
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelor’s thesis

Design and Implementation of a
Framework to Automate the

Inclusion of Patterns in Existing
Architectures

Aaron Röhl

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: Jasmin Guth, M.Sc.

Commenced: June 1, 2017

Completed: December 1, 2017

CR-Classification: I.7.2

Abstract

This bachelor’s thesis aims to provide a framework to support the evaluation and automated
inclusion of proven solutions, so-called patterns, in software architectures. By simplifying
the identification of bad design choices and automating some parts of the architecture’s
redesign, the whole design process will provide standardized solutions, be less error-prone
and less time-consuming. Nevertheless, it is no replacement for a software architect but
a useful and supportive tool. While the framework supports different technologies and
standards, the examples are based on OASIS’ TOSCA and cloud computing patterns. Using
the NFR-Framework, a method for analyzing existing patterns with regard to their influence
on a system’s non-functional requirements will be explained. Besides the resulting infor-
mation, a pattern detection framework will then be used in order to determine the impact
of different patterns on an existing architecture. Further, a basic approach for automated
pattern inclusion will be introduced. A corresponding Java-based implementation that
shows the framework’s main functionality is part of this thesis. Using this application, the
framework was tested by evaluating the influence of different cloud computing patterns
on an example TOSCA topology. However, this bachelor’s thesis is theoretical and the
application is just a prototype; empirical data supporting the advantages of this framework
is still missing.

3

Kurzfassung

Das Ziel dieser Bachelorarbeit war die Entwicklung eines Frameworks, welches die Eval-
uation und das Einbinden von bewährten Lösungen, so genannten Patterns, in Soft-
warearchitekturen ermöglicht. Indem die Identifikation von schlechten Designentscheidun-
gen vereinfacht wird, sowie durch die Automatisierung eines gewissen Teils des Umgestal-
tungsprozesses der Architektur, wird der gesamte Designprozess zu einem gewissen Maße
standardisiert, weniger fehleranfällig und weniger zeitaufwändig. Dennoch ist das Frame-
work vielmehr ein unterstützendes Werkzeug als ein Ersatz für einen Softwarearchitekten.
Während verschiedene Standards und Technologien unterstützt werden, basieren die
Beispiele auf Cloud-Computing Patterns und TOSCA-Topologien. Es wird eine an das
NFR-Framework angelehnte Methode vorgestellt, die den Einfluss von Patterns auf die
nichtfunktionalen Anforderungen eines Systems analysiert. Neben den daraus gewonnenen
Informationen wird ein Pattern-Erkennungsframework eigesetzt, um den Einfluss ver-
schiedener Patterns auf eine gegebene Architektur zu ermitteln. Des Weiteren wird eine
grundlegende Herangehensweise für die automatisierte Pattern-Inklusion vorgestellt. Eine
zugehörige Java Implementierung, welche die grundlegenden Aspekte des Frameworks
unterstützt, ist ebenfalls Teil dieser Arbeit. Die Anwendung wurde genutzt, um den Einfluss
von ausgewählten, vorevaluierten Cloud-Computing Patterns auf eine ausgewählte TOSCA-
Topologie zu ermitteln. Diese Bachelorarbeit ist rein theoretisch und die Anwendung ein
Prototyp; aktuell fehlt es noch an empirischen Daten, welche die Vorteile des Frameworks
belegen.

4

Contents

1 Introduction 13

2 Fundamentals and Definitions 15
2.1 Non-functional Requirements (NFRs) . 15
2.2 Cloud Computing Patterns . 15
2.3 NFR-Framework . 18
2.4 Topology and Orchestration Specification for Cloud Applications (TOSCA) . 19
2.5 Pattern Detection . 23

3 Related Work 25
3.1 TOSCA . 25
3.2 Architecture Description Languages (ADLs) 28
3.3 Pattern Detection . 30

4 Approach 33
4.1 Pattern Analysis using the NFR-Framework 34
4.2 Influence Analysis using Pattern Detection 37
4.3 Automated Pattern Inclusion Process . 38

5 Implementation 51
5.1 Pattern Inclusion Application (PIA) . 51
5.2 Used Technologies . 52
5.3 Code Structure . 53
5.4 Expandability . 55

6 Validation 57
6.1 Role-Labeling . 58
6.2 Normalization . 58
6.3 Pattern Inclusion . 59

7 Conclusion and Outlook 63

A Appendix 65
A.1 Environment-based Availability SIG . 65
A.2 Node-based Availability SIG . 66

Bibliography 67

5

List of Figures

2.1 NFR Hierarchy as defined in ISO 25010 . 16
2.2 SIG of the Watchdog Pattern . 20
2.3 Example TOSCA-Topology . 22

3.1 Pattern Detection Labeling Process . 32

4.1 Three Steps of the Pattern Inclusion Framework 33
4.2 Example Topology for the Influence Analysis 37
4.3 Execution Environment Pattern as defined in [Woh17] 42
4.4 Node-based Availability as defined in [Woh17] 44
4.5 Node-based Availability Subgraph Creation 45
4.6 Node-based Availability Subgraph Forking 45
4.7 Node-based Availability Subgraph Merging 47
4.8 Triangle Problem in a TOSCA Topology . 47
4.9 Solved Triangle Problem in a TOSCA Topology 48

5.1 Pattern Inclusion Application GUI . 52
5.2 UML Package Diagram of the Pattern Inclusion Application 54

6.1 Openweathermap TOSCA Topology . 57
6.2 Openweathermap TOSCA Topology Normalized 59
6.3 Applied Watchdog . 60
6.4 Applied Node-based Availability . 61

A.1 SIG of the Environment-based Availability 65
A.2 SIG of the Node-based Availability . 66

7

List of Algorithms

4.1 Watchdog . 41
4.2 Environment-based Availability . 43
4.3 Node-based Availability . 46
4.4 Normalization . 49

9

List of Abbreviations

AADL Architecture Analysis & Design Language. 29

ADL Architecture Description Language. 28

API Application Programming Interface. 22

CC Cloud Computing. 16

CSAR Cloud Service ARchive. 19

HTTP HyperText Transfer Protocol. 25

IaaS Infrastructure-as-a-Service. 23

JRE Java Runtime Environment. 41

NFRs non-functional requirements. 13

OASIS Organization for the Advancement of Structured Information Standards. 19

OSLC Open Services for Lifecycle Collaboration. 25

PaaS Platform-as-a-Service. 23

RDF Resource Description Framework. 25

SIG Softgoal Interdependency Graph. 19

TOSCA Topology and Orchestration Specification for Cloud Applications. 13

UML Unified Modeling Language. 28

11

1 Introduction

Today, cloud computing is a ubiquitous used model for on-demand network access to
a distributed pool of computing resources. Many big companies like Google, Facebook
and Twitter rely on this state-of-the-art technology in order to handle the high amount
of daily traffic. While the previous static models can’t fulfill modern requirements like
high availability and optimal resource utilization, cloud computing achieves these goals
by provisioning and releasing resources on-demand with minimal effort for the service
provider [MG+11]. Due to the increasing complexity of cloud computing software systems,
the branch of software architecture became more and more important over the last years.
A software architecture describes individual components as well as their relationships and
interaction in an overall system. Therefore, the role of a software architect includes the
design of a suitable model that fulfills specific functional and non-functional requirements
(NFRs) as well as considering pros and cons for different approaches [BM+02]. In order to
specify the interaction between different components while maintaining interoperability,
software architects make use of architecture description languages like UML or OASIS’
Topology and Orchestration Specification for Cloud Applications (TOSCA) to describe
dependencies and requirements among all parts of the overall system. In TOSCA, this
description is called a service topology [Sta13]. A pattern is an abstract concept that
describes a proven solution to a recurring problem, independent from the used technologies.
Using patterns often increases the quality of a system and accelerates the design process
[FLR+14].

This bachelor’s thesis describes a framework to optimize a given software topology by
evaluating, automatically detecting and adding proven patterns to better fulfill predefined
NFRs. The framework can be adapted to different technologies but will be explained based
on the example of TOSCA topologies and cloud computing patterns.

Motivation

In contrast to functional requirements, NFRs are way more difficult to satisfy. Because of
their global impact on the system, their informal, textual goal definitions, tracing difficulties
and missing strategies to achieve the specified goals, NFRs are often neglected [CSB+05].
Even if their importance is understood, missing tools make it hard for software architects
to fulfill the given requirements [GY01]. The lack of appropriate tools has a big impact
to the economic viability of a software system. If a specific requirement of a system is
not fulfilled, an architect has to analyze the whole structure of the system, reevaluate all
previous design choices, try to come up with a new approach and consider all possible

13

1 Introduction

trade-offs. The whole procedure is very time consuming and not structured in an organized
way, increasing the costs of the software unpredictably. Therefore, the framework described
in this bachelor’s thesis can reduce the costs of a software regarding its NFR optimizations
by structuring and automating the previously described process.

Structure

The work is structured as follows:

Chapter 2 – Fundamentals and Definitions
The fundamental keywords and methods used in this work will be explained in
this chapter. All further appearances of the terms Non-functional Requirements,
Patterns and OASIS’ TOSCA refer to the definitions in this chapter. Further, the
NFR-Framework and Pattern Detection is explained.

Chapter 3 – Related Work
Some selected work related to the main topics of this bachelor’s thesis will be
presented in this chapter. Every item is also evaluated for the use with this framework.

Chapter 4 – Approach
The three main steps of the pattern inclusion framework will be described conceptu-
ally. The individual patterns’ influence evaluation will be covered as well as the basic
idea behind pattern inclusion.

Chapter 5 – Implementation
This chapter introduces the Pattern Inclusion Application (PIA), which is a graphical
tool that was designed to state the use of the pattern inclusion framework. Everything
necessary related to the application’s structure and functionality will be covered.

Chapter 6 – Validation
Every step of the framework and its algorithms will be clearified based on an ex-
ample TOSCA topology. This chapter should increase the comprehensibility of the
framework.

Chapter 7 – Conclusion and Outlook
This last chapter provides a short summary of the main indeas behind this bachelor’s
thesis as well as the corresponding solutions. Further, the advantages of the pattern
inclusion framework and possible future improvements will be discussed.

14

2 Fundamentals and Definitions

This chapter deals with fundamental definitions which apply to all following occurences of
the defined terms. Besides differentiations of keywords, some of the used methods and
technologies will be explained.

2.1 Non-functional Requirements (NFRs)

In order to define non-functional requirements (NFRs), it is necessary to define functional
requirements first. Functional requirements always describe a concrete task a system or
component must be able to perform, including all inputs, outputs and behavior of the
system or component to complete the task. All requirements that don’t fit into functional
requirements are aggregated under in the term NFRs, which includes very abstract goal
definitions like Availability or Efficiency[Eid05].

ISO 25010 arranges NFRs hierarchically. There are eight main NFRs: Functional Suitability,
Reliability, Performance Efficiency, Operability, Security, Comparability, Maintainability and
Transferability. All other requirements like Accessibility, Reusabilty and Availability are
just sub-requirements of the eight previously named ones. A change that was made in a
sub-requirement is always propagated bottom-up, which means that a sub-requirement’s
modification always influences its parent while a direct change of a parent not always
influences all its children [LOZ10]. In this bachelor’s thesis, the term NFR always refers to
the requirements defined in ISO 25010, shown in figure 2.1.

2.2 Cloud Computing Patterns

Software patterns describe proven solutions to recurring problems in different stages
of the development process. The use of patterns can improve the undstandability of a
system’s architecture and ease maintenance. They provide a common vocabulary and
holistic solutions for all kind of problems [HC07]. While patterns like Singleton or Factory
offer solutions for common implementation problems across all industries, they cannot
be applied to architectural design problems or the maintenance process. Therefore, every
stage of the software development process has its own patterns as well as every branch of
industry has specific patterns for their own needs. This diversity may result in difficulties
for the software designers and developers to keep an overview of all existing patterns
[Wol94]. Henninger and Corrêa [HC07] mention 425 patterns only for the user interface;

15

2 Fundamentals and Definitions

Compliance

Authenticity

Accountability

Non-Repudiation

Integrity

Confidentiality

Compliance

Recoverability

Fault Tolerance

Availability

Compliance

Testability

Modification-Stability

Changeability

Analyzability

Reusability

Modularity

Compliance

Resource-Utiliztion

Time-Behavior

Compliance

Accuracy

Appropriateness

Compliance

Installability

Adaptability

Portability

Compliance

Technical Accessibility

Attractiveness

Helpfulness

Ease of Use

Learnability

Recognisability

Appropriateness

Compliance

Interoperability

Co-existance

Replaceability

SecurityOperability

Reliability

Functional Suitability

Performance Efficiency

Maintainability Transferability

Compatibility

Figure 2.1: NFR Hierarchy as defined in ISO 25010

the sum of all patterns lies above 1500. Since the article was published in 2007, probably
even more patterns exist today. Therefore, a general technique will be explained that works
with every previous and future pattern.

