
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Automated discovery and
binding of IoT devices

Alexandros Fouskas

Course of Study: Informatik

Examiner: PD Dr. Holger Schwarz

Supervisor: Ana Cristina Franco da Silva, M.Sc.,
Dipl.-Inf. Pascal Hirmer

Commenced: May 3, 2017

Completed: November 3, 2017

CR-Classification: C.2.2, C.2.3

Abstract

The emerging Internet of Things (IoT) leads to new challenges in registering and binding
billions of devices. Performed manually, the necessary tasks are time-consuming and
error prone, which brings the need for automation. The Resource Management Platform
(RMP) provides automated services from the binding of devices to the provisioning of their
data. However, the devices need to be registered manually. Thus, this thesis extends the
RMP with an automated discovery service, which allows the RMP to discover and register
devices using different communication technologies, like WiFi or Bluetooth. Moreover,
the work includes a monitoring mechanism, which enables the RMP to automatically
deregister unavailable devices. Furthermore, modern smartphones have extended sensing
capabilities reaching from positioning to environmental parameters. However, mobile
operating systems do not allow access to the internal sensors from outside the phone. Thus,
this work describes an Android application, which can be used to integrate smartphones
into the RMP.

Kurzfassung

Das Registrieren und Anbinden von Geräten sind zentrale Aufgaben im aufkommenden
Internet of Things (IoT). Dies liegt vor allem an der großen Anzahl der zu vernetzenden
Geräte. Müssen Milliarden Geräte manuell konfiguriert werden, benötigt das sehr viel
Zeit und birgt eine hohe Fehlerwahrscheinlichkeit. Daher bedarf es automatisierter Lösun-
gen. Die Resource Management Platform (RMP) bietet automatisierte Funktionen zum
Anbinden von Geräten und zur Bereitstellung der zugehörigen Daten. Jedoch müssen
Geräte noch immer manuell registriert werden. Aus diesem Grund wird die RMP in dieser
Arbeit um einen automatisierten Discovery Service erweitert. Dieser ermöglicht es Geräte
aufzufinden und zu registrieren. Der Service unterstützt hierzu mehrere Netzwerktech-
nologien, beispielsweise WiFi oder Bluetooth. Darüber hinaus beinhaltet die Arbeit einen
Monitoring Mechanismus. Dieser erlaubt es der RMP, nicht mehr verfügbare Geräte au-
tomatisch zu erkennen und zu deregistrieren. Des Weiteren bieten moderne Smartphones
eine Vielzahl von Sensoren, über Positionsbestimmung bis zur Erfassung von Umgebungs-
bedingungen. Allerdings erlauben mobile Betriebssysteme keinen Zugriff auf die internen
Sensoren durch Applikationen auf anderen Geräten. Daher beinhaltet diese Arbeit auch
eine Android Applikation, mit deren Hilfe Smartphones in die RMP integriert und die Daten
ihrer Sensoren verfügbar gemacht werden können.

3

Contents

1 Introduction 15

2 Fundamentals 17
2.1 Resource Management Platform . 17
2.2 DNS-SD . 18
2.3 mDNS . 20
2.4 Bluetooth SDP . 21
2.5 Android Sensor Access . 22

3 Related Work 25

4 Automated discovery and binding of IoT devices 29
4.1 Overview . 29
4.2 Discovery Service . 31
4.3 Protocol . 35
4.4 Monitoring . 37
4.5 Integration into the RMP . 39

5 Implementation 41
5.1 Discovery Service . 42
5.2 Android client . 46

6 Conclusion 49

Bibliography 51

5

List of Figures

2.1 Simplified architecture for the RMP . 18
2.2 Simplified architecture of the Bluetooth Service Discovery Protocol (Blue-

tooth SDP) (from [Blu14]). 22

4.1 Architecture of the discovery service . 33
4.2 The discovery process based on DNS-Based Service Discovery (DNS-SD) . . 34
4.3 Illustration of the protocol for a successful registration 36
4.4 The possible monitoring solutions . 38

5.1 Screenshot of the RMP’s web interface . 41
5.2 Structure of the discovery package . 42
5.3 User interface of the RMPApp . 46

7

List of Tables

2.1 List of available Android sensors (from [And17]). 23

9

List of Listings

4.1 Sample protocol messages . 37

5.1 An example configuration file . 43
5.2 Advertisement code for IP-based networks 44
5.3 Code to connect a device . 45

11

List of Abbreviations

Bluetooth SDP Bluetooth Service Discovery Protocol. 7, 17, 20

CEP complex event processing. 15

CoAP Constrained Application Protocol. 26

DNS Domain Name System. 18

DNS-SD DNS-Based Service Discovery. 7, 17, 18

IETF Internet Engineering Task Force. 20

IoT Internet of Things. 3, 15

IPP Internet Printing Protocol. 19

mDNS Multicast DNS. 17

P2P Peer-to-Peer. 29

PAN Personal Area Network. 20

RMP Resource Management Platform. 3, 15, 17

SIG Special Interest Group. 20

UUID Universally Unique Identifier. 21

WSN wireless sensor network. 15

13

1 Introduction

Technological progress and growing digitization lead to new emerging concepts, like the
Internet of Things (IoT) [VP13] and Industry 4.0 [Jaz14]. These concepts are based on
interconnected devices being able to generate data, communicate, and take appropriate
actions without human intervention. With the number of devices growing fast, concepts,
like advanced manufacturing [TCZN17], smart homes [GBMP13], or smart cities [VP13],
become more and more viable. In this context, “the integration of sensors and actuators
becomes more and more important” [HBF+17]. However, connecting sensors and actuators
to so called IoT environments imposes a great effort in configuring the devices. To use
these devices effectively, raw data must be acquired, information must be extracted and
combined, and the results must be delivered to applications, that act upon them.

An example for an IoT environment are smart factories [RBBM14]. In such a factory
there could, for instance, exist different ambient sensors, like temperature, pressure, or
humidity sensors. These sensor readings could be collected by a monitoring system and be
provisioned to other applications, e.g., a complex event processing (CEP) system [Luc05].
The CEP system could, for example, recognize critical ambient conditions, such as high
temperature and humidity. As a reaction, the system could stop production machines until
the critical conditions are gone.

As the landscape of IoT devices and concepts is highly heterogeneous, the tasks, necessary
to build a monitoring system for IoT environments, require an advanced knowledge of
the technical backgrounds. There are many approaches for such systems, yet, in most of
them, devices must be registered and bound manually [HBF+17]. Manual configuration
is time-consuming and error-prone, especially as IoT environments are highly dynamic,
with devices entering or exiting the environment frequently. Several approaches to reduce
the amount of manual configuration have been introduced, one of which is the Resource
Management Platform (RMP) by Hirmer et al. [HBF+17]. The RMP aims on automating
the binding of devices, sensors, or actuators and the provisioning of their data. However,
the devices must be registered manually. Thus, the RMP is not able to adapt to changes
in the network, such as, devices entering or leaving the environment. As this is a vital
capability for the use in the IoT, it is the target of this thesis to extend the RMP with
discovery and monitoring abilities. For this purpose, this work examines existing discovery
mechanisms, especially those optimized for IoT environments. Moreover, a discovery and
monitoring service is designed, which extends the RMP and enables it to register and bind
devices joining the network, as well as to deregister devices leaving the network.

To ease their installation, most IoT devices use wireless communication, which lead to the
concept of wireless sensor networks (WSNs) [RSZ06]. These networks can build on differ-

15

1 Introduction

ent radio technologies, for example, IEEE 802.11 (WLAN) [Ins16] or Bluetooth [Blu14].
Thus, it is essential that a system like the RMP does not specialize on one radio technol-
ogy, but supports network monitoring for multiple technologies. As a consequence, the
service introduced in this work incorporates a gateway approach to allow the monitoring
of multiple networks based on different technologies

In addition to the general problems of using IoT devices, smartphones, the most common
IoT thing, are hard to include in IoT environments. In 2016, 77% of American adults1 owned
a smartphone carrying it with them every day. Due to technological progress, smartphones
contain numerous sensors to track their users or their surroundings [SWS+10]. For
example, almost every smartphone contains an accelerometer to track its movements, and
a GPS module to determine its position. These sensors can provide data, which might be
interesting to IoT applications. However, current mobile operating systems do not allow
access to the internal sensors from outside the phone. Thus, there is no standardized way
for systems monitoring the environments, such as the RMP, to provision the phone’s data.
To make this possible, this work includes an application, which has access to the phone’s
sensors and is able to register the phone at the RMP whenever its network connection
changes. Since, according to Gartner [Gar16], the Android OS2 is by far the most spread
operating system for smartphones, this work focuses on an Android application and leaves
other operating systems for future work.

Outline

The remainder of this thesis is structured as follows:

Chapter 2 – Fundamentals This chapter explains the fundamentals used in this thesis.
This contains a description of the RMP and explanations of several concepts and
protocols used for the implementation.

Chapter 3 – Related Work: There already exist approaches on the topic of device discov-
ery in IoT environments. This chapter discusses these solutions and describes the
differences to the work presented in this thesis.

Chapter 4 – Automated discovery and binding of IoT devices: This chapter contains
the concepts and specifications for the discovery of devices. It introduces a dedicated
discovery and monitoring service extending the RMP and describes an Android client
collecting and forwarding sensor data.

Chapter 5 – Implementation: As a proof of concept, this chapter describes the implemen-
tation of a prototype for the introduced disocvery service.

Chapter 6 – Conclusion: This chapter concludes the findings of this work and names
possible approaches for future work.

