. Joint robustification makes the most sense if the constraints depend on
each other in some way. For example, many advanced techniques for optical flow estimation
combine gray value and gradient constancy in the data term [15, 28]. Since these assumptions
may hold independently, a separate robustification [20] is favored.
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y

x

y

x

y

Figure 3.3: Various penalizing functions Ψ in comparison. Left: Quadratic (Tikhonov [34]).
Center: Linear. Right: Nonconvex function.
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3.1 Data Term

Another suitable subquadratic penalizer which is frequently used is the so-called Charbonnier
penalizer [35, 36]

ΨCH
(
s2) := 2ε2

√
1 +

s2

ε2 − 2ε2

= 2ε
√

ε2 + s2 − 2ε2. (3.18)

Rearranging the equation and neglecting constant terms shows that it can be seen as an
ε-scaled version of the TV penalizer.
An overview of the introduced modifications to the example of gradient constancy is given
in Table 3.2.

3.1.7 Quantitative Results

Let us now compare our introduced constancy constraints including the various modifica-
tions by estimating the optical flow in some first experiments. To this end, Functional 3.1
serves as our basic framework in which the just presented data terms are incorporated. The
smoothness term of the functional realizes homogeneous regularization (see Section 1.1,
Equation 1.7 [14]). To visualize the resulting motion field we choose a color representation
with color indicating the direction of motion and its brightness denoting the corresponding
magnitude of the direction. As evaluation data we use Frame 10 and 11 of the RubberWhale
sequence taken from the Middlebury benchmark data set [33]. By choosing this particular
sequence the estimation has to face translational and rotational motion under changing
illumination. To make the data term robust under outliers we selected the Charbonnier
penalizer with ε = 0.00003 and for normalization we set ζ = 0.01. Furthermore, the neigh-
borhood created by the complete rank transform has size κ = 9. Computed optical flows
are presented in Figure 3.4 with corresponding parameter values shown in Table 3.3, where
we used the average angular error (AAE) and the average endpoint error (AEE) as error
metrics to determine differences between estimation and ground truth. Our modifications
were applied consecutively, i.e. the last experiment of each constancy assumption consisted
of color channels, normalization and penalization applied together to the data term.

Modified
Data Term

Modification Purpose

∑3
c=1 ∑∗∈{x,y}

(
f c
∗
(
x + w

)
− f c
∗
(
x
))2 Color Images

multiple channels to
utilize more information

∑3
c=1 ∑∗∈{x,y} θc

∗
(

f c
∗
(
x + w

)
− f c
∗
(
x
))2 Normalization

remove implicit
gradient weighting

Ψ
(

∑3
c=1 ∑∗∈{x,y} θc

∗
(

f c
∗
(
x + w

)
− f c
∗
(
x
))2
)

Robustification
reduce

influence of outliers

Table 3.2: Overview of the introduced modifications to data terms with gradient constancy.
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3 Optical Flow

Figure 3.4: Different constancy assumptions with varying data term modifications for trans-
lational and rotational motion under changing illumination in comparison. First
Row, Left to Right: Frame 10 of the RubberWhale sequence with 584× 388
pixels, color map [8] and ground truth. Second Row, Left to Right: Gray value
constancy, gradient constancy and complete rank for gray value images. Third
Row, Left to Right: Gray value constancy, gradient constancy and complete rank
applied to color channels. Fourth Row: Previous constancy assumptions on
color channels modified by normalization. Last Row: Normalized constancy
assumptions on color channels penalized by Charbonnier.
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3.1 Data Term

Constancy
Assumption

Modifications α σ AAE AEE

Gray Value

- 109 0.9 8.9231◦ 0.3165
Color Channels 137 0.9 8.4914◦ 0.3005
+ Normalization 40 0.8 9.2441◦ 0.3230
+ Robustification 0.00039 0.7 8.9770◦ 0.3137

Gradient

- 12 1.4 7.7346◦ 0.2855
Color Channels 10 1.4 7.4020◦ 0.2768
+ Normalization 62 1.5 7.2790◦ 0.2498
+ Robustification 0.0005 1.3 6.9274◦ 0.2473

Complete Rank

- 0.5 1.2 7.5092◦ 0.2799
Color Channels 4 1.2 7.3387◦ 0.2680
+ Normalization 210 1.2 7.0665◦ 0.2485
+ Robustification 0.00075 1 7.0080◦ 0.2571

Table 3.3: Different constancy assumptions with varying data term modifications for transla-
tional and rotational motion under changing illumination in comparison. In this
example the parameters α and σ were optimized with respect to the AAE.

Observations. Initially we can see that the gradient constancy and the complete rank trans-
form provide better results than the gray value constancy even without any additional data
term modifications. Since our frame pair contains illumination changes, assumptions based
on ordinary gray values are not sufficient to provide good estimations and hence perform
worse than constraints including neighborhood information (Figure 3.5, red rectangles).
With additional color information results of all three methods can be improved slightly due
to the existence of more information which may be helpful in some cases, e.g. distinguish
between objects of different color but similar gray values.
When it comes to normalization the AAEs in Table 3.3 reveal some interesting insights. If
applied in case of gray value constancy the error even increases. This may happen for one
reason: During normalization the parameter ζ acts as hard boundary specifying up to which
magnitude the implicit gradient weight still has an impact. Using gray value constancy the
chosen value might be too small since even smallest fluctuations in the image influence the
estimation. In fact, experiments showed a better result (AAE = 8.3353◦) if ζ was increased to
3.299 and α = 7.160. Nonetheless, we will keep ζ fixed in further experiments.
The impact on the estimation with and without normalization of the gray value constraint
is shown in Figure 3.5. We can observe that the difference, especially in the yellow rectan-
gle, is slightly less without normalization. In case of the other two remaining constraints
eliminating the implicit weighting with fixed ζ proves to be useful. We can also see that
robustification improves accuracy of all approaches. As expected furthermore, performance
of gradient constancy and complete rank degrades in regions with rotational motion (green
rectangles). The varying magnitudes of α are a result of different value ranges caused by the
different assumptions and modifications, especially the ε-scaled robustification.
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3 Optical Flow

Figure 3.5: Estimation quality of various constancy assumptions visualized as the difference
to the ground truth. The brighter the pixel, the higher the difference at this
point. Top Left: Best result achieved by gray value constancy. Top Right: Result
achieved by gray value constancy after normalization. Bottom Left: Best result
achieved by gradient constancy. Bottom Right: Best result achieved by complete
rank transform.

3.2 Smoothness Term

In the previous section we used homogeneous regularization in form of

R1 (∇u,∇v) := |∇u|2 + |∇v|2 (3.19)

to evaluate our proposed data terms. As a reminder, the smoothness term plays an important
role in variational motion estimation since it assumes smooth flow fields and helps to over-
come the aperture problem by adapting the local solution to the motion of the neighborhood.
With homogeneous regularization the flow is treated equally at each point regardless of
image structure. Different ideas how to regularize are covered in detail in the upcoming
chapters, but nonetheless they share some common properties which are introduced now.
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3.2 Smoothness Term

3.2.1 Generic Form and Relation to Diffusion

To come up with a generic form we have to take a first look on the Euler-Lagrange equations
presented in Section 2.4. For two minimizing functions u and v they are given by

0 = Fu −
∂

∂x
Fux −

∂

∂y
Fuy

= Fu − div
(

Fux

Fuy

)
, (3.20)

0 = Fv −
∂

∂x
Fvx −

∂

∂y
Fvy

= Fv − div
(

Fvx

Fvy

)
. (3.21)

The smoothness term results in a divergence expression, that can be seen as a diffusion
process [35, 37]. A generic form of this expression for variational motion estimation reads

div (D · ∇u) , (3.22)
div (D · ∇v) . (3.23)

In this context D represents the diffusion tensor, which is a symmetric and positive semidefi-
nite 2× 2 matrix. It is used to steer the strength and direction of the diffusion process. For
homogeneous regularization the diffusion tensor is the identity matrix

DH := I =
(

1 0
0 1

)
(3.24)

yielding the divergence

div (DH · ∇u) = div
(

ux
uy

)
= uxx + uyy

= 4u, (3.25)

div (DH · ∇v) = div
(

vx
vy

)
= vxx + vyy

= 4v. (3.26)

3.2.2 Robustification

We already used subquadratic functions Ψ(s2) in data terms to penalize deviations from
model assumptions in a specific way. Similar to constancy constraints such robust functions
can be applied to the smoothness term as well to allow flow discontinuities to occur. Pre-
serving such discontinuities is desirable since they usually coincide with object boundaries
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3 Optical Flow

leading to a more accurate estimation with piecewise smooth flow fields. A modified isotropic
smoothness term realizing flow-driven diffusion reads

R2 (∇u,∇v) := Ψ
(
|∇u|2 + |∇v|2

)
(3.27)

with the diffusion tensor

D1,I := Ψ′
(
|∇u|2 + |∇v|2

)
· I

=

Ψ′
(
|∇u|2 + |∇v|2

)
0

0 Ψ′
(
|∇u|2 + |∇v|2

) . (3.28)

With this modification the diffusion tensor now respects discontinuities in the evolving flow
and prevents diffusion at locations where discontinuities (large flow gradients) are present.
To do so a suitable function Ψ must be selected. One possible choice for the penalizer Ψ
might be the regularized L1 norm again

ΨTV
(
s2) :=

√
s2 + ε2 (3.29)

with its derivative
Ψ′TV

(
s2) = 1

2
√

s2 + ε2
(3.30)

inducing the TV diffusivity [21]. But there are more appropriate penalizers available, which
we introduce in the following. Also note that due to the penalizers flow-driven regularizers
become nonlinear in u and v since they directly influence the corresponding diffusion
tensors. We cover that later during minimization.

Charbonnier. A more appropriate penalizer was already mentioned in context of robust
data terms (see Subsection 3.1.6). It is the Charbonnier penalizer, a positive and subquadratic
function

ΨCH
(
s2) := 2ε2

√
1 +

s2

ε2 − 2ε2 (3.31)

with a positive and decreasing diffusivity function

Ψ′CH
(
s2) = 1√

1 + s2

ε2

. (3.32)

Now ε serves as a contrast parameter [8]. To examine the behavior of the diffusivity at
image edges we can make use of the flux function

ΦCH (s) := Ψ′CH
(
s2) · s (3.33)

which equilibrates differences of the flow. We restrict our equation to the 1D case since the
behavior also applies to higher dimensional cases [35].

36



3.2 Smoothness Term

One drawback of the TV diffusivity is its restriction by ε for s2 → 0. That may finally result
in very high and varying diffusion at some locations, which degrades estimation quality.
Using the Charbonnier penalizer the strength of the diffusion process is always limited to 1
for s2 → 0 giving a very consistent diffusion. Furthermore, since the flux ΦCH does not have
a global maximum, the only behavior at edges is their preservation. Figure 3.6 shows the
graphs for ΨCH, Ψ′CH and ΦCH.
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y

x

y

x

y

Figure 3.6: Overview of the various Charbonnier functions. Left: Charbonnier penalizer
ΨCH. Center: Charbonnier diffusivity Ψ′CH. Right: Charbonnier flux ΦCH.

Perona-Malik. Another regularizer of choice realizes the so-called Perona-Malik diffusivity
[38]. The penalizing function reads

ΨPM
(
s2) := ε2 ln

(
1 +

s2

ε2

)
(3.34)

and the diffusivity is given by

Ψ′PM
(
s2) = 1

1 + s2

ε2

. (3.35)

The flux is almost the same as before - it only contains Ψ′PM now:

ΦPM (s) := Ψ′PM
(
s2) · s. (3.36)

Similar to the Charbonnier penalizer the diffusion process here is once more restricted
to strength 1. But the diffusion behavior at image edges differs somewhat compared to
Charbonnier. As we can see in Figure 3.7 the flux function now has global maximum
determined by the contrast parameter ε. In case of |s| < ε we have Φ′ (s) > 0 and thus a
forward diffusion process. In such regions a usual smoothing behavior occurs. But in regions
with |s| > ε a backward diffusion behavior sets in since Φ′ (s) < 0. This corresponds to a
special smoothing effect that can even enhance edges or other image features [35]. The
contrast parameter ε balances between these two types of diffusion. Later in this thesis we
see application for both the Charbonnier and the Perona-Malik penalizer.

With our data terms and their modifications introduced and the first basic insights into
regularizers gained, it remains open how to find the minimizing functions u and v having a
concrete discretization. We cover this question in the following sections.
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Figure 3.7: Overview of the various Perona-Malik functions. Left: Perona-Malik penalizer
ΨPM. Center: Perona-Malik diffusivity Ψ′PM. Right: Perona-Malik flux ΦPM.

3.3 Minimization

A minimizer of an energy functional must fulfill some necessary conditions as given by the
Euler-Lagrange equations introduced in Section 2.4. We recall that for two minimizers u
and v and the energy functional

E (u, v) =
∫

Ω
F
(
x, y, u, ux, uy, v, vx, vy

)
dxdy (3.37)

these conditions require the first variations to vanish (see Equation 2.27 and 2.28). Hence, we
need the partial derivatives Fu, Fv, Fux , Fvx , Fuy and Fvy . As we saw in Subsection 3.1.6 the final
data terms with all extension are rather similar in structure. The generalized notation allows
us to work our way through the minimization using the example of gradient constancy.
Euler-Lagrange equations containing color constancy or complete rank constraints then only
need some small adjustments. Let us now discuss the partial derivatives with respect to
gradient constancy.

Gradient Constancy. Using a robust energy functional with normalized gradient constancy
on color channels the partial derivatives yield

Fu = 2 ·Ψ′
( 3

∑
c=1

∑
∗∈{x,y}

θc
∗ ( f c
∗ (x + w)− f c

∗ (x))
2
)

·
3

∑
c=1

∑
∗∈{x,y}

θc
∗ ( f c
∗ (x + w)− f c

∗ (x)) f c
∗x (x + w) ,

Fux = α · 2 ·Ψ′
(
|∇u|2 + |∇v|2

)
· ux,

Fuy = α · 2 ·Ψ′
(
|∇u|2 + |∇v|2

)
· uy,
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3.3 Minimization

Fv = 2 ·Ψ′
( 3

∑
c=1

∑
∗∈{x,y}

θc
∗ ( f c
∗ (x + w)− f c

∗ (x))
2
)

·
3

∑
c=1

∑
∗∈{x,y}

θc
∗ ( f c
∗ (x + w)− f c

∗ (x)) f c
∗y (x + w) ,

Fvx = α · 2 ·Ψ′
(
|∇u|2 + |∇v|2

)
· vx,

Fvy = α · 2 ·Ψ′
(
|∇u|2 + |∇v|2

)
· vy. (3.38)

Note that we employ ∇ = ∇2 for simplification. Using the abbreviations of [2, 15]

fz := f (x + w)− f (x) , f∗z := f∗ (x + w)− f∗ (x) , f∗∗ := f∗∗ (x + w) (3.39)

where ∗ ∈ {x, y} and ∗∗ ∈ {x, y, xx, xy, yx, yy}, the compact Euler-Lagrange equations read

0 = Ψ′
( 3

∑
c=1

∑
∗∈{x,y}

θc
∗ ( f c
∗z)

2
)
·

3

∑
c=1

∑
∗∈{x,y}

θc
∗ ( f c
∗z) f c

∗x

− α · div (D1,I · ∇u) , (3.40)

0 = Ψ′
( 3

∑
c=1

∑
∗∈{x,y}

θc
∗ ( f c
∗z)

2
)
·

3

∑
c=1

∑
∗∈{x,y}

θc
∗ ( f c
∗z) f c

∗y

− α · div (D1,I · ∇v) (3.41)

with the Neumann boundary conditions

0 = n>D1,I · ∇u, 0 = n>D1,I · ∇v. (3.42)

The corresponding nonlinear diffusion tensor D1,I reads the same as in Equation 3.28.