The framework described in this bachelor’s thesis is applicable to every kind of pattern
independent from its branch of industry or corresponding stage in the development process.
Architecture design patterns from a field called Cloud Computing will be used as an
example.

Cloud Computing (CC) is an ascending technology that enables ubiquitous, convenient
and on-demand network access to a network of computing resources like databases,
infrastructure or services [MG+11]. The goal is processing and storing large amounts of
data while maintaining a fast response time. This is achieved by provisioning and releasing
distributed resources over the internet with minimal human intervention. Many CC system
operators prefer renting third party resources like Amazon Web Services1 or the Google
Cloud Platform2 to run their applications [BAA12].

The CC patterns used as example in this thesis can be applied to every kind of cloud
computing architecture. It doesn’t matter if the deployment model is a private, public or
hybrid cloud. The most important patterns are described below.

1https://aws.amazon.com/
2https://cloud.google.com/

16

2.2 Cloud Computing Patterns

2.2.1 Watchdog Pattern

Because CC systems are distributed, they depend on the availability of every component.
A component failure may result in an overall system failure. Thus, it is important that
every application component instance is redundant, very fault tolerant and, if a failure
occurs, is replaced by a new instance as fast as possible. This can be seen as one of the
most important challenges of CC [BAA12].

In order to keep track of failures, gather necessary information, create statistics, replace
inoperable instances and provide a suitable interface for the user, the watchdog pattern
can be applied to a software architecture. By installing a new service that connects to all
application instances and monitors their condition, the watchdog always knows about the
current status of all components, and therefore of the overall system. If an application
doesn’t answer, it is automatically replaced by its redundant correspondent. Failures are
logged, saved and possibly depicted in an informing graphical user interface for further
investigation. This results in a high availability of every instance and the overall system.
A drawback is the necessity of the stateless component pattern. That means that every
instance must be independent from the status of other application instances. Using this
pattern, every failed application can simply be replaced by another instance of itself.
The overall system’s integrity will not be affected. If the system was not designed using
this pattern, it can be an unbearable overhead to rewrite the whole architecture and its
components [FLR+14].

2.2.2 Environment-based Availability

Due to the necessity of a distributed and dynamic infrastructure for CC systems, many
users like to rent an existing solution from a CC provider like Amazon Web Services. The
provider offers an environment on which a customer deploys his applications. In order
to maintain a high availability of the overall system, the provider has to guarantee the
availability of the environment hosting individual nodes like individual virtual servers,
middleware components or hosted applications. This is done by specifying conditions for
the offering and a time-frame in which the offering must be available. As an example,
Amazon Web Services’ EC2 guarantees scalable calculation resources with an up-time of
99.95% per accounting period 3. The nodes themselves must be monitored and, in case of
failure, replaced by another working instance. Since the customer is only provided with
the necessary information about the condition of its nodes, he has to cope with failures on
his own. Using heartbeats, the availability of every instance can be assured. If a heartbeat
wasn’t answered, the corresponding instance must be replaced. The Watchdog Pattern is
a solution for automated failure management that can be used for this purpose. It is not
trivial to determine the overall availability of an environment based application. It depends
on the availability of the environment and the quality of failure management [FLR+14].

3https://aws.amazon.com/ec2/sla/ (10-20-2017)

17

2 Fundamentals and Definitions

The Environment-based Availability is no pattern per se. Rather, the application owner
may rent an infrastructure or platform that assures either Environment- or Node-based
Availability. Therefore, the representation in an architecture is kind of tricky. Nevertheless,
it is possible. The idea behind using Environment-based Availability as a pattern will be
described in 4.3.

2.2.3 Node-based Availability

In contrast to the Environment-based solutions, Node-based offerings guarantee the avail-
ability of every single node. A customer rents the infrastructure or platform and deploys his
applications. The provider has to guarantee the availability of every single node by specify-
ing conditions and a minimum up-time as with Environment-based Availability. Therefore,
the availability of the overall system can be calculated by multiplying the availabilities of
all nodes as in formula 2.1. The formula shows that if a single node has a low availability,
the overall availability decreases substantially.

Availability(System) =
∏

Nodes

Availability(Node) (2.1)

Using formula 2.1, it can be calculated that if the guaranteed availability of two nodes is
99.95% and 80.00% respectively, the overall availability is just 79.96%. In order to achieve
a high availability, the provider often incorporates redundant hardware components. The
environment is responsible for monitoring all node failures and, if a node fails, provisioning
new hardware. The overall availability can be further increased by deploying multiple
instances of the same node and by replacing them if necessary. The Watchdog Pattern can
be used for this purpose. By sending test data and heartbeats, the correct functionality of
all nodes can be guaranteed.

Just like the Environment-based Availability, Node-based Availability is no real pattern.
There is a possibility to represent Node-based Availability in a topology, though. The
representation focuses on maximization of each component’s independence. Further
information about the idea behind Node-based Availability as a pattern will be provided in
section 4.3.

2.3 NFR-Framework

In contrast to the traditional product-oriented approaches which often use metrics, the NFR-
Framework offers a goal-driven, process-oriented approach to deal with the organization,
representation and analysis of NFRs. It is goal-driven because a single NFR is represented as
a goal that should be achieved and process-oriented because design choices can be justified
during the development process. The framework was designed to determine and justify
trade-offs between different development options [SSC03]. NFR goals are evaluated using
synergistic and conflicting interdependencies. Every development option will be examined
regarding its influence on the specified NFRs. Therefore, trade-offs between different

18

2.4 Topology and Orchestration Specification for Cloud Applications (TOSCA)

design choices can be determined [PC02]. The NFR-Framework offers a systematic way to
evaluate the influence of a specific design choice on predefined NFRs. In this bachelor’s
thesis, it will be used to analyze the impact of patterns on a software architecture. The
value of a pattern consists of the positive and negative effects on the architecture’s NFRs.

To evaluate a specific design option using the NFR-Framework, a Softgoal Interdependency
Graph (SIG) must be created. A SIG can be used to analyze trade-offs between a design
choice and different NFRs. Because not every aspect of the NFR-Framework will be used
later on, the following description focuses on the important parts for this thesis’ purpose.
The whole range of functionality can be found at [CNYM12]. Generally, softgoals are
goals which have no clear-cut definition that could be satisfied. NFRs are represented by
NFR softgoals. A SIG also contains operationalizing softgoals which are used to describe
possible design solutions that may influence the NFRs. Both previously named softgoals
are composed of a type and a topic. For NFR softgoals, the type describes an aspect like
reliability or operability, for operationalizing softgoals aspects like resource management
or monitoring. The topic describes the target’s subject which is associated with the softgoal
[PC02]. The topic is always depicted in square brackets, the type in front of it.

Softgoals may influence other softgoals. Therefore, synergistic and conflicting interde-
pendencies exist. An interdependency will be valued with the effect the source has on
the target softgoal. That means that a relationship can be surely positive (++ or MAKE),
partially positive (+ or HELP), partially negative (- or HURT) and surely negative (- - or
BREAK) [SSC03]. It is important to notice that these units are abstract since an exact
measurement of the NFRs and their trade-off is not possible by definition.

Different connection types can be used to specify the relation of a goal and its children.
Connected with an AND-relationship, all sub-goals must be satisfied to satisfy their parent.
As an example, the SIG in figure 2.2 contains the parent goal "Monitoring", which consists
of the sub-goals "create realtime overview" and "create statistics of failure". The monitoring
goal will only be satisfied if both of them are fulfilled. In contrast to that, if not all but
at least one sub-goal must be satisfied to fulfill the parent, the OR-relationship should be
used.

2.4 Topology and Orchestration Specification for Cloud
Applications (TOSCA)

TOSCA [Sta13] is a cloud computing related standard for platform independent semi-
automatic creation and management of application layer services across different envi-
ronments. Version 1.0 was first published by the Organization for the Advancement of
Structured Information Standards (OASIS)4 in November 2013. Using service templates,
components and their relationships can be described and their creation and modification

4https://www.oasis-open.org/

19

2 Fundamentals and Definitions

Figure 2.2: SIG of the Watchdog Pattern

20

2.4 Topology and Orchestration Specification for Cloud Applications (TOSCA)

orchestrated. The components and their interdependencies are described in service topolo-
gies, which means they are hierarchically ordered. Using this information along with the
orchestration info, cloud applications can be deployed in different environments and stay
interoperable. They are manageable throughout their complete life-cycle, including scaling,
patching and monitoring. In order to deploy an application in different environments, a
compressed archive called Cloud Service ARchive (CSAR) will be used. A CSAR archive
is a zip file that contains different information about the application, including metadata,
TOSCA definitions, the service topology and more. The service orchestration of the TOSCA
standard doesn’t play an important role in this bachelor’s thesis. Therefore, the focus is
on service topologies. For further information on service orchestration, see Binz et al.
[BBH+13].

A service topology can be represented as a typed, directed graph. Every component
corresponds to a node and every interrelationship to an edge. A node describes one single
component of the system. This component can be a virtual server, web server, application,
execution environment, database et cetera. For every node, individual properties like
port and version can be defined. The edges can be labeled with dependsOn, connectTo,
deployedOn or hostedOn. The meaning of each label is described below [BBH+13]:

hostedOn - If the source component is hosted on the relationship’s target, this label will
be used (e.g. an operating system is hosted on virtual hardware)

deployedOn - If the source component is deployed on the relationship’s target, this label
will be used (e.g. a .war application is deployed on a tomcat server)

dependsOn - If a source component depends on the relationship’s target, this label will be
used (e.g. an application depends on a Java Runtime Environment)

connectTo - If the source component connects to the relationship’s target, this label will
be used (e.g. an application connects to a database server)

Figure 2.3 shows an example topology including different components as well as all
previously named relationships. The topology is hierarchically structured. In order to run
the WebApplication, all dependencies must be satisfied. Therefore, OpenStack-Liberty-12
must be started first, followed by Ubuntu-14.04-VM, Java7 and Tomcat_7. Only after all
these components as well as the MySQL_Server are ready, the WebApplication can be run.

OpenTOSCA5 was developed by the University of Stuttgart and provides an open source
ecosystem for development, deployment, management and instantiation of TOSCA compli-
ant applications. It consists of three main parts:

1. Winery, which is a graphical modeling tool for tosca service topologies

2. OpenTOSCA container, which offers a runtime environment for TOSCA applications

3. Vinothek, which provides a self-service portal for the management of TOSCA applica-
tions

5http://www.iaas.uni-stuttgart.de/OpenTOSCA/

21

2 Fundamentals and Definitions

Figure 2.3: Example TOSCA-Topology

Winery is a HTML5 web-based modeling tool that allows the user to define reusable
components and relationship types, as well as designing software architectures. It supports
in- and export of topologies and their affiliated information on nodes and relationships
as CSAR archives. As CSAR archives are standardized by OASIS, all TOSCA conform
environments can handle the designed architectures [KBBL13].

The OpenTOSCA container provides an Application Programming Interface (API) for the
execution of management plans in its own execution environment. A management plan
describes the necessary steps to get a management task like instantiation, backup or
termination done. The container further includes a controller which orchestrates all
components and tracks their progress [BBH+13].

Vinothek allows the user to provision new applications through a HTML5 and JavaScript
based web-application. The main goal is simplicity: every user should be able to handle
execution plans on different TOSCA runtimes. Therefore, Vinothek hides most technical
details in order to provide a simplistic interface for management tasks. All actions are
propagated via a RESTful API to a corresponding management component which executes
a given plan [BBKL14].

OpenTOSCA was mentioned at this point because the pattern detection framework that
will be used later on in this bachelor’s thesis was first part of Winery. The next section
provides more information about the pattern detection process.