1http://www.pewinternet.org/fact-sheet/mobile/ (visited on October 27, 2017)
2https://android.com

16

http://www.pewinternet.org/fact-sheet/mobile/
https://android.com

2 Fundamentals

This chapter contains fundamentals, necessary for the understanding of the concepts
described in Chapter 4. These fundamentals include a description of the RMP, summaries
of the used protocols DNS-Based Service Discovery (DNS-SD) (Section 2.2), Multicast
DNS (mDNS), and Bluetooth Service Discovery Protocol (Bluetooth SDP), and, finally, a
description of sensor access on Android devices.

2.1 Resource Management Platform

IoT environments usually contain a huge number of devices, like sensors and actuators.
To allow an application to access these devices three steps are necessary: registration,
binding, and data provisioning. Carried out manually, these tasks may be time-consuming
and error-prone. To ease these tasks, Hirmer et al. [HBF+17] introduce the Resource
Management Platform (RMP).

The idea behind the RMP, as depicted by the simplified architecture in Figure 2.1, is to
bind physical things and their associated sensors using device adapters and provision the
received data to other applications. To achieve this, the devices can be registered at the
RMP using the device registry. For this purpose, the device must have an unique identifier
which then can be used to get further information about the device and its associated
sensors, like frequency or accuracy. This information is stored using ontologies, to enable
efficient storage and retrieval. Using the device’s identifier, information can be extracted by
traversing the ontology. Based on the extracted information, the device registry can select
an appropriate device adapter, used to gather the device’s data. These adapters may be
parameterized to specify dynamic information, like the device’s MAC-address, pinset, or the
url of the RMP. The selected adapter is then deployed either to the device itself, provided
that the device has sufficient computing capabilities, or onto an external resource. While
the adapter is running, data from the device and its sensors is gathered and sent to the RMP,
which takes care of provisioning these data streams to other applications. If the device goes
offline, or its data is not needed anymore, the device can be deregistered. This means, the
adapter is stopped and all resources allocated for the device are freed. Nonetheless, the
device may be reregistered again in the same manner as explained above.

Following the steps described above, the RMP provides a fully automated process from
binding devices to provisioning their data. Such a level of automation lowers the costs for
experts, managing the devices manually, by far. However, the unique identifier and some
other necessary information, like the IP-address of a device, must still be provided manually.

17

2 Fundamentals

Figure 2.1: Simplified architecture for the RMP

Thus, the target of this work is to provide the RMP with an automated mechanism for
discovering and registering devices.

Moreover, the platform currently does not support a dedicated monitoring of registered
devices. The state of a device may be derived by the retrieved values. However this is
not sufficient for all contexts, as for example actuators can not be monitored this way.
Consequently, such a automated monitoring service is also part of this work.

2.2 DNS-SD

In the field of service discovery many protocols and solutions have been published so far,
as stated by Edwards [Edw06]. One of the most popular ones is the DNS-Based Service
Discovery (DNS-SD) [CK13a], which builds upon the well-known Domain Name System
(DNS) [Moc87]. According to Edwards [Edw06], naming and discovery systems have many
similarities. Moreover, the DNS is a widely used and implemented standard, thus, providing
a good base to be expanded for service discovery purposes.

The DNS provides name resolution using records. Each record holds specific data and
has a specific name. These records are stored in a central directory, the DNS server. An
application interested in this data may query the central directory for records matching a
given name. The most common used record is the A (IPv4) or AAAA (IPv6) record. The
name of this record is a specific domain, for example

ipvs.uni-stuttgart.de
and holds the corresponding IP address under which this domain can be reached. However,
DNS provides several other record types. The PTR record, for example is used for reverse
resolution of the A record. A client, having an IP address, can query the respective PTR
record, which contains the host name for the given address. The TXT record is used to store
arbitrary – mostly user readable – data. SRV records can be used to announce an available
service. For example, the SRV record “_http._tcp.example.com” advertises a running web
server for the domain “example.com”. There may be multiple instances with the SRV record.
For instance the webpage under “example.com” might be served by multiple servers for

18

2.2 DNS-SD

load balancing. In this case it is assumed that all instances offer the exact same service. As
a consequence, the instances can be used interchangeably.

One of the main goals of DNS-SD is to avoid any fundamental changes in the underlying DNS
protocol. Hence, DNS-SD only uses the existing SRV, TXT, and PTR records. Consequently,
while allowing effective service discovery, DNS-SD does not require any new records or
messages, rather than giving existing parts a new meaning.

As mentioned above, traditional SRV records are used to denote interchangeable instances
of a given service. However, there may be services which do not fulfill this assumption.
Because of that, DNS-SD extends the service name with a human-readable instance name.
For example, a printer, using the Internet Printing Protocol (IPP), may advertise itself as:

IPVS-AS printer._ipp._tcp.ipvs.uni-stuttgart.de
Following this, a client looking for IPP printers can display the list of instances to the user,
who selects the desired printer, depending on the instance name.

As the SRV record now contains a fully qualified instance name, one must know the instance
name to be able to retrieve the associated address information. Thus, DNS-SD specifies the
PTR record to be used for service instance enumeration (browsing). For every SRV record
there is also a PTR record. This record has the service name as its name and serves the
fully qualified instance name as its data. Consequently, querying PTR records for a specific
service in a specific domain, returns a list of service instance names, as described above.
With this list, the SRV records for the specific instances can then be queried to retrieve
address information and connect to the service.

There are services needing more information than the plain address and port of the host, to
allow a successful connection, or to help the client select an appropriate instance. Hence,
DNS-SD requires an additional TXT record with the same service instance name as the SRV
record. In the TXT record, arbitrary data may be stored using key/value pairs and this data
may be retrieved by a client in addition to the SRV record.

As an example, a client searches for all available printers by querying PTR records with:
_ipp._tcp.ipvs.uni-stuttgart.de

resulting in the following list:
AS printer pool._ipp._tcp.ipvs.uni-stuttgart.de

VS printer._ipp._tcp.ipvs.uni-stuttgart.de
The client may then select the desired instance and query the SRV and TXT records with:

AS printer pool._ipp._tcp.ipvs.uni-stuttgart.de
to retrieve address and port, and additional information, such as supported paper formats
or duplex printing.

19

2 Fundamentals

2.3 mDNS

DNS-SD, described in Section 2.2, provides a powerful service discovery mechanism.
Nonetheless, it requires a running DNS-server in the network, when used with conventional
DNS. As this would impose a great effort on configuring the services and the devices to use
this server, a zeroconf approach, called mDNS [CK13b], was introduced by the Internet
Engineering Task Force (IETF).

The idea is to spare the central DNS server as it imposes a configuration effort and a single
point of failure. Instead, DNS messages are transmitted using IP multicast. Rather than
querying the central DNS server, clients may send their queries to the multicast address
224.0.0.251:5353. Every device offering any services can register for this multicast address.
For each service the device manages one or more records. If an incoming query matches
one of these records, the device generates a DNS response. As records may be cached by
other devices for performance reasons, multiple devices have a knowledge of the available
records. However, only the device which initially generated the record responds to the
query. As to reduce network traffic, devices issuing a query may explicity specify that they
desire an unicast response. In this case the response may be returned via unicast, otherwise
all responses are submitted over multicast.

Using mDNS it is differentiated between one-shot and continuous queries. One-shot queries
aim at resolving a single record name, for example, conventional host name resolution.
Continuous queries on the other hand try to monitor the current network state to maintain
an updated list, for example, a list of currently active printers. Therefore, the query is sent
repeatedly.

As multicast communication is an expensive operation, mDNS incorporates several methods
for traffic reduction, like known-answer suppression, duplicate question, and duplicate
answer suppression. As their names indicate, all these approaches try to suppress DNS
messages, which would not provide new information. For example, a continuous query
might contain all services the querying device knows about. Devices receiving this query can
suppress their answer, if the query already contains their offered services. Moreover, mDNS
defines caching mechanisms, similar to conventional DNS, to further reduce traffic.

Since link-local multicast reaches only devices on the local link, the specification also
introduces a new top-level domain “.local.”. The usage of this domain enforces a query to
be resolved using mDNS and enables administrators to address their own hosts without
access to a part of the global DNS name space. As a consequence, domain names and, thus,
service names, may not be globally unique. However, name clashes are very unlikely on
the local link.

The main purpose of mDNS is to provide a zeroconf DNS solution to use with DNS-SD.
This way, devices may offer their services on the local network without – or at least with
minimal – configuration effort. However, mDNS may also be used to resolve global host
names and, thus, provides a fallback mechanism in case the conventional DNS service is
not available.

20

2.4 Bluetooth SDP

2.4 Bluetooth SDP

The Bluetooth communication protocol is designed as a Personal Area Network (PAN). As
such, it only has a very limited transmission range. Consequently, the number of available
devices and with that the number of available services changes frequently. To cope with
this rapid fluctuation, the Bluetooth Special Interest Group (SIG) specifies the Bluetooth
Service Discovery Protocol (Bluetooth SDP) [Blu14].

Architecture, as depicted in Figure 2.2, and structure of the Bluetooth SDP are similar
to DNS-SD described in Section 2.2. Any device offering services to other devices runs a
Bluetooth SDP server. Devices can run a Bluetooth SDP client to discover such services. On
the client side, several applications may use the Bluetooth SDP client to look for services,
as well as there may be multiple applications on the server side, advertising their services
with the corresponding Bluetooth SDP server.

The Bluetooth SDP server holds a record for each service registered with it. The record
contains identifying, as well as additional feature information. For that purpose, every
service implements a service class. Every service class is identified by a globally unique
Universally Unique Identifier (UUID) [SLM05]. For common services, such as audio
streaming, there are predefined service classes with an assigned UUID. Nonetheless, a
service provider may specify a custom service class and assign a new UUID to it. A service
may implement more than one classes, which usually means that the implemented classes
are subclasses of each other.

