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ZUSAMMENFASSUNG

Supraleitung in korrelierten Elektronensystemen in Übergangsmetall-Oxiden ist ein faszi-
nierendes und komplexes Phänomen, welches in den vergangenen drei Jahrzenten intensiv
erforscht wurde [1–3]. Der Mechanismus der Supraleitung in diesen Systemen ist jedoch
noch immer nicht vollständig verstanden und bleibt weiterhin eine der wichtigen offenen
Fragen der Festkörperphysik. Die vorliegende Arbeit soll zum Verständnis der Supraleitung in
Übergangsmetall-Oxiden beitragen, insbesondere im Elektronensystem der LaAlO3–SrTiO3-
Grenzfläche.

Elektronen in dotierten Halbleitern und in Metallen bilden ein Fermi-Gas mit geringer
Dichte und können in einem auf die Molekularfeldnäherung gestützten Bändermodell be-
schrieben werden. Im Gegensatz dazu sind in isolierenden Materialien die Elektronen fest
an ihre Orbitale gebunden. In Übergangsmetall-Oxiden jedoch befinden sich die Elektro-
nen in Übergangszuständen zwischen Energiebändern und Orbitalen. Diese Zustände können
delokalisiert sein, d.h. Ladungstransport ist möglich, aber die Elektronen zeigen weiterhin cha-
rakteristische Eigenschaften ihres Orbitals. In dieser komplexen Situation, in der das Verhalten
der Elektronen weder im Bänder- noch im Orbital-Modell beschrieben werden kann, bringen
elektronische Korrelationen, sich gegenseitig bedingende Ordnungen von Spin, Ladung und
Orbitalen und emergente Phänomene neue und faszinierende Eigenschaften hervor, zum Beispiel
den kolossalen Magnetowiderstand [4, 5], Ferroelektrizität [6] oder spintronische Effekte [7,
8]. Eines der faszinierendsten Phänomene, die in korrelierten Elektronensystemen in Oxiden
beobachtet werden, ist die Hochtemperatur-Supraleitung in Kupferoxid-Materialien [2, 3].

Die große Vielseitigkeit der Übergangsmetall-Oxide, zum Beispiel ihre Fähigkeit verschiedene
Valenzzustände anzunehmen, impliziert, dass es entscheidend ist die Materialeigenschaften
präzise kontrollieren zu können. Zu diesem Zweck spielen mittels Aufdampftechniken gewachsene
Dünnschicht-Filme und Heterostrukturen komplexer Materialien eine besonders wichtige Rolle
[9]. Aufdampfmethoden wie Molekularstrahl-Epitaxie (engl. molecular beam epitaxy, MBE)
und gepulste Laser-Deposition (engl. pulsed laser deposition, PLD) ermöglichen das Wachstum
dünner Materialschichten mit wohldefinierter Struktur und Stöchiometrie. Zwei der wichtigsten
Beispiele sind die zweidimensionalen Elektronengase mit hoher Ladungsträgermobilität in mittels
MBE gewachsenen Heterostrukturen von Halbleitern [10] und Hochtemperatur-Supraleitung in
Dünnschichtfilmen von Oxiden, z.B. mittels PLD gewachsenes YBa2Cu307−δ [3].

Im Fall dieser beiden Beispiele (wie auch in vielen anderen) liegen die beweglichen Elek-
tronen in zweidimensionalen Ebenen vor. Solche zweidimensionalen Elektronensysteme (engl.
two-dimensional electron system, 2DES) unterscheiden sich in vielerlei Hinsicht von dreidimen-
sionalen Elektronensytemen. Für den Fall, dass das 2DES einen supraleitenden Grundzustand
aufweist, kann beispielsweise ein Quantenphasenübergang zwischen supraleitendem und isolieren-
dem Zustand beobachtet werden [11–13]. Im Gegensatz zu herkömmlichen thermodynamischen
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Phasenübergängen findet dieser Quantenphasenübergang bei der Temperatur des absoluten
Nullpunkts statt. Da in allen Hochtemperatur-Kupferoxid-Supraleitern die Supraleitung in den
Kupfer-Sauerstoff-Ebenen stattfindet und diese Supraleiter in Abhängigkeit von der Dotierung
einen solchen Supraleiter-Isolator-Übergang (engl. superconductor-insulator transition, SIT)
durchlaufen, können Untersuchungen des SIT neue Erkenntnisse über diese Systeme liefern. Der
SIT ist aufgrund der drastischen Veränderung des Widerstands von einem perfekt verlustfreien
Leiter zu einem Isolator auch für praktische Anwendungen relevant. In der Tat gibt es Voraus-
sagen, dass einer der Endpunkte des SIT ein superisolierender Zustand mit außergewöhnlich
hohem Widerstand sein könnte [14–16].

Ein weiterer besonderer Phasenübergang, der in zweidimensionalen Supraleitern beobach-
tet werden kann, ist der topologische Berezinksi-Kosterlitz-Thouless (BKT)-Phasenübergang,
welcher bei endlicher Temperatur auftritt, aber topologische Eigenschaften besitzt. Da in
der Theorie des BKT-Phasenübergangs zum ersten Mal das Konzept der Topologie in der
Physik verwendet wurde, welches nun in der Festkörperphysik zu einem wichtigen Feld ge-
worden ist, wurden Kosterlitz und Thouless dafür im Jahr 2016 mit dem Nobelpreis geehrt.
Der BKT-Phasenübergang ist jedoch schwer zu beobachten, da er nur in einem sehr kleinen
Temperaturbereich auftritt und die Auswirkungen von Temperaturschwankungen leicht mit
den Merkmalen des Phasenübergangs verwechselt werden können [17].

Die vorliegende Arbeit beschreibt Untersuchungen der Supraleiter-Isolator- und BKT-
Phasenübergänge in einem zweidimensionalen Supraleiter aus Übergangsmetall-Oxiden: dem
Elektronensystem an der LaAlO3–SrTiO3-Grenzfläche. Dünne Schichten des Isolators LaAlO3,
welche epitaktisch auf Substrate aus dem Isolator SrTiO3 gewachsen werden, erzeugen ein 2DES
an der Grenzfläche der beiden Materialien. Der Grundzustand kann mittels einer Gate-Spannung
von Supraleiter zu Isolator umgeschaltet werden. Daher ist das Grenzflächen-2DES ein nützliches
Instrument zur Untersuchung dieser Phasenübergänge. Zudem zeigt LaAlO3–SrTiO3 eine Phase,
welche der Pseudogap-Phase in den Kupferoxid-Supraleitern ähnlich ist: In dieser Phase wird
ein endlicher Widerstand für den Transport von Elektronen gemessen, aber Tunnel-Experimente
zeigen eine Lücke in der Zustandsdichte der Elektronen [18]. Diese Beobachtungen sind in der
gewöhnlichen Bardeen-Cooper-Schrieffer (BCS) - Theorie der Supraleitung nicht zu erklären.

Die Phasenübergänge wurden mittels zweier komplementärer Methoden untersucht: Ei-
nerseits durch Tunnel-Experimente an Proben mit Gate-Elektroden an der Rückseite und
andererseits durch die Konstruktion supraleitender Transistoren, in denen das Elektronen-
system durch eine Gate-Spannung an der Oberfläche kontrolliert wird. Tunnelspektroskopie
ist ein wertvolles Instrument um Supraleiter zu untersuchen, da es eine direkte Messung der
elektronischen Zustandsdichte möglich macht und somit die supraleitenden Bandlücke ∆ und
andere Eigenschaften des supraleitenden Kondensats bestimmt werden können [19]. Das 2DES
an der LaAlO3–SrTiO3-Grenzfläche ist für Tunnelexperimente besonders geeignet, denn die
LaAlO3-Schicht an der Oberfläche dient intrinsisch als die für Tunnelexperimente benötigte
isolierende Barriere. Werden Tunnelexperimente gemeinsam mit Messungen des Ladungstrans-
port ausgeführt, kann bestimmt werden ob der Übergang von Supraleiter zu Isolator durch das
Aufbrechen von Cooper-Paaren (d.h. ∆→ 0) oder durch den Verlust der Kohärenz zwischen
den Paaren (d.h. ξ → 0, ∆ > 0) geschieht.

Ein Transistor ist für die Untersuchung des SIT nützlich, denn das Anlegen einer Gate-
Spannung kann die Leitfähigkeit des darunter liegenden Kanals um mehrere Größenordnungen
ändern. Das LaAlO3–SrTiO3-Elektronensystem ist der einzige bekannte Supraleiter der auf
kurzen Zeitskalen durch Anlegen einer Gate-Spannung ein- und ausgeschaltet werden kann. Da
ein supraleitender Transistor Strom mit Ladungsträgern in der Form von Cooper-Paaren und
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nicht von einzelnen Elektronen transportier, kann erwartet werden, dass sich seine Eigenschaften
von denen eines normalen Transistors erheblich unterscheiden.

Die vorliegende Arbeit beinhaltet einige neue Einblicke in die Natur des vielseitigen 2DES
an der LaAlO3–SrTiO3-Grenzfläche, die zum besseren Verständnis dieses zweidimensionalen
Elektronensystems und seines supraleitenden Grundzustands beitragen. Der Schwerpunkt der
Arbeit liegt auf der Untersuchung der nur in zweidimensionalen Supraleitern beobachtbaren
Phasenübergänge, der SIT und dem BKT-Phasenübergang. Die Beobachtung von Zuständen
innerhalb der supraleitenden Bandlücke mittels Tunnelspektroskopie deutet darauf hin, dass
noch viel über das 2DES an der LaAlO3–SrTiO3-Grenzfläche zu lernen ist.

Ein wichtiges Anwendungsgebiet zweidimensionaler Elektronensysteme sind Feldeffekt-
Transistoren (FETs). In Kapitel 4 wird ein neuer Entwurf von FETs präsentiert. Diese Tran-
sistoren vereinen die vorherigen Arbeiten zu LaAlO3–SrTiO3-Transistoren [20–22] mit den
Untersuchungen an LaAlO3–SrTiO3 unter hydrostatischem Druck [23, 24]. Dies ist die erste
Untersuchung von oxidischen Transistoren unter Druck und eröffnet damit eine neue Achse
des Phasendiagramms von LaAlO3–SrTiO3-Transistoren. Diese Messungen sind nicht nur eine
Bestätigung der früheren Ergebnisse aus Referenz [23], sondern zeigen auch, dass kleinste
LaAlO3–SrTiO3-Bauelemente auch unter extremen physikalischen Bedingungen wie einem
Druck von 1.8 GPa funktionstüchtig bleiben.

Im zweiten Teil von Kapitel 4 werden die an kombinierten Transistor-Hall-Steg-Bauelementen
gewonnenen Ergebnisse vorgestellt, welche neue Erkenntnisse über die Multiband-Eigenschaften
des LaAlO3–SrTiO3-2DES ergeben. Insbesondere ermöglicht die Analyse der Transistor-
Charakteristika die Existenz eines Bandes von positiven Ladungsträgern auszuschließen, welches
oft bei der Analyse der Hall-Daten auftaucht. Zudem wird die Eignung von Transistoren einer-
seits und Hall-Stegen andererseits zur Bestimmung der Ladungsträgerdichten und Mobilitäten
diskutiert, ein Ergebnis welches für alle leitfähigen Materialien relevant ist.

In Kapitel 5 wird die Änderung des senkrechten kritischen Magnetfelds Hc2 des supralei-
tenden 2DES mit der Temperatur untersucht. Im Gegensatz zu der für einen herkömmlichen
BCS-Supraleiter zu erwartenden parabolischen Kurve ist die Temperaturabhängigkeit von
Hc2 linear bis zur niedrigsten gemessenen Temperatur von 50 mK. Verschiedene Mechanismen
können das lineare Verhalten von Hc2(T ) erklären, unter anderem Multiband-Supraleitung.
Die Zweidimensionalität des supraleitenden Elektronensystems kann jedoch an sich schon
eine lineare Hc2(T )-Kurve verursachen. Da in LaAlO3–SrTiO3, wie in allen zweidimensionalen
Supraleitern, der Phasenübergang zur Supraleitung nicht scharf ist, sind die Fehlergrenzen für
Hc2(T ) groß und verhindern eine klare Unterscheidung der theoretischen Modelle.

Der zu Beginn von Kapitel 6 vorgestellte ausführliche Prozess der Wachstumsoptimierung
verdeutlicht die große Herausforderung bei der Untersuchung des LaAlO3–SrTiO3-Systems: We-
gen einer großen Anzahl nicht kontrollierbarer (und manchmal unbekannter) äußerer Einflüsse
können sich die Eigenschaften von nominell unter gleichen Bedingungen gewachsenen Proben
signifikant unterscheiden. Offensichtlich sind weitere Fortschritte bezüglich des Wachstumspro-
zesses wünschenswert, insbesondere um den Einfluss des Substrats zu minimieren.

Die in Kapitel 6 vorgestellte kombinierte Analyse von Messungen in hohen magnetischen
Feldern und tunnelspektroskopischen Daten legt einen Zusammenhang zwischen der Besetzung
eines zusätzlichen Bandes und dem Rückgang der Supraleitung im überdotierten Bereich des
LaAlO3–SrTiO3-Phasendiagramms nahe. Hier wurden zum ersten Mal Tunnel- und Hall -
Ergebnisse der selben Probe kombiniert. Obwohl der genaue Mechanismus noch nicht klar ist,
durch den die Ladungsträger des zweiten Bandes die Supraleitung der überdotierten Phase
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zerstören, liefert dies eine mögliche Erklärung für das von der BCS-Theorie abweichende
Verhalten des Elektronensystems in diesem Bereich des Phasendiagramms.

Die in Kapitel 6 beschriebenen Versuche, den BKT-Phasenübergang im gesamten Bereich
des LaAlO3–SrTiO3-Phasendiagramms von Supraleiter bis Isolator zu messen waren aufgrund
einer Vielzahl von Schwierigkeiten nicht erfolgreich. Das wichtigste und fundamentalste dieser
Probleme ist mit Sicherheit der Wärmeeintrag in das Elektronensystem. Es sticht in Systemen
wie dem LaAlO3–SrTiO3-Elektronensystem, welche bei Millikelvin-Temperaturen untersucht
werden, besonders hervor, denn bei diesen Temperaturen ist das Elektronensystem nur schwach
an die Phononen des Gitters gekoppelt, was eine effektive Kühlung erschwert. Daher werden
Messungen des BKT-Übergangs in zweidimensionalen Supraleitern mit Sprungtemperaturen im
Bereich des flüssigen Heliums oder darüber verlässlichere Ergebnisse liefern. Die entscheidende
Frage ist, ob ein supraleitendes System existiert, in dem Supraleitung so stark ist, dass sie
bei genügend hohen Temperaturen existiert und dennoch schwach genug ist, um mittels einer
Gate-Spannung schaltbar zu sein.

Am Ende von Kapitel 6 wird die Gestaltung eines supraleitenden Transistors vorgestellt,
in dem das Grenzflächen-Elektronensystem als supraleitender Kanal fungiert. Die Leistung
dieses Transistors ist durch Einschränkungen bei der Herstellung begrenzt, aber das Schalten
des Kanals mittels einer Top-Gate Spannung wurde demonstriert und das unterschiedliche
Verhalten des Transistors im normal- und supraleitenden Zustand wurde gezeigt. Des Weiteren
wurde deutlich, dass der Kanal beim Schalten vom supraleitenden zum isolierenden Zustand
eine dazwischen liegende metallische Phase durchläuft.

Die in Kapitel 7 vorgestellten Zustände innerhalb der supraleitenden Bandlücke des
LaAlO3–SrTiO3-2DES sind beispielhaft für die vielen faszinierenden, jedoch bisher unerklärten
Phänomene die an der LaAlO3–SrTiO3-Grenzfläche auftreten. Obwohl eine endgültige Bestim-
mung der Herkunft dieser Zustände wegen ihres nicht-deterministischen Vorkommens noch
aussteht, ist es durch eingehende Analyse der Daten möglich, einige der vorgeschlagenen Me-
chanismen mit großer Sicherheit auszuschließen. Viele der verbleibenden Hypothesen sagen die
Existenz von Zuständen mit außergewöhnlichen Eigenschaften voraus, zum Beispiel gebundene
Majorana-Zustände.

Ein wiederkehrendes Thema dieser Arbeit ist es, den Beitrag verschiedener Bänder zur
Leitfähigkeit und Supraleitung an der LaAlO3–SrTiO3-Grenzfläche herauszustellen. Das sich
abzeichnende Modell ist konsistent mit dem in Referenz [25] vorgestellten: Schon bei niedriger
Ladungsträgerdichte sind zwei Unterbänder besetzt, und zwar das energetisch am tiefsten
liegende dxy-Unterband und eines der durch Rashba-Spin-Orbit-Kopplung aufgespaltenen
dxz/yz-Unterbänder. Diese Besetzung mehrerer Bänder auch bei niedriger Ladungsträgerdichte
kann mit dem folgenden Argument begründet werden: Tunnelströme senkrecht zur Oberfläche
können wegen der Impulserhaltung nur von den energetisch höher liegenden dxz/yz-Unterbändern
aufgenommen werden, aber ein Tunnelstrom ist für alle Gate-Spannungen, bei denen das
Elektronensystem leitfähig ist, zu beobachten. Dies impliziert, dass das energetisch niedriger
liegende dxy-Unterband auch besetzt sein muss. Die Beobachtung mehrerer Frequenzen in den
in Abschnitt 6.1.2 beschriebenen Shubnikov-de Haas-Oszillationen ist ein weiterer Hinweis für
Transport in mehreren Bändern auch bei niedriger Ladungsträgerdichte.

Für höhere Ladungsträgerdichten wird ein weiteres Band besetzt, wie die Hall-Messungen
in Abschnitt 6.1.1 zeigen. Die Ladungsträger in diesem zusätzlichen Band, das energetisch
höher liegende der Rashba-gespaltenen dxz/yz-Unterbänder, tragen nicht zur Supraleitung bei,
sondern verringern Tc, möglicherweise durch verstärkte Elektron-Elektron-Streuung. Daher
zeigen die Tunneldaten, dass das niedriger liegende der dxz/yz-Unterbänder supraleitend ist, die
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Hall-Messungen jedoch lassen vermuten, dass dies für den energetisch höher liegenden Partner
nicht zutrifft. Die Frage, ob das dxy-Unterband ebenfalls supraleitend ist, konnte durch die
Messungen in Kapitel 5 nicht abschließend geklärt werden und bleibt weiterhin offen. Wenn es
jedoch supraleitend wäre, könnte seine Wechselwirkung mit dem anderen supraleitenden Band
ein möglicher Ursprung der in Kapitel 7 beschrieben Zustände in der supraleitenden Bandlücke
sein.

In einem anderen Szenario ist es aber auch möglich, dass das dxy-Unterband überhaupt
nicht leitfähig ist: Die Ladungsträger sind zwar vorhanden, aber weil die Elektronen sich so
nahe an der Grenzfläche und der damit verbundenen hohen Dichte von Defekten befinden, sind
sie so gut wie lokalisiert [26]. Diese Hypothese könnte erklären, warum die in dieser Arbeit
vorgestellten Hall-Messungen Einzelband-Verhalten bei negativen Back-Gate-Spannungen zeigen,
warum die gemessene Ladungsträgerdichte an der Grenzfläche immer kleiner ist als im Modell
der polaren Katastrophe vorhergesagt und warum Photoemissions-Messungen eine höhere
Ladungsträgerdichte zeigen als Transportmessungen [27].

Die Ergebnisse der vorliegenden Arbeit zeigen, dass das 2DES an der LaAlO3–SrTiO3-
Grenzfläche sowohl im Hinblick auf Anwendungen interessant ist, da widerstandsfähige und
sogar supraleitende Transistoren daraus hergestellt werden können, als auch im Hinblick auf die
Grundlagenforschung, da dort viele neue und ungewöhnliche Phänomene beobachtet werden.
Die Schwierigkeiten des präzisen und sauberen Probenwachstums sowie der Messungen bei
Millikelvin-Temperaturen stellen jedoch weiterhin eine Herausforderung für den Experimentator
dar.
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Equipped with his five senses,
man explores the universe around him

and calls the adventure Science.
Edwin Hubble

INTRODUCTION 1
1.1 Motivation

Superconductivity in correlated electron systems in transition-metal oxides is a fascinating
and complex phenomenon and has been the subject of intense research for the last three
decades [1–3, 28]. However, the nature of the superconducting state in these systems is still not
entirely understood and remains an open question in solid state physics. This thesis aims to
contribute to the understanding of superconductivity in transition metal oxides, in particular
in the LaAlO3–SrTiO3 interface electron system.

Electrons in doped semiconductors and metals form a dilute Fermi gas and can be described
in a mean-field based energy band picture, whereas in insulating materials, electrons are rigidly
bound to their orbitals. In transition metal oxides, however, electronic states exist in an
intermediate regime between energy bands and orbitals. These states can be delocalized, i.e.,
conductivity is possible, but the electrons retain a part of their orbital character. In this complex
situation, in which it is not possible to describe the electronic behavior in the simple forms
of either a band or orbital model, phenomena such as electronic correlations, inter-dependent
ordering of spin, charge and orbitals and emergent phenomena lead to new and intriguing
properties such as colossal magnetoresistance [4, 5], ferroelectricity [6] or spintronic effects [7,
8]. One of the most fascinating phenomena observed in correlated electron systems in oxides is
the high-temperature superconductivity found in copper oxide materials [2, 3].

The great variability of transition metal oxides, e.g., their possible multivalency, implies
that it is crucial to control the material properties precisely. For this purpose, thin films and
heterostructures of complex materials grown by vapor deposition techniques play a particularly
important role [9]. Deposition methods such as molecular beam epitaxy (MBE) and pulsed
laser deposition (PLD) allow the creation of thin films of materials with well-defined structure
and stoichiometry. Two of the most prominent examples are the high-mobility two-dimensional
electron gases at MBE-grown semiconductor-heterointerfaces [10] or high-temperature super-
conductivity in oxide thin films, e.g., YBa2Cu3O7−δ grown by PLD [3]. In the case of these
examples (and many others), the mobile electrons are confined to two-dimensional planes. Such
two-dimensional electron systems (2DESs) differ in many aspects from bulk electron systems.

For example, if the 2DES has a superconducting ground state, a quantum phase transition
between superconducting and insulating state may be observed [11–13]. Unlike conventional
thermodynamic phase transitions, it is a quantum phenomenon occurring at zero temperature.
Since in all high-temperature cuprate superconductors, the conductivity is due to 2DESs in
the copper-oxygen planes and these superconductors undergo such a superconductor-insulator
transition (SIT) as a function of doping, investigations of the SIT in general can reveal more
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about the nature of these systems. The SIT is also relevant from a practical perspective, because
of the drastic change in resistance from a perfect lossless conductor to an insulator. In fact, it
has been speculated that a SIT may terminate in a superinsulating state with extraordinarily
high resistance [14–16].

Another special phase transition of 2D superconductors is the topological Berezinski-
Kosterlitz-Thouless (BKT) transition, which occurs at finite temperature but has a special
topological character. Since the theory of the BKT transition was the first to employ the
concept of topology, now an important field in physics, its discovery was recently honored with
the Nobel prize. However, the BKT transition is difficult to observe, because it occurs only
in a very narrow temperature range and temperature effects can easily be mistaken for BKT
signatures [17].

The work described in this thesis investigated the superconductor-insulator- and BKT-
transitions in a two-dimensional superconductor based on transition-metal oxides: the electron
system at the LaAlO3–SrTiO3 interface. Thin films of insulating LaAlO3 grown onto insulating
SrTiO3 substrates exhibit a 2DES with a superconducting ground state at the interface of the
two materials. The ground state can be switched from superconducting to insulating behavior
by application of a gate voltage. Therefore it is a useful tool for the investigation of these phase
transitions. Additionally, LaAlO3–SrTiO3 exhibits a phase similar to the cuprate pseudogap
phase in which electron transport is resistive, but a gap can be observed in the density of states
in tunneling experiments [18] which is not explicable by the standard Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity.

The phase transitions were investigated by two complimentary pathways: by tunneling
experiments on backgated samples and through the construction of superconducting transistors
in which the electron system is influenced by the application of topgate voltages. In the
investigation of superconductors, tunneling spectroscopy is a valuable tool because it allows
direct imaging of the electronic density of states and thereby it is possible to determine
the pairing strength ∆ [19] and other properties of the superconducting condensate. The
LaAlO3–SrTiO3-interface 2DES lends itself to tunneling experiments, because the LaAlO3 top
layer intrinsically serves as the insulating barrier required for tunneling experiments. When
performing tunneling measurements in parallel with measurements of the in-plane electron
transport, it is possible to determine whether the transition from superconductor to insulator
is due to the breaking of pairs (i.e., ∆→ 0) or due to the loss of coherence between the pairs,
indicated by a vanishing coherence length ξ (i.e., ξ → 0, ∆ > 0).

A transistor is a useful device for the investigation of the SIT, because the application of a
topgate voltage can change the conductivity in the underlying channel by several orders of mag-
nitude. The LaAlO3–SrTiO3 electron system is the only superconductor which can be switched
on and off by the application of a gate voltage on short timescales. Since a superconducting
transistor transports current as Cooper pairs and not as electrons, its characteristics have to be
expected to be fundamentally different from that of a normal transistor.

1.2 Overview of this thesis

This thesis aims at answering a number of open questions concerning the LaAlO3–SrTiO3

interface and the SIT of its electron system, for example: How does the BKT transition
in the LaAlO3–SrTiO3 2DES evolve as the electron system is tuned from superconducting
to insulating? Is it possible to construct a superconducting transistor using the LaAlO3–
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SrTiO3 2DES as channel and in which way are the switching characteristics of this transistor
different from a similar transistor in the normal state? What can we yet learn fom tunneling
spectroscopy at the interface? How can the contribution of the different bands to conductivity
be disentangled?

In the following section, the LaAlO3–SrTiO3-interface electron system will be introduced,
which is the subject of the investigations presented in this thesis. This also includes a brief
description of its constituent materials LaAlO3 and SrTiO3.

Chapter 2 gives an overview over the theoretical background required: the theory of super-
conducting quasiparticle tunneling, fundamentals of the BKT transition and the characteristics
of field-effect transistors (FETs).

Chapter 3 describes the experimental methods which were employed: the preparation of
substrates, sample growth using pulsed laser deposition and photolithographic patterning of
the electrodes and the electron system. Additionally, an overview of the sample designs and
low temperature measurement methods is given.

In Chapter 4, LaAlO3–SrTiO3 transistors are described which were subjected to hydrostatic
pressure. The analysis of transistor characteristics at different temperatures and pressures
confirmed previous results on the response of the LaAlO3–SrTiO3 2DES to pressure obtained
in Hall-bar structures [23]. In a further experiment, combined transistor-Hall-bar samples were
measured under pressure, revealing subtle differences between Hall-bar and transistor results
and also giving indications of a multiband character of the 2DES at the interface.

Chapter 5 describes measurements of the critical magnetic field Hc2 of the LaAlO3–SrTiO3

superconductor as a function of temperature. The measurements showed that the Hc2(T )-
curve follows a linear trend down to far lower temperatures than expected for a standard
BCS-superconductor. Non-standard behavior of Hc2(T ) can be due to the two-dimensionality
of the system, but can also indicate multiband superconductivity or an anisotropy of the Fermi
surface. Because of the large error margin of the data, definite conclusions are challenging.

Chapter 6 describes several aspects of the SIT in LaAlO3–SrTiO3 which were investigated
in this thesis. First, it was necessary to optimize the PLD growth conditions for LaAlO3–
SrTiO3-samples to obtain electron systems which were both superconducting and could be
turned insulating with a back-gate voltage. Then, investigations of the BKT transition are
described, which were obscured by intrinsic heating in the electron system. Also, an increase of
resistivity directly before the onset of the superconducting transition is described, which was
observed in the R(H) and R(T ) curves of several LaAlO3–SrTiO3-samples. Such an increase in
resistance can be caused by the presence of incoherent preformed pairs in the electron system, a
hypothesis which is corroborated by measurements of the superconducting parameters ∆ and Γ
in the corresponding region of the phase diagram. At the end of Chapter 6, a superconducting
transistor with the LaAlO3–SrTiO3 2DES as channel is discussed. In a transistor geometry,
the SIT can be controlled by applying a voltage to the topgate. It is shown that the switching
speed of the transistor is not improved by superconductivity because of an intermediate metallic
state between the insulating and the superconducting region. However, the conductivity of the
transistor in the ON state is improved in the superconducting region.

Chapter 7 describes tunneling measurements of in-gap features observed in superconducting
tunneling spectra of LaAlO3–SrTiO3 samples and describes a number of physical phenomena
which can be the origin of such states. While the data allowed the exclusion of some of these
phenomena, it was not possible to determine the origin of the in-gap features with certainty.

In Chapter 8, the results of this thesis are summarized and an outlook is given on further
questions to be answered.
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The appendices at the end of this thesis were written to educate the writer rather than
the reader, who found that “The best way to understand a topic is to write a book about it.”
(Barry McCoy). They are not necessary for the understanding of the thesis, but may be found
useful for detailed reference on their respective topics.