22

2.5 Pattern Detection

2.5 Pattern Detection

Existing software architectures may already contain different design patterns. Pattern
detection can be useful in order to retrieve and re-validate design choices. The manual way
to do so is to analyze the whole software architecture. Besides this time consuming process,
all used patterns must be known by the analyst which is very unlikely considering more
than 1500 [HC07] existing patterns. To speed this process up, techniques for automated
pattern detection were invented. Wohlfarth [Woh17] introduced a detection framework for
CC patterns. This framework was included in the Winery component of the openTOSCA
ecosystem. Therefore, every CSAR archive describing a TOSCA conform application can be
loaded and analyzed. Detecting patterns in the current architecture is even possible during
the design process.

The detection framework by [Woh17] recognizes the following CC patterns: Platform-as-a-
Service (PaaS), Environment-based Availability, Execution Environment Pattern, Public Cloud,
Elastic Platform, Node-based Availability, Elasticity Manager, Elastic LoadBalancer, Elastic
Queue, Relational Database, Message-oriented Middleware, Infrastructure-as-a-Service (IaaS)
and Elastic Infrastructure. Since the cohesion of different CC patterns can be subdivided
in strong, exclusive and undetermined relations, we know that, for example, PaaS and
IaaS cannot exist together whereas IaaS and Elastic Infrastructure are often used together
[FLR+11]. The pattern detection framework considers this cohesions and introduces a
five layered probability hierarchy. The probability of every pattern is classified as either
Detected, High, Medium, Low or Impossible, depending on their specific cohesion with
other patterns.

The framework described in this bachelor’s thesis makes use of a pattern detection frame-
work in order to reason about the influence of different patterns on an architecture’s NFRs.
In case a detected pattern violates a specific requirement, the removal of this pattern can be
considered. If removal is no option, it is possible to compensate the loss with the application
of another pattern that hasn’t been applied yet. In addition to that, the probability of each
detected pattern can be used as an indicator of relevance.

23

3 Related Work

The framework described in this bachelor’s thesis can be adapted to different state-of-the-art
technologies. In order to understand the full potential, related work will be presented
in this chapter. The following examples can be modified to work with the technologies
described here. While this is just a small excerpt of all related work, the most important
technologies will be covered.

3.1 TOSCA

TOSCA offers an open, standardized solution for different CC problems. First, a software
architecture has to be hierarchically described using XML or YAML files and be saved
as a CSAR archive. Later, management plans offer a solution for automated updates,
deployment and termination of the previously described application. Together, the TOSCA
standard contains a textual description for components and interdependencies in a cloud
computing architecture as well as a standard for the orchestration of applications themselves
[SBB+16]. Related techniques and solutions will be discussed in this section.

3.1.1 Communication Standard

Oasis’ TOSCA was developed to solve cloud application interoperability and flexibility
issues. Without a common and open standard, every application has its own API, making in-
teraction between services very difficult. Using standardized interfaces, the interoperability
between services can be increased significantly.

Besides TOSCA, which deals with these issues in a CC environment, the Open Services for
Lifecycle Collaboration (OSLC)1 standard which was released in 2008 describes a set of
specifications which focuses on integration techniques for the whole software life-cycle. By
specifying rules for communication per HyperText Transfer Protocol (HTTP), RESTful APIs
and the Resource Description Framework (RDF), OSLC deals with the interoperability of
services in different domains. It was not designed for architectural design of applications
but for a common standard in service communication and can therefore not be used to
detect or include patterns in a given software architecture [EN13]. The services itself
should implement a standardized interface though. Standards like OSLC help setting up
TOSCA conform applications by simplifying the communication process.

1https://open-services.net/ (10-24-2017)

25

3 Related Work

3.1.2 Cloud Service Orchestration

Besides a standard for the description of architectures, TOSCA offers a standard for the
orchestration of cloud services. The term orchestration includes different management
operations that can be performed manually or automated by cloud providers and application
owners, respectively. Therefore, every layer of a cloud application (infrastructure, platform
and service) has its own management operations as, for example, requesting new hardware
resources or start and stop a specific node. All management operations can be categorized
in one of the following categories [RBDP15]:

• Resource selection - Possible candidate software and hardware resources are se-
lected by the application owner to satisfy functional and non functional requirements.

• Resource deployment - All components of an application are instantiated on a
corresponding node of a cloud service. This operation also includes the configuration
and establishment of connections between individual nodes such as applications and
database servers.

• Resource monitoring - In order to keep track of the satisfaction of NFRs like
Availability, produced information (up-time, load spikes, ...) must be monitored.

• Resource controlling - While monitoring, automated reacting to occurring events
can be mandatory to maintain the availability of a system. Not only automated
but also manual corrective actions like requesting new resources and rescaling of
applications fall into this category.

It is important to mention that TOSCA is a standard, which means that no special application
is provided for the design of service templates or the orchestration. Rather, different
manufacturers may design a software that is compatible with TOSCA. A TOSCA conform
management plan can then be executed by all of them. Because most orchestration
services have a unique way of handling the application management, some orchestration
technologies of different providers are explained below.

Oracle Orchestration Cloud Service

The Oracle Cloud2 ecosystem includes rentable IaaS, PaaS and SaaS cloud solutions as
well as an orchestration service. Customers may monitor workflows and manage their
applications by executing scripts or invoke other web services in a scheduled manner. Not
only Oracle Management Cloud agents are compatible but every node implementing a
REST interface. Therefore, node sets of different applications all over the world can be
orchestrated using predefined management plans. Besides Resource selection and Resource
deployment, even the monitoring category is covered. Oracle offers a web-based pre-built
dashboard showing different statistics about the status of the application over time. In
addition to that, the orchestration service keeps track of the failure rate and anomalies

2https://cloud.oracle.com/ (10-27-2017)

26

3.1 TOSCA

in the workflow. The user will be alerted in case of an irregularity, enabling fast trouble
shooting. The final Resource controlling step must be done manually via web interface
[17].

In contrast to TOSCA, the applications’ architecture is no direct part of the orchestration
process in the Oracle Orchestration Cloud Service. Rather, management plans can be
designed which will invoke remote nodes, causing some reaction. The separation of
architectural design and the orchestration process can be sometimes useful, but it can also
complicate the whole process. If, for example, a specific port was changed, TOSCA has no
problem handling the situation. By changing the port in the service templates’ properties,
the orchestration is not affected. In contrast, every occurence of that node’s port in every
script of Oracles’ orchestration service must be replaced by the new one if the port was
changed.

Chef

Almost every big cloud service provider (IBM, Intel, Oracle, ...) has its own solution for
cloud orchestration. Besides that, small stand-alone solutions also exist, though. Examples
would be Puppet3, Chef4 and Cloudify5. While Chef and Puppet depend on own domain
specific languages to describe the orchestration process, Cloudify is based on TOSCA just
like the OpenTOSCA environment. Because OpenTOSCA was presented before, it won’t be
covered in this section. Rather, the functionality of Chef will be explained as an example
for a stand-alone orchestration solution.

Chef is an open-source automation platform for the configuration and deployment of
distributed systems based on a client-server model. Every physical and virtual machine,
a so called node, needs to run a chef client. The client performs individual tasks such as
configuration- or application management on its node. A task is defined by a script in a
Ruby based domain specific language, also called a recipe. In order to get the latest recipes,
every client connects to the Chef server. The user can write own recipes and upload them
to the server. Therefore, a command line tool called Knife is available. Chef then distributes
all updates and supporting resources (files, database dumps etc.) to all nodes which will
perform the new tasks [KML+14].

A big advantage of stand-alone solutions like Chef is the adaptability to different used
technologies. For example, the Oracle Orchestration Cloud Service is designed to work best
with Oracle’s cloud solutions. Therefore, using standalone services can be an advantage,
especially if using different cloud environments (e.g. for a hybrid cloud). The Resource
selection operations are performed by installing the Chef client on different nodes. Before
uploading recipes to the server, Chef offers a test suite to prove the correctness of the
scripts. Resource deployment is then achieved by starting a given recipe. Chef Automate

3https://puppet.com/ (10-29-2017)
4https://www.chef.io/ (10-29-2017)
5http://cloudify.co/ (10-29-2017)

27

3 Related Work

gives an overview of the workflow and compliance of all clients and offers a solution for
Resource monitoring. By allowing the user to address all nodes in case of failure, Knife can
also be used for Resource controlling.

Orchestration and architectural design are mostly separated when using stand-alone so-
lutions. That’s why most of them have the same advantages and disadvantages as the
Oracle Orchestration Cloud Service. An additional disadvantage is the heterogeneity of
the domain specific languages used by different services. Therefore, an orchestration plan
cannot be easily ported to another orchestration service. An exception is Cloudify, which
uses the TOSCA standard for the design and orchestration.

3.2 Architecture Description Languages (ADLs)

An Architecture Description Language (ADL) offers a possibility to reason about the proper-
ties of a system in a common language. According to IEEE, an ADL is defined as "any form of
expression for use in architecture descriptions" [DBB14]. By using a proven language, every
stakeholder of a software project is able to understand the system’s properties at a high
level of abstraction. Good designed architectures offer a wide variety of advantages: it’s
easier to satisfy requirements and to react to changes. On the other hand, a bad designed
architecture will most likely have disastrous consequences [GMW10]. The University of
L’Aquila has published a list6 of ADLs containing more then 120 entries. They considered
every language that fits the IEEE definition. Because of the huge amount of languages, only
some selected are exemplary described below and compared to the XML description of
TOSCA’s service templates. Even if TOSCA is no ADL, the standard contains a hierarchical
description of software architectures which is very similar to an ADL’s description. Because
the framework presented in this bachelor’s thesis is designed very generic, it is possible to
adapt the later examples to work with one of the following ADLs as well.

Unified Modeling Language (UML)

The Unified Modeling Language (UML), invented by the Object Management Group, is
one of the most known standards for graphical modeling of software systems and became
the lingua franca for software development. While in 1995 only a small amount of
organizations used modeling tools, this amount lays above 70% in 2008 for UML only
[Wat08]. This growth happened due to the standardization of modeling processes as well
as upcoming tools for analysis, design and implementation. Version 1 only incorporated
some methods for language design, object-oriented programming and architectural design.
Over time, UML was further developed to fit the respective standards of industry [15].

Since UML supports a wide variety of modeling tasks, different models are used to cover
different problems. The models can be categorized in structural and behavioral. While

6http://www.di.univaq.it/malavolta/al/ (10-25-2017)

28

3.2 Architecture Description Languages (ADLs)

structural diagrams specify the composition of different components for different abstrac-
tion layers like classes, packages and deployment, behavioral diagrams are used to describe
the expected behavior of a system. Both types of models are usually represented graphically
but can also be represented as an XML Metadata Interchange (XMI) file containing all nec-
essary information. In terms of TOSCA, a service topology can most likely be represented as
a deployment diagram. A deployment diagram includes a system’s software and hardware
as well as their interrelation as an abstract description. It considers individual nodes
which may run different applications. Execution environments can be specified as well as
databases and connections. All components can be assigned with deployment specifications
including configurational and parametric information like ports or version numbers [15].
Just like a TOSCA service topology, a deployment diagram cannot be instantiated but
elaborated as concrete classes. A problem occurs if the user wants to specify a management
plan for a given deployment diagram. Because UML was not designed for orchestration
issues, the startup, update and termination of a whole system cannot be automated without
extending the standard. Therefore, TOSCA should be preferred for the orchestration of a
distributed system while the design of an architecture can be done using UML. At the end
of the design process, this UML description must be converted to a TOSCA service topology
however.

Architecture Analysis & Design Language (AADL)

The Architecture Analysis & Design Language (AADL) standard was released by SAE7

International in November 2004 and provides modeling concepts for the design and
analysis of performance critical application systems. Software, hardware and system
components are described as well as their interaction in an abstract way. The focus lays on
specifying and analyzing real-time embedded system models; whatsoever, even other kinds
of systems can be modeled though. In order to describe a whole system, AADL distinguishes
between three types of components: application software like processes, data or threads,
execution platforms like processors or memory and composites such as, for example, another
system. Every component is described with a unique identifier (name), its interfaces,
sub-components and possible interactions. In addition to that, AADL offers a possibility to
describe the interactions between components in different ways including message passing,
event passing, synchronized access to shared components and remote procedure calls. Even
properties like ports or version numbers can be specified [FGH06].

