
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis

Design and Implementation
of an Evaluation Testbed

for Fog Computing
Infrastructure and Applications

Leon Graser

Course of Study: Computer Science

Examiner: Prof. Dr. Dr. Kurt Rothermel

Supervisor: Dipl.-Inf. Ruben Mayer

Commenced: April 25, 2017

Completed: September 26, 2017

CR-Classification: C.2.1, C.2.4, C.4

Abstract

Besides the popular Cloud Computing paradigm, a new approach to distributed compu-
tation, known as Fog Computing, has been emerging in the last few years. This approach
suggests, that the intelligence should move from the data centers to the network level.
In the past years, Fog Computing has been gaining more attention, which has led to the
rise in projects and publications. Unfortunately, there is very little support to test and
evaluate Fog Computing applications. Aside from expensive real world deployments,
there are few tools to simulate the behavior. Since simulation does not execute the
application to be tested, the results are less accurate than in an emulated environment.
Emulation offers a trade-off between evaluation costs and accurate results. This work
proposes a new approach to read in network topologies from different sources and
uses them to evaluate user defined Fog Computing applications. To identify the edge
of those networks an algorithm is presented. Also, a heuristic to place fog nodes cost
optimal within a user defined proximity of the edge is suggested. The final outcome
can be exported to a network emulator like MaxiNet in combination with Docker. This
approach is implemented in EmuFog and published open source. It is easily extensible
for future use, platform-independent, and flexible for different applications to test. A
user can specify the computing capabilities (i.e.RAM) of each node type and define the
associated Docker image to run. Hierarchies can be built using dependencies between
fog node types. Also, an evaluation is carried out to measure the algorithms presented.
For the edge identification and the fog node placement, the evaluation shows reasonable
running times even for bigger network sizes of up to 10, 000 nodes. In the evaluated
networks the heuristic shows an average deviation of 1.2, and in the worst-case scenario,
a deviation of 5

3 of the cost optimal result.

3

Contents

1 Introduction 17

2 Background 19
2.1 Fog Computing . 19
2.2 Related Work . 21
2.3 Topology of the Internet . 21
2.4 Network Emulation . 26

3 Objectives 31

4 Concept 33
4.1 Network Model . 34
4.2 Read the Network Topology . 35
4.3 Identify the Edge of the Network . 35
4.4 Placing Devices in the Network . 41
4.5 Fog Node Placement . 41
4.6 Write the Experiment Output . 48
4.7 Theoretical Complexity . 48

5 Implementation 51
5.1 Input Data . 51
5.2 Output Files . 52
5.3 How to use EmuFog . 55
5.4 EmuFog Structure . 55

6 Evaluation 63
6.1 Running Time Measurements . 63
6.2 Quality Measure . 66
6.3 MaxiNet Performance . 71

7 Conclusion 75

Bibliography 79

5

List of Figures

2.1 Overview of the Fog Computing Model 20
2.2 Hierarchical Structure of the Transit-Stub Model 23
2.3 The MaxiNet Architecture for Distributed Emulation 28

4.1 Overview of the Workflow . 33
4.2 The Network Model used in the Proposed Fog Emulator 34
4.3 Partitioned Backbone After First two Steps 38
4.4 Exemplary Connection of Backbone Partitions 40
4.5 Extract from a Network Graph . 43
4.6 Exemplary Placement of Fog Nodes using the Threshold 1 43
4.7 Exemplary Placement of Fog Nodes using the Threshold 2 44
4.8 Exemplary Placement of Fog Nodes in a Topology 45

5.1 The Package Diagram of EmuFog . 57

6.1 Edge Identification for the BRITE Data Set 64
6.2 Edge Identification for the Caida Data Set 65
6.3 EmuFog Running Times on the BRITE Data Set 67
6.4 EmuFog Running Times on the Caida Data Set 68
6.5 Average Ratio of Greedy and Optimal Results 71
6.6 Maximum Ratio of Greedy and Optimal Results 72
6.7 Startup Time of MaxiNet Experiments 73
6.8 Startup Time of MaxiNet Experiments with Docker Containers 74

7

List of Tables

5.1 The Settings File Parameter in Detail . 54
5.2 Command Line Arguments for EmuFog 57

A.1 The Autonomous Systems of the BRITE Dataset 77
A.2 The Autonomous Systems of the Caida Dataset 78

9

List of Listings

5.1 An exemplary Settings File . 53
5.3 An exemplary Launch of EmuFog . 55
5.2 An exemplary Experiment for MaxiNet 56

11

List of Algorithms

4.1 Identify the Edge of the Network . 36
4.2 Selecting Cross-AS Connections . 36
4.3 Add High Degree Nodes to the Backbone 37
4.4 Connect the Backbone of an AS . 39
4.5 The Fog Node Placement Algorithm . 47

13

List of Acronyms

AS Autonomous System

AWS Amazon Web Services

BFS Breadth First Search

BGP Border Gateway Protocol

BRITE Boston Representative Internet Topology Generator

CAIDA Center of Applied Internet Data Analysis

CORE Common Open Research Emulator

CPU Central Processing Unit

DFN Deutsches Forschungsnetz

GLP Generalized Linear Preference

GRE Generic Routing Encapsulation

GT-ITM Georgia Tech Internetwork Topology Models

ILP Integer Linear Program

IoT Internet of Things

IP Internet Protocol

ITDK Internet Topology Data Kit

JDK Java Development Kit

JSON JavaScript Object Notation

LXC Linux Container

OSI Open Systems Interconnection

RAM Random Access Memory

SDN Software Defined Networks

15

List of Acronyms

TCP Transmission Control Protocol

WAN Wide Area Network

16

1 Introduction

Starting in the early 2000s, Cloud Computing has become the most popular solution for
hosting and outsourcing of computation and storage. New payment models, dynamic
resource allocations and ready to use services made it preferable to classic on site hosting
in a data center.

While the sales of desktop computers and laptops are on the decline, smart devices are
on the rise [Sta16]. Not only does this include smart phones, but other devices that
can connect to a network (i.e. televisions, fridges, cars, etc.). According to multiple
estimations, the market will consist of more than 30 billion IoT devices in the next 10
years [Nor16]. Although IoT devices are often sold as smart devices, they usually have
limited computing and storage capacity. Therefore, such devices heavily depend on
external computation, such as Cloud Computing.

Even though the cloud is a smart and valid tool for many problems, it does come with
drawbacks. Since the cloud is located in data centers distributed around the globe, the
communication latency to a server depends on the position and the characteristics of the
connection used. This complication also applies to bandwidth, since bandwidth on those
connections might be limited and are shared across all sent packages. Especially real
time applications suffer from the high latency, since they can not guarantee a successful
connection within their respective time bounds. Such applications do not benefit from
the cloud and therefore seek for alternatives.

Fog Computing [BMZA12], a term coined by Cisco, is an alternative to the cloud. They
proposed to move the computation and intelligence from the cloud to the network.
Instead of a single data center located somewhere, the computation should be carried
out on various devices within the network. Since the network starts from the device used
and goes all the way to the cloud, the latency to devices in the network offers multiple
options. Due to proximity, so called fog nodes reduce the latency and the bandwidth
utilization.

Based on this proposal by Cisco other companies and research institutions founded
the OpenFog Consortium1, which aims to establish and standardize Fog Computing.

1OpenFog Consortium: https://www.openfogconsortium.org/

17

https://www.openfogconsortium.org/

1 Introduction

Therefore they published a Fog Computing reference architecture paper [Ope17] as a
guide for future Fog Computing solutions. Even though this architecture is commonly
referred to, there is no consistent standard yet. Still though Fog Computing or sometimes
mixed with Edge Computing is a current trend in the area of distributed computing and
hence the number of conferences and publications including Fog Computing rises.

Despite the limited availability of Fog Computing, the research is ongoing. In the last
years more and more publications addressed Fog Computing or related fields such as
Edge or Mist Computing, which also place computation closer to the user. Many of these
publications evaluate their proposed work to show the benefit [AGC17; AH14; SCM15;
WCU+15; XMR16]. Unfortunately, there are barely any testing tools available for Fog
Computing. In most of these articles, the work is evaluated on fixed device topologies or
simulate the application’s behavior. This work attempts to solve this gap by proposing
a new approach to test applications in arbitrary topologies by placing fog nodes and
applications automatically to get a deployment cost optimal solution. Therefore this
work introduces EmuFog. This tool can read in network topologies and identify the
edge users can connect to. In such a network EmuFog places fog nodes containing
the application software in a multilevel hierarchy. The final experiment including user
devices, placed fog nodes, switches and links can be exported to network emulation
tools to carry out the actual experiment.

This work is structured as follows. First, Section 2 provides the necessary background
for future understanding. This includes Fog Computing, related work, the topology
of the Internet and testing methods. Second, Section 3 defines the objectives of this
work and the criteria to follow. Section 4 proposes a concept including a system model,
workflow and algorithms to achieve the defined objectives. To carry out an evaluation of
the concept, it has been implemented. This implementation is presented in Section 5.
Section 6 provides an evaluation of the implementation. Finally, Section 7 concludes the
entire work presented and proposes future work to further improve the concept.

18

2 Background

This section introduces the theoretical foundations of this work, including a definition
and introduction to Fog Computing in Section 2.1 as well as related work in the area of
evaluating Fog Computing in Section 2.2. Since Fog Computing is using the network of
the Internet Section 2.3 provides insights in the topology of the Internet, including cha-
racteristics and models as well as real world topology databases and network generator
tools. Finally, Section 2.4 introduces two tools that emulate software and network links
in an artificial network for testing purposes.

2.1 Fog Computing

Over the past couple years Cloud Computing has been established as the preferred
option to outsource computation power and storage capacity. Thereby all computation is
moved to a dedicated data center of the vendor of choice. While this is often suitable and
preferable, there are use cases where Cloud Computing may be infeasible. One common
problem with Cloud Computing is the latency. Since it is deployed at predetermined
geographical locations, the connection to the cloud depends on the one’s location. In
most cases, this leads to a latency too high for instance for real time applications.
Another problem is the limited and shared bandwidth available; these drawbacks allow
for innovating new approaches to tackling the issues.

Bonomi et al. [BMZA12] proposed a new approach called Fog Computing. Fog Computing
tries to bring the computation and intelligence to the network itself, unlike the Cloud
Computing paradigm of having a central data center. Devices, such as routers, switches,
servers, and mobile stations, that are part of the network offer their resources to enable
to computation capabilities within the network. They are referred to as fog nodes. Due
to the proximity of the local network, Fog Computing can provide lower latencies than
Cloud Computing can do.

A simplified overview of Fog Computing is depicted in Fig. 2.1. This figure illustrates the
hierarchy of the Internet, including the well known cloud. At the bottom and hence the
lowest level of the hierarchy are device as laptops, sensors, mobile phones etc. that can
connect to some kind of network. This level is referred to as the edge of the network,

19

2 Background

Core

Edge

Fo
g

in
 t

h
e

 N
e

tw
o

rk
C

lo
u

d
D

e
vi

ce
s

Figure 2.1: Overview of the Fog Computing Model

since these devices are usually connected to a single network and operated by end
users. The top level of the Fog Computing model encompasses the cloud; the cloud is
connected to different networks and not directly to devices. To get from the edge to the
cloud it takes a path of network device connected to each other, establishing an end to
end connection. All those network devices in between are possible fog nodes building
the fog.