Other Constancy Constraints. Replacing gradient with color constancy Fu and Fv change:

Fu = 2 ·Ψ′
( 3

∑
c=1

θc ( f c (x + w)− f c (x))2
)
·

3

∑
c=1

θc ( f c (x + w)− f c (x)) f c
x (x + w) ,

Fv = 2 ·Ψ′
( 3

∑
c=1

θc ( f c (x + w)− f c (x))2
)
·

3

∑
c=1

θc ( f c (x + w)− f c (x)) f c
y (x + w) . (3.43)

Thus, the Euler-Lagrange equations in compact notation for color constancy are given by

0 = Ψ′
( 3

∑
c=1

θc ( f c
z )

2
)
·

3

∑
c=1

θc ( f c
z ) f c

x

− α · div (D1,I · ∇u) , (3.44)

0 = Ψ′
( 3

∑
c=1

θc ( f c
z )

2
)
·

3

∑
c=1

θc ( f c
z ) f c

y

− α · div (D1,I · ∇v) (3.45)

with the same diffusion tensor and boundary conditions as before. Compared to the previous
Euler-Lagrange equations incorporating gradient constancy only the inner sum vanishes.
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To perform the complete rank transform the Euler-Lagrange equations can be extended
similarly. In that case the averaging factor 1

κ and the rank function g (to map from the image
to the rank signatures) must be considered. Again, only Fu and Fv change:

Fu = 2 · 1
κ
·Ψ′
( 3

∑
c=1

κ

∑
k=1

θc
k (gc

k (x + w)− gc
k (x))

2
)

·
3

∑
c=1

κ

∑
k=1

θc
k (gc

k (x + w)− gc
k (x)) gc

kx (x + w) ,

Fv = 2 · 1
κ
·Ψ′
( 3

∑
c=1

κ

∑
k=1

θc
k (gc

k (x + w)− gc
k (x))

2
)

·
3

∑
c=1

κ

∑
k=1

θc
k (gc

k (x + w)− gc
k (x)) gc

ky (x + w) . (3.46)

The abbreviations are extended to include the ranks gk:

gkz := gk (x + w)− gk (x) , gk∗ := gk∗ (x + w) (3.47)

where ∗ ∈ {x, y}. The compact Euler-Lagrange equations containing complete rank con-
straints and all of the presented modifications are then given by

0 =
1
κ
·Ψ′
(

1
κ
·

3

∑
c=1

κ

∑
k=1

θc
k (gc

kz)
2
)
·

3

∑
c=1

κ

∑
k=1

θc
k (gc

kz) gc
kx

− α · div (D1,I · ∇u) , (3.48)

0 =
1
κ
·Ψ′
(

1
κ
·

3

∑
c=1

κ

∑
k=1

θc
k (gc

kz)
2
)
·

3

∑
c=1

κ

∑
k=1

θc
k (gc

kz) gc
ky

− α · div (D1,I · ∇v) . (3.49)

Throughout this chapter we used non-linearized data terms to model large displacements
and postponed the linearization up to now. This results in the current energy functional
to be nonconvex. This property is not desired, since many possible solutions of the Euler-
Lagrange equations in terms of multiple local minimizer may exist. Besides, the subquadratic
penalizer Ψ is another reason for nonlinear data and smoothness terms because of the
nonlinear derivative Ψ′ no matter what particular penalizer (Total Variation, Charbonnier
or Perona-Malik) is chosen. Hence, we need a suitable minimization strategy that covers
the nonconvex optimization problem with its nonlinear system of equations. This leads to
the incremental coarse-to-fine nested fixed point iteration strategy proposed by Brox et al.
[2]. Their strategy comprises three main steps: (1) Fixed point iteration. (2) Incremental
computation. (3) Coarse-to-fine strategy. While their strategy is introduced we continue to
use gradient constancy in the data term.
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3.3 Minimization

3.3.1 Fixed Point Iteration

The first step in the attempt to minimize the nonconvex functional with nonlinear equations
is the introduction of a fixed point iteration technique on the argument w, which the
image functions implicitly depend on. Let k ∈ N0 be the index of the iteration and
wk := (uk, vk, 1)> with the initialization w0 := (0, 0, 1)> at the first iteration step. In
addition, f k

? are modified abbreviations of Equation 3.39 to contain the index k in their
argument wk. The same applies to the diffusion tensor Dk

1,I. To compute wk+1 at iteration k
the system of equations

0 = Ψ′
( 3

∑
c=1

∑
∗∈{x,y}

θc
∗

(
f c,k+1
∗z

)2
)
·

3

∑
c=1

∑
∗∈{x,y}

θc
∗

(
f c,k+1
∗z

)
f c,k
∗x

− α · div
(

Dk+1
1,I · ∇uk+1

)
, (3.50)

0 = Ψ′
( 3

∑
c=1

∑
∗∈{x,y}

θc
∗

(
f c,k+1
∗z

)2
)
·

3

∑
c=1

∑
∗∈{x,y}

θc
∗

(
f c,k+1
∗z

)
f c,k
∗y

− α · div
(

Dk+1
1,I · ∇vk+1

)
(3.51)

in case of gradient constancy needs to be solved. Note that a semi-implicit scheme (k and
k + 1) in the data term and a fully implicit scheme (only k + 1) in the smoothness term is
employed to achieve faster convergence of a solution and higher stability [2].

3.3.2 Incremental Computation

With the previous introduction of a fixed point iteration we have to solve a system of
equations in each iteration that is still nonlinear however. Nevertheless, the iteration strategy
allows us to perform an incremental computation to get rid of the nonlinearity caused by
f k+1
z and f k+1

∗z . For this purpose, we split the unknown flows uk+1 and vk+1 in the already
known motion uk and vk from the previous iteration and the unknown motion increments
duk and dvk from the current iteration:

uk+1 = uk + duk, (3.52)

vk+1 = vk + dvk. (3.53)

Thereupon, we perform a first order Taylor expansion in the data term with respect to duk

and dvk. Since we assume the motion increments to be small the linearization

f∗
(

x + wk+1
)
≈ f∗

(
x + uk, y + vk, t + 1

)
+ f∗x

(
x + uk, y + vk, t + 1

)
duk + f∗y

(
x + uk, y + vk, t + 1

)
dvk

= f∗
(

x + wk
)
+ f∗x

(
x + wk

)
duk + f∗y

(
x + wk

)
dvk (3.54)

with f∗ ∈ { f , fx, fy, gk}, k ∈ {1, . . . , κ} is a valid one.
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Plugging it into our modified abbreviations yields

f k+1
∗z ≈ f k

∗z + f k
∗xduk + f k

∗ydvk. (3.55)

Equation 3.50 can then be written as

0 = Ψ′
( 3

∑
c=1

∑
∗∈{x,y}

θc
∗

(
f c,k
∗z + f c,k

∗x duk + f c,k
∗y dvk

)2
)

·
3

∑
c=1

∑
∗∈{x,y}

θc
∗

(
f c,k
∗z + f c,k

∗x duk + f c,k
∗y dvk

)
f c,k
∗x

− α · div
(

Dk
1,I · ∇

(
uk + duk

))
(3.56)

with the 2× 2 diffusion tensor

Dk
1,I := Ψ′

(∣∣∣∇ (uk + duk
)∣∣∣2 + ∣∣∣∇ (vk + dvk

)∣∣∣2) · I. (3.57)

Equation 3.51 is set up analogously.

To keep our notation even more simple we introduce the motion tensor notation from Bruhn
and Weickert [20] at this point. In the following dwk := (duk, dvk, 1)> denotes the motion
increment vector and Jk

∗(x + wk) describes a symmetric 3× 3 motion tensor, which can be
seen as a framework for all linearized constancy assumptions. The tensor is defined by

Jk
∗ := ∇3 f∗

(
x + wk

)
∇3 f∗

(
x + wk

)>
(3.58)

with f∗ ∈ { f , fx, fy, gk}, k ∈ {1, . . . , κ} and the spatiotemporal gradient ∇3. This tensor is
very close to the matrix f k

∗∇( f k
∗∇)

>, where f k
∗∇ := ( f k

∗x, f k
∗y, f k

∗z)
>, since the difference f k

∗z is
an approximation of the temporal derivative f k

∗t.
Furthermore, we can normalize the motion tensor:

Jk
∗ := θ∗ · Jk

∗ = θ∗ · ∇3 f∗
(

x + wk
)
∇3 f∗

(
x + wk

)>
. (3.59)

By employing the motion tensor notation and setting Jk
G := ∑∗∈{x,y} Jk

∗ as motion tensor for
gradient constancy, we are able to rewrite Equation 3.56

0 = Ψ′
((

dwk
)>
·

3

∑
c=1

Jc,k
G ·

(
dwk

))
·

3

∑
c=1

(
Jc,k

G,11duk + Jc,k
G,12dvk + Jc,k

G,13

)
− α · div

(
Dk

1,I · ∇
(

uk + duk
))

(3.60)

being a partly linearized fixed point iteration with respect to dwk now, which allows to
compute a unique solution of a convex problem in each step provided that Ψ′ is convex.
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Due to the derivatives of the penalizer functions Ψ′ in the data and smoothness term the
newly gained systems of equations remain to be nonlinear in the increments duk and dvk,
but not in wk anymore. Similar as before, a second (inner) fixed point iteration can be
employed to overcome the remaining non-linearity. To this end, we introduce a second
iteration variable l, that denotes a certain iteration step and enables us to evaluate Ψ′ with
values from the previous iteration step. Let dwk,l := (duk,l , dvk,l , 1)> with the initialization
dwk,0 := (0, 0, 1)> denote the motion increments at a certain iteration l. We also modify the
diffusion tensor Dk,l

1,I to use duk,l and dvk,l .

The finally linear system of equations that determines duk,l and dvk,l is then given by

0 = Ψ′
((

dwk,l
)>
·

3

∑
c=1

Jc,k
G ·

(
dwk,l

))
·

3

∑
c=1

(
Jc,k

G,11duk,l+1 + Jc,k
G,12dvk,l+1 + Jc,k

G,13

)
− α · div

(
Dk,l

1,I · ∇
(

uk + duk,l+1
))

, (3.61)

0 = Ψ′
((

dwk,l
)>
·

3

∑
c=1

Jc,k
G ·

(
dwk,l

))
·

3

∑
c=1

(
Jc,k

G,12duk,l+1 + Jc,k
G,22dvk,l+1 + Jc,k

G,23

)
− α · div

(
Dk,l

1,I · ∇
(

vk + dvk,l+1
))

. (3.62)

If we want to employ color constancy or rank constraints now, only the motion tensors
of the system above need to be changed. In case of color constancy the motion tensor is
given by JC := J, whereas JR := ∑κ

k=1 Jk incorporates the linearized complete rank constancy
assumption.

After each outer iteration step k we have to evaluate f∗(x + wk+1) in the motion tensor with
the new flow again. We can achieve this by compensating the second image of the image
pair by the new estimation of the flow. The motion compensation step is also known as
warping an image. Because the motion increments are computed with subpixel precision, an
interpolation such as bilinear interpolation is hereby necessary.

3.3.3 Coarse-To-Fine Strategy

Since the underlying energy functional E(u, v) is nonconvex, the outer fixed point iteration
may get trapped in local minima, which are possibly very close to the initialization of the
solution. The hierarchical coarse-to-fine strategy with multiple level of different image scales
is chosen to alleviate this problem. This approach bases upon building image pyramids with
a refinement factor η ∈ (0, 1) that specifies how much an image is successively downsampled
from a fine to a next coarser level. We then embed our outer fixed point iteration into the
image pyramid. By looking at our latest system of equations (Equation 3.61 and 3.62) it
becomes evident that image data f is only used in the motion tensor. The modified tensor
notation

Jk
∗ := θk

∗ · Jk
∗ = θk

∗ · ∇3 f k
∗

(
x + wk

)
∇3 f k

∗

(
x + wk

)>
(3.63)

directly connects a downsampled image f k
∗ from hierarchy level k to a corresponding

iteration step k, where θk also uses different image scales. In other words: Each step k of
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3 Optical Flow

the outer iteration is performed with the image data taken from the pyramid at level k
beginning at the coarsest level k = 0. After the inner iteration of a certain outer step has
completed the resulting flow is upsampled to serve as initialization of the next finer level.

What is left now is a suitable discretization and the selection of an appropriate method to
solve the series of linear systems of equations. These points are covered in the next sections.

3.4 Discretization

To solve the linear equations derived in Section 3.3 numerically, we need to discretize its
various components. Therefore, the notation of function values at discretized locations
introduced in Section 2.1 is employed. Since we compute the unknown flows u and v as
solutions on rectangular images, the minimizing functions can be regarded on rectangular
grids, i.e.

[u]i,j = ui,j = u
(
[(x, y)]i,j

)
,

[v]i,j = vi,j = v
(
[(x, y)]i,j

)
(3.64)

with the same step sizes hk := (hk
x, hk

y)
>. Discretizations are necessary of the motion wk

i,j

and its increments dwk,l
i,j , the motion tensor (entries) Jk

i,j with the normalization factor θk
i,j,

the data term penalizer [(Ψ′D)
k,l ]i,j and the diffusion tensor [Dk,l

1,I]i,j. The therein contained
derivatives are thereby approximated using finite difference schemes (see Section 2.3).

Derivatives related to the data term appear in the motion tensor entries

[Jk
11]i,j = [ f k

x ]i,j · [ f k
x ]i,j, [Jk

12]i,j = [ f k
x ]i,j · [ f k

y ]i,j, [Jk
13]i,j = [ f k

x ]i,j · [ f k
t ]i,j,

[Jk
22]i,j = [ f k

y ]i,j · [ f k
y ]i,j, [Jk

23]i,j = [ f k
y ]i,j · [ f k

t ]i,j, [Jk
33]i,j = [ f k

t ]i,j · [ f k
t ]i,j (3.65)

and the normalization factor (see Equation 3.10). Since the motion tensor is symmetric,
we have to compute only six entries effectively. Please note that below the time index t
combined with i and j is used to distinguish between the first or the second images of two
consecutive images. For derivatives with respect to x and y we use central differences of
fourth order

[ f k
x ]i,j ≈

1
12hk

x

(
− f k

i+2,j,t + 8 · f k
i+1,j,t − 8 · f k

i−1,j,t + f k
i−2,j,t

)
, (3.66)

[ f k
y ]i,j ≈

1
12hk

y

(
− f k

i,j+2,t + 8 · f k
i,j+1,t − 8 · f k

i,j−1,t + f k
i,j−2,t

)
(3.67)

and forward differences to differentiate with respect to t (ht is usually set to 1)

[ f k
t ]i,j ≈

f k
i,j,t+1 − f k

i,j,t

ht
. (3.68)
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3.4 Discretization

The remaining derivatives are only contained in the smoothness term. This time we employ
nested central differences following [39] to approximate them using the abbreviation

[(Ψ′S)
k,l ]i,j := Ψ′S

(
[(uk,l + duk,l)x]

2
i,j + [(uk,l + duk,l)y]

2
i,j

+ [(vk,l + dvk,l)x]
2
i,j + [(vk,l + dvk,l)y]

2
i,j

)
(3.69)

for the penalizer in the diffusion tensor [Dk,l
1,I]i,j. The derivation is given by

− α · div
(

Dk,l
1,I · ∇

(
uk + duk,l+1

))
≈ − α · ∑

d∈{x,y}
∑

(ĩ, j̃)∈Nd(i,j)

[(Ψ′S)
k,l ]ĩ, j̃ + [(Ψ′S)

k,l ]i,j

2 ·
(
hk

d

)2 ·
(

uk,l
ĩ, j̃
+ duk,l+1

ĩ, j̃
− uk,l

i,j − duk,l+1
i,j

)
, (3.70)

− α · div
(

Dk,l
1,I · ∇

(
vk + dvk,l+1

))
≈ − α · ∑

d∈{x,y}
∑

(ĩ, j̃)∈Nd(i,j)

[(Ψ′S)
k,l ]ĩ, j̃ + [(Ψ′S)

k,l ]i,j

2 ·
(
hk

d

)2 ·
(

vk,l
ĩ, j̃
+ dvk,l+1

ĩ, j̃
− vk,l

i,j − dvk,l+1
i,j

)
(3.71)

where Nd (i, j) denotes certain neighbor pixels around a center (i, j) in direction d. Due
to the nested approach we have the neighbors (i + 1, j) and (i− 1, j) along the x-axis and
(i, j + 1) and (i, j− 1) along the y-axis in this particular case.