Because AADL was designed to enable validation and analysis of a systems’ critical proper-
ties like performance, timing and dependability, it is widely used for the design of complex
real-time safety-critical applications [RKK07]. It contains a huge amount of functionality
for a fine-grained design. In other words, AADL was not designed for modeling distributed
cloud applications. A lot of functionality is not useful in this domain and using the whole

7http://www.sae.org/ (10-26-2017)

29

3 Related Work

framework would be overkill. For example, a cloud application doesn’t need any spec-
ification about the different threads of a component. Therefore, AADL offers a level of
abstraction that is too low for CC applications.

3.3 Pattern Detection

The framework described in this bachelor’s thesis depends on the detection of patterns
already included in a given software architecture. Different solutions exist for different
ADLs. This section covers some pattern detection techniques including the framework by
Wohlfarth [Woh17], which will be used exemplary later on.

3.3.1 Interactive DEsign Assistant (IDEA)

In their paper, Federico Bergenti and Agostino Poggi [BP00] provide a general-purpose
technique for automated common pattern detection in UML class diagrams. The main
idea is to improve a software design by proposing possible improvements to the detected
patterns. In the first step, rules for every pattern are described using Prolog. As an
example, the name of a class implementing the Factory pattern ends with the suffix Factory.
Afterwards, these rules are applied on a XMI file of an UML diagram. Every pattern is
associated with a set of possible improvements, so called critiques. A critique is rated low,
medium or high, depending on its relevance on the pattern. IDEA provides two outputs:
a pattern- and a todo-list. The pattern-list contains all detected patterns as well as their
corresponding participants (classes) in the UML diagram while the todo-list contains all
possible improvements ordered by their relevance.

Due to the abstract nature of patterns, only a subset of them can be detected automatically.
To detect patterns like Singleton (only a single instance of a class is existent at a time
and it exists one single, global access point to it), the UML model needs to include some
information about the amount of possible instances of an object. This is not covered by
the UML standard and therefore often expressed informally or not at all. Detecting such
patterns is impossible because corresponding rules cannot be defined. Other patterns
like the Abstract Factory and the Observer are expressed as concrete classes and their
interrelationships. The Abstract Factory, for example, consists of (at least) four classes:
the product, the concrete product, the creator and the concrete creator. Every concrete
product inherits from product and every concrete creator inherits from creator. Finding
such a substructure in a given UML diagram can be achieved by defining and evaluating
corresponding Prolog rules of inference and is therefore possible [BP00].

IDEA uses rules of inference defined in Prolog to detect existing patterns in a given
XMI/UML class diagram file. In addition to that, every pattern comes with a todo-list for
possible improvements. This paper is a proof that the advantage of automated pattern
detection was already known in 2000. Back then, most computer systems were monolithic
and the term cloud computing as we know it today was not even existent. Therefore, IDEA

30

3.3 Pattern Detection

is based on the detection of patterns in a single application’s architecture; distributed or
CC systems were not considered. The basic idea of defining and evaluating logical rules for
pattern detection can, however, be adapted to all kind of architectures. Even to current
ones.

3.3.2 Pattern Detection Framework for TOSCA-Topologies

In his bachelor’s thesis, Wohlfarth [Woh17] describes a method to find proven patterns
in an existing TOSCA architecture by detecting graph isomorphisms. A TOSCA service
template is a topologically described architecture of a cloud application which can be
represented as a graph. Components are described as nodes and relationships as edges
between them. This graphical representation will then be used for the pattern detection
process. Every pattern is described as a possible subgraph of the given architecture. The
main task is to find a correspondence for every node of the pattern graph in the topology
graph. If such a mapping exists, the pattern is marked as found. The output consists of a list
of patterns which is divided into the categories detected, high, medium, low and impossible,
depending on their probability. The whole pattern detection process can be described as
follows:

1. Keyword Search & Probabilities The type of every component is determined by
comparing its name to a predefined set of options. For example, every node whose
name contains the term tomcat is labeled as server. Therefore, a knowledge base
containing names and labels is mandatory. Based on the detected labels, some first
estimations about the probability of each pattern can be done. Because some patterns
like elastic load balancer and elastic platform are interlinked, their probabilities also
are. Therefore, if one was detected, the probability of the other will be adjusted.

2. Mapping of Topology The TOSCA service template is mapped to a labeled graph.

3. Subgraph Isomorphism All possible subgraphs of the topology graph are created.
Then, the VF2 algorithm will be used to detect all graph isomorphisms between
subgraphs and pattern graphs. If an isomorphism was found, the probability of this
pattern is set to detected.

4. Result The output is a list of patterns and their corresponding probabilities.

On the left hand side, figure 3.1 shows an example TOSCA architecture. In step 1, every
component will be labeled and an initial probability for every pattern is set. Node names
that contain predefined keywords like Ubuntu and nginx will be labeled with Operating Sys-
tem (OS) and Server, respectively. Because the root node contains the keyword OpenStack,
the probability of IaaS is set to high while PaaS is set to low. Further, the probability for
IaaS and PaaS related patterns is updated. A labeled version of the architecture’s graph is
shown on the right hand side of figure 3.1. Since the architecture is already depicted as a
graph, step 2 can be omitted. In step 3, isomorphisms between all subgraphs and all pattern
graphs are detected. In the example, an isomorphism for the Node-based Availability graph
exists. Therefore, the Node-based Availability pattern is categorized as detected. Finally, the

31

3 Related Work

TOSCA Architecture
after Labeling

TOSCA Architecture

ApplicationApplication

ServerServer

OSOS

Virtual
Hardware

ProviderConsumer

nginxnginx

UbuntuVMUbuntuVM

OpenStack

ConnectTo

DeployedOn DeployedOn

HostedOn

HostedOnHostedOn

HostedOn

ConnectTo

DeployedOn DeployedOn

HostedOn

HostedOnHostedOn

HostedOn

Figure 3.1: Pattern Detection Labeling Process

user gets feedback about all patterns and their probabilities. This example should only give
a little insight into the pattern detection process and does not cover all detected patterns.

The pattern detection framework is strongly dependent on detecting graph isomorphisms.
Therefore, the time complexity of the used algorithm plays an important role for the
usability of the framework. Usually, the input graphs are very small (less than 20 nodes).
That’s the reason why an expensive subgraph isomorphism algorithm like VF2 is acceptable
(runtime complexity best-case Θ(N2) and worst-case Θ(N ! ∗N)) [CFSV04].

In contrast to IDEA, the pattern detection framework is applicable to every kind of archi-
tecture that can be represented as a graph. Although single application architectures can
be analyzed as well as the architecture of distributed systems, the restriction to graphical
representable patterns is also a disadvantage. Rules of inference are more powerful than
using only graph isomorphisms. It is therefore possible to detect slightly more patterns
using logical rules. However, the power of the detection framework is sufficient for our
purpose. It will be used exemplary later on because a Java implementation and a graphical
representation for some patterns already exists.

32

4 Approach

Patterns describe proven solutions for recurring problems. They are widely spread and
commonly accepted. The reason is simple: patterns provide a common vocabulary and
often have a positive impact on the designed application. The influence on the overall
system is, however, difficult to predict. While advantages and disadvantages of patterns are
mostly described informally in state-of-the-art literature, the framework described in this
bachelor’s thesis makes use of the NFR-Framework in order to evaluate the influence of
patterns on different NFRs. Therefore, the informal description can be used to analyze the
impact of each pattern in a systematic way using SIGs. By combining this information with
a detection framework, the reason for positive and negative influences on an application
can be identified. Furthermore, possible causes of unsatisfied NFRs can be named. The user
may now decide to change some of the used patterns. Therefore, this framework offers a
possibility for automated pattern inclusion. After identifying possible problem sources, a
pattern countermeasure can be applied to the architecture. Because manual modeling of
patterns is error-prone and time-consuming, it should be automatically achievable in one
click. It is important to mention that this framework only has a supporting and advisory role
during the design process; it’s not meant to make own decisions. It will still be up to the
designer to weigh up advantages and disadvantages of implementing different patterns.

Figure 4.1 shows the basic workflow of this framework. It consists of three main steps.
In step one, an informal, textual pattern description will be analyzed in a systematic way
using the NFR-Framework. This process is described in section 4.1. In the second step,
patterns of a given architecture will be identified and their influence on the overall system

 Step 1 Step 2 Step 3

Pattern
Analysis

Influence
Analysis

Pattern
Inclusion

Unsatisfied NFR found

Figure 4.1: Three Steps of the Pattern Inclusion Framework

33

4 Approach

will be evaluated. The details will be explained in section 4.2. By applying predefined
patterns to the architecture, it is possible to adjust unsatisfied NFRs in the last step. In
section 4.3, the automated pattern inclusion process will be described, including some
exemplary algorithms. Step one must be done only once for every pattern. Step two and
three may be repeated if some unsatisfied NFRs remain even after the pattern inclusion
process.

4.1 Pattern Analysis using the NFR-Framework

Although all patterns are different, their influence on NFRs can be analyzed in a systematic
way using the NFR-Framework. In Gamma [Gam95], for example, a pattern’s description
usually contains information like

• Intent - A short description why the pattern is important.

• Also Known As - A list containing names the pattern is also known as.

• Motivation - A more detailed description of the pattern’s purpose.

• Applicability - A list of circumstances in which the pattern can/cannot be applied.

• Structure - A depiction of the pattern’s structure, often provided as a diagram in an
ADL like UML.

• Participants - A description of classes or objects the pattern is composed of.

• Collaborations - A textual explanation of the relationships between the previously
defined participants and their mandatory mutual guarantees.

• Consequences - A list of positive and negative influences on the application if the
pattern will be applied.

• Implementation - An example implementation of the pattern, given as pseudo code
or in a state-of-the-art language.

• Known Uses - Some use cases of the pattern that may be found in the wild.

• Related Patterns - A list of patterns that are somehow interlinked with the current
pattern, that is, compatible, interchangeable or based on each other.

Especially important for our purpose are the points Motivation, Applicability, Structure,
Participants, Collaborations, Consequences and Implementation. Even if not every pattern’s
description is organized into these categories, the important information can usually be
somehow extracted.

To analyze an existing pattern, the Motivation, Applicability and Consequences have to be
evaluated. The evaluation process consists of four steps:

1. Extract NFRs

34

4.1 Pattern Analysis using the NFR-Framework

2. Identify Operationalizing Softgoals

3. Refine given Operationalizing Softgoals

4. Create the SIG

Due to the missing impact of CC patterns on some NFRs from ISO 25010, only the gray
scaled ones as well as their parents from figure 2.1 are considered in the following. If, for
example, front-end patterns should be analyzed, Attractiveness or Recognizability play a
more important role and should be therefore rather considered then Resource-Utilization.
Further, every pattern influences other NFRs and should be evaluated per se.

In the following, the Watchdog pattern serves as an exemple to clarify every step of the
process. Its definition reads as follows:

"Applications cope with failures automatically by monitoring and replacing application
component instances if the provider-assured availability is insufficient." [FLR+14]

An improvement of the application’s availability seems to be the desired consequence of
this pattern. Therefore, the NFR Availability can be extracted from the description. Because
no other NFRs can be found, we now continue with the second step. The Operationalizing
Softgoals are decisions that may have an impact on some NFRs of a system. The description
of the Watchdog pattern mentions monitoring and management functionality such as
replacing failed instances. Both operations can be used as Operational Softgoals. In
addition to that, the Applicability description of the Watchdog pattern states that the
Stateless Component Pattern must be implemented by every instance [FLR+14]. For this,
another Operationalizing Softgoal will be added. To enable a more fine-grained analysis of
the pattern, every Operationalizing Softgoal will be further refined in step three. This can
be done by extracting additional information from the pattern’s description. Monitoring,
for example, consists of a realtime overview and a statistics of failure which provides
additional information about failures over time. The management task can be refined by
adding a new softgoal for restarting failed instances. Allocation of new resources would
be another possible refinement. This is, however, not part of the Watchdog pattern as
described in [FLR+14] and therefore not considered here. The Operationalizing Softgoal
Stateless Component Pattern is a requirement. It is a precondition and not considered further
because it won’t change the current system in any way. In the fourth step, the final SIG will
be created. The pattern itself always serves as root softgoal. All Operationalizing Softgoals
which were identified in step two will now be added per And-Interdependency. A possible
reading is: "The Watchdog pattern consists of Resource Management, Monitoring and
the Stateless Component Pattern". Furthermore, the refinements of all Operationalizing
Softgoals will be added to their corresponding parent per AND-Interdependency. Every NFR
identified in step one will be added as NFR-Softgoal. If the NFR is just a subrequirement
as defined in 2.1, its parent will also be added and connected to its child per AND-
Interdependency. Now, it’s up to the user to find other NFRs that were addressed by the
Watchdog. Exemplary, all gray scaled items in figure 2.1 will be evaluated.