Various applications, such as stream processing, augmented/virtual reality, traffic control,
smart homes/cities, etc., may benefit from Fog Computing [BMNZ14; YLL15]. Besides
proposals there are also implementations that prove the benefit of Fog Computing by
speeding up web site requests [ZCP+13] or improving face recognition [YLL15].

20

2.2 Related Work

2.2 Related Work

The benefits of Fog Computing have been evaluated with different techniques in various
papers. Those papers include evaluation of protocols such as MQTT [XMR16], CoAP or
SNMP [SG16], but also test multi user applications, such as video streaming [AGC17]
or Smart Gateways [AH14]. One downside to these evaluations is the testing scenario,
because it is a manually crafted topology of either real devices or a building of network
simulation tools. This may often lead to unrealistic scenarios or scenarios tailored to
provide the optimum achievable in the respective work. More realistic scenarios can help
to find bottlenecks, drawbacks or limitations of any kind people might not be aware of.
Such scenarios can be built by testing tools specialized in the field of Fog Computing.

Gupta et al. [GVGB17] propose iFogSim, a toolkit to simulate and evaluate fog envi-
ronments on a single device. Users can create their own topology and specify software
modules to run in the network. Those modules get simulated in either the cloud or
the network via Fog Computing based on the configuration, where the cloud is a cen-
tral point in the topology. It produces different measurements on power consumption,
network latency, congestion, and costs. The drawback of testing Fog Computing is the
manual creation of a topology and the simulation approach with regard to not running
the actual code of an application.

Besides iFogSim, there are other simulation tools for Fog Computing and IoT, such as the
DPWSim [HLC+14], EdgeCloudSim [SOE17], and the commercial SimpleIoTSimulator1.
Despite improving techniques for simulating application behavior, the results are only
indicators and can not be equalized with executing actual software.

2.3 Topology of the Internet

On the highest level of abstraction the Internet consists of a myriad of different Auto-
nomous Systems (AS). An AS is a network managed autonomously by its provider. The
connection of two autonomous systems uses the Border Gateway Protocol (BGP) on top
of the well known TCP. As the connection of autonomous systems requires a contract
between the respective providers, some paths are routed though multiple autonomous
systems as a transit network.

Currently, there are no complete screenshot of the Internet’s topology available. This is
not just due to the fact that there is always change in the network but also due to secrecy.

1SimpleIoTSimulator: https://www.smplsft.com/SimpleIoTSimulator.html

21

https://www.smplsft.com/SimpleIoTSimulator.html

2 Background

Since the network connection on the AS level is not managed by a single organization
but instead is based on individual connections the topology can only be tried to measure.
There are several projects trying to retrieve the AS level topology by analyzing the BGP
routing. Each of the autonomous systems is considered a router level topology, since it
contains the routers user can connect to. As the router network is a business asset of the
respective provider they usually do not provide them to the public.

As mentioned before, there are projects that are trying to provide Internet topologies
on the AS and router level through the analysis of routing tables, BGP, and published
topologies. Besides the two popular projects introduced below, there are many more
providing similar information.

• The Center for Applied Internet Data Analysis2 (Caida) does various kind of research
in the networking field including the Internet topology. This includes publicly
available measured AS, IPv4 and IPv6 router level topologies.

• Topology Zoo3 [KNF+11], published through the University of Adelaide, provides
AS level topology datasets and visualization.

2.3.1 Modeling Approaches

In order to describe the topology of the Internet or a network in general, researchers
have come up with different models having certain properties to formulate the topology.
Over the years, multiple models with various properties have been presented. Overall,
the models are different, but they can be grouped into three main categories: random-,
structural- and degree-based.

First, the most basic approach is the idea of random graphs. These graphs have a random
placement of the nodes or maybe use some kind of clustering of them. Another random
factor might be the edges of the graph. The Waxman model [Wax88] is one of the
most popular models within this category. In this model, nodes will either be randomly
distributed on a plane or placed closely together using a grid layout and assigning a
different number of nodes per grid-cell. The connection of two nodes is a probability
based on the distance between the two of them.

The structural-based model was designed by scientists due to their dissatisfaction of
the outcome of the random graphs. Moreover, this model was also developed based on
their interest of the structure of actual networks and the Internet. Transit-Stub [CDZ97]
and Tiers [Doa96] are two popular models of this category. Both of these models favor

2Center for Applied Internet Data Analysis: https://www.caida.org/
3Topology Zoo: http://topology-zoo.org/

22

https://www.caida.org/
http://topology-zoo.org/

2.3 Topology of the Internet

Transit Domains

Multi−homed Stub

Stub Domains Stub−Stub Edge

Figure 2.2: Hierarchical Structure of the Transit-Stub Model [CDZ97]

the hierarchy of the Internet as a foundation of their placement. Figure 2.2 depicts an
example of the structural-based model, Transit-Stub.

Third, since they seem to model the Internet the closest, most recent research publicati-
ons use a degree-based model. Faloutsos et al. [FFF99] discovered that the topology of
the Internet obeys power-laws in the form of y ∝ xα e.g. for the distribution of in and
out degree. They based their finding on three snapshots of the Internet topology in the
late 1990s. Even though the Internet has grown and changed over time, the power-law
is still the latest and most commonly used attempt to model the network. Medina et al.
[MMB00] were able to prove that the common random- and structural-based models,
such as the Waxman and Transit-Stub do not match the properties of the power-laws.

2.3.2 Topology Generators

Over the years, several topology generators have been proposed to aid the various usages
of network topologies, such as, protocol testing, simulation application behavior, and
performance measures. This section will present a subset of all available generators and
thereby focus on relevant generators that are commonly used in research.

23

2 Background

BRITE

The Boston Representative Internet Topology Generator4 (BRITE) [MLMB01] has been
one of the most popular network topology generators in recent years. Medina et al.
used the generator for their evaluation on power-laws [MMB00]. Thus, the generator
supports different models to generate from. It supports the Waxman model and three
degree-based models on an AS and router level. Barabási and Albert [BA99] proposed a
model satisfying the power-laws by Faloutsos et al. and also an improvement [AB00] of
their own model. Besides the two models by Barabási and Albert, there is the Generalized
Linear Preference (GLP) model proposed by Bu and Towsley [BT02] which also satisfies
the power-laws.

IGen

Unlike most of the other generators mentioned in this section, the IGen Generator5

[QSFB09] only produces router level topologies. The authors claim that even degree-
based models cannot model the Internet accurately, since they do not take design
heuristics into account. The actual network of the Internet is built by people using
certain practices to optimize the overall functionality. Based on this assumption, Quoitin
et al. use heuristics to minimize the latency, optimize bandwidth, etc. to construct a
graph. But, there is a lack of evidence that IGen produces more accurate graphs than
other generators.

Inet

Another popular topology generation is the Inet-3.06 [WJ02]; in the most recent version,
which only generates AS level topologies. Similar to other topology generators, Inet
uses a degree-based model based on the idea of power-laws in the Internet. Winick and
Jamin provide an evaluation of Inet-3.0, the predecessor Inet-2.0, and snapshots of the
Internet. Graphs generated by Inet satisfy the power-laws by Faloutsos et al. and also
match the Internet reasonable in other metrics provided as hop count, path length, and
clustering coefficient.

4BRITE is available at https://www.cs.bu.edu/brite/
5IGen is available at http://igen.sourceforge.net/
6Inet-3.0 is available at http://topology.eecs.umich.edu/inet/

24

https://www.cs.bu.edu/brite/
http://igen.sourceforge.net/
http://topology.eecs.umich.edu/inet/

2.3 Topology of the Internet

GT-ITM

In comparison to the generators mentioned before Georgia Tech Internetwork Topology
Models7, the GT-ITM is a generator using the Transit-Stub model [CDZ97], hence uses a
structural-model. In Figure 2.2, you can see two types of domains, the Transit- and the
Stub-Domains. Stub-Domains should only handle traffic that is sent or received by one
of its nodes. The Transit-Domains, on the other hand, do not generate traffic as there
are no clients connected and can be seen as network to forward traffic to the respective
Stub-Domain. Both domains are generated using the Waxman model and the connection
between such is based on parameters provided by the user.

Tiers

The Tiers Generator8 [Doa96] shares a lot of properties with the Transit-Stub model.
Both are structural models with several levels or tiers. In comparison to the Transit-Stub,
Tiers has only one top level network, the Wide Area Network (WAN). To generate the
topology, Tiers uses a minimal spanning tree which leads obviously to one root node
and a strong hierarchy. The main drawback of this approach seems the unlikeliness of a
tree topology in the Internet.

2.3.3 Comparison of Topology Generators

Comparing graphs produced by network topology generators to the actual Internet is
a difficult task. There are two important challenges: metric usage and the topology of
the Internet. It is not obvious what metric is the right to compare. Depending on the
model the generator uses, different metrics might be applicable. Second, a topology of
the Internet to compare to. AS level topology snapshots can be measured by the BGP
which connects different AS. Router level topologies on the other hand are hard to get
as they are part of the business decisions of Internet providers.

This section will identify a suitable topology generator for the fog emulation framework
based on evaluations. It should model the Internet topology closely on AS and router
level. Section 2.3.1 already introduced the degree-based category and how it emerged
from previous attempts to model the Internet. Tangmunarunkit et al. [TGJ+02] have
shown in an evaluation that degree-based topology generators not only match the
power-laws better than structural-based models, but they also model the large scale of

7GT-ITM is available at https://www.cc.gatech.edu/projects/gtitm/
8Tiers is available at https://www.isi.edu/nsnam/ns/ns-topogen.html

25

https://www.cc.gatech.edu/projects/gtitm/
https://www.isi.edu/nsnam/ns/ns-topogen.html

2 Background

the Internet better, measured by eight different metrics. Even though it is unclear what
the best metric or category is, most publications focus on degree-based models.

Bu and Towsley [BT02] evaluate their GLP model as well as the both models by Al-
bert and Barabási all included in BRITE and furthermore the Inet generator. For the
evaluation, they use an AS level topology gained from Route Views9. After Medina
et al. [MMB00] showed that power-law generators produce more similar graphs to
the Internet than random- and structural-based generators, Bu and Towsley use the
power-laws as a metric as well as the characteristic path length and the clustering
coefficient defined by Watts and Strogatz [WS98]. The improved model by Albert and
Barabási shows a high similarity with the real world topology.

Heckmann et al. [HPSS03] use a different approach to compare generators not relying
on the power-laws as a metric, but instead use a set of connectivity properties. For their
evaluation, they use two router-level topologies from AT&T and the German Research
Network (DFN) instead of AS-level snapshots. Both topologies got evaluated using the
GLP, Tiers and GT-ITM model. Tiers performs the best in this evaluation with a score
of 0.998 and 0.995 on a scale from 0 to 1 for the DFN and AT&T topology respectively.
BRITE scores a high similarity of 0.972 rsp. 0.951 and GT-ITM of 0.966 rsp. 0.879.

2.4 Network Emulation

Testing applications and protocols in a distributed environment can be problematic,
since they do not solely rely on the developer’s local machine. Other devices, servers,
and various connections with different properties have an influence on the result and
behavior of such applications. This makes testing tools a necessity. So far there are three
categories of testing approaches available: live testing, simulating, and emulating.

Live testing provides the best results as it is the closest to the final real world deployment,
but it is also the most expensive and sophisticated. In the area of distributed computing,
especially Fog Computing, there are live testing facilities available like Iot-LAB [PBG+13]
with over 1,000 nodes across four cities in France or SmartSantander [SMG+14] with
a variety of sensors etc. distributed across the city of Santander, Spain. Gluhak et al.
[GKN+11] provide a survey of such IoT testing facilities for real word testing. Besides
the costs, another drawback is the inflexibility of this approach. Changing the topology
or devices used in such an experiment can be challenging.