A service class lists several service attributes, describing the service. Service attributes
may be seen as key/value pairs, consisting of an attribute id and an attribute value. Some
service attributes are common to all services, like the ServiceClassIDList attribute holding a
list of UUIDs, assigned to the service classes implemented by the service. More common
attributes are the ServiceID, the ServiceName, or the IconURL attributes.

A Bluetooth SDP client can search for services by connecting to a Bluetooth SDP server and
issuing a Bluetooth SDP request. The request contains a list of UUIDs the client is searching
for. If the requested UUIDs are a subset of the UUIDs listed inside a record, the Bluetooth
SDP response contains a handler to the respective record. Using this handler, the client
can retrieve the service attributes for the respective service. The client application can
subsequently select the best applicable service, according to the information provided by
the service attributes.

In summary, Bluetooth SDP only provides a plain information exchange, similar to DNS-SD.
The actual connection to the service is not part of the protocol and must be handled by the
client application. In addition, Bluetooth SDP does not provide any notification service in
case services become available or inaccessible. Thus, the only way of recognizing a new
service or a newly gone service, is by repeated Bluetooth SDP requests.

21

2 Fundamentals

Figure 2.2: Simplified architecture of the Bluetooth SDP (from [Blu14]).

2.5 Android Sensor Access

The Android OS currently does not provide an integrated solution for provisioning
data, acquired by internal sensors, to applications not running directly on the phone
itself [SWS+10]. Consequently, the only way to access the phone’s sensors from outside
the device is, to implement an application which forwards the data to external resources.
For this purpose, the Android platform offers the sensor framework, allowing applications
to access sensors and their data [And17].

As there is a huge variety of phone models running android and since every manufacturer
uses different sensors, the number of sensor models is too high to address them directly.
To cope with this problem, the sensor framework uses an abstract view on the sensors. It
defines a number of types, shown in Table 2.1, which can be used by an application. Each
type in a way defines an interface which manufacturers must implement using their specific
sensor models. The application may then use the interface to retrieve sensor data.

To access the internal sensors, an application can use the SensorManager provided by the
sensor framework. The SensorManager provides an API to retrieve available sensors and
to register listeners with them. The interaction with sensors is event based, as the sensor
cannot be queried directly, but only using listeners. Whenever an application registers a
listener, the system starts the sensor to generate data. The frequency at which values are
generated may vary between different sensor types or models, so the system asynchronously
informs the application about a new value using the SensorEvent class. Since sensors may
acquire data at a higher rate than the application can handle, developers can define a delay,
specifying the minimum time frame between two values.

22

2.5 Android Sensor Access

Sensor Type Common Uses

TYPE_ACCELEROMETER Hardware Motion detection
(shake, tilt, etc.).

TYPE_AMBIENT_TEMPERATURE Hardware Monitoring air
temperatures.

TYPE_GRAVITY Software or Hardware Motion detection
(shake, tilt, etc.).

TYPE_GYROSCOPE Hardware Rotation detection
(spin, turn, etc.).

TYPE_LIGHT Hardware Controlling screen
brightness.

TYPE_LINEAR_ACCELERATION Software or Hardware Monitoring acceleration
along a single axis.

TYPE_MAGNETIC_FIELD Hardware Creating a compass.
TYPE_ORIENTATION Software Determining device

position.
TYPE_PRESSURE Hardware Monitoring air pressure

changes.
TYPE_PROXIMITY Hardware Phone position during a

call.
TYPE_RELATIVE_HUMIDITY Hardware Monitoring dewpoint,

absolute, and relative
humidity.

TYPE_ROTATION_VECTOR Software or Hardware Motion detection and
rotation detection.

TYPE_TEMPERATURE Hardware Monitoring
temperatures.

Table 2.1: List of available Android sensors (from [And17]).

Because of the asynchronous behavior, it is necessary to specify a background service,
handling the sensor data. The so retrieved data may then be used for calculations or simply
be forwarded using networking services. Moreover, the use of sensors has a significant
impact on battery power. As the users attach great importance to low battery consumption,
it is recommended to keep the usage of sensors at a necessary minimum.

23

3 Related Work

According to Zaslavsky and Jayaraman [ZJ15], the IoT, and all technologies connected
with it, will lead to an “explosion of connected devices”. Thus, the discovery of such devices
must be automated to cope with the huge number of devices. Already, there have been
different approaches to the topic of automated device discovery in IoT networks. They all
have in common that they treat the discovery of devices as equivalent to the discovery of
services in such environments, as stated by Ccori et al. [CDZS16]. Moreover, they try to
reach a zeroconfsolution, which means that no manual configuration is needed, as this is
error prone and not scalable.

According to Ccori et al. [CDZS16], these approaches can be classified into three categories:
centralized, decentralized and hierarchical. Centralized approaches use one central server,
all other devices are connected to. This server handles the detection of available devices.
While such an approach has a very poor storage efficiency and has a single point of failure,
the advantages are an efficient communication and high success rate. To overcome the
disadvantages of centralized systems, the discovery of devices may be spread over all
participating devices, advertising themselves to each other. Such a decentralized approach
does not have a single point of failure and does not need a large central storage, but it
also has the poorest time efficiency and the lowest success rate. Hierarchical systems try to
combine these two concepts using the advantages of one to overcome the weaknesses of
the other. In these system a specific domain is maintained by a central server, while several
of these servers may be joined on another central server in a higher hierarchy level, to form
a bigger domain.

Klauck and Kirsche [KK12] introduce a decentralized concept building upon DNS-SD.
Devices inside the network use Bonjour and IP-Multicast to exchange service records. If
a service is needed, a query for such records can be spread through the network using
IP multicast. Any devices fitting the description of the requested service can then react
accordingly. This approach poses as an efficient method to discover services based on a
specific query, but it does not contain any binding systematic. As for this work, it is vital to
not only discover devices and their services, but to bind them to an existing platform, the
concept of Klauck and Kirsche [KK12] is not fully applicable to the task. Nonetheless, it
may be used as a tool in the process of device discovery.

Leguay et al. [LLJC08] address the task of Service Discovery in a similar fashion. In
comparison to Klauck and Kirsche [KK12] they base their work on existing web service
discovery techniques. To tackle the problem of constrained nodes, they assign each node
to one of the categories full-capacity, limited-capacity and low-capacity. Each of these
categories has a special protocol stack for service description and discovery assigned to

25

3 Related Work

it. As this approach aims at a fully interconnected network, it is far too complex and not
applicable for the tasks of this thesis, since the goal is to only enable the RMP to discover
single devices.

Jara et al. [JLF+13] propose with “digcovery” a centralized solution. Their aim is to discover
devices and services over different communication technologies, like IP, Bluetooth, or RFID.
All of these “digrectories” are combined into the “digcovery core”, a central server which
serves the data to other clients over a RESTful API. This system has some similarities to
the idea of the RMP. However, in some parts it still relies on manual configuration, like
scanning QR codes or barcodes. In addition, Jara, Martinez-Julia, and Skarmeta propose
the use of a light-weight version of DNS-SD, called lmDNS-SD [JMS12], beeing optimized
for constrained devices in IoT environments. Although the “digcovery” system has obvious
similarities to the RMP, it serves a different purpose. The main focus of “digcovery” is to
provide a searchable collection of nearby devices as on the other hand the RMP tries to
access the devices data and provision it to other applications. Thus, the binding of devices
for the RMP needs a more sophisticated solution than for the “digcovery” system.

Cirani et al. [CDF+14] propose a system, similar to Klauck and Kirsche [KK12], but
make use of a so called IoT Gateway. This IoT Gateway is a central server, residing in
the same network with many IoT devices. A newly joined device may announce itself
to the network using a DNS-SD approach as described by Klauck and Kirsche [KK12].
The IoT Gateway receives this announcement and then queries the offered services using
the Constrained Application Protocol (CoAP) [SHB13]. CoAP is similar to HTTP but was
optimized for constrained applications and devices. The IoT Gateway may then offer the
retrieved services to other clients in or outside the network. The concept of IoT Gateways,
collecting information on available services and distributing them to other applications, can
be fit into the existing RMP environment. Especially, since this work enables the RMP to
support different communication technologies, such gateways are a reasonable extensions.
Nonetheless, the system proposed by Cirani et al. does not provide the data but only a
handler to the service itself. Thus, the system can only be used as a tool do discover the
services, but still must be expanded to allow a sophisticated binding mechanism.

With their platform SENSE-SATION, Shirazi et al. [SWS+10] tackle the problem of in-
tegrating the sensors of mobile phones into IoT environments. Current mobile phones
contain numerous hardware based or informational sensors, giving the phone an extended
sensing capability. Hardware sensors are built in devices, that can measure environmental
parameters, like temperature or pressure. Informational sensors are software modules,
which can accumulate different hardware sensors to compute own readings, such as the
phones position or orientation. As most users carry their phone with them every day, it is
desirable to use these capabilities in a different context, from other devices or applications,
as well. However, modern mobile operating systems do not allow access to these sensing
capabilities from other applications, such as web services. The idea of SENSE-SATION is to
create a smartphone client offering the sensor data via a RESTful API and syncing it with
a backend service. To cope with the variety of included sensors, the system uses virtual
sensors which may be a unified wrapper for different hardware sensors or a combination of
multiple sensor values. Since the creation and distribution of these virtual sensors, as well

26

as the connection between client and server must be done manually, the platform lacks a
sophisticated discovery mechanism.