With all the discrete values at a pixel (i, j) we are by now able to address the problem of
solving the discrete system of linear equations

0 = [(Ψ′D ?)
k,l ]i,j ·

3

∑
c=1

(
[Jc,k

?,11]i,jduk,l+1
i,j + [Jc,k

?,12]i,jdvk,l+1
i,j + [Jc,k

?,13]i,j
)

− α · ∑
d∈{x,y}

∑
(ĩ, j̃)∈Nd(i,j)

[(Ψ′S)
k,l ]ĩ, j̃ + [(Ψ′S)

k,l ]i,j

2 ·
(
hk

d

)2 ·
(

uk,l
ĩ, j̃
+ duk,l+1

ĩ, j̃
− uk,l

i,j − duk,l+1
i,j

)
, (3.72)

0 = [(Ψ′D ?)
k,l ]i,j ·

3

∑
c=1

(
[Jc,k

?,12]i,jduk,l+1
i,j + [Jc,k

?,22]i,jdvk,l+1
i,j + [Jc,k

?,23]i,j
)

− α · ∑
d∈{x,y}

∑
(ĩ, j̃)∈Nd(i,j)

[(Ψ′S)
k,l ]ĩ, j̃ + [(Ψ′S)

k,l ]i,j

2 ·
(
hk

d

)2 ·
(

vk,l
ĩ, j̃
+ dvk,l+1

ĩ, j̃
− vk,l

i,j − dvk,l+1
i,j

)
(3.73)

for the entire image domain, where ? ∈ {C, G, R} to differentiate between the various
constancy assumptions and

[(Ψ′D ?)
k,l ]i,j := Ψ′

((
dwk,l

i,j

)>
·

3

∑
c=1

[Jc,k
? ]i,j ·

(
dwk,l

i,j

))
. (3.74)
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3.5 Solving the System of Equations

The previous linear system of equations 3.72 and 3.73 has the form Ax = b with x := (u, v)>

having the unknown flow fields stacked on each other and a sparse, yet large matrix A.
Since A grows with increasing input image size and today’s cameras already provide
high resolution images, direct methods, e.g. the Gauss-Elimination method, are not efficient
enough to compute the numerical solution of the system. Methods that are more appropriate
for such systems rely on iterative computation. Similar as in case of the fixed point iteration
strategy in Section 3.3 they successively approximate the solution x. One of such iterative
methods is the so-called Gauss-Seidel method. It decomposes the matrix A into several parts,
where one part should be a close approximation of A and its inverse is used together with
the remaining parts during computation. To speed up the relatively slow converging process
of the Gauss-Seidel method we use a more sophisticated method that modifies Gauss-Seidel
by pointwise extrapolating its result per iteration step m. This technique is the successive
overrelaxation method (SOR) [40]. A relaxation factor ω ∈ [0, 2) determines the strength of the
extrapolation. If ω = 1, we have Gauss-Seidel again. Inserting an additional third iteration
within the second iteration l the corresponding iteration step for u and v is given by

duk,l+1,m+1
i,j = (1−ω) · duk,l+1,m

i,j + ω ·

− [(Ψ′D ?)
k,l ]i,j ·

3

∑
c=1

(
[Jc,k

?,12]i,jdvk,l+1,m
i,j + [Jc,k

?,13]i,j
)

+ α · ∑
d∈{x,y}

∑
(ĩ, j̃)∈N−d (i,j)

Ψ̃k,l
ĩ, j̃,i,j,d

·
(

uk,l
ĩ, j̃
+ duk,l+1,m+1

ĩ, j̃
− uk,l

i,j

)

+ α · ∑
d∈{x,y}

∑
(ĩ, j̃)∈N+

d (i,j)

Ψ̃k,l
ĩ, j̃,i,j,d

·
(

uk,l
ĩ, j̃
+ duk,l+1,m

ĩ, j̃
− uk,l

i,j

)
·

[(Ψ′D ?)
k,l ]i,j ·

3

∑
c=1

(
[Jc,k

?,11]i,j
)
+ α · ∑

d∈{x,y}
∑

(ĩ, j̃)∈Nd(i,j)

Ψ̃k,l
ĩ, j̃,i,j,d

−1

, (3.75)

dvk,l+1,m+1
i,j = (1−ω) · dvk,l+1,m

i,j + ω ·

− [(Ψ′D ?)
k,l ]i,j ·

3

∑
c=1

(
[Jc,k

?,12]i,jduk,l+1,m+1
i,j + [Jc,k

?,23]i,j
)

+ α · ∑
d∈{x,y}

∑
(ĩ, j̃)∈N−d (i,j)

Ψ̃k,l
ĩ, j̃,i,j,d

·
(

vk,l
ĩ, j̃
+ dvk,l+1,m+1

ĩ, j̃
− vk,l

i,j

)

+ α · ∑
d∈{x,y}

∑
(ĩ, j̃)∈N+

d (i,j)

Ψ̃k,l
ĩ, j̃,i,j,d

·
(

vk,l
ĩ, j̃
+ dvk,l+1,m

ĩ, j̃
− vk,l

i,j

)
·

[(Ψ′D ?)
k,l ]i,j ·

3

∑
c=1

(
[Jc,k

?,22]i,j
)
+ α · ∑

d∈{x,y}
∑

(ĩ, j̃)∈Nd(i,j)

Ψ̃k,l
ĩ, j̃,i,j,d

−1

(3.76)

with duk,l+1,0
i,j = dvk,l+1,0

i,j := 0 as initialization.
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3.5 Solving the System of Equations

We use the abbreviation

Ψ̃k,l
ĩ, j̃,i,j,d

:=
[(Ψ′S)

k,l ]ĩ, j̃ + [(Ψ′S)
k,l ]i,j

2 ·
(
hk

d

)2 (3.77)

to make the equations more compact. Besides, there are two new sets of neighbor pixels:
N−d (i, j) denotes neighbor pixels around a center (i, j) in direction d that were already
computed in the current iteration step m and N+

d (i, j) denotes neighbor pixels around a
center (i, j) in direction d that are yet to be computed in the current iteration step m.
Since optical flow computation and optimization can take a long time during evaluation,
we decrease the amount of computation time using a modified variant of the SOR method,
where the pixels are traversed in a different order. This allows to perform a more efficient
parallelization later. To implement parallel processing we execute multiple threads (instruc-
tions blocks) simultaneously on the one hand, and employ vectorization in terms of the
SIMD (Single Instruction, Multiple Data) paradigm on the other hand. Using vectorization
we can apply the same operation to multiple pixel data at once (data parallelism) instead of
calculating values for each pixel separately.

Various aspects of variational optical flow computation have been introduced in this chapter.
We discussed different constancy assumptions, several modifications to the data term and
their impact on the accuracy of estimation, had a brief introduction to the smoothness term
and its relation to diffusion, covered a suitable minimization strategy to handle a nonlinear
nonconvex optimization problem and eventually presented how to solve the discrete linear
system of equations stemming from the Euler-Lagrange equations. With all this broad new
knowledge we will focus on different first and second regularizers and their properties
entirely in the next chapter.
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4 Regularizers in Detail

In the previous chapter we set the foundation for our taxonomy to evaluate variational
optical flow computation with various data terms and regularizers of different order and
different concept. In particular, varying constancy assumptions and techniques to estimate
the motion fields have already been covered. Hence, we discuss some possible changes to
the smoothness term in this chapter to further improve estimation accuracy.

While each of the following models contains a new idea, they all are available in an isotropic
and an anisotropic setting. By applying a subquadratic penalizer to the smoothness term as
introduced in Subsection 3.2.2 we already showed how to modify a homogeneous regularizer
to adapt to flow discontinuities and thus achieve location-dependent smoothing (flow-
driven isotropic diffusion). In this case, the diffusion process is equal in all directions, but
inhibited at locations with large flow gradients to preserve the discontinuities. However, the
resulting flow edges appear to be blurry and therefore not well localized. To obtain sharper
flow edges one can steer the diffusion process by incorporating directional information
gained from local image structures (image-driven anisotropic diffusion), i.e. enforce smoothing
along image edges and reduce it across them. Since image-driven approaches suffer from
oversegmentation problems in heavily textured areas (image edges do not always coincide
with object boundaries, but flow edges usually do), combining both methods leads to sharp
flow edges without oversegmentation in the optimal case.

Directional Information. A first attempt of joint image- and flow-driven regularization
combining directional information and flow magnitude was performed by Sun et al. [41].
They use the structure tensor [29]

Jρ := Kρ ∗
(
∇2 f∇2 f>

)
(4.1)

to extract the directional information in form of its eigenvectors. The standard deviation
ρ and the convolution operator ∗ denote a convolution with a Gaussian Kρ to integrate
directional information of a certain neighborhood. This approach allows to identify image
structures such as corners or edges. Since Jρ is a symmetric positive semidefinite 2× 2 matrix
with corresponding eigenvalues µ1 ≥ µ2 ≥ 0, its eigenvectors e1 and e2 are orthonormal to
each other. The larger eigenvalue µ1 corresponds to e1 that points across image edges and
e2 points along them.

The structure tensor in Equation 4.1 only makes use of image brightness making its eigen-
vector directions inconsistent with more advanced data terms. Thus, Zimmer et al. [28]
suggest to use the eigenvectors r1 and r2 extracted from a modified variant of the motion
tensor instead, that can be considered as a generalized structure tensor. In contrast to the
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4 Regularizers in Detail

normalized motion tensor J, the so-called regularization tensor Rρ employs spatial gradients
∇2 due to spatial regularization and Gaussian convolution to integrate directional informa-
tion. Setting up n constraints on image features ?i the regularization tensor in our case is
given by

Rρ :=
3

∑
c=1

Kρ ∗
(

n

∑
i=1

θc
i

(
∇2 ?

c
i ∇2?

c>
i

))
. (4.2)

For example, the regularization tensor for gradient constancy reads

RC,ρ =
3

∑
c=1

Kρ ∗
(

θc
x

(
∇2 f c

x∇2 f c>
x

)
+ θc

y

(
∇2 f c

y∇2 f c>
y

))
. (4.3)

Since we are only interested in directional information from the first frame, only this frame
is employed to compute the central differences as discretization of the derivatives in the
regularization tensor.

4.1 First Order

The regularizer that has been applied during minimization in Chapter 3 contained first order
derivatives to penalize jumps in the estimated solution, thus allowing it to model piecewise
smooth flow fields. This is enforced by favoring motion fields with spatial variations close to
zero in a certain region, i.e. the motion is constant within this area. If objects move parallel
to the capturing camera (fronto-parallel motion), the property of constant motion holds and
hence we may expect good results in such scenarios. For the sake of completeness we list
the isotropic variant once more.

4.1.1 Isotropic

The well-known isotropic regularizer that penalizes spatial gradients of u and v reads

RI,I (u, v) :=
∫

Ω
Ψ
(∣∣∇u

∣∣2 + ∣∣∇v
∣∣2)dxdy (4.4)

where Ψ := ΨCH. Discretization aspects are omitted here, since they were already dealt with
before. Rudin et al. [21] proposed to penalize the spatial variations in such a way in context
of noise removal first. But instead of ΨCH they used the total variation penalizer ΨTV. The
corresponding stencil based on the isotropic diffusion tensor

D1,I :=

(
Ψ′
(
|∇u|2 + |∇v|2

)
0

0 Ψ′
(
|∇u|2 + |∇v|2

)) (4.5)

is shown in Table A.1 in Appendix A.
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4.1 First Order

4.1.2 Anisotropic

An anisotropic extension to the isotropic regularizer is the complementary regularizer

RI,A (u, v) :=
∫

Ω
Ψ1

((
r>1 ∇u

)2
+
(

r>1 ∇v
)2
)
+ Ψ2

((
r>2 ∇u

)2
+
(

r>2 ∇v
)2
)

dxdy (4.6)

presented by Zimmer et al. [15] with joint penalization of spatial derivatives of u and v
in the eigenvector directions. We set Ψ1 := ΨPM to exploit the Perona-Malik backward
diffusion behavior to enhance edges. Along flow edges we penalize with Ψ2 := ΨCH again.
The new anisotropic diffusion tensor is then given by

D1,A := (r1|r2)

(
Ψ′1((r

>
1 ∇u)2 + (r>1 ∇v)2) 0

0 Ψ′2((r
>
2 ∇u)2 + (r>2 ∇v)2)

)(
r>1
r>2

)
. (4.7)

If we denote the motion tensor entries as

D1,A :=
(

a b
b c

)
(4.8)

and write out the divergence expression 3.22 (3.23 is written out analogously)

div (D1,A · ∇u) = div
(

aux + buy
bux + cuy

)
= ∂x(aux) + ∂x(buy) + ∂y(bux) + ∂y(cuy), (4.9)

it becomes evident that - in contrast to the isotropic case - the entry b 6= 0 and thus the mixed
partial derivatives ∂x(buy) and ∂y(bux) remain. An approach with usual discretization may
result in a negative discretization of div(D1,A · ∇u). Therefore, we employ a stencil (see
Table A.2) to discretize the divergence expressions in a particular way that was introduced
in [42].
To have a first impression on the motion estimation of both first order isotropic and
anisotropic regularizers, we show the resulting flow fields in Figure 4.1.

Figure 4.1: Comparison of the first order regularizers. Left: Isotropic. Right: Anisotropic.
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4.2 Second Order

While first order derivatives are suitable to model fronto-parallel motion, they lack the ability
to consider motion that changes in an affine way. Such type of motion may be caused e.g. by
the egomotion of the capturing camera. Hence, we present regularizers based on second
order derivatives in this section. If we enforce the second order derivatives to be close to
zero (low variation), first order derivatives in a certain region are allowed to reach similar
values different from zero. This corresponds to kinks in the estimated flow field and thus
instead of implicitly preferring constant flow fields, piecewise affine solutions are favored.
Same as in Section 4.1 we consider second order isotropic and anisotropic regularizers.

4.2.1 Isotropic

In contrast to Trobin et al. [24], we measure deviations from second derivatives using the
Frobenius norm of the Hessian of u and v in the same way as Demetz et al. [23] already did
before. The second order isotropic regularizer reads

RII,I (u, v) :=
∫

Ω
Ψ
(
‖Hu‖2

F + ‖Hv‖2
F

)
dxdy. (4.10)

Once more we penalize with Ψ := ΨCH. The second order derivatives change the energy
functional and the Euler-Lagrange equations as described in Equation 2.31 and 2.32 to

0 = Fµ −
∂

∂x
Fµx −

∂

∂y
Fµy +

∂2

∂x2 Fµxx +
∂2

∂x∂y
Fµxy +

∂2

∂y∂x
Fµyx +

∂2

∂y2 Fµyy (4.11)

with the new derivatives of the integrand

Fµx = 0,

Fµxx = α · 2 ·Ψ′
(
‖Hu‖2

F + ‖Hv‖2
F

)
· µxx,

Fµxy = α · 2 ·Ψ′
(
‖Hu‖2

F + ‖Hv‖2
F

)
· µxy,

Fµy = 0,

Fµyx = α · 2 ·Ψ′
(
‖Hu‖2

F + ‖Hv‖2
F

)
· µyx,

Fµyy = α · 2 ·Ψ′
(
‖Hu‖2

F + ‖Hv‖2
F

)
· µyy. (4.12)

Please note that we use µ ∈ {u, v} here and in the following because partial derivatives of u
and v can be set analogously. Since we do not penalize first order derivatives anymore, Fµx

and Fµy become zero. That way our divergence expression also changes

div2

(
D2,I ·

(
∇µx
∇µy

))
(4.13)
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4.2 Second Order

where div2 := (∂xx, ∂xy, ∂yx, ∂yy) and

D2,I :=


Ψ′ 0 0 0
0 Ψ′ 0 0
0 0 Ψ′ 0
0 0 0 Ψ′

 (4.14)

with Ψ′ := Ψ′(‖Hu‖2
F + ‖Hv‖2

F). The Neumann boundary conditions are given by

0 = n>(Ψ′ · ∇µx), 0 = n>(Ψ′ · ∇µy), 0 = n>
(

div(Ψ′ · ∇µx)
div(Ψ′ · ∇µy)

)
. (4.15)

Table A.3 shows the stencil for the corresponding discretization of the new second order
divergence expression with its derivation presented in Section B.1.

4.2.2 Anisotropic

The second order isotropic smoothness term can be extended to perform a direction-
dependent regularization in a similar fashion as the first order isotropic one. We incorporate
the directional information in terms of the eigenvectors as follows:

RII,A (u, v) :=
∫

Ω
Ψ1

(
|Hur1|2 + |Hvr1|2

)
+ Ψ2

(
|Hur2|2 + |Hvr2|2

)
dxdy. (4.16)

As before we set Ψ1 := ΨPM and Ψ2 := ΨCH. The new diffusion tensor inducing anisotropic
behavior is given by

D2,A :=


r11 r21 0 0
r12 r22 0 0
0 0 r11 r21
0 0 r12 r22




Ψ′1 0 0 0
0 Ψ′2 0 0
0 0 Ψ′1 0
0 0 0 Ψ′2




r11 r12 0 0
r21 r22 0 0
0 0 r11 r12
0 0 r21 r22

 (4.17)

where Ψ′k := Ψ′k(|Hurk|2 + |Hvrk|2) with k ∈ {1, 2}. Compared to the isotropic case, the
Neumann boundary conditions contain the first 2× 2 part of D2,A that is defined by

D2
2,A := (r1|r2)

(
Ψ′1(|Hur1|2 + |Hvr1|2) 0

0 Ψ′2(|Hur2|2 + |Hvr2|2)

)(
r>1
r>2

)
. (4.18)

Stencil and derivation of the associated standard discretization are shown in Table A.4 and
Section B.2, respectively.
Again, we have a first look on the results of the motion estimation using the second order
isotropic or anisotropic regularizer in Figure 4.2. The differences between both approaches
are more evident as in the first order case with this data set.
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4 Regularizers in Detail

Figure 4.2: Comparison of the second order regularizers. Left: Isotropic. Right: Anisotropic.

4.3 First and Second Order Combined

First order regularizers allow to model motion edges at objects boundaries as we saw
in Section 4.1. They also, however, tend to produce artifacts within an object, which is
referred to as the staircasing phenomenon (Figure 4.3, red rectangle). In contrast, second
order regularization is used to consider affine changes of the motion field. Since it favors
such affine solutions, artifacts appear in regions with usually constant motion (Figure 4.3,
green rectangle). While first order regularizers can produce constant flow fields with sharp
edges, second order ones do not suffer from staircasing effects. Thus, to overcome the
drawbacks of both approaches we combine penalization of first and second order derivatives
in an isotropic and anisotropic infimal convolution approach. This prior was first used by
Chambolle and Lions [22] in the field of image denoising to reduce occurring artifacts.

4.3.1 Isotropic

With infimal convolution we can no longer refer to the regularization term and the smooth-
ness term as being equivalent. The regularization term now as a general container comprises
all aspects related to constraining the final form of the flow field. The smoothness term still
measures deviations from assumptions on the field.
Hence, our new regularizer consists of two smoothness terms simply combined via addition:

RIII,I (u, v) := min
u1+u2=u
v1+v2=v

∫
Ω

Ψ
(
|∇u1|2 + |∇v1|2

)
+ βΨ

(
‖Hu2‖

2
F + ‖Hv2‖

2
F

)
dxdy (4.19)

where Ψ := ΨCH. We can see that each unknown part of the solution u and v is divided
into two flow components u1 and u2 or v1 and v2, respectively. The first smoothness term
with the two flow components u1 and v1 realizes a first order penalization (models constant
fields), while the second one favors affine fields by penalizing second order derivatives in u2
and v2 directly. The flow components of each flow are then added to give the final motion
estimation. In addition, the weight β is used to steer the influence of both constraints.
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4.3 First and Second Order Combined

Figure 4.3: Undesirable effects of first and second order regularization. Top Left: Ground
truth image. Top Right: Resulting flows merged to one image separated by the
black bar in the middle. Bottom Left: Magnification of the staircasing effect (first
order). Bottom Right: Magnification of the varying affine flow (second order).