9Route Views: http://www.routeviews.org/

26

http://www.routeviews.org/

2.4 Network Emulation

In contrast to live testing, simulation tests can be executed fast and easily on every
machine. But since simulation does not execute the actual source code of the protocol
to test, the results may not be as accurate as live testing. Emulation involves filling
the gap between live testing and simulation. It executes the source code, usually in
an virtualized environment, instead of the actual hardware to deploy on in the end.
Hence, emulation can achieve a good trade-off between the cost of an experiment and
the accuracy of results to expect.

Lochin et al. [LPD11] present an extended comparison between the different approaches,
their pros and cons as well as guidance on what to use depending on the test scenario.
Also, they discuss the different emulation models such as: static, event-driven or trace-
based, and provide a selection of available network emulation tools. Static models
have to be configured before the emulation starts and stay exactly the same during the
execution. In contrast to static models, event-driven models change their characteristics
based on events such as clock ticks, packages, errors, etc. Trace-based models measure a
real world network and obtain the characteristic. Those can be applied to the emulated
network as in the actual network.

Since live testing is expensive and inflexible to test and simulation just does not provide
accurate results, emulation is the best option to test Fog Computing applications and
protocols. This section will cover two recent emulation tools, MaxiNet and CORE, using
the virtualization approach in more detail.

2.4.1 MaxiNet

Wette et al. [WDS14] proposed MaxiNet10 as an emulation framework for Linux to run
software defined networks (SDN) across several physical machines. It enables a user to
emulate large artificial networks on a private computer. Therefore, the switches and
hosts can be placed in the topology and connected via links. This helps debugging
protocols and applications efficiently instead of an actual deployment. Hosts can run
commands and applications installed on the underlying machine including Docker
container, which allows to the user to build a Docker container consisting of the desired
test environment. MaxiNet is a distributed version of Mininet by Lantz et al. [LHM10]
that provides the network emulation using a single physical machine.

Mininet is an emulation tool aiming to be especially lightweight by using standard
Linux features. Each host in the network has its own namespace Linux container (LXC)
to store its network and execution state. Such a LXC namespace is isolated from the
execution and file system of the underlying Linux system and other namespaces making

10MaxiNet is available at https://maxinet.github.io/

27

https://maxinet.github.io/

2 Background

MaxiNet Frontend Server

Worker 1Worker 1 Worker 2Worker 2 Worker 3Worker 3

Experiment File

Local Mininet Network Local Mininet Network Local Mininet Network

Figure 2.3: The MaxiNet Architecture for Distributed Emulation

it independent. This is crucial as it allows multiple hosts to run the same application of
the underlying system without interference. Links between hosts are implemented with
Linux bridges and can be me modified in terms of limiting bandwidth, applying latency,
etc. by the traffic control tc library. Experiments can be written in python files including
the topology of the network as well as commands to run after the initial setup of the
network.

The main drawback of Mininet is the limitation to one physical machine; there is a
limit in emulated hosts depending on computing capabilities of the machine and the
commands to run. MaxiNet tries to resolve this issue by distributing a network topology
over several distributed physical machines, referred to as workers. In their work, they
present an evaluation of MaxiNet showing that they can run to 3,200 hosts on 12
physical machines. An overview of the architecture is illustrated in Fig. 2.3. The
MaxiNet Frontend Server manages the connection with the different workers running
MaxiNet to keep them in a pool of idle workers. By starting an experiment file on
the Frontend Server, the server distributes the emulated hosts to the different workers
by partitioning the undirected graph using METIS [KK95]. Each worker is running
an instance of Mininet emulating everything associated to that worker. To route the

28

2.4 Network Emulation

inter-topology, traffic workers communicate directly via Generic Routing Encapsulation
(GRE) tunnels.

2.4.2 Common Open Research Emulator

Another emulation framework is the Common Open Research Emulator11 (CORE) by
Ahrenholz et al. [ADHK08; Ahr10] available for Linux and FreeBSD. CORE itself is an
improved modification of the IMUNES [ZM04] emulator by the University of Zagreb.
Like MaxiNet, CORE aims to emulate artificial networks as lightweight and scalable as
possible on one or multiple devices. Therefore, CORE uses a hybrid solution of emulation
and simulation. Network connections are simulated and the hosts are emulated to
actually execute commands and applications. Hence, CORE focuses on the OSI layer 3
and up to test applications and protocols. Nevertheless it can be combined with MANET,
a network emulator for the networking layers including all kinds of network congestion,
to emulate the network too [AGA11].

CORE’s host virtualization is using jails for FreeBSD to isolate the host environment from
the operating system and the previously mentioned LXC namespaces in Linux. Both
ensure to have their own running processes, network stack, and file system. Ahrenholz
et al. also provide an evaluation of the different technologies comparing FreeBSD jails,
Linux namespace, and its historical predecessor OpenVZ. In this evaluation FreeBSD
can achieve a better result, measured in packages per second over the two Linux
alternatives.

Large topologies can be distributed around multiple physical devices to ensure enough
computational power. The CORE GUI is running as a controller partitioning the topology
and distributing it to CORE Daemons. Similar to MaxiNet, each Daemon hosts a subset
of the topology and routes traffic to other Daemons via direct tunnels established at
deployment time.

11CORE is available at https://www.nrl.navy.mil/itd/ncs/products/core

29

https://www.nrl.navy.mil/itd/ncs/products/core

3 Objectives

As discussed in Section 2.2, there is a variety of research work in the area of Fog
Computing. Many of the researchers provide an evaluation of their work using different
test scenarios. Some simulate the behavior, some emulate their software, and some even
deploy their software in a real world test environment. However, most of these works
suffer from the fact that they use a static topology often unlikely to model the real world,
e.g. star topologies or fully connected networks.

This work aims for a new approach to test software in the area of Fog Computing.
Instead of using handmade topologies where fog nodes have to be placed manually to
achieve realistic results, this work should help to automate this process and thereby
make it easier and faster to test. Topologies can still be created manually, but are also
generated by additional tools thereby increasing the number of possible test scenarios.
The user should be able to evaluate its own or existing software in a multi level fog
environment. The software runs on configurable devices placed in the network connected
to automatically placed fog nodes, thus providing flexibility for different use cases.

The following criteria should be considered in the new testbed:

• Scalability: Despite the fact that most evaluations use small networks for their
test scenario, this approach should be able to scale with the size of the network.
Due to the growth of networks, focusing on smaller networks would be a critical
limitation. Hence, it should be able to handle networks in the size of several
thousand nodes.

• Extensibility: As discussed in Section 2.3, there are many ways to get an either
artificial or real world topology on the Internet. It should be possible to extend
the testbed to use different topologies and formats as an input. The output should
also be easily expendable to generate different formats for the variety of different
emulation tools.

• Flexibility: Since every evaluation uses a different scenario, different hardware,
and different software to emulate, the users should be able to tune the testbed
to their needs. This includes different fog node types to use, executable software,
tuneable virtual hardware configurations, etc.

31

3 Objectives

• Platform-independent: As the approach should be expendable for new network
topology and emulation formats, the entire testbed software should run indepen-
dently of the operating system. This way it can provide a workflow from start to
finish in a single environment.

32

4 Concept

In this section a new approach for a Fog Computing testbed will be presented. Its
objectives and criteria have been defined in the previous section. Fig. 4.1 shows a
simplified overview of the workflow. First, the workflow gets briefly explained and
second, each step is covered in more detail in its own section.

Beginning at the first and most left point there are network topologies. They can be either
real world datasets or artificial graphs as described in Section 2.3. Those topologies get
read in by the testbed and get converted into a graph structure that is independent of
the input format modeling the necessary information. All following operations apply to
this graph structure leaving the input data unchanged.

Once the graph is read in the graph structure, the edge of the network has to be identified.
The graph structure uses a simple model dividing the graph into two parts: the edge
of the network and its backbone. To identify the edge, it uses a classification based on
the routing of packages and the degree of the vertices. Having a separation of edge
and backbone in the network is crucial for the upcoming steps, as they rely on this
information.

After defining the edge of the network, devices can be placed in the topology and con-
nected to the edge. Devices such as laptops, mobile phones, and sensors get distributed
across the network and connected to one edge node each. The connections starting at
these devices need to be handled by the fog nodes placed in the next step.

With the devices placed in the network, there is a need to place fog nodes that they can
connect to. Such fog nodes should be placed cost optimally within a given distance, e.g.

Read the
Topology

Identify the Edge
Assign Devices to

the Edge
Place Fog Nodes Write Experiment

Network Topologies Experiments

Figure 4.1: Overview of the Workflow

33

4 Concept

AS: 1

AS: 3

AS: 2

Cross-AS Connection

Network
Device

Figure 4.2: The Network Model used in the Proposed Fog Emulator

latency from the devices. Since placing them optimally is a challenging and complex
problem, this approach uses a heuristic to provide a good solution within a reasonable
time.

Finally, after placing the fog nodes in the graph structure, the output files can be
generated. The idea is to write files able to start an experiment using an emulation tool
like the ones discussed in Section 2.4. Similar to the topology reader, the writer should
be extensible for further data formats.

4.1 Network Model

To ease the understanding of the following detailed descriptions of each step, knowledge
of the underlying network model is helpful. A simple demonstration of the network
model is depicted in Fig. 4.2. The overall network is separated into multiple autonomous
systems. On the highest abstraction level, the graph consists of vertices representing
autonomous systems and edges representing cross-AS connections. In this example,
there are three autonomous systems drawn surrounded by a dotted line with their
respective unique identifiers.

Each of the autonomous systems is its own network where vertices are actual physical
devices that are connected to another. There is no cut set between two autonomous
systems because each device is associated to exactly one autonomous system. An
autonomous system consists of three subsets of vertices or nodes. First, the devices

34

4.2 Read the Network Topology

connected to the network. This set contains devices (i.e. laptops, mobile phones, etc.)
that can connect to a network. But it does not contain routers, switches, and other
network technology devices. Second, the access network. All nodes within the access
network allow end users to connect to the entire network. Those nodes are called access
points. Since they are usually at the edge of the network, they also get referred to as
edge nodes. The terms access points and edge nodes are identical and will be used
interchangeably throughout this work. Third, the backbone network. Nodes being part
of the backbone do not connect to end users directly as edge nodes do. They route
traffic generated somewhere in the network to its destination. Therefore they handle in
comparison to edge nodes more traffic.

4.2 Read the Network Topology

The first step is to read in the input data. In this case the input is some kind of a network
topology. Any undirected graph can be used as such a network topology input. Even
though there are standardized graph formats like GraphML [BEH+02], GML [Him97],
and GXL [WKR02], most generators or network databases use their own format which
makes it impossible to write one reader fitting all needs. Instead of a universal reader
supporting all data formats, it should be possible to easily extend the existing reader by
the required format. To build a network topology from the reader, the graph structure
has to offer an easy to use interface to create nodes and connections.

4.3 Identify the Edge of the Network

The overall algorithm to identify the edge of the network consists of three steps. Starting
on a graph G = (V, E), the algorithm expects to have edge nodes only. In case there
already exist backbone nodes at this time, they will be included and connected to newly
discovered in the last step. Every step of the algorithm will increase the backbone and
as a result shrink the edge. In the following sections, the sub set B ⊆ V will depict the
nodes of the backbone which will be carried through the different steps of the algorithm.
The sub set A ⊆ V is the set of access points/edge nodes that has no cut set with the set
of backbone nodes A ∩ B = {}. Algorithm 4.1 shows the necessary three steps of the
overall algorithm.