To sum up, most of the listed approaches aim at a decentralized system, as their advantages,
such as robustness and storage efficiency, fit the dynamic character of IoT environments.
However, the RMP already is a centralized system, which neutralizes these advantages.
Moreover, all approaches rely on some broadcast method to advertise new devices in
a network [KK12][CDF+14][JLF+13][LLJC08]. Following that, there might be some
bidirectional communication to retrieve more details about the advertised services and to
achieve some sort of binding to a central instance [CDF+14][JLF+13]. The work of this
thesis adapts this pattern to enhance the RMP with automated device discovery.

27

4 Automated discovery and binding of IoT
devices

The concept, this work introduces, extends the RMP with an automated discovery and
monitoring service. The purpose of this service is to monitor an existing environment and
discover new devices within it. Discovered devices should be registered at the RMP, to allow
automated binding and deployment of adapters as described in Section 2.1. To monitor
networks using different communication methods, this concept involves the gateway
approach by Cirani et al. [CDF+14]. For each monitored network, the discovery service
has a dedicated gateway managing the actual discovery and the following communication
with the centralized RMP.

The remainder of this chapter describes the concepts in detail. Section 4.1 discusses
different approaches on discovering devices and Section 4.2 describes the selected method.
In Section 4.3, the actual protocol used to register and bind devices is explained. Section 4.4
details the monitoring service, used to determine, if a device is still active, and, finally,
Section 4.5 lays out, how the new service is integrated into the existing RMP architecture.

4.1 Overview

In IoT environments, every device usually offers one or multiple services. Sensors are
offering their values, for example, a temperature sensor providing the current room
temperature. Actuators offer to complete certain tasks, for example, a speaker playing a
sound. As a result, there is no real difference in discovering devices or discovering their
services [CDZS16]. Consequently, established service discovery mechanisms may be used
to accomplish the discovery.

In a straightforward approach, each device could use any service discovery solution to
advertise itself as a service. Possible protocols for this task would be JINI [ASW+99],
SSDP [ALG+99], or the previously described DNS-SD. Most of these protocols are based
on a Peer-to-Peer (P2P) strategy, especially when adapted to constrained IoT networks, and
do not make use of a centralized directory. This strategy is reasonable since centralized
directories, for example, DNS servers, must be manually configured and their addresses
must somehow be announced to the devices. As this contradicts the desired zeroconf
solution, such a method would not be applicable for the RMP.

Using the P2P strategy, a client, searching for a particular sevice, may issue a query into
the network, describing the type of service it is looking for. All devices in the network

29

4 Automated discovery and binding of IoT devices

receiving the query can check the description of the desired service with the description
of the services provided by the device. If one of these services matches the query, the
device sends a response to the issuing client which usually contains all information for
making a successful connection to the service. Note, that the address and port of the service
are usually sufficient for a successful network connection. To effectively use a service,
there might be more configuration necessary, for example, the name of a printing queue.
However, this information can be exchanged using the established communication channel,
thus, being out of scope for conventional discovery systems.

The problem resulting from this method is, that a client needs to reissue the query every
time it needs a particular service. For many services and networks that remain static
for longer time periods, e.g., printers on the local network, this may be avoided using
caches. However, IoT environments are highly dynamic, especially when built on wireless
communication technologies. As a result, the list of available devices may change rapidly,
making such caches superfluous.

As a consequence, any system, such as the RMP, trying to monitor the environment, must
issue repeated queries into the network. These queries may impose a significant load to
the underlying networks, though, there exist some approaches to reduce this load [CK13b;
JMS12; KK12]. The traffic penalty especially increases for the RMP, since it does not only
monitor one specific type of service, rather than all available services.

Besides the induced traffic, there is another difficulty when working with repeated queries.
To reduce the traffic caused by discovery requests, it is desirable to keep the frequency
of these requests as low as possible. Especially as high frequencies might lead to many
requests not reporting any changes. In this case, the induced load would have been to
no purpose. On the other hand, a very low frequency may delay the recognition of new
devices or even cause them to enter and exit the environment unnoticed. While this might
seem acceptable for many purposes, for example, new thermometers or printers, it might
have fatal consequences, for example, in traffic control systems for autonomous cars. An
unnoticed car might lead to tragic and fatal accidents.

To cope with the described problems, this concept proposes to turn around the discovery
process. Instead of devices advertising themselves and beeing discovered, the RMP ad-
vertises a special discovery service. Devices entering the network may use this discovery
service to register themselves at the RMP. This approach has two major advantages. First,
new devices entering the network are registered immediately. Second, as long as no devices
enter the environment, no resources, neither of the RMP, nor, the network, are used.
However, as devices are not responding to discovery requests, it is not possible to monitor
registered devices using the discovery service. As a consequence, an additional monitoring
mechanism must be implemented.

30

4.2 Discovery Service

4.2 Discovery Service

For devices entering the environment, the discovery service differentiates between previ-
ously known and unknown devices. There are use cases, such as smart homes or presence
detection systems, for which this difference is important.

Before the discovery service is described further, it is necessary to define what a device
actually is. The RMP is designed in the context of things, as described in Section 2.1. These
things may have a variable number of sensors and actuators attached to them. An example
for such a thing is a RaspberryPi1 with a temperature sensor and a speaker attached to
it. This RaspberryPi1 might be used to monitor the room temperature and to give audio
feedback. It can be registered at the RMP, and the device registry consequently extracts
the attached sensors and actuators from the respective ontology, using the provided ID. A
trivial discovery approach would be to discover the RaspberryPi, retrieve its ID and then
register it at the RMP. However, in this case, the sensors and actuators would have to
be manually preconfigured in the ontology, since a RaspberryPi may have an arbitrary
sensor/actuator setup. Thus, it is not sufficient to discover the single raspberry, but it is
necessary to acquire the used sensors and actuators at discovery time. For this purpose,
the discovery service, in contrast to the RMP, treats every sensor and every actuator as a
separate device. Moreover, each device may be hosted on another device. This allows the
previously described RaspberryPi, to be modeled as a device hosting a temperature sensor
device and a speaker device.

The discovery service internally identifies devices using a generated GLOBAL_ID. This
GLOBAL_ID is specified as an integer value greater than zero. Each device is assigned a
GLOBAL_ID upon registration. The discovery service introduces this ID, although the RMP
assumes hardware addresses, like the MAC address, to already be globally unique. This
is justified with the discovery service being designed to support different communication
technologies, some of which might not use unique addresses.

For registration at the RMP, the discovery service has three functions:

• register a device — this function registers an unknown device.

• reregister a device — this function reregisters a previously known device.

• read adapter configuration — this function reads information, necessary for adapter
configuration

The function to register an unknown device requires information, identifying the device
and specifiying how to communicate with it. This information includes:

• the device’s type

• the LOCAL_ID

1https://www.raspberrypi.org/

31

https://www.raspberrypi.org/

4 Automated discovery and binding of IoT devices

• the GLOBAL_ID of the device’s host

• the hardware address – MAC or Bluetooth address

• the network layer address – usually the IP address

The type is identified by a string representing its name and describes how the device should
be accessed. Usually every sensor or actuator model has its own type and every type can be
mapped to exactly one device adapter. For example, if manufacturer S builds a pressure
sensor with model name P250, then there most likely will be a type S-P250 in the RMP.
For this type, an adapter may be developed and every device, registering with it, will be
accessed using this adapter implementation. Note, that the naming of types and models is
only for example purposes and does not impose any rule for names of types or models.

As described above, one device may act as a host for others. Since a device may host several
devices of the same type, they must be differentiated using a LOCAL_ID. The LOCAL_ID is
defined to be a string, being unique for all devices of a specific host. Moreover, it should be
human readable, as it may be shown to the user as the device’s name.

The host GLOBAL_ID can be used by the discovery service as a reference to determine the
host of a device. If an illegal value – zero or less than zero – or no value is provided at all,
the discovery service assumes that there is no host and, thus, the device is to be treated as
a thing in the context of the RMP. Consequently, the host must be registered first, to allow
a successful registration of the device.

The hardware and network layer addresses define how the device needs to be addressed.
Though for most use cases this information will be inferable from the networking protocols,
it should be explicitly declared for completeness. Moreover, the hardware address may
be used as another globally unique identifier to identify possible duplicates. As there are
communication technologies, that do not require a network layer, for example, Bluetooth,
the network layer address is optional and may be omitted.

The discovery service stores the received data and assigns a newly generated GLOBAL_ID
to the device. The service may also validate the received information, for example, to
check for duplicates or for security purposes. In case of a successful connection, the service
answers the device with the new GLOBAL_ID, otherwise the device receives an error.

For the reregistration of a previously known device, it basically is sufficient to provide the
GLOBAL_ID associated with the device. Nonetheless, it is advised to include the above
information in the message for validation purposes. The discovery service checks if there is
a device assigned to the given GLOBAL_ID and, if so, registers the device again with the
RMP.

The third function of the discovery service is to collect the adapter configuration for a
device. Since device adapters may be parameterized, as described in Section 2.1, these
parameters must be provided by the device. Currently, this is a simple key/value map,
which is sent to the service by the device, upon successful registration. The necessary keys
are defined by the type of the device and the values must, possibly manually, be configured
for every device.

32

4.2 Discovery Service

Figure 4.1: Architecture of the discovery service

The discovery service runs together with the RMP, usually on the same machine. As the
service should be able to discover devices using arbitrary communication technologies,
this concept uses special discovery gateways. These gateways are logically separated
from the discovery service and, thus, may run on a different physical machine. For every
communication technology and network, that should be monitored, there is at least one
gateway, as depicted in Figure 4.1. Those gateways keep a static connection to the discovery
service at all times and advertise themselves to devices inside their network. The idea is,
that gateways communicate with the devices on a local network, while their connection to
the service may use a different communication technology, like the global internet. Devices
looking for the discovery service can find a gateway for their network and connect to it.
The gateway then uses its own connection to call the functions of the discovery service.