1.3 The LaAlO3-SrTiO3 interface

The 2DES at the interface of the two insulators LaAlO3 and SrTiO3 is a case in point for the
fascinating versatility that electronic correlations lend to transition metal oxides. The present
thesis describes several aspects of the superconductor-insulator transition in this peculiar
electron system. This section gives a brief overview over the LaAlO3–SrTiO3 system. More
in-depth information concerning the LaAlO3-SrTiO3 interface 2DES and its history can be
found in several review articles [28–30]. In order to better understand the properties of the
interface, the constituent materials will be introduced first.

1.3.1 SrTiO3

Strontium titanate (SrTiO3) is a transparent, colorless compound with high refractive index.
Its appearance in nature is very rare, but it can be readily synthesized. SrTiO3 single crystals
are grown using the defect-prone Verneuil method, which limits the purity and quality of the
available SrTiO3 samples. At room temperature, SrTiO3 is of the standard perovskite ABO3

structure with lattice parameter 3.905�A and a cubic unit cell. At 105 K, SrTiO3 undergoes a
transition to a tetragonal low-temperature phase due to a rotation of the oxygen octahedra.
SrTiO3 has a very high dielectric constant, which varies from 300 at room temperature up
to 25 000 at low temperatures [31–33] due to an incipient ferroelectric transition [34]. There
are several ways to turn ordinarily quantum paraelectric SrTiO3 ferroelectric, e.g., by the
application of epitaxial strain [35].

SrTiO3 is insulating with an indirect bandgap of 3.2 eV, but it becomes semiconducting
when doped by Nb5+ substitution for Ti4+, La3+ substitution for Sr2+ or O2− vacancies. Thus,
when working with SrTiO3, it is essential to avoid reducing conditions in order to prohibit the
creation of oxygen vacancies, which would result in undesired conductivity.

The conduction electrons of doped SrTiO3 reside in the Ti-3d-orbitals. The degeneracy of
these orbitals is lifted by the crystal field splitting, i.e., the electrons in the Ti orbitals have
different energies depending on their positions relative to the electrons of the surrounding oxygen
octahedron. The d3z2−r2 and dx2−y2 states have higher energy and are collectively referred to
as eg orbitals. The dxy, dxz, dyz orbitals have lower energy and are collectively referred to as
t2g orbitals. The degeneracy of the t2g orbitals is lifted by spin-orbit coupling (∆SO = 18 meV)
and a second crystal field splitting due to the tetragonal transition (∆t = 1.54 meV) [36, 37].
The band structure of SrTiO3 has been calculated [38, 39]. The calculated band energies differ,
however, from the spectroscopic measurements cited above. Nonetheless it is clear that the
minimum of the conduction band is at the Γ point, i.e., in the center of the Brillouin zone
and that it consists of the 3d-t2g band which is split up into three subbands with different
effective masses. These subbands are empty for stoichiometric SrTiO3 and become subsequently
populated with electrons as the doping level is increased, which can be observed, e.g., by the
appearance of additional frequencies in Shubnikov-de Haas oscillations once multiple bands are
occupied [40].
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SrTiO3 becomes superconducting when doped with Nb, La or O vacancies with transition
temperatures usually below 0.4 K, even though a transition temperature of 1.2 K has been
reported [41]. It was the first superconducting semiconductor to be discovered [1] and is noted
for its unusually low charge carrier concentration between 1× 1018 cm−3 and 1× 1021 cm−3.
Measurements of superconducting tunneling spectra [42] and quantum oscillations [40] indicate
multiband superconductivity at high doping levels, whereas recent spectroscopic measurements
contradict this hypothesis [43]. The region of superconductivity in the Tc vs n phase diagram
has a dome shape, similar to that of the high-Tc cuprate superconductors. It is an interesting
question why Tc decreases above a certain doping level, since in standard BCS theory, Tc should
monotonously increase with the density of states at the Fermi level. Likely explanations are the
decrease of the electron-phonon coupling constant V due to plasmon shielding above a doping
level of n ≈ 1× 1020 cm−3 [39, 44] and the occupation of an additional, non-superconducting
band [40].

1.3.2 LaAlO3

LaAlO3 is also a perovskite, but in contrast to SrTiO3 it is rhombohedral with a lattice
parameter of 3.790�A at room temperature. Its high dielectric constant of 24 [45] (which is
reduced in thin films [46]) and large bandgap of 5.6 eV [47] make it attractive as a gate dielectric.
Furthermore, the possibility to grow clean LaAlO3 single crystals using the Czochralsky method
makes it a valuable substrate material for cases where the rhombohedral crystal twinning is
unproblematic.

1.3.3 LaAlO3-SrTiO3

In 2004, Akira Ohtomo and Harold Hwang discovered that a conducting 2DES is generated
when LaAlO3 is grown epitaxially onto SrTiO3 [48]. Since doped SrTiO3 is a well-known
semiconductor, a seemingly likely explanation for the conductivity at the interface would be
doping induced by the LaAlO3 growth, specifically La substitution or O vacancy creation.
However, the LaAlO3–SrTiO3 interface is only conductive if LaAlO3 is grown onto SrTiO3

terminated by a TiO2-layer, and only if the thickness of the LaAlO3 top layer exceeds 3 unit
cells [49]. These are just two examples of observations which are not explicable with a simple
doping scenario.

In the original publication (Ref. [48]), a scenario of polar catastrophe was put forward to
explain the appearance of conductivity: The LaAlO3 films were grown on SrTiO3 substrates cut
perpendicular to the (001) crystallographic direction. In this direction, SrTiO3 is composed of
electrically neutral layers of TiO2 and SrO, whereas LaAlO3 is composed of electrically charged
layers of LaO+ and AlO−2 . The polar discontinuity at the interface leads to a potential buildup
with each LaAlO3 unit cell. At 4 unit cells of LaAlO3, the potential buildup exceeds the
band-gap of SrTiO3 and in the naive case, half an elementary charge per unit cell is transferred
to the interface via an electronic reconstruction, compensating the polar discontinuity. The
observation of conductivity, e.g., in LaAlO3–SrTiO3 interfaces in the non-polar (110) crystal
direction and the fact that the observed charge density is much less than the predicted 0.5e per
unit cell indicate that this picture is probably too simplistic and other mechanisms may play a
role. It is beyond the scope of this introduction to discuss all the numerous different scenarios
which have been theoretically proposed for the origin of the 2DES and the experimental evidence
for and against them. However, it should be emphasized that it has been conclusively shown
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Figure 1.1: Band structure of the 2DES at the LaAlO3–SrTiO3 interface. The conduction electrons
are located in the Ti 3d orbitals on the SrTiO3 side of the interface, which form the bands relevant for
conduction. Because mirror symmetry is broken at the interface, the t2g-dxy sub-band is shifted with
respect to the dxz and dyz subbands. An additional shift is caused by Rashba spin-orbit interaction,
which also causes anti-crossing of the bands, so that the initially degenerate dxz and dyz sub-bands
are spin-split into a new pair of bands. (a) Distribution of the electronic bands in real space, where z
denotes the distance from the interface. Band structure in momentum space, without (b) and with (c)
spin-orbit interaction (SOI). Reproduced from Ref. [29].

that conductivity at the interface is not a simple oxygen vacancy effect and that the electronic
structure is distinctly different from a thin layer of doped SrTiO3 [50].

The conduction electrons of the LaAlO3–SrTiO3 interface reside in the conduction band
created by the Ti 3d orbitals of the SrTiO3 side. Since electrons in these orbitals are correlated,
the electron system at the interface is referred to as a 2-dimensional electron liquid (2DEL) [50]
rather than as an electron gas as found in conventional semiconductor heterostructures. The
band structure of LaAlO3–SrTiO3 is different from that of doped SrTiO3: At the interface, for
example, the mirror symmetry along the z-axis is broken. Most notably, the t2g-dxy-subband
is shifted down by 250 meV [23, 27, 51]. In addition, all bands are spin-split due to Rashba
spin-orbit coupling [52–54]. This an causes anti-crossing of the bands, so that the initially
degenerate dxz and dyz sub-bands are spin-split into a new pair of bands. The distribution of
the bands relevant for conduction is shown in Fig. 1.1.

The most interesting aspect of the LaAlO3–SrTiO3 interface for this thesis is that it
exhibits a superconducting ground state below a transition temperature of approximately
300 mK [55] and that the interface can be switched from superconducting to insulating across
a quantum phase transition controlled by the application of a gate voltage [56]. The region
of superconductivity in the Tc vs n diagram is dome-shaped as in doped SrTiO3 and in the
cuprates. Tunneling spectroscopy reveals that the superconducting gap can be observed in
a part of the underdoped region where transport is resistive, a phenomenon similar but not
necessarily related to the pseudogap in the cuprates [57]. It was shown that superconducting
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phase coherence persists in those regions of the phase diagram where superconductivity is
no longer measured in transport [58] and that in fact the width of the superconducting gap
increases in this region, which can be attributed to an increased electron-phonon coupling
strength [25]. Another peculiar feature of superconductivity at the LaAlO3–SrTiO3 interface
is that it has been reported to coexist with magnetic ordering [26, 59, 60]. The transition
temperature of superconductivity in LaAlO3–SrTiO3 is very close to that in doped SrTiO3.
However, measurements such as the angular dependence of the critical magnetic field have
clearly established that the superconducting region is two-dimensional, i.e., its thickness (≈
10 nm at optimum doping) is smaller than the superconducting coherence length (≈ 40 nm at
optimum doping).

Another question which is still under debate is whether the LaAlO3–SrTiO3 interface 2DES
is also a multiband superconductor. Latest studies have revealed the hierarchy of the Ti-3d
subbands near the Fermi energy of the system [61, 62]. The bulk crystal field-split lower t2g

orbitals are now entirely non-degenerate, owing to the presence of LaAlO3 layers close to the
interface that distort the Ti-octahedra-induced field [61, 63, 64]. It has been argued [65] that
there exists a critical density that marks the onset of population of different subbands close
to the Fermi energy and is characteristic of the LaAlO3–SrTiO3 system. This very point in
carrier density marks a Lifshitz transition which implies that transport switches from single to
multi-carrier type [66]. However, Fourier analysis of the Shubnikov-de Haas oscillations on bulk
SrTiO3 [44] indicates that across the entire superconducting phase diagram multiple bands are
occupied. This result is corroborated by the analysis shown in the present thesis (see section
6.1.2). Tunneling studies show only a single superconducting gap [25, 57, 58]. Yet, tunneling
spectroscopy in planar LaAlO3–SrTiO3 and Au tunnel-junctions is orbitally selective since only
contributions from the dxz/yz orbitals are measured. The observation of the superconducting
gap therefore verifies that one of these sub-bands is superconducting; it is yet unclear whether
the dxy sub-band also is.
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Mathematics is the gate and key to the sciences.

Roger Bacon

THEORY 2
This chapter comprises three sections describing the theoretical fundamentals of different aspects
of the physics described in this thesis. Section 2.1 describes the fundamentals of tunneling
spectroscopy in superconductors. Section 2.2 introduces the topological BKT-transition in
two-dimensional superconductors. Finally, section 2.3 describes the theoretical framework for
field-effect transistors and their realization using LaAlO3–SrTiO3 interfaces.

2.1 Superconducting tunneling spectroscopy

Spectroscopy using tunneling of electrons across an insulating barrier, either from a normal
metal into a superconductor or from one superconductor to another, has become an invaluable
tool for the investigation of superconductors because it allows direct measuring of the density of
states of the superconductor. The field of tunneling spectroscopy was pioneered by Giaever [19].
This chapter is based on the introductions to tunneling in [67, 68]. A brief introduction to the
BCS theory of superconductivity and the concept of quasiparticles can be found in Appendix
A, where it is shown that the density of states NS at T = 0 of a superconductor as a function
of the energy Ek close to the Fermi edge for a wavevector k is given by:

NS(Ek) =
dn

dEk
=

dn

dξk

dξk
dEk

= N(0) ·


Ek√
E2

k−∆2
(Ek > ∆)

0 (Ek < ∆)
, (2.1)

where ξk is the quasiparticle energy and ∆ the superconducting energy gap.
In order to describe tunneling from one electron system to another, the difference in chemical

potential µ between the two systems has to be considered. For an electronic excitation, the
energy including the chemical potential will be Eek = (Ek + µ), and for a hole Ehk = (Ek − µ).
When transferring an electron elastically from system 1 to system 2 with a potential difference
V12, the energy of the hole created in system 1 must be equal to the energy of the electron
arriving in system 2 and therefore:

Ek1 + Ek′2 = µ1 − µ2 = eV12. (2.2)

Tunneling is described by a Hamiltonian of the form

HT =
∑
σkq

Tkqc
†
kσcqσ + cc. (2.3)

This term transfers an electron from one metal where its momentum is q to another metal
where its momentum is k, and the complex conjugate part describes the opposite process.
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The index σ indicates the summation over the spin states. The phenomenological tunneling
matrix element Tkq depends on the nature of the barrier. Describing this process using the
quasiparticle formalism introduced in Appendix A, the single electron operators are written as

c†k↑ = ukγ
†
k0 + vkγk1. (2.4)

Therefore, the superconducting occupation probabilites uk and vk appear indirectly in the
tunneling Hamiltonian. One could therefore conclude that the tunneling current would depend
on the structure of the superconducting ground state. However, this is not the case: because
the energies of the quasiparticle excitations are symmetric around the Fermi energy (see Fig.
A.1 (b)) and |u(−ξ)| = |v(ξ)|, the contributions of opposite energy from the Fermi surface add
up and the structure of the ground state is not relevant for tunneling. Thus only the excited
states have to be considered.

Because the coherence factors vanish from the tunneling Hamiltonian, it is possible in many
cases to treat tunneling between superconductors in an independent-particle approximation
called the semiconductor model by treating the electrons individually and neglecting the
superconducting correlations. Only the modified density of states (Eq. 2.1) is taken into
account. This model is very useful in many respects, but should be treated with care. For
example, it can not explain the Josephson current at zero bias arising from pair tunneling in
a superconductor-insulator-superconductor (SIS)-junction. In the semiconductor model, the
tunneling current I1→2 from metal 1 to metal 2 can be expressed as an integral in energy over
the available states:

I1→2 =

∫ ∞
−∞
|T |2N1(E)f(E)N2(E + eV )[1− f(E + eV )]dE, (2.5)

with T the tunneling matrix element (assumed constant in the present approximation), Ni

the respective density of states in the two metals, V the voltage bias applied across the junction
and f the Fermi distribution which describes which states are occupied and thus if electrons are
available for tunneling and holes available on the other side to accommodate them. The current
from metal 2 to metal 1 can be described equivalently. Summing these two contributions gives
the total tunneling current I:

I = |T |2
∫ ∞
−∞

N1(E)N2(E + eV )[f(E)− f(E + eV )]dE. (2.6)

In the simple case that both 1 and 2 are normal metals, their density of states can be
approximated to be constant in the vicinity of the Fermi surface Ni(E) ≈ Ni(0). Then the
current becomes a linear function of the voltage with normal-normal-conductance GNN :

INN = |T |2N1(0)N2(0)

∫ ∞
−∞

[f(E)− f(E + eV )] dE = |T |2N1(0)N2(0)eV = GNNV . (2.7)

In the more interesting case that 2 is a superconductor, the current is calculated by:

INS = |T |2N1(0)

∫ ∞
−∞

N2(E) [f(E)− f(E + eV )] dE. (2.8)

Expressing N1(0) in terms of GNN , which can be measured more easily, and calculating the
conductance dI/dV :
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µ1
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E
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Occupied states

no states

Empty states

IT

Figure 2.1: Sketch illustrating tunneling from a normal metal (N) across an insulating barrier (I) into
a superconductor (S) at finite temperature in the semiconductor model. The density of states for the
normal metal is assumed to be constant in energy, whereas the density of states of the superconductor is
given by Eq. 2.1. The applied voltage shifts the chemical potentials µ1 and µ2 out of their equilibrium
positions. At T = 0, no current can flow from the normal metal into the forbidden states of the
superconducting gap, therefore the tunneling current is suppressed for |eV | < ∆. Once the Fermi
edge of the normal metal exceeds the superconducting gap, a tunneling current IT can flow. At finite
temperature, excited states above the gap are populated in the superconductor as illustrated here, and
consequently empty states exist below the gap, allowing a small tunneling current already for |eV | < ∆.

dI

dV

∣∣∣∣
NS

= GNN

∫ ∞
−∞

N2(E)

N2(0)
· −∂f(E + eV )

∂(eV )
dE. (2.9)

Since the Fermi function at low temperature can be well approximated by a step function,
its derivative is approximately a delta function and therefore the equation simplifies to:

dI

dV

∣∣∣∣
NS

= GNS = GNN
N2(e|V |)
N2(0)

. (2.10)

Clearly, the tunneling conductivity allows a direct measurement of the superconducting
density of states. The tunneling process from a normal conductor across an insulating barrier
into a superconductor is illustrated in Fig. 2.1.

17



2.2 The Berezinski-Kosterlitz-Thouless transition

2.2.1 Introduction to BKT

The BKT transition represents a special class of phase transitions, which occur only in two-
dimensional systems and have no associated order parameter and break no symmetry. For
this class of transitions, perturbative approaches are impossible because there is no (locally)
continuous transformation from the unperturbed state to the perturbed state because they are
topologically different. The following introduction is coarsely based on references [69] and [70],
which, in turn, closely correspond to the publications by Kosterlitz and Thouless [71, 72], who,
in turn, refer back to the publication by Berezinski [73].

A good model system to explain the concept of a BKT transition is the 2D-XY model. It
consists of a 2D lattice with a two-component variable on each site. This could be, for example,
a complex scalar exp(iφ), e.g., for the modeling of the phase of a Josephson junction array
(JJA). However, to make the following arguments more intuitive, it will be assumed that each
model object is a 2D vector (or spin) in the plane. If all spins have the same magnitude and
there is only interaction between nearest neighbors with an exchange energy J , the Hamiltonian
for a 2D-XY system of spins Si depends only on the angle θ of the spins. The two-component
system is then completely described by a single variable:

H = −J
∑
<ij>

Si · Sj = −J
∑
<ij>

cos (θi − θj) , (2.11)

where < ij > denotes summation over nearest neighbors and θi and θj are the angles of the
spins at sites i and j, respectively.

In order for H to be definite, the phase θ must observe the condition∮
∇θ · dl =

∮
dθ = 2πn, (2.12)

i.e., going around a closed loop, the same phase up to multiples of 2π must be obtained.
It is not possible to calculate this system with a perturbative approach because there is no
continuous transformation from a field with topological charge n to a field with different charge
n′. There will be in every case a discontinuous jump of n, for example when going from n = 0
(Fig. 2.2(a)) to a vortex with n′ = 1 (Figs. 2.2(b), 2.2(c)). Therefore, these states are called
topological states.

Assuming that the direction of the spins varies only slowly and smoothly, the cosine in the
Hamiltonian can be approximated by:

cos (θi − θj) = 1 + (θi − θj)2 . (2.13)

This allows a separation of the Hamiltonian into two parts, a ground state energy E0

representing the state in which all spins are aligned and a perturbation representing a small
deflection of the spins from the aligned position. Assuming that the lattice spacing is much
smaller than the other length scales in the system,it is possible to change the difference in
angles to a derivative and the sum into an integral. Finally:

H = E0 −
J

2

∫
d2x|∇θ(x)|2. (2.14)
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(a) (b) (c)

Figure 2.2: Illustration of the concept of the topological charge or winding number n. (a) Spins with
θ(r) = 0, n = 0. (b) A vortex of spins with θ(r) = arctan(y/x), n = 1. (c) Gradient of (b), showing that
a circular path around the center will amount to a change of 2π.

The ground state energy E0 is not relevant for the following calculations and will be
neglected.

A vortex with n = 1 can be parametrized by:

θ (r) = arctan

(
x

y

)
(2.15)

∇θ =
1

|r|2
(−y,x) . (2.16)

as shown in Fig. 2.2(b). In general, equation 2.12 can be satisfied for arbitrary n by a field
with the gradient:

∇θ =
n

r
êr × êz, (2.17)

where êr and êz are the unit vectors in radial and z-direction, respectively. The integer n is
usually referred to as the winding number of the vortex.

As can be seen from Fig. 2.2(b), the approximation of small angles is not valid in the core
of the vortex, therefore a core area of radius a will be excluded from the integration of the
Hamiltonian and a core energy Ecore will be substituted. Integration of Eq. 2.17 gives:

H(n) = Ecore(n) +
J

2

∫
d2x|∇θ(x)|2 = Ecore(n) + Jπn2

∫ L

a
dr

1

r
= Ecore(n) + πJn2 ln

L

a
,

(2.18)
where L is the size of the system. For sufficiently large L, Ecore(n) can be neglected. Clearly,

for the macroscopic limit L→∞ , the energy of a single vortex diverges. However, there are
(L/a)2 possible ways to position a vortex of size a2 on a plane of size L2, therefore the entropy
of a vortex is

S = 2kB ln

(
L

a

)
, (2.19)

where kB is the Boltzmann constant. Using 〈H〉 = U , the free energy is
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F = U − TS =
(
πJn2 − 2kBT

)
ln

(
L

a

)
. (2.20)

Above a critical temperature,

TBKT =
πJn2

2kB
, (2.21)

the free energy turns negative because of the entropy term, and vortices can be created.
The energy for creating vortices can be considerably reduced when they appear in pairs of

opposite direction and equal magnitude (in the BKT theory, the magnitude of a vortex is the
topological charge). Like a dipole of electrical charge, the pairing leads to a much faster decay
of the field perturbation with distance as compared to a single charge. As can be seen from Fig.
2.3, the gradient created by the vortex pair is negligibly small at length scales larger than the
vortex separation R. Therefore, instead of using L as the upper limit of integration in Eq. 2.18,
the integration can be cut off at R:

E = const · ln(R/a). (2.22)

This dependence of E(R) implies an attractive force between the vortices and anti-vortices.
Therefore, the energy of a pair of vortices of equal magnitude and opposite direction does not
diverge with system size L, but scales with the vortex separation R. This energy is finite,
and pairs of vortices may exist at any temperature. Hence the critical temperature defined by
Eq. 2.21 is the temperature above which single vortices may exist, but vortices in pairs can
be present below this temperature. There is still a minimum in the free energy since single
vortices have a higher entropy than pairs (each single vortex may independently occupy random
sites). Thus TBKT defined in Eq. 2.21 can be considered the critical temperature of a vortex
binding-unbinding transition.

If paired vortices are present, they modify the interaction between single vortices, similar to
dipoles modifying the interaction between electrical charges. Therefore, the number of vortex
pairs determines the dielectric constant of the material for vortices. The change in interaction
with number of vortex pairs is described by renormalization group theory (see Appendx B).

The existence of a phase transition in 2D systems is unexpected because the Mermin-Wagner
theorem states that there can be no long-range order in two dimensions [74]. The reason why
the phase transition exists rests with the precise meaning of the words long-range and order.

Usually, ordered and disordered states are distinguished by the decay of the correlation
function with distance:

〈eiθ(r)eiθ(0)〉 ∝

{
const ordered

e−r disordered
. (2.23)

However, the 2D-XY model is in an intermediate regime where the correlations do not decay
exponentially, but only with a power law:

〈eiθ(r)eiθ(0)〉 ∝
(a
r

)η(T )
, (2.24)

so that if the system is sufficiently small with respect to the superconducting coherence
length ξ, the correlation function may be nonvanishing throughout the entire system.
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Figure 2.3: Plot of the parameter θ(r) for a pair of two vortices of opposite charge. The perturbation of
the field decays rapidly with distance from the vortex cores.

Additionally, the phase below the BKT transition temperature is not ordered in the sense
that it has an order parameter which appears at the transition temperature and is zero above,
and there is no symmetry breaking associated with the transition. It thus circumvents the
Mermin-Wagner theorem.

2.2.2 The BKT transition in Josephson junction arrays

Having introduced the BKT transition in the rather abstract 2D-XY-model, it will now be
illustrated in a superconducting model system. Arrays of two-dimensional Josephson junctions
are a prime example for the application of the BKT theory. They are frequently used to
describe the transition from superconductor to insulator in two dimensions. Homogeneously
disordered thin films, such as the LaAlO3–SrTiO3 interface, can be considered the continuous
analogue to the discrete Josephson arrays [75]. Following Ref. [67], for simplicity a square
lattice of Josephson junctions without external magnetic field will be considered and screening
effects will be neglected. A schematic diagram of such an array is shown in Fig. 2.4. The
squares represent superconducting islands and the crossed lines are the Josephson junctions
between them. The energy for a single Josephson junction can be calculated by assuming that
is adiabatically changed from its ground state φ0 = 0 to a given state φ during the time t:

EJ =

∫ t

0
ISV dt =

Φ0

2π

∫ t

0
IS
dφ

dt
dt =

Φ0

2π

∫ φ

0
IC sinφdφ =

Φ0IC
2π

(1− cosφ) , (2.25)

where the Josephson equations have been used and Φ0 = h/(2e) is the quantum of magnetic
flux. The energy of the entire array is given by the sum of the Josephson energies across the
junctions i with phase differences φi:

E =
∑
i

Φ0IC
2π

(1− cosφi) = EJ
∑
i

(1− cosφi) , (2.26)

which has the same form as Eq. 2.11. The trivial ground state of the system is φi = 0 ∀i.
As an elementary excitation, consider a magnetic vortex of flux n · Φ0 penetrating the array,
assuming that the vortex is centered in the highlighted square (or “plaquette”) in Fig 2.4. The
phase difference going once around a plaquette depends on the magnetic flux penetrating it:
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Figure 2.4: Schematic drawing of a Josephson junction array. Squares represent superconducting islands,
crossed lines are Josephson junctions. A single plaquette is highlighted.

∑
plaquette

φi = 2π
Φ

Φ0
= 2π (f − n) , (2.27)

where f is the frustration index, i.e., the remainder of the division Φ/Φ0 and n is the integer
quotient, corresponding to the topological charge n from section 2.2.1. Furthermore, when
summing this equation around a contour of multiple plaquettes, the internal phase contributions
cancel because they enter twice with opposite signs and only the phase along the outer contour
remains, depending on the flux in all enclosed cells:∑

contour

φi = 2π
∑
cells

(fi − ni) . (2.28)

It is clear that any contour enclosing the vortex will have
∑
φi = 2nπ. Considering an

approximately circular contour of radius r around the vortex center, the phases of the single
junctions φi in the contour will decrease approximately as φi ≈ 2nπa/2πr with increasing r,
which is the same form as Eq. 2.17. Integrating in the same way as in Eq. 2.18, again a
logarithmic divergence of energy on system size L is obtained:

E = n2πEJ ln
L

a
. (2.29)

If the array contains a pair of vortices with opposite magnitude, any contour enclosing both
vortices will have a net phase difference of 0. Consequently, the integration can be cut off at
the separation distance R of the vortices and the energy for vortex pairs becomes:

E12 = 2n2πEj ln
R

a
. (2.30)

Analogous to Eq. 2.20 the free energy of the system can be calculated and the temperature
of the vortex binding-unbinding transition estimated:

TBKT ≈
πEJ
kB

. (2.31)

The key experimental signal of a BKT transition can be observed in the I−V characteristics
of a 2D superconducting film: Above TBKT, there are free single vortices experiencing a Lorentz
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force and correspondingly generating a linear resistance V ∝ I. Below TBKT, there are only
vortex pairs, experiencing no net Lorentz force. Single vortices are generated when the current
dissociates pairs through the Lorentz force. The number of single vortices generated by the
current just below TBKT is proportional to I2. Therefore, below TBKT the voltage depends on
the current as V ∝ I3.

In the dirty limit, it is possible to find an expression relating the BKT transition temper-
ature TBKT to the mean-field superconducting critical temperature Tc. Close to the critical
temperature this can be approximated by

TBKT
Tc

=

[
1 + 0.173

R

Rc

]−1

, (2.32)

where Rc = ~/e2 is the quantum of resistance and R is the resistance of the film in the
normal state [75]. As can be seen from the equation, TBKT will only be appreciably different
from Tc for films with a sufficiently high resistance.

2.2.3 Charge-vortex duality

The JJA model is peculiar because not only vortices can undergo a BKT transition, but also
the charges on the islands. [76, 77]. In two dimensions, the Coulomb energy E between two
charges q separated by a distance R is given by

E = 2q2 ln
R

a
(2.33)

where a is the closest possible distance between the two charges. Therefore not only vortex-
antivortex pairs, but also charge dipoles can undergo a BKT transition in JJAs. The ratio of
Josephson energy EJ and charging energy EC = e2/2C determines which of the two dominates
the dynamics of the system [78]. This duality has led to the prediction of a superinsulating
state with extraordinarily high resistance as endpoint of the Coulomb BKT transition [15, 79,
80].

2.3 Transistor fundamentals

A transistor (a portemanteau of “transfer” and “resistor”) is a solid-state device which is used
to switch currents or voltages. Historically, the first operational devices were bipolar transistors
based on p-n-p or n-p-n semiconductor junctions [81]. Modern digital electronics, however, is
almost exclusively based on field-effect transistors (FETs). Since this is also the type of the
LaAlO3–SrTiO3 transistors developed in the present work, the working principle of FETs and
the basic equations will be introduced below.