35

4 Concept

Algorithm 4.1 Identify the Edge of the Network

1: procedure IDENTIFYEDGE(G = (V, E))
2: B ← SELECTCROSSASCONNECTIONS(G)
3: B ← SEEKHIGHDEGREENODES(B, G)
4: B ← CONNECTASBACKBONE(B, G)
5: return B

6: end procedure

4.3.1 Select Cross-AS Connections

Connections in the graph that connect two different autonomous systems have to handle
a lot of traffic in the network, since they are the gateway for a variety of connections from
one AS to another. Traffic routed between different systems uses the Border Gateway
Protocol on such connections. In contrast to the internal routing within an AS, there are
just a few cross-AS connections which makes them the bottlenecks that often throttle
the overall connectivity between autonomous systems. Both ends of this connections are
highly unlikely an edge node users can connect to. More than likely, those endpoints are
high performance switches to handle the load. Since a cross-AS connection might be the
only connection between the two of them, traffic routing has to route the packages via
this connection. Therefore the algorithm adds all endpoints of cross-AS as switches of
the network’s backbone.

The first step is depicted in pseudo-code in Algorithm 4.2. Input parameter is the
unmodified graph G = (V, E). Starting from an empty set of backbone nodes B (line
2), the algorithm iterates over all edges in the set of edges E and checks whether the
source’s s and destination’s d AS are unequal (line 3–4). In case they belong to different
autonomous systems, source s and destination d will be added to the set of backbone
nodes B (line 5).

Algorithm 4.2 Selecting Cross-AS Connections

1: procedure SELECTCROSSASCONNECTIONS(G = (V, E))
2: B ← {}
3: for all e = (s, d) ∈ E do
4: if s.AS ̸= d.AS then
5: B ← B ∪ {s, d}
6: end if
7: end for
8: return B

9: end procedure

36

4.3 Identify the Edge of the Network

4.3.2 Seeking High-Degree Nodes

In the first step, the algorithm added endpoints of cross-AS edges to the backbone of the
network which are are crucial for cross-AS routing. Besides cross-AS endpoints, there
are other nodes in the topology that have to handle an above-average amount of routing.
A node with a high degree in the graph has to manage many connections which is likely
to be a backbone node just routing packages, whereas an edge node will have a rather
small degree just connecting to the backbone of the AS.

Algorithm 4.3 sketches the second step of the edge identification algorithm. Starting
with the input from the first step, the algorithm first calculates the average degree of
nodes in the set of V (line 2). Based on the average node degree avg, all nodes that are
not yet part of the backbone get compared to the average. If the degree of a node is
higher than the average, it gets added to the set of backbone nodes B (line 3–7).

Algorithm 4.3 Add High Degree Nodes to the Backbone

1: procedure SEEKHIGHDEGREENODES(B, G = (V, E))
2: avg ← CALCULATEAVERAGEDEGREE(V)
3: for all v ∈ V \B do
4: if v.Degree ≥ avg then
5: B ← B ∪ {v}
6: end if
7: end for
8: return B

9: end procedure

4.3.3 Connect the Backbone of an AS

With the first two steps, the algorithm creates a subset B ⊆ V of nodes that are part
of the backbone. The result of the first step can be, and most likely will be, a set of
backbone nodes that are not connected with each other as exemplary depicted in Fig.
4.3. It can be seen that the detected backbone nodes, colored in gray, are not connected
to another via backbone nodes only. In this example, there is at least one edge node
between the two partitions. Within an AS, there is only one backbone that connects the
different edge routers of the AS. Having a partition in the backbone of the AS will result
in a connection between the two partitions consisting of an edge node. Considering all
the traffic that is routed in the backbone, it is unlikely that this traffic will flow through
the edge of the network. In order to establish such a backbone, all nodes of B have to
be connected.

37

4 Concept

Figure 4.3: Partitioned Backbone After First two Steps

The third and last step of the algorithm is listed in Algorithm 4.4. The overall idea is
based on the Breadth First algorithm (BFS), which iterates through the graph starting at
a certain point and adding the direct neighborhood to a queue. This way the algorithm
continues until the queue is empty and all nodes have been processed. From the previous
two steps the algorithm already gets a set of backbone nodes B.

The basic idea of the algorithm is visualized in Fig. 4.4. Starting from the initial situation
in Fig. 4.3, the algorithm picks a random backbone node from the set B. In this example,
the algorithm selects the bottom left backbone node as can be seen in (a). Each neighbor
node in the direct neighborhood of the currently processed node is added to the queue
of nodes to process and the predecessor gets set to the current node. The direction of
the predecessors is visualized by arrows pointing to the predecessor. In (b) all nodes up
to the second neighborhood of the starting node have been processed. The algorithm
found a backbone node whose predecessor is an edge node. Since we started from a
backbone node it was reached by a path containing edge nodes and therefore a partition
might exist. By following the trace of predecessors back to the next backbone node, the
algorithm can connect the two partitions by adding all edge nodes on this path to the set
of backbone nodes B. The result is depicted in (c). Finally, the algorithm continues as in
(d) and sets the predecessors as shown here for the third neighborhood of the starting
node.

Since the Breadth First algorithm iterates through the entire graph, there is no limitation
in which node to start with. The proposed modified version of BFS starts with a random

38

4.3 Identify the Edge of the Network

Algorithm 4.4 Connect the Backbone of an AS

1: procedure CONNECTASBACKBONE(B, G = (V, E))
2: b← b ∈ B // pick any random node in B

3: Q← {b}
4: while Q ̸= {} do
5: c← Q.DEQUEUE()
6: for all n ∈ N1(c) do
7: if n ∈ Q then
8: if c ∈ B ∧ n.Predecessor ∈ V \B then
9: n.Predecessor ← c

10: end if
11: else
12: n.Predecessor ← c

13: Q.ENQUEUE(n)
14: end if
15: end for
16: if c ∈ B ∧ c.Predecessor ∈ V \B then
17: p← c.Predecessor

18: while p ∈ V \B do
19: B ← B ∪ {p}
20: p← p.Predecessor

21: end while
22: end if
23: end while
24: return B

25: end procedure

node of the backbone set B (line 2). All nodes yet to be processed are stored in the
waiting queue Q. For each node in the queue, the algorithm does two things. First,
iterate the neighborhood to add new nodes to the queue as the Breadth-First algorithm
does (line 6–15) and second, connect disjoint partitions of the backbone (line 16–22).

As mentioned before, the algorithm starts with an arbitrary backbone node of B. From
this node, the algorithm expands through the network by processing each node. A queue
Q is used to store the nodes still to be processed and their order, and is initialized with
the starting node (line 3). As long as there are still nodes to process in the queue, the
algorithm removes the first node from the queue and iterates the direct neighborhood
of this node N1(c) (line 6–15). In case a neighbor node is not yet it the queue, the
node gets added to the queue and the predecessor gets set to the currently processed
node c (line 11–14). If the neighbor node is already in the queue and its predecessor

39

4 Concept

Starting Node

(a) Direct Neighborhood

Starting Node

(b) Second Neighborhood

Starting Node

(c) Connect Backbone by Following Trace

Starting Node

(d) Third Neighborhood

Figure 4.4: Exemplary Connection of Backbone Partitions

points to an edge node and additionally the currently processed node is a backbone
node, the predecessor gets updated to point to the current node c (line 8–10). That
way unnecessary paths via edge nodes can be reduced. This can be seen in Fig. 4.4 (d)
where the predecessor of the backbone node points to another backbone node instead of
an edge node.

To connect two partitions, the predecessor field of each node is used. This is only
necessary if the currently processed node c is part of the backbone B and its predecessor
is not (line 16). In this case the current node was discovered on a path of edge nodes,
but since we started from the backbone there has to be a backbone on this path following

40

4.4 Placing Devices in the Network

back to the starting node. By following the path back using the predecessor field until
there is the backbone again, two partitions get connected (line 17–21).

When the queue is empty it is guaranteed that no node is left in the graph that has not
been processed yet. As a result there is only one backbone of this autonomous system
left.

4.4 Placing Devices in the Network

After the access point and the backbone got identified in the previous section, client
devices that connect to fog applications can finally be placed at the edge of the network.
A device represents basically every device like sensors, mobile phones or laptops that
are connected to an access point. Each device is connected to exactly one access point
and to no other node of the graph. Such device can be placed manually in the graph
by the interface of the graph structure, but also can be generated as shown in the
implementation in Section 5. Access points without devices get ignored in the fog
placement algorithm.

4.5 Fog Node Placement

In the previous sections, the graph got divided into three disjoint sets: the access points,
the backbone of the network, and the devices connected to the access points. So far
there is no Fog Computing in this network. As a next step fog nodes have to be placed
in the topology in order to enable Fog Computing. Such fog nodes can only be placed
within the network and not on client devices. Therefore, only access points and the
backbone excluding the devices of the access points are considered.

This section structures as follows. The problem of fog node placement will be introduced
in Section 4.5.1 and to approximate this problem Section 4.5.2 proposes a heuristic
algorithm.

4.5.1 Problem

The placement of fog nodes is a challenging task due to the fact that there is no best
practice on where to place them in the network topology. Depending on the scenario
optimal placement might vary. So far there is no guidance or proven research in this area.
Therefore additional information by the user is required. The user has to provide possible

41

4 Concept

fog types to place. Such a fog type consists of computation capabilities, connection
capacities, executable software, and dependencies between fog types to build multi level
hierarchies.

Starting with a graph G = (V, E) and its sub set A ⊆ V of all edge nodes the problem is
to find a placement of fog nodes F ⊆ V such that every edge node in A is connected to
a fog node in F . This problem could be solved by placing a single fog node somewhere
in the topology, but this does not reflect the idea of Fog Computing. To limit the distance
from an access point to the next fog node there has to be a threshold. Such a threshold
could be based on the latency, number of hops, or other measurements. Having such a
threshold leads to a local range of an access point within which a fog node has to be
placed. All nodes within that threshold are possible fog node placements for this access
point.

Besides the problem where to place fog nodes in the topology, there is also the problem
of choosing the appropriate fog node type. Fog nodes can be of different types based
on their placement. In a real world scenario a fog node could be a home based router,
a mobile radio station, a switch in the network etc. Hence, the type of a fog node has
to be determined, too. Since there is no information about different protocols or the
underlying hardware, the type identification is limited. The type of a fog node will be
determined based on the maximum connections available and the deployment costs of
the respective fog node type. The goal is to find a set of fog nodes covering all devices
with minimal deployment costs for the fog nodes.

To illustrate this problem, a simple graph is depicted in Fig. 4.5. The two white vertices
are access points and the remaining gray vertices are part of the backbone. Devices have
been omitted for the sake of simplicity. In this example, there are two fog node types
available. One with a capacity of 1 and costs of 1 and another one with capacity of 2
and costs of 1.5. Further should the threshold be the number of hops.

For the first example, the threshold is 1. The outcome is depicted in Fig. 4.6. Both access
points have a dotted circle surrounding them to visualize the range of possible fog nodes.
In this case, there is no overlap between the two ranges and hence the result is having
two fog nodes of the first type directly at the access point. The overall deployment costs
are 2.

Increasing the threshold from 1 to 2 results in a different graph depicted in Fig. 4.7.
Now the two ranges intersect in a single vertex of the backbone. Since the goal is to
place cost optimal the result is having a single fog node of the second type. Hereby the
overall costs can be reduced from 2 to 1.5.