Currently, the discovery service supports IP-based networks and Bluetooth networks. The
concept of 6LoWPAN [Mul07] may provide a simple way to extend this list, as it provides
an IP network layer for different low-power wireless networks. However, native solutions
should be preferred. The following sections describe how the discovery gateways are
advertised in the different environments.

4.2.1 IP-based networks

In principle, any service discovery protocol may be used for IP-based networks, as discussed
in Section 4.1. The concept presented in this work uses DNS-SD in connection with mDNS,
because of the wide spread use of DNS. Moreover, most devices already are DNS enabled,

33

4 Automated discovery and binding of IoT devices

Figure 4.2: The discovery process based on DNS-SD

so using DNS-SD is most likely to be supported natively by many devices. However, it is
possible to use other protocols instead or to operate several protocols at the same time.

For the advertisement of the discovery service, a new service name is defined:
_rmpdis.

Since the discovery service offers its function using UDP, as explained in Section 4.3, the
complete service name, base on the rules defined by DNS-SD, is:

_rmpdis._udp.
Every discovery gateway is an instance of this service and may be configured to use an
arbitrary instance name, to advertise itself in the “.local.” domain. In addition, the gateway
may also be advertised using a specific domain, like “rmp.uni-stuttgart.de”, if there is a use
case affording it.

Figure 4.2 depicts how a device discovers the discovery gateway. First, the device issues a
multicast query for PTR records, matching the name:

_rmpdis._udp.local.
The gateway checks this query and, as the service name matches the discovery service, it
replies with its service instance name:

<instance>._rmpdis._udp.local.
This reply and all following traffic between the device and the gateway should use unicast
to minimize network load. As the device receives the gateway’s reply, it queries the SRV
record with the provided service instance name. The gateway replies with address and port
of the discovery service. The device has now discovered the service successfully and may
connect to it using the protocol defined in Section 4.3.

4.2.2 Bluetooth networks

On Bluetooth networks, the discovery gateway is advertised using Bluetooth SDP. For
this purpose, a new service class is defined. For example, the randomly chosen UUID
“809a061f-d834-4ba6-8741-29f0f53ca1b9” is assigned to this class. For the discovery
process to finish successfully, it is sufficient to only define the ServiceClassID attribute, as
this uniquely identifies the discovery service. However, as there might be several discovery
gateways to increase radio range, it is possible to define more attributes to differentiate

34

4.3 Protocol

gateways. Moreover, the ServiceName and ServiceDescription attributes may be populated
for use within the user interface.

To advertise itself, the discovery gateway starts a Bluetooth SDP server or registers with an
existing one. Devices looking for the discovery service, start a Bluetooth SDP client and
query surrounding Bluetooth SDP servers for their services matching the specified UUID
“809a061f-d834-4ba6-8741-29f0f53ca1b9”. If such a service is found, the device uses the
received handler to query the Bluetooth SDP server for host and port of the service. After
having discovered the service successfully, the device may then connect to it using the
protocol defined in Section 4.3.

4.3 Protocol

When a device has discovered the discovery gateway, it can connect to it and register itself,
using the following protocol. Device and gateway exchange UDP messages containing
JSON [Bra14] objects. UDP is selected as the transport protocol because it minimizes the
network overhead. Acknowledgments are used to cope with the possible package loss and
flow control is not needed, since the messages sent should always fit into a single UDP
package. JSON is considered to be the most suitable format to represent structured data on
constrained devices [JLF+13].

Each message has a type, which may be retrieved from the JSON object stored in it. The
protocol defines four message types:

• HELLO – initial message

• CONF – carries configuration info

• PING – carries one data item

• VALUE – may carry sensor/actuator data

The HELLO message is a flat key/value pair list. It is the first message sent by the device and
contains all data necessary to register the device at the RMP, as explained in Section 4.2. If
the device has been registered before, the GLOBAL_ID assigned to it may be included in
the message to trigger reregistration. Otherwise, the device will be treated as unknown by
the discovery service. Furthermore, the HELLO message is designed to be broadcasted into
the network, thus providing a fallback if no discovery protocol is available. If the discovery
gateway receives a broadcasted HELLO message, it can extract all information necessary
to continue the protocol with unicast messages. However, as broadcasts are not always
available or often not permitted, this method is discouraged. As an answer to the HELLO
message, the device expects a PING message containing the result of the registration.

CONF messages contain information necessary to configure the device adapters. The device
sends this information upon a successful registration. Device and service may exchange
several CONF messages, yet currently, such a negotiation of parameters is not needed in
any use case. Thus, the negotiation of parameters is left for future work.

35

4 Automated discovery and binding of IoT devices

Figure 4.3: Illustration of the protocol for a successful registration

The PING message carries only one item of information. It is mostly used as an implicit or
explicit acknowledgment or heartbeat message for monitoring purposes.

The VALUE message type, may be used by adapters deployed on the device to send sensor
data. Since the provisioning of these data is out of the scope of this thesis, its precise
definition and usage is left for future work.

In Figure 4.3, a complete run for successful registration and binding is illustrated. Sample
messages for the protocol run are listed in Listing 4.1.

The device has discovered the discovery gateway and sends the first HELLO message. The
gateway receives the message and extracts the necessary data. Note that the gateway does
not simply forward the messages to the discovery service, but is able to use and alter the
received data. This allows the gateway to perform arbitrary computations with the data,
before and after it calls the discovery service. The gateway uses the received information to
call the discovery service’s function(s) to register the device. The communication between
gateway and discovery service is left as an implementation detail, since they may run on
different threads in the same process or be deployed on physically separated machines.
The discovery service performs validation checks, i.e., duplicate checks or type support,
and, if accepted, generates a GLOBAL_ID. This ID is assigned and sent back to the device.
At this point, the RMP knows about the presence of the device, thus, the device is treated
as registered. In case the registration fails or the device is rejected, the discovery service
responds with an error message, to inform the device of the failure. Hence, the response is
used as an implicit acknowledgment.

36

4.4 Monitoring

Listing 4.1 Sample protocol messages
hello_msg = { conf_msg = {

CONN_TYPE: CONN_HELLO, CONN_TYPE: CONN_CONF,

TYPE: sensorX, pinlayout: <layout>,

LOCAL_ID: mySensor, timeout: 6s

HOST: 100, }

HW_ADDRESS: 12:34:56:78:9A:BC,

IP: 192.168.0.105

}

hello_response = { conf_response = {

CONN_TYPE: CONN_PING, CONN_TYPE: CONN_PING,

MESSAGE: 101 MESSAGE: ok

} }

After the device is registered, it sends the adapter parameters to the gateway. The necessary
data may be automatically computed by the device, like the sensor frequency, or must
be manually preconfigured, such as the set of used hardware pins. The gateway again
validates the data and then sends it to the discovery service. If the service has gathered
all data necessary for adapter deployment, it responds with an acknowledgment message.
As now all information, required to use the device, is available for the RMP, the device is
treated as bound.

In case one of the acknowledgments is lost, the HELLO or CONF message is resent. Thus,
the gateway/service must provide a mechanism to recover the answer, either through
caching or recomputation.

The given protocol might be extended to include active adapter deployment, but since the
deployment is not part of this thesis, it is not further discussed here.

4.4 Monitoring

An important part of monitoring IoT devices is to recognize devices becoming unavailable.
There are different reasons for this to happen. For example, the device could stop operating
due to a technical error or the lack of power supply. Moreover, changes in the network
topology might lead to devices becoming unavailable. Currently, the RMP does not have
such a monitoring functionality. Although it is possible to explicitly deregister devices, the
RMP cannot recognize missing devices on its own. To cope with that, this concept extends
the discovery service from Section 4.2 with an additional monitoring service.

A lightweight approach without further network traffic would be to use the sensor data for
an implicit monitoring. As long as sensor data can be acquired, it can be assumed that the
device is alive. However, there are common scenarios for which this monitoring technique
is not applicable. A trivial example are actuators as they do not produce any sensor data,
that could be monitored. Moreover, there are sensors, which do not generate values in a
high enough frequency for effective monitoring purposes. For example, a smoke detector,

37

4 Automated discovery and binding of IoT devices

Figure 4.4: The possible monitoring solutions

used for fire detection, ideally never sends any data. Nonetheless, it is important to know if
the device is still alive and reachable. Another point is that the data provisioning may be
organized using external resources. For example, there are approaches, using a MQTT2

broker [FBK+16]. These messages are completely separated from the RMP and, thus, do
not allow an implicit monitoring.

As a consequence, additional messages must be used. These so called “heartbeat” messages
lead to the same problem as repeated queries, discussed in Section 4.1. The higher the
frequency, the higher the (possibly useless) traffic. The lower the frequency, the higher
the possibility of missing important events. Furthermore, there are devices for which a
lower heartbeat frequency is applicable, like the mentioned smoke detector. In this case, a
daily heartbeat might be sufficient. On the other hand, there are devices which require a
high heartbeat frequency, for example, a motion sensor monitoring the movements of an
autonomous robot. Here, an undetected sensor failure might cause high damage to humans
or goods. Thus, this concept does not specify a static heartbeat frequency, rather than a
dynamic timeout interval. This interval is either preconfigured for the device, negotiated
during the binding process or a combination of both.

Having defined a timeout interval, the devices can be monitored using two different
methods, as depicted in Figure 4.4. The simple approach is to let the device repeatedly send
heartbeats – PING messages, as defined in Section 4.3 – to the discovery gateway, according
to the defined interval. The gateway is responsible to signal the monitoring service that the
device is alive. This allows an effective monitoring by the RMP. The monitoring service
repeatedly iterates the list of registered devices and checks whether the period since the
last contact with the device is shorter than the defined timeout interval. However, while
the RMP can detect unavailable devices this way, the device itself is not able to determine
whether it can reach the RMP or not. This might not be necessary for many use cases,
since the RMP will detect the unreachable device and alert a technician to fix the problem.