Since this regularizer now contains derivatives of both orders and four flow components,
we have the partial derivatives (only the relevant ones are listed)

F(µ1)x = α · 2 ·Ψ′
(
|∇u1|2 + |∇v1|2

)
· (µ1)x ,

F(µ1)y = α · 2 ·Ψ′
(
|∇u1|2 + |∇v1|2

)
· (µ1)y ,

F(µ2)xx = β · 2 ·Ψ′
(
‖Hu2‖

2
F + ‖Hv2‖

2
F

)
· (µ2)xx ,

F(µ2)xy = β · 2 ·Ψ′
(
‖Hu2‖

2
F + ‖Hv2‖

2
F

)
· (µ2)xy ,

F(µ2)yx = β · 2 ·Ψ′
(
‖Hu2‖

2
F + ‖Hv2‖

2
F

)
· (µ2)yx ,

F(µ2)yy = β · 2 ·Ψ′
(
‖Hu2‖

2
F + ‖Hv2‖

2
F

)
· (µ2)yy (4.20)

and hence four different Euler-Lagrange equations to solve:

0 = Fu1 − α · div (D1,I · ∇u1) , (4.21)
0 = Fv1 − α · div (D1,I · ∇v1) , (4.22)

0 = Fu2 + β · div2

(
D2,I ·

(
∇(u2)x
∇(u2)y

))
, (4.23)

0 = Fv2 + β · div2

(
D2,I ·

(
∇(v2)x
∇(v2)y

))
(4.24)

where D1,I contains u1 and v1 and D2,I includes u2 and v2, respectively.
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The Neumann boundary conditions read

0 = n>D1,I · ∇µ1,

0 = n>(Ψ′ · ∇(µ2)x), 0 = n>(Ψ′ · ∇(µ2)y), 0 = n>
(

div(Ψ′ · ∇(µ2)x)
div(Ψ′ · ∇(µ2)y)

)
(4.25)

where Ψ′ := Ψ′(‖Hu2‖
2
F + ‖Hv2‖

2
F). The infimal convolution approach still penalizes first

and second order derivatives separately and therefore we can use the same discretization
schemes as shown in the previous sections (4.1 and 4.2) for the isotropic cases.

4.3.2 Anisotropic

The anisotropic extension for infimal convolution is given analogously by the regularizer

RIII,A (u, v) := min
u1+u2=u
v1+v2=v

∫
Ω

Ψ1

((
r>1 ∇u1

)2
+
(

r>1 ∇v1

)2)
+ Ψ2

((
r>2 ∇u1

)2
+
(

r>2 ∇v1

)2)
+ βΨ1

(
|Hu2 r1|2 + |Hv2 r1|2

)
+ βΨ2

(
|Hu2 r2|2 + |Hv2 r2|2

)
dxdy (4.26)

with the partial derivatives

F(µ1)x = α · 2 ·Ψ′1
((

r>1 ∇u1

)2
+
(

r>1 ∇v1

)2
)
·
(

r>1 ∇µ1

)
· r11

+ α · 2 ·Ψ′2
((

r>2 ∇u1

)2
+
(

r>2 ∇v1

)2
)
·
(

r>2 ∇µ1

)
· r21,

F(µ1)y = α · 2 ·Ψ′1
((

r>1 ∇u1

)2
+
(

r>1 ∇v1

)2
)
·
(

r>1 ∇µ1

)
· r12

+ α · 2 ·Ψ′2
((

r>2 ∇u1

)2
+
(

r>2 ∇v1

)2
)
·
(

r>2 ∇µ1

)
· r22,

F(µ2)xx = β · 2 ·Ψ′1
(
|Hu2 r1|2 + |Hv2 r1|2

)
·
(

r>1 ∇(µ2)x

)
· r11

+ β · 2 ·Ψ′2
(
|Hu2 r2|2 + |Hv2 r2|2

)
·
(

r>2 ∇(µ2)x

)
· r21,

F(µ2)xy = β · 2 ·Ψ′1
(
|Hu2 r1|2 + |Hv2 r1|2

)
·
(

r>1 ∇(µ2)x

)
· r12

+ β · 2 ·Ψ′2
(
|Hu2 r2|2 + |Hv2 r2|2

)
·
(

r>2 ∇(µ2)x

)
· r22,

F(µ2)yx = β · 2 ·Ψ′1
(
|Hu2 r1|2 + |Hv2 r1|2

)
·
(

r>1 ∇(µ2)y

)
· r11

+ β · 2 ·Ψ′2
(
|Hu2 r2|2 + |Hv2 r2|2

)
·
(

r>2 ∇(µ2)y

)
· r21,

F(µ2)yy = β · 2 ·Ψ′1
(
|Hu2 r1|2 + |Hv2 r1|2

)
·
(

r>1 ∇(µ2)y

)
· r12

+ β · 2 ·Ψ′2
(
|Hu2 r2|2 + |Hv2 r2|2

)
·
(

r>2 ∇(µ2)y

)
· r22. (4.27)
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4.3 First and Second Order Combined

Using the same notation as before (here D1,A incorporates its corresponding flow components
u1 and v1, whereas D2,A includes u2 and v2) and Ψ1 := ΨPM as well as Ψ2 := ΨCH, the
abbreviated Euler-Lagrange equations yield

0 = Fu1 − α · div (D1,A · ∇u1) , (4.28)
0 = Fv1 − α · div (D1,A · ∇v1) , (4.29)

0 = Fu2 + β · div2

(
D2,A ·

(
∇(u2)x
∇(u2)y

))
, (4.30)

0 = Fv2 + β · div2

(
D2,A ·

(
∇(v2)x
∇(v2)y

))
. (4.31)

If we also define

D2
2,A := (r1|r2)

(
Ψ′1(|Hu2 r1|2 + |Hv2 r1|2) 0

0 Ψ′2(|Hu2 r2|2 + |Hv2 r2|2)

)(
r>1
r>2

)
(4.32)

to contain u2 and v2 now, the Neumann boundary conditions for anisotropic infimal
convolution read

0 = n>D1,A · ∇µ1,

0 = n>D2
2,A · ∇(µ2)x, 0 = n>D2

2,A · ∇(µ2)y, 0 = n>
(

div(D2
2,A · ∇(µ2)x)

div(D2
2,A · ∇(µ2)y)

)
. (4.33)

Again, the discretization stencils of the previous anisotropic cases are also valid here.
Figure 4.4 shows that regular motion edges get sharpened in the isotropic case, but affine flow
fluctuations in usually constant areas remain nearly the same as with second order isotropic
regularization. When it comes to the anisotropic regularizer, motion fields estimated with
second order regularization and infimal convolution are almost indistinguishable from each
other. Only subtle differences exist. Nonetheless, staircasing effects cannot be observed.
Please note that this is only the result for one data set so far.

Figure 4.4: Comparison of the regularizers realizing infimal convolution. Left: Isotropic.
Right: Anisotropic.
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4.4 Coupled Regularization

Another approach to prevent appearing artifacts is rather similar to the infimal convolution
technique but follows another concept to combine first and second order derivatives. Instead
of regularizing various flows with respect to derivatives of different order, we employ the
usual flow field (u, v) known from the direct regularization approaches in Section 4.1 and 4.2
and couple their gradient fields with some general auxiliary vector fields p and q. Usually,
such a coupling model can incorporate variations of higher order, but we restrict ourselves to
the case of order 2. That way we are able to perform a direct comparison to the previous
infimal convolution method. Again, we differentiate between isotropic and anisotropic
variants.
To improve image reconstruction methods like denoising, Bredies et al. [25] introduced their
total generalized variation based regularization as one of the first techniques performing a
coupled regularization.

4.4.1 Isotropic

Compared to infimal convolution the isotropic regularization term now consist of a coupling
term that couples the gradient fields to the auxiliary vector fields and a smoothness term
that regularizes these vector fields:

RIV,I (u, v) := min
p,q

∫
Ω

Ψ
(
|∇u− p|2 + |∇v− q|2

)
︸ ︷︷ ︸

Coupling term

+β Ψ
(∥∥Jp

∥∥2
F +

∥∥Jq
∥∥2

F

)
︸ ︷︷ ︸

Smoothness term

dxdy (4.34)

where Ψ := ΨCH. Through the coupling term we can see that the vector fields p := (p1, p2)>

and q := (q1, q2)> are indirectly assumed to be approximations of the spatial gradients of u
and v. Moreover, second order derivatives are not explicitly formulated but implicitly given
by the Jacobian Jg for a vector field g. We recall that J∇g = Hg. This may be an advantage
during discretization since it is not necessary to derive certain stencils to approximate second
order derivatives.
Let ϕ ∈ {p, q} in the following. The smoothness term constraints the vector fields p and q
to have a low variation and thus models affine changes of the final flow field. The coupling
term is then responsible to carry this information to u and v by enforcing a low difference
between gradient field∇µ and corresponding vector field ϕ, but still allowing discontinuities
(jumps) at object boundaries to occur by applying a penalizer function. Additionally, it
makes the vector field adapt to the better solution of u and v in constant areas, which also
fits to the affine change constraint (areas with constant motion also cause second order
derivatives to be zero).
We previously defined infimal convolution as

min
u1+u2=u
v1+v2=v

∫
Ω

Ψ
(
|∇u1|2 + |∇v1|2

)
+ βΨ

(
‖Hu2‖

2
F + ‖Hv2‖

2
F

)
dxdy. (4.35)
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4.4 Coupled Regularization

If we rewrite the component equations as u1 = u− u2 and v1 = v− v2 and use them to
substitute Equation 4.35 with, the new definition yields

min
u2,v2

∫
Ω

Ψ
(
|∇u−∇u2|2 + |∇v−∇v2|2

)
+ βΨ

(
‖Hu2‖

2
F + ‖Hv2‖

2
F

)
dxdy. (4.36)

The relation between infimal convolution and coupled regularization becomes evident now.
While the spatial gradient in the coupling term is only applied to u and v, the infimal
convolution model applies the gradient to u, v, u2 and v2. If we assume p = ∇u2 and
q = ∇v2 for a moment, this eventually leads to Jp = Hu2 and Jq = Hv2 . In this case,
coupled regularization reduces to combined regularization. But since p and q are general
vector fields, whereas the gradient operator enforces u2 and v2 to be a specific kind of vector
fields (gradient fields), they are not subject to certain limitations of gradient fields. In that
sense, general vector fields are more flexible than specific gradient fields since they offer a
higher degree of freedom, which might lead to better solutions in the end.
Previously, the first partial derivatives Fu and Fv depended on the data term. Due to
the coupling term the first partial derivatives Fp1 , Fp2 , Fq1 and Fq2 are now relevant for the
regularization as well:

Fux = α · 2 ·Ψ′
(
|∇u− p|2 + |∇v− q|2

)
· (ux − p1) ,

Fuy = α · 2 ·Ψ′
(
|∇u− p|2 + |∇v− q|2

)
·
(
uy − p2

)
,

Fvx = α · 2 ·Ψ′
(
|∇u− p|2 + |∇v− q|2

)
· (vx − q1) ,

Fvy = α · 2 ·Ψ′
(
|∇u− p|2 + |∇v− q|2

)
·
(
vy − q2

)
,

Fp1 = α · 2 ·Ψ′
(
|∇u− p|2 + |∇v− q|2

)
· (ux − p1) · (−1) ,

Fp2 = α · 2 ·Ψ′
(
|∇u− p|2 + |∇v− q|2

)
·
(
uy − p2

)
· (−1) ,

Fq1 = α · 2 ·Ψ′
(
|∇u− p|2 + |∇v− q|2

)
· (vx − q1) · (−1) ,

Fq2 = α · 2 ·Ψ′
(
|∇u− p|2 + |∇v− q|2

)
·
(
vy − q2

)
· (−1) ,

F(ϕ∗)x = β · 2 ·Ψ′
(∥∥Jp

∥∥2
F +

∥∥Jq
∥∥2

F

)
· (ϕ∗)x,

F(ϕ∗)y = β · 2 ·Ψ′
(∥∥Jp

∥∥2
F +

∥∥Jq
∥∥2

F

)
· (ϕ∗)y (4.37)

where ϕ∗ ∈ {p1, p2, q1, q2}. Since we have six fields (u, v, p1, p2, q1 and q2) in total, we
also have six Euler-Lagrange equations to determine (Equation 4.40 and 4.41 contain two
equations each):

0 = Fu − α · div (DC,I · (∇u− p)) , (4.38)
0 = Fv − α · div (DC,I · (∇v− q)) , (4.39)
0 = α · DC,I · (p−∇u)− β · div

(
JpTC,I

)
, (4.40)

0 = α · DC,I · (q−∇v)− β · div
(
JqTC,I

)
. (4.41)
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The diffusion tensors are given by

DC,I :=
(

Ψ′(|∇u− p|2 + |∇v− q|2) 0
0 Ψ′(|∇u− p|2 + |∇v− q|2)

)
(4.42)

and

TC,I :=

(
Ψ′
(∥∥Jp

∥∥2
F +

∥∥Jq
∥∥2

F

)
0

0 Ψ′
(∥∥Jp

∥∥2
F +

∥∥Jq
∥∥2

F

)) . (4.43)

Furthermore, div is defined as the row-wise application of the divergence operator div:

div
(
JpT

)
=

(
div(T · ∇p1)
div(T · ∇p2)

)
, div

(
JqT

)
=

(
div(T · ∇q1)
div(T · ∇q2)

)
. (4.44)

The Neumann boundary conditions read

0 = n>DC,I · (∇u− p), 0 = n>DC,I · (∇v− q), 0 = n>TC,I · ∇ϕ∗. (4.45)

To discretize the divergence expressions in Equation 4.38 and 4.39 suitable stencils are given
in Table A.5 with their corresponding derivation presented in Section B.3. The weights for
the remaining divergence expressions can be found in Stencil A.1.

4.4.2 Anisotropic

Hafner et al. [26] proposed anisotropic diffusion to a coupled regularizer in the field of focus
fusion by adding the eigenvectors of the motion tensor. Similarly we incorporate directional
information as with our preceding regularizing concepts:

RIV,A (u, v) := min
p,q

∫
Ω

Ψ1

((
r>1 (∇u− p)

)2
+
(

r>1 (∇v− q)
)2
)

+ Ψ2

((
r>2 (∇u− p)

)2
+
(

r>2 (∇v− q)
)2
)

+ βΨ1

(∣∣Jpr1
∣∣2 + ∣∣Jqr1

∣∣2)+ βΨ2

(∣∣Jpr2
∣∣2 + ∣∣Jqr2

∣∣2)dxdy. (4.46)

As usually we set Ψ1 := ΨPM and Ψ2 := ΨCH. The partial derivatives of the regularizer read

Fux = α · 2 ·Ψ′1
((

r>1 (∇u− p)
)2

+
(

r>1 (∇v− q)
)2
)
·
(

r>1 (∇u− p)
)
· r11

+ α · 2 ·Ψ′2
((

r>2 (∇u− p)
)2

+
(

r>2 (∇v− q)
)2
)
·
(

r>2 (∇u− p)
)
· r21,

Fuy = α · 2 ·Ψ′1
((

r>1 (∇u− p)
)2

+
(

r>1 (∇v− q)
)2
)
·
(

r>1 (∇u− p)
)
· r12

+ α · 2 ·Ψ′2
((

r>2 (∇u− p)
)2

+
(

r>2 (∇v− q)
)2
)
·
(

r>2 (∇u− p)
)
· r22,
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4.4 Coupled Regularization

Fvx = α · 2 ·Ψ′1
((

r>1 (∇u− p)
)2

+
(

r>1 (∇v− q)
)2
)
·
(

r>1 (∇v− q)
)
· r11

+ α · 2 ·Ψ′2
((

r>2 (∇u− p)
)2

+
(

r>2 (∇v− q)
)2
)
·
(

r>2 (∇v− q)
)
· r21,

Fvy = α · 2 ·Ψ′1
((

r>1 (∇u− p)
)2

+
(

r>1 (∇v− q)
)2
)
·
(

r>1 (∇v− q)
)
· r12

+ α · 2 ·Ψ′2
((

r>2 (∇u− p)
)2

+
(

r>2 (∇v− q)
)2
)
·
(

r>2 (∇v− q)
)
· r22,

Fp1 = α · 2 ·Ψ′1
((

r>1 (∇u− p)
)2

+
(

r>1 (∇v− q)
)2
)
·
(

r>1 (∇u− p)
)
· (−r11)

+ α · 2 ·Ψ′2
((

r>2 (∇u− p)
)2

+
(

r>2 (∇v− q)
)2
)
·
(

r>2 (∇u− p)
)
· (−r21) ,

Fp2 = α · 2 ·Ψ′1
((

r>1 (∇u− p)
)2

+
(

r>1 (∇v− q)
)2
)
·
(

r>1 (∇u− p)
)
· (−r12)