For the sake of simplicity, the FET equations will be explained with the example of a
standard semiconductor FET, following the introduction given in Ref. [82]. Fig. 2.5 shows a
schematic drawing of an n-channel FET with the important components, voltages and currents
identified. The conducting channel of the transistor is formed by the inversion region (blue) at
the contact between the p-type semiconducting substrate and the gate insulator. The transistor
switches between conducting and insulating states by the application of a gate voltage: either
the inversion layer is built-into the transistor and can be depleted by applying a negative voltage
VG to the gate (normally-on), or the inversion layer is not present in the equilibrium state and
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Figure 2.5: Schematic drawing of a n-channel FET illustrating the important components, voltages and
currents.

can be generated by a positive voltage VG at the gate (normally-off). The gate voltage at which
the channel switches between the conducting and the insulating state is referred to as threshold
voltage VT.

In order to pass a current through the channel, a voltage VD is applied between source
and drain, with the convention that the source is considered to be on ground and a positive
bias is applied to the drain for n-channel devices as illustrated here. In the “on”-state of the
transistor, i.e., VG > VT, for VD > 0, a potential drop in the y-direction along the channel is
added to the drop in the x-direction from gate to channel. From source to channel, electrons
traverse a n-p junction in forward bias, but from channel to drain, they traverse a p-n junction
in reverse bias. For small VD, the current ID in the channel increases linearly with the applied
voltage. However, if VD reaches a critical value VD,sat, at the drain the depletion region of the
p-n junction supersedes the inversion layer. For voltages higher than VD,sat, further increases in
VD will not increase ID, but only extend the depletion layer from the drain further towards the
source. This is called the saturation region of the transistor. Since the gate voltage determines
the channel potential, VD,sat is a function of VG:

VD,sat =
VG − VT

M
, (2.34)

where M is a constant close to unity.
The dependence of the drain current ID on the gate and drain voltages VG and VD is

illustrated in Fig. 2.6. The drain current in the two regions is given by:

ID =


Z
LµCox

(
VG − VT − VD

2

)
· VD ; VD < VD,sat,VD << (VG − VT )

Z
2MLµCox (VG − VT )2 ; VD > VD,sat)

, (2.35)

where Z and L are the width and length of the channel, respectively. µ is the mobility of
the charge carriers and Cox the capacitance of the oxide layer.

In the sub-threshold region, where VG < VT , there is no capacitive carrier accumulation
and only thermally excited carriers contribute to conduction. These carriers have to overcome
the potential barrier e · (VG − VT ) and hence their density and the corresponding drain current
is given by:
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Figure 2.6: Simulated ideal dependence of the drain current ID on the gate and drain voltages VG and
VD for a FET. The dotted red curve indicates the onset of current saturation.

ID ∝ exp

[
e
VG − VT
kBT

]
. (2.36)

The inverse of the logarithmic slope of this equation defines the sub-threshold swing Ss−th,
which measures the increase in conductivity per applied gate voltage:

Ss−th =

[
∂ log(ID)

∂VG

]−1

= ln(10)
kBT

e
, (2.37)

where the last equality holds for an ideal transistor. It corresponds to a tenfold current
increase for every change of the gate voltage of 60 mV at room temperature.

The charge Qn(y) of the inversion layer at position y along the channel is given by

|Qn(y)| = Cox (VG − VT −M∆Ψi(y)) , (2.38)

where ∆Ψi(y) is the variation of the potential along the channel direction, which can be
neglected for small VD. Therefore, the intrinsic charge carrier density of the channel without
external voltages can be calculated from

nsheet = −VTCox
e

, (2.39)

where e is the elementary charge.
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Figure 2.7: Cross-sectional sketch of an LaAlO3–SrTiO3 transistor illustrating the important components,
voltages and currents. The principle of operation is explained in the text.

2.3.1 LaAlO3-SrTiO3 transistors

A basic sketch of an LaAlO3–SrTiO3 transistor is shown in Fig. 2.7. LaAlO3–SrTiO3 transistors
with an LaAlO3 layer thicker than the critical thickness of three unit cells are normally-on n-
channel FETs in which the conducting channel is provided by the oxide 2DES. The LaAlO3 layer
serves both as the generator of the 2DES and as insulating gate electrode. It is supplemented
by a layer of BaTiO3 to ensure low gate leakage even at high gate voltages. Electrons flow
through the 2DES from source to drain. In standard semiconductor transistors, the conduction
electrons can be treated in a single-particle mean-field approach. However, in LaAlO3–SrTiO3

transistors the correlations of the electrons play a crucial role and the underlying band structure
has to be considered. This provides opportunities, but also challenges.
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Grau, teurer Freund, ist alle Theorie.

Johann Wolfgang von Goethe

METHODS 3
This chapter comprises three sections: The first describes the individual steps of sample growth
from a bare substrate to a complete sample, the second describes the different sample designs
used during the work presented in this thesis. The third describes the methods and setups used
for electrical measurements of the samples.

3.1 Sample preparation

The fabrication of a LaAlO3–SrTiO3 sample is a process with numerous steps. This process
usually takes several days to complete. It can be divided into three main steps (see Fig. 3.1):
First, the substrate has to be cleaned, etched and annealed to obtain a well-defined TiO2

single termination of the surface. Then, the desired heterostructure is grown by PLD. Finally,
electrical contacts are defined on the sample by photolithography.

The sample designs employed for LaAlO3–SrTiO3 samples fall into two categories: For
some samples, the conducting interface electron system is patterned into defined channels. For
the others, the electron system is left unpatterned and only the electrodes are defined. For
samples with patterned electron system, additional processing steps have to be performed on
the terminated substrate, which will be described at the end of this section. All processing
steps are summarized in a concise list given in section 3.1.6.

3.1.1 Substrate preparation

LaAlO3 can be grown epitaxially on SrTiO3 (001) substrates both with TiO2 and SrO termina-
tion. However, only interfaces grown on TiO2-terminated SrTiO3 are conductive. Therefore,
control of the substrate surface termination is essential. A method to remove SrO layers
from the SrTiO3 surface using hydrofluoric (HF) acid etching is well established [83] and was

Au

2DES

LaAlO3

SrTiO3

Ti

Figure 3.1: The three main steps in the fabrication of LaAlO3–SrTiO3 samples with unpatterned electron
systems. From left to right: SrTiO3 substrate with TiO2 termination; LaAlO3–SrTiO3 interface with
gold top layer; complete sample with electrodes.
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(a) (b)

Figure 3.2: AFM images of a prepared SrTiO3 substrate. (a) Height Signal (b) Amplitude Signal

improved shortly after its publication by an additional step in which the SrO is hydroxylated in
water prior to etching [84]. The preparation of substrates used in this thesis closely follows the
process outlined in the latter publication. Since HF is not only caustic but also highly toxic,
safety measures are necessary during the etching.

For the growth of LaAlO3–SrTiO3 interfaces, one-side polished 5 mm × 5 mm × 1 mm
SrTiO3 substrates were purchased from CrysTec, Germany and Shinkosha, Japan. The sub-
strates were prepared for deposition using the following procedure:

� Gentle polishing on lens paper wetted with isopropanol.

� Successive ultrasonic cleaning in acetone (10 min), isopropanol (10 min) and ultrapure
water (30 min). Ultrasonic cleaning in water hydroxylizes the SrO on the surface.

� Blow-drying with nitrogen (optional).

� Etching in buffered 87.5 % NH4F- 12.5% HF solution for 30 s in a sonicator to remove
SrO layers from the surface.

� Sonication in ultrapure water for 30 s and successive rinsing in two water beakers to
remove remaining HF.

� Sonication in ispropanol for 10 s.

� Annealing in a tube furnace with a dwell time of 2 h at 1000 ◦C in oxygen atmosphere.

All substrates were screened by atomic force microscopy (AFM) after the termination
process. Only substrates with a smooth terrace structure without particles were used for sample
growth. A typical image of a terminated substrate is shown in Fig. 3.2.
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3.1.2 Pulsed laser deposition

All LaAlO3–SrTiO3 heterostructures discussed in this thesis were grown by PLD. PLD is a
vapor deposition method specifically suited for the growth of materials with high melting points
and of compounds [85–87]. Thin film growth using PLD has several advantages:

� PLD can operate at relatively high pressures (up to 0.1 mbar), which is useful, e.g., when
depositing materials that are quickly reduced and require a sufficient oxygen background
pressure to avoid the formation of oxygen vacancies.

� The ability to tune both the ablation laser energy and the background gas pressure also
allows control of the kinetic energy of the species arriving at the substrate surface. The
energy of the species depends on the type of ablation laser, the ablation laser settings
and the gas pressure in the chamber, but is usually between the energy ranges found in
MBE (≈ 0.1 eV) and sputtering (a few 10 eV) [87].

� The laser quasi-instantaneously ablates a section of the target surface, therefore all
constituents of a compound are ejected simultaneously, regardless of their vapor pressures.
This allows the stoichiometric growth of films of complex materials.

� The growth of oxides with PLD is relatively fast compared to MBE, thus reducing the
high-temperature exposure of the sample and thereby limiting interdiffusion.

� The pulsed deposition causes a high nucleation density on the substrate and consequently
a flat film surface.

An overview of a PLD system is given in Fig. 3.3: in an ultrahigh-vacuum chamber pulses
of a high-energy laser beam are focused at a target of the desired material. The laser pulse
ablates the impact area of the target in approximately 1 ns, creating a plume of plasma. The
plasma is slowed by a background gas in the chamber (for oxide growth, oxygen is usually used)
before it is deposited on the substrate surface. The surface is heated to ensure good surface
diffusion of the arriving species, which is necessary for layer-by-layer growth and correct film
stoichiometry and phase formation at the surface.

3.1.3 RHEED

During deposition, the growth process is monitored in situ by reflectivity high energy electron
diffraction (RHEED) in order to achieve control of the film thickness with single unit cell
precision. This diffraction method is surface-sensitive: electrons with a kinetic energy of 30 kV
hit the surface at glancing angles, thus penetrating only into the first few atomic layers of the
substrate surface. The diffracted electrons are detected by a fluorescent screen. The exact
interpretation of RHEED images is complicated, but it is usually possible to observe the growth
of unit cells by oscillations in the diffraction intensity: a complete substrate layer gives maximal
intensity. When new material appears on the surface during growth, the intensity starts to
decrease until about one half of the initial surface is covered. From there, the intensity increases
again, until the new material has completed a full unit layer and the RHEED intensity recovers
(ideally) its original value. However, this simplistic view is not entirely correct. A complete
oscillation of the RHEED intensity always corresponds to a thickness variation of an entire unit
cell, except for the first few layers where surface reconstructions and changes of the electron
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Figure 3.3: Schematic of a Pulsed Laser Deposition system. Explanations of the individual components
are given in the text.

potential in the sample can induce a phase shift. However, interpreting the phase of the RHEED
pattern is less straightforward: depending on the initial incident angle of the beam, a maximum
in intensity does not necessarily correspond to a complete unit cell [88]. However, RHEED
oscillations can always only give an upper limit on the growth rate, since they are insensitive to
step-flow growth, where new material is deposited laterally at the step edges, thus not changing
the surface roughness. In order to keep the RHEED signal reproducible between different
depositions, the incident angle of the electron beam is always adjusted to the same inclination
for each deposition. An initial RHEED pattern and typical oscillations monitoring the growth
of LaAlO3 on SrTiO3 are shown in Fig. 3.4.

3.1.4 Sample growth procedure

The growth parameters for the LaAlO3–SrTiO3 interfaces described here were varied extensively
between different samples to achieve the desired 2DES properties. Therefore, the following
account describes only the general procedure for sample growth. The parameters for each
sample are listed in table 6.1.

A semiconductor laser (Amtron, Germany) is used to heat the sample to the desired
deposition temperature. Because the SrTiO3 substrate is transparent for the infrared radiation
with wavelength 974 nm emitted by the semiconductor laser, it is glued to a 1 cm×1 cm×2 mm
block of Haynes alloy with silver glue. Precise dosage of the silver glue is important, because the
entire backside of the substrate must be covered for homogeneous thermal contact, but as little
silver glue as possible should reach the substrate sides to minimize the risk of contaminating
the surface. Therefore, a pipette is used to transfer 2.5 µL of silver glue liquid onto the Haynes
block, onto which the substrate is placed. Then, the glue is baked for 30 min at 80 ◦C to
evaporate the solvents and harden the glue.
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Figure 3.4: (a) RHEED diffraction pattern of a SrTiO3 substrate surface at 400 ◦C and 2× 10−4 mbar
O2. (b) RHEED signal of growth of 5 u.c. of LaAlO3 on a SrTiO3 substrate at 800 ◦C and 8× 10−5 mbar
O2.

All targets are polished before each deposition to ensure reproducible growth conditions. If
the target has been ablated for too long, its stoichiometry and surface morphology may have
changed. Therefore, the topmost layers of the target are polished away to remove the ablated
regions and restore the bulk stoichiometry.

The sample on the Haynes block and the polished targets are loaded into the PLD chamber
and the oxygen pressure is adjusted to the desired value. The background pressure in the
chamber needs to be high enough to slow the plasma particles, otherwise re-sputtering from
the substrate may be caused by particles of high energy. However, background pressures that
are too high may slow the growth or lead to undesired oxidation (if oxygen is used). An
optimization of oxygen pressure for the desired sample properties was performed (see Chapter
6).

Before heating the sample, preablation of the target(s) is performed. Preablation ensures
that the ablation is brought to a steady state for the deposition and possible contaminations
are removed from the target surface. For preablation, the shutter is closed between target and
substrate and the ablation laser is scanned over the ablation area such that every part of the
area is ablated 12 times. The shutter remains open for the remainder of the growth process to
prevent contamination from the shutter to the substrate.

After preablation, the sample is heated to the deposition temperature with a ramp of
30 ◦C min−1. During the heating process the RHEED beam is adjusted onto the sample and
the sample is rotated to the correct angle and height to produce the desired diffraction pattern.
The temperature of the substrate during deposition must be high enough to allow for a high
surface mobility of deposited material to ensure epitaxial growth. On the other hand, the
substrate temperature must be low enough to avoid decomposition, e.g., formation of oxygen
vacancies or interdiffusion between different sample layers. All samples discussed in the present
work were grown either at 800 ◦C or 750 ◦C. When the sample has reached the desired growth
temperature, deposition from the LaAlO3 target is started, while monitoring the oscillations of
the RHEED signal. For tunneling samples, a LaAlO3 layer of 4 u.c. is deposited, which is thick
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enough to generate a conducting 2DES, but still thin enough to allow for sizable tunneling
currents. For transistors, a layer of 6 u.c. of LaAlO3 is deposited and an additional layer of
10-20 u.c. of BaTiO3 is deposited on top of the LaAlO3 as supplemental gate dielectric.

After the deposition, the sample is annealed under high oxygen pressure to remove potential
oxygen vacancies. The sample is first annealed at 600 ◦C for 1 h and then at 400 ◦C for 1 h. The
oxygen pressure for both annealing steps is 400 mbar.

After the sample has cooled to room temperature, a gold top electrode is deposited in
situ with PLD to prevent an exposure of the surface to air. In order to ablate the strongly
reflective gold, a high laser fluence of 3 J cm−2 and a special striped mask is used. In order to
avoid re-sputtering of the sample surface by high-energy gold particles, the chamber contains a
high background pressure of 0.1 mbar of Argon during the gold deposition. The use of an inert
process gas is necessary since under the extreme physical conditions in the plasma, compounds
such as Au2O3 can form from the normally non-reactive gold which significantly decrease the
conductivity of the electrode.

3.1.5 Patterning of electrodes and electron system

The gold surface is patterned into electrodes using photolithography and etching with KI + I2

solution. Contacts to the two-dimensional electron system are defined by photolithography,
etched by argon-ion milling and subsequently filled in situ with titanium and gold using electron
beam evaporation. In this process, metal is also deposited on the sides of the sample. Therefore,
the edges of the sample are cut with a wiresaw before liftoff of the photoresist to prevent leakage
currents from the backside of the sample to the 2DES.

The sample designs employed for the LaAlO3–SrTiO3 samples of this thesis fall into two
categories: for some samples, the conducting interface electron system is patterned into defined
channels. For the others, the electron system is left complete and only the electrodes are defined.
For samples with patterned electron system, additional processing steps have to be performed
on the terminated substrate:

Because a critical LaAlO3 thickness is necessary for conductivity at the LaAlO3–SrTiO3

interface and the 2DES exists only at epitaxial interfaces, a straightforward pathway is available
to create patterned electron systems at the interface [20, 21, 89]. In the first step, a single unit
cell of crystalline LaAlO3 is grown on a TiO2-terminated SrTiO3 substrate. This LaAlO3 layer
is below the threshold for conductivity but protects the delicate SrTiO3 substrate surface. Then,
the conductive regions are defined on the sample by optical lithography. Because photoresist is
not stable at the high temperatures required for epitaxial growth, a hardmask of amorphous
LaAlO3 is grown on the photolithographically defined regions using PLD at room temperature.
Lifting off the photoresist under the amorphous LaAlO3 reveals the crystalline surface in the
desired regions. Finally, the remaining epitaxial LaAlO3 layers are grown in the patterned
regions by the process described in the previous section. The first step of depositing a single
epitaxial LaAlO3 layer was found to have only minor influence on the 2DES quality. Therefore,
it is skipped in some of the samples and photolithographic patterning is performed directly on
the SrTiO3 substrate.

A series of samples with patterned electron system showed no superconductivity in the
patterned channel. It appears that the patterning process affects the interface so strongly that
it prohibits the formation of a superconducting condensate. A number of different cleaning
steps (e.g., oxygen plasma cleaning, high-temperature annealing) were introduced after the
liftoff of the hardmask and before the deposition of the final crystalline layer. Furthermore,
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growth was performed both with and without inital LaAlO3 layers on the substrate before
patterning. However, none of these measures were successful in restoring superconductivity to
the normal levels expected for LaAlO3–SrTiO3 (see chapter 6).

3.1.6 Sample growth overview

The following list gives an overview over the processing steps described in this section. Steps
2 a)-d) are only necessary for samples with patterned electron system. The most important
items of the list are illustrated in Fig. 3.5, which shows the fabrication of a transistor sample.

1. Substrate cleaning, etching and annealing.

2. 2DES patterning

a) PLD of 1 u.c. of LaAlO3 to protect the sensitive SrTiO3 substrate surface (optional).

b) Definition of conducting channels using photolithography.

c) PLD of 40 nm of amorphous LaAlO3 as high-temperature hardmask for the conduct-
ing channels.

d) Liftoff of photoresist and amorphous LaAlO3 from the conductive channels defined
by photolithography: in the channels, the crystalline surface is preserved, whereas
the surroundings are covered by amorphous LaAlO3, which is not conducting.

3. PLD of crystalline LaAlO3 to generate the conducting interface. Total LaAlO3 thickness
was typically 4 u.c. for tunnel junctions and 6 u.c. for transistors.

4. PLD of 10 u.c. of BaTiO3 gate dielectric (transistors only).

5. Annealing at 600 ◦C for 1 h and then at 400 ◦C for 1 h at 400 mbar oxygen atmosphere.

6. PLD of 40 nm of gold top electrode.

7. Definition of gold top electrode using photolithography.

8. Etching of top electrode using I2-KI-solution.

9. Definition of contacts to the 2DES using photolithography.

10. Etching of holes for contacts to the 2DES using argon-ion milling.

11. Deposition of 30 nm of titanium and 10 nm of gold into etch holes to create contacts to
the 2DES.

12. Cutting off sample edges to prevent shorts to backgate.

13. Liftoff of photoresist by soaking in acetone for at least 2 h and sonicating twice for 10 s in
successive beakers.

A detailed description of the sample growth process can be found in Ref. [46].
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(a) Step 1: prepared SrTiO3 substrate (b) Step 2 a): 1 u.c. of LaAlO3

(c) Step 2 c): amorphous LaAlO3 hardmask after liftoff (d) Step 3: crystalline LaAlO3 conductive channel

(e) Step 10: Electrodes for gate, source and drain (f) Legend

Figure 3.5: Schematic of different steps in the growth of LaAlO3–SrTiO3 transistors. Detailed explana-
tions of the steps are given in Sec. 3.1.6.
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3.2 Device designs

This section gives an overview over the different sample designs used for the measurement of
LaAlO3–SrTiO3 samples. Each sample was designed for a specific purpose. For the circular
junction, superconducting transistor and van der Pauw sample designs, the conducting channel
was not patterned, and only electrodes were defined by photolithography. For the pressurized
transistors and pressurized junctions, the conducting channel was patterned by photolithography
using the intermediate step of an amorphous LaAlO3 hardmask. It was found that this patterning
process is detrimental to the quality of the interface, in particular electron mobilities were
lower than in unpatterned samples and superconductivity was absent in the patterned electron
system.

First, the three device designs with unpatterned electron system will be described:

3.2.1 Circular junctions

This sample design, shown in Fig. 3.6, was created to allow both tunneling and four-wire sheet
resistance measurements. The four devices on each sample are defined by an outer titanium
ring which is grounded during measurements and acts as shielding. At the center of the outer
titanium ring is a smaller titanium ring acting as the current source. Both the inner and outer
ring are supplemented by separated voltage probes for four-wire measurements. The space
between the two rings is covered with a gold top electrode for tunneling measurements. The
advantage of this sample design is that it provides a well-defined sample geometry for both
four-wire and tunneling measurements without need to pattern the electron system. After
several experiments with samples in the circular junction geometry, two major drawbacks of this
sample design became clear: It is not possible to measure the Hall-voltage in this configuration,
therefore carrier density and mobility of the samples remain unknown. In addition, a current
flowing from the inner ring electrode of the sample through the 2DES to the outer ring electrode
yields a decreasing current density from the inside to the outside. This non-uniform current
density leads to increased heating in the inner part of the sample which may obscure intrinsic
effects; in particular it makes it impossible to reliably measure the BKT transition.

3.2.2 Van der Pauw-geometry

In order to overcome the drawbacks of the circular junction geometry, a new sample design
was needed which allowed both in-plane four-wire and tunneling measurements. Attempts to
produce superconductivity in the patterned electron system had met with no success, therefore
the active electron system of the sample had to be kept pristine. All these requirements are
met by this sample geometry: Eight titanium electrodes are positioned at the corners and
at the center of the edges of a 5 mm × 5 mm LaAlO3–SrTiO3 sample, and the remaining
LaAlO3–SrTiO3 is covered with a gold tunnel electrode (inset in Fig. 3.7). Several of these
samples were grown without shorts between the gold electrode and the 2DES, even though the
thickness of the insulating layer of 4 u.c. of LaAlO3 is just 2 nm whereas the total electrode
surface is 25 mm2. The large tunnel electrode size allows for a comparably large tunnel current
even at low voltages, resulting in very high-resolution tunnel spectra of the two-dimensional
superconducting condensate (Fig. 3.7). The drawback of the high tunnel conductivity is that
when depleting the electron system, the sheet resistance easily becomes comparable to the
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Figure 3.6: Microscope image and schematic cross section of a circular tunnel junction sample. (a)
Sample overview micrograph. (b) Schematic drawing of a single device as top view and cross-sectional
cut.

tunnel resistance and tunneling measurements are no longer possible. For this reason, Fig. 3.7
does not show tunneling curves for backgate voltages below −100 V.

3.2.3 Superconducting transistor

In order to measure transistor characteristics in the superconducting state of the LaAlO3–
SrTiO3 2DES, it was necessary to create samples in transistor geometry without patterning
of the electron system. In this sample design (Fig. 3.8), gate, source and drain electrodes
are deposited over the whole width of the sample, with additional voltage probes defined
close to the source and drain electrodes and the gate. The electron system is not patterned
photolithographically, instead the sample is only cut into two parts in the middle. This way,
a transistor geometry which also allows Hall measurements is realized without the need to
pattern the electron system. The main drawbacks of this sample design are that because of
the large size of the devices inhomogeneities of the 2DES may play an important role, and the
saw-cut edges can be susceptible to leakage from the top electrode.

For the following device designs, the interface 2DES was patterned:

3.2.4 Patterned tunnel junctions

These samples with 16 devices on each chip, shown in Fig. 3.9 (a), were designed with two
purposes in mind: First, to have a tunneling sample with the possibility to perform Hall
measurements in the channel and second to provide tunnel junctions small enough to be loaded
into a piston cylinder cell for high-pressure experiments. However, because of the deterioration of
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Figure 3.7: Sample in van der Pauw geometry with gold tunneling electrode. The main graph shows
high-resolution tunneling spectra of the superconducting gap at different backgate voltages. The curves
are shifted by 10 µS each for visibility. The inset shows an optical micrograph of a sample. The electrode
edges are slightly frayed from cutting the sides of the sample, one of the cut edges can be clearly seen at
the front.
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Figure 3.8: Schematic of a superconducting transistor design which avoids the need to pattern the
electron system. The vertical separation line is cut with a wiresaw.
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Figure 3.9: Microscope images of a tunnel junction devices with patterned electron system. (a) Sample
with gold electrode covering the edge of the 2DES. The step in height from the hardmask of amorphous
LaAlO3 to the conducting channel can be clearly seen under the metal electrodes. One 5 mm × 5 mm
chip contains 16 such devices. (b) Sample in which the gold electrode is confined to the 2DES region
only. The dashed box indicates the conductive region. The black dots visible on the gold and titanium
surfaces are residuals from wiresaw cutting of the sample edges.

superconductivity in the patterned electron system, combined Hall and tunneling investigations
of superconductivity were not possible in these samples. In addition the leakage from the
topgate to the electron system was unusually high in all samples of this type. This is most likely
due to imperfections in the tunnel barrier at the edge of the conducting channel. Therefore,
a second design for a patterned junction was developed, in which the gold top electrode is
confined to the conducting channel (Fig. 3.9 (b)). With this design, the problem of high gate
leakage was overcome, but since no superconductivity could be observed in any patterned
samples, tunneling experiments in this sample design were not successful either.

3.2.5 Transistors

LaAlO3–SrTiO3-transistor samples were grown to investigate their behavior under hydrostatic
pressure. The basic fabrication process with gold top electrodes and titanium contacts to the
interface is identical to the process used for tunnel junctions. In contrast to tunnel junctions,
in transistor samples the area of the gold top electrode is kept as small as possible in order to
minimize leakage currents and obtain a short conductive channel. In addition, for transistor
samples an additional layer of 10 or 20 unit cells (u.c.s) of BaTiO3 is deposited on top of the
LaAlO3 layer to supplement the insulating layer. These transistor samples (Fig. 3.10) contain
16 transistor devices on each chip, which are cut apart to obtain individual samples small enough
to fit into the piston cylinder cell (PCC) for hydrostatic pressure experiments. Each small
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Figure 3.10: Microscope images of a transistor sample with patterned electron system. (a) Sample
overview. (b) Magnification of one conducting channel with two FETs defined by electrodes. The
cross-section of these samples is identical to the one shown in Fig. 2.7.

sample consists of a conducting channel with two sets of electrodes, one with channel length
40 µm and one with channel length 30 µm, both with gate length of 20 µm. The transistors
were measured on the uncut substrate and again after the cutting procedure to ensure that no
damage occurred during the process.

3.2.6 Transistor-Hall bars

Building on the experience collected with the standard transistor layout, these samples were
designed to allow for both transistor and Hall-bar measurements in the same device by
elongating the conducting channel and adding additional voltage probe contacts. This allows the
determination of charge carrier density and mobility of the electron system in two independent
ways from Hall measurements and from transistor characteristics. However, the long channel
is detrimental to the ON/OFF ratio of the transistor. A micrograph of this sample design is
shown in Fig. 3.12 (a).

3.3 Measurement of the phonon peaks in inelastic tunneling

For all samples on which tunneling measurements were possible, tunneling spectra at energies
up to 150 mV were recorded to resolve the peaks due to phonon-assisted inelastic tunneling. The
energies at which these peaks occur can be identified as the energies of longitudinal optical (LO)
phonons in the SrTiO3 substrate, as shown in Fig. 3.11. The very good agreement between the
tunneling curves from ten different samples with different device designs and growth parameters
indicates reproducible and reliable sample growth, independent from the individual device
designs.
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Figure 3.11: Second derivative of the tunneling current d2I/dV 2 of eight different devices at different
gate voltages measured at 50 mK exhibiting peaks due to inelastic phonon-assisted tunneling. The
curves are normalized with respect to dI/dVV=0 and shifted for visibility by 2 each. The energies of the
corresponding longitudinal optical phonons in SrTiO3 are shown for comparison. Here, as in all other
tunneling graphs, positive bias corresponds to electrons tunneling from the interface 2DES into the top
electrode.
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3.4 Measurements

3.4.1 Low-temperature measurements

For measurements at low temperatures, three different setups were available, each with different
advantages and disadvantages.

One of the measurement stations was a self-built probestick which could be lowered into a
suitable helium dewar. This setup was equipped with a selection of source measure units (SMUs)
and lock-in amplifiers. It was suitable for quick test measurements of the low-temperature
characteristics of samples, but the temperature range was limited from room temperature to
4.2 K and it was not possible to apply a magnetic field.

Another setup was a physical property measurement system (PPMS) by LOT-Quantum
Design. This setup allows measurements in the temperature range 2 K to 400 K and magnetic
fields of ±10 T. It features a built-in AC measurement system, but it is also possible to connect
external measurement devices such as DC SMUs for transistor measurements. The sample bay
of the PPMS is large enough to hold a PCC for hydrostatic pressure experiments.