42

4.5 Fog Node Placement

Figure 4.5: Extract from a Network Graph

Figure 4.6: Exemplary Placement of Fog Nodes using the Threshold 1

4.5.2 Heuristic

The heuristic presented in this work is a greedy algorithm looking for possible fog node
placements with lowest average deployment costs. Therefore, the algorithm calculates a
list of edge nodes for all possible fog nodes within their range given by the threshold t.
With that information, they can determine the optimal type of fog node to deploy based
on the maximum connections and their respective deployment costs. Each iteration
takes the cost optimal placement in the current state and adds it to the final result until
every edge node has a fog node within its range.

43

4 Concept

Figure 4.7: Exemplary Placement of Fog Nodes using the Threshold 2

Fig. 4.8 shows an exemplary sequence of steps placing fog nodes in a network topology.
There are two type of fog nodes available: T1 with a capacity of 2 connections and
costs of 1 and T2 with a capacity of 5 connections and costs of 2. Also, the threshold
used is the number of hops and is limited to 2 hops. The initial network without fog
nodes is depicted in (a). Shaded nodes represent the network consisting of backbone
and edge nodes and white nodes represent the client devices that are connected to the
network. With the first iteration, the algorithm calculates the range of each client and
connects them to the respective nodes in the topology. The numbers next to the network
nodes in (b) represent the number of clients that are within a 2 hop distance. Based
on this number and the two fog types available, there are multiple options for the first
placement. Three nodes (with 5 and 6 connections) are able to place T2 with costs of 2

5
and one node (with 4 connections) with costs of 2

4 . Placements with T1 can only achieve
costs of 1

2 . In case there are multiple options, the one with the minimal hop count gets
picked. Therefore, a T2 fog node with costs 2

5 is placed as shown in (c). The placed fog
node is colored in blue and associated with the fog type T2. All covered client nodes
are colored in orange. Since they do not have to be connected to another fog node, the
current connection numbers are stale. For the second iteration, those numbers need
to be updated. In (d) the connection numbers are updated to the one client left. For
this client there are two possible placements with two possible types whereas T1 is the
cheaper with costs of 1

1 . As before the closest placement gets chosen as shown in (e).
Finally there are no clients left to connect in (f) and the algorithm terminates.

The pseudo-code of the algorithm is listed in Algorithm 4.5. Even though PLACE-
FOGNODES is the main procedure to start with, there is also a second sub procedure

44

4.5 Fog Node Placement

(a) Initial State

6
4

6

5

(b) First Iteration

6
4

 – T2

5

(c) First Placement with Type T2

1
1

 – T2

0

(d) Updated Second Iteration

1
 – T1

 – T2

0

(e) Second Placement with Type T1

0
 – T1

 – T2

0

(f) Final State

Figure 4.8: Exemplary Placement of Fog Nodes in a Topology

45

4 Concept

DETERMINEPOSSIBLEFOGNODES in this listing. Each of them will be explained in more
detail starting with PLACEFOGNODES.

First, PLACEFOGNODES starts with an initially empty result set of placed fog nodes F

and adds in each iteration one node as a placement. Required as parameters is the
graph G = (V, E), the set of edge nodes A ⊆ V which satisfies A ∩ B = {} as already
introduced in Section 4.3 and the cost function’s threshold t, e.g., the latency bound. To
place fog nodes, the algorithm first needs to retrieve all available fog node placements
P by calling the DETERMINEPOSSIBLEFOGNODES function, which is covered later on
(line 3). As long as there are edge nodes that still need to be connected to a fog node
and hence A ̸= {}, a new fog node is determined. The retrieved possible nodes get
sorted based on the average deployment costs per covered edge node in ascending order
(line 5). In case two possible nodes have the same average deployment costs, they are
compared on their average costs to connect, e.g., minimum latency. The cost optimal
node is picked from the sorted set and is added to the result set F (line 6–7). All edge
nodes that are covered by the determined fog node are removed from the set A to
only consider uncovered edge nodes in the next iteration (line 8). Finally, the set of
possible fog nodes P is updated with respect to the latest picked fog node placement by
the UPDATEPOSSIBLEFOGNODES function (line 9). This function removes the covered
edge node from the range of all associated nodes. As a result, the set of possible fog
placements P shrinks and some nodes may have new costs associated, thus requiring to
be sorted in the next iteration.

Second, the DETERMINEPOSSIBLEFOGNODES procedure takes the graph G, set edge
nodes A and the cost function’s threshold t as parameters. Starting from each edge node
in A, the algorithm performs a Dijkstra Algorithm [Dij59] to find the best connection
from this node to all others in the graph. If the costs exceeds the limit given by the
threshold t parameter, the algorithm aborts, as nodes reachable after this point are
irrelevant. All nodes reachable from any of the edge nodes and their respective costs are
stored in the set P , making it the final outcome of this function (line 14). Starting with
an initial cost of 0, each node in the graph maintains the connection costs for all edge
nodes within its range (line 16). The edge node s itself gets added to the queue as the
initial node to process (line 17). Each currently processed node c ∈ Q gets added to the
final set P as it is reachable from the edge of the network (line 21). To iterate the graph,
the distance to each node in the direct neighborhood of the currently processed node
n ∈ N1(c) is calculated (line 23). Only if the calculated costs are within the boundaries
of the threshold t they are further considered (line 24). In case this neighbor node
is already part of the queue, its costs and predecessor are updated if the connection
costs are lower than the currently associated costs (line 26–29). Nodes which are not in
the queue get their costs and predecessor set to the current node c and the originally
starting edge node s is added to the range of this possible fog node (line 30–35). Finally,
the node is added to queue to also be processed. As soon as there are no nodes left to

46

4.5 Fog Node Placement

Algorithm 4.5 The Fog Node Placement Algorithm

1: procedure PLACEFOGNODES(G, A, t)
2: F ← {}
3: P ← DETERMINEPOSSIBLEFOGNODES(G, A, t)
4: while A ̸= {} do
5: SORT(P)
6: f ← P.FIRST()
7: F ← F ∪ {f}
8: A← A \ f.Range

9: P ← UPDATEPOSSIBLEFOGNODES(P, f)
10: end while
11: return F

12: end procedure
13: procedure DETERMINEPOSSIBLEFOGNODES(G, A, t)
14: P ← {}
15: for all s ∈ A do
16: s.Costs[s]← 0
17: Q← {s}
18: while Q ̸= {} do
19: SORT(Q)
20: c← Q.DEQUEUE()
21: P ← P ∪ {c}
22: for all n ∈ N1(c) do
23: costs← c.Costs[s] + CALCULATECOSTS(c, n)
24: if costs ≤ t then
25: if n ∈ Q then
26: if cost < c.Costs[s] then
27: n.Predecessor ← c

28: n.Costs[s]← costs

29: end if
30: else
31: n.Predecessor ← c

32: n.Costs[s]← costs

33: n.Range← n.Range ∪ {s}
34: Q.ENQUEUE(n)
35: end if
36: end if
37: end for
38: end while
39: end for
40: return P

41: end procedure

47

4 Concept

process, all nodes within the boundaries of the threshold have been found and associated
with their optimal connection costs. Hence, P is the resulting sub set of all nodes in
the graph containing all reachable fog placements with costs, predecessor, and their
respective range of edge nodes.

4.6 Write the Experiment Output

The final step of the tool is to write the generated network to a persistent file. This
includes the assignment of devices to the edge of the network as well as the fog node
placement including their respective type. Similar to the first step of reading the graph,
it should be possible to extend for additional output formats. As described in Section
2.4, there are many different simulation and emulation tools that can be used for the
actual measurements. Through the graph structure interface a writer can access all
information tracked in the testbed.

4.7 Theoretical Complexity

The proposed workflow contains two major algorithms: the algorithm to identify the
edge of the network and the algorithm to find a fog placement. In this section, the
theoretical complexity of both algorithms will be examined to get indication for the
running time evaluation in Section 6.

4.7.1 The Edge Identification Algorithm

The first step of the edge identification algorithm is the identification of cross-AS
connections. Therefore, all edges are considered and iterated. Since the check of the
associated AS and the adding process to the set B can be achieved in O(1), this step will
be processed in O(|E|).

In the second step, the average degree has to be calculated which is possible in O(|V |)
as each node has to be visited once. With the average degree calculated, all remaining
nodes that are not part of the backbone V \ B are iterated. In the worst case, this set
equals V and hence it can be done in O(|V |).

The third and last step is based on the Breadth-First algorithm, which in its standard
form has a proven complexity of O(|V | + |E|) [CLRS09]. Compared to the original
algorithm the only thing changed is the iteration back to connect the backbone partitions

48

4.7 Theoretical Complexity

(line 16–22). Since this operation cannot revisit an edge twice, the worst case would
be to visit each once and hence leads to O(|E|). In total, this would be a complexity of
O(|V |+ |E|+ |E|) for the third step.

Combining the complexity of all three steps and considering that they run sequentially
one after another, it can be seen that the total complexity of the edge identification
algorithm is O(|E|+ |V |+ |V |+ |E|) = O(|V |+ |E|).

4.7.2 The Fog Node Placement Algorithm

In the PLACEFOGNODES function, the first relevant operation is the call of the DETER-
MINEPOSSIBLEFOGNODES function, which will now be discussed in more detail. The
Dijkstra algorithm used for the calculation of the best connection has a proven complex-
ity of O(|E| · Tdk + |V | · Tem) where Tdk is the complexity of the decrease-key and Tem

the complexity of the extract-minimum operations [CLRS09]. Therefore, the complexity
depends on the chosen structure for the queue Q. The overall complexity also depends
on the complexity Tcc of the CALCULATECOSTS function called on each edge of the first
neighborhood for the currently processed vertex. For most cost functions like latency,
hop, bandwidth, etc., the costs can be calculated in O(1). As an edge can only be visited
twice, once for each end point, the number of calls of the function CALCULATECOSTS is
at most 2|E|. In total this leads to O(|E| · (Tdk + Tcc) + |V | · Tem).

With the possible fog node placements in P , the PLACEFOGNODES function now can
select the currently optimal placement until there is nothing left to connect to (line
4–10). Since it is possible that A = V , the while loop iteration count is based on the
set V . Sorting a set of n elements can be done within a complexity of O(n · log(n)), for
instance by the use of the merge-sort algorithm. Removing the range of the chosen fog
node f from the set of edge nodes can be done in O(|V | · log(|V |)), as every edge node
in A can only be removed once from the set A and by the use of a tree structure it is
possible to remove an element in O(log(|V |)). The update of the remaining fog node
placements with the UPDATEPOSSIBLEFOGNODES function has a complexity of O(|V |)
because every remaining node in P gets updated at most once. All of the above leads to
a complexity of O(|E| · (Tdk +Tcc)+ |V | ·Tem + |V | · log(|V |)+ |V | · (|V | · log(|V |)+ |V |)) ⊆
O(|E| · (Tdk + Tcc) + |V |2 · log(|V |)).

49

5 Implementation

To evaluate and make use of the concept presented in this work, it has been implemented
in the EmuFog1 tool. It is published open source on the GitHub platform under the MIT
license to make it usable and expendable for everyone. Since it is written in the Java
programming language, it is platform-independent and hence can be easier combined
with new topology generators and emulators.

This implementation section is structured as follows. First, all mandatory and optional
input files and parameters are explained in Section 5.1. The generated output format is
described in Section 5.2. Section 5.3 explains how to run EmuFog from the command
line, and the last Section 5.4 presents the implementation details on the package level.