35

4 Approach

• Operability - Will be added as NFR-Softgoal because it’s the parent of:

– Helpfulness: Both, the real-time overview and the statistics of failure, provide
an overview of the status of the application and are therefore helpful for the
application owner. Thus, Helpfulness and its parent Operability will be added as
NFR-Softgoal. Because the Operationalizing Softgoals create realtime overview
and create statistics of failure are responsible for the additional helpfulness, both
are connected per Help-relationship to the Helpfulness NFR.

• Reliability - Will be added as NFR-Softgoal because it’s the parent of:

– Availability: The Operationalizing Softgoal restart failed instances increases the
Availability of an application by reducing the time an application cannot work
properly because of an unavailable component. Therefore, the restart failed
instances Operationalizing Softgoal will be connected to the Availability Softgoal
per HELP-relationship.

– Fault Tolerance: By restarting failed instances, the system is more fault tolerant
because every failure will be handled immediately and the overall downtime is
decreased. Thus, restart failed instances will be connected with the newly added
Fault Tolerance NFR Softgoal, using a Help-relationship.

– Recoverability: If a failure occurs, the defective component will be replaced
instantly. Therefore, Recoverability will be added as NFR Softgoal and restart
failed instances will be connected using a Help-relationship.

• Performance Efficiency - Will be added as NFR-Softgoal because it’s the parent of:

– Resource-Utilization: In order to run a Watchdog service, additional resources
are needed. The NFR Softgoal Resource-Utilization and its parent will be added.
In addition, the negative effect of the root Operationalizing Softgoal Watchdog
Pattern on the Resource-Utilization Softgoal will be modeled using the Break-
relationship.

The Watchdog pattern only influences the above listed NFRs, which means that all other
NFRs (Modularity, Reusability, Changeability, Maintainability, Integrity, Security, Portability,
Adaptability, Transferability, Time-Behavior, Replaceability, Interoperability and Compatibility)
won’t be added. The final SIG is depicted in figure 2.2.

This procedure must be applied to every pattern. The resulting SIG offers a comprehensible
way to discuss a pattern’s influence on different NFRs. Further, individual details are
apparent from the refined Operationalizing Softgoals. In the following sections, the
determined impact of each pattern will be used to evaluate an application’s state and
possible improvements. Even if the SIG itself won’t be used any further, it can be helpful to
reason about a specific design decision. For completeness, the SIGs of the Environment-
based Availability and the Node-based Availability are contained in the Appendix. Both
patterns consists of either an elastic infrastructure or an elastic platform. Therefore,
both pattern’s SIGs are very similar. The only difference is in their direct connection
to the Resource Utilization softgoal. Environment-based Availability provides a common

36

4.2 Influence Analysis using Pattern Detection

Figure 4.2: Example Topology for the Influence Analysis

environment which has a positive influence on the resource utilization. In contrast, Node-
based Availability provides no such component and has therefore a negative impact.

4.2 Influence Analysis using Pattern Detection

The influence of every architecture’s pattern should be evaluated in order to detect bottle-
necks and bad design choices. This bachelor’s thesis doesn’t implement an own pattern
detection algorithm; rather, any preferred detection framework is suitable. Two possible
candidates are described in section 3.3. An extended version of the Pattern Detection
Framework for TOSCA-Topologies will be used exemplary later on because the basic imple-
mentation doesn’t cover individual patterns like Watchdog. In order to reliably evaluate an
architecture, every pattern must have been evaluated with a corresponding SIG before. This
can be achieved by following the instructions described in 4.1. The SIG shows the impact
of an individual pattern on the whole application. By combining these information with the
detected patterns, it is possible to reason about the positive and negative influences every
pattern has on the overall application. In addition to that, the influence of every unapplied
pattern on the system’s NFRs can be evaluated. This enables the user to weigh up other
possible options against their current present correspondents.

The influence analysis consists of three steps:

1. Detect each pattern’s probability in a given architecture

2. Evaluate every pattern

3. Inform the user about the results

37

4 Approach

Every step will be further explained by using topology 4.2 as an example. The six nodes
OpenStack, Ubuntu, Java, Tomcat, Web-Application and Watchdog are all based on each
other, creating one big dependency chain. In step one, the probabilities for all patterns
must be determined. The modified detection framework came to the following results:

• Detected: Platform-as-a-Service, Environment-based Availability, Watchdog

• High Probability: Execution Environment Pattern, Public Cloud

• Medium Probability: ∅

• Low Probability: Elastic Platform, Node-based Availability, Elasticity Manager, Elas-
tic LoadBalancer, Elastic Queue, Relational Database, Message-oriented Middleware

• Impossible: Infrastructure-as-a-Service, Elastic Infrastructure

In step two, the gathered information will be combined with the influence a pattern has
on the NFRs. It is now possible to reason about adding and removing patterns to and
from the architecture. Using the results of the Watchdog analysis, the conclusion should
be that removing the Watchdog pattern would result in less Resource Utilization, but the
overall Reliability and Operability of the system would also decrease significantly. Now
it’s up to the user to weigh up advantages and disadvantages of removing the Watchdog
and making a decision. Furthermore, unapplied patterns can be evaluated to see if they
possibly influence the NFRs in the desired way.

4.3 Automated Pattern Inclusion Process

After identifying the trade-offs between different patterns, the user may want to apply
some new patterns and remove others. Because this process can be very time-consuming
and error-prone, the whole procedure should be automated. This way, the result is always
the same no matter who the designer is and it can be achieved in almost no time. If the
automated pattern inclusion is such a game changer, the question comes up why it has
been so rarely investigated yet. There are multiple answers for that. First, every pattern is
unique, which means that every pattern must be implemented in it’s own way. There is
usually no possibility to reuse the code of one pattern for another. Considering more than
1500 existing patterns [HC07], the implementation process would take a lot time; even
for a large team. The second reason is the complexity of some patterns. While patterns
like Watchdog are very simple to implement, other patterns like Node-based Availability
are harder to realize. Both implementations are covered later in this section. Before, the
general idea behind the algorithms and the necessary preparation is described.

38

4.3 Automated Pattern Inclusion Process

4.3.1 Preparation

Every topology can be represented as a graph. Therefore, the pattern inclusion algorithms
work on graphs and make use of standard operations like getAllNeighbors, addVertex,
addEdge, getEdgeBetween(Vertex 1, Vertex 2) and so on. In the first step, a given topology
description (e.g. a TOSCA service template) must be parsed into a graph. Every component
corresponds to a node and every interdependency to an edge. The vertices are usually
provided with additional information like the component’s name, its type and version
number. Interdependencies are mostly also labeled. It can be very helpful to add most
of the available data to the graph. The more information is available, the easier it is to
implement pattern inclusion algorithms.

Role-Labeling of Components

The identification of an individual component’s role in the overall system may come in
handy. Therefore, every component will be additionally labeled with one of the following
keywords:

• Virtual Hardware - describes a Virtual Hardware component that offers virtual
hardware and runs an Operating System. OpenStack can be exemplary named.

• Operating System - describes an Operating System component like Ubuntu or
Windows that is hosted on a Virtual Hardware and runs other applications and
services.

• Server - defines a Server component that is solely used to host other applications
and services. An example would be Apache Tomcat.

• Messaging - will be used for two different node types: every message broker like
Apache ActiveMQ and every message topic that applications subscribe to will be
labeled with Messaging.

• Storage - describes all kind of data storage nodes like databases and database
management systems (MariaDB, MongoDB, ...).

• Service - defines different services that are mandatory for the overall system but no
explicit part of the application. Execution environments like Java and Python fall into
this category.

• Application - every instance of an application that has not been labeled yet will be
labeled as Application.

Before each component can be labeled, lists containing identifying keywords must be
created. As an example, the list for Service contains, amongst other things, the entries
Java and Python. If it is possible to match a component’s type with one of these entries,
the component will be labeled as Service. If not, the process continues with the next list.
Because every application is unique, listing their names is not possible. Therefore, if the

39

4 Approach

component’s type has not matched any of the other entries, it will be labeled as Application.
In order to achieve good results, it is necessary to keep the lists up to date.

Normalization of the Inputgraph

Creating an application’s architecture, there are many choices to make. Every designer has
his own way of representing interdependencies and correlations in an architecture. All of
them have advantages and disadvantages but none of them is wrong. Problems may occur
when an algorithm depends on a specific design convention. If this convention was hurt,
the algorithm doesn’t work properly. In order to prevent such situations, all input graphs
should be normalized. Normalization means that different design choices are converted
into a single representation of the graph which will then be used to apply the algorithms.
Thus, different representations will be handled the same way because the input graph will
always be the same. However, the normalization process depends on the used ADL and
their possibilities to describe same behavior in different ways. Thus, the normalization must
be implemented individually for different ADLs. Using TOSCA topologies as an example,
execution environment nodes can cause problems if the Node-based Availability pattern
should be applied. Applications and their execution environment can’t be hosted on two
different operating systems because the two nodes are strongly interdependent. A more
detailed description including a possible solution for TOSCA topologies will be covered in
the following section.

4.3.2 Algorithm Concepts

Using the node’s information, algorithms for the automated inclusion of different patterns
can be developed. As mentioned before, every pattern is unique and must therefore be
implemented in its own way. This task must be done once and as soon as a sufficient set
has been built, it can be reused multiple times and ease the process of software design.
Exemplary, algorithms for the Watchdog, the Environment-based Availability and the
Node-based Availability pattern will be described below.

Watchdog

The Watchdog is defined as an application that copes with failures of components auto-
matically. It monitors other application’s instances and replaces them with a redundant
correspondent if necessary [FLR+14]. This description leads to the conclusion that a new
application component representing the watchdog must be created. Furthermore, it is said
that it monitors other application’s instances. This can be achieved by creating a relation
between the newly created Watchdog component and all other application instances. The
functionality (monitoring and restarting instances, etc.) cannot be modeled in TOSCA and,
therefore, won’t be part of the algorithm.

40

4.3 Automated Pattern Inclusion Process

In order to include the Watchdog pattern in an existing graph, all other nodes must be
labeled first. Then, a new node must be created. The node’s type will be set to Watchdog.
Using this convention, the implementation of multiple Watchdogs can be prevented. In
case another node with the type Watchdog is already existent, the algorithm doesn’t change
the architecture and terminates. Else, the Watchdog component will be added to the graph.
In the final step, the newly added node will be connected with a connectsTo relationship
to every other node whose role was set to application. An illustration in pseudo code is
shown in algorithm 4.1. The operating system on which the Watchdog will be hosted is not
specified. This is due to the fact that there may be multiple operating system nodes in the
architecture and it is not possible to determine the preferred one. If the architect wants
to specify an OS node hosting the Watchdog component, this relation has to be modeled
manually.

Algorithm 4.1 Watchdog

procedure APPLYWATCHDOGPATTERN(Graph G)
LABELGRAPHNODES(G)
Nwatchdog ← NewNode(Type→Watchdog)
AddNode(G, Nwatchdog)
for all Nnext ∈ NodesOf(G) do

if RoleOf(Nnext) = Application then
AddRelation(G, Nwatchdog, Nnext, connectsTo)

end if
end for

end procedure

Environment-based Availability

If a cloud provider guarantees the availability of an environment that can be used to
deploy own applications, the provider offers Environment-based Availability [FLR+14].
While Environment-based Availability is no pattern per se, it is strongly coherent with the
Execution-Environment, which is a real pattern. In the Environment-based Availability,
the provider has to offer and guarantee the availability of an execution environment for
applications. Because a TOSCA topology contains no information about the provider’s ser-
vices, it can’t be represented properly in a TOSCA architecture. The Execution-Environment
pattern, on the other hand, can be easily represented in a TOSCA architecture. It consists
of a user-defined execution environment node and multiple other nodes that depend on
it. An example can be found in figure 4.3. Multiple application instances share the same
services and/or servers, which run on the same operating system. If, for example, two
applications depend on the Java Runtime Environment (JRE), they may either use the
same JRE or two different ones, hosted on two different operating systems. In case of the
Environment-based Availability, the CC provider offers a common runtime, which will then
be used by all applications. If, on the other hand, the user deploys a JRE himself and it
will be used by at least two different applications, the Execution-Environment pattern has

41

4 Approach

 Execution Environment

Operating System

ServerService

ApplicationApplication

Figure 4.3: Execution Environment Pattern as defined in [Woh17]

been applied. Because both patterns are very similar and Environment-based Availability
can’t be represented in a TOSCA topology, it will be further treated as a synonym for the
Execution-Environment pattern.