Finally, a dilution refrigerator (Oxford Cryogenics) was available for the measurement of
superconductivity in LaAlO3–SrTiO3 at millikelvin temperatures. The working principle of
a dilution refrigerator is discussed in Appendix C. The temperature directly at the sample
was measured using a ruthenium oxide sensor, which showed that the sample was usually
significantly warmer than the mixing chamber. The base temperature of the mixing chamber
was 16 mK, corresponding to a sample temperature of approximately 50 mK. The magnet
of the superconductor was able to supply magnetic fields up to ±12 T. All DC electrical
measurements in the dilution refrigerator were performed using a Keithley6430 sourcemeter
with preamplifier as a current source and a Keithley2001 multimeter or Keithley2182 nanovolt
meter as a voltage meter. Sweeps were controlled by a custom made LabView virtual instrument
(VI). AC electrical measurements in the dilution refrigerator were performed with Stanford
Research SR830 lock-in amplifiers with preamplifiers, using low frequencies, usually 8.333 Hz.

3.4.2 High-pressure experiments

When subjecting a crystalline material to pressure, its crystal structure deforms to accommodate
the resulting strain. The most straightforward of these deformations is a reduction of the
lattice constants and consequently the unit cell volume. However, more complex deformation
mechanisms such as distortions and changes of the crystal structure are possible as one moves
on the pressure axis of the phase diagram. In this thesis, the effect of hydrostatic pressure on
LaAlO3–SrTiO3 transistors is presented.

Experiments on samples under hydrostatic pressure were performed using a commercially
available PCC purchased from Almax easyLab. Daphne oil was used as pressure medium
and a manganin coil as pressure gauge. The PCC electrical leads were contacted to an
adapter connecting to the measurement channels of the PPMS, allowing measurements at low
temperature and in magnetic fields.

The as-grown sample chips were cut and thinned by the in-house crystal preparation group
to produce small samples with individual devices, which were then mounted on the feedthrough
for electrical contacts and inserted into the PCC (Fig. 3.12). This task was performed by Jone
Zabaleta and Sarah Parks. More details on the preparation of LaAlO3–SrTiO3 samples for
measurements in pressure cells can be found in Refs. [23, 90].
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Figure 3.12: Transistor 3 of sample P-LUK053 in preparation for mounting in the pressure cell. (a) Cut
and free-standing (b) Mounted on feedthrough, wires attached and secured for insertion in pressure cell.
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To achieve great things, two things are needed;
a plan, and not quite enough time.

Leonard Bernstein

LaAlO3 – SrTiO3 TRANSISTORS
UNDER HYDROSTATIC PRESSURE 4
This chapter describes measurements under hydrostatic pressure of FETs in which the LaAlO3–
SrTiO3 2DES constitutes the conducting channel. The carrier density and by consequence
also the conductivity of the LaAlO3–SrTiO3 interface can be tuned by the application of a
gate voltage. This allows for the construction of LaAlO3–SrTiO3 FETs in which the current
between source and drain contact is modulated by the gate voltage applied to a conducting
channel. FETs made from LaAlO3–SrTiO3 have been demonstrated previously [20]. It was
shown that these transistors can be monolithically integrated to form complete circuits [21]
and recently LaAlO3–SrTiO3-transistors in very small dimensions have been fabricated [89].

The investigation of transistors under high-pressure conditions was motivated by earlier
experiments measuring the electrical transport properties of the LaAlO3–SrTiO3 interface under
pressure using Hall-bar structures [23, 90, 91]. The goal of the present measurements was to
elucidate how the transistor characteristics would change along the pressure axis of the phase
diagram. Transistor measurements under hydrostatic pressure have been performed previously,
e.g., on semiconductor quantum wells and on organic transistors [92–94], but the present work
is the first demonstration of oxide transistors subjected to hydrostatic pressure. Pressurizing
transistors is more challenging than pressurizing Hall-bars, because any short through the thin
insulating gate barrier can destroy the transistor. It is therefore a demonstration of the stability
of the LaAlO3–SrTiO3 system that entire devices with insulating layers of few nanometers can
be subjected to high pressures without breakthrough or leakage.

As is discussed in section 2.3, it is possible to extract the values of the sheet carrier density
and the mobility from transistor characteristics. Measurements of these characteristics were
performed on samples of the standard transistor design presented in section 3.2.5 using the
measurement methods described in section 3.4.2. The evolution of these parameters was found
to reproduce that of the previous Hall-bar investigations.

In a second set of experiments, samples were grown in a combined transistor-Hall-bar
geometry as described in section 3.2.6 and shown in Fig. 4.4. These samples allowed in
situ comparison of transistor and Hall-bar results and revealed subtle differences between
results of the two methods. Both methods can be used to determine carrier densities and
mobilities, however both have their particular shortcomings. When determining the carrier
density from a transistor transfer curve, the capacitance between gate and channel has to be
known precisely, which does not only depend on the material properties and thickness of the
insulator, but may also be dependent on the voltage applied. On the other hand, determining
the carrier density from Hall measurements can be complicated by the anomalous Hall effect in
ferromagnetic materials or it can require sophisticated data fitting if multiple bands contribute
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to conductivity. From an experimental point of view, it is usually easier to add a gate to a
device than to structure a Hall-bar, and transistor measurements are performed more easily
than Hall measurements because they do not require magnetic fields. Therefore, transistor
measurements constitute the easier approach to the measurement of carrier densities, whereas
Hall measurements give more precise results, if the data analysis is performed correctly.

4.1 Standard transistors

Fig. 4.1 shows transfer curves from the standard transistor sample 029 (described in section
3.2.5) under different pressures for two different temperatures. The LaAlO3 layer of this sample
was grown at an oxygen pressure of 8× 10−4 mbar with a laser fluence of 1.2 J cm−2 at a
temperature of 800 ◦C. The LaAlO3 layer had a thickness of 5 u.c. and the BaTiO3 gate
dielectric a thickness of 10 u.c. With a sub-threshold-swing of 80 mV dec−1 and ON/OFF-ratio
> 105, the transistor is functional already at room temperature (Fig. 4.1 (a)). The ON-state
sheet resistance of 70 kΩ, however, is high compared to semiconductor devices. Cooling the
electron system increases the conductivity of the LaAlO3–SrTiO3 interface, hence at 2 K the
ON/OFF-ratio increases to > 106 and the sub-threshold-swing drops to 30 mV dec−1 (Fig. 4.1
(b)). At this temperature, the sheet resistance in the ON-state is reduced to 1 kΩ. These
transistor characteristics are representative also for the other standard transistor samples which
were measured.

A first aspect of the evolution of the 2DES with pressure can be seen in these curves: at both
temperatures, increasing pressure causes a shift to more negative threshold voltages, indicating
an increase in sheet carrier density.

For all temperatures and pressures, the sheet resistance of the channel was calculated from
the ON-state resistance (VG = 0 V). In addition, charge carrier density and mobility were
extracted from the transfer curves at VD = 0.05 V in the saturation region. According to
textbook semiconductor knowledge (e.g. [82],) the dependence of the drain current ID on the
gate voltage VG in the saturation region of the transistor is given by:

ID = AµCox (VG − VT)2 . (4.1)

Where A is a constant depending on the transistor geometry, µ is the mobility of charge
carriers, Cox the capacitance of the oxide gate stack and VT the threshold voltage (cf. Eq. 2.35).
Thus, plotting

√
I as a function of VG, the threshold voltage is extracted as the x-intercept

of a linear fit line. The sheet carrier density as a function of threshold voltage is then given
according to Eq. 2.39. For this purpose the capacitance Cox of the oxide layer is calculated.
Because the dielectric constant of BaTiO3 is significantly higher than that of LaAlO3, only the
capacitance of the LaAlO3 layer has to be taken into account. The dielectric constant for thin
films of LaAlO3 with thickness 6 u.c. was determined to be ε = 7, a significantly different value
from the bulk dielectric constant of 24 [46]. Assuming a perfect thickness d of 6 u.c. (i.e., 3 nm)
for the LaAlO3 layer, the capacitance per unit area is calculated as:

Cox =
εε0
d

= 0.045 F m−2 (4.2)

However, this value is subject to a number of uncertainties: Since the 2DES is located inside
the SrTiO3 and not precisely at the interface, the value of d may be larger than the nominal
LaAlO3 thickness. Furthermore, the dielectric constant of SrTiO3 changes with temperature
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Figure 4.1: Transfer characteristics of sample 029 at different temperatures and pressures. (a) Transfer
characteristics at 300 K. (b) Transfer characteristics at 2 K are significantly improved with respect to
room temperature. At both temperatures, increasing pressure causes a shift to more negative threshold
voltages, indicating an increase in sheet carrier density.

and under applied pressure, so that the extension of the 2DES in the SrTiO3 and consequently
d changes. Most importantly, in previous measurements of LaAlO3–SrTiO3 samples in parallel
plate geometry it was found that the value of ε depends on the applied back- and topgate
voltages [46]. An additional uncertainty is introduced when the drain voltage is comparable to
the gate voltage. In this case the term ∆Ψi(y) in equation 2.38 is no longer negligible, so that
equation 2.39 no longer holds. On the other hand, the drain voltage should be large in order to
to ensure that the transistor is in the saturation region, making the choice of a suitable drain
voltage for the carrier density determination important.

From the threshold voltage, the carrier density was calculated according to Eq 2.39. Results
are shown in Fig. 4.2. Good agreement was found with previous measurements on simple
Hall-bar structures [23]: The threshold voltage becomes more negative, i.e., the carrier density
increases (Eq. 2.39) with pressure for all temperatures (Fig. 4.2 (a) and (b)). This is attributed
to a lattice rearrangement of the LaAlO3 layer and a subsequent change of the polarization at
the interface. At low temperatures, the mobility decreases with pressure, because the dielectric
constant of SrTiO3 is reduced with increasing pressure, and consequently screening of defects
is reduced. On the other hand, the suppression of lattice vibrations with pressure and the
corresponding reduction of electron-phonon scattering causes an increase of mobility with
pressure at room temperature (Fig. 4.2 (c)). For the sheet resistance, the large change in
mobility is more significant than the smaller change in carrier density, hence sheet resistance
decreases with pressure at low temperature and increases with pressure at high temperature
(Fig. 4.2 (d)).

The data presented so far were obtained during the pressurization of the sample. Upon
depressurization, the threshold voltage did not decrease immediately, but exhibited the hysteresis-
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Figure 4.2: Summary of the measurement results on sample 029 as function of hydrostatic pressure
for different temperatures extracted from transfer curves at VD = 0.05 V. (a) Threshold voltage. (b)
Charge carrier density. (c) Charge carrier mobility. (d) ON-state sheet resistance (VG =0 V). Results
are consistent with Fig. 3 of Ref. [23] and Fig. 6 of the supplementary of Ref. [23].
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Figure 4.3: Hysteretic behavior of threshold voltage and sheet carrier density at T=2 K with pressure. (a)
Evolution of threshold voltage of sample 029 during pressurization and depressurization. More negative
threshold voltages correspond to higher carrier densities. (b) Evolution of carrier density as extracted
from Hall measurements of sample 053 during pressurization and depressurization. The hysteretic
behavior is less pronounced in the Hall data, likely indicating a contribution of the ferroelectric BaTiO3

gate dielectric to the hysteretic behavior.

like behavior shown in Fig. 4.3 (a). Only after waiting for 192 h at 0 GPa was the original
threshold voltage recovered. The Hall measurements on sample 053 shown in Fig. 4.3 (b)
reproduce this trend, albeit in a weaker form. The fact that the hysteretic behavior is less
pronounced in the Hall data possibly indicates a contribution of the ferroelectric BaTiO3 gate
dielectric to the hysteretic behavior. The hydrostatic pressure applied to the BaTiO3 reduces
the size of the unit cell, which can be accommodated by a reduction of the tetragonality. Since
the ferroelectric polarization is reduced with the tetragonality, the capacitance of the oxide layer
and hence the threshold voltage is expected to be affected. In the previous measurements of
Hall-bars without gate stacks [23], no hysteresis effect with pressure was observed, corroborating
the hypothesis that the BaTiO3 layer is responsible for the hysteresis.

4.2 Transistor-Hall-bars

The FET measurements probe properties of the 2DEL which are different from those probed
by a Hall-bar. In order to obtain a direct link between the two measurement methods, a
sample was designed which allowed for simultaneous transistor and Hall-Bar measurements (see
section 3.2.6 and Fig. 4.4). The gate length of 20 µm is the same for both transistor designs,
therefore the characteristics of both designs are similar. However, the source and drain input
leads are longer for the transistor-Hall-bar and hence resistances are increased, resulting in
lower ON/OFF-ratios of approximately 105 at low temperature and lower on-state conductivity
than in sample 029. The LaAlO3 layer of sample 053 was grown at an oxygen pressure of
8× 10−5 mbar with a laser fluence of 0.8 J cm−2 at a temperature of 800 ◦C. The LaAlO3 layer
had a thickness of 6 u.c. and the BaTiO3 gate dielectric a thickness of 20 u.c. This sample
was grown at lower laser fluence and oxygen pressure than sample 029, therefore the native
carrier density of the interface is higher and the threshold voltage more negative as is shown
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Figure 4.4: Optical micrograph of the transistor Hall-bar sample 053. The device consists of a transistor
(right) and a combined transistor-Hall-bar structure with additional voltage probes for Hall and four-wire
measurements (left). The LaAlO3–SrTiO3 2DEL constitutes the conducting channel of the device,
whereas regions defined by amorphous LaAlO3 are not conductive. The functions of the contacts on the
transistor-Hall-bar section of the sample are indicated.
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Figure 4.5: Transfer characteristics of sample 053 at different temperatures and pressures. (a) Transfer
characteristics at 300 K (b) Transfer characteristics at 2 K. As compared to sample 029 (Fig. 4.1), the
intrinsic carrier density of the 2DES is higher, i.e., the threshold voltages are more negative. In addition,
the increased channel length leads to a lower ON/OFF-ratio and higher ON-state resistance.

in Fig. 4.5. Additional voltage probes are attached to the channel in order to measure Hall
and four-wire resistances. All transistor characteristics presented here, including those for
transistor-Hall-bars, are pure 3-terminal measurements since the additional voltage probes were
only used for Hall measurements.

In Sec. 4.1, the uncertainty in extracting carrier densities from transistor characteristics due
to the uncertainty in the oxide capacitance was discussed. Additional discrepancies between
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Figure 4.6: Sheet carrier density of sample 053 assuming single-band transport as a function of pressure
for different temperatures. (a) Sheet carrier density as calculated from the threshold voltage of the FET
for a drain bias of VD = 1 V. (b) Sheet carrier density as calculated from Hall measurements.

transistor and Hall measurements can be attributed to the fact that they probe different parts
of the electron system: The transistor characteristics are only sensitive to the 2DES below
the gate stack, whereas the Hall bar probes the entire channel. Furthermore, changes of the
transistor characteristics with pressure are possibly not only due to changes in the 2DES itself,
but also due to changes of the gate insulator.

It is not surprising, therefore, that the sheet carrier densities of sample 053 as extracted
from transistor and Hall measurements assuming single-band transport shown in Fig. 4.6 differ
from one another not only in value, but also in response to pressure and temperature. One
might then conclude that Hall measurements are always the better means of determining the
carrier density as compared to transistor characteristics. This is not the case, however, because
Hall measurements are also susceptible to a number of artifacts, especially when fitting multiple
bands, as will be shown below.

A Lifshitz transition between single-band and multiband transport with variation of the
carrier density has been reported to occur at the LaAlO3–SrTiO3 interface [65, 66]. In particular,
recent experiments on pressurized LaAlO3–SrTiO3 Hall-bars have reported the presence of
positively charged charge carriers [24]. In order to clarify the contribution of separate bands to
conductivity in sample 053, Hall and magnetoresistance data up to 8 T were measured (Fig. 4.7).
Intriguingly, the nonlinearities due to multiple bands decrease with pressure, even though the
total carrier density increases. This is most likely due to the decrease of mobility with pressure,
which makes it more difficult to disentangle the two bands. Models were fitted to this data,
which gave information on the carrier densities and mobilities of these bands. Two different
models, one fitting the measured resistances (see Sec.D.2) and one fitting the conductivities
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Figure 4.7: Hall- and Magnetoresistance measurements as a function of hydrostatic pressure in the
LaAlO3–SrTiO3 2DES of sample 053 at T=4 K. (a) Magnetoresistance at different pressures. (b) Hall
resistance at different pressures. The Hall curves show a weak nonlinearity which can indicate multiband
conductivity. The nonlinearities decrease with increasing pressure.

calculated from these resistances (see Sec.D.1) gave consistent results and reproduced the result
of negative charge carriers (Fig. 4.8). However, the nonlinearities in the Hall curve are quite
weak (Fig. 4.7 (b)), which makes multiband fits to this data difficult. As is explained in
Appendix D, these fits can often encounter local minima. These appear to fit the data well,
but they do not describe the real system.

Analysing the measurements on the transistor can give additional insight on the multiband
nature of the system. In contrast to the standard transistor characteristics observed on sample
029 and other transistor samples, on sample 053, which has a higher carrier density, peculiar
kinks are observed in the transfer curves at high pressures (Fig. 4.9). As described by Eq. 4.1,
plotting

√
ID versus VG, one expects to obtain a linear dependence. However, in the present

case several distinct linear regions, each with separate slopes and intercepts are observed. These
correspond according to Eq. 4.1 to separate mobilities and threshold voltages, respectively. One
can in this case assume that the FET consecutively depletes separate conduction channels or
separate bands. Indeed, these results closely resemble measurements on individually depletable
double quantum wells in GaAs heterostructures [95].

Even though quantitative comparison between Hall-bar and transistor results is difficult,
the transistor data can give a clear verdict on the most surprising result of the Hall fits, i.e.,
the positive charge of the carriers in the second band. Fig. 4.10 shows two different model
calculations for transfer curves of a two-band transistor: In Fig. 4.10 (a), a simulated transfer
curve for the saturation region of two bands with negatively charged carriers with different
densities and mobilities is plotted, where values for carrier densities and mobilities are taken
from the Hall fit result for sample 053 at 1.8 GPa, but all with positive sign. The simulation
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Figure 4.8: Carrier density of sample 053 at 4 K as a function of hydrostatic pressure as extracted from
fits to the conductivity curve. Fits to the Hall and longitudinal resistance curves give similar results (not
shown). The fit results yield a positive carrier density n1 which increases with pressure, and a negative
carrier density n2 which decreases with pressure. The negative charge carrier density represents a band
of positively charged carriers.

reproduces the kink which was observed in the data shown in Fig. 4.9. Fig. 4.10 (b) shows the
same simulation, but with the polarity of the second band inverted. The behavior of the drain
current differs clearly from the that in Fig. 4.10 (a): As the gate voltage becomes more negative,
the band of negatively charged carriers is depleted, but charge carriers are accumulated in
the band of positive carriers. Hence the drain current does not vanish, but passes through a
minimum and subsequently increases again. This model is not compatible with the data shown
in Fig. 4.9, ruling out the presence of positive charge carriers at the interface.

It is not clear whether the small linear region observed in Fig. 4.9 at very negative
gate voltages just above the onset of conductivity represents a third band or is due to an
additional anomaly of the transistor. If it is indeed an indication of a third band, the Hall and
magnetoresistance data would have to be fitted with three instead of two bands, which is a
computationally rather involved task. Nonetheless, the conclusion that all charge carriers have
negative sign remains valid for both two- and three-band scenarios.

Inspecting Fig. 4.10 (a) more closely also aids the interpretation of the different linear
regions of the transfer curve shown in Fig. 4.9 because it shows how the current of the two
bands adds up to the total measured current: The onset of conductivity corresponds to the
threshold voltage of the band with the highest carrier density and the initial slope represents
the mobility of this band. The voltage at which the kink is observed in the total current
corresponds to the threshold voltage of the second band.

√
I in this region is the square root of

the sum of the two currents from the two bands, therefore the slope of the curve above the kink
is not simply µ1 + µ2, but µ2 can be calculated from it since all other quantities are known. In
this simplistic model, the influence of the current in band 1 on the current in band 2 is not
taken into account. It is conceivable that the carrier density (and consequently the current) in

51



-2 -1.5 -1 -0.5

V
G

 (V)

0

0.005

0.01

0.015

0.02

0.025

  T = 2 K
VD = 0.5 V
  T = 2 K
VD = 0.5 V
  T = 2 K
VD = 0.5 V
  T = 2 K
VD = 0.5 V
  T = 2 K
VD = 0.5 V
  T = 2 K
VD = 0.5 V

0
0
0.5
1
1.5
1.8

p (GPa)

Figure 4.9: Transfer characteristics of sample 053 at 2 K with drain bias of 0.5 V as a function of pressure.
Whereas at 0 GPa the results from sample 029 are reproduced, with increasing pressure kinks develop
in the transfer curve. According to Eq. 4.1, a plot of

√
ID versus gate voltage should be linear in the

saturation region. However, at high pressures several distinct linear regions are observed as is shown
exemplarily for the 1.8 GPa curve. This behavior can be attributed to the successive depletion of multiple
conduction channels, each with individual mobility and carrier density.

band 1 saturates or drops once band 2 begins to be populated. Furthermore, as this model
only describes the saturation region, it does not reproduce the eventual leveling off of the drain
current increase observed in a real transistor. The model can therefore only serve as a first
approximation to interpret results such as shown in Fig. 4.9.

4.3 Conclusion

This chapter presented several new results about the LaAlO3–SrTiO3 2DES which were obtained
by transistor measurements. First, the results on the pressure dependence of conductivity in
the 2DES under hydrostatic pressure from Refs [23, 90, 91] were confirmed. Then, it was proven
that transistors built from LaAlO3–SrTiO3 can be subjected to hydrostatic pressure and still
retain their functionality.

The experiments on combined transistor-Hall-bar samples made it possible to probe the
interface 2DES using two different methods and revealed differences between the results from
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Figure 4.10: Simulations of the saturation region of a transistor with multiple bands. Blue and red
curves correspond to the currents in each band, the yellow curve corresponds to the total current. (a)
Two bands with negative charge carriers. (b) One band with negative and one with positive charge
carriers. The absolute values of carrier densities and mobilities for both simulations correspond to the
Hall fit results for sample 053 at 1.8 GPa.

the Hall-bar and the transistor-type devices. In particular, comparison of Hall and transistor
data showed that the result of positively charged carriers obtained from multiband Hall fits is
most likely an artifact.
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THE CRITICAL MAGNETIC FIELD OF
THE LaAlO3 – SrTiO3 2DES 5
5.1 Introduction

The band structure of the 2DES at the LaAlO3–SrTiO3 interface is a combination of bands
formed from the titanium dxy, dxz and dyz orbitals residing at the SrTiO3 side of the interface
(see section 1.3.3). Even though it has been shown that, depending on the growth parameters
and the applied gate voltages, multiple bands can participate in conductivity at the LaAlO3–
SrTiO3 interface, the question whether superconductivity in LaAlO3–SrTiO3 is present in
multiple bands is at the moment still unresolved.

In electron tunneling experiments on the LaAlO3–SrTiO3 interface, the superconducting
gap usually appears without side peaks [57, 58], indicating a single gap. Rare exceptions to the
standard gaps observed in LaAlO3–SrTiO3 tunneling experiments will be discussed in chapter
7. However, because of the planar geometry of the interface, which dictates a tunneling current
perpendicular to the interface, tunneling electrons have only access to the dxz and dyz orbitals.
The dxy orbital is inaccessible to tunneling measurements and is therefore a candidate to host
the second band. Indeed, in tunneling measurements on MgB2 at first only a single gap was
observed [96]. Only when samples were prepared with controlled surface orientation so that
both gap momenta were accessible did the second gap become visible [97].

An alternative probe for multiband superconductivity is the temperature dependence of
the upper critical field [98–104]. In single band s-wave superconductors the superfluid density
is almost constant at temperatures lower than 0.5 · Tc and therefore the upper critical field
saturates in this region. In multiband superconductors, however, the superfluid density in the
non-dominant bands increases with decreasing temperatures, because the gap in this band is
expected to have a linear temperature dependence instead of the BCS dependence [67, 102].
Thus, in multiband superconductors Hc2 (T ) does not saturate at low temperatures, it rather
continuously increases with decreasing temperature. This chapter presents the temperature
dependence of Hc2 (T ) as probed by both transport and tunneling spectroscopy. In the measured
samples, Hc2 (T ) is linear down to 0.2·Tc, consistent with the LaAlO3–SrTiO3 interface 2DES
being a multiband superconductor. However, other mechanisms can also cause linear Hc2 (T ),
which will be discussed below.

The analysis presented in this chapter is based on data from two different samples: sample
011 is a circular junction design sample grown and measured by the author. The second sample,
T36, was grown by Christoph Richter and measured by Evangelos Fillis-Tsirakis.

In sample 011, the doping range beyond ±150 V was not accessible because high leakage
currents led to significant heating at low temperatures. It is superconducting over the entire
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Figure 5.1: Data from sample 011 for a back-gate voltage of −100 V. The data shown here have been
obtained by AC lock-in measurements: a) Sheet resistance plotted over applied perpendicular magnetic
field for different temperatures. The difference between up- and down sweeps, as indicated by arrows, is
due to a heating effect of the cryostat at very low fields and temperatures. b) Tunneling conductance
plotted over applied perpendicular magnetic field for different temperatures. The methods employed to
extract Hc2 are illustrated for the 50 mK curves.

accessible voltage range, with the critical temperature, the critical magnetic field and the size of
the gap monotonously increasing towards more negative gate voltages. At −150 V the critical
temperature (defined as the temperature where the resistance is 50% of the normal state value)
is 270 mK with a transition width of 50 mK. At the same gate voltage the critical field is 0.08 T.
Typical curves for a gate voltage of −100 V are shown in figure 5.1. At gate voltages of 0 V
and 100 V, the behavior of the sample is similar.

The phase diagram of sample T36 has been described extensively elsewhere [25, 57, 58].
Tuning the charge carrier concentration with a back gate voltage, the resistive state is reached at
−200 V. The optimally doped superconducting state with a critical temperature of 300 mK and
critical field of 0.5 T is at 0 V. Positive gate voltages correspond to an overdoped superconducting
regime in this sample.

5.2 Hc2 (T ) measurements

On sample 011, magnetic fields were applied perpendicular to the plane of the 2DES and the
dependence of sheet resistance on the field at different temperatures and gate voltages was
measured. In addition, the zero-bias tunneling conductivity (dI/dVV=0) from the top-gate to
the 2DES was measured.

Fig. 5.1 (a) shows the AC sheet resistance of sample 011 plotted against the applied magnetic
field at different temperatures. Above a certain field value, the measured resistance increases
from the noise level to the normal-state value. The hysteresis-like difference between up- and
down-sweeps (arrows) is due to a heating effect of the cryostat at very low fields and temperatures.
For consistency, the following analysis only takes into account data from downward sweeps where
the heating effect is negligible for most of the curve. As for all two-dimensional superconductors,
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Figure 5.2: The trends for perpendicular Hc2(T ) extracted from tunneling and sheet resistance mea-
surements for sample 011, using different criteria. The vertical error bars denote the uncertainty in
extracting the Hc2(T )-values and account for the uncertainty in locating the exact onset of the plateaus.
Since the transition is more abrupt for the sheet resistance measurement, its errors are smaller than for
the tunneling measurements. The horizontal error bars denote the temperature instability in our system,
arising from the H-field sweep-induced heating. The latter is more pronounced at lower temperatures
where additional heating due to magnetization effects becomes significant.

the superconducting condensate is more susceptible to fluctuations than in a bulk superconductor
and hence the width of the superconducting transition is broadened. The upper critical field
Hc2 was defined as the field where the resistance has dropped to half of the normal-state value
(50%-criterion), as illustrated in Fig. 5.1 (a).

Fig. 5.1 (b) shows the AC tunneling conductance between gold top electrode and 2DES
plotted against magnetic field. At low fields, the conductivity is reduced at zero bias because
electrons cannot tunnel into the superconducting gap in the density of states. Following the
suppression of the gap with magnetic field, tunneling conductivity recovers to the normal-state
value. In accordance with previously published data [56, 57], the suppresion of the gap is
more gradual than the resistive transition. For the tunneling conductivity, it is not meaningful
to define the field value of half the normal-state conductivity as Hc2, since the transition is
wider and does not terminate in perfect zero conductivity. Instead, another criterion (line
criterion) is applied, illustrated in Fig. 5.1 (b): two lines are fitted to the curve, one in the
region of maximum slope and one in the normal conducting region. The intersection of these
two lines is taken as Hc2. As is explained in more detail in Ref. [58], this method is a reliable
and reproducible way to define the critical magnetic field for tunneling measurements. The
line criterion inherently yields higher values for Hc2 than the 50 %-criterion and the values
derived from that criterion can be regarded as an upper limit of Hc2. Since the width of
the superconducting transition is not negligible, the line criterion is also applied to the sheet
resistance data to make the different measurements more comparable.