2http://mqtt.org/

38

http://mqtt.org/

4.5 Integration into the RMP

In spite of that, there are scenarios, in which it would be useful for the device to know
whether it is connected or not. For example, the address of the discovery gateway may
change due to an administrative network change. In this case, the device would keep
sending heartbeats to the old address, but they do not reach the gateway. Thus, the device
will be marked as unavailable by the monitoring service, although device and network are
operating correctly. A technician would need to restart the device to trigger a fresh run of
the discovery protocol. The device will then find the gateway at the new address and could
be reregistered.

The second approach involves a two-way heartbeat to trigger the restart of the discovery
protocol automatically. In this approach, the monitoring service triggers the gateway to
send the first heartbeat to the device before it times out. The device then responds with
its own heartbeat to the gateway, which again marks the device as alive. If the device
does not respond to the heartbeat, it can be considered unavailable. Similarly, the device
supposes the RMP to be unreachable, if no heartbeat arrives in time. This approach allows
an effective monitoring on both sides. Moreover, the two-way approach allows the timeout
interval to be adjusted with every heartbeat. The timeout interval may be carried by the
PING messages used for the heartbeats. The monitoring service may suggest a different
timeout, if it seems applicable, while the device may accept this suggestion or use an
arbitrary timeout. It is important that, in the end, the interval specified by the device is
used, as there may be devices which use a static timeout and are not able to adjust that
due to technical reasons.

4.5 Integration into the RMP

The RMP is a web application with a database backend. Other applications may access
the RMP using a RESTful API. This leads to two possible solutions for the integration of
the discovery service into the RMP. One approach is to include the service into the current
implementation and allow access to the service’s functions through the RESTful API. This
would allow the discovery gateways, which must be implemented as a possibly standalone
application, to use the service with HTTP requests. This is the most uniform solution,
however, it is possible that future extensions of the protocol might require a more complex
communication between gateway and service. Therefore, it is not recommended forcing
the use of the RESTful API. The second possibility is to implement the service as another
standalone application, running alongside the RMP. Interaction with the RMP could be
achieved by either using the same database or through the REST interface. The former
is not recommended, as in good software architectures each application should use its
database exclusively.

39

5 Implementation

A prototypical implementation of the concepts described in Chapter 4 is part of this thesis.
The prototype implements the basic functions of the discovery service and includes an
Android app, which can be used to register smartphones and their sensors at the RMP.

The current implementation of the RMP is a web application based on Java EE1 and the
Spring2 framework. For persistence, it uses a MongoDB3 instance, which is a document
based NoSQL database. The web frontend, shown in Figure 5.1, provides the user with
lists of available types, currently registered devices, sensors, and actuators. Device in this
context equates to the concept of thing, described in Section 2.1. Devices are associated
with a specific type, while sensors and actuators are associated with a type and a device.

Using the RESTful API, applications may query the RMP for the available devices and their
status. Moreover, adapter deployment for registered devices may be triggered via the REST
interface. The remainder of this chapter describes the prototypical discvovery service in
Section 5.1, and the Android client in Section 5.2.

Figure 5.1: Screenshot of the RMP’s web interface

1http://www.oracle.com/technetwork/java/javaee/overview/index.html
2http://spring.io/
3https://www.mongodb.com/

41

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://spring.io/
https://www.mongodb.com/

5 Implementation

Figure 5.2: Structure of the discovery package

5.1 Discovery Service

The prototypical discovery service is implemented using Python4, which is a flexible
language frequently used for prototyping. The implementation provides the two python
packages: discovery and advertise. The packages can be treated as separate libraries and
provide a public API to be included by other applications.

The discovery package is structured as depicted in Figure 5.2 and includes an implementa-
tion of the discovery service, as well as of the discovery gateway. The service is designed to
run as a standalone application, independent of the RMP, and manages its own MongoDB3

database. A list of all discovered devices and their associated information is stored in the
service’s own database. This is necessary, as the discovery service must be able to recognize
already known devices. For communication with the RMP, the discovery service accesses
the RMP’s database directly.

4https://www.python.org/

42

https://www.python.org/

5.1 Discovery Service

Listing 5.1 An example configuration file
{

"self": { "local_id": "raspberry",

"type": "raspberry3",

"adapter_conf": {"timeout": 30}},

"devices": [

{ "local_id": "button",

"type": "Button",

"adapter_conf": {

"pinset": "13,14",

"timeout": 10}},

{ "local_id": "speaker",

"type": "Speaker",

"adapter_conf": {

"pinset": "15,16",

"timeout": 15}}

]

}

The discovery service is implemented within a single python class. It offers methods to
be started or stopped and implements the interface of a ServiceAdapter. Every discovery
gateway uses a ServiceAdapter to access the discovery service’s functions, described in Sec-
tion 4.2. Different adapters may be implemented for several communication mechanisms
between service and client, for example, RPC [Nel81]. The prototypical gateways can use
the service class directly, as they are running in the same process.

The DiscoveryGateway class gives an implementation of the protocol, specified in Section 4.3.
For this purpose, it offers the handle_msg() method, which treats incoming messages accord-
ingly. In addition, the class provides the abstract methods _send_msg and _receive_msg. To
support different communication technologies, subclasses of the DiscoveryGateway, which
implement these methods accordingly, may be created. Currently, the prototype includes
implementations of a LANGateway, for IP-based networks, and a BTGateway, for Bluetooth
networks. The specialized implementations also include the advertisement mechanisms.
At the moment, for IP-based networks the prototype uses DNS-SD in combination with
mDNS, while for Bluetooth networks a Bluetooth SDP solution is implemented. For this,
the prototype uses the libraries zeroconf5 and pybluez6 respectively.

The advertise package contains the implementation of the protocol for client devices. It
is structured in a similar way as the discovery package. It contains an AdvertiseService,
which can be used by any application running on the client device. The AdvertiseService
starts an abstract Advertiser. This Advertiser implements the protocol and provides abstract
methods for discovering the server, as well as for sending and receiving messages. The
prototype offers specialized implementations of the Advertiser class for IP-based networks
and Bluetooth networks.

5https://pypi.python.org/pypi/zeroconf
6https://pypi.python.org/pypi/PyBluez/

43

https://pypi.python.org/pypi/zeroconf
https://pypi.python.org/pypi/PyBluez/

5 Implementation

Listing 5.2 Advertisement code for IP-based networks
def discover_server(self):

log.info(’Discovering server’)

log.info("Starting DNS-SD discovery")

dnssd = zerocnf.Zeroconf()

service_browser = zerocnf.ServiceBrowser(dnssd, ’_rmpdis._udp’ + ’.local.’,

handlers=[self.server_discovered])

while self.discovered_server is None:

<wait at most five seconds>

if self.discovered_server is not None:

return self.discovered_server

<fallback broadcast> # in case no gateway could be found

def server_discovered(self, zeroconf, service_type, name, state_change):

if state_change is zerocnf.ServiceStateChange.Added:

info = zeroconf.get_service_info(service_type, name)

log.info("Discovered server |%s| at |%s:%s| using DNS-SD", name, str(service_addr),

str(service_port))

ip, mac = self._read_own_address(info.address, info.port)

self.discovered_server = ((info.address, info.port), ip, mac)

The AdvertiseService currently reads a configuration file from the device, which contains all
information about the device and its attached sensors and actuators. However, the contents
of the file might be generated upon application start, depending on the use case. Listing 5.1
shows an example of such a configuration file. The device, or thing, is a RaspberryPi with a
button and a speaker attached to it, using hardware pins 13,14 and 15,16 respectively.

Having all necessary information, the Advertiser tries to discover a discovery gateway, as
shown in Listing 5.2 (Phrases inside <> describe condensed code). The discover_server()

method starts a service browser, searching for services of the type _rmpdis._udp. When
a gateway is discovered, the server_discovered() method is called, which reads the devices
own MAC and IP address and stores the result.

After successful discovery, the Advertiser tries to connect all devices, starting with the
RaspberryPi as the host device. For each device the connect_device() method, shown in
Listing 5.3, creates a HELLO message with the LOCAL_ID, type, IP address, and MAC
address of the device. In addition, it adds the hosts GLOBAL_ID if necessary. In case the
device has been registered before, the last known GLOBAL_ID is added to the message.

When the discovery service receives an registration request, it performs duplicate checks
upon hardware address, type, and LOCAL_ID of the device. Provided the registration was
successful, the discovery service inserts the device into the RMP’s database and internally
adds it to the actively monitored devices. The devices receives a reply indicating the
registration result.

The device checks the received answer for a valid GLOBAL_ID. If the devices was registered
successfully, a CONF message is created containing the received GLOBAL_ID and the

44

5.1 Discovery Service

Listing 5.3 Code to connect a device
def connect_device(self, device, ip, hw_addr, global_id):

send hello message

hello_msg = {

DEV_IP: ip, DEV_HW_ADDRESS: hw_addr.lower(), DEV_TYPE: device[DEV_TYPE],

LOCAL_ID: device[LOCAL_ID], CONN_TYPE: CONN_HELLO

}

if HOST in device: # check if the device has a host

hello_msg[HOST] = device[HOST]

if global_id: # check if the device has been registered before

hello_msg[GLOBAL_ID] = global_id

self._send_msg(hello_msg)

hello_reply = self._receive_msg()

if hello_reply and <contains valid GLOBAL_ID>: # check for valid server response

global_id = hello_reply[GLOBAL_ID]

send conf message

conf_msg = {

GLOBAL_ID: global_id,

CONN_TYPE: CONN_CONF

}

adapter_conf = device[ADAPTER_CONF]

for key in adapter_conf: # copy the entries from the config file to the message

conf_msg[key] = adapter_conf[key]

self._send_msg(conf_msg)

log.debug(’Waiting for ACK’)

ack = self._receive_msg()

<repeat until acknowledgment arrives, otherwise treat the device as unconnected>

return global_id

adapter configuration copied from the local configuration file. This information must at
least contain the timeout interval after which the device is considered unavailable.