In order to apply the Environment-based Availability to a given architecture, all service-
and server nodes need to be identified by labeling the graph. If the type of multiple services
and servers, respectively, is the same, they will be merged. This way, only one instance of
a given execution environment will be left over. Algorithm 4.2 describes a way to apply
the Environment-based Availability pattern automatically to a given graph. In order to
merge two nodes N1 and N2, the target of every incoming edge to N1 will be set to N2.
Furthermore, the source of all outgoing edges of N1 will be set to N2. Thereafter, N1 can
be removed (including all incoming and outgoing edges) without violating the integrity
of the overall system. After this process finished, only one single instance of every type
of service and server node remains. In addition, the relationships have been modified to
keep the system’s integrity. A problem may occur if the merged instances have ports or
similar configurations defined. If an application depends on an open port defined in N1,
this node should not be merged with a N2 because the merging process just re-adjusts the
relationships. If N2 hasn’t defined the same port as open, the merging process could break
the system. This is, however, not considered here. Rather, it is left as an open issue for
future work.

Node-based Availability

In case the provider guarantees the availability of individual nodes instead of the whole
environment, Node-Based Availability is given [FLR+14]. Figure 4.4 shows an example for
the Node-Based Availability. Just as the Environment-based Availability, it is no pattern per

42

4.3 Automated Pattern Inclusion Process

Algorithm 4.2 Environment-based Availability

procedure MERGETWONODES(Graph G, Node N1, Node N2)
for all e(v1, v2) ∈ EdgesOf(N1) do

if e.v1 = N1 then
e.v1 ← N2

else if e.v2 = N1 then
e.v2 ← N2

end if
RemoveNodeWithEdgesFromGraph(N1, G)

end for
end procedure
procedure APPLYENVIRONMENTBASEDAVAILABILITY(Graph G)

LABELGRAPHNODES(G)
for all N1, N2 ∈ NodesOf(G) ∧N1 ̸= N2 do

if TypeOf(N1) = TypeOf(N2) then
if RoleOf(N1) = RoleOf(N2) = (Service ∨ Server) then

MergeTwoNodes(G, N1, N2)
end if

end if
end for

end procedure

se. Rather, it only describes the type of availability the provider offers. Because the user
probably wants to make use of the offered availability, he wants every application to run on
a separate underlying and software-stack. Therefore, the Node-based Availability will be
treated as a pattern where every Node is independent from the underlying infrastructure
of others. The only node that will be shared amongst all application stacks is the virtual
hardware component. In case one node fails, other nodes are not affected as long as they
don’t depend on the failed one directly. To stay with the JRE example: if two applications
require the same JRE, they will still use two different JRE nodes. In case one of these node
breaks, only the depending application stops working but the other still remains intact. If
they have shared the same execution environment, both of them would’ve been broken.
This definition will be used every time it is referred to Node-based Availability even if it
is not generally applicable. Rather, this definition only works for an IaaS provider. If a
PaaS is provided, it is possible that there is only one single OS node, too. Nevertheless,
the availability of all individual hosted nodes can still be assured. The structure shown
in figure 4.4 describes the Node-based Availability that will be referred to from now on.
For unambiguous explanations later on, all other kinds of Node-based Availability will be
neglected.

The implementation process is more complicated than the others before. After labeling all
nodes with their corresponding role, all application nodes are selected. Using breadth-first
iteration, a subgraph for each application node is built. The subgraph always includes the
application node and all children that are directly or indirectly connected to it, except for

43

4 Approach

Virtual Hardware

Operating SystemOperating System

ServerServer

ApplicationApplication

Figure 4.4: Node-based Availability as defined in [Woh17]

other application nodes. The interrelations between the remaining nodes are retained,
too. It is important to mention that the nodes and edges are exactly the same as in the
input graph, no copies. This becomes important when the subgraphs will be merged
again. Now, each subgraph will be forked. That means that every node which has no
application-, virtual hardware- or messaging-role will be copied and the incoming and
outgoing edges are adopted. The initial node will then be deleted. After each subgraph
has been forked, they will be merged together again. The nodes whose role is application,
virtual hardware or messaging haven’t been copied. Therefore, they are all the same and
merged into one single node. All other nodes that were copied in the forking process are
new ones which means that they won’t be merged. Rather, every application has its own
individual substructure now and is independent from the underlying infrastructure of other
application nodes. For a better understanding, algorithm 4.3 describes this whole process
in pseudo code.

As an example, figure 4.5 shows an initial input graph on the left side. The nodes are
colored for a better understanding only. After the application nodes have been filtered out
and their underlying structure has been evaluated, the resulting subgraphs are depicted
on the right side. Now, each one will be forked. Therefore, all nodes whose role is not
application, virtual hardware or messaging will be copied, including their incoming and
outgoing relations. Further, the nodes that were copied will be deleted. The result can be
found in figure 4.6. In the last step, all forked subgraphs will be merged again. Because

44

4.3 Automated Pattern Inclusion Process

All subgraphsInput graph

VirtualHardware

OS

Server

Application

VirtualHardware

OS

Server

Application

VirtualHardware

OS

Server

ApplicationApplication

Figure 4.5: Node-based Availability Subgraph Creation

Forking of the orange subgraph

VirtualHardware

OS

Server

Application

OS

Server

VirtualHardware

OS

Server

Application

Figure 4.6: Node-based Availability Subgraph Forking

45

4 Approach

Algorithm 4.3 Node-based Availability

procedure GETSUBGRAPHFORNODEINGRAPH(Node Napp, Graph G)
Gsub ← NewDirectedGraph
AddNode(Gsub, Napp)
for all Nnext ∈ BreadthFirstIterator(Napp, G).next do

if RoleOf(Nnext) ̸= Application ∧ NodeHasPredecessorInGraph(Nnext, Gsub) then
AddNodeWithRelationsToGraph(Nnext, Gsub)

end if
end for
return Gsub

end procedure
procedure FORKSUBGRAPH(Graph Gsub)

for all Nsub ∈ NodesOf(Gsub) do
if RoleOf(Nsub) ̸= (Application ∧ VirtualHardware ∧Messaging) then

Nclone ← CloneNodeWithRelations(Nsub)
AddNode(Nclone, Gsub)
RemoveNodeWithRelationsFromGraph(Nsub, Gsub)

end if
end for

end procedure
procedure APPLYNODEBASEDAVAILABILITY(Graph G)

LABELGRAPHNODES(G)
NORMALIZEGRAPH(G)
Greturn ← NewDirectedGraph
for all Napp ∈ ApplicationNodesOf(G) do

Gsub ← GetSubGraphForNodeInGraph(Napp, G)
ForkSubGraph(Gsub)
AddSubGraph(Greturn, Gsub)

end for
return Greturn

end procedure

the hardware node is the only one that is still the same in both subgraphs, the resulting
graph will also have one single VirtualHardware node only. Both other nodes (server and
OS) can’t be merged because they are now different ones. That’s the reason why they are
now existent twice. The Node-based Availability has been successfully applied. The result
is shown in figure 4.7.

Normalization

The normalization of TOSCA topologies is very important. The Node-based Availability
algorithm, for example, produces wrong output if it is applied on a non-normalized graph.
The problem can be explained using a small graph, containing only three nodes. One such

46

4.3 Automated Pattern Inclusion Process

Merging forked subgraphs

OS

Server

Application

VirtualHardware

OS

Server

Application

VirtualHardware

OS

Server

Application

VirtualHardware

OS

Server

Application

Figure 4.7: Node-based Availability Subgraph Merging

Ubuntu

TomcatJava
DependsOn

HostedOn HostedOn

Figure 4.8: Triangle Problem in a TOSCA Topology

graph is depicted in figure 4.8. The root node is always an operating system like Ubuntu.
Further, there are at least two nodes hosted on this OS. Out of all these nodes, at least one
has to depend on another node that is an execution environment. In our example, Java
is the execution environment and Tomcat is the server that depends on it. Running an
application without its execution environment is not possible. Therefore, they should not
be forked and separated from each other in the Node-based Availability algorithm. Because
of the triangular nature of the problem’s structure, it will be further referred to as Triangle
Problem.

The reason why the Triangle Problem makes the Node-based Availability algorithm fail is
because after forking, the execution environment and the node that depends on it would

47

4 Approach

Ubuntu

TomcatJava
DependsOn

HostedOn

Figure 4.9: Solved Triangle Problem in a TOSCA Topology

be hosted on two different operating systems. Tomcat, for example, depends on Java and
can’t be hosted on an OS that has no Java available. Thus, the graph must be normalized in
order to solve the Triangle Problem before the Node-based Algorithm can be applied. This
process guarantees that execution environments and their depending nodes are always
hosted on the same OS.

Normalization is pretty simple. As figure 4.9 shows, the HostedOn relation between the
DependsOn source and the operating system must be removed. Removal of the relation
should be no problem because the remaining DependsOn connection still induces that the
source node is hosted on the same OS as the target execution environment. Because the
depending nodes are now only implicitly hosted on the operating system, the Node-based
Availability pattern’s algorithm won’t fork the underlying OS node.

Algorithm 4.4 shows a possible implementation in pseudo code. In order to normalize
a given graph, all environment nodes must be identified first. This can be done using a
list containing keywords describing possible execution environments like Java and Python.
The process to determine these nodes is similar to role-labeling from then on. All nodes
that depend on an environment node are then filtered out. In case a dependent node
is connected per HostedOn relationship to the same OS as the environment node, this
connection will be removed.

48

4.3 Automated Pattern Inclusion Process

Algorithm 4.4 Normalization

procedure NORMALIZEGRAPH(Graph G)
for all Nenv ∈ EnvironmentNodesOf(G) do

NenvOS ← OSNodeOf(Nenv)
for all Ndep ∈ DependantNodesOf(Nenv) do

NdepOS ← OSNodeOf(dependantNode)
if NenvOS = NdepOS then

RemoveRelationBetween(Ndep, NdepOS)
end if

end for
end for

end procedure

49

5 Implementation

With this bachelor’s thesis comes a Java project that allows the user to load an existing
TOSCA service template’s .csar archive and apply some predefined patterns in one click.
The GUI provides an overview of the detected patterns, their influence on the NFRs as well
as a graphical depiction of the topology graph itself. This way, the user can easily follow the
changes made. Chapter 4 covered the basic idea behind the implementation of different
algorithms to apply patterns on a given architecture. In the first step, the input graph must
be normalized and all its node have to be role-labeled. Only after that, pattern inclusion is
possible. This chapter provides a short overview of the GUI itself as well as a listing of the
used technologies. Further, the basic code structure will be explained and the expandability
of this project will be discussed.

5.1 Pattern Inclusion Application (PIA)

The Pattern Inclusion Application offers a graphical user interface for the pattern inclusion
process. Figure 5.1 shows the GUI, which is separated into three different sections. Section
A shows all available patterns and their probability. This view is updated every time the
topology changes. The user can select a given pattern from the list. Its influence on the
topology’s NFRs will be shown in section B. Besides the name of the selected pattern, the
influence on every NFR from ISO25010 is shown in an hierarchical tree view. If the NFR
and its connection is colored green, the impact is positive. If the color is red, the impact
is negative. The strength of the impact is shown using two, one or none plus and minus
icons, respectively, in front of every NFR. Only if a NFR is not influenced by the selected
pattern at all, the color is white. A button is placed on top of that view which allows the
user to apply the selected pattern on the topology. The update will be visible immediately;
section A will show a new list of detected patterns and section C will show the updated
graph. It is possible to move the topology graph from section C with the mouse. If the
mode of the display area was set to 3D, movement becomes rotation. In addition to that,
zooming is possible using the mouse wheel. Every time a change was made, the graph will
be updated. Further, a new graph will be displayed if a new service template was loaded.
Opening another .csar archive is possible using the menu bar’s File→ Open dialog.