The dependence of critical magnetic field on temperature extracted in the way described
above is plotted in Fig. 5.2 for sample 011. For all gate voltages and irrespective which criterion
is used to extract Hc2, the critical magnetic field depends linearly on the temperature across
the entire temperature range, for both in-plane and tunneling measurements. This behavior is
distinctly different from the linear behavior predicted by Ginzburg-Landau-theory, which is only
valid in a small region close to Tc. The critical magnetic fields extracted from tunneling and
sheet resistance measurements show good quantitative agreement with one another, indicating
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Figure 5.3: Tunneling dI /dVV=0 characteristics of sample T36 as a function of magnetic field at different
temperatures, for back-gate fields of -200, -100, 0 and 100 V. For every temperature and gate voltage
set, Hc2 is derived directly from the respective curve as illustrated in Fig. 5.1 (b). The gap closure
corresponds to a positive slope in conductance while the magnetic field H is swept upwards. Reproduced
from Ref. [105].

that the electron system of the sample is homogeneous.
The data from sample 011 is especially relevant, because sheet resistance and tunneling

conductivity could be measured simultaneously. However, it was not possible to obtain
information over the entire phase diagram from superconducting to normal conducting. An
additional sample (T36) was measured, where tuning of the entire phase diagram was possible.
For this sample, the evolution of tunneling conductivity with magnetic field H is shown in
Fig. 5.3. Curves were recorded for fixed gate-voltage values of -200, -100, 0 and 100 V, in each
case for eight temperature steps, from a base value of approximately 60 mK up to 400 mK. At
this value, superconductivity is destroyed and the superconducting gap at the density of states
disappears for all four gate voltages.

From Fig. 5.3, the values of Hc2 were extracted as described above for different temperatures
and gate voltages. Figure 5.4 depicts Hc2(T ) curves at four different gate voltage values of
(a) -200, (b) -100, (c) 0 and (d) 100 V, which respectively correspond to the resistive state
(where macroscopic superconductivity disappears), underdoped, optimally doped and overdoped
regions in the phase diagram of the LaAlO3–SrTiO3 superconductor [56–58]. In all cases,
the Hc2(T ) curve follows a linear trend, from Tc, throughout the entire temperature range of
investigation and to the cryostat base temperature, confirming the results from sample 011.
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Figure 5.4: The Hc2(T ) curves across the phase diagram of sample T36. The temperature dependence
is linear across the entire temperature range of investigation. Error bars are calculated by the same
method as for Fig. 5.2.

5.3 Discussion

It was found that for both samples, regardless of the method used to determine Hc2(T ) and at
all doping levels, the critical magnetic field scales linearly with temperature over the whole
accessible temperature range. Different models exist predicting different behaviors of Hc2(T ) for
different properties of the superconductor. The standard model is the Gorter-Casimir two-fluid
model [106], predicting a relationship of the form:

Hc2(t) = Hc2(T = 0) ·
(
1− t2

)
, (5.1)

where t = T/Tc is the reduced temperature. A more refined equation derived by Mühlschlegel
from the BCS theory yields a similar behavior [107]. This simple model predicts a strongly
curved Hc2(T ) and is not consistent with our data. However, different mechanisms exist in
which the Hc2(T ) curve is linear down to lower temperatures:

� A model by Tinkham [108] for the critical magnetic field of two-dimensional superconduc-
tors:

Hc2(t) = Hc2(T = 0) · 1− t2

1 + t2
, (5.2)

where t = T/Tc is again the reduced temperature.

� A model by Maki and de Gennes [109] for dirty 3-dimensional superconductors:

ln(t) = ψ

(
1

2

)
− ψ

(
1

2
+

~DHc2Tc

2φ0kBt

)
, (5.3)
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where ψ(x) = d
dx ln (Γ(x)) is the digamma function.

� A model for two-band superconductivity by Gurevich [100]:

a0

[
ln(t) + ψ

(
1

2

)
− ψ(h)

] [
ln(t) + ψ

(
1

2

)
− ψ(ηh)

]
+ a2

[
ln(t) + ψ

(
1

2

)
− ψ(ηh)

]
+ a1

[
ln(t) + ψ

(
1

2

)
− ψ(h)

]
= 0, (5.4)

where ai are coupling constants, η is the ratio of diffusivity of the two bands and h = H/Hc2

is the reduced magnetic field. Depending on the choice of parameters, the Hc2(T ) curve
in this model can take different shapes, including linear behavior at low temperatures
and upward curvature at Tc.

� Youngner and Klemm [110] showed that anisotropies in the Fermi surface or pairing
parameter can also cause a linear behavior of Hc2(T ). Their equations can not be written
in closed form and are not reproduced here. However, nodes in the superconducting can
be considered unlikely in the present case, since all measurements and published data
consistently show that the LaAlO3–SrTiO3 interface is a nodeless s-wave superconductor.

� The linear behavior of Hc2(T ) observed in the present experiments is different from the
behavior predicted by Ginzburg-Landau-Theory, which predicts linear behavior, but only
in the vicinity of Tc.

Figure 5.5 summarizes the Hc2(T ) results from samples 011 and T36, together with the-
oretical curves predicting Hc2(T ) according to the different models described above. When
normalized to reduced magnetic field and temperature, all data points fall onto one line. It is
clear that the standard BCS curve does not fit the data, but due to the large scatter of the
data points, it is not possible to make a clear statement which of the other models fits the data
best. In particular, the value of Hc2(T = 0), which is used to normalize the curve, depends on
the choice of extrapolation to zero temperature, i.e., on the model itself and induces a large
source of error. In addition, because of the large transition width, the critical temperature Tc

is subject to significant uncertainty.
In conclusion, it was not possible to unequivocally identify the physical origin of the

observed Hc2(T ) behavior. However, it should be emphasized that the two-dimensionality of
the electron system by itself can be the cause of the linear Hc2(T ) according to Tinkham’s
model [108], without the need to assume any additional physical mechanisms. Spectroscopic
measurements on Nb-doped SrTiO3 recently showed that this system, which is closely related to
the LaAlO3–SrTiO3 interface, has only a single superconducting gap, even though conductivity
is present in multiple bands [43]. To explain this apparent discrepancy, the authors note
that strong impurity scattering averages out the contribution of multiple bands. Since at the
LaAlO3–SrTiO3 interface, the number of impurities is also significant, this scenario might very
well also apply to the interface superconductor.
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Figure 5.5: The combined normalized Hc2(T ) data from both samples which were measured. All
normalized datapoints fall on a single line. The linear behavior of Hc2(T ) clearly deviates from the
standard Gorter-Casimir curve. However, because of the scatter and the error margin of the data
points, it is not possible to unequivocally identify the correct model. For the multiband curve, coupling
parameters for SrTiO3 from literature [111] were used and a diffusivity ratio of η=7 was found to give the
best fit to the data. Error bars for sample 011 are smaller than for sample T36 because the 50%-criterion
is a more precise method of determining Hc2 than the line criterion.
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THE SUPERCONDUCTOR-INSULATOR
TRANSITION OF THE LaAlO3 – SrTiO3

2DES 6
The SIT is a special phase transition occurring solely in two-dimensional superconductors. It is
particularly interesting because it is a quantum phase transition which occurrs at zero Kelvin,
which makes it distinctly different from thermodynamic phase transitions observed at finite
temperatures (See section 1.1). Another special topological phase transition of two-dimensional
superconductors is the BKT transition (See section 2.2). The LaAlO3–SrTiO3 interface is a
promising candidate for investigations of these transitions because of the easy tunability of the
2DES by a back-gate, which means that the superconducting and insulating states can both
be observed in the same sample. Even though both transitions have already been observed
experimentally [55, 56], open questions remain: With respect to the SIT, it is not yet clear how
far superconducting pairing persists into the insulating regime. For the BKT transition, it has
not yet been shown how the transition evolves as the 2DEL is tuned across its phase diagram
by a back-gate.

This chapter describes various aspects of the SIT at the LaAlO3–SrTiO3 interface. First,
the optimization of PLD growth parameters is described. This optimization was necessary to
obtain LaAlO3–SrTiO3 samples which could be tuned from superconductor to insulator by the
application of a back-gate voltage. Measurements on samples from this optimization series
are presented. Then several attempts to measure the BKT transition in these samples are
described, and several reasons why these measurements were not successful are discussed. The
subsequent section concerns an anomalous increase of resistance which occurs before the onset
of the superconducting transition in these samples and is possibly related to the SIT. Finally,
characteristics of a superconducting transistor with the LaAlO3–SrTiO3 interface as channel
are presented.

6.1 Growth optimization

The LaAlO3–SrTiO3-interface has a large number of different functionalities, but the properties
of each individual LaAlO3–SrTiO3 sample depend crucially on the growth conditions, such as
ablation laser fluence, oxygen pressure and substrate temperature. Fig. 6.1 illustrates different
classes of LaAlO3–SrTiO3 samples. In most samples, the carrier density can be tuned by the
application of a back-gate gate voltage (center). A subset of these tunable samples, which
is grown at relatively high laser fluences and oxygen pressures and consequently shows low
carrier densities, exhibits high carrier mobilities (left). LaAlO3–SrTiO3 samples grown at low
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Figure 6.1: Classification of LaAlO3–SrTiO3 samples depending on the growth parameters. In most
LaAlO3–SrTiO3 samples the carrier density can be tuned by the application of a back-gate voltage
(center). For low carrier densities, these samples can exhibit high mobilities (left). Samples grown at low
fluences and oxygen pressures exhibit a high carrier density and are superconducting (right). Only a
subset of these superconducting samples is also tunable by a back-gate voltage. The growth parameters
necessary to reach this subset are explored in this growth optimization.

oxygen pressure and low fluence have sufficiently high carrier densities to be superconducting
(right), but the intrinsic carrier densities can be so high that they are no longer tunable with a
back-gate voltage. The aim of the growth optimization presented in this section was to produce
samples from the overlap between superconducting and tunable samples.

At the onset of the work presented in this thesis, two different parameter sets were in use
for the growth of LaAlO3–SrTiO3 samples in our PLD system:

Set 1:
Laser fluence: 0.8 J cm−2

Oxygen pressure: 8× 10−5 mbar
Temperature: 800 ◦C

Set 2:
Laser fluence: 1.2 J cm−2

Oxygen pressure: 8× 10−4 mbar
Temperature: 800 ◦C
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The first parameter set reliably produced superconducting samples, but these samples could
not or could only marginally be depleted by application of a back-gate voltage. On the other
hand, the second parameter set reliably produced samples which could be depleted to sheet
resistances in the MΩ range for negative back-gate voltages, but these samples did not become
superconducting at the base temperature of the cryostat (50 mK). It appears that the charge
carrier densities generated by parameter set 1 were too high to be entirely depleted, whereas the
charge carrier densities generated by parameter set 2 were to small to induce superconductivity.
Since the SIT can only be measured in samples which can be both superconducting and
insulating, a major part of this thesis was devoted to finding a growth parameter set which
yields samples with these desired properties. A series of LaAlO3–SrTiO3-samples was grown
while systematically varying the growth parameters to create a simultaneously superconducting
and switchable sample. Due to the ring structure of the circular tunnel junction devices (see
section 3.2.1) of this first series it was not possible to perform Hall measurements on these
samples to quantify the charge carrier density. However, information was obtained on whether
the samples were superconducting and depletable. For the samples in van der Pauw geometry
with gold top electrodes (see section 3.2.2), Hall measurements were performed on all samples
that were well-conducting in order to determine carrier density and mobility. The results
obtained from these samples will be discussed below.

This growth optimization process is time-consuming because the time between the first step
of sample preparation and the first measurement results amounts to approximately one week.
The whole process of sample fabrication from substrate termination to the final deposition of
electrodes takes several days, and even longer if intermediate patterning steps are performed. To
check for superconductivity, the sample has to be mounted and cooled in a dilution refrigerator,
which is also a lengthy process. In consequence, usually the next sample had already been
grown before the results of a given sample were evaluated, leading to a delay in the feedback
loop of growth parameters. In order to expedite the sample preparation process, usually two
samples were grown on the same day.

In addition to the growth parameters which were varied systematically, there are also
parameters beyond the control of the experimenter. The influence of these parameters on
sample quality is sometimes difficult to disentangle from that of the known and controllable
parameters. The most important of the external parameters is the quality of substrates. Even
though each substrate was screened by AFM before use, the region of the AFM image is only
a small fraction of the total substrate surface, and AFM gives no information on substrate
stoichiometry.

Another example for an uncontrollable parameter is that two changes of unknown origin
occurred in the PLD system during the process of this growth optimization, the first between
the growth of samples 037 and 058 and the second between the growth of samples 065 and 066.
Whereas the first change of the system shifted the phase diagram of the growth parameters
so that the “sweet spot” for the growth of simultaneously superconducting and switchable
samples disappeared, the second change of the PLD system caused most of the samples grown
subsequently to become insulating.

Taken together, these external parameters explain why samples which were nominally grown
with the same parameters can show disparate measurement results. These fluctuation make a
systematic growth optimization difficult, and because of the long sample preparation cycle, it is
difficult to accumulate enough statistics to compensate for the fluctuations.

Table 6.1 lists all LaAlO3–SrTiO3 samples with unpatterned electron system which were
grown during this thesis. Samples with patterned electron system are not included because the
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Table 6.1: Growth Parameters of LaAlO3–SrTiO3-samples and their superconducting and depletion
properties. Resistance values are those from the best conducting device of a sample, other devices on
the same sample may be completely insulating. A Tc of less than 50 mK indicates that only the onset of
a superconducting transition was observed a the cryostat base temperature of 50 mK. Samples with
patterned channel are not listed here, because their properties are different from those of samples with
pristine electron system. Growth temperature for all samples was 800 ◦C, except for sample 030, for
which growth temperature was 750 ◦C.
This table: samples 002 - 037 in circular circular junction geometry.

Growth Parameters Properties
Sample pO2 (mbar) F (J cm−2) u.c. R�, 300 K (Ω) R�, 4 K (Ω) Tc (mK) gating

002 8.3× 10−5 0.8 5 9.7× 104 7× 106 insulating
003 8× 10−5 0.8 4 2.8× 104 240 0 leakage
004 8× 10−5 0.8 8 3.1× 104 440 0 leakage
005 8× 10−5 0.8 4 1× 104 110 125 No
007 8× 10−5 0.8 4 3.1× 104 250 150 No
009 8× 10−5 0.8 4 2.5× 104 200
011 8.1× 10−5 0.8 5 6× 103 300 150 No
019 8.1× 10−4 1.2 4 2× 104 4× 103 No Yes
020 7.8× 10−4 1.2 3 1× 105 1× 107 insulating
021 7.8× 10−4 1.2 4 5× 104 500 No Yes
022 8.1× 10−4 1.2 3
025 7.8× 10−4 1.2 4 5× 104

026 4× 10−4 1 4 2× 104 100 50 Yes
027 4× 10−4 1 4 2× 104 320 0 Yes
030 4× 10−4 1.2 4 2× 104 1× 106 No Yes
031 8× 10−5 0.8 4 2.4× 104 300 No Yes
032 7.9× 10−5 1 3
033 3.7× 10−4 0.8 4 8× 103 150 200 No
034 8× 10−5 0.8 N/A 1× 108 insulating
035 2× 10−4 1 4 1.4× 104 90 275 Yes
036 8.2× 10−4 0.8 4 1× 108 insulating
037 7.9× 10−4 0.8 4 1.1× 104 160 150 No

patterning changes the properties of the electron system and hence the two kinds of samples
cannot easily be compared to one another.

The only sample in the series of circular junction-design samples which showed good
superconducting properties and could be tuned from insulator to superconductor was sample
035. Consequently, this sample was thoroughly investigated by sheet resistance and tunneling
spectroscopy measurements at different back-gate voltages, temperatures and magnetic fields.
The relevant properties of this sample are shown in Fig. 6.2: Fig. 6.2 (a) shows the normal-state
resistance at 50 mK and 400 mT as a function of back-gate voltage. The logarithmic plot
shows a sharp increase of resistance for negative back-gate voltage. Fig. 6.2 (b) shows on the
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Table 6.1: (cont.) Samples 058 - 067: van der Pauw structures with gold top electrode.

Growth Parameters Properties
Sample pO2 (mbar) F (J cm−2) u.c. R�, 300 K (Ω) R�, 4 K (Ω) Tc (mK) gating

058 8.1× 10−5 0.8 4 3× 104 2.2× 103 150 No
059 2.0× 10−4 1 4 5.4× 104 900 No Yes
060 8.6× 10−5 0.8 4 1.4× 104 2× 103 0 Yes
061 2.0× 10−4 1 4 1.4× 104 3× 103 No Yes
062 2.1× 10−4 0.8 4 2.3× 104 1.1× 103 100 No
063 8× 10−5 1 4 3.2× 105 270 No Yes
064 8.1× 10−5 0.9 6 7.7× 104 2.9× 103 No Yes
065 2× 10−4 0.9 6 1.2× 105 900 125 No
066 2× 10−4 0.9 5 1.3× 107 2.7× 106 insulating
067 7.9× 10−4 0.9 5 4.5× 107 1× 107 insulating

Table 6.1: (cont.) Samples 068-073: superconducting transistor geometry.

Growth Parameters Properties
Sample pO2 (mbar) F (J cm−2) u.c. R�, 300 K (Ω) R�, 4 K (Ω) Tc (mK) gating

068 8.00× 10−5 0.8 6 >100× 106 >100× 106 insulating
069 8.00× 10−5 0.8 6 43 000 200
070 7.90× 10−5 0.8 6 28 000 50 0 Yes
071 8.20× 10−4 1.2 6 9× 106 insulating insulating
072 8.00× 10−5 0.8 6 27 000 drifting insulating
073 8.10× 10−5 0.8 6 30 000 30 000, upturn insulating
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Figure 6.2: Properties of sample 035 as a function of gate voltage. (a) Sheet resistance at T= 50 mK
and magnetic field of 400 mT. (b) Critical temperature and gap size ∆ divided by lifetime-broadening
parameter Γ at 50 mK. Comparison of (a) and (b) shows that superconductivity persists into the region
where the normal-state sheet resistance reaches the MΩ range.

left axis the critical temperature (extracted according to the 75-%-criterion) as a measure of
the superconductivity observed in transport. The right axis shows the superconducting gap
size ∆ divided by the lifetime-broadening parameter Γ as a measure of the superconductivity
observed in tunneling. In accordance with results published previously (e.g. Fig. 4 of Ref.
[57]), superconductivity persists well into the region where the normal-state resistance is on the
order of MΩ. It was also confirmed that even though ∆/Γ decreases in the depletion range, ∆
increases.

However, for reasons described in section 6.2, it was not possible to clearly measure the
BKT transition in this sample geometry. Therefore, a number of samples with patterned 2DES
were grown to investigate current flow in a well-defined region without constrictions (see section
3.2.4). However it became clear that patterning is so detrimental to the electron system that it
destroys superconductivity.

For this reason, and in order to gain quantitative information on charge carrier density
and mobility, the sample design for BKT samples was changed to the van der Pauw geometry
with a gold top electrode described in section 3.2.2. For these samples, sheet carrier densities
and mobilities were determined in addition to resistance measurements. Fig. 6.3 shows the
sheet resistance of these samples as a function of back-gate voltage. Due to the aforementioned
change in the PLD system, the dependence of the sample properties on the growth parameters
had changed between the growth of the series of circular junction samples and the series of van
der Pauw samples. Hence, van der Pauw samples grown with the same growth parameters as
sample 035 were still tunable by a back-gate, but no longer superconducting. Only those van der
Pauw samples grown at low laser fluence and oxygen pressure (058, 062) were superconducting.
Consistent with the hypothesis that a high charge carrier density is necessary for supercon-
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Figure 6.3: Normal-state sheet resistance of van der Pauw samples 058-063 at T= 50 mK as function of
back-gate voltage. In the two superconducting samples 058 and 062, the carrier density is so high that
they can not be depleted and their resistance changes only slightly with back-gate voltage. Samples
059-061 can be turned insulating when applying negative back-gate voltage. Sample 063 only becomes
conducting at high positive back-gate voltages.

ductivity, these are the two samples with the the highest native carrier density. Indeed, their
carrier density is so high that these two samples could not be depleted by the application of a
back-gate voltage. In the other four samples (059-061, 063) the electron system could be tuned
from insulating to normal conducting, but no superconducting phase was observed. It appears
that the range of carrier densities which allow both for superconductivity and tunability is very
small for samples grown in our PLD system, in contrast to most other reports from literature,
where gate-tunable superconducting LaAlO3–SrTiO3 samples appear to be easily obtainable.

6.1.1 The Lifshitz transition and its connection to superconductivity

Figure 6.4 shows the charge carrier density and mobility of the van der Pauw samples as
extracted form magnetic field measurements up to 2 T as function of back-gate voltage. For
negative gate voltages, the charge carrier density decreases until it is no longer measurable.
However, the behavior at positive gate voltage is incompatible with the naive picture of charge
accumulation in a plate capacitor as a model of the field effect at the interface. In this model,
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Figure 6.4: (a) Carrier density of van der Pauw samples 058-063 as a function of back-gate voltage. (b)
Mobility of van der Pauw samples 058-063 as a function of back-gate voltage. The data show that the
maximum carrier density is not at the maximum of the gate voltage, but at VG ≈ 0. The decrease in
resistance at high gate voltages is not due to accumulation of carriers, but due to increasing mobility of
those carriers. All data shown here have been measured at T= 50 mK.

the charge carrier density should increase linearly with the applied voltage. However, the
carrier density reaches its maximum around 0 V and slightly decreases upon further increase of
the back-gate voltage. Instead of further charge accumulation, an increase of mobility causes
the decrease of resistance at positive back-gate voltage (cf. e.g.[112]). This behavior can be
understood with the following arguments: As the back-gate voltage is increased to more positive
values, the mobile electrons are pulled further into the SrTiO3 substrate and away from the
interface. Since the density of scattering centers is significantly higher at the interface than
in the bulk, this causes an increase in mobility. The apparent decrease of carrier density can
be explained by the appearance of an additional band, which is not measurable in low-field
Hall measurements. Such a Lifshitz transition from single-band to multiband at positive gate
voltage has been reported previously in LaAlO3–SrTiO3 [25, 65, 66, 113].

In order to gain additional information on this additional band, high field measurements
were performed on sample 058 and on the superconducting transistor sample 070. The
multiband-band nature of conductivity is already visible from the increasing nonlinearities in
the Hall conductivity and magnetoconductivity with increasing back-gate voltage shown in Fig.
6.5. These strong nonlinearities imply that multiband fits will be reliable on this data and
unperturbed by the shortcomings discussed in Sec. 4.2. Multiband fits (see Appendix D) to the
Hall and magnetoresistance data showed that at negative back-gate voltage a single conduction
band is present at the interface. At VBG=0 V, this band is fully populated at approximately
5.5× 1013 cm−2 for sample 058 and 1.55× 1013 cm−2 for sample 070. Increasing the back-gate
voltage above zero changes the carrier density in the primary band only slightly in sample 070
and even leads to a decrease in sample 058, but leads to a significant increase in carriers in an
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Figure 6.5: Signature of the single-band to multiband Lifshitz transition in the Hall conductivity and
magnetoconductivity of the LaAlO3–SrTiO3 2DES in sample 070 at T= 4 K with applied backgate
voltage. There is a clear transition from single-band linear behavior to multiband non-linear behavior
with increasing backgate voltage (i.e., carrier density). (a) Magnetoconductivity. (b) Hall conductivity.
Results on sample 058 are similar (not shown).

additional band with lower density (Fig. 6.6).
The point of maximum carrier density in the primary band also corresponds to the maximum

strength of superconductivity. Fig. 6.7 shows the gap width ∆ divided by the quasiparticle
lifetime broadening parameter Γ for samples 058 and 062 as a function of backgate voltage. The
maximum of the ratio is at VBG=0 V and coincides with the measured carrier maximum, thus
indicating that the population of a second band is detrimental to superconductivity. This is
consistent with previously published data on superconductivity at the LaAlO3–SrTiO3 interface
[25] and doped SrTiO3 [40]. However, the demise of superconductivity can also be attributed
to a decrease in the electron-phonon coupling strength at higher carrier densities [25].

6.1.2 Alternative growth optimization: high electron mobility

In parallel to the efforts presented above, another optimization of LaAlO3–SrTiO3 growth
parameters was performed by Ali Teker, with the intention to produce samples of highest
electron mobility. Even though PLD growth parameters for high-mobility samples do not yield
a superconducting 2DES, some results of Ali Teker’s investigation, such as the deterioration
of the electron system with patterning, were concurrent with the findings presented in this
thesis. In order to increase the mobility of the electrons in the 2DES, the LaAlO3 top layer
was supplemented with an overlayer of SrCuO2 and a capping layer of SrTiO3. The SrCuO2 is
intended to act as an oxygen supplier filling up possible defects at the interface. The SrTiO3

layer protects the SrCuO2 from outside influences. In measurements performed by the author on
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Figure 6.6: Evolution of the carrier density of samples 058 and 070 at T=4 K with backgate voltage
and the appearance of a second band. For voltages below −60 V, the carrier density in sample 070 is so
small that Hall measurements are not possible. Increasing the backgate voltage, the carrier density n1
of the first band increases until it saturates at VBG = 0 V. At higher backgate voltages, n1 increases
only slightly in sample 070 and decreases in sample 058. However, a second band with smaller carrier
density n2 gets populated, thus marking the onset of the Lifshitz transition. (a) Carrier densities of
sample 058. (b) Carrier densities of sample 070.
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Figure 6.7: The ratio of gap width ∆ over quasiparticle lifetime broadening parameter Γ at 50 mK for
van der Pauw samples 058 and 062. The maximum of the ratio is at VBG=0 V, concomitant with the
maximum occupation of the primary band (cf. Fig. 6.6).
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Figure 6.8: Longitudinal and transverse resistance of the high-mobilty sample P-ATK190 as function of
magnetic field measured at T = 50 mK and VBG = −40 V. The longitudinal resistance shows Shubnikov-
de Haas oscillations at comparably low fields, indicating high mobility of the electrons. Plateaus in the
transverse resistance may indicate the occurrence of the Quantum Hall Effect.

these samples using the dilution refrigerator, clear Shubnikov-de Haas oscillations were observed
in the longitudinal resistance. In addition, plateaus were observed in the transverse resistance.
Exemplary data from one of these samples, P-ATK190, is shown in Fig. 6.8. Hall resistance
plateaus are a signature of the Quantum Hall Effect. However, the resistance plateaus of the
Quantum Hall Effect are expected to occur at well defined resistance values RH = h

νe2
= RK

ν ,
where ν is the integer filling factor and RK ≈ 25.8 kΩ is the quantum of resistance (von-Klitzing
constant). The Hall resistance plateaus shown in Fig. 6.8 do not occur at resistance values
corresponding to integer ν. In addition, unlike in the Quantum Hall Effect, the longitudinal
resistance does not drop to zero at the magnetic fields where plateaus appear in the transverse
resistance. High mobilities and anomalous Quantum-Hall-like oscillations have been reported
previously in a SrTiO3-amorphous LaAlO3 system [114].

Plotting the longitudinal resistance over 1/H in Fig. 6.9 shows oscillations at multiple
frequencies, indicating that multiple bands participate in conductivity, which may also be an
explanation for the non-standard Hall plateaus. Shubnikov-de Haas oscillations at multiple
frequencies have previously also been detected in doped SrTiO3, where they are also attributed
to conductivity in multiple bands [40, 44]. It is remarkable that multiple bands are populated
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Figure 6.9: The longitudinal resistance Rxx of Sample P-ATK190 from Fig. 6.8 measured at T =
50 mK and VBG = −40 V plotted over 1/H. The occurrence of multiple oscillation frequencies indicates
conductivity by more than one band.

in this section of the phase diagram, which corresponds to low carrier densities.

6.2 Measurement of the Berezinski-Kosterlitz-Thouless
transition

A signature of the BKT transition in a two-dimensional superconductor is the change of the
exponent of the current-voltage characteristics from V ∝ I3 for T <TBKT to V ∝ I for T >TBKT

as presented in section 2.2.2. This signature of the BKT transition has already been measured
in the LaAlO3–SrTiO3 interface, e.g., by Reyren et al. [55]. However, these measurements
were performed only without a back-gate voltage, i.e., approximately in the center of the
superconducting dome. One of the questions which motivated the work in this thesis was
how the BKT transition would evolve as the 2DES is tuned across its SIT, in particular, if
the BKT transition would still be observable in the underdoped and insulating parts of the
phase diagram. The observation of a superconducting effect such as the BKT transition in an
insulator could be an indication for the existence of pre-formed pairs or a superinsulating phase.
If a superinsulating phase exists as the dual partner of superconductivity on the opposite side
of the SIT, the characteristic signature of the BKT transition should be inverted in such a
phase, i.e., I ∝ V 3 [15, 16]. In addition, a motivation of the work in this thesis was to combine
measurements of I − V characteristics with tunneling spectroscopy in order to simultaneously
observe the evolution of the BKT transition and the superconducting gap.

Once an optimized sample which was both switchable and superconducting had been
obtained with sample 035, measurements of the I − V characteristics at different gate voltages
were undertaken. Results of these measurements are shown in Fig. 6.10. The I − V curves
are nonlinear, indicating superconductivity, even at negative gate voltages for which the sheet
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resistance is orders of magnitude higher than at 0 V. However, the curves exhibit several jumps
and “wiggles”, which are attributed to intrinsic heating effects. These make it impossible to
reliably determine the two linear regions of the curve in the double logarithmic plot and hence
the BKT transition temperature can not be reliably determined from the data. The heating
problem is twofold: On the one hand it is a known intrinsic problem when measuring BKT
signatures: As soon as current transport is no longer fully lossless, resistive heating sets in
and accelerates the transition process [17]. On the other hand, another problem lies with the
geometry of the circular junction: Fig. 6.11 shows the the distribution of a constant current
flowing from the inner to the outer ring. Because the diameter of each ring segment increases
as one goes from the inside to the outside, the current density decreases. This implies that
the same total current corresponds to different local current densities depending on the radial
position r. If the current is swept with the intent to measure I − V characteristics, the critical
current density will first be reached at the edge of the inner electrode. Once this part of
the 2DES is no longer superconducting, it will cause additional heating, which then destroys
superconductivity in the adjacent regions, triggering a cascade of further heating. It is clear
that this cascade obscures the true superconducting-to-normal transition.