+ α · 2 ·Ψ′2
((

r>2 (∇u− p)
)2

+
(

r>2 (∇v− q)
)2
)
·
(

r>2 (∇u− p)
)
· (−r22) ,

Fq1 = α · 2 ·Ψ′1
((

r>1 (∇u− p)
)2

+
(

r>1 (∇v− q)
)2
)
·
(

r>1 (∇v− q)
)
· (−r11)

+ α · 2 ·Ψ′2
((

r>2 (∇u− p)
)2

+
(

r>2 (∇v− q)
)2
)
·
(

r>2 (∇v− q)
)
· (−r21) ,

Fq2 = α · 2 ·Ψ′1
((

r>1 (∇u− p)
)2

+
(

r>1 (∇v− q)
)2
)
·
(

r>1 (∇v− q)
)
· (−r12)

+ α · 2 ·Ψ′2
((

r>2 (∇u− p)
)2

+
(

r>2 (∇v− q)
)2
)
·
(

r>2 (∇v− q)
)
· (−r22) ,

F(ϕ∗)x = β · 2 ·Ψ′1
(∣∣Jpr1

∣∣2 + ∣∣Jqr1
∣∣2) · (r>1 ∇ϕ∗

)
· r11

+ β · 2 ·Ψ′2
(∣∣Jpr2

∣∣2 + ∣∣Jqr2
∣∣2) · (r>2 ∇ϕ∗

)
· r21,

F(ϕ∗)y = β · 2 ·Ψ′1
(∣∣Jpr1

∣∣2 + ∣∣Jqr1
∣∣2) · (r>1 ∇ϕ∗

)
· r12

+ β · 2 ·Ψ′2
(∣∣Jpr2

∣∣2 + ∣∣Jqr2
∣∣2) · (r>2 ∇ϕ∗

)
· r22. (4.47)

The resulting Euler-Lagrange equations are given by

0 = Fu − α · div (DC,A · (∇u− p)) , (4.48)
0 = Fv − α · div (DC,A · (∇v− q)) , (4.49)
0 = α · DC,A · (p−∇u)− β · div

(
JpTC,A

)
, (4.50)

0 = α · DC,A · (q−∇v)− β · div
(
JqTC,A

)
(4.51)

where

DC,A := (r1|r2)

(
Ψ′1 0
0 Ψ′2

)(
r>1
r>2

)
(4.52)

61



4 Regularizers in Detail

with Ψ′k := Ψ′k((r
>
k (∇u− p))2 + (r>k (∇v− q))2), k ∈ {1, 2} and

TC,A := (r1|r2)

(
Ψ′1(|Jpr1|2 + |Jqr1|2) 0

0 Ψ′2(|Jpr2|2 + |Jqr2|2)

)(
r>1
r>2

)
. (4.53)

The corresponding Neumann boundary conditions read

0 = n>DC,A · (∇u− p), 0 = n>DC,A · (∇v− q), 0 = n>TC,A · ∇ϕ∗. (4.54)

Again we can apply Stencil A.2 to discretize the divergence expressions containing the
Jacobian. Stencils and their derivation for the coupling term are given in Table A.6 and
Section B.4, respectively.
Compared to the isotropic regularization, the motion edges are more distinct in the
anisotropic case as Figure 4.5 shows. In contrast to infimal convolution, we cannot see any
affine flow fluctuations appear, while staircasing artifacts do not occur either.

Figure 4.5: Comparison of the coupled regularizers. Left: Isotropic. Right: Anisotropic.

4.5 Summary

Several isotropic and anisotropic concepts realizing different ways of regularization have
been introduced in this chapter. We presented diffusion processes that solely base on first
order or second order derivatives. Both orders of derivatives, however, exhibited a bias to
produce certain kinds of undesired image artifacts. Therefore, two following regularizers
have been proposed combining derivatives of different order. While the first one still showed
some artifacts with a first simple data set, the second one was able to provide very good
estimates by getting rid of the unwanted effects. With an overview in Table 4.1 we conclude
the subject of how to model optical flow computation using different kinds of first order and
second order regularization and continue with their in-depth evaluation in the following
chapter.
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Type
Isotropic

Regularization
Anisotropic

Regularization

First Order
Derivatives

RI,I
[15]

Ψ
( 2

∑
i=1

∣∣∇µi
∣∣2) 2

∑
j=1

Ψj
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∑
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(
r>j ∇µi

)2
) RI,A

[21]

Second Order
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Ψ
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∑
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∥∥Hµi

∥∥2
F

) 2

∑
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∑
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∣∣Hµi rj
∣∣2) RII,A

Derivatives
Combined

RIII,I
[22]

Ψ
( 2

∑
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∣∣∇µi,1
∣∣2)

+βΨ
( 2

∑
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∥∥Hµi,2

∥∥2
F

)
2

∑
j=1

Ψj

( 2

∑
i=1

(
r>j ∇µi,1

)2
)

+β
2

∑
j=1

Ψj

( 2

∑
i=1

∣∣Hµi,2 rj
∣∣2) RIII,A

Derivatives
Coupled

RIV,I
[25]

Ψ
( 2

∑
i=1

∣∣∇µi −ϕi

∣∣2)
+βΨ

( 2

∑
i=1

∥∥Jϕi

∥∥2
F

)
2

∑
j=1

Ψj

( 2

∑
i=1

(
r>j
(
∇µi −ϕi

))2
)

+β
2

∑
j=1

Ψj

( 2

∑
i=1

∣∣Jϕi
rj
∣∣2)

RIV,A
[26]

Table 4.1: Overview of the introduced regularizers, each in its isotropic and anisotropic
variant. In this context we use the notation µ1 := u, µ2 := v,ϕ1 := p and ϕ2 := q.
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5 Experimental Evaluation

Previously, we explained several aspects of variational optical flow computation that range
from modeling and realizing certain assumptions on the initial input image data and the final
estimation to solving the linearized equation system numerically (Chapter 3). Furthermore,
various concepts to regularize the motion field have been introduced (Chapter 4). To
compare their capabilities for optical flow computation appropriately we use a common set
of input images, parameter values and software. The computation itself is performed in a
modified framework implementing all the different regularization terms, that was originally
provided by the Intelligent Systems department.
Before we start with our evaluation in this chapter, we give an insight about the hard-
and software environment running the framework, chosen parameter values, optimization
strategy for certain parameters and characteristics of the selected data sets.

Hardware and Software Environment. The optical flow computation was initially per-
formed on a standard Windows 7 x64 home PC. Since the optimization was quite a lengthy
process (20536 optimization steps for the final results plus many steps of repeated runs
due to bad local minima), a laptop was added later during optimization to perform some
estimations in parallel. PC and laptop contained relatively current hardware at evaluation
time as we can see in Table 5.1. While both machines were using Windows 7 64-bit as the
operating system, a virtual machine needed to be set up, since the framework only run in a
Linux environment. We chose Xubuntu 16.04.1 as a lightweight Linux operating system.

Parameter Details. During our explanation of optical flow and its various regularization
terms, many additional parameters have been introduced. Since it is impossible for us to

PC Laptop
CPU Intel Core i7-4770K @ 3.5 GHz Intel Core i7-5600U @ 2.6 GHz

Mainboard Gigabyte Z87X-UD4H Lenovo 20BWS2KM00
Chipset Intel Z87 Intel Broadwell-U PCH-LP

RAM 16 GB DDR3-1600/PC3-12800 12 GB DDR3-1600/PC3-12800
SSD 256 GB, Samsung 840 Pro 512 GB, LiteOn LCH-512V2S

Host OS Windows 7 Professional 64-bit Windows 7 Professional 64-bit
Guest OS Xubuntu 16.04.1 64-bit Xubuntu 16.04.1 64-bit

Table 5.1: Hardware and software used for evaluation purposes.
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5 Experimental Evaluation

optimize them all jointly within a reasonable amount of time, we restricted ourselves to only
optimize the regularization parameters α and β with respect to the AEE. For all the other
parameters we chose fixed values, which can be learned from Table 5.2.
To find the best average values for α (and β in case of combined and coupled regularization)
per data set, we used a Downhill Simplex strategy [43], which is not further explained here.
We only want to point out that this method highly depends on suitable initial values to start
the optimization from. Otherwise it might get trapped in bad local minima. This behavior
caused us to restart some optimization runs with other more appropriate initializations.

Penalizer
(Data Term)

Normalization
CRT

Neighborhood
Presmoothing Relaxation

ε = 0.00003 ζ = 0.01 κ = 9 σ = 0.3 ω = 1.9

Penalizer
(Smoothness Term)

Warping
Levels

Refinement
Inner

Iterations
Relaxation

Steps

ε = 0.01 kmax = 200 η = 0.95 lmax = 10 mmax = 5

Table 5.2: Fixed parameters employed during evaluation.

5.1 Data Sets

A detailed evaluation covering various realistic scenarios stands and falls with the employed
test data. Therefore, a proper selection of a wide range of data sets is necessary. We choose
specific test image sequences that contain different types of motion (translational, divergent,
rotational), large displacements, complex object structures and several lighting effects as
well as shadows. To compare the optical flow estimations to the real occurring motion using
an error metric (see Section 2.5), ground truth images for each image sequence are needed.
The well-known and widely-used image databases of the Middlebury benchmark [33], the
Sintel benchmark [44] and the KITTI benchmark [7, 45] are collections of suitable image
data and ground truth flow where we take our test images from.

5.1.1 Middlebury Benchmark

Baker et al. [33] published their evaluation data as one of the first collections to present
the limits and constraints of current optical flow methods at that time (2007) and to point
out in which direction next generation techniques should develop. The data set consists of
real world scenarios as well as synthetically rendered scenes with more realistic textures.
While different types of motion occur in these mostly rigid scenes, illumination changes only
appear slightly compared to other data sets causing today’s methods to produce very good
results already. Nevertheless, the Middlebury benchmark data set can show first tendencies
of estimation quality, which is a good start for our evaluation. Table 5.3 and Figure 5.1 give
an overview about the chosen Middlebury test images and their properties.
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5.1 Data Sets

Sequence Frame # Properties Resolution

Dimetrodon 10 & 11
Real world scene with a toy. Dominant colors.
Mostly translational left oriented motion.

584× 388

Hydrangea 10 & 11
Real world scene with a flower. Translational
motion in right direction and clockwise ori-
ented rotational motion.

584× 388

RubberWhale 10 & 11
Real world scene with many differently colored
objects. Some objects exhibit translational mo-
tion. Other objects move in a rotational way.

584× 388

Grove2 10 & 11
Synthetic scene with trees and stones. Environ-
mental motion oriented in left direction. Front
tree moves towards bottom left corner.

640× 480

Grove3 10 & 11
Synthetic scene with trees and stones. Diver-
gent motion. Front objects move in right and
bottom direction. Back objects move upwards.

640× 480

Urban2 10 & 11
Synthetic scene with buildings. Global rota-
tional motion.

640× 480

Urban3 10 & 11
Synthetic scene with buildings. Divergent mo-
tion. Front buildings move in bottom direction.
Background moves upwards.

640× 480

Venus 10 & 11
Synthetic setup with heavily textured paintings.
Translational motion in left and right direction.

420× 380

Table 5.3: Overview of the selected Middlebury test image sequences and their properties.

Figure 5.1: Overview of the selected test image sequences with corresponding ground truth.
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5 Experimental Evaluation

Figure 5.1: Overview of the selected test image sequences with corresponding ground truth
(continued). Left to Right: Reference frame, subsequent frame and ground truth.
Top to Bottom: Dimetrodon, Hydrangea, RubberWhale, Grove2, Grove3, Urban2,
Urban3 and Venus.

68



5.1 Data Sets

5.1.2 Sintel Benchmark

Displacements of objects in the Middlebury data set were considered to be quite large back
then (up to 35 pixels per frame (ppf) in the synthetic scenes), but state-of-the-art methods
can even handle larger and faster motion. Actual real world scenarios do not only contain
different independent motion, but also incorporate more complex materials with reflecting
surfaces, shadows, varying illumination and natural shading effects, and a higher degree
of general complexity. Butler et al. [44] respect all these characteristics in their synthetic
benchmark data set (2012) based on the open source 3D animated short film Sintel. We
will use test images from their clean rendering pass that resembles realistic scenes better
with motion partly larger than 100 ppf, but omits image degradation such as blurring and
atmospheric effects. The selected Sintel test images and some of their characteristics are
presented in Table 5.4 and Figure 5.2.

Sequence Frame # Properties Resolution

Alley1 18 & 19
Calm scene with slow camera and object mo-
tion. Similar color impression of different objects.
Slightly altering shading.

1024× 436

Ambush7 39 & 40
Scene with mostly steady background (snow).
Moving objects clearly separated from background.
Large motion. Varying shading.

1024× 436

Bamboo2 35 & 36
Scene in a bamboo forest with many indepen-
dently moving (small) objects. Camera motion.
Dominating color. Shading changes slightly.

1024× 436

Cave4 34 & 35
Drab scene in a cave. Mostly grayish and dark col-
ors. Object and camera motion. Varying shading.

1024× 436

Market2 18 & 19
Scene at a busy market with many objects. Large
and small motion. Slight camera motion. Numer-
ous objects with brownish surface.

1024× 436

Market6 10 & 11
Fast scene at a market. Large camera motion. Sim-
ilar overall color impression. Changing shading.

1024× 436

Shaman2 36 & 37
Rather dark scene with some bright reflections.
Small motion of many objects (hairs of the beard).

1024× 436

Sleeping1 12 & 13
Scene with many shadows. Globally small rota-
tional and divergent motion caused by zooming
camera. Motion of objects almost not present.

1024× 436

Temple3 29 & 30
Very hasty scene with large motion of all objects.
Moving background. Shading alters drastically.

1024× 436

Table 5.4: Overview of the selected Sintel test image sequences and their properties.
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Figure 5.2: Overview of the selected test image sequences with corresponding ground
truth. Left to Right: Reference frame, subsequent frame and ground truth. Top
to Bottom: Alley1, Ambush7, Bamboo2, Cave4, Market2, Market6, Shaman2,
Sleeping1 and Temple3.
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5.1.3 KITTI Benchmark

While we refrain from using Sintel’s final rendering pass that includes motion and defocus
blur as well as other atmospheric effects, a third data set is added to our evaluation captured
in the real world where such effects occur naturally. Menze et al. [45] chose to gather their
test data in a realistic application scenario (autonomous driving) by driving around in car on
public streets. The car was equipped with different cameras to take images and a 3D laser
scanner to obtain motion information from independent objects and thus create the ground
truth data. We decide to use the latest KITTI benchmark data set (2015) since - compared
to the data set from 2012 [7] - it contains more challenging sequences and ground truth
data for non-rigid scenes with independently moving objects. Please note that ground truth
has to be measured for these scenes since they are not staged or synthetic and hence only
exhibits a density of around 50% in average. Again, the chosen KITTI test images are shown
in Table 5.5 and Figure 5.3.

Sequence Frame # Properties Resolution

14 10 & 11
Rather bright scene caused by sunlight. Test car
slowly stopping at traffic lights. Other vehicles
moving over crossroads.

1242× 375

29 10 & 11

Large part of the scene covered in shadows casted
by trees. Test car following a straight road with
normal speed. Other vehicles moving in front or
approaching on opposing lane.

1242× 375

46 10 & 11
Bright scene. Test car standing still at traffic lights.
Stationary shadow casted on car crossing the lane.

1242× 375

86 10 & 11

Test car moving slowly in a residential area.
Houses cause many shadows. Other car crossing
the street. White and brownish colors dominating
the scene.

1242× 375

120 10 & 11

Bright scene with public street, houses and park-
ing cars casting some shadows. Other vehicles
moving towards the test car or driving in the same
direction.

1242× 375

144 10 & 11
Scene in daylight. Subway causes large shadow.
Ground truth for subway not available.

1242× 375

171 10 & 11

Scene with strongly reflecting building. Street
mostly covered in shadows. Test car and other
vehicle in front curving the crossroads. Reflections
cause some disturbances on the camera lense.

1242× 375

Table 5.5: Overview of the selected KITTI test image sequences and their properties.
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Figure 5.3: Overview of the selected test image sequences with corresponding ground truth
(around 50% density). Left to Right: Reference frame, subsequent frame and
ground truth. Top to Bottom: Sequence 14, 29, 46, 86, 120, 144 and 171.

5.2 Comparison of the Regularizers

With the just introduced data sets at hand the evaluation of the eight different regularization
terms (see Table 4.1 for recap) is now ready to begin with. In addition, we will make use of
the gray value/brightness constancy assumption (BCA), the gradient constancy assumption
(GCA) and the complete rank transform (CRT) (see summary in Table 3.1) combined with
the various data term modifications given in Table 3.2 to study arising differences in the
final motion estimations. To penalize deviations in the data term we continuously use the
Charbonnier function ΨCH. As mentioned before the regularization weights α and β are
optimized with respect to the AEE. In the following we will examine the final results for
each data set separately, starting with the Middlebury data set as the least challenging one.
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5.2.1 Results - Middlebury

Our first evaluation using the well-established Middlebury data set provides some initial
insights about optical flow estimation based on different constancy assumptions and reg-
ularization approaches. The results in form of the AEE and optimized parameter values
are carried together in Table 5.6. For one particular regularization strategy the AEE is given
for each individual image sequence as well as averaged over all sequences. To emphasize
the impact of different constancy assumptions the regularization strategies are compared
for every assumption separately, where we highlight the best result in green and color the
worst one red.