51

5 Implementation

Figure 5.1: Pattern Inclusion Application GUI

5.2 Used Technologies

The whole project was realized using Java 8 which is the recommended version at this time.
All used libraries and some features are described in this section.

5.2.1 JGraphT

In order to represent topologies internally as a graph data-structure, the JGraphT1 library
version 1.0.1 was used. It allows the user to simply create and modify graphs, using custom
classes for nodes and relationships. Different graph types like weighted, unweighted,
directed, undirected, labeled and unlabeled graphs are supported. Further, some basic
algorithms and iterators like the VF2 algorithm and the breadth-first iterator are also
provided. JGraphT is licensed under the LGPL2 and the EPL3.

By using custom entity-classes for nodes and relationships, a given topology can be trans-
ferred into a graph data-structure. All algorithms are then just performed on this graph;
not on the topology itself. However, this is no problem because a backward conversion
from graph to topology is possible, even if it is not supported by the implementation yet.

1http://jgrapht.org/
2https://www.gnu.org/licenses/lgpl-3.0.en.html
3https://www.eclipse.org/legal/epl-v10.html

52

5.3 Code Structure

5.2.2 Jblas

Jblas4 is a linear algebra Java library which offers data-structures like matrices and vectors
as well as computational operations as, for example, matrix multiplication and dot product.
It is a light-weight wrapper of BLAS5 and LAPACK6. In the Pattern Inclusion Application,
jblas (V.1.2.4) is used for the calculation of the topology graph’s 2D and 3D self-aligning
depiction. By saving a 2D/3D position for every node and calculating a direction vector for
each node, the graph can be aligned automatically. Furthermore, using rotation matrices,
the whole graph can be rotated around all axes, which gives a better overview over the
topology. Jblas is licensed under a revised version of the BSD 3-clause license.

5.2.3 Pattern Detection Framework

In his bachelor’s thesis, M. Wohlfarth [Woh17] describes a framework for pattern detection
in TOSCA topologies. It was initially designed as an extension for openTosca’s Winery.
Therefore, the implementation had to be slightly modified to work with the the graph
representation used by the pattern inclusion application. To separate the detection logic,
the modified pattern detection framework has been exported and was added to the project
as a Java library. Furthermore, it was expanded in the inclusion application to increase the
amount of detectable patterns.

5.2.4 Java Swing

The GUI was implemented using Java Swing. It is a part of the Java Foundation Classes
(JFC), which includes a set of features for building GUIs. Swing was used due to the fact
that no additional libraries are necessary and Swing already covers a lot of functionality
needed for the implementation. One of the two most important features are the Swing GUI
Components, which include basic GUI related elements like buttons, taskbars and frames.
The second significant feature is the Java 2D API. It was designed to easily create and
modify 2D graphics [Ora]. This feature was used for the graphical representation of the
architecture’s graph.

5.3 Code Structure

The implementation consists of four big packages: GUI, Parser, Framework and Utilities.
The GUI package contains all classes necessary for the depiction and functionality of the
main window and its components. The Parser package includes all classes that are used to

4http://jblas.org/ (16.11.2017)
5http://www.netlib.org/blas/ (16.11.2017)
6http://www.netlib.org/lapack/ (16.11.2017)

53

5 Implementation

PatternDetectionFrameworkJBlasJGraphT

PatternInclusionApplication

patternSIGspatternAlgorithmsnfrpatternInclusionlinearAlgebraimages

toscaXMLElementsEnumscustomJGraphTElementscustomElementsactionListeners

utils framework

parsergui

«import»«import»«import»

«access»

«access»

«access»

«access»

Figure 5.2: UML Package Diagram of the Pattern Inclusion Application

convert a given .csar archive to a JGraphT data-structure, including custom graph nodes
and relations. Further, the Framework package consists of all algorithms and supporting
classes the framework described in this bachelor’s thesis is composed of. The fourth package
contains Utility functionality for linear algebra, image editing and the framework itself. The
interrelations and dependencies are shown in figure 5.2. The GUI package, which is the
core, makes use of all other packages in order to display the topology graph and performs
the inclusion algorithms. Further, the framework package accesses a modified version of
the pattern detection class, which is also defined in the utility package. For completeness,
the imported libraries are also depicted. In this section, the four main packages and their
structure will be explained in detail.

5.3.1 GUI Package

Containing different classes for the creation of the application’s window and its components
as well as the main method, the GUI package is the project’s core. This package contains
three custom elements that are located in the sub-package customElements: First, the
patterListBar, which can be used to show a list of detected patterns as well as their
probability. Second, the dependencyBar, which depicts the influence a selected pattern has
on different NFRs. Both bars are interlinked using the BarConnector class. The third element
named grapharea defines a custom element that can be used to display a self-aligning graph
in 2D and 3D, respectively. All action listeners concerning the main window are located in
the sub-package actionListeners.

54

5.4 Expandability

5.3.2 Parser Package

The parser package contains classes for the extraction of .csar archives and information
about the creation of a topology graph. CsarZipHandler is a singleton which handles the
unpacking of archives, parsing and returning of a JGraphT object. In order to gather
necessary information from the XML files, the sub-package toscaXMLElementEnums con-
tains the corresponding XML-specifiers. Further, the customJGraphTElements sub-package
includes two classes: one for custom JGraphT nodes and one for custom edges. Using these
sub-packages, the ToscaParser class manages extraction and graph creation.

5.3.3 Framework Package

The framework package contains entities and functionalities necessary for the pattern
inclusion framework as, for example, a class for role labeling of a given topology graph.
The first sub-package nfr includes an entity class for NFRs, as well as different factories
used by the patternSIGs package. These factories build dependency trees based on ISO
25010 for an internal representation of NFRs and their interdependencies. The patternSIGs
package contains a collection of classes representing the influence a specific pattern has on
different NFRs. These information were extracted from the corresponding pattern’s SIG.
A collection of available pattern inclusion algorithms is stored in the patternAlgorithms
sub-package.

5.3.4 Utility Package

While the other three packages are for one single purpose only, the utils package contains a
mix of different utility classes. The first sub-package images offers an ImageUtility class that
can be used for image manipulation like dyeing a BufferedImage. Sub-package linearAlgebra
includes a class for basic matrix operations like rotation in 2D and 3D. The last sub-package
patternInclusion contains an extended version of the Detection class by [Woh17].

5.4 Expandability

The Pattern Inclusion Application is just a prototype. In order to use it efficiently, more
pattern algorithms need to be added. This is no problem, though. The only precondition is
that every new algorithm must implement the IPatternApplicant interface. This interface
provides one single apply method, which takes the current topology graph as input parame-
ter and returns a version of the graph where the pattern has been applied. By implementing
a custom version of this method, every arbitrary pattern can be added to the input graph.
It is important to mention that the input graph won’t be modified; rather, a copy including
the new pattern will be returned, making it possible to compare the result with the input
graph.

55

6 Validation

In order to validate the functionality of the framework and the algorithms, this chapter
deals with an example TOSCA topology and explains the inclusion process for different
patterns step by step. Role-labeling as well as normalization and pattern inclusion will be
covered.

The pattern analysis as well as the influence analysis can’t be validated without empirical
data. Gathering information about the satisfied NFRs of a system requires a lot of time.
Availability, for example, is the ratio of the operability to a system’s up-time. Therefore, the
system must be tested for a long period of time in order to achieve good results. For this
bachelor’s thesis, it is sufficient that the NFR-Framework has already been validated and
its operability has been proven over time. This chapter only covers the validation of the
implementation.

Figure 6.1 shows an example TOSCA topology. This topology has been chosen because
it is very suitable to explain every step of the inclusion process for the Watchdog, the
Environment-based and the Node-based Availability pattern. First, every component will be
labeled using different keyword lists. Then, depending on the algorithm, the graph must be
normalized. Only after these steps, the final pattern inclusion algorithms can be applied.

Figure 6.1: Openweathermap TOSCA Topology

57

6 Validation

6.1 Role-Labeling

Let’s assume there are five different lists. The name and content of these lists is exemplary
listed below:

1. VirtualHardware - OpenStack

2. OperatingSystem - Ubuntu, Windows

3. Service - Java, Python

4. Server - Tomcat, Apache, nginx

5. Messaging - ActiveMQ, Mosquitto, Topic

By comparing the type of every component with the entries of these lists, the components
will be labeled as follows:

• OpenStack-Liber...: VirtualHardware

• Ubuntu-14.04-V...: OperatingSystem

• Python_3: Service

• Mosquitto_3.1: Messaging

• Humidity, TempTopic, PressureTopic: Messaging

Only the Openweathermap’s type can’t be found in any of these lists. That’s the reason why
it will be labeled as Application. Since every component has an individual role specification
now, the role labeling process has been finished.

6.2 Normalization

In order to apply the Node-based Availability pattern, the graph must be normalized first
because the result will be wrong otherwise. During the normalization process, some
HostedOn edges will be removed to resolve the Triangle Problem. In the first step, all nodes
representing an execution environment need to be identified by matching every node’s type
with a keyword list. The used list is shown below:

ExecutionEnvironments - Java, Python, Ruby

By comparing the node types with this list, it turns out that no node matches the Java or
Python keyword. The only found execution environment was Python_3. In the second
step, all DependsOn sources targeting the execution environment need to be identified. If
this source node and the environment node are hosted on the same operating system, the
structure needs to be normalized. In the example, Openweathermap is the only component
that depends on Python_3. Further, both are hosted on the same OS. That’s the reason
why the HostedOn relationship between Openweathermap and the common Ubuntu-14.04

58

6.3 Pattern Inclusion

Figure 6.2: Openweathermap TOSCA Topology Normalized

node will be removed. However, no information is lost because the DependsOn relation
still implies that Openweathermap is hosted on the same OS as its execution environment.
Figure 6.2, which shows the result of the normalization process, depicts exactly the same
topology except for one missing HostedOn edge between the Openweathermap and the
Ubuntu-14.04 node.

6.3 Pattern Inclusion

After normalization and role-labeling, different patterns can be applied to the topology.
Every pattern is unique and must therefore be implemented in their own way. Exemplary, all
execution steps of the previously described Watchdog, Node-based and Environment-based
Availability algorithms will be explained in this section.

6.3.1 Watchdog Pattern

Algorithm 4.1 will be used to apply the Watchdog pattern to the labeled topology. In the
first step, a new node must be created for the Watchdog component. This node will then
be connected to every node whose role was identified as Application with a ConnectsTo
relationship. The only node that was labeled as Application is Openweathermap. Therefore,
the Watchdog node will only be connected to this one. The corresponding excerpt of the
topology is shown in figure 6.3. Thereafter, the pattern has been successfully applied.

6.3.2 Node-based Availability

In order to apply Node-based Availability to the example topology using algorithm 4.3,
the graph must be role-labeled and normalized first. Both algorithms have been explained
before and the result is shown in figure 6.2. In the next step, all application nodes need

59

6 Validation

Figure 6.3: Applied Watchdog

to be filtered out. In our example, the only node that remains is the Openweathermap.
The corresponding subgraph is then created by adding the node itself as well as all other
non-application nodes and their relations to a new graph using a breadth first search. In
our example, the subgraph matches the normalized input graph. The created subgraph
will be forked in the next step. During the forking process, every node that has at least
two predecessors and whose role is neither Application nor VirtualHardware or Messaging
will be cloned. The only component that matches this description is the Ubuntu-14.04
node. Therefore, this node will be duplicated. The outgoing edges will remain the same
for every clone but each will have only one incoming edge. As a result, the Python_3 as
well as the Mosquitto_3.1 component have their own OS node. The result is shown in
figure 6.4. It is important to mention that the detection framework doesn’t recognize the
Node-based Availability properly. Even after applying, the probability is not set to Detected.
This is, however, a fault of the pattern detection framework. As soon as the topology graph
doesn’t match the Node-based Availability graph for 100%, the pattern won’t be recognized
correctly. Per definition, the Node-based Availability has been properly applied, though.