The discovery service uses the information in the CONF message to configure the adapter.
If there is sufficient data, the service sends an acknowledgement to the device. Moreover, it
can trigger the adapter deployment, using the REST interface of the RMP.

At this point, the prototype only supports the simple monitoring approach, described in
Section 4.4. Thus, the client device sends repeated heartbeat messages after a successful
registration. If a device times out, the discovery service deletes the device from the RMP’s
database, while keeping it stored internally, in case it tries to reregister at a later point.

45

5 Implementation

Figure 5.3: User interface of the RMPApp

5.2 Android client

The Android system does not allow applications to access internal sensors from outside the
phone. Thus, a prototypical implementation of an Android application is part of this thesis.
Since Android applications are typically written in Java, the advertise library was ported
from Python. Currently, the Java variant of the library is limited to IP-based networks.

The application includes an activity providing a basic user interface, shown in Figure 5.3. It
can be used to list the available sensors and to start or stop advertising of the phone. Upon
first start, the application reads the list of available sensors and compiles the configuration
file required by the advertise library. The smartphone acts as the host, with its type and
LOCAL_ID defined by the Android constants Build.MODEL and Build.DEVICE. As types for the
sensors, the application uses the Android sensor types listed in Table 2.1 on page 23. The
LOCAL_ID of the sensor is determined by the sensor’s name, assigned by the manufacturer.
Moreover, the application offers an background service to advertise the device on the WiFi
connection. The service, when active, listens for changes of the phone’s connection state
and starts advertising when a new connection has been established. If a gateway has been

46

5.2 Android client

discovered, the service registers the phone and its available sensors at the discovery service
and sends repeated PING messages for monitoring purposes.

The registration at the RMP is performed in the same way, as described in Section 5.1.
However, Android prohibits the execution of arbitrary code, since this would pose as a
severe security threat. Consequently, device adapters cannot be deployed onto the phone
by the RMP. Thus, the prototype application includes its own adapter implementation in
the form of a MQTT service. The service assumes a message broker running on the same
address as the discovered discovery gateway. It registers with the phone’s sensors and sends
resulting data to the broker. Information, necessary to post the data successfully to the
RMP, is provided by the discovery gateway during the adapter configuration exchange.

47

6 Conclusion

The emerging IoT leads to new challenges in registering and binding billions of devices.
Automated mechanisms must be developed, since for efficiency reasons, these tasks cannot
be performed manually. The RMP is one approach that allows an automated binding of
devices and automated provisioning of their data. However, the RMP requires manual
registration of the devices.

This thesis describes an extension for the RMP enabling it to discover devices automatically.
For this purpose, existing discovery mechanisms are examined, whether they can be used for
the task. As there is no solution fulfilling all necessary requirements, this work introduces a
discovery service extending the RMP.

The idea of this service is to advertise the discovery service and let devices search for it,
instead of the discovery service searching for devices. For this purpose, the discovery service
may use any discovery protocol, however, it must be able to monitor different networks with
different underlying technologies. Thus, this work uses discovery gateways, which act as a
bridge between the discovery service and the devices in a network. The discovery gateway
maintains a static connection to the possibly remote discovery service and communicates
with the devices locally. In doing so, it does not simply forward messages. It rather
processes the contents and calls the according functions of the discovery service.

This work is limited to IP-based and Bluetooth networks, using DNS-SD combined with
mDNS or Bluetooth SDP, respectively. Running DNS-SD, client devices may search for the
discovery service, using the defined service name _rmpdis._udp, while using Bluetooth SDP
devices may search for the UUID 809a061f-d834-4ba6-8741-29f0f53ca1b9. However, the
aim of future work will be to add support for more communication technologies.

In addition, this work specifies the protocol which may be used by devices in order to
connect to the RMP. Devices discover one of the available gateways for their network.
Following the protocol, they can connect to the RMP in two steps. First, they announce
themselves with an initial HELLO message. The discovery service allocates resources for
the device and treats it as registered, which means the device is known. In the second
step, device and discovery service negotiate the adapter configuration. Having acquired all
necessary information, the device is treated as bound. The scope of this thesis is limited to
these two steps. However, for future work, the protocol might be extended to include the
deployment of adapters or the provisioning of device data.

Moreover, the discovery service has the ability to monitor registered devices. Monitoring
may be done in two different ways. Either with single heartbeats repeatedly sent by the
device or with a two-way heartbeat initiated by the monitoring service. The heartbeat

49

6 Conclusion

messages may contain new timeout intervals to allow a dynamic adjustment of the heartbeat
frequency. Timed out devices are deregistered at the RMP, yet the discovery service
remembers them for future connection requests.

As a proof of concept, the work of this thesis includes a prototypical implementation of the
described discovery service and protocol. The prototype is implemented in Python and can
be run as a separate process in addition to the RMP. The service accesses the RMP over the
provided REST interface. The discovery gateways of the prototype are implemented to run
in the same process, yet the API is designed to allow remote gateways.

To allow access to smartphone sensors, the prototype includes an Android app. The app
includes a Java implementation of the protocol library and advertises the phone into the
connected WiFi network. In order to send values to the RMP, the app protoype includes
an adapter which reads the phone’s sensors and provisions the data using the MQTT
protocol.

To sum up, the described discovery service poses as an effective and stable solution for
discovery and binding of IoT devices. It extends the existing RMP, which allows a fully
automated solution for discovering and binding of devices, as well as the provisioning of
their data. This prevents error-prone and tedious manual configuration, which makes the
RMP IoT ready.

50

Bibliography

[ALG+99] S. Albright, P. J. Leach, Y. Gu, Y. Y. Goland, T. Cai. Simple Service Discovery
Protocol/1.0. Internet-Draft draft-cai-ssdp-v1-03. Internet Engineering Task
Force, Nov. 1999. URL: https://datatracker.ietf.org/doc/html/draft-cai-ssdp-
v1-03 (cit. on p. 29).

[And17] Android Develpoers. Sensors Overview. 2017. URL: https://developer.android.
com/guide/topics/sensors/sensors_overview.html (cit. on pp. 22, 23).

[ASW+99] K. Arnold, R. Scheifler, J. Waldo, B. O’Sullivan, A. Wollrath. Jini specification.
Addison-Wesley Longman Publishing Co., Inc., 1999. ISBN: 0201616343 (cit.
on p. 29).

[Blu14] Bluetooth Special Interest Group. Specification of the Bluetooth System Covered
Core Package Version 4.2. April. 2014, p. 2272. URL: https://www.bluetooth.
com/specifications/bluetooth-core-specification (cit. on pp. 16, 21, 22).

[Bra14] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. Tech.
rep. 7159. 2014. DOI: 10.17487/RFC7159. URL: https://rfc-editor.org/rfc/
rfc7159.txt (cit. on p. 35).

[CDF+14] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone, L. Veltri.
“A Scalable and Self-Configuring Architecture for Service Discovery in the
Internet of Things.” In: IEEE Internet of Things Journal 1.5 (2014), pp. 508–
521. DOI: 10.1109/JIOT.2014.2358296 (cit. on pp. 26, 27, 29).

[CDZS16] P. C. Ccori, L. C. C. De Biase, M. K. Zuffo, F. S. C. da Silva. “Device discovery
strategies for the IoT.” In: 2016 IEEE International Symposium on Consumer
Electronics (ISCE) 1 (2016), pp. 97–98. DOI: 10.1109/ISCE.2016.7797388.
URL: http://ieeexplore.ieee.org/document/7797388/ (cit. on pp. 25, 29).

[CK13a] S. Cheshire, M. Krochmal. DNS-Bsed Service Discovery. Tech. rep. IETF, 2013,
pp. 1–49. URL: https://tools.ietf.org/html/rfc6763 (cit. on p. 18).

[CK13b] S. Cheshire, M. Krochmal. Multicast DNS. Tech. rep. IETF, 2013, pp. 1–70.
URL: https://tools.ietf.org/html/rfc6762 (cit. on pp. 20, 30).

[Edw06] W. K. Edwards. “Discovery systems in ubiquitous computing.” In: IEEE Perva-
sive Computing 5.2 (2006), pp. 70–77. ISSN: 15361268. DOI: 10.1109/MPRV.
2006.28 (cit. on p. 18).

51

https://datatracker.ietf.org/doc/html/draft-cai-ssdp-v1-03
https://datatracker.ietf.org/doc/html/draft-cai-ssdp-v1-03
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://doi.org/10.17487/RFC7159
https://rfc-editor.org/rfc/rfc7159.txt
https://rfc-editor.org/rfc/rfc7159.txt
https://doi.org/10.1109/JIOT.2014.2358296
https://doi.org/10.1109/ISCE.2016.7797388
http://ieeexplore.ieee.org/document/7797388/
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc6762
https://doi.org/10.1109/MPRV.2006.28
https://doi.org/10.1109/MPRV.2006.28

Bibliography

[FBK+16] A. C. Franco da Silva, U. Breitenbücher, K. Képes, O. Kopp, F. Leymann.
“OpenTOSCA for IoT: Automating the Deployment of IoT Applications based
on the Mosquitto Message Broker.” In: Proceedings of the 6th International
Conference on the Internet of Things (IoT). Universität Stuttgart, Fakultät
Informatik, Elektrotechnik und Informationstechnik, Germany. Stuttgart:
ACM, Nov. 2016, pp. 181–182. ISBN: 978-1-4503-4814-0/16/11. DOI: 10.
1145/2991561.2998464. URL: http://www2.informatik.uni-stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-39 (cit. on p. 38).