Table 5.6 reveals a common error development that appears no matter what constancy
assumption we apply: (1) Second order regularization provides worse results than first order
regularization in all cases. (2) Combined regularization has a tendency to favor solutions
which are very similar to second order regularization. (3) Coupled regularization gives
either better results than first order regularization or is at least very close to it (GCA case).
(4) In most of the cases the anisotropic variant of a certain regularizer yields better results
than its isotropic counterpart (except BCA first order and coupled regularization).

If we have closer look on the average errors now, we can see that coupled isotropic regular-
ization performs best in the BCA case, while second order isotropic regularization gives the
worst result. When it comes to the GCA, first order anisotropic regularization has the lowest
error. But it does not only give the best estimation with respect to the GCA. In fact, GCA
first order anisotropic regularization yields the best estimation of the entire Middlebury
data set. Coupled anisotropic regularization gives the most accurate estimation with the
CRT, but it cannot beat the best results of the GCA. The CRT even provides the worst overall
result (second order isotropic). While anisotropic regularization sharpens motion edges and
thus helps to improve the estimation quality, it also causes undesired image artifacts and
aberrations sometimes (see Figure 5.4).
The simplicity of the Middlebury data set with its rigid scenes, sparse illumination changes
(too many constraints of the CRT may even worsen the results slightly) and a low degree
of egomotion of the camera (affine motion not that much present) could be a reason why
first order regularization together with the GCA dominates over the other regularization
strategies. Nevertheless, all the regularization strategies already perform very well on the
Middlebury data set with respect to the AEE. The difference between the overall best and
worst result is relatively small compared to the following data sets.

Figure 5.5 gives a final overview of differently regularized motion estimation with the GCA
of our running example: the RubberWhale sequence. Figure 5.6, Figure 5.7, Figure 5.8, and
Figure 5.9 show a direct comparison between regularization with the GCA and the CRT
using the Urban3 sequence.
The Urban3 motion visualizations based on the GCA and the CRT confirm the numerical
result. While the GCA achieves more homogeneous flows and accurate edges, the CRT
suffers from blurred motion boundaries (especially in the second order and the combined
case) and a wrong flow field at the front wall of the central building. Both drawbacks are
also clearly visible in the brighter areas of the difference images.
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Middlebury
First

Order
Second
Order

Combined
Regularization

Coupled
Regularization

Iso Aniso Iso Aniso Iso Aniso Iso Aniso

B
C

A
A

EE

Dimetro. 0.1389 0.1406 0.1623 0.1585 0.1662 0.1589 0.1388 0.1409
Hydrangea 0.2033 0.1929 0.2513 0.2456 0.2554 0.2469 0.1995 0.2014
RubWha. 0.1483 0.1286 0.1774 0.1740 0.1725 0.1724 0.1417 0.1335
Grove2 0.1294 0.1172 0.1617 0.1458 0.1608 0.1459 0.1297 0.1221
Grove3 0.5260 0.5319 0.5824 0.5468 0.5592 0.5376 0.5261 0.5268
Urban2 0.2986 0.3849 0.3562 0.4178 0.3537 0.4263 0.2773 0.4344
Urban3 0.3663 0.3170 0.5448 0.5141 0.5375 0.5070 0.3831 0.3212
Venus 0.2877 0.3344 0.5228 0.4914 0.5082 0.4764 0.2775 0.2976

B
C

A

AVG AEE 0.2623 0.2684 0.3448 0.3368 0.3392 0.3339 0.2592 0.2722
α 0.0057 0.0141 0.0075 0.0040 0.5638 0.0805 0.0066 0.0100
β − − − − 0.0038 0.0026 3.5835 0.3762

G
C

A
A

EE

Dimetro. 0.0973 0.0972 0.1129 0.1009 0.1086 0.1012 0.0973 0.0971
Hydrangea 0.1423 0.1354 0.1586 0.1479 0.1594 0.1480 0.1425 0.1454
RubWha. 0.0794 0.0683 0.1012 0.0891 0.1016 0.0891 0.0791 0.0693
Grove2 0.1413 0.1198 0.1708 0.1559 0.1705 0.1560 0.1416 0.1286
Grove3 0.5860 0.5319 0.6312 0.6087 0.6365 0.6083 0.5786 0.5379
Urban2 0.2983 0.2218 0.3662 0.3270 0.3629 0.3281 0.3059 0.2675
Urban3 0.4190 0.3153 0.5723 0.5305 0.5783 0.5289 0.3992 0.2918
Venus 0.2975 0.2684 0.3765 0.3375 0.3722 0.3376 0.2853 0.2379

G
C

A

AVG AEE 0.2576 0.2198 0.3112 0.2872 0.3113 0.2872 0.2537 0.2219
α 0.0056 0.0095 0.0063 0.0036 2.7221 2.0827 0.0059 0.0092
β − − − − 0.0050 0.0025 1.0535 0.9460

C
R

T
A

EE

Dimetro. 0.1002 0.0999 0.1162 0.1046 0.1116 0.1028 0.1001 0.0984
Hydrangea 0.1427 0.1371 0.1654 0.1556 0.1654 0.1561 0.1422 0.1425
RubWha. 0.0864 0.0763 0.1110 0.1002 0.1108 0.1004 0.0856 0.0764
Grove2 0.1436 0.1243 0.1958 0.1772 0.1918 0.1758 0.1430 0.1287
Grove3 0.5619 0.5417 0.6252 0.6084 0.6325 0.6138 0.5458 0.5190
Urban2 0.3190 0.2597 0.4313 0.4008 0.4190 0.3843 0.3105 0.2967
Urban3 0.5393 0.4677 0.8733 0.8415 0.8540 0.8338 0.5295 0.4481
Venus 0.2890 0.2757 0.4232 0.3771 0.4133 0.3726 0.2643 0.2296

C
R

T

AVG AEE 0.2728 0.2478 0.3677 0.3456 0.3623 0.3425 0.2651 0.2424
α 0.0095 0.0188 0.0106 0.0063 1.0291 0.5141 0.0095 0.0134
β − − − − 0.0088 0.0049 3.6995 1.6727

Table 5.6: Complete set of error data with corresponding weights achieved during evaluation
of the Middlebury data set.
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5.2 Comparison of the Regularizers

Figure 5.6: Results for the Urban3 sequence using different regularizers and the GCA. First
row: Ground truth. Top to Bottom: Isotropic and anisotropic regularization.
Left to Right: First order, second order, combined and coupled regularization.

Figure 5.7: Results for the Urban3 sequence using different regularizers and the CRT. First
row: Ground truth. Top to Bottom: Isotropic and anisotropic regularization.
Left to Right: First order, second order, combined and coupled regularization.
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Figure 5.8: Differences to ground truth of corresponding regularizers using the GCA. First
row: No difference. Top to Bottom: Isotropic and anisotropic regularization.
Left to Right: First order, second order, combined and coupled regularization.

Figure 5.9: Differences to ground truth of corresponding regularizers using the CRT. First
row: No difference. Top to Bottom: Isotropic and anisotropic regularization.
Left to Right: First order, second order, combined and coupled regularization.
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5.2.2 Results - Sintel

Compared to the Middlebury test images our current data set consists of more complex
scenes that, among other things, include large motion and changing illumination. If we
compare the average errors from the BCA over the GCA to the CRT, a decreasing error in
each of the regularizers can be observed. The Ambush7 sequence contains varying shading
and thus, despite having simple translational motion, can clearly show the advantage of
more advanced constancy assumptions. Figure 5.10 contrasts the best result using the BCA
(first order isotropic) with the lowest error provided by the CRT (coupled anisotropic). The
BCA does not allow to distinguish motion of the objects from the mostly steady background.

After highlighting that the CRT works best on Sintel data set, let us now discuss the
average results of the separate regularizers. Again, the tendency of the AEE is the same
regardless of the selected constancy assumption as presented in Table 5.7: (1) In all cases
anisotropic regularization performs worse than its isotropic counterpart (contrary to previous
Middlebury observations). (2) Second order anisotropic regularization always provides the
worst estimations. (3) Combined regularization yields better solutions than second order,
but worse than first order regularization. (4) The best results are achieved with coupled
regularization (except the GCA case, which is discussed later yet).

Considering individual results now, the common impression changes a little. As already
pointed out the BCA cannot handle shadows very well (see results of the Ambush7 sequence).
If we use the GCA or the CRT instead, low errors can be achieved in almost all sequences -
unless in the Market6 and the Temple3 sequence as considerably higher errors indicate. We
focus on these particular sequences now.
The Market6 sequence is a fast and complex scene with large egomotion of the camera. Such
a large egomotion typically cause many occlusions or rather unmatched regions, especially
at the image boundaries. Occlusions appear if a pixel of an object is visible in one of the
frames, but hidden in the other one due to objects covering other objects or objects simply
moving out of the camera view. Since correspondences cannot be found for occluded pixels,
the error will increase in such regions. This may explain the higher error compared to other
sequences. Another aspect of this sequence that we want to mention is the strong affine
motion caused by the egomotion of the camera. In fact, the Market6 sequence is the only
sequence where second order and combined regularization perform better than first order
regularization if the GCA or the CRT is applied (values colored orange). The visualizations
in Figure 5.11 and Figure 5.12 show, however, that the motion of the chicken is not estimated
correctly in any of the GCA results (neither in the CRT case having similar visualizations).
Additionally, occlusions cause bad estimations at the right and bottom left boundary.
Of all the chosen Sintel test images the Temple3 sequence features the greatest challenge for
motion estimation. Large motion of almost every object in the scene, changing illumination
and occlusion cause the highest error values in the entire data set. Without the Temple3
sequence GCA coupled regularization would even yield better average values than GCA first
order regularization. While first order and coupled regularization provide more accurate
estimations than second order and combined regularization, Figure 5.13 and Figure 5.14

indicate that their anisotropic variants lead to more appealing results in some areas (arm
and hair), but they also cause a large region with many errors (top right: dragon’s wing).
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Sintel
First

Order
Second
Order

Combined
Regularization

Coupled
Regularization

Iso Aniso Iso Aniso Iso Aniso Iso Aniso

B
C

A
A

EE

Alley1 0.1917 0.1684 0.2578 0.2572 0.3230 0.3148 0.1854 0.1688
Ambush7 7.0886 7.5790 8.7514 10.618 10.224 10.048 7.7128 8.1040
Bamboo2 0.7245 0.6734 0.8824 0.9137 0.8614 0.9278 0.6963 0.6830

Cave4 0.8558 0.7574 1.1320 1.1965 1.0838 1.1467 0.8269 0.7686
Market2 0.9670 0.8987 1.7854 1.7905 1.6686 1.3809 1.0183 0.9555
Market6 9.5056 9.6748 11.380 12.709 11.022 9.0353 7.1126 7.8038
Shaman2 0.1529 0.1429 0.2178 0.2088 0.2353 0.3154 0.1583 0.1476
Sleeping1 0.1032 0.1187 0.1297 0.1246 0.1326 0.1599 0.0941 0.0847
Temple3 21.876 22.526 35.629 34.988 27.848 31.937 23.271 24.525

B
C

A

AVG AEE 4.6072 4.7266 6.6851 6.9784 5.9332 6.1407 4.5640 4.8045
α 0.0126 0.0220 0.0157 0.0095 0.0346 0.0322 0.0096 0.0134
β − − − − 0.0090 0.0014 1.3287 2.9921

G
C

A
A

EE

Alley1 0.1521 0.1184 0.2317 0.1695 0.2350 0.4044 0.2167 0.1150
Ambush7 2.1075 2.3352 3.5848 4.7897 3.7365 4.1184 1.9609 1.4772
Bamboo2 0.7988 0.7018 0.8226 0.8302 0.8248 1.0052 0.7185 0.6846

Cave4 0.9218 0.8331 0.8902 0.8683 0.9156 1.1041 0.7536 0.7964
Market2 1.1021 0.8713 1.1507 1.0894 1.2863 1.4387 1.0064 0.8466
Market6 9.7516 10.114 7.9381 10.591 8.1467 7.8051 5.6014 8.1108
Shaman2 0.1220 0.1132 0.1992 0.1465 0.2066 0.3390 0.1173 0.1141
Sleeping1 0.0785 0.0988 0.1194 0.0857 0.1237 0.2034 0.0665 0.0581
Temple3 17.481 17.343 35.565 34.322 28.921 33.966 23.553 23.037

G
C

A

AVG AEE 3.6128 3.6143 5.6112 5.8768 4.9329 5.5983 3.7772 3.9155
α 0.0144 0.0255 0.0040 0.0044 0.0145 0.0208 0.0061 0.0133
β − − − − 0.0028 0.0009 0.6662 2.4672

C
R

T
A

EE

Alley1 0.1845 0.1826 0.5338 0.5645 0.4856 0.5213 0.1800 0.1562
Ambush7 1.9943 1.8338 2.7624 3.0104 2.6527 2.9034 1.9578 1.5426
Bamboo2 0.7449 0.7364 1.1076 1.1346 1.0569 1.0860 0.7379 0.6954

Cave4 0.7764 0.7214 1.2970 1.3405 1.2070 1.2636 0.8041 0.6479
Market2 0.8813 0.8847 1.4304 1.5059 1.3614 1.4237 0.8718 0.8333
Market6 8.5738 8.8461 6.9282 7.6647 6.8884 7.6072 7.2835 7.2343
Shaman2 0.1583 0.1554 0.4923 0.5036 0.4486 0.4628 0.1544 0.1331
Sleeping1 0.0957 0.1002 0.3776 0.3668 0.3370 0.3315 0.0810 0.0616
Temple3 15.434 17.661 20.035 20.143 19.577 19.222 15.684 17.224

C
R

T

AVG AEE 3.2048 3.4580 3.8849 4.0259 3.7794 3.8691 3.0838 3.1698
α 0.0065 0.0096 0.0008 0.0006 0.0205 0.0376 0.0070 0.0080
β − − − − 0.0008 0.0006 2.2779 5.7065

Table 5.7: Complete set of error data with corresponding weights achieved during evaluation
of the Sintel data set.
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5.2 Comparison of the Regularizers

Figure 5.10: Comparison between the BCA and the CRT using the Ambush7 sequence. First
row: Ground truth. Left to Right: BCA first order isotropic and CRT coupled
anisotropic regularization. Top to Bottom: Motion field and difference image.
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5 Experimental Evaluation

Figure 5.11: Results for the Market6 sequence achieved using the GCA. First row: Ground
truth. Left to Right: Isotropic and anisotropic regularization. Top to Bottom:
First order, second order, combined and coupled regularization.
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5.2 Comparison of the Regularizers

Figure 5.12: Differences to ground truth of corresponding regularizers using the GCA. First
row: No difference. Left to Right: Isotropic and anisotropic regularization. Top
to Bottom: First order, second order, combined and coupled regularization.
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5 Experimental Evaluation

Figure 5.13: Results for the Temple3 sequence achieved using the CRT. First row: Ground
truth. Left to Right: Isotropic and anisotropic regularization. Top to Bottom:
First order, second order, combined and coupled regularization.
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5.2 Comparison of the Regularizers

Figure 5.14: Differences to ground truth of corresponding regularizers using the CRT. First
row: No difference. Left to Right: Isotropic and anisotropic regularization. Top
to Bottom: First order, second order, combined and coupled regularization.
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5 Experimental Evaluation

5.2.3 Results - KITTI

The KITTI data set contains test images taken in the real world that are now used in our last
evaluation. These images are captured in a realistic application scenario, namely autonomous
driving. Thus, they make the most naturalistic demands to optical flow estimation. To show
the impact of the constancy assumptions, sequence 29 is a good example. One half of this
sequence is illuminated by bright sunlight, the other half is covered in dark shadows. We
choose the regularizer that gives the best result for each constancy assumption based on
the error listing in Table 5.8 and compare them in Figure 5.15. One first observation that
we make is that in case of the GCA and the CRT best results are achieved with combined
regularization. The advantage of regularizers incorporating second order derivatives is not
surprising since a camera mounted on a driving car is nothing else than egomotion of the
camera and hence affine solutions are superior to first order regularization. Using the CRT
for sequence 29, the error of first order regularization is even reduced by a factor of more
than 2 in the combined case. The visualization also shows that CRT combined regularization
creates some artifacts in the upper half of the image, but they are not covered by the error
measurement since KITTI ground truth images only have a density of approximately 50%.

Let us now discuss the average results given by Table 5.8 in detail: (1) Employing the
same regularizers, the GCA always achieves lower errors than the BCA, and the CRT
further improves the results of the GCA (except first order regularization). (2) Anisotropic
regularization decreases the error in 7 out of 12 cases. (3) While the best results per
constancy assumption are always obtained with coupled regularization, the worst results are
inconsistent as the red colored values indicate. (4) Second order and combined regularization
work better with the CRT applied.