6.3.3 Environment-based Availability

Environment-based Availability is already existent in the example graph. Therefore, the
topology depicted in figure 6.4 will be used as input. By applying the Environment-based
Availability, the result of the Node-based Availability should be reversed. After role-labeling,
all node pairs whose nodes have the same type and role are filtered out. In our example,
the only two nodes satisfying this dependency are both Ubunt-14.04 nodes. Both of them
will now be merged. This can be achieved by redirecting all incoming edges of node one
to the second node. Thereafter, node one can be deleted. As a result, Mosquitto_3.1 and
Python_3 will be hosted on the same component again. The result is the normalized base
graph, shown in figure 6.2.

60

6.3 Pattern Inclusion

Figure 6.4: Applied Node-based Availability

61

7 Conclusion and Outlook

Big software systems need to be planned and designed like a new, big building. Thus,
a software architect is part of every big software project. His job is the design of an
application’s architecture that satisfies functional-, as well as non functional requirements
(NFRs). Because of similar problems during the design process of different applications,
specific patterns for proven solutions of recurring problems have been developed. The
framework described in this bachelor’s thesis can be used to evaluate the influence of given
patterns on different NFRs in an understandable and comprehendable way. The focus is on
an excerpt of the NFRs defined in ISO 25010. By using the NFR-Framework, an influence
analysis of different patterns can be done. Further, the detection of existing patterns can be
used to weigh up the influence of different patterns on a whole system. The second part of
this framework deals with the automation of including patterns in existing architectures,
based on TOSCA related examples. Even if every pattern has a unique structure and must
be implemented in its own way, common rules for pattern inclusion can be defined as,
for example, role-labeling and normalization. The described framework offers no specific
instructions for the application of different CC patterns. Rather, it can be seen as a general
purpose technique for a comprehensible influence analysis of given patterns on a system’s
NFRs combined with an approach for automated pattern inclusion. Therefore, it’s no
replacement for software architects but a helpful tool for the analysis and optimization of
existing architectures. For a better understanding, the framework is explained on three
basic CC patterns: Watchdog, Node-based Availability and Environment-based Availability.
All of them have been analyzed using the NFR-Framework and have been applied on an
example topology for validation. PIA, which is enclosed with this thesis, is a graphical
user interface for the application’s NFR evaluation and pattern inclusion. It can be used
to understand how the application of these three patterns will impact existing TOSCA
architectures.

A common and generic framework leads to replicability and comprehensibility of the
pattern analysis process. This is especially valuable if a software architect has to justify its
decisions. In addition to that, the automated pattern inclusion comes with time savings
and less error-proneness, which directly leads to a more productive design process.

The current framework offers a solution for the analysis and inclusion of patterns, based
on software architectures. Because the individual steps of this framework are generic,
they may be applied to more fine-grained patterns and architectures on a class or package
level. For future work, additional algorithms for all kind of patterns can be developed as
well as empirical data gathered. Further, the enclosing prototype of the application PIA
can be extended. Currently, it is only possible to load existing TOSCA archives as well
as evaluating and implementing the three above named patterns. In order to be helpful,

63

7 Conclusion and Outlook

more patterns need to be implemented and the export of modified topologies should be
possible.

64

A Appendix

A.1 Environment-based Availability SIG

Figure A.1: SIG of the Environment-based Availability

65

A Appendix

A.2 Node-based Availability SIG

Figure A.2: SIG of the Node-based Availability

66

Bibliography

[15] OMG Unified Modeling Language TM (OMG UML). 2015 (cit. on pp. 28, 29).

[17] Oracle Orchestration Cloud Service Data Sheet. Oracle, 2017 (cit. on p. 27).

[BAA12] L. Bautista, A. Abran, A. April. “Design of a performance measurement frame-
work for cloud computing.” In: Journal of Software Engineering and Applica-
tions 5.02 (2012), p. 69 (cit. on pp. 16, 17).

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, S. Wagner.
“OpenTOSCA–a runtime for TOSCA-based cloud applications.” In: Interna-
tional Conference on Service-Oriented Computing. Springer, 2013, pp. 692–695
(cit. on pp. 21, 22).

[BBKL14] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann. “Vinothek-A Self-Service
Portal for TOSCA.” In: ZEUS. 2014, pp. 69–72 (cit. on p. 22).

[BM+02] D. Bredemeyer, R. Malan, et al. “The role of the architect.” In: Resources for
Software Architects (2002) (cit. on p. 13).

[BP00] F. Bergenti, A. Poggi. “Improving UML designs using automatic design pattern
detection.” In: 12th International Conference on Software Engineering and
Knowledge Engineering (SEKE). 2000, pp. 336–343 (cit. on p. 30).

[CFSV04] L. Cordella, P. Foggia, C. Sansone, M. Vento. “A (sub)graph isomorphism
algorithm for matching large graphs.” en. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 26.10 (Oct. 2004), pp. 1367–1372. ISSN:
0162-8828. DOI: 10.1109/TPAMI.2004.75. URL: http://ieeexplore.ieee.org/
document/1323804/ (visited on 11/02/2017) (cit. on p. 32).

[CNYM12] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos. Non-functional requirements in
software engineering. Vol. 5. Springer Science & Business Media, 2012 (cit. on
p. 19).

[CSB+05] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, S. Christina.
“Goal-centric traceability for managing non-functional requirements.” In:
Proceedings of the 27th international conference on Software engineering. ACM,
2005, pp. 362–371 (cit. on p. 13).

[DBB14] M. Drozdová, B. Bucko, I. Brídová. “Architectures of the next eLearning sys-
tems upgrade.” In: 2014 IEEE 12th IEEE International Conference on Emerging
eLearning Technologies and Applications (ICETA). Dec. 2014, pp. 109–114. DOI:
10.1109/ICETA.2014.7107556 (cit. on p. 28).

[Eid05] P. L. Eide. “Quantification and Traceability of Requirements.” In: NTNU, Nor-
wegian University of Science and Technology (2005) (cit. on p. 15).

67

https://doi.org/10.1109/TPAMI.2004.75
http://ieeexplore.ieee.org/document/1323804/
http://ieeexplore.ieee.org/document/1323804/
https://doi.org/10.1109/ICETA.2014.7107556

Bibliography

[EN13] M. Elaasar, A. Neal. “Integrating modeling tools in the development lifecy-
cle with oslc: A case study.” In: International Conference on Model Driven
Engineering Languages and Systems. Springer, 2013, pp. 154–169 (cit. on
p. 25).

[FGH06] P. H. Feiler, D. P. Gluch, J. J. Hudak. The architecture analysis & design lan-
guage (AADL): An introduction. Tech. rep. Carnegie-Mellon Univ Pittsburgh
PA Software Engineering Inst, 2006 (cit. on p. 29).

[FLR+11] C. Fehling, F. Leymann, R. Retter, D. Schumm, W. Schupeck. “An architectural
pattern language of cloud-based applications.” In: Proceedings of the 18th
Conference on Pattern Languages of Programs. ACM, 2011, p. 2 (cit. on p. 23).

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud Comput-
ing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer, 2014 (cit. on pp. 13, 17, 35, 40–42).

[Gam95] E. Gamma, ed. Design patterns: elements of reusable object-oriented soft-
ware. Addison-Wesley professional computing series. Reading, Mass: Addison-
Wesley, 1995. ISBN: 978-0-201-63361-0 (cit. on p. 34).

[GMW10] D. Garlan, R. Monroe, D. Wile. “Acme: An architecture description interchange
language.” In: CASCON First Decade High Impact Papers. IBM Corp., 2010,
pp. 159–173. DOI: 10.1145/1925805.1925814 (cit. on p. 28).

[GY01] D. Gross, E. Yu. “From non-functional requirements to design through pat-
terns.” In: Requirements Engineering 6.1 (2001), pp. 18–36 (cit. on p. 13).

[HC07] S. Henninger, V. Corrêa. “Software pattern communities: Current practices
and challenges.” In: Proceedings of the 14th Conference on Pattern Languages
of Programs. ACM, 2007, p. 14 (cit. on pp. 15, 23, 38).

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann. “Winery–a modeling tool
for TOSCA-based cloud applications.” In: International Conference on Service-
Oriented Computing. Springer, 2013, pp. 700–704 (cit. on p. 22).

[KML+14] G. Katsaros, M. Menzel, A. Lenk, J. R. Revelant, R. Skipp, J. Eberhardt. “Cloud
application portability with tosca, chef and openstack.” In: Cloud Engineering
(IC2E), 2014 IEEE International Conference on. IEEE, 2014, pp. 295–302 (cit.
on p. 27).

[LOZ10] P. Lew, L. Olsina, L. Zhang. “Quality, quality in use, actual usability and user
experience as key drivers for web application evaluation.” In: Web Engineering
(2010), pp. 218–232 (cit. on p. 15).

[MG+11] P. Mell, T. Grance, et al. “The NIST definition of cloud computing.” In: (2011)
(cit. on pp. 13, 16).

[Ora] Oracle. About the JFC and Swing. URL: https://docs.oracle.com/javase/
tutorial/uiswing/start/about.html (cit. on p. 53).

[PC02] F. R. S. Paim, J. Castro. “Enhancing Data Warehouse Design with the NFR
Framework.” In: WER 2 (2002), pp. 40–57 (cit. on p. 19).

68

https://doi.org/10.1145/1925805.1925814
https://docs.oracle.com/javase/tutorial/uiswing/start/about.html
https://docs.oracle.com/javase/tutorial/uiswing/start/about.html

[RBDP15] R. Ranjan, B. Benatallah, S. Dustdar, M. P. Papazoglou. “Cloud resource
orchestration programming: overview, issues, and directions.” In: IEEE Internet
Computing 19.5 (2015), pp. 46–56 (cit. on p. 26).

[RKK07] A.-E. Rugina, K. Kanoun, M. Kaâniche. “An architecture-based dependability
modeling framework using AADL.” In: arXiv preprint arXiv:0704.0865 (2007)
(cit. on p. 29).

[SBB+16] J. Soldani, T. Binz, U. Breitenbücher, F. Leymann, A. Brogi. “ToscaMart: a
method for adapting and reusing cloud applications.” In: Journal of Systems
and Software 113 (2016), pp. 395–406 (cit. on p. 25).

[SSC03] G. M. C. de Sousa, I. G. da Silva, J. B. de Castro. “Adapting the NFR framework
to aspect-oriented requirements engineering.” In: Proceeding of XVII Brazilian
Symposium on Software Engineering. 2003, pp. 83–98 (cit. on pp. 18, 19).

[Sta13] O. Standard. Topology and orchestration specification for cloud applications
version 1.0. Tech. rep., OASIS Standard (November 2013). url:${$http://docs.
oasis-open. org/tosca/TOSCA/v1. 0/os/TOSCA-v1. 0-os. html$}$, 2013 (cit.
on pp. 13, 19).

[Wat08] A. Watson. “Visual Modelling: past, present and future.” In: White paper UML
Resource Page (2008) (cit. on p. 28).

[Woh17] M. Wohlfarth. “Design Pattern Detection Framework for TOSCA-Topologies.”
Bachelor Thesis. University of Stuttgart, 2017 (cit. on pp. 23, 30, 31, 42, 44,
53, 55).

[Wol94] P. Wolfgang. “Design patterns for object-oriented software development.” In:
Reading Mass (1994) (cit. on p. 15).

All links were last followed on November 24, 2017.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Fundamentals and Definitions
	2.1 Non-functional Requirements (NFRs)
	2.2 Cloud Computing Patterns
	2.3 NFR-Framework
	2.4 Topology and Orchestration Specification for Cloud Applications (TOSCA)
	2.5 Pattern Detection

	3 Related Work
	3.1 TOSCA
	3.2 Architecture Description Languages (ADLs)
	3.3 Pattern Detection

	4 Approach
	4.1 Pattern Analysis using the NFR-Framework
	4.2 Influence Analysis using Pattern Detection
	4.3 Automated Pattern Inclusion Process

	5 Implementation
	5.1 Pattern Inclusion Application (PIA)
	5.2 Used Technologies
	5.3 Code Structure
	5.4 Expandability

	6 Validation
	6.1 Role-Labeling
	6.2 Normalization
	6.3 Pattern Inclusion

	7 Conclusion and Outlook
	A Appendix
	A.1 Environment-based Availability SIG
	A.2 Node-based Availability SIG

	Bibliography