In order to avoid the shortcomings of the circular junction design, a number of samples
were grown in the tunnel junction designs with patterned electron system described in section
3.2.4. In these designs, current flows in a well-defined path without constrictions, therefore the
effect of heating is expected to be limited. In addition, the Hall-bar structure of the electron
system allows determination of the carrier density and mobility of the 2DES. However, since
none of the patterned samples grown in this design were superconducting, the BKT transition
could not be measured.

It was therefore necessary to measure in a sample geometry which neither contained
constrictions of the current, nor a patterned electron system. For this purpose, the van der
Pauw sample design described in section 3.2.2 was employed, and 10 samples were grown in this
geometry. I −V measurements on sample 058 in van der Pauw geometry at a back-gate voltage
of 0 V showed clear superconducting nonlinearities, however it was not possible to deplete this
sample to the insulating state. Therefore, it was not possible to measure the BKT transition
across the phase diagram.

In conclusion, it was not possible to measure a clear BKT transition signature at different
regions of the phase diagram in any of the approximately fifty samples which were analyzed.
Reasons were the intrinsic difficulty to measure a BKT transition without heating artifacts,
deficiencies in the sample design, detrimental effects of electron system patterning and changes
in the PLD chamber which obstructed finding a set of growth parameters for the growth of
simultaneously superconducting and gate-tunable samples.

6.3 Resistance anomaly in the superconducting transition

In a number of samples, measuring the dependence of resistance on temperature and magnetic
field revealed a plateau of increased resistance at values of T or H just above the superconducting
transition. Exemplary data from sample 035 is shown in Fig. 6.12. As the gate voltage is
increased to positive values and carriers are accumulated at the interface, a plateau of higher
resistance than the normal-state resistance appears between the normal-conducting region at
high temperatures and the onset of the superconducting transition. This effect is observable
both in measurements of R(T ) (Fig. 6.12 (a)) and R(H) (Fig. 6.12 (b)). When sweeping the
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Figure 6.10: I−V -characteristics of sample 035 at different temperatures in linear and double logarithmic
plots. (a) Plot on linear scale, with superconducting characteristics clearly visible in the low-temperature
curves. (b) and (c) Plots in logarithmic scale. A change in slope, indicating a change in the exponent of
the power law and consequently a BKT transition, is visible. However, the curves exhibit several jumps
and “wiggles”, which are attributed to intrinsic heating effects which obscure the true BKT transition.
(b) Data recorded at VBG =0 V (c) Data recorded at VBG =−300 V. Even though the sheet resistance of
the sample is approximately 10 kΩ for this back-gate voltage, superconducting nonlinearities can still
clearly be seen in the I − V characteristics.
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Figure 6.11: Illustration of the current distribution in a circular junction device. Since the current
density j is higher at the inner ring than at the outer ring, the critical current density jc is exceeded
earlier for smaller radii r. This leads to heating of the electron system from the inside to the outside,
which obscures the BKT transition.

magnetic field at a temperature which corresponds to the plateau region, a state with increased
resistance is found for low magnetic fields at high positive gate voltages (Fig. 6.12 (c)). This
effect is most likely not caused by geometrical issues, because it was observed in a number of
devices of different sizes and shapes.

Tunneling spectroscopy reveals that in the temperature range in which the plateau is
observed, a superconducting gap exists in the density of states, even though the sheet resistance
measured in transport is still finite. The width of the superconducting gap ∆ as a function
of temperature for different gate voltages in sample 035 is plotted in Fig. 6.13 (a) and the
quasiparticle-lifetime parameter Γ in Fig. 6.13 (b). The value of ∆ is finite in the relevant
temperature range of 100 mK to 200 mK, with a high value of Γ .

A trivial explanation for the observed effects would be an imperfection of the four-wire
measurement due to incomplete separation of the electrodes. If the 2DES around the voltage
electrode becomes superconducting before the 2DES around the current electrode, a small
contact between current and voltage electrode is enough to reroute the current from the current
electrode through the voltage electrode. In this case, there will be an increased voltage drop
due to the contact resistance between electrode and 2DES and an increased voltage will be
recorded. This scenario is conceivable in the circular junction geometry, where the current
electrodes and voltage probes are very close together. However, the resistance anomaly was
also observed in samples in van der Pauw geometry, where the separation between the voltage
and current electrodes is on the order of millimeters and a short is unlikely.

In a superconductor-insulator transition it is expected that the slope of R(T ) changes from
positive to negative as the electron system changes from superconductor to insulator [11, 79,
115]. Therefore, the increase in resistance before the transition can be regarded as the signature
of an incipient SIT, which is supported by the evidence of finite ∆ in this region. It can also
indicate the suppressed onset of a superinsulating phase, where the Cooper pairs are localized
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as described in section 2.2.3. However, it is not clear why the transition to an insulator should
occur at positive back-gate voltage, corresponding to carrier accumulation and low normal-state
resistance, and not at negative back-gate voltage corresponding to carrier depletion.

6.4 Superconducting transistor

The 2DEL at the LaAlO3–SrTiO3-interface is the only known superconductor which can be
tuned from superconducting to insulating by the application of a gate voltage on short timescales.
In this section, investigations are described on whether it is possible to use this functionality to
construct a superconducting transistor with the superconducting 2DEL acting as the channel.
A superconducting transistor would be superior to a normal-conducting transistor mainly in
three aspects: First, the superconductor can support a large on-current at very low (ideally
zero) voltage. Second, because superconducting current is lossless and dissipates no heat in
the ON-state, an large number of superconducting transistors could be placed close together
without causing overheating of the array. Third, because charge carriers in a superconductor are
Cooper pairs instead of single electrons, the sub-threshold swing (Eq. 2.37) of a superconducting
transistor should be reduced with respect to the normal state, resulting in a significant increase
in switching speed. Certainly, a transistor operating at millikelvin temperatures is not suitable
for broad applications, but it will allow an insight into the specifics of the SIT.

Experiments on topgated superconducting LaAlO3–SrTiO3-samples have already been
performed [116, 117], but a comprehensive study of superconducting transistor transfer charac-
teristics has not yet been published. In order to obtain superconducting transistors, initially
several attempts were made to measure transistor characteristics in samples with conducting
channels defined by patterning of the 2DEL (specifically the patterned junction, transistor
and transistor-Hall-bar designs). However, it became apparent that patterning of the 2DEL is
detrimental to superconductivity and hence no superconducting properties could be investigated
on these samples.

In order to overcome these challenges, the superconducting transistor device design (section
3.2.3) was developed, which requires no patterning of the electron system. In this device design
it was possible to measure the transistor characteristics of a superconducting channel. However,
cutting the edges of the top gate electrode with a wiresaw makes the barrier between gate and
channel permeable to electrons in this part. This significantly reduces the accessible topgate
voltage ranges, making it difficult to tune a sample across the entire phase diagram. In sample
070, which was the source of the results shown below, it was not possible to access topgate
voltages VG below −0.45 V or above 1.6 V due to high gate leakage. In addition, the large size
of the sample channel makes it more likely that inhomogeneities of the 2DEL compromise the
measurement, as evidenced by the humps in the transfer curves measured on sample 070. In
this sample, a finite resistance remained even at the base temperature of the cryostat, which is
beneficial for transistor measurements.

Measurements on this sample showed that the SIT induced by the topgate is not a direct
transition from superconductor to insulator, but that there is an intermediate metallic state
between the two phases in which the electron density is too small for effective pairing, but large
enough to facilitate normal-state conductivity. This intermediate metallic state had already
been known from the back-gate transition [58], but its discovery in the top-gated transition is
new.
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Figure 6.12: Plateau with increased resistance observed at temperatures and magnetic fields directly above
the superconducting transition in sample 035. (a) Superconducting transition in R(T )-measurements.
(b) Superconducting transition in R(H)-measurements. (c) Sweeps of the magnetic field at T =150 mK.
In both (a) and (b), a plateau of increased resistance is present between the normal state and the onset
of superconductivity. In (c), sweeping the magnetic field at a temperature corresponding to the plateau
region reveals an increase in resistance at low magnetic fields and positive gate voltage.
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Figure 6.13: Superconducting parameters as a function of temperature for different back-gate voltages.
(a) Superconducting gap width ∆. (b) Quasiparticle-lifetime parameter Γ.

The intermediate metallic state is evident from the data in Fig. 6.14: Fig. 6.14 (a) shows
source-drain characteristics of the transistor without back-gate or magnetic field measured in
four-wire mode. The channel has finite resistance, but the presence of superconductivity is
evidenced by a change in slope from low current below the critical current to high current. The
superconducting kink in the current-voltage curves gets weaker when the topgate voltage is
reduced and has disappeared at the lowest accessible topgate voltage of −0.45 V. However, the
conductivity of the channel is still well measurable for this topgate voltage. Fig. 6.14 (b) shows
transfer curves at a back-gate voltage of −10 V with and without applied magnetic field. For
positive topgate voltage, the sample is superconducting for H =0 T but not for H =2 T, hence
the H =0 T-curve has a higher conductivity. However, as the topgate voltage is decreased,
superconductivity disappears while the normal-state conductance is still appreciable and the
two curves fall on top of each other.

The results shown here indicate that a transistor built from the superconducting 2DEL at
the LaAlO3–SrTiO3-interface would not feature lower sub-threshold swings than a geometrically
identical transistor made from a non-superconducting material. This is because, going from
positive to negative topgate voltages, superconductivity disappears before conductivity and
hence in the relevant sub-threshold region, superconducting pairing no longer plays a role.

Nonetheless, a superconducting LaAlO3–SrTiO3 transistor would still be advantageous in
terms of high current flow at low voltages and low power dissipation, since current in transistors
in the on-state is lossless when the 2DEL is fully superconducting.
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Figure 6.14: Superconducting switching characteristics of transistor T2 on sample 070. (a) Source-drain
characteristics for different topgate voltages VG without magnetic field or back-gate. (b) Transfer curves
at back-gate voltage VBG = −10 V, with and without applied magnetic field.
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IN-GAP STATES IN
SUPERCONDUCTING
LaAlO3 - SrTiO3 INTERFACES 7
While most of the tunnel spectra observed on the superconducting samples investigated in
the present thesis showed standard lifetime-broadened superconducting gaps, on some samples
(011 and T41), states inside the superconducting gap were observed. These states depend
upon the thermal-cycling history of the samples and the applied backgate voltage. The states
consist of a peak at zero energy and other peaks at finite energies, symmetrically placed around
zero energy. These peaks disappear, together with the superconducting gap, with increasing
temperature and magnetic field. Below, the likelihood of various physical mechanisms that are
known to cause in-gap states in superconductors are discussed and it is found that none of
these mechanisms can easily explain the results. The conceivable scenarios are the formation of
Majorana bound states, Andreev bound states, or the presence of an odd-frequency spin triplet
component in the superconducting order parameter.

The data and analysis presented in this chapter were published in [118]. Sample 011 was
grown and measured by the author of this thesis. Sample T41 was grown and measured
by Christoph Richter. The data analysis was performed by the author of this thesis. The
manuscript of Ref. [118], on which this chapter is based, was written in collaboration between
the author of this thesis, Christoph Richter, Narayan Mohanta, Thilo Kopp, Arno Kampf,
Jochen Mannhart and Hans Boschker.

7.1 Introduction

Superconductors are characterized by the opening of a gap in the quasiparticle spectrum at
the Fermi energy. The presence of states inside this gap indicates physics beyond conventional
superconducting behavior and is, therefore, an exciting topic in science [119–142]. There are
different mechanisms that can cause a finite spectral density inside the superconducting gap.
For example, for nodal superconductors, only a part of the Fermi surface is gapped, resulting in
a smooth variation of the density of quasi-particle states as a function of energy inside the gap.
In some cases, however, a peak in the spectral density is present at zero energy, or multiple
peaks are present at finite energies. These peaks can be caused by, for example, Andreev bound
states at interfaces between unconventional superconductors and normal metals [122–128], an
odd-frequency spin triplet component of the superconducting order parameter [129–132], the
solid-state analog of Majorana fermions [133–137], and by bound states due to the presence
of magnetic impurities [138–141]. Zero bias anomalies also frequently appear in tunneling
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studies on high-temperature cuprate superconductors [142].The study of the in-gap states gives
crucial information about the pairing symmetry of a superconductor. Here, the presence of
quasiparticle states inside the superconducting gap of the two-dimensional LaAlO3–SrTiO3

interface superconductor is reported.
In previous works of our group, tunneling measurements on LaAlO3–SrTiO3 interfaces

were performed, allowing measurements of the superconducting gap, map the corresponding
phase diagram [57, 58], and to identify electron-phonon coupling as a likely origin of the
superconductivity [25]. Almost all LaAlO3–SrTiO3 tunneling samples investigated exhibit
superconducting gap spectra with the expected BCS density of states consisting of a full
gap and coherence peaks. In some cases, however, spectra were observed which exhibited
distinct peaks inside the superconducting gap. The in-gap features appear and disappear
non-deterministically upon different thermal cycles and gate-voltage sweeps. This chapter
describes the structure and occurrence of these features and discusses the most likely scenarios
of their origin.

7.2 In-gap states observed in tunneling spectroscopy

An overview is given over a selection of various in-gap states that can be observed in supercon-
ducting tunnel junctions and their origins and properties are briefly explained In the case of
a superconducting system with multiple gaps, all states at energies smaller than the largest
superconducting gap in the system are referred to as in-gap states. These states are summarized
in Table 7.1.

First, in-gap states which may appear in systems with a single superconducting gap are
described. Combinations of single-gap states may also occur in systems with multiple gaps.

Kondo resonance

The Kondo effect [143] introduces a resonance at magnetic impurities, e.g., in tunneling processes
through quantum dots [162]. The resonance effect is observable as a peak in conductivity. The
peak appears usually at zero voltage bias, but can also be generated at finite voltage bias [163].
Kondo resonances do not require superconductivity and, therefore, the in-gap states which
originate from this mechanism do not in general disappear upon a superconducting transition.
In the presence of an external magnetic field, the zero-bias peak splits by an amount equal to
the Zeeman energy of the magnetic field. The splitting of the side peaks varies linearly with
magnetic field [164]. With increasing temperature, there is a reduction and broadening of the
Kondo resonance [165].

Anderson-Appelbaum states

In the early 1960s, a zero-bias anomaly was observed in tunneling experiments in p-n junc-
tions [119, 166] and in tunnel junctions composed of normal metals separated by oxide bar-
riers [167]. It was found that the zero-bias conductance peak varies logarithmically with
temperature and, thereafter, this zero-bias anomaly was also known, in the literature, as
the logarithmic anomaly. Anderson [144] and Appelbaum [145, 146] showed that magnetic
impurities located inside the tunneling barrier close to the electrodes can participate in an
exchange interaction with the tunneling electrons, resulting in the zero-bias anomaly. The
characteristics of these states are similar to those generated by the Kondo resonance.
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Table 7.1: A compilation of mechanisms that can produce in-gap states in tunnel spectra of SCs. For
more detailed information and additional references, see Sec. 7.2. The left column denotes the names
and origins of the phenomena and the right column describes their properties. This part of the table
describes states observable in systems with a single superconducting gap, whereas the second part
describes states due to the presence of multiple superconducting gaps. Combinations of single-gap
states may also occur in systems with multiple gaps. Note that many of the mechanisms listed here are
interdependent. Their relation to one another is further discussed in Sec 7.2.

Name
Properties

Origin

Systems with a single superconducting gap

Kondo resonance [143] • Resonance effects observable as peaks in conductivity.
• Zero-bias peak splits in a finite magnetic field.
• Side-peak separation varies linearly with external magnetic field.
• Does not require superconductivity.

Resonance at magnetic impurities lo-
cated inside the conducting host.

Anderson-Appelbaum states[144–
146] • Similar to Kondo resonance (see above).

Interaction between electrons and mag-
netic impurities inside the barrier.

Impurity states • Decrease of conductivity at zero bias (barrier states) [147].
• Increase of conductivity at zero bias (surface states) [148].
• In-gap states are particle-hole asymmetric.

Tunneling via intermediate impurity
states in barrier or surface.

Caroli-de Gennes-Matricon states
[149] • States below the gap energy.

• Bound states which are localized at the core of vortices.
• Comparable to Andreev Bound states (see below).Andreev reflection at a vortex core.

Yu-Shiba-Rusinov states [138–140] • Paired peaks symmetric around zero energy.
• States are localized at the impurity sites.
• Peak positions move with varying magnetic field [141].

Bound states due to magnetic impuri-
ties in SC.

Majorana bound states [133, 134] • Zero-energy bound state for well-separated Majoranas.
• Paired states at finite energies for interacting Majoranas [137,

150, 151].
• Located at defects at which the SC gap closes.
• Conductance peak height quantized in units of 2e2/h for specific

situations.

Emergent states at the boundary of
topological superconductors.

Andreev Bound states[128] • For non-s-wave NS junction: peak at zero energy.
• For SNS junction: peaks at finite energies, depending on the

phase difference between the SCs.
Successive Andreev reflections at NS-
interfaces.
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Table 7.1: (continued) This part part of the table describes in-gap states due to systems with multiple
superconducting gaps.

Name
Properties

Origin

Systems with multiple superconducting gaps

Josephson junction characteristics
• Gap of size ∆1 + ∆2.
• Peaks inside the larger gap at the gap difference ±|∆1 −∆2|.Tunneling from SC1 to SC2.

Multiband Superconductivity[42]
• Two gaps inside one another.
• Two pairs of coherence peaks.

SC pairing in multiple bands.

Order-parameter admixtures
• Two pairs of coherence peaks in density of states if multiple order

parameters are present.
• Example 1: p-wave spin-triplet pairing [135, 152–156]
• Example 2: Odd-frequency spin triplet pairing [129–132, 157–161]

Unconventional order parameter sym-
metry.

Barrier and surface impurities

In tunnel junctions with a thick barrier, in which the probability for direct tunneling from one
electrode to the other is small, impurity states enclosed in the barrier provide an alternative
pathway for tunneling. In this case, electrons can tunnel via an intermediate state localized
on the impurity state. Due to the finite capacitance of the particle, a minimum charging
energy is required to add an electron to it. Such junctions show, therefore, a suppression in
conductance around zero voltage bias [147]. Localized states due to imperfections of the surface
of a superconductor may facilitate bound states at low energy, causing peaks in the conductance
around zero voltage bias [148].

Caroli-de Gennes-Matricon states

The electron system in the core of an Abrikosov vortex in a type-II superconductor can host
localized fermionic bound states which are populated at energies smaller than the supercon-
ducting gap energy [149]. The origin of this effect can be regarded as a specific form of Andreev
reflection (see below), since a vortex core is a normal metal confined in a superconductor.

Yu-Shiba-Rusinov states

Based on Abrikosov-Gorkov theory [168], Yu [138], Shiba [139] and Rusinov [140] showed that
magnetic impurities can facilitate bound states inside the superconducting gap. Tunneling
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measurements revealing such states were performed early [169], and it was possible to resolve
the contribution of individual impurity atoms on a Nb surface by scanning tunneling spec-
troscopy [170–172]. Yu-Shiba-Rusinov (YSR) states always appear in pairs symmetrically
around zero energy and move to higher energy with increasing magnetic field [141]. For a review
on impurity states in superconductors, see, e.g., Ref. [173].

Majorana bound states

Majorana fermions are particles which are their own antiparticles. While it is not yet clear
whether elementary Majorana particles exist, there is growing evidence that collective states
with Majorana-like properties can be created in solid-state systems [136, 174]. Superconductors
are the primary candidate to host such Majorana states, since Bogoliubov quasiparticles, the
elementary excitations of a superconductor, are particle-hole symmetric and can indeed be
described using Majorana’s original equations [175]. Since a pair of Majoranas constitutes a
Dirac fermion, the challenge is to create unpaired or spatially separated Majoranas. The two
most common proposals to achieve this goal are either to combine a superconductor with a
material with strong spin-orbit coupling (e.g., a topological insulator) [134, 136, 176] or to
create a ferromagnetic chain at the surface of a superconductor [133, 174]. In these cases,
topological superconductivity is induced and isolated Majorana zero modes emerge at the edges
of one-dimensional sample structures. If the two Majorana pair partners are well-separated,
Majorana bound states (MBS) are observed at zero energy, where superconducting quasiparticles
are electron-hole symmetric. However, if the wavefunctions of the two pair partners overlap, a
level splitting to finite energies can occur [137, 150, 151]. In the limit of zero temperature and
ballistic conductance, the height of the zero-bias peak generated by MBS is quantized in units
of 2e2/h. Reviews of the research on MBS in solid-state and other systems can be found, e.g.,
in Refs. [137, 177, 178].

Andreev bound states

Andreev reflections can facilitate bound states at zero energy in normal metal–superconductor
(NS) junctions if the pairing symmetry of the superconductor is non s-wave [122–128]. Andreev
bound states (ABS) also appear in SNS junctions, irrespective of the pairing symmetry [120,
179–181]. It has been reported that ABS can also be generated at a SC-vacuum interface
without any normal metal [182, 183]. The ABS in SNS-junctions is located at zero bias if there
is a phase difference of π between the two superconductors. For other phase differences, it
consists of two peaks at finite energies [123, 126]. The peak height of these bound states may
exceed the normal-state conductance. A zero-bias peak generated by an Andreev bound state
is expected to split upon the application of magnetic field [184]. Andreev processes require
sufficiently good conductance between the superconductor and the normal metal, usually a
NS-contact without insulating barrier.

Now in-gap states which are due to the presence of multiple superconducting gaps are
described.

SIS tunneling

The tunnel spectra observed in junctions of two superconductors separated by an insulating
barrier show gaps of ∆1 + ∆2, where ∆1 and ∆2 are the gaps in the spectra of the two
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superconductors. At zero bias, a DC Cooper-pair current is observable, which depends on the
relative phase of the two superconductors according to the first Josephson effect [185, 186]. At
finite temperatures, a tunneling current flows at bias voltage equal to ±|∆1 −∆2|.

Multiband superconductivity

If two bands of a material participate in superconductivity, tunneling spectra can reveal a
double gap structure with two sets of coherence peaks corresponding to the two separate pairing
strengths. The coherence peaks of the band with smaller gap width will appear inside the gap
of the band with larger pairing strength [42]. In contrast to SIS-tunneling, the double gap of a
multiband superconductor does not show a Josephson-current peak at zero bias.

Order-parameter admixtures

Systems in which superconducting pairing occurs with a combination of different order param-
eters show multiple gaps with multiple coherence peaks. Examples for such unconventional
order parameter pairing are p-wave spin-triplet pairing or odd-frequency spin-triplet pairing.

p-wave spin-triplet pairing has been reported to occur, e.g., in Sr2RuO4 [152, 153], in
heavy-fermion superconductors [154], in combinations of superconductors with nanowires with
strong spin-orbit coupling [135], or in two-dimensional superconductors without inversion
symmetry due to the resulting Rashba spin-orbit coupling [155, 156]. In this case, the fractions
of conventional s-wave pairing and p-wave pairing depend, e.g., on the strength of the spin-orbit
coupling [155]. If both p and s-wave-pairing are present in the superconductor, the coherence
peaks due to one pairing symmetry can appear as peaks inside the gap due to the other pairing
symmetry.

At superconductor–ferromagnet (SF) interfaces, a long-range proximity effect can induce
odd-frequency spin-triplet superconductivity in the ferromagnet if magnetic disorder is present
[157, 158]. This proximity-coupled superconductivity exhibits an odd-frequency, s-wave, spin-
triplet component of the superconducting order parameter which generates in-gap peaks in
tunnel spectra. The peaks appear at either finite or zero energy, depending on the relative
thicknesses of the ferromagnetic and superconducting layers and on the magnetic disorder of
the magnetic layer [129–132, 159–161].

Having discussed a number of effects which can cause states inside the superconducting gap
in tunnel spectra, now the experimental observations will be described.

7.3 Experiments

The in-gap states were measured in two different samples, 011, which was of the circular junction
design described in section 3.2.1 and T41, which was of an older junction design. The samples
were grown according to the procedure described in 3.1, 011 in Stuttgart and T41 in Augsburg.

Tunneling measurements were performed in 4-point configuration using a Keithley 6430
Femtoamp Sourcemeter as current source and a Keithley 2001 or Keithley 2812 nanovolt meter.
The polarity was such that a positive bias corresponds to electrons tunneling from the 2DEL
into the gold electrode.

The shape of the superconducting gap observed in the tunneling spectra of LaAlO3–SrTiO3-
interfaces follows the one of a standard s-wave BCS superconductor taking into account finite
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Figure 7.1: A typical tunneling spectrum of sample 011 from the first measurement run without in-gap
features measured at base temperature of the cryostat (50 mK). The Dynes fit [187] used to extract the
gap width ∆ and quasiparticle lifetime parameter Γ is shown in addition to the data. The deviation
between data and fit around zero bias is attributed to a minor Altshuler-Aronov offset [121]. ©(2017)
APS.

quasiparticle lifetime [187] (Fig. 7.1). The small deviation between data and fit around zero
bias is attributed to a Altshuler-Aronov correction [121]. However, in some samples and in
some measurement runs, distinct in-gap features were observed inside the superconducting
gap. These features are observable regardless of the sweep direction or sweep rate of the
measurement. The in-gap features appear or disappear between different measurement runs,
i.e., after a thermal cycle to room temperature: On sample 011, in the first measurement run,
standard tunneling spectra were observed on both of the tunnel junctions which had been
connected (Fig. 7.1). After a thermal cycle to room temperature, both devices showed in-gap
features such as shown in Fig. 7.2 (a) and (b). Normal-state conductance differs between the
data in Figs. 7.1 and 7.2 (a)-(c). This data was obtained in two different tunnel junctions (on
the same substrate) of different size. Tunnel spectra without in-gap features were measured in
both tunnel junctions in the first measurement run, and tunnel spectra with in-gap features
were measured in both tunnel junctions in the second measurement run. Here, the spectra with
the highest data resolution are shown. In a number of subsequent warming and cooling cycles,
in-gap features of varying strength were observed in this sample (Fig. 7.2 (c)). On sample
T41, in the first measurement run the in-gap features shown in Fig. 7.2 (d) were observed after
saturating the sample with charge carriers at high positive backgate voltage and then returning
to zero backgate. The in-gap features were not observed in subsequent measurement runs on
sample T41. It is not clear why only specific samples show these anomalies and others do not.
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Figure 7.2: Tunneling spectra of samples 011 and T41 illustrating the emergence of in-gap features:
(a) Evolution of in-gap features in sample 011 with temperature (b) Evolution of in-gap features in
sample 011 with magnetic field (c) Evolution of in-gap features in sample 011 with back-gate voltage,
data measured in a different measurement run than (a) and (b). (d) Evolution of in-gap features in
sample T41 with backgate voltage. In-gap features in (a) and (b) consist of a strong peak at zero
bias and smaller peaks on either side inside the superconducting gap. In-gap features in (c) and (d)
appear less systematic, but can be seen to be qualitatively similar to those of the other measurements
when a different distribution of spectral weight between central and side peaks is assumed. Curves are
vertically shifted for visibility by 1 µS for (a)-(c) and by 200 µS for (d), respectively. The conductivity
is calculated by numerical differentiation with adaptive smoothing which does not change the in-gap
feature characteristics. Negative backgate voltage corresponds to depletion of the interface, whereas
positive backgate voltage corresponds to carrier accumulation. ©(2017) APS.
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7.4 Results

The in-gap features are shown in Fig. 7.2 for two different samples grown in two different PLD
systems. Fig. 7.2 (a) shows tunnel spectra of sample 011 as a function of temperature, Fig.
7.2 (b) shows spectra of sample 011 as a function of magnetic field, Fig. 7.2 (c) shows spectra
of sample 011 from a different measurement run as a function of back-gate voltage and Fig.
7.2 (d) shows spectra from sample T41 as a function of back-gate voltage. The in-gap-features
observed in Fig. 7.2 (a) and (b) consist of a strong peak at zero bias and two smaller peaks,
one at either side of the gap. Additionally, the width of the gap is increased compared to
the standard spectra with the smaller peaks appearing at voltage values comparable to those
of the coherence peaks in the standard spectra. The in-gap features disappear at the same
temperature and field scales as the superconducting gap itself, i.e., it is neither possible to
observe the features without the gap, nor the gap without the features. Both the application of
field and temperature suppress the gap and the features, but do not destroy them. Temperature
was increased to 1 K and field to 5 T, after which the features reappeared when returning to
base temperature and zero field. The evolution of the gap and the features is the same for both
polarities of magnetic field, without magnetic hysteresis. The intrinsic charge carrier density of
sample 011 was so high that the 2DEL could not be depleted completely with the gate voltages
accessible in the experiment. Only minor changes of the in-gap states were observed for -300 <
VG < 300 V (Fig. 7.2(c)).

In contrast to sample 011, the spectra of sample T41 depend strongly on the applied gate
voltage. For VG > 10 V, no in-gap states were observed. For VG < 10 V, first a single zero
bias peak is present, then for decreasing VG gradually more peaks appear. The normal-state
conductivity of sample T41 differs from that of sample 011 due to differences in tunnel electrode
size and barrier thickness. At first sight, the tunneling spectra observed in Fig. 7.2 (c) and (d)
appear to be quantitatively different from those observed in Fig. 7.2 (a) and (b). However,
their similarity becomes obvious when a different distribution of spectral weight between the
central and the side peaks is taken into account.