Results for the individual sequences further reveal, that the CRT not only yields the best
average value with most of the regularizers, it is also less dependent on anisotropic regular-
ization. In fact, the best AEE is produced by CRT coupled isotropic regularization.
But let us look on sequence 46 now. The capturing camera stands still and only one other
vehicle is moving through the scenery (translational motion). BCA and GCA first order as
well as coupled regularization need their anisotropic variant to produce good results here
(orange errors). This is not the case with the CRT. Even CRT second order and combined
regularization achieve relatively good results in this sequence. Figure 5.16, Figure 5.17,
Figure 5.18 and Figure 5.19 show a comparison between regularization with the GCA or the
CRT applied for sequence 46. While the CRT produces more artifacts in the sky compared
to the GCA, the motion of the car is visible for all regularizers. Nevertheless, the best result
is achieved by GCA coupled anisotropic regularization.
To show an example where anisotropic regularization always deteriorates the estimation
(compared to its isotropic counterpart), we visualize results for sequence 120 in Figure 5.20

and Figure 5.21. Optical flow estimation is based on the GCA here. Similarly to the results
of sequence 46 second order and combined regularization suffer from artifacts in the bright
sky, while first order and coupled regularization produce more stable results. Again, these
artifacts are not counted towards the error, since the ground truth does not provide any data
in this region.
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5.2 Comparison of the Regularizers

KITTI
First

Order
Second
Order

Combined
Regularization

Coupled
Regularization

Iso Aniso Iso Aniso Iso Aniso Iso Aniso

B
C

A
A

EE

14 0.9226 0.8970 1.4538 2.5870 1.7582 2.6027 0.8589 0.8459
29 24.683 25.062 23.706 28.204 26.953 28.384 23.610 23.482
46 10.337 2.3902 14.761 13.513 12.716 13.773 11.203 2.4722
86 5.7883 3.9429 11.781 7.2031 7.0265 7.1969 4.6096 3.9909
120 16.949 15.943 11.209 13.431 11.461 13.454 12.168 11.838
144 1.5696 1.9146 1.7597 3.7090 2.6504 3.7534 1.0975 1.1182
171 3.1978 2.7850 3.2434 4.7188 3.6722 4.7343 2.0374 2.2820

B
C

A

AVG AEE 9.0638 7.5622 9.7020 10.481 9.4625 10.557 7.9407 6.5755
α 0.0046 0.0078 0.0021 0.0003 0.0437 0.0294 0.0046 0.0077
β − − − − 0.0006 0.0002 0.9210 0.9115

G
C

A
A

EE

14 0.8862 0.9738 1.7789 2.1004 1.7135 2.0511 1.1297 0.8315
29 17.704 16.753 14.731 15.413 13.243 15.483 14.297 15.002
46 7.8856 2.7075 17.234 17.459 17.151 17.257 17.041 2.3396
86 7.6118 5.8279 7.2360 7.5679 7.1564 6.8249 5.3009 4.7692
120 11.418 12.124 6.1870 9.3711 6.2641 9.2110 6.6339 9.1047
144 0.8633 0.9651 1.6534 1.9186 1.5834 1.8635 0.5001 0.5359
171 1.9194 2.0291 2.1879 2.6202 2.1150 2.4427 1.0972 1.2598

G
C

A

AVG AEE 6.8982 5.9114 7.2869 8.0643 7.0323 7.8762 6.5714 4.8346
α 0.0047 0.0071 0.0008 0.0005 0.0240 0.0133 0.0102 0.0082
β − − − − 0.0006 0.0004 1.0864 1.0707

C
R

T
A

EE

14 1.8566 1.5337 2.5683 2.6056 2.4147 2.5710 1.0342 1.0326
29 14.257 17.324 6.7378 6.6676 6.5256 6.7697 8.3150 8.7290
46 6.0500 4.4396 5.8605 5.4616 5.6998 5.3263 3.8447 4.1267
86 9.9069 6.5300 10.011 10.111 9.9541 9.9331 7.1974 5.1656
120 12.451 11.934 8.1360 8.3602 7.9692 8.2484 7.3349 8.7914
144 4.2597 3.5567 6.9041 6.1198 6.5938 5.9449 1.8827 2.6168
171 4.1051 2.9994 3.7772 3.6762 3.5003 3.6160 1.8967 1.7876

C
R

T

AVG AEE 7.5551 6.9025 6.2850 6.1431 6.0939 6.0585 4.5008 4.6071
α 0.0010 0.0024 0.0001 0.0001 0.0554 0.0135 0.0036 0.0044
β − − − − 0.0001 0.0001 0.3581 0.4199

Table 5.8: Complete set of error data with corresponding weights achieved during evaluation
of the KITTI data set.
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5 Experimental Evaluation

Figure 5.15: Comparison between the BCA, the GCA and the CRT using sequence 29. First
row: Ground truth. Left to Right: Motion field and difference image. Top to
Bottom: BCA coupled anisotropic, GCA combined isotropic and CRT combined
isotropic regularization.
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5.2 Comparison of the Regularizers

Figure 5.16: Results for sequence 46 using different regularizers and the GCA. First row:
Ground truth. Left to Right: Isotropic and anisotropic regularization. Top to
Bottom: First order, second order, combined and coupled regularization.
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5 Experimental Evaluation

Figure 5.17: Results for sequence 46 using different regularizers and the CRT. First row:
Ground truth. Left to Right: Isotropic and anisotropic regularization. Top to
Bottom: First order, second order, combined and coupled regularization.
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5.2 Comparison of the Regularizers

Figure 5.18: Differences to ground truth of corresponding regularizers using the GCA. First
row: No difference. Left to Right: Isotropic and anisotropic regularization. Top
to Bottom: First order, second order, combined and coupled regularization.
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5 Experimental Evaluation

Figure 5.19: Differences to ground truth of corresponding regularizers using the CRT. First
row: No difference. Left to Right: Isotropic and anisotropic regularization. Top
to Bottom: First order, second order, combined and coupled regularization.
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5.2 Comparison of the Regularizers

Figure 5.20: Results for sequence 120 using different regularizers and the GCA. First row:
Ground truth. Left to Right: Isotropic and anisotropic regularization. Top to
Bottom: First order, second order, combined and coupled regularization.
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5 Experimental Evaluation

Figure 5.21: Differences to ground truth of corresponding regularizers using the GCA. First
row: No difference. Left to Right: Isotropic and anisotropic regularization. Top
to Bottom: First order, second order, combined and coupled regularization.
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5.3 Summary

5.3 Summary

Because the eight different regularizers have been evaluated with all the selected test images
from the data sets at this point, we will now summarize some final insights gathered through
our results.

Let us first focus on the different constancy assumptions with respective AEEs listed
in Table 5.6, Table 5.7 and Table 5.8. With the Middlebury test images still producing
competing estimations, the BCA was not capable to provide good results under complex
lighting conditions as certain sequences from the Sintel or the KITTI data set showed. In
average the CRT achieved more accurate and stable results, but in individual cases the GCA
even outperformed the CRT. It is quite difficult to choose the GCA or the CRT for a certain
scene. If someone, on the one hand, is interested in the best average performance possible,
we recommend using the CRT, but if computation speed plays a major role on the other
hand, we suggest the GCA as a good compromise (runtime overview given in Table 5.9).

We now discuss the results of the different regularizers in detail.
First order regularization is yet a simple, but still very effective technique to regularize an
unknown flow field. Using the Middlebury or the Sintel test images its average errors were
very close to best results for each constancy assumption, if not even the best result achieved
in total (Middlebury GCA). But the Market6 sequence of the Sintel data set already hinted
at a drawback of using first order derivatives. Scenes with strong affine motion caused by
fast egomotion of the camera make first order regularization yield worse results than usual.
This behavior was confirmed during evaluation of the KITTI data set (sequence 29 and 120).
Regarding the difference between first order isotropic and anisotropic regularization, only
sequences from the KITTI data set showed a noticeable improvement of estimation quality
with direction-dependent smoothing. The results of the other data sets were around the
same level or even worsened by anisotropic regularization.
While first order regularization gave bad results in scenes with strong affine motion, second
order regularization actually benefited only from these particular scenes. In fact, the worst
results of the Middlebury data set with almost no affine motion present were given by
second order regularization (except the GCA case, where combined regularization produced
virtually the same results). The same behavior can be observed for the Sintel data set. There
even the anisotropic approach achieved the worst average AEEs. Only during the last evalu-
ation based on the KITTI data set this changed a little. With the CRT applied second order
regularization achieved a lower average error than first order regularization for the first time.
We expect second order regularization to give even better results if the selected data set
contained more sequences with a driving car since under such circumstances affine motion
is present. In the realistic scenario of autonomous driving a moving vehicle should usually
be the norm. A real advantage of second order anisotropic over isotropic regularization
cannot be determined. In many cases the anisotropic variant even gave worse results.
Observations for combined regularization were quite unexpected. This technique reaches
very similar results as its second order isotropic and anisotropic counterparts with slightly
lower average AEEs for combined regularization in most of the cases (except Middlebury
GCA and KITTI BCA). Here, the following rule applies: If second order anisotropic regu-
larization yields a better AEE in average than its isotropic variant, combined anisotropic
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5 Experimental Evaluation

regularization also gives a better AEE in average than combined isotropic regularization with
the combined AEE being lower than the second order AEE and the other way around as well
(isotropic better than anisotropic). But first order regularization usually gave better results
yet - except in the case of the special sequences exhibiting affine motion. Visualizations also
reveal very similar results between second order and combined regularization.
The best average results per constancy assumption were achieved with coupled regulariza-
tion almost every time. Only the Middlebury and Sintel images using the GCA favored first
order regularization. Coupled regularization can handle scenes that contain only constant
motion, but it is also capable to produce good results with affine motion. In single cases
first order, second order or combined regularization can yield a more accurate estimation,
but coupled regularization wins in average. Together with the CRT it achieves the best total
results in its isotropic variant for the Sintel and KITTI test images. Again, a clear advantage
of anisotropic regularization over isotropic regularization cannot be demonstrated.

Runtime. So far we only concentrated on quality of estimation in terms of error metrics
and optimized parameters to reduce the difference to a ground truth image. But even the
best technique is affected if the result takes too long to be computed. Hence, we end this
chapter with some final words on the runtime of our regularizers.
To show the influence of image size we compare the Venus sequence having the smallest
images (159600 pixel) with sequence 120 since the KITTI data set provides the largest images
(465750 pixel). This corresponds to an increase of pixels by a factor of approximately 3. The
time that is necessary to compute the optical flow fields is listed in Table 5.9. We can see
that anisotropic regularization takes longer as its isotropic counterpart in each case. While
the difference might be unrecognizable first, it increases with each following regularization
technique. First and second order regularization are roughly at the same level, followed by
combined regularization and coupled regularization takes the most time. Time is especially
then increased if the CRT is applied. This is not surprising since we need to compute a
neighborhood with many constraints for each pixel here. Between the Venus sequence and
sequence 120 the necessary amount of time is also roughly increased by a factor of 3.

Runtime
First

Order
Second
Order

Combined
Regularization

Coupled
Regularization

Iso Aniso Iso Aniso Iso Aniso Iso Aniso

V
en

us

BCA 4.1 4.7 4.6 6.5 7.8 9.8 11.0 17.9
GCA 4.2 4.7 4.8 6.8 7.9 10.1 11.6 18.3
CRT 13.1 13.5 13.7 15.0 16.5 18.4 20.5 27.4

1
2
0

BCA 10.9 12.3 12.1 16.7 20.0 26.1 29.8 52.2
GCA 12.1 13.0 13.4 17.9 21.8 27.1 31.2 53.3
CRT 44.4 45.6 45.6 49.7 54.8 60.3 65.3 87.1

Table 5.9: Runtime in seconds for each regularizer on two different image sizes (Venus
sequence with 420× 380 pixel and sequence 120 with 1242× 375 pixel).
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6 Conclusion

Regularizers of different order in an isotropic as well as an anisotropic setting for variational
motion estimation have been the main topic in this thesis. We gave an introduction to data
terms, proposed ideas to regularize an unknown solution, explained various extensions and
brought all these things together in a revealing comparison.
Before we were able to discuss details of optical flow estimation, some foundations and
basic notations were clarified in Chapter 2.
Subsequently, an introduction to variational methods has been given in Chapter 3. We
discussed the several parts of variational motion estimation, namely data term and regular-
ization (smoothness) term, and their influence on the final result. With respect to the data
term we started with different constancy assumptions and incorporated some modifications
as color images, normalization and different penalizers to further increase accuracy. Also a
suitable minimization strategy was derived to solve the problem numerically. Regarding the
regularization term we only gave a brief introduction since an in-depth explanation followed
in Chapter 4.
Derivatives of different order represent different kinds of motion. This was the main state-
ment that our considerations based upon in this chapter. Is it not a good idea to connect
the various derivatives in some way to take these motion types into account during regu-
larization? Investigating the impact of the derivatives was of great interest and hence we
first introduced regularization techniques with only first or second order derivatives and
secondly came up with two different concepts to make the connection between them. Each
of the initial isotropic regularizers was modified to enable direction-dependent smoothing
resulting in sharper motion edges.
Finally, suitable data sets were needed to give a realistic overview of performance. Therefore,
we chose three prominent data sets and selected individual test sequences from each of them.
In Chapter 5, these sequences were presented - followed by the results of the evaluation.

The evaluation shows that regularization with first and second order derivatives is highly
beneficial in a variational optical flow context. First order regularization can achieve good
results in many test sequences already, but especially the realistic KITTI data set with
numerous scenes containing affine motion unfolds the limits of this technique. In these
scenes second order regularization performs better, but fails to reach the errors of the first
order one in other scenes in contrast. Combined regularization gives error rates rather
similar to the second order method, but coupled regularization showed that connecting
first and second order derivatives can actually yield the most accurate estimations. Regard-
ing isotropic versus anisotropic regularization, a clear advantage of direction-dependent
smoothing cannot be determined. Take the KITTI benchmark for example: Using the BCA
or the GCA, coupled anisotropic regularization gave the best result. But the best result in
total was achieved by the CRT coupled isotropic approach.
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6 Conclusion

Outlook. Our proposed methods realizing regularization of different order still offer some
room for improvements which are mentioned now.

• Occlusions: Experiments showed that scenes with large or affine motion often suffer
from occlusions. In such areas correspondences cannot be found accurately which
ultimately increases errors there. Therefore, occlusion handling would be reasonable.

• Multi-frame optical flow: So far only two images have been used to estimate motion
fields. Since motion fields of consecutive image pairs are usually coherent, incorporat-
ing multiple frames and thus allowing to temporarily regularize multiple solutions
along motion trajectories [46] can improve accuracy.

• Separate robustification: During the introduction of anisotropy to second order reg-
ularization we applied a joint robustification. To increase the degree of anisotropy
even further second order derivatives or auxiliary vectors in the combined case can be
penalized separately with different combinations of the eigenvectors extracted from
the regularization tensor.
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A Regularization Stencils

A.1 First Order Isotropic

i− 1 i i + 1
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Table A.1: Stencil for a first order isotropic regularizer.

A.2 First Order Anisotropic
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Table A.2: Nonnegative stencil [42] for a first order anisotropic regularizer.
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A Regularization Stencils

A.3 Second Order Isotropic
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Table A.3: Stencil for a second order isotropic regularizer.
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A.4 Second Order Anisotropic

A.4 Second Order Anisotropic
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h3 y
(b

i−
1,

j−
1+

b i
,j
)

1
4h

3 x
h y
(b

i+
1,

j−
b i
−

1,
j

−
b i
+

1,
j−

1+
b i
−

1,
j−

1)

−
2 h4 y
(c

i,j
+

c i
,j−

1)

1
2h

3 x
h y
(b

i,j
+

b i
+

1,
j−

1)

+
1

2h
x

h3 y
(b

i+
1,

j−
1+

b i
,j
)

−
1

4h
3 x

h y

(b
i+

1,
j+

b i
+

1,
j−

1)

j

1 h4 x
(a

i−
1,

j)

−
1

16
h2 x

h2 y
(c

i−
1,

j+
1+

c i
−

1,
j−

1

+
a i
−

1,
j+

1+
a i
−

1,
j−

1)

−
2 h4 x
(a

i,j
+

a i
−

1,
j)

+
1

4h
x

h3 y
(b

i−
1,

j−
1−

b i
−

1,
j+

1

+
b i

,j+
1−

b i
,j−

1)

1 h4 x
(a

i+
1,

j+
4a

i,j
+

a i
−

1,
j)

+
1

16
h2 x

h2 y
(c

i+
1,

j+
1+

c i
+

1,
j−

1

+
c i
−

1,
j+

1+
c i
−

1,
j−

1

+
a i
+

1,
j+

1+
a i
+

1,
j−

1

+
a i
−

1,
j+

1+
a i
−

1,
j−

1)

+
1 h4 y
(c

i,j
+

1+
4c

i,j
+

c i
,j−

1)

−
2 h4 x
(a

i+
1,

j+
a i

,j
)

+
1

4h
x

h3 y
(b

i+
1,

j+
1−

b i
+

1,
j−

1

−
b i

,j+
1+

b i
,j−

1)

1 h4 x
(a

i+
1,

j)

−
1

16
h2 x

h2 y
(c

i+
1,

j+
1+

c i
+

1,
j−

1

+
a i
+

1,
j+

1+
a i
+

1,
j−

1)

j+
1

−
1

4h
3 x

h y

(b
i−

1,
j+

b i
−

1,
j+

1)

1
2h

3 x
h y
(b

i,j
+

b i
−

1,
j+

1)

+
1

2h
x

h3 y
(b

i−
1,

j+
1+

b i
,j
)

1
4h

3 x
h y
(b

i−
1,

j−
b i
+

1,
j

+
b i
+

1,
j+

1−
b i
−

1,
j+

1)

−
2 h4 y
(c

i,j
+

1+
c i

,j
)