5.1 Input Data

In this Section all necessary input files will be discussed. All of them are required at
the local file system and will be read at execution time. None of them get modified or
overwritten during the execution. They can be passed as arguments to EmuFog via the
command line interface explained in Section 5.3.

5.1.1 The Network Topology

The first input to consider is the network topology to operate on. As described in Section
4.2, it should be possible to use different input formats. Currently, EmuFog supports
the BRITE and the Caida data format. Besides existing topologies stored in data files,
it is also possible to extend EmuFog and create a network topology programmatically
with the offered interface of the Graph package (discussed in Section 5.4.4). In this case,
there is no need for a topology file as an input.

1EmuFog is available at https://github.com/emufog/emufog

51

https://github.com/emufog/emufog

5 Implementation

For BRITE it only requires a single file with the .brite extension. This data format
is independent of the model used to generate the topology. Even though the BRITE
generator supports multiple output formats, the reader currently implemented only
supports the .brite format. Besides the nodes and edges of the topology, it also reads the
latency and bandwidth generated by BRITE.

In contrast to BRITE, Caida requires multiple files to build a topology. Caida’s Internet
Topology Data Kit2 (ITDK) is split into pieces. To combine and build the network, the
reader requires the geographical information of the nodes in the .nodes.geo file, the
mapping of nodes to the autonomous system in the .nodes.as file and the links between
nodes in the .links file. In contrast to BRITE, there are not latency and bandwidth
information available hence they have to be estimated based on the geographical
information provided.

5.1.2 The Settings File

Besides the network topology, the settings file as another mandatory input for EmuFog.
It contains additional properties affecting the placement and performance as well as the
definition of hardware types and the Docker image to run. With the start of EmuFog, the
settings will be read from the hard drive and applied to the execution. Listing 5.1 shows
the settings file with exemplary values. To make it easier to read and understand for
humans, the chosen data format is JSON. This also makes it possible to create structures
needed to model the hardware containers.

The ”DeviceNodeTypes” lists all device that will be placed automatically in the network.
As devices and fog nodes both base on Docker container to emulate different hardware
setups the structure is similar to another. With the use of the scaling factor devices
can simulate lots of smaller devices as sensors in a single container. In comparison
to the devices, fog nodes have a maximal connections property to limit the number
of connections for low resource hardware. Since the goal is to minimize deployment
costs they have to be present. The costs property therefore only affects fog nodes. Each
property in the settings file is described in Table 5.1.

5.2 Output Files

After placing fog nodes in the network the final network topology will be exported to
run an experiment. Since one of the criteria of EmuFog is the extensibility, it should

2Internet Topology Data Kit: https://www.caida.org/data/internet-topology-data-kit/

52

https://www.caida.org/data/internet-topology-data-kit/

5.2 Output Files

{
"BaseAddress": "10.0.0.0" ,
"OverWriteOutputFile": true,
"MaxFogNodes": 100,
"CostThreshold": 2,
"HostDeviceLatency": 0,
"HostDeviceBandwidth": 1000,
"ThreadCount": 1,
"ParalleledFogBuilding": false,
"DeviceNodeTypes": [

{
"DockerImage": {

"Name": "ubuntu",
"Version": " latest "

},
"ScalingFactor" : 1,
"AverageDeviceCount": 1,
"MemoryLimit": 524288000,
"CPUShare": 1
}

],
"FogNodeTypes": [

{
"ID": 1,
"DockerImage": {

"Name": "ubuntu",
"Version": " latest "

},
"MaximumConnections": 1,
"Costs": 1,
"MemoryLimit": 1048576000,
"CPUShare": 1

},
{

"ID": 2,
"DockerImage": {

"Name": "debian",
"Version": " stable "

},
"MaximumConnections": 5,
"Costs": 2.5,
"MemoryLimit": 2097152000,
"CPUShare": 1.5

}
]

}

Listing 5.1: An exemplary Settings File

53

5 Implementation

Parameter Type Description
BaseAddress Text The base IP address of the network containing all

nodes. This is the starting point and first address
assigned. Format: XXX.XXX.XXX.XXX

OverWriteOutputFile Boolean Indicates whether the output file should be over-
written in case it already exists. true to overwrite
file, false to keep it.

MaxFogNodes Integer The maximum number of fog nodes to place in
the network.

CostThreshold Float The cost function’s threshold. Depends on the cost
function chosen.

HostDeviceLatency Float Latency to use between a placed client device at
the edge of the network and its associated edge
node.

HostDeviceBandwidth Integer Bandwidth to use between a placed client device
at the edge of the network and its associated edge
node. Measured in MB.

ThreadCount Integer Number of threads to use for processing the graph.
Each AS is processed by an individual thread.

ParalleledFogBuilding Boolean Indicates whether the fog network is built in pa-
rallel. true to build it up in parallel, false to build
it sequentially.

DeviceNodeTypes List A list of all device types to assign to edge nodes.
ID Integer Unique identifier of a computing container.
DockerImage Object Docker image associated with this container.
Name Text Name of the Docker image to use.
Version Text Version of the Docker image.
ScalingFactor Float Scales the workload of this device higher than 1.
AverageDeviceCount Float The average number of devices of this type con-

nected to an edge node.
MemoryLimit Integer Memory size of this container in Bytes.
CPUShare Float Scaling of the CPU power. Container receives

share of its value in respect to the total sum.
MaximumConnections Integer The maximum number of connections from client

devices this container can handle.
Costs Float Deployment costs of this fog node in the network.

Table 5.1: The Settings File Parameter in Detail

54

5.3 How to use EmuFog

be possible to extend an output to any data format as long as it can be build with the
information provided in the graph. The current implementation includes an export
function to the MaxiNet emulator introduced in Section 2.4.1. Listing 5.2 shows the
output file generated by an exemplary execution on a network topology of 10 nodes.
First, the nodes running actual software are added to the topology (line 13–16). In this
case, those are two edge nodes (r38 and r37) and two devices (h0 and h1) with their
respective IP address, memory limit and the Docker image to use. Second, all remaining
nodes that do not run software are added (line 19–26 & 29). Now all nodes in the
topology are added, but not connected yet. Third, all links between nodes are added
with their latency delay and bandwidth (line 32–54). Finally, the topology gets initiated
and the experiment starts (line 57–59).

5.3 How to use EmuFog

The first step to launch EmuFog is to gain any type of network topology. As mentioned
before, this could be an artificial one by any topology generator like in Section 2.3.2 or
a measured snapshot of the actual Internet from research projects introduced in Section
2.3. Second, it requires a settings file specifying hardware types, limits, threads etc. as
previously explained in detail in Section 5.1.2.

For an exemplary launch of EmuFog, it requires a compiled version emufog.jar avai-
lable as well as a settings file settings.json and a topology generated by BRITE
topology.brite. All input files are located in the same directory as the binary to mi-
nimize this example. Those inputs have to be passed to EmuFog by its command line
interface exemplary shown in Listing 5.3. The full list of arguments is provided in Table
5.2, including their respective description.

$ java -jar emufog.jar -s settings.json -t brite -f topology.brite -o out.py

Listing 5.3: An exemplary Launch of EmuFog

5.4 EmuFog Structure

As previously mentioned, EmuFog is written in Java and uses features of the Java 8
standard. Hence, it requires the Java Development Kit (JDK) 8 and up to compile and
execute the software. To ease the building of EmuFog including its dependencies, the
project uses the Gradle build tool. It has been developed with the currently latest version

55

5 Implementation

1 #!/usr/bin/env python2
2
3 import time
4
5 from MaxiNet.Frontend import maxinet
6 from MaxiNet.Frontend.container import Docker
7 from mininet.topo import Topo
8 from mininet.node import OVSSwitch
9

10 topo = Topo()
11
12 # add hosts
13 r38 = topo.addHost("r38", cls=Docker, ip="10.0.0.4", dimage="ubuntu:trusty", mem_limit=1048576000)
14 s37 = topo.addHost("s37", cls=Docker, ip="10.0.0.3", dimage="ubuntu:trusty", mem_limit=1048576000)
15 h0 = topo.addHost("h0", cls=Docker, ip="10.0.0.1", dimage="ubuntu:latest", mem_limit=524288000)
16 h1 = topo.addHost("h1", cls=Docker, ip="10.0.0.2", dimage="ubuntu:latest", mem_limit=524288000)
17
18 # add switches
19 r39 = topo.addSwitch("r39")
20 s32 = topo.addSwitch("s32")
21 s33 = topo.addSwitch("s33")
22 s34 = topo.addSwitch("s34")
23 s35 = topo.addSwitch("s35")
24 s36 = topo.addSwitch("s36")
25 s30 = topo.addSwitch("s30")
26 s31 = topo.addSwitch("s31")
27
28 # add connectors
29 c0 = topo.addSwitch("c0")
30
31 # add links
32 topo.addLink(s30, s32, delay=’2.8683429ms’, bw=10.0)
33 topo.addLink(s31, s32, delay=’1.8749269ms’, bw=10.0)
34 topo.addLink(s33, s30, delay=’2.7793577ms’, bw=10.0)
35 topo.addLink(s35, s30, delay=’3.6889384ms’, bw=10.0)
36 topo.addLink(s32, s34, delay=’0.52105445ms’, bw=10.0)
37 topo.addLink(s35, s33, delay=’0.91326535ms’, bw=10.0)
38 topo.addLink(s31, s34, delay=’2.3148987ms’, bw=10.0)
39 topo.addLink(s30, s34, delay=’3.0580752ms’, bw=10.0)
40 topo.addLink(s37, s34, delay=’2.3839264ms’, bw=10.0)
41 topo.addLink(r38, s30, delay=’3.511378ms’, bw=10.0)
42 topo.addLink(s33, s34, delay=’1.1840962ms’, bw=10.0)
43 topo.addLink(s37, s36, delay=’0.35953817ms’, bw=10.0)
44 topo.addLink(s36, s35, delay=’1.5631313ms’, bw=10.0)
45 topo.addLink(s34, s35, delay=’1.5446935ms’, bw=10.0)
46 topo.addLink(s36, s30, delay=’2.8834488ms’, bw=10.0)
47 topo.addLink(s31, s30, delay=’1.7750531ms’, bw=10.0)
48 topo.addLink(r39, s37, delay=’1.3851869ms’, bw=10.0)
49 topo.addLink(r39, s30, delay=’1.3370553ms’, bw=10.0)
50 topo.addLink(s33, s36, delay=’1.2379903ms’, bw=10.0)
51 topo.addLink(s37, s30, delay=’2.5305889ms’, bw=10.0)
52 topo.addLink(r38, c0, delay=’0.0ms’, bw=1000.0)
53 topo.addLink(c0, h0, delay=’0.0ms’, bw=1000.0)
54 topo.addLink(r39, h1, delay=’0.0ms’, bw=1000.0)
55
56 # create experiment
57 cluster = maxinet.Cluster()
58 exp = maxinet.Experiment(cluster, topo, switch=OVSSwitch)
59 exp.setup()

Listing 5.2: An exemplary Experiment for MaxiNet

56

5.4 EmuFog Structure

Argument Shortcut Description
-Settings -s Path to the settings file to use.
-Type -t The type of reader to use. Currently supported: BRITE and

CAIDA. This argument is case insensitive.
-Output -o Path to the output file to write.
-File -f Path to a topology file to read in. This argument can be used

multiple times.