To gain quantitative information on the properties of the observed in-gap-peaks, the fitting
routine illustrated in Fig. 7.3 was performed: For each curve, a lifetime-broadened BCS fit
(Dynes fit) was adjusted to the part of the superconducting gap without peaks to create a
reference curve corresponding to a standard LaAlO3–SrTiO3 gap. Since spectral weight is
shifted from the coherence peaks into the in-gap peaks, the coherence peaks are not described
well by this fit. The Dynes curve was subtracted from the data points to obtain the deviation
from standard superconducting behavior. Three Gaussians were fitted to this subtracted peak
to obtain the position, size and full width at half maximum (FWHM) of the central zero-bias
peak and the separation of the side peaks.

Results of this analysis are shown in Fig. 7.4: The relative peak height (i.e., the difference
between measured the conductivity and the Dynes fit) decreases monotonically with increasing
temperature or magnetic field and disappears at the same values of temperature and field at
which the gap closes. On the other hand, the absolute height (i.e., the measured conductivity
value) of the peak remains almost constant over the entire measurement range close to the
value corresponding to dI/dV outside the gap. Also both the FWHM of the central peak and
the separation of the outer peaks is independent of temperature and magnetic field. Since only
few data points are available for the Dynes fits, the error bars given in Fig. 7.4 are based on the
fit uncertainty: For the optimal fit, the sum of residuals, i.e., of the weighted difference squares
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Figure 7.3: Illustration of the quantitative analysis used to characterize the in-gap peaks: A Dynes
fit to the gap part without peaks is used to calculate the difference between expected and measured
conductivity values. Three Gaussians are fitted to the subtracted peak to determine position, height
and FWHM of the central peak and the separation of the side peaks. The dotted yellow lines indicate
the three single Gaussians and the continuous yellow line indicates the sum of all three Gaussians. Note
that because spectral weight is shifted from the coherence peaks into the in-gap peaks, the coherence
peaks are not described well by the lifetime-broadened BCS fit. The red data points correspond to the
60 mK curve in Fig. 7.2 (a). ©(2017) APS.

between data and fit curve, is minimal. Error bars denote results from fits at the border of the
confidence interval, for which the sum of residuals is twice as large as for the optimal fit.

7.5 Discussion

Origin of the in-gap features

Now the applicability of the phenomena described in section 7.2 to the experimental data is
discussed. Since always either three peaks or no peaks at all are observed, it is conjectured
that all peaks are caused by the same mechanism. Therefore, the discussion concentrates on
those mechanisms which can account for all observed peaks.

Kondo resonance

A strong peak at zero bias can be caused by a Kondo resonance. However, the observed side
peaks cannot be easily explained in a Kondo framework. Also, a zero-bias anomaly caused by
Kondo scattering is expected to split with increasing magnetic field, which is not observed.
Finally, the zero-bias peak in the measurements disappears at the same temperature and
field as the superconducting gap, hinting at an intimate connection between the peak and
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Figure 7.4: Evolution of height and FWHM of the zero bias peak and of the separation of the side peaks
observed in sample 011. In (a) and (b) both the relative height of the peak, i.e., the difference between
data and BCS fit (blue squares), and the absolute size of the peak i.e., the conductivity value at zero
bias in the measured data (red diamonds) are plotted. Error bars indicate values obtained for BCS
fits where the sum of weighted residuals is double that of the optimal fit. Since the absolute height
of the peak depends only marginally on the fit, error bars for the absolute peak are smaller than the
data points (a) Evolution with temperature. (b) Evolution with magnetic field. Whereas the relative
peak height decreases with increasing magnetic field or temperature, the absolute peak height remains
almost constant. In (c) and (d) the evolution of the FHWM of the central peak (blue squares) and
the separation of the side peaks (red diamonds) is plotted. Again, error bars are obtained from data
calculated for BCS fits with twice the minimum residual. (c) Evolution with temperature. (d) Evolution
with magnetic field. Both the FWHM of the central peak and the spacing of the side peaks remain
approximately constant over the field and temperature range in which the superconducting gap can be
observed. Values of the side peak separation are only shown for those curves in which side peaks can
be clearly discerned. The data shown here was obtained from that of Fig. 7.2 (a) and (b) using the
procedure illustrated in Fig. 7.3. ©(2017) APS.
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superconductivity. Therefore, Kondo scattering is unlikely to be the origin of the observed
in-gap features.

Anderson-Appelbaum states

Similarly to Kondo resonances, Anderson-Appelbaum states are not connected to superconduc-
tivity. Also, the side-peak separation does not vary linearly with external magnetic field, as
expected for these states. They are therefore not likely candidates for the origin of the observed
in-gap features.

Barrier and surface impurities

Both the barrier and surface impurity models account only for features at zero bias but cannot
explain the side peaks at finite voltage. Therefore they are unlikely to be the origin of the
observed in-gap features.

Caroli-de Gennes-Matricon states

In the experiment, the peak at zero bias becomes weaker with increasing magnetic field, i.e.,
with an increasing number of vortices. Thus it shows the opposite behavior of that expected
for CdGM-states. Therefore it appears that the CdGM-mechanism is not the origin of the
observed in-gap features.

Yu-Shiba-Rusinov states

YSR states can cause multiple peaks inside the gap of superconductors with magnetic impurities.
However, YSR states always appear in pairs around zero, therefore the single peak at zero
bias shown in Fig. 7.2 would be explicable only as a smeared pair of two YSR states. Such a
smeared peak should broaden as the two constituent peaks move apart with increasing magnetic
field, which is not observed. Also the two peaks on either side remain at the same position
independent of magnetic field, in contrast to the outward movement expected for YSR states.
The range of magnetic fields accessible in our experiment is limited because the critical magnetic
field of the LaAlO3–SrTiO3 samples is small. Therefore, simulations were performed to assure
that the movement of the peak positions should indeed be observable on the magnetic field
scales investigated, if the peaks were due to YSR states. Since neither a broadening of the
central peak nor a movement of the side peaks is observed, YSR states are most likely not the
origin of the observed in-gap features.

Majorana bound states

The zero bias peak observed on sample 011 is of almost constant height as expected for a MBS.
The fixed position of the peak at zero bias is consistent with the hypothesis of MBS, with the
peaks at finite voltage bias possibly indicating Majoranas with overlapping wavefunctions [137,
150, 151]. The LaAlO3–SrTiO3-interface has been suggested as a candidate host for MBS [188],
since it comprises the basic ingredients required for topological superconductivity viz. s-wave
superconductivity, Rashba spin-orbit coupling and magnetism. Depending on the scattering
parameters of the electron system, topological superconductivity and hence MBS may exist
even without magnetism due to unequal signs of the superconducting order parameter in the
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Rashba-split subbands [189, 190]. The appearance of Majorana modes usually requires specific
configurations of the 2DES, e.g., magnetic oxygen vacancies arranged in a linear chain which
is quite unlikely to be readily available at the inhomogenous interface. However, scanning
superconducting quantum interference device (SQUID) measurements provide evidence for
the existence of one-dimensional conducting channels at the domain boundaries of substrate
SrTiO3 [191]. The possibility of MBS as the origin of the in-gap features cannot be ruled out.

Andreev bound states

ABS can generate conductance peaks at zero bias as well as at finite energy, consistent
with the present observations. However, a zero-bias conductance peak caused by an ABS is
expected to split upon increasing the magnetic field, which is not observed. Andreev bound
states usually occur at junctions of superconductors with metals which have sufficiently high
conductivity, whereas in the present samples, gold electrode and superconductor are separated
by an insulating layer. However, the NS contact can be situated within the 2DES, either as
an in-plane combination of normal and superconducting islands or as separate normal and
superconducting layers. The application of gate voltage changes the carrier density and hence
the superconducting volume fraction, changing the number of the ABS.

SIS tunneling

Both the zero bias current and the broadening of the gap to approximately twice the value of
standard LaAlO3–SrTiO3 (cf. Fig. 7.1) can clearly be seen in the data from sample 011. Thus
the tunnel characteristics observed here strongly resemble that of a hypothetical SIS junction,
with the side peaks representing the coherence peaks of the inner gap. However, there is only
one superconducting electrode in the tunnel junction. It is implausible that the superconducting
LaAlO3–SrTiO3 interface induces superconductivity in the gold top electrode through the
insulating LaAlO3 tunneling barrier. Therefore SIS tunneling is an unlikely explanation of the
observed in-gap features.

Multiband superconductivity

The side peaks observed in the tunneling spectra are explicable as the coherence peaks of a
second superconducting band. However, the strong peak at zero bias cannot be explained in
this framework. Also, the coherence peaks of a second gap should move closer together as the
gap closes with increasing magnetic field or temperature, which is not observed. Therefore,
multiband superconductivity is not a likely explanation of our observations.

Order-parameter admixtures

In the LaAlO3–SrTiO3-interface, two forms of unconventional order parameters are concievable:
p-wave spin-triplet pairing due to Rashba spin-orbit coupling and odd-frequency spin-triplet
pairing due to an inhomogeneous ferromagnetic state.

The side peaks observed in the tunneling data are compatible with a double gap, one due
to s-wave pairing and one due to p-wave pairing. The evolution with backgate voltage is also
explicable by the gate-dependence of the Rashba spin-orbit coupling. However, the strong
central peak can not be explained in this framework. Even though several works predict p-wave
superconductivity at the LaAlO3–SrTiO3-interface due to Rashba spin-orbit coupling (e.g.,
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[192]), it is unlikely that the p-wave component is strong enough to cause the observed peaks.
Therefore it is unlikely that the observed in-gap features are caused by p-wave spin-triplet
pairing.

Odd-frequency spin-triplet pairing can account for both the zero bias peak and the side
peaks [132]. It requires an inhomogeneous magnetization at the interface, which in some regions
of the sample generates zero-bias peaks and peaks at finite bias in other regions. Since the
area of the tunnel junctions is larger than the domain size, the peaks from different regions are
observed together in the spectra. However, the gap size for singlet pairing and triplet pairing
is likely to differ and therefore an averaging over triplet and singlet regions should show a
double gap with two pairs of coherence peaks, unless the condensate is always either completely
singlet or completely triplet. Magnetism has been observed to coexist with superconductivity
in LaAlO3–SrTiO3 [59, 60] and it has been shown to be rather superparamagnetic than truly
ferromagnetic in nature [59]. Therefore, the difference between the superparamagnetic domains
could generate an inhomogeneous magnetization if the variation of magnetization between
domains is strong enough.

Another mechanism to generate a mixture of singlet and and triplet pairing is the combination
of a two-dimensional superconductor with broken inversion symmetry (which is the case for the
LaAlO3–SrTiO3-interface) with strong Rashba spin-orbit coupling [155]. Since gate-tunable
Rashba spin-orbit coupling has been reported at the LaAlO3–SrTiO3-interface [52–54], this is
a likely scenario for our observations.

Origin of the dependence on thermal cycling

Finally, some scenarios are discussed which could explain the fact that the in-gap features
are only observed in a small fraction of samples and that they depend on thermal cycling.
A tentative explanation for the appearance and disappearance of sub-gap states may lie in
the domain structure of the SrTiO3 substrate: as the crystal structure changes from cubic
to tetragonal when the crystal is cooled below 105 K, a domain structure forms, which is
randomly different in each measurement run. When the in-gap features are assumed to depend
on a specific domain configuration, then this scenario can also explain why the in-gap features
sometimes disappear irreversibly when sweeping the gate voltage, because the gate voltage
influences the SrTiO3 domain structure [193]. Another possible explanation is that the in-gap
features depend on a specific configuration of defects in the samples, for example oxygen
vacancies. Oxygen vacancies form magnetic centers[194, 195] and could thereby influence the
superconductivity. A number of scenarios are conceivable in which single or multiple magnetic
oxygen vacancies can generate peaks inside the superconducting gap: An isolated magnetic
impurity can generate a Kondo peak. A region of the 2DEL in which superconductivity is
suppressed because of an accumulation of magnetic moments can form Andreev bound states
at its boundary to the surrounding superconductor. Magnetic centers arranged in a line, e.g.at
a SrTiO3 domain boundary, can host Majorana-like modes. Inhomogeneous magnetism can
induce odd-frequency spin-triplet pairing. It is conceivable that the configuration of these
magnetic defects is pinned to the domain structure of the SrTiO3, thus being susceptible to
thermal and gate voltage cycling. Finally, the back-gate voltage also affects the thickness d of
the superconducting sheet, with d increased up to a factor of three in the overdoped region [29].
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7.6 Conclusions

Using tunneling spectroscopy on the two-dimensional superconductor, in-gap features in spectra
of several superconducting LaAlO3–SrTiO3 tunnel devices were observed. The features appear
and disappear non-deterministically between different warming and cooling cycles. The in-gap
features were found not to move with either temperature or magnetic field, yet to change under
the application of back-gate voltage. The real challenge is to disentangle the true origin of these
in-gap features with the limited information available at the buried interfaces. It was possible
to exclude some of the proposed scenarios with relative certainty. However, none of the known
mechanisms that can cause in-gap states easily explains the results. Conceivable scenarios
involve Majorana bound states, Andreev bound states, or the presence of an odd-frequency
spin-triplet component in the superconducting order parameter caused by an inhomogeneous
ferromagnetic state in the electron system.
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On ne découvre pas de terre nouvelle sans consentir à perdre de
vue, d’abord et longtemps, tout rivage.

Andé Gide

CONCLUSIONS AND OUTLOOK 8
8.1 Conclusions

This thesis presents a number of new insights on the versatile 2DES at the LaAlO3–SrTiO3

interface, which will extend the understanding of this two-dimensional electron system and
its superconducting ground state. A specific emphasis of these investigations is on the phase
transitions observable only in two-dimensional superconductors, the SIT and BKT transition.
The appearance of states inside the superconducting gap observed in tunneling spectroscopy
indicates that much is still to be learned about the 2DES at the LaAlO3–SrTiO3 interface.

An important application of a 2DES is a FET. In chapter 4, a new design of FETs using the
LaAlO3–SrTiO3 2DES has been presented. These transistors combine the previous works on
LaAlO3–SrTiO3 transistors [20–22] with the investigations of LaAlO3–SrTiO3 under hydrostatic
pressure [23, 24]. This is the first investigation of oxide transistors under pressure, making a new
axis of the phase diagram accessible. Not only are the results relevant as a confirmation of the
earlier results [23], but they also show that delicate LaAlO3–SrTiO3 devices can be subjected
to such harsh physical conditions as pressures of 1.8 GPa and still retain their functionality.

The second part of chapter 4, describing results on combined transistor-Hall-bars, provides
new insights on the multiband nature of the LaAlO3–SrTiO3 2DES. In particular, by the
analysis of the transistor data, the existence of a band of positive charge carriers which is
often observed inthe Hall data analysis is ruled out. In addition, it demonstrates the respective
merits of transistors on the one hand and Hall-bars on the other hand for the determination of
charge carrier densities and mobilities, a result relevant for any conductive material system.

In chapter 5, the change of the perpendicular critical magnetic field Hc2 of the supercon-
ducting 2DES with temperature is investigated. In contrast to the parabolic curve expected
for a standard BCS superconductor, the temperature dependence of Hc2 is linear down to
the lowest accessible temperature of 50 mK. Several mechanisms exist which can explain
this linear behavior of Hc2(T ), among them multiband superconductivity. However, also the
two-dimensional nature of the 2DES itself is a possible cause for the linear Hc2(T ) curve.
Since in LaAlO3–SrTiO3, as in all other two-dimensional superconductors, the superconducting
transition is broadened, the error margins on Hc2(T ) are large and prohibit a clear distinction
between the different theoretical models.

The extended process of growth optimization described at the beginning of chapter 6
highlights the central challenge when investigating the LaAlO3–SrTiO3 system: Because of a
large number of uncontrollable (and sometimes even unknown) external influences, the properties
of samples which are grown at nominally the same parameters can vary significantly. It is clear
that further advances in the growth process are desirable, particularly for a minimization of
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the influence of the substrate.
The combined analysis of high-magnetic field and tunneling data presented in chapter

6 points to the connection between the onset of multiband conductivity and the demise of
superconductivity in the overdoped region of the LaAlO3–SrTiO3 phase diagram. Here, results
from tunneling and Hall data on the same sample were combined for the first time. It offers an
explanation for the non-BCS behavior observed in the overdoped region, even though the exact
mechanism by which carriers in the second band destroy superconductivity is not yet clear.

The attempts to measure the BKT transition across the range of the LaAlO3–SrTiO3 phase
diagram from superconductor to insulator presented in chapter 6 were not successful due to a
variety of difficulties. The main and most fundamental of these is certainly the heating of the
electron system. It is particularly pronounced at millikelvin temperatures at which systems such
as LaAlO3–SrTiO3 are investigated. At these low temperatures the electron system decouples
from the phonons, which makes effective cooling difficult. Measurements of the BKT transition
in two-dimensional superconducting systems with transition temperatures at liquid helium
temperature or above will provide more reliable results. The crucial question is whether a
system can be found in which superconductivity is so strong that it can exist at sufficiently
high temperatures, yet is weak enough to be tuned by the application of a voltage, ideally
without the need for a liquid electrolyte.

At the end of chapter 6, the design of a superconducting transistor using the LaAlO3–SrTiO3

interface electron system as channel has been presented. The performance of this transistor
is reduced by design limitations, but switching of the channel with a topgate voltage is
demonstrated and the difference between transistor behavior in the normal and superconducting
state is shown. Furthermore, the data show that switching from the superconducting to the
insulating state traverses an intermediate metallic state.

The in-gap states observed in tunneling spectra of the superconducting LaAlO3–SrTiO3

condensate discussed in chapter 7 are exemplary of the many fascinating, yet unexplained
phenomena at the LaAlO3–SrTiO3 interface. While it has not been possible to reach a
definitive conclusion on the nature of these states due to their non-deterministic appearance
and disappearance, by careful analysis of the available data it is possible to exclude some of the
proposed mechanisms with relative certainty. Of the remaining scenarios, many point to the
existence of states with interesting properties at the interface, such as Majorana bound states.

A reccuring theme of this thesis is to disentangle the contribution of multiple bands to
conductivity and superconductivity at the LaAlO3–SrTiO3 interface. The emerging picture is
consistent with that presented in [25]: Even at low carrier density, two sub-bands are occupied,
specifically the low-lying dxy orbital and one of the Rashba-split dxz/yz orbitals. Multiple bands
must be occupied even at low doping because tunneling perpendicular to the interface is only
possible into the energetically higher dxz/yz sub-bands because of momentum conservation, and
a measurable tunneling current is indeed observed for all gate voltages at which the interface
is conducting. This implies that the energetically lower dxy sub-band is also populated. The
multiple frequencies in Shubnikov-de Haas-oscillations presented in Sec. 6.1.2 also give an
indication for conductivity in multiple bands even at low carrier densities.

For higher carrier densities, an additional band is populated as is indicated by the Hall
data presented in Sec. 6.1.1. The carriers in this additional band, the one of the Rashba-split
dxz/yz orbitals that has a higher energy, do not contribute to superconductivity, but instead
lead to a decrease in Tc, possibly due to increased electron-electron scattering. Thus it is clear
from the tunneling data that the lower-lying Rashba-split dxz/yz sub-band is superconducting
and from the Hall data it appears that its higher-lying partner is not. It remains an open
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question whether the dxy sub-band is also superconducting, which could not be resolved by
the investigations of the critical magnetic field discussed in Chapter 5. However, if the dxy

sub-band would also participate in superconductivity, this can be a possible cause of the in-gap
states discussed in chapter 7.

In a different scenario, it is also possible that the dxy sub-band is not conductive at all:
The charge carriers are present, but because the electrons of the dxy sub-band are so close to
the interface, where the defect density is high, they are almost localized [26]. This hypothesis
might explain why the Hall measurements presented in this thesis show single-band behavior at
negative back-gate voltage, why the measured carrier density at the interface is always smaller
than predicted by the polar catastrophe scenario and why photoemission measurements give
higher values for the carrier density than transport measurements [27].

The results presented in this thesis show that the 2DES at the LaAlO3–SrTiO3 interface is
both interesting in terms of applications, because resilient and even superconducting transistors
and tunnel junctions with areas of several square millimeters can be fabricated from it, and
also in terms of basic research, because many new and unconventional phenomena can be
observed in it. However, the difficulties of precise and clean sample growth and measurements
at millikelvin temperatures remain a challenge for the experimenter.

8.2 Outlook

The great advantage of oxide materials which lies in their versatility is also the greatest challenge
for their study and use. The multivalency and complex stoichiometry of oxide materials make
them susceptible to impurities and defects. It can be a daunting task when investigating
oxides to separate the effects due to defects and impurities from the intrinsic properties of the
materials.

The largest source of defects when growing oxide materials is often the substrate, with
SrTiO3 being notorious in this respect. Instead of relying on sub-optimal commercially available
substrates grown by the Verneuil method, Czochralsky-grown substrates of highest purity may
significantly enhance oxide reliability. Furthermore, growth of SrTiO3 buffer layers on the
substrate before LaAlO3 deposition can protect the 2DES from the influence of substrate
impurities. The fine-tuning of the layers close to the 2DES to reduce scattering was success-
fully implemented before, e.g., at GaAs /AlGaAs interfaces [196, 197] or in MgZnO/ZnO
heterostructures [198] and has made exceptionally high charge carrier mobilities possible in
these systems.

Many open questions concerning the superconductivity of the LaAlO3–SrTiO3 2DES still
remain. The most interesting of them may be which of the different conducting bands contribute
to superconductivity. One way to elucidate this question would be measurements of horizontal
tunneling current into the 2DES to resolve the dxy orbitals. Fabrication of horizontal tunneling
junctions is a very challenging task, because the edges have to be controlled very precisely in
order to create a thin, yet defect-free insulating barrier.

Extending the results from chapter 5, careful measurement of the curvature of Hc2(T )
around Tc can also give an indication on the multiband character of superconductivity at the
interface. However, this requires an improvement in measurement precision in order to be able
to unequivocally attribute the data to one of the different predicted behaviors.

In order to improve the resolution of the tunneling spectra observed in co-planar devices,
top electrodes made from superconducting materials instead of gold could be grown. In the case
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of elemental superconductors such as niobium or lead, this task should be fairly straightforward.
Indeed, indium electrodes have been grown on doped SrTiO3 substrates in our laboratory to
form Schottky barriers [105].

Since the experiments on transistors presented in chapter 4 showed that entire LaAlO3–
SrTiO3 devices can be subjected to hydrostatic pressure without breakthrough, a further step
would be to pressurize LaAlO3–SrTiO3 tunnel junctions. The tunneling data obtained from
such junctions will make it possible to measure the phonons of the SrTiO3 substrate as a
function of pressure and possibly shed light on the quantum criticality of the SrTiO3 lattice.

Beyond the LaAlO3–SrTiO3 superconductor, interface superconductivity and two-
dimensional superconductivity in general promise to be interesting topics in the field of
superconductivity in the future. One of the most surprising developments in this field is the
observation of superconductivity of monolayers of FeSe grown on SrTiO3 substrates with critical
temperatures in the range of 60 K, which is significantly higher than the critical temperature of
bulk FeSe [199]. It appears that interface superconductivity and the investigation of supercon-
ducting 2DESs is indeed a promising pathway for the search for superconductors with high
critical temperatures, one of the long-standing ideas being, e.g., to separate the superconducting
charge carriers and their “glue” into separate layers [200]. Since this is only one of the few
possibilities which can be used to custom-tailor interface superconductors, they are equally
fascinating because of their versatility as well as the many unique phenomena which can be
observed in them.
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BCS THEORY A
A superconductor is characterized by two observable properties: The eponymous disappearance
of resistance below a certain critical temperature Tc and the complete expulsion of a magnetic
field up to some critical field Hc. Quantum mechanically, a more fundamental property of the
superconducting condensate is the existence of a macroscopic wavefunction Ψ(r, t) =

√
nSe

iφ

where nS is the superconducting carrier density and φ the macroscopically definite phase.
The following introduction to key concepts of BCS theory is closely based on [67]. Super-

conductivity was experimentally discovered in 1911, but it took until 1957 to find a microscopic
explanation of the phenomenon when Bardeen, Cooper and Schrieffer (BCS) published their
microscopic theory of superconductivity [201]. Its essential ingredient is the formation of pairs
of electrons, which had been proposed shortly before by Leon Cooper, and which have since
become known as Cooper Pairs [202]. Cooper showed that if one considers a filled Fermi sea,
any attractive interaction Vkk′ , however small, between two electrons with momenta k and k′

will facilitate a condensation into a bound ground state. These pairs of electrons have integer
spin, therefore they qualify as Bosons and can condense to energy levels below the filled Fermi
sea into a condensate to which pairs can be added or subtracted without energy cost. This
pairing will be predominantly between electrons of equal and opposite momentum, so that
their total momentum is zero. At the same time the spins of the pairing electrons will be
opposite, since an antisymmetric spin wavefunction implies a symmetric spatial wavefunction
with a higher probabilty of the electrons being near each other. Since we expect this particular
electron-electron interaction to be attractive, a smaller distance between the electrons means
a lowering in energy. In the following calculations, the attractive interaction is modeled by
the very crude approximation that it is a constant V below and zero above a certain cutoff
frequency ωc. Even though this approximation is very simple, it has been very successful for
reasons that will become evident below.

In most standard superconductors, the attrative interaction Vkk′ is due to the interaction of
the electrons with the atomic lattice, or more precisely, with the vibrational excitations of this
lattice, i.e. the phonons. In a very naive picture, one could imagine a first electron polarizing
the (positively charged) atomic lattice, which in turn would attract a second electron. However,
one should not take this simple picture too literally. The two electrons in a Cooper pair have
opposite momenta, so they do not follow one another. Also, Cooper pairs have a large spatial
extent and are highly overlapping. Thus, it is quite misleading to consider individual Cooper
pairs where instead the entirety of the superconducting condensate comprising all pairs has to
be taken into account.

We proceed by constructing the BCS ground state in second quantization. We write ck↑ and

c†k↑ for the single-electron annihilation and creation operators, respectively. The most general
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way to write an N-electron wavefuntion with these operators in pairs is to let them act on the
vacuum state |φ0〉 with weighting coeffcients g(ki, ...kt):

|ΨN 〉 =
∑

g(ki, ...kt)c
†
ki↑c

†
−ki↓...c

†
kt↑c

†
−kt↓ |φ0〉 . (A.1)

For any macroscopic sample this construction has so many combinatorial possibilities that it
is impossible to calculate. Therefore, BCS made the simplifying assumption that the occupancy
of each pair state only depends on the mean field generated by the average of all other states.
Under this condition, the wavefunction factorizes and the ground state can be written in the
form of:

|ΨG〉 =
∏

k=k1...kM

(
uk + vkc

†
k↑c
†
−k↓

)
|φ0〉 , (A.2)

for a state in which M pair states are occupied. |uk|2 and |vk|2 = 1− |uk|2 are the proba-
bilities that a particular pair state with momentum k is unoccupied or occupied, respectively.
We assume uk and vk to be real.

In order to find the ground state for a particular system, the uk and vk have to be calculated.
BCS solved this problem by a variational method, but we will present here Bogoliubuv’s and
Valatins’s more elegant method using canonical transformations [203, 204]. Ignoring all energy
contributions except the chemical potential and the pairing potential, the Hamiltonian containing
those energies relevant for superconductivity is:

H =
∑
kσ

εknkσ +
∑
kl

Vklc
†
k↑c
†
−k↓c−l,↓cl↑ (A.3)

where εk denotes the energy of an electron plane wave with momentum k. The first term
counts this energy for the individual electrons, whereas the second term describes the energy
contribution of scattering a pair (l, −l) into a pair(k, −k).