−
1

2h
3 x

h y
(b

i,j
+

b i
+

1,
j+

1)

−
1

2h
x

h3 y
(b

i+
1,

j+
1+

b i
,j
)

1
4h

3 x
h y

(b
i+

1,
j+

b i
+

1,
j+

1)

j+
2

1
16

h2 x
h2 y

(c
i−

1,
j+

1+
a i
−

1,
j+

1)

−
1

4h
x

h3 y

(b
i−

1,
j+

1+
b i

,j+
1)

−
1

16
h2 x

h2 y
(c

i+
1,

j+
1+

c i
−

1,
j+

1

+
a i
+

1,
j+

1+
a i
−

1,
j+

1)

+
1 h4 y
(c

i,j
+

1)

1
4h

x
h3 y

(b
i+

1,
j+

1+
b i

,j+
1)

1
16

h2 x
h2 y

(c
i+

1,
j+

1+
a i
+

1,
j+

1)

Table A.4: Standard stencil for a second order anisotropic regularizer.
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A Regularization Stencils

A.5 Coupled Regularization Isotropic

i− 1 i i + 1

j− 1 1
2h2

y
(Ψ′i,j + Ψ′i,j−1)

j 1
2h2

x
(Ψ′i,j + Ψ′i−1,j)

− 1
2h2

x
(Ψ′i+1,j + 2Ψ′i,j + Ψ′i−1,j)

− 1
2h2

y
(Ψ′i,j+1 + 2Ψ′i,j + Ψ′i,j−1)

1
2h2

x
(Ψ′i,j + Ψ′i+1,j)

j + 1 1
2h2

y
(Ψ′i,j + Ψ′i,j+1)

j− 1

j 1
4hx

(Ψ′i,j + Ψ′i−1,j) − 1
4hx

(Ψ′i+1,j + Ψ′i,j)

j + 1

j− 1 1
4hy

(Ψ′i,j + Ψ′i,j−1)

j

j + 1 − 1
4hy

(Ψ′i,j+1 + Ψ′i,j)

Table A.5: Stencils for a coupled isotropic regularizer. Top: Stencil used with u or v. Center:
Stencil used with p1 or q1. Bottom: Stencil used with p2 or q2.
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A.6 Coupled Regularization Anisotropic

A.6 Coupled Regularization Anisotropic

i− 1 i i + 1

j− 1 1
4hxhy

(bi−1,j + bi,j−1)
1

2h2
y
(ci,j + ci,j−1) − 1

4hxhy
(bi+1,j + bi,j−1)

j 1
2h2

x
(ai,j + ai−1,j)

− 1
2h2

x
(ai+1,j + 2ai,j + ai−1,j)

− 1
2h2

y
(ci,j+1 + 2ci,j + ci,j−1)

1
2h2

x
(ai,j + ai+1,j)

j + 1 − 1
4hxhy

(bi−1,j + bi,j+1)
1

2h2
y
(ci,j + ci,j+1)

1
4hxhy

(bi+1,j + bi,j+1)

j− 1 1
2hy

(bi,j−1)

j 1
4hx

(ai,j + ai−1,j) − 1
4hx

(ai+1,j + ai,j)

j + 1 − 1
2hy

(bi,j+1)

j− 1 1
4hy

(ci,j + ci,j−1)

j 1
2hx

(bi−1,j) − 1
2hx

(bi+1,j)

j + 1 − 1
4hy

(ci,j+1 + ci,j)

Table A.6: Standard stencils for a coupled anisotropic regularizer. Top: Stencil used with u
or v. Center: Stencil used with p1 or q1. Bottom: Stencil used with p2 or q2.
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B Derivations

B.1 Second Order Isotropic Discretization

We employ central differences as described in Section 2.3 to approximate the derivatives of
second order isotropic regularizers. For a clear derivation we set Ψ′ := Ψ′(‖Hu‖2

F + ‖Hv‖2
F).

div2

(
D2,I ·

(
∇µx
∇µy

))
= ∂xx

(
Ψ′ · µxx

)
+ 2 · ∂xy

(
Ψ′ · µxy

)
+ ∂yy

(
Ψ′ · µyy

)
∂xx
(
Ψ′ · µxx

)
≈ 1

h2
x
·
((

Ψ′ · µxx
)

i+1,j − 2
(
Ψ′ · µxx

)
i,j +

(
Ψ′ · µxx

)
i−1,j

)
≈ 1

h2
x
· 1

h2
x
·
(

Ψ′i+1,j
(
µi+2,j − 2µi+1,j + µi,j

)
− 2Ψ′i,j

(
µi+1,j − 2µi,j + µi−1,j

)
+ Ψ′i−1,j

(
µi,j − 2µi−1,j + µi−2,j

))
2 · ∂xy

(
Ψ′ · µxy

)
≈ 2

4hxhy
·
( (

Ψ′ · µxy
)

i+1,j+1 −
(
Ψ′ · µxy

)
i+1,j−1

−
(
Ψ′ · µxy

)
i−1,j+1 +

(
Ψ′ · µxy

)
i−1,j−1

)
≈ 2

4hxhy
· 1

4hxhy
·
(

Ψ′i+1,j+1
(
µi+2,j+2 − µi+2,j − µi,j+2 + µi,j

)
−Ψ′i+1,j−1

(
µi+2,j − µi+2,j−2 − µi,j + µi,j−2

)
−Ψ′i−1,j+1

(
µi,j+2 − µi,j − µi−2,j+2 + µi−2,j

)
+ Ψ′i−1,j−1

(
µi,j − µi,j−2 − µi−2,j + µi−2,j−2

))
∂yy
(
Ψ′ · µyy

)
≈ 1

h2
y

((
Ψ′ · µyy

)
i,j+1 − 2

(
Ψ′ · µyy

)
i,j +

(
Ψ′ · µyy

)
i,j−1

)
≈ 1

h2
y
· 1

h2
y
·
(

Ψ′i,j+1
(
µi,j+2 − 2µi,j+1 + µi,j

)
− 2Ψ′i,j

(
µi,j+1 − 2µi,j + µi,j−1

)
+ Ψ′i,j−1

(
µi,j − 2µi,j−1 + µi,j−2

))
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B Derivations

B.2 Second Order Anisotropic Discretization

The same central differences scheme and notation are used as before. In addition, we assign

a := r2
11Ψ′1 + r2

21Ψ′2,
b := r11r12Ψ′1 + r21r22Ψ′2,

c := r2
12Ψ′1 + r2

22Ψ′2,

D2,A :=


a b 0 0
b c 0 0
0 0 a b
0 0 b c

 .

Then, the discretization for the second order anisotropic regularizer looks as follows:

div2

(
D2,A ·

(
∇µx
∇µy

))
= ∂xx

(
a · µxx + b · µxy

)
+ ∂xy

(
b · µxx + c · µxy

)
+ ∂xy

(
a · µxy + b · µyy

)
+ ∂yy

(
b · µxy + c · µyy

)
∂xx (a · µxx) ≈

1
h2

x
·
(
(a · µxx)i+1,j − 2 (a · µxx)i,j + (a · µxx)i−1,j

)
≈ 1

h2
x
· 1

h2
x
·
(

ai+1,j
(
µi+2,j − 2µi+1,j + µi,j

)
− 2ai,j

(
µi+1,j − 2µi,j + µi−1,j

)
+ ai−1,j

(
µi,j − 2µi−1,j + µi−2,j

))
∂xx
(
b · µxy

)
≈ 1

h2
x
·
((

b · µxy
)

i+1,j − 2
(
b · µxy

)
i,j +

(
b · µxy

)
i−1,j

)
≈ 1

h2
x
· 1

4hxhy
·
(

bi+1,j
(
µi+2,j+1 − µi+2,j−1 − µi,j+1 + µi,j−1

)
− 2bi,j

(
µi+1,j+1 − µi+1,j−1 − µi−1,j+1 + µi−1,j−1

)
+ bi−1,j

(
µi,j+1 − µi,j−1 − µi−2,j+1 + µi−2,j−1

))
∂xy (b · µxx) ≈

1
4hxhy

·
(

(b · µxx)i+1,j+1 − (b · µxx)i+1,j−1

− (b · µxx)i−1,j+1 + (b · µxx)i−1,j−1

)
≈ 1

4hxhy
· 1

h2
x
·
(

bi+1,j+1
(
µi+2,j+1 − 2µi+1,j+1 + µi,j+1

)
− bi+1,j−1

(
µi+2,j−1 − 2µi+1,j−1 + µi,j−1

)
− bi−1,j+1

(
µi,j+1 − 2µi−1,j+1 + µi−2,j+1

)
+ bi−1,j−1

(
µi,j−1 − 2µi−1,j−1 + µi−2,j−1

))
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B.2 Second Order Anisotropic Discretization

∂xy
(
c · µxy

)
≈ 1

4hxhy
·
( (

c · µxy
)

i+1,j+1 −
(
c · µxy

)
i+1,j−1

−
(
c · µxy

)
i−1,j+1 +

(
c · µxy

)
i−1,j−1

)
≈ 1

4hxhy
· 1

4hxhy
·
(

ci+1,j+1
(
µi+2,j+2 − µi+2,j − µi,j+2 + µi,j

)
− ci+1,j−1

(
µi+2,j − µi+2,j−2 − µi,j + µi,j−2

)
− ci−1,j+1

(
µi,j+2 − µi,j − µi−2,j+2 + µi−2,j

)
+ ci−1,j−1

(
µi,j − µi,j−2 − µi−2,j + µi−2,j−2

))
∂xy
(
a · µxy

)
≈ 1

4hxhy
·
( (

a · µxy
)

i+1,j+1 −
(
a · µxy

)
i+1,j−1

−
(
a · µxy

)
i−1,j+1 +

(
a · µxy

)
i−1,j−1

)
≈ 1

4hxhy
· 1

4hxhy
·
(

ai+1,j+1
(
µi+2,j+2 − µi+2,j − µi,j+2 + µi,j

)
− ai+1,j−1

(
µi+2,j − µi+2,j−2 − µi,j + µi,j−2

)
− ai−1,j+1

(
µi,j+2 − µi,j − µi−2,j+2 + µi−2,j

)
+ ai−1,j−1

(
µi,j − µi,j−2 − µi−2,j + µi−2,j−2

))
∂xy
(
b · µyy

)
≈ 1

4hxhy
·
( (

b · µyy
)

i+1,j+1 −
(
b · µyy

)
i+1,j−1

−
(
b · µyy

)
i−1,j+1 +

(
b · µyy

)
i−1,j−1

)
≈ 1

4hxhy
· 1

h2
y
·
(

bi+1,j+1
(
µi+1,j+2 − 2µi+1,j+1 + µi+1,j

)
− bi+1,j−1

(
µi+1,j − 2µi+1,j−1 + µi+1,j−2

)
− bi−1,j+1

(
µi−1,j+2 − 2µi−1,j+1 + µi−1,j

)
+ bi−1,j−1

(
µi−1,j − 2µi−1,j−1 + µi−1,j−2

))
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B Derivations

∂yy
(
b · µxy

)
≈ 1

h2
y
·
((

b · µxy
)

i,j+1 − 2
(
b · µxy

)
i,j +

(
b · µxy

)
i,j−1

)
≈ 1

h2
y
· 1

4hxhy
·
(

bi,j+1
(
µi+1,j+2 − µi+1,j − µi−1,j+2 + µi−1,j

)
− 2bi,j

(
µi+1,j+1 − µi+1,j−1 − µi−1,j+1 + µi−1,j−1

)
+ bi,j−1

(
µi+1,j − µi+1,j−2 − µi−1,j + µi−1,j−2

))
∂yy
(
c · µyy

)
≈ 1

h2
y
·
((

c · µyy
)

i,j+1 − 2
(
c · µyy

)
i,j +

(
c · µyy

)
i,j−1

)
≈ 1

h2
y
· 1

h2
y
·
(

ci,j+1
(
µi,j+2 − 2µi,j+1 + µi,j

)
− 2ci,j

(
µi,j+1 − 2µi,j + µi,j−1

)
+ ci,j−1

(
µi,j − 2µi,j−1 + µi,j−2

))
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B.3 Coupled Isotropic Discretization

B.3 Coupled Isotropic Discretization

A nested central difference scheme with half the step sizes is used in the following to
discretize the divergence expression with Ψ′ := Ψ′(|∇u− p|2 + |∇v− q|2).

div (DC,I · (∇u− p)) = ∂x
(
Ψ′ · (ux − p1)

)
+ ∂y

(
Ψ′ ·

(
uy − p2

))
∂x
(
Ψ′ · (ux − p1)

)
≈ 2 · 1

2hx
·
((

Ψ′ · (ux − p1)
)

i+ 1
2 ,j −

(
Ψ′ · (ux − p1)

)
i− 1

2 ,j

)
≈ 2 · 1

2hx
·
(

Ψ′i+1,j + Ψ′i,j
2

·
(

ui+1,j − ui,j

2 1
2 hx

−
(p1)i+1,j + (p1)i,j

2

))

− 2 · 1
2hx
·
(

Ψ′i,j + Ψ′i−1,j

2
·
(

ui,j − ui−1,j

2 1
2 hx

−
(p1)i,j + (p1)i−1,j

2

))

=
Ψ′i+1,j + Ψ′i,j

2h2
x

·
(
ui+1,j − ui,j

)
−

Ψ′i+1,j + Ψ′i,j
4hx

·
(
(p1)i+1,j + (p1)i,j

)
−

Ψ′i,j + Ψ′i−1,j

2h2
x

·
(
ui,j − ui−1,j

)
+

Ψ′i,j + Ψ′i−1,j

4hx
·
(
(p1)i,j + (p1)i−1,j

)
∂y
(
Ψ′ ·

(
uy − p2

))
≈ 2 · 1

2hy
·
((

Ψ′ ·
(
uy − p2

))
i,j+ 1

2
−
(
Ψ′ ·

(
uy − p2

))
i,j− 1

2

)
≈ 2 · 1

2hy
·
(

Ψ′i,j+1 + Ψ′i,j
2

·
(

ui,j+1 − ui,j

2 1
2 hy

−
(p2)i,j+1 + (p2)i,j

2

))

− 2 · 1
2hy
·
(

Ψ′i,j + Ψ′i,j−1

2
·
(

ui,j − ui,j−1

2 1
2 hy

−
(p2)i,j + (p2)i,j−1

2

))

=
Ψ′i,j+1 + Ψ′i,j

2h2
y

·
(
ui,j+1 − ui,j

)
−

Ψ′i,j+1 + Ψ′i,j
4hy

·
(
(p2)i,j+1 + (p2)i,j

)
−

Ψ′i,j + Ψ′i,j−1

2h2
y

·
(
ui,j − ui,j−1

)
+

Ψ′i,j + Ψ′i,j−1

4hy
·
(
(p2)i,j + (p2)i,j−1

)
The same discretization scheme can be applied to div (DC,I · (∇v− q)).
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B Derivations

B.4 Coupled Anisotropic Discretization

Again nested central differences are used to approximate the derivatives of the divergence
expression using the assignment

a := r2
11Ψ′1 + r2

21Ψ′2,
b := r11r12Ψ′1 + r21r22Ψ′2,

c := r2
12Ψ′1 + r2

22Ψ′2,

DC,A :=
(

a b
b c

)

where Ψ′? := Ψ′?((r>? (∇u− p))2 + (r>? (∇v− q))2) and ? ∈ {1, 2}.

div (DC,A · (∇u− p)) = ∂x
(
a · (ux − p1) + b ·

(
uy − p2

))
+ ∂y

(
b · (ux − p1) + c ·

(
uy − p2

))
The derivatives ∂x(a · (ux − p1)) and ∂y(c · (uy − p2)) can be determined as in Section B.3.

∂x
(
b ·
(
uy − p2

))
≈ 1

2hx
·
((

b ·
(
uy − p2

))
i+1,j −

(
b ·
(
uy − p2

))
i−1,j

)
≈ 1

2hx
·
(

bi+1,j ·
(

ui+1,j+1 − ui+1,j−1

2hy
− (p2)i+1,j

))
− 1

2hx
·
(

bi−1,j ·
(

ui−1,j+1 − ui−1,j−1

2hy
− (p2)i−1,j

))
=

bi+1,j

4hxhy
·
(
ui+1,j+1 − ui+1,j−1

)
−

bi+1,j

2hx
· (p2)i+1,j

−
bi−1,j

4hxhy
·
(
ui−1,j+1 − ui−1,j−1

)
+

bi−1,j

2hx
· (p2)i−1,j

∂y (b · (ux − p1)) ≈
1

2hy
·
(
(b · (ux − p1))i,j+1 − (b · (ux − p1))i,j−1

)
≈ 1

2hy
·
(

bi,j+1 ·
(

ui+1,j+1 − ui−1,j+1

2hx
− (p1)i,j+1

))
− 1

2hy
·
(

bi,j−1 ·
(

ui+1,j−1 − ui−1,j−1

2hx
− (p1)i,j−1

))
=

bi,j+1

4hxhy
·
(
ui+1,j+1 − ui−1,j+1

)
−

bi,j+1

2hy
· (p1)i,j+1

−
bi,j−1

4hxhy
·
(
ui+1,j−1 − ui−1,j−1

)
+

bi,j−1

2hy
· (p1)i,j−1

The same discretization scheme can be applied to div (DC,A · (∇v− q)).
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