Table 5.2: Command Line Arguments for EmuFog

docker

settings

graph

export

launcher

fog

backbone

reader

util

Figure 5.1: The Package Diagram of EmuFog

of Gradle 3.4. The overall functionality of EmuFog is broken down into several modules.
Fig. 5.1 provides an overview of the EmuFog’s structure using a package diagram.

In the following sections, each package will be discussed in more detail to explain its
functionality and its most important classes and interfaces. Due to the hierarchy of the
dependencies, packages with already covered dependencies will be explained first.

57

5 Implementation

5.4.1 The Docker Package

This package contains the hardware specification as well as the software to run with the
emulation tool of choice. EmuFog uses Docker containers to emulate the hardware and
software to evaluate. Docker is available cross-platform, supports hardware resource
limitations to emulate different devices, and is a lightweight option for an isolated
environment to execute code. This is crucial as multiple containers will run on the same
physical machine thus making isolation a necessity. Also Docker offers a wide range of
preexisting containers than can either be used directly or modified easily to include any
software of choice.

The abstract DockerType class models a generic Docker container with the amount of
memory, its share of the CPU and the image to run. Fog nodes as well as devices in the
network rely on such contains and hence there are two classes FogType and DeviceType

respectively. They model the different nodes with some additional attributes, but extend
the generic DockerType class.

5.4.2 The Settings Package

The settings package consists of two classes: Settings and SettingsReader. The latter
provides a function to read in the settings from the setting file explained in Section
5.1.2 passed via the command line. To transform the JSON document into a Java object,
EmuFog uses the open source Gson3 library by Google. It can transform basic types as
well as structured objects as the hardware specifications. The Settings class itself holds
all the provided information easy to access for all other packages.

5.4.3 The Util Package

In comparison to the other packages, the util package does not provide features explicitly
tailored for the actual testbed. The main component in this package is the Logger class
offering a centralized logging system using the singleton pattern. Different logging
entries can categorized with the LoggerLevel enum into INFO, WARNING, and ERROR

making it easier to recognize them in the output. All entries are stored and can be
optionally written into a text file.

3Gson is available at https://github.com/google/gson

58

https://github.com/google/gson

5.4 EmuFog Structure

5.4.4 The Graph Package

Independent of the input format, all network topologies are stored in a simplified graph
structure based on the model explained in Section 4.1. Each node in the graph is an
instance of the abstract Node class. Possible nodes are HostDevice for devices, Router
for edge nodes, and Switch for backbone nodes. A node has a unique identifier and a
list of Edge instances connecting it to other nodes in the graph. Those nodes belong
to an instance of the AS class storing a mapping of node identifiers to the actual node
objects.

The graph packages offers two graph representations: the Graph and the CoordinateGraph
class. First, the Graph class contains all of its associated autonomous systems which hold
the actual nodes of the graph. Besides that, it offers the interface to build a graph to
other packages as the reader package. This includes functions to create the different
kinds of nodes as well as edges in the graph. To create an edge between two nodes
in this class, it is required to know the latency between them. Even though this is
often no problem, there are datasets not providing this information as they only model
the topology not the characteristics of the edges. Therefore, there is a second graph
presentation with the CoordinateGraph class which extends the original Graph class.
It extends the set of functions by the option to create nodes and associate them with
coordinates for future use. Creating an edge accepts in this class an instance of the
ILatencyCalculator interface having a single function to calculate the latency based
on the x and y coordinates in the two dimensional plane. This way new data format
readers can either reuse existing calculators or simply implement their own to open up
for all types of networks. There is lots of research [DCKM04; GSG02; LHC03; NZ02;
SPPS08; SXBL06] in the field of estimating latencies by the use of coordinate systems.

5.4.5 The Reader Package

Depending on the data format to read in, there has to be respective reader availa-
ble. Currently this package contains two readers: the BriteFormatReader and the
CaidaFormatReader. For future use, new readers can be added by extending the abstract
GraphReader class. The main launcher of EmuFog will call the reader and expects a
graph instance in return. To build a graph the interface of the previously mentioned
Graph class has to be used.

59

5 Implementation

5.4.6 The Backbone Package

The identification of the edge of the network is the second step in the overall workflow.
In contrast to the intuitive assumption, EmuFog does not identify the edge but rather
identifies the backbone of the network. All that is left is the edge of the network. The
backbone package contains the algorithm to detect the edge presented in Section 4.3.

An identification of the backbone can be triggered via the BackboneClassifier class
by passing the graph object to operate on. Since different autonomous systems can be
processed independently, they get parallelized; thus, speeding up the identification on
multi-AS topologies. Each AS is mapped to its own BackboneWorker class identifying
only the associated one. All workers are executed in parallel by the use of a thread pool
with the given numbers of threads to use by the settings file.

5.4.7 The Fog Package

The fog package implements the fog node placement algorithm introduced in Section
4.5. Similar to the backbone identification, the FogNodeClassifier class takes the graph
to process and splits the task into pieces of one AS each. Each of those tasks will be
executed in its own thread with the abstract Worker class. Depending on the ”Paralle-
ledFogBuilding” parameter in the settings file, this is either a SequentialFogWorker or a
ParallelFogWorker.

5.4.8 The Export Package

After determining the fog nodes, the results of the network have to be exported from
EmuFog to an emulator of choice. Therefore, it has to be expendable to new export
classes which is possible by implementing the IGraphExporter interface consisting of a
single function to export a graph structure. Currently, EmuFog supports an export to
MaxiNet with the MaxiNetExporter class implementing the interface. It generates the
Python file and writes it to a given path.

5.4.9 The Launcher Package

Finally, there is the launcher package; this includes the Emufog class that launches the
entire application. It executes all steps depicted in Fig. 4.1 in this sequence. As a result,
it has dependencies to nearly all of the previously covered packages combining them

60

5.4 EmuFog Structure

to build EmuFog. The main class EmuFog offers a command line interface parsed by the
jCommander4 library. Additional properties are passed via the settings file.

4jCommander is available at http://jcommander.org/

61

http://jcommander.org/

6 Evaluation

The evaluation section provides different evaluations of EmuFog and MaxiNet. First,
Section 6.1 measures the running time of the edge identification algorithm and the fog
placement algorithm. Second, as the fog node placement has a cost optimal result the
quality of the heuristic presented can be measure. Section 6.2 compares the results of
the heuristic with the optimal solution to provide indication of the approximation factor.
The last evaluation in Section 6.3 measures the deployment time of EmuFog outcomes
launched with MaxiNet.

6.1 Running Time Measurements

In the first test of the evaluation, the running time of EmuFog gets evaluated. To show
the versatile nature of EmuFog, we use two different Internet topology datasets: first,
a synthetic topology generated by the BRITE topology generator, using the model of
Albert and Barabási [AB00]; second, a real world topology from Caida1 measured in
2014. A detailed description of all networks used is listed in Appendix A.

For the performance evaluation, we used autonomous systems of different sizes (n = 10,
100, 1,000 and 10,000 nodes). Each size is evaluated with five different samples and ten
runs each. For the BRITE dataset, the autonomous systems are generated with exactly n

nodes. From the Caida dataset, we select autonomous systems with a deviation of ±10%
from n so that enough different autonomous systems of similar size can be found. The
evaluation was carried out on an Intel i5-4670K processor with 4 physical and logical
threads @3.4GHz using 16 GB RAM; the operating system was Ubuntu 17.04.

We implemented adapters for both datasets to generate a generalized topology for edge
identification and fog node placement. In the evaluations, we measure the latency for
performing the two major preprocessing steps in EmuFog: Edge identification in Section
6.1.1 and fog node placement in Section 6.1.2.

1Caida ITDK 2014-12: http://data.caida.org/datasets/topology/ark/ipv4/itdk/2014-12/

63

http://data.caida.org/datasets/topology/ark/ipv4/itdk/2014-12/

6 Evaluation

 0

 2

 4

 6

 8

 10

 12

 14

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

edge identification

Figure 6.1: Edge Identification for the BRITE Data Set

6.1.1 Edge Identification

The performance evaluations starts with the edge identification, the logical necessary
step before the fog placement. Fig. 6.1 shows the running time of the edge identification
for the BRITE dataset and Fig. 6.2 shows the identification for the Caida Data Set. On
the x-axis are the AS sizes displayed on a logarithmic scale and on the y-axis the running
time in ms on a linear scale.

For the BRITE dataset, it can be seen that the time taken increases strongly monotonic
with the size of the AS to process. But it is also visible that even though the growth
for autonomous systems up to 1,000 nodes is fairly slow, it increases strongly for big
networks. As previously explained in Section 4.7.1, the performance of the algorithm
does not only depend on the number of nodes, but also on the number of edges. This
leads to a non linear characteristic of the running time.

The results of the Caida dataset look different from the ones of the BRITE dataset. In
comparison, it is visible that the time taken does not increase monotonic but instead has
a drop for autonomous systems with the size of approx. 1,000 nodes. Also, the span
between the longest and the shortest running time is is smaller than in the BRITE dataset.
This might be due to the fact that the topologies in the Caida dataset are partitioned;

64

6.1 Running Time Measurements

 0

 2

 4

 6

 8

 10

 12

 14

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

edge identification

Figure 6.2: Edge Identification for the Caida Data Set

hence the algorithm has to process multiple times smaller sub partitions of the network
instead of a single execution.

Finally, it can be concluded that an average running time of 12.171ms for an AS with
the size of 10,000 nodes is sufficiently fast and does not limit the usage of EmuFog in
any way. Even the biggest autonomous system of the real world Caida data set with
approx. 450,000 nodes is processed in less than a second.

6.1.2 Fog Node Placement

Compared to the edge identification, the fog node placement is a more complex problem
in terms of theoretical complexity as well as its evaluation. Again, the evaluation is
carried out on both datasets. As the fog placement depends on multiple parameters in
the settings file, the evaluation had to be done with different settings. Therefore, two
different fog types were available: a small fog node with a capacity of 5 connections
and deployment costs of 2 and a bigger node with a capacity of 25 connections and
deployment costs of 5.5. To evaluate the placement and its dependency on the cost
function’s threshold t, each AS gets processed with t = 1, 2, 4, 8, 16. The respective cost
function is the aggregated latency of connections.

65

6 Evaluation

The results for the BRITE dataset are depicted in Fig. 6.3. In the case of the BRITE
dataset, the necessary latency is provided by the model itself. First, all diagrams show a
monotonic increase with an increasing AS size. Second, the impact of the threshold t

is clearly visible throughout all diagrams. An increasing threshold affects the running
time negatively if the topology is too large. This is best visible with the topologies of
the size 10,000. Looking at t = 1, 2, 4, 8 the absolute time always increases with an
increasing threshold. For t = 8, 16 there is barely any change in the numbers. When
this happens, a higher threshold will not affect the running time any more, since the
threshold exceeds the diameter of the graph. This is also visible for the AS size 10 where
there is no change after t = 2.

Fig. 6.4 shows the results of the Caida dataset. Equally to the BRITE dataset, all running
times increase monotonic throughout all tested thresholds. Also, the exceeding of the
diameter is visible for the samples discussed in the BRITE dataset. Hence, the comparison
diagram looks similar in both datasets. However, the running time of the Caida dataset
is slightly higher. Since the number of nodes is nearly the same, the increase results of
the structure of the network. The number of edge in the Caida dataset is lower and the
network partitioned. The partitioning of networks in the Caida datasets leads to more
placements of fog nodes as they can not cover as many nodes as they could.