In a normal conductor, the probabilty to find two electrons with precisely opposite spin
and momentum is very small and when integrating the expectation value of such a pair state,
it vanishes because of phase fluctuations. In a superconductor, on the other hand, these pair
states are very likely to be occupied together and their expectation value is nonzero because
they have a fixed phase relation. Therefore, the pairing operators c−l↓cl↑ and c†k↑c

†
−k↓ in the

Hamiltonian can be approximated by their expectation values bl and b†k. Writing the operators
as expectation value plus the deviation from that expectation value:

c−l↓cl↑ = bl + (c−l↓cl↑ − bl) . (A.4)

We insert this expansion into the Hamiltonian (Eq. A.3) and neglect any terms that are of
higher order than linear in the deviation (the term in parentheses):

H =
∑
kσ

ξkc
†
kσckσ +

∑
kl

Vkl

(
c†k↑c

†
−k↓bl + b†kc−l↓cl↑ − b

†
kbl

)
. (A.5)

We have now reduced the Hamiltonian from a quartic to a bilinear form in the single-electron
operators corresponding to the constituents of a Cooper pair. Also we have written the energies
with respect to the Fermi surface: ξk = εk − EF . This form is called the Model Hamiltonian.
To simplify the Hamiltonian further, we define:
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∆k = −
∑
l

Vklbl, (A.6)

where the corresponding ∆†l is calculated accordingly. This allows us to write the Hamiltonian
slightly differently:

H =
∑
kσ

ξkc
†
kσckσ +

∑
k

∆kc
†
k↑c
†
−k↓ + ∆†kc−k↓ck↑ −∆kb

†
k. (A.7)

To find the simplest form of the Hamiltonian, we wish to find some base of operators in
which it is diagonal, i.e. where there are only terms that are either constant or proportional to
particle occupation numbers. The operators that give diagonal form to the Hamiltonian were
shown to be [203, 204]:

γ†k0 = ukc
†
k↑ − vkc−k↓ (A.8)

γ†k1 = ukc
†
−k↓ + vkck↑. (A.9)

The coefficients uk and vk, satisfying |uk|2 + |vk|2 = 1 are identical to the probabilities uk
and vk which first appeared in Eq . A.2. We now have to find values for these coefficients such
that cross terms between the two operators A.8 and A.9 disappear from the Hamiltonian. This
is the case for

|vk|2 = 1− |uk|2 =
1

2

(
1− ξk

Ek

)
, (A.10)

where

Ek =
(
∆2

k + ξ2
k

) 1
2 . (A.11)

Upon inspection of |vk|2, it becomes evident that it converges quickly towards 1 for ξ < 0
and 0 for ξ > 0. It varies only in the immediate vicinity of the Fermi surface ξ ≈ 0 . Therefore,
the precise behavior of the pairing potential far away from the Fermi surface does not matter,
justifying the very crude approximation given to the pairing potential by Cooper. Having found
the optimal uk and vk finally allows us to write the Hamiltonian in diagonal form:

H =
∑
k

(
ξk − Ek + ∆kb

†
k

)
+
∑
k

Ek

(
γ†k0γk0 + γ†k1γk1

)
. (A.12)

The first sum contains the ground state energy of a superconductor, whereas the second
sum contains the energies of excitations above the superconducting ground state given by the
operators A.8 and A.9. These Quasiparticle Operators and the corresponding Quasiparticle
States which they describe are not intuitively clear. However, they will be very important for
the following discussion of tunneling, therefore we will describe them in some more detail:

Most importantly, a Bogoliubov quasiparticle is neither simply an electron nor a hole, but a
superposition of both. This is possible because the quasiparticle only exists in connection with
a condensate of Cooper pairs. Since these are Bosons, they can be added or subtracted without
energy cost and therefore supply the charge difference of 2e between electron and hole. Indeed,
the number of pairs is not fixed. The operator γ†k0 creates an electron with amplitude uk that
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the pair state k is unoccupied, thus not changing the number of pairs. But with amplitude
uk the pair state is occupied and the operator destroys one of its constituent electrons, thus
destroying the pair.

If we apply the creation operator γ†k0 to a BCS state, we either create an electron with
spin up and momentum k with probability uk or we destroy an electron with spin down and
momentum −k with the probability vk. In either case, the total momentum increases by k and
the spin increases by 1/2. The operator γ†k1 has the opposite effect: It either creates or destroys
an electron, but in either case the total momentum decreases by k and the spin decreases by
1/2.

To illustrate this concept further, consider the quasiparticle creation operator acting on the
BCS ground state. Expanding in single-electron operators, it can be shown by combining Eqs.
A.2 and A.8 that:

γ†k0 |ΨG〉 = c†k↑

∏
l6=k

(
ul + vlc

†
l↑c
†
l↓

)
|ψ0〉 . (A.13)

Before the action of the operator, the pair state with momentum (k, −k)was empty with
probability |uk|2 and occupied by a pair with probability |vk|2. After the action of the operator,
the state with momentum k is occupied by an electron whereas the state with momentum −k
is empty. Whether this corresponds to the creation of an electron or the destruction of one
(one of the pair partners) depends on the initial probabilities of pair occupation.

The |0〉 state for the quasiparticle operators is the BCS ground state |ΨG〉 defined in Eq.
A.2 and not the vacuum state of the single-electron operators |φ0〉. By again expanding the
quasiparticle operators and the ground state in terms of the single-electron operators, it can be
shown that

γk0 |ΨG〉 = γk1 |ΨG〉 = 0. (A.14)

As can be seen from the definition of the quasiparticle energy Eq. A.11, the minimum
energy a quasiparticle can have is |∆k| > 0, i.e. there is an energy gap for excitations from the
Fermi surface.

Since there is a one-to-one correspondence between the quasiparticle operators and the
single-electron operators, the densities of state for the superconducting and the normal state
are related by:

NS(Ek)dEk = Nn(ξk)dξk. (A.15)

In the small energy range around the Fermi surface in which superconducting pairing occurs,
we can consider the density of states of the normal metal to be constant N(ξ) = N(0). Thus:

NS(Ek) =
dn

dEk
=

dn

dξk

dξk
dEk

= N(0)

{
Ek

(E2
k−∆2)(1/2)

(Ek > ∆)

0 (Ek < ∆)
. (A.16)
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Figure A.1: (a) Normalized density of states as a function of energy for a normal metal (blue) and a BCS
superconductor according to Eq. A.16 (red). There is a gap of size ∆ in the superconducting density.
The states from the gap are raised into the coherence peak, so that the total spectral weight is conserved.
(b) Energy of normal state excitations (blue) and superconducting quasiparticle excitations according to
Eq. A.11 (red). The quasiparticles change smoothly from hole-like (ξk < 0) to electron-like(ξk > 0).
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RENORMALIZATION GROUP THEORYB
Renormalization group theory in statistical physics is predominantly used to calculate the
critical exponents of physical systems close to second-order phase transitions. However, it
is also possible to find the entire partition function of a system using this approach. The
underlying idea of the renormalizatuion group is to reduce the complexity of a system (and
consequently to simplify the calculations) by replacing the system under consideration by a
self-similar, but smaller copy of itself, i.e., reducing the number of atoms, spins etc. to be
calculated. This approach is made possible by the fact that for many physical systems, the
laws governing the system at one scale are similar to the laws governing the system at another
scale. The challenge is to find out how one transforms the system from one scale to another, the
“Renormalization Flow”. This appendix is based on a concise, undergraduate level introduction
to the renormalization group in solid state physics, written by pioneers of the field [205].

Following the approach of [205], let us consider the Ising model for illustration. In one
dimension, it is a chain of spins σi with magnitude 1 which can point either up or down. There
is a coupling energy between nearest neighbors of −J when the spins are parallel and +J
when they are antiparallel. To obtain the partition function, one has to sum over all possible
configurations of spins:

Z =
∑

exp

[
J

kBT
(σ1σ2 + σ2σ3 + σ3σ4 + ...)

]
. (B.1)

It is possible to modify the calculation in such a way that it is only necessary to sum
over the odd-numbered spins, effectively reducing the system size by half, by the following
rearrangements. Introducing the coupling strength K = J

kBT
for convenience, we single out

those terms containing σ2 :

Z =
∑

...× eK(σ1σ2+σ2σ3) × ... . (B.2)

The summation of the two possible configurations +1 and −1 of σ2 gives:

Z =
∑

...×
[
eK(σ1+σ3) + e−K(σ1+σ3)

]
× eK(σ3σ4+σ4σ5) × ... . (B.3)

A similar summation is performed over all other spins with even indices, so that only the
sum over the odd indices remains. Now we have obtained a sum over terms of the form

...×
[
eK(σ1+σ3) + e−K(σ1+σ3)

]
× ... . (B.4)

We want to find a function f(K) and a new coupling strength K ′ relating this form to the
original form:
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eK(σ1+σ3) + e−K(σ1+σ3) = f(K)eK
′(σ1σ3). (B.5)

The solutions are

K ′ =
1

2
ln cosh (2K) (B.6)

f(K) = 2 cosh
1
2 (2K) . (B.7)

Therefore, we can write the partition function as:

Z =
∑

...× f(K)eK
′(σ1σ3) × ... . (B.8)

It is now clear that equations B.6 and B.7 relate a system with N spins and coupling
constant K to a system with N/2 spins and coupling constant K ′. Given the partition function
for one particular system, the partition function for another system can be recursively calculated
with these equations. We define a reduced partition function ξ which does not depend on N by
lnZ = ξN . The recursion relation for ξ is:

ξ(K ′) = 2ξ(K)− ln
[
cosh

1
2 (2K)

]
. (B.9)

Since with each iteration more individual spins are combined into one, the assumption is
that each iteration brings us closer to the ”true” macroscopic behavior of the system. Using
Eq. B.6, the value of K decreases with each iteration. In terms of renormalization group
terminology, the renormalization flow is one-directional and the only fixed point is at 0.

Having demonstrated the mechanism of rescaling a system, we now want to apply the
renormalization group to phase transitions. Since the 1D Ising model does not exhibit a phase
transition, we turn to the 2D model.

In the 2D Ising model, each spin has 4 nearest neighbors with which it interacts. Following
a similar course as in the 1D calculations, summation over half of the spins is performed:

Z =
∑

...×
[
eK(σ1σ2σ3σ4) + e−K(σ1σ2σ3σ4)

]
× ... . (B.10)

We would like to relate this new summation to the old form like we did in the 1D model
(Eq. B.6, B.6 and B.8). However, the form of the partition function is more complicated:

Z = f(K)
1
2

∑
exp

(
K1

∑
nn

σpσq +K2

∑
nnn

σpσq +K3

∑
square

σpσqσrσs

)
, (B.11)

with nn denoting summation over nearest neighbors, nnn over next nearest neighbors, and
square around the respective square. f(K), K1 , K2 and K3 are all functions of K. The
decisive difference between Eq. B.8 and Eq. B.11 is that in the 2D case, contributions from
next-nearest neighbors (K2) and even farther away (K3) are taken into account. In order to
obtain the same recursive relations as in the 1D case, it is necessary to make an approximation.
This can be done by setting K3 = 0 and K2 = 0 and replacing K1 by K ′ = K1 +K2. With this
method, we obtain the recursion relations:

K ′ =
3

8
ln cosh(4K) (B.12)
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ξ(K ′) = 2ξ(K)− ln
[
cosh

1
2 (2K) cosh

1
8 (4K)

]
. (B.13)

In the 1D case the renormalization flow was one-directional, i.e., independent of the start
value of K, the iterations would always yield a decrease. In the 2D case the direction of the flow
depends on the starting point. Above a critical point KC , the value of K will continually increase
to infinity. Below KC , K will continually decrease towards 0. This means the renormalization
flow can have two directions, and there are three fixed points: 0, KC and infinity. Remembering
that K = J

kBT
, we can identify K →∞ as J →∞ , i.e. the coupling strength becomes large

and the system is in an ordered phase. Conversely, K → 0 ( J → 0) can be identified as a
disordered phase. KC gives the critical ratio of coupling strength versus temperature of the
transition between the two phases. Furthermore, because the energy of the system can be
calculated from Z as E = kBT lnZ and the specific heat is cV = dE/dT , it is possible to
calculate the singularity in cV which is typical for second-order phase transitions. One obtains
by expansion around the transition:

cV ∝ |1−
T

TC
|−α, (B.14)

with the critical exponent

α = 2− ln 2

ln
[(

dK′

dK

)
K=KC

] . (B.15)

The renormalization group is often used in particle physics, where it is investigated how
a system changes with a change in the energy (or length) scale. In a general form, the
renormalization allows to compute the strength of a coupling parameter g at a scale µ from the
value of g at some other scale M using a function G and a constant d:

g(µ) = G−1

[( µ
M

)d
G (g(M))

]
. (B.16)

One important quantity is the beta function, which gives the differential change of the
coupling strength with scale:

β =
∂g

∂ lnµ
. (B.17)

The renormalization group is usually not a true group in the mathematical sense, because
in many cases information is lost when going from a system of many constitutents to a system
of fewer constitutents and therefore the transformation is not reversible.
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Any sufficiently advanced technology
is indistinguishable from magic.

Arthur C. Clarke

DILUTION REFRIGERATOR C
Since the superconducting transition of the 2DEL at the LaAlO3–SrTiO3 interface occurs at
approximately 300 mK, it is necessary to use a dilution refrigerator to cool the sample to
millikelvin temperatures.

The dilution refrigerator utilizes an anomaly in the phase diagram of liquid Helium isotopes:
Below 870 mK, a mixture of the two stable isotopes 4He and 3He will spontaneously separate
into two phases by an endothermic process, one of which is predominantly composed of 4He
and one consisting mostly of 3He.

The principle of operation of a dilution refrigerator is sketched in Fig. C.1. Beginning from
the top left, a mixture of 3He and 4He is pre-cooled by heat exchange with a 1K-Pot. This is a
reservoir of 4He, which is pumped to reduce the pressure and correspondingly also to depress
the boiling point. Using this method, temperatures as low as approximately 1 K can be reached.

The mixture which has been cooled and liquefied in this manner is cooled further by heat
exchange with the cold mixture flowing upwards from the mixing chamber. In this way a
temperature below the phase separation threshold at 870 mK can be reached. Therefore, in
the mixing chamber the mixture separates into a 3He-rich phase and a 4He-rich phase. 3He
transfers spontaneously into the 4He-rich phase, absorbing energy from the surroundings and
thereby supplying cooling power. To sustain the flow, the 4He-rich phase is pumped to the still
where the 3He is boiled off, ensuring that the 4He-rich phase remains dilute in 3He. The 3He is
then re-liquefied and supplied back to the circulation.
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Figure C.1: Technical sketch of a dilution refrigerator. For explanation of the components and operation,
see text.
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Il me semble que la perfection soit atteinte non quand il n’y a plus
rien à ajouter, mais quand il n’y a plus rien à retrancher.

Antoine de Saint-Exupéry

MULTIBAND FITTING D
In order to gain quantitative information on the charge carriers and mobilities in the separate
bands of a multiband conductor, different model curves can be fitted to Hall and magnetoresis-
tance data from the conductor. These models will be described below. Before any fitting was
performed, the Hall data was anti-symmetrized and the conductivity data was symmetrized to
remove spurious contributions of the longitudinal conductivity to the Hall conductivity and
vice-versa. The measured resistance is converted to sheet resistance by a geometrical factor
which depends on the position of the voltage probes. Both in the transistor-Hall-bar and in the
superconducting transistor sample designs, the width of the voltage probes is comparable to
their longitudinal separation, which causes an uncertainty in the conversion factor.

Fitting of the models to the curve was performed using MATLAB. The complicated structure
of the fit may generate local minima leading to undesired fit results when using standard gradient-
search methods. Therefore, the genetic algorithm fitting function ga was used to obtain the
global optimum of the fit independent of initial guess values. At magnetic fields around zero,
additional effects influence the magnetoresistance and Hall signal: Since the LaAlO3–SrTiO3

interface hosts ferromagnetic moments, a Hall offset around zero field due to the anomalous
Hall effect has to be considered. Because of the spin-orbit coupling of the interface electrons,
the magnetoresistance around zero field is reduced due to weak antilocalization. Finally, in
superconducting samples the resistance vanishes at low magnetic fields. To exclude interference
of these effects with the fit results, only datapoints with |B| >1 T were considered for the fit.

D.1 Fitting of the conductivities

For this fitting procedure, described in Ref. [206], the 2x2 resistance tensor has to be inverted
to obtain the longitudinal and Hall conductivities Gxx and Gxy from the measured resistivities
Rxx and Rxy:

Gxx =
Rxx

R2
xx +R2

xy

(D.1)

and

Gxy = − Rxy
R2
xx +R2

xy

. (D.2)

Since the total conductivity is the sum of the individual conductivities, they can be expressed
in terms of the mobilities µi and carrier densities ni and as a function of magnetic field B as:
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Gxx = e

(
n1µ1

1 + µ2
1B

2
+

n2µ2

1 + µ2
2B

2

)
, (D.3)

Gxy = eB

(
n1µ

2
1

1 + µ2
1B

2
+

n2µ
2
2

1 + µ2
2B

2

)
. (D.4)

In order to reduce the number of free parameters for the fit, two constants are introduced:

C1 = Gxx(B = 0) = e (n1µ1 + n2µ2) , (D.5)

C2 = lim
B→0

Gxy(B)

B
= e

(
n1µ

2
1 + n2µ

2
2

)
. (D.6)

Which allow to eliminate the carrier densities ni from the equations for the conductivities,
effectively reducing the four-parameter fit to a two-parameter fit. The conductivities in terms
of C1 and C2 are:

Gxx(B) =
1

µ2 − µ1

(
C1µ2 − C2

1 + µ2
1B

2
− C1µ1 − C2

1 + µ2
2B

2

)
, (D.7)

Gxy(B) = B

(
C1µ1 − C2

(µ1/µ2 − 1)
(
1 + µ2

2B
2
) +

C1µ2 − C2

(µ2/µ1 − 1)
(
1 + µ2

1B
2
)) . (D.8)

Before the fitting, the constants C1 and C2 are calculated from the data. Then, the models
for the longitudinal and transverse conductivities are fitted to the respective data simultaneously.

Due to the reduced number of fitting parameters, this method converges better than a full
fit of the resistivity with four parameters. For curves with many datapoints, the necessary
matrix inversion from measured resistances to conductivities can be computationally costly,
but this is usually more than compensated by the reduction of fit parameters.

D.2 Fitting of the resistances

The equations for fitting resistances in a multiband scenario are obtained by summing the
conductivities of the individual bands and then inverting the resulting conductivity tensor [207].
In terms of mobilities and sheet carrier densities they are given as:

Rxx =
n1µ1 + n2µ2 +

(
n2µ2µ

2
1 + n1µ1µ

2
2

)
B2

(n1µ1 + n2µ2)2 + (n1 + n2)2 µ2
1µ

2
2B

2
(D.9)

Rxy = B · n1µ
2
1 + n2µ

2
2 + (n1 + n2)µ2

1µ
2
2H

2

(n1µ1 + n2µ2)2 + (n1 + n2)2 µ1µ2
2H

2
, (D.10)

for the longitudinal resistance Rxx and the transverse resistance Rxy, respectively. These
models are then fitted to the measured longitudinal and transverse resistance data. For better
performance, the Hall coefficient RH = Rxy/B is fitted instead of the Hall resistance. An
exemplary plot of this fitting procedure is shown in Fig. D.2.

The main disadvantage of this fitting procedure is that there are four parameters to be
fitted, which makes it computationally very costly and leads to poor convergence.
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Figure D.1: Illustration of the procedure employed to extract multiple carrier densities from simultaneous
fits to the Hall and magnetoconductance data described in section D.1. The fit to the curves yields good
agreement with the data. Data from sample 053 for 0 GPa.

D.3 Fitting of the Hall curve

The simplest approach to extract the carrier densities from Hall measurements is to fit the
Hall curve directly, as described, e.g., in [208]. In the case of two bands, the two separate
conductivities can be extracted as follows: One line is fitted to the Hall curve at low magnetic
fields, and the carrier density of band 1 is calculated from the slope as n1 = −(e∆Rxx/∆B)−1.
The slope at high fields (ideally B → ∞) then gives the sum of the two carrier densities
n1 + n2 = −(e∆Rxx/∆B)−1, so that n2 can be obtained by subtraction. This procedure is
illustrated in Fig. D.3. In addition, the offset due to the anomalous Hall effect [209] can be
obtained from the difference between the two lines at positive and negative low field.

The crucial advantages of this fitting procedure are that both fits are simple linear regressions
and that the two fit parameters are independent instead of interdependent as in the other
methods. This means that the fit converges reliably and that its goodness can be easily judged
with the naked eye. In addition, the fit can be performed directly on the (antisymmetrized) Hall
data without pre-processing. Finally, since the longitudinal resistance is not considered, the
geometrical factor for sheet conversion cannot induce errors. A disadvantage of this method are
that it does not give the mobilities of the carriers and an additional error is introduced because
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Figure D.2: Illustration of the procedure employed to extract multiple carrier densities from simultaneous
fits to the Hall and magnetoresistance data described in section D.2. The fit to the curves for (|B| >6 T)
yields good agreement with the data, whereas at low field a clear divergence is visible. Data from sample
070 for VBG = 40 V.

the fit of the second band is not performed at B = ±∞, but at high but finite B. Furthermore,
if one of the bands has very low mobility, its signature in the Hall data may not be detectable.

D.4 Discussion

The fitting methods presented in this chapter can only be applied reliably if the underlying data
shows a clear multiband signature, with clearly differing slopes in the Hall curves. Otherwise
it is possible that other physical mechanisms which can also lead to changes in the slope of
the Hall curve, for example the anomalous Hall effect, are interpreted as multiband signatures.
In any case, a consistency check of the results is always necessary because the fitting of the
resistivities and conductivities can yield unwanted local minima of the fit curve. As an example,
in Fig. D.4, two different fits to the magnetoresistance and Hall data from sample 053 measured
at 4 K and 0 GPa are shown. The first fit (Fig. D.4 (a)) yields two bands of approximately
the same carrier density, but different signs of the charge carriers. The second fit (Fig. D.4
(a)) yields one band with very high carrier density and very low mobility and another band
with normal LaAlO3–SrTiO3 carrier density and mobility, but both with charge carriers of
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Figure D.3: Illustration of the procedure employed to extract multiple carrier densities in the presence
of the anomalous Hall effect described in section D.3. After antisymmetrization, lines are fitted to
the linear regions of the Hall curve. The slope of the linear region at intermediate magnetic fields
(1 T< |B| <2.5 T) yields the carrier density of the majority band. The slope of the linear region at high
fields (|B| >6 T) yields the total carrier density, and, by subtraction, the carrier density of the minority
band. The offset between the two inner fits corresponds to the strength of the anomalous Hall effect.
Data from sample 070 for VBG = 50 V.

the same sign. Even though the results from the two fits are very different from one another,
they both yield curves which model the data reasonably well in the relevant high-field region.
This comparison clearly shows that fit results from such multiband fitting routines have to be
treated with care in order not to mistake local minima of the fit for the true result. This can
be particularly complicated when the multiband signature is weak (in the case shown here the
Hall constant varies only by about 1 %) and obscured by additional effects.
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Figure D.4: Comparison of two fits to the magnetoresistance and Hall data from sample 053 measured at
4 K and 0 GPa. (a) Fit with result n1=2.100× 1013 cm−1, n2=−5.015× 1013 cm−1, mu1 = 960 cm2 V−1 s
, mu2 = −93 cm2 V−1 s. (b) Fit with result n1=1.700× 1020 cm−1, n2=1.995× 1013 cm−1, mu1 =
3.1× 10−9 cm2 V−1 s , mu2 = 975 cm2 V−1 s.
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LIST OF SAMPLES E

Table E.1: A list of all samples grown during the work described in this thesis. Sample design and
growth parameters are specified. For the electrical properties of non-patterned samples, refer to table 6.1.
LaAlO3 Deposition temperature for all samples was 800 ◦C, except for sample 030 for which LaAlO3

deposition temperature was 750 ◦C. The sample designs are described in section 3.2.

Sample Design u.c. LaAlO3 u.c. BaTiO3 pO2 (mbar) F (J cm−2)

001 circular junction 4 0 8× 10−5 0.8
002 circular junction 5 0 8.3× 10−5 0.8
003 circular junction 4 0 8× 10−5 0.8
004 circular junction 8 0 8× 10−5 0.8
005 circular junction 4 0 8× 10−5 0.8
006 no patterning 4 0 8× 10−5 0.8
007 circular junction 5 0 8× 10−5 0.8
008 circular junction 4 0 8× 10−5 0.8
009 circular junction 4 0 8× 10−5 0.8
010 circular junction 4 0 7.8× 10−5 0.8
011 circular junction 4 0 8.1× 10−5 0.8
012 circular junction 4 0 8.5× 10−5 0.8
013 transistor 2 0 8.1× 10−5 0.8
014 transistor 2 0 8.1× 10−5 0.8
015 test for deposition rate 19 0 8.0× 10−5 0.8
016 test for deposition rate 27 0 8.0× 10−5 0.8
017 circular junction 5 0 7.9× 10−5 0.8
018 circular junction 4 0 8.1× 10−5 0.8
019 circular junction 4 0 8.1× 10−4 1.2
020 circular junction 3 0 7.8× 10−4 1.2
021 circular junction 4 0 8× 10−4 1.2
022 circular junction 3 0 8.1× 10−4 1.2
023 transistor 5 50 7.8× 10−4 1.2
024 transistor 5 10 7.9× 10−4 1.2
025 circular junction 4 0 7.8× 10−4 1.2
026 circular junction 4 0 4× 10−4 1
027 circular junction 4 0 4× 10−4 1
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Table E.1: (continued)

Sample Design u.c. LaAlO3 u.c. BaTiO3 pO2 (mbar) F (J cm−2)

028 transistor 5 10 8.2× 10−4 1.2
029 transistor 5 10 8.2× 10−4 1.2
030 circular junction 4 0 4× 10−4 1.2
031 circular junction 4 0 8× 10−5 0.8
032 circular junction 4 0 7.9× 10−5 1
033 circular junction 4 0 3.7× 10−4 0.8
034 circular junction N/A 0 8× 10−5 0.8
035 circular junction 4 0 2.0× 10−4 1
036 circular junction 4 0 8.2× 10−4 0.8
037 circular junction 4 0 7.9× 10−4 0.8
038 no growth because of plasma cleaner contamination
039 no growth because of plasma cleaner contamination
040 patterned junction 4 0 1.9× 10−4 1
041 patterned junction 5 10 2× 10−4 1
042 patterned junction 4 0 2× 10−4 1
043 patterned junction 6 20 1.91× 10−4 1
044 patterned junction 4 0 2.1× 10−4 1
045 patterned junction 4 0 2× 10−4 1
046 new patterned junction 4 0 2× 10−4 1
047 transistor-Hall 6 20 1.9× 10−4 1
048 new patterned junction 4 0 8.2× 10−5 0.8
049 transistor-Hall 6 20 8× 10−5 0.8
050 new patterned junction 4 0 2.1× 10−4 1
051 transistor-Hall 6 20 7.8× 10−5 0.8
052 new patterned junction 4 0 8.0× 10−5 0.8
053 transistor-Hall 6 20 7.7× 10−5 0.8
054 new patterned junction 4 0 8.1× 10−5 0.8
055 new patterned junction 4 0 8.2× 10−5 0.8
056 transistor-Hall 5 20 4.1× 10−5 0.8
057 transistor-Hall 5 20 2.1× 10−5 0.8
058 Vdp+Gold 4 0 8.1× 10−5 0.8
059 Vdp+Gold 4 0 2.0× 10−4 1
060 Vdp+Gold 4 0 8.6× 10−5 0.8
061 Vdp+Gold 4 0 2× 10−4 1
062 Vdp+Gold 4 0 2.1× 10−4 0.8
063 Vdp+Gold 4 0 8× 10−5 1
064 Vdp+Gold 6 0 8.1× 10−5 0.9
065 Vdp+Gold 6 0 2× 10−4 0.9
066 Vdp+Gold 5 0 2× 10−4 0.9
067 Vdp+Gold 5 0 7.9× 10−4 0.9
068 SC Transistor 6 20 8× 10−5 0.8
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Table E.1: (continued)

Sample Design u.c. LaAlO3 u.c. BaTiO3 pO2 (mbar) F (J cm−2)

069 SC Transistor 6 20 8× 10−5 0.8
070 SC Transistor 6 30 7.9× 10−5 0.8
071 SC Transistor 6 30 8.2× 10−4 1.2
072 SC Transistor 6 30 8× 10−5 0.8
073 SC Transistor 6 30 8.1× 10−5 0.8
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Some books are to be tasted,
others to be swallowed,

and some to be chewed and digested.

Sir Francis Bacon
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B. Jouault, D. Marrè, D. Massarotti, F. Miletto Granozio, I. Pallecchi, C. Piamonteze, S.
Rusponi, F. Tafuri, and M. Salluzzo. “Tunable spin polarization and superconductivity
in engineered oxide interfaces”. Nat. Mater. 15 (2016), pp. 278–283. doi: 10.1038/
nmat4491.

[209] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong. “Anomalous Hall
effect”. Rev. Mod. Phys. 82 2 (2010), pp. 1539–1592. doi: 10.1103/RevModPhys.82.
1539.

141

https://doi.org/10.1038/nmat4491
https://doi.org/10.1038/nmat4491
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539




LIST OF PUBLICATIONS

1. Journal Publications

2017 Lukas Kuerten, Cristoph Richter, Narayan Mohanta, Thilo Kopp, Arno Kampf,
Jochen Mannhart, and Hans Boschker. “In-gap features in superconducting LaAlO3–
SrTiO3 interfaces observed by tunneling spectroscopy” Phys. Rev. B. 96 014513

2. Conference talks

2015 Lukas Kuerten Evangelos Fillis-Tsirakis, Christoph Richter, Jochen Mannhart,
and Hans Boschker. “Critical magnetic fields of superconducting LaAlO3–SrTiO3

interfaces”. Workshop on Oxide Electronics 22, Paris, France

2016 Lukas Kuerten Evangelos Fillis-Tsirakis, Jochen Mannhart, and Hans Boschker.
“In-gap features in tunnel spectra of the superconducting LaAlO3–SrTiO3 2DEL”.
International Conference on Superconductivity and Magnetism 2016, Fethiye, Turkey

3. Conference posters

2015 Lukas Kuerten, Evangelos Fillis-Tsirakis, Hans Boschker, Christoph Richter, and
Jochen Mannhart. “Critical Magnetic Fields in Superconducting LaAlO3–SrTiO3

interfaces”. International School on Oxide Electronics 2015, Cargèse, France
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Vielen Dank an René Berktold, der mir geduldig alle Details der Probenherstellung beibrachte
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