[Gar16] Gartner. Gartner Says Five of Top 10 Worldwide Mobile Phone Vendors Increased
Sales in Second Quarter of 2016. 2016. URL: https://www.gartner.com/
newsroom/id/3415117 (cit. on p. 16).

[GBMP13] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami. “Internet of Things (IoT): A
vision, architectural elements, and future directions.” In: Future Generation
Computer Systems 29.7 (2013), pp. 1645–1660. ISSN: 0167739X. DOI: 10.
1016/j.future.2013.01.010. arXiv: 1207.0203. URL: http://dx.doi.org/10.
1016/j.future.2013.01.010 (cit. on p. 15).

[HBF+17] P. Hirmer, U. Breitenbücher, A. C. Franco da Silva, K. Képes, B. Mitschang,
M. Wieland. “Automating the Provisioning and Configuration of Devices in the
Internet of Things.” In: Complex Systems Informatics and Modeling Quarterly 9
(2017), pp. 28–43. URL: https://doi.org/10.7250/csimq.2016-9.02 (cit. on
pp. 15, 17).

[Ins16] Institute of Electrical and Electronics Engineers. IEEE 802.11-2016. Tech. rep.
Institute of Electrical and Electronics Engineers, 2016. URL: https://www.
techstreet.com/ieee/standards/ieee-802-11-2016?product_id=1867583
(cit. on p. 16).

[Jaz14] N. Jazdi. “Cyber physical systems in the context of Industry 4.0.” In: 2014
IEEE Automation, Quality and Testing, Robotics (2014), pp. 2–4. DOI: 10.1109/
AQTR.2014.6857843. URL: http://ieeexplore.ieee.org/xpls/abs%7B%5C_
%7Dall.jsp?arnumber=6857843 (cit. on p. 15).

[JLF+13] A. J. Jara, P. Lopez, D. Fernandez, J. F. Castillo, M. A. Zamora, A. F. Skarmeta.
“Mobile digcovery: A global service discovery for the internet of things.” In:
Proceedings - 27th International Conference on Advanced Information Network-
ing and Applications Workshops, WAINA 2013 (2013), pp. 1325–1330. DOI:
10.1109/WAINA.2013.261 (cit. on pp. 26, 27, 35).

[JMS12] A. J. Jara, P. Martinez-Julia, A. Skarmeta. “Light-weight multicast DNS and
DNS-SD (lmDNS-SD): IPv6-based resource and service discovery for the Web
of Things.” In: Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS) (2012), pp. 731–738. DOI: 10.1109/IMIS.2012.200 (cit. on pp. 26,
30).

52

https://doi.org/10.1145/2991561.2998464
https://doi.org/10.1145/2991561.2998464
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-39
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-39
https://www.gartner.com/newsroom/id/3415117
https://www.gartner.com/newsroom/id/3415117
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.future.2013.01.010
http://arxiv.org/abs/1207.0203
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.7250/csimq.2016-9.02
https://www.techstreet.com/ieee/standards/ieee-802-11-2016?product_id=1867583
https://www.techstreet.com/ieee/standards/ieee-802-11-2016?product_id=1867583
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1109/AQTR.2014.6857843
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=6857843
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=6857843
https://doi.org/10.1109/WAINA.2013.261
https://doi.org/10.1109/IMIS.2012.200

Bibliography

[KK12] R. Klauck, M. Kirsche. “Bonjour Contiki: A case study of a DNS-based discovery
service for the internet of things.” In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Vol. 7363 LNCS. 2012, pp. 316–329. ISBN: 9783642316371.
DOI: 10.1007/978-3-642-31638-8_24 (cit. on pp. 25–27, 30).

[LLJC08] J. Leguay, M. Lopez-Ramos, K. Jean-Marie, V. Conan. “An efficient service
oriented architecture for heterogeneous and dynamic wireless sensor net-
works.” In: Proceedings - Conference on Local Computer Networks, LCN (2008),
pp. 740–747. DOI: 10.1109/LCN.2008.4664275 (cit. on pp. 25, 27).

[Luc05] D. Luckham. The power of events: an introduction to complex event processing
in distributed enterprise systems. 3. print. Boston, Mass. ; Munich [u.a.]:
Addison-Wesley, 2005, XIX, 376 Seiten. ISBN: 0-201-72789-7 (cit. on p. 15).

[Moc87] P. Mockapetris. Domain Names - Concepts and Facilities. Tech. rep. IETF, 1987,
pp. 1–55. URL: https://tools.ietf.org/html/rfc1034 (cit. on p. 18).

[Mul07] G. Mulligan. “The 6LoWPAN architecture.” In: Proceedings of the 4th workshop
on Embedded networked sensors - EmNets ’07 (2007), p. 78. DOI: 10.1145/
1278972.1278992. URL: http://portal.acm.org/citation.cfm?doid=1278972.
1278992 (cit. on p. 33).

[Nel81] B. J. Nelson. “Remote Procedure Call.” PhD thesis. Pittsburgh, PA, USA, 1981
(cit. on p. 43).

[RBBM14] A. Radziwon, A. Bilberg, M. Bogers, E. S. Madsen. “The Smart Factory: Ex-
ploring Adaptive and Flexible Manufacturing Solutions.” In: Procedia Engi-
neering 69.Supplement C (2014), pp. 1184–1190. ISSN: 1877-7058. DOI:
10.1016/j.proeng.2014.03.108. URL: http://www.sciencedirect.com/science/
article/pii/S1877705814003543 (cit. on p. 15).

[RSZ06] C. S. Raghavendra, K. M. Sivalingam, T. Znati. Wireless Sensor Networks.
Ercoftac Series. Springer US, 2006. ISBN: 9781402078842. URL: https://
books.google.de/books?id=4zyDBwAAQBAJ (cit. on p. 15).

[SHB13] Z. Shelby, K. Hartke, C. Bormann. Constrained Application Protocol(CoAP).
Tech. rep. 2013, pp. 1–118. URL: https://tools.ietf.org/html/rfc7252 (cit. on
p. 26).

[SLM05] R. Salz, P. Leach, M. Mealling. A Universally Unique IDentifier (UUID) URN
Namespace Status. Tech. rep. IETF, 2005, pp. 1–32. URL: https://tools.ietf.
org/html/rfc4122 (cit. on p. 21).

[SWS+10] A. S. Shirazi, C. Winkler, A. Schmidt, P. Computing, U. I. Engineering. “SENSE
- SATION : An Extensible Platform for Integration of Phones into the Web.”
In: Internet of Things (IOT) (2010). DOI: 10.1109/IOT.2010.5678455 (cit. on
pp. 16, 22, 26).

53

https://doi.org/10.1007/978-3-642-31638-8_24
https://doi.org/10.1109/LCN.2008.4664275
https://tools.ietf.org/html/rfc1034
https://doi.org/10.1145/1278972.1278992
https://doi.org/10.1145/1278972.1278992
http://portal.acm.org/citation.cfm?doid=1278972.1278992
http://portal.acm.org/citation.cfm?doid=1278972.1278992
https://doi.org/10.1016/j.proeng.2014.03.108
http://www.sciencedirect.com/science/article/pii/S1877705814003543
http://www.sciencedirect.com/science/article/pii/S1877705814003543
https://books.google.de/books?id=4zyDBwAAQBAJ
https://books.google.de/books?id=4zyDBwAAQBAJ
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://doi.org/10.1109/IOT.2010.5678455

[TCZN17] F. Tao, Y. Cheng, L. Zhang, A. Y. C. Nee. “Advanced manufacturing systems: so-
cialization characteristics and trends.” In: Journal of Intelligent Manufacturing
28.5 (June 2017), pp. 1079–1094. ISSN: 1572-8145. DOI: 10.1007/s10845-
015-1042-8. URL: https://doi.org/10.1007/s10845-015-1042-8 (cit. on
p. 15).

[VP13] O. Vermesan, Peter Friess. Internet of Things: Converging Technologies for Smart
Environments and Integrated Ecosystems. 2013, p. 363. ISBN: 9788792982735.
DOI: 10.2139/ssrn.2324902. arXiv: arXiv:1011.1669v3 (cit. on p. 15).

[ZJ15] A. Zaslavsky, P. P. Jayaraman. “Discovery in the Internet of Things: The
Internet of Things (Ubiquity Symposium).” In: Ubiquity 2015.October (2015),
2:1–2:10. ISSN: 1530-2180. DOI: 10.1145/2822529. URL: http://doi.acm.
org/10.1145/2822529 (cit. on p. 25).

All links were last followed on October 31, 2017.

https://doi.org/10.1007/s10845-015-1042-8
https://doi.org/10.1007/s10845-015-1042-8
https://doi.org/10.1007/s10845-015-1042-8
https://doi.org/10.2139/ssrn.2324902
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1145/2822529
http://doi.acm.org/10.1145/2822529
http://doi.acm.org/10.1145/2822529

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Fundamentals
	2.1 Resource Management Platform
	2.2 DNS-SD
	2.3 mDNS
	2.4 Bluetooth SDP
	2.5 Android Sensor Access

	3 Related Work
	4 Automated discovery and binding of IoT devices
	4.1 Overview
	4.2 Discovery Service
	4.3 Protocol
	4.4 Monitoring
	4.5 Integration into the RMP

	5 Implementation
	5.1 Discovery Service
	5.2 Android client

	6 Conclusion
	Bibliography