6.2 Quality Measure

In the previously presented evaluations, the only criteria was the performance in terms of
execution time. Even though the execution time is a crucial criteria for an approximation,
especially compared to the time it takes to solve it optimally, it does not consider the
quality of the solution at all. To complete the evaluation of the algorithm proposed, this
section formulates the problem of fog node placement in an integer linear program (ILP)
and solves datasets with an ILP solver to evaluate the approximation factor.

6.2.1 Problem Formulation

For the ILP formulation of the fog node placement problem, there are various variables
to be defined. As already defined, the problem is based on a graph G = (V, E) with
the vertex set V and the edge set E, where the vertex is separated in a set of backbone
nodes B ⊆ V and a set of edge nodes A ⊆ V satisfying A ∩B = {} ∧ A ∪B = V . Each
node v ∈ V in the graph has a boolean variable xv ∈ {0, 1} representing if this node v is
a fog node, is equal to 1, or not. Since every edge node has to have a fog node within
the given range, the connections have to be modeled in the ILP as well. Therefore, exists

66

6.2 Quality Measure

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=1

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=2

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=4

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=8

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=16

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=1
t=2
t=4
t=8

t=16

Figure 6.3: EmuFog Running Times on the BRITE Data Set

67

6 Evaluation

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=1

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=2

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=4

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=8

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=16

1k

10k

100k

 0.1

 1

 10

 100

10 100 1000 10000

la
te

n
cy

 in
 m

s

AS size

t=1
t=2
t=4
t=8

t=16

Figure 6.4: EmuFog Running Times on the Caida Data Set

68

6.2 Quality Measure

the boolean connection variable ca,b ∈ {0, 1} representing a connection from a ∈ V to
b ∈ V . Each connection has a certain latency in the network. This latency is modeled
by la,b for the each connection from a ∈ V to b ∈ V . It is required to be a positive real
number la,b ∈ R, la,b ≥ 0.

Aside from the connections and latencies, there is also the problem of choosing an
optimal fog node type. Hence, there is a set T of all available fog node types. Each type
t ∈ T is available for each possible node v ∈ V and therefore it is modeled as tv ∈ {0, 1}
representing if the node v is using the type t. The deployment costs of a fog node type
t ∈ T is modeled by dt with dt ∈ R, dt ≥ 0. Additionally to the deployment costs, each
fog type is also associated with a maximum capacity of connections it can handle. This
capacity is modeled by capt for each type t ∈ T with capt ∈ N, capt ≥ 0.

The objective function to optimize is the minimization of the sum of the deployment
costs dt of all selected fog node types. In case the ILP has multiple results minimizing the
objective function it can further be optimized by minimizing a second objective function
only using the set of possible results minimizing the first objective function. Since the
first objective already minimizes the deployment costs to a minimum, it can further be
optimized by minimizing the latency from the edge to the fog. This second level order
has also been implemented in the fog node placement algorithm presented in Section
4.5.2.

Apart from the constraints for binary variables, there are three additional constraints
to express the problem of fog node placement. The first constraint guarantees that
every edge node a ∈ A is connected to at least one fog node. This means at least one
connection leaves a and therefore, the respective identifier is 1. The second constraint
guarantees that every chosen fog node only has one fog type associated. Therefore, the
sum of all available fog types has to be equal to the boolean identifier whether that node
is a selected fog node. In case the node is selected as a fog node, xv is 1 and so has to
be the sum of fog type identifiers. This also makes sure that there is exactly one fog
type associated. If no fog type is selected, the respective node can not be a selected fog
node either. The third constraint guarantees that the number of connections to a fog
node do not exceed the capacity limits of the available fog node types. To achieve this
the sum of connections pointing to the current node v ∈ V must be less than the sum
of the capacities of the available fog node types capt. In combination with the second
constraint, the second sum can only have one summand.

The fog node placement problem is formulated as an integer linear program, as stated
below.

69

6 Evaluation

∑
v∈V

xv

∑
t∈T

dttv → min
xv ,v∈V

,
∑
a∈A

∑
v∈V

la,vxv → min

s.t.
∑
v∈V

ca,v ≥ 1 ∀a ∈ A∑
t∈T

tv − xv = 0 ∀v ∈ V∑
s∈V

cs,v −
∑
t∈T

capttv ≤ 0 ∀v ∈ V

xv ∈ {0, 1} ∀v ∈ V

ca,b ∈ {0, 1} ∀a, b ∈ V

tv ∈ {0, 1} ∀t ∈ T,∀v ∈ V

6.2.2 Approximation Results

This evaluation compares the total deployment costs of the fog placement found by the
greedy algorithm presented with the optimal placement calculated by the ILP. Therefore,
the oj! Algorithms2 library is used to generate an ILP directly from the graph structure
in EmuFog. Due to the time it takes to compute an optimal solution, it is impossible to
use the same topologies used in the time measurements, Section 6.1. For this evaluation
AS sizes of 25, 50, 75 and 100 nodes have been used. They got generated by the BRITE
generator using the Albert and Barabási model [AB00].

As it would require a mathematical proof, this evaluation can not prove the quality of an
approximation. Rather it can show indication of the quality based on small networks.
There might be higher approximation factors than the numbers presented in this section
as this depends on the structure of the graph, the capacity and costs of the placeable fog
nodes, and the cost function’s threshold, etc.

To evaluate the topology samples, two different configurations are used. They use fog
types of different sizes to evaluate the effect of covering different numbers of edge nodes
at the same time. Both use two different types to offer possibilities for misplacement
and a higher total cost. Configuration 1 uses a node with a capacity of 1 and costs 1
and a node with capacity 5 and costs 2.5. Configuration 2 uses a node with a capacity
of 5 and costs 2 and a node with capacity 25 and costs 5.5. Both use the cost function
threshold t of 2 where the cost function is the total latency. For each AS size 5 different
topologies have been run 5 times each; providing 25 samples per AS size.

Fig. 6.5 depicts the average ratio r = costsgreedy

costsilp
of the greedy and the optimal ILP costs

for both configurations. Obviously r can never be less than 1 as in this case the greedy

2oj! Algorithms is available at http://ojalgo.org/

70

http://ojalgo.org/

6.3 MaxiNet Performance

 1

 1.2

 1.4

 1.6

 1.8

 2

25 50 75 100

ra
ti

o
 r

AS size

average config 1
average config 2

Figure 6.5: Average Ratio of Greedy and Optimal Results

costs would be equal to the optimal costs. A value less than 1 would refute the ILP
as an optimal solution. The x-axis shows the AS sizes used for the evaluation and the
y-axis the ratio r both on a linear scale. It can be seen that for small networks of 25
nodes, all tests produced the same results regardless of the configuration used. Also, it
is visible that with an increasing AS size the average ratio increases slightly from 1 for
an AS size of 25 up to 1.2 for an AS size of 100 with the configuration 2 monotonic. The
configuration 2 with the higher capacities has a higher average ratio r for all AS sizes
except the AS size of 25 where it is equally optimal compared to the configuration 1.

In Fig. 6.6, the maximal deviation from the optimum is visualized. Similar to the
distribution of the average ratio t, the maximum of configuration 2 is always higher than
configuration 1 except for the AS size of 25. The overall maximal deviation is 5

3 for an
AS with the size of 100 nodes and the configuration 2. In contrast to the average, there
is no monotonic growth of the deviation by the AS size.

6.3 MaxiNet Performance

The deployment of the MaxiNet experiments generated by EmuFog is another crucial step
for the end-to-end workflow. Running times of EmuFog have been examined previously

71

6 Evaluation

 1

 1.2

 1.4

 1.6

 1.8

 2

25 50 75 100

ra
ti

o
 r

AS size

maximum config 1
maximum config 2

Figure 6.6: Maximum Ratio of Greedy and Optimal Results

and hence the deployment time of the generated experiments needs to be evaluated too.
In addition to the performance evaluations performed by Wette et al. [WDS14], this
work evaluates the startup time of experiments generated by EmuFog in a distributed
environment. Therefore, three Ubuntu 16.04 LTS servers from the Amazon Web Services
(AWS) platform got connected setup with MaxiNet. Each server was configured with
a t2.micro instance that consists of one shared CPU and 1GB of RAM. Fig. 6.7 depicts
the result of all measurements. Each AS size got measured by five runs and aggregated
to the median. A topology of an AS contains Docker container and basic switches as
generated by EmuFog. It is visible that the deployment time increases monotonic by the
AS sizes. The running times measured can only provide a tendency of the course as they
depend on the environment. A different server or a different number of servers might
lead to other results. Thereby the shared CPU and limited RAM affect the deployment
time the most. A server with higher computation power can deploy its local Mininet
instance faster.

In addition to the topologies generated by EmuFog, this section evaluates the perfor-
mance of MaxiNet in combination with the startup of many Docker containers. For this
purpose, special ring topologies are used. Such a ring consists of an arbitrary number of
switches connected to a ring where each switch is connected to five Docker containers.
This way the number of switches necessary to connect the topology is reduced to a
reasonable overhead compared to the number of Docker containers. For each topology of

72

6.3 MaxiNet Performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

250 500 750 1000

st
ar

tu
p

 t
im

e
in

 s

AS size

startup time

Figure 6.7: Startup Time of MaxiNet Experiments

n containers, there are another n
5 switches on top. For the evaluation all containers, use

the Ubuntu 16.04 LTS Docker image3 which is locally present on all servers before the
measurement. Due to the limited RAM available on a t2.micro instance in combination
with the necessary RAM to start up a Docker container this environment uses six instead
of three servers. Exactly as in the previous measure, each AS size got measured five
times and aggregated to the median. The results of the measurement are shown in Fig.
6.8. Similar to the performance of general network topologies the growth is monotonic.
Comparing the results for 250 nodes with the results in Fig. 6.7 it is visible that the
Docker topology starts faster. But this is only due to the fact that there are less links in
this topology to initialize.

3Docker Container Ubuntu 16.04 is available at https://store.docker.com/images/ubuntu

73

https://store.docker.com/images/ubuntu

6 Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

50 100 150 200 250

st
ar

tu
p

 t
im

e
in

 s

Number of Docker Containers

startup time

Figure 6.8: Startup Time of MaxiNet Experiments with Docker Containers

74

7 Conclusion

With EmuFog, this work proposed a new approach for testing Fog Computing using
emulation. EmuFog is able to read artificial network topologies by the BRITE network
generator, real world topologies measured by Caida, and can easily be extended for
other data formats. An algorithm to identify the edge of the network was shown
using a combination of connection, degree, and partition characteristics. Based on the
identified edge of the network, a second algorithm to place fog nodes was presented.
This algorithm is a heuristic to place fog nodes with their respective types cost optimal
within a given range defined by a given threshold.

EmuFog was implemented and published open source on the GitHub platform licensed
under the MIT license. It is extensible for future use, platform-independent with the
Java programming language, and flexible for different use cases. To run generated expe-
riments, an additional network emulator, like MaxiNet or CORE, is required. Currently,
an export function for the MaxiNet format is implemented, but for further emulation
tools, the respective output format can be expanded easily.

The evaluation presented measured the running time of the previously mentioned
algorithms to identify the edge and the fog placement. Thereby, it could also be shown
that in the evaluated test topologies, the ratio of the fog placement result to the optimal
result is on average less than 1.2 and in the worst case 5

3 . For the final experiments
generated by EmuFog, the deployment time using MaxiNet has been evaluated as well
as the deployment of Docker containers with MaxiNet.

Although this work provides evaluations of EmuFog and MaxiNet, there is no evaluation
of a Fog Computing application tested with EmuFog. This final step should be evaluated
in future work for evidence of the end-to-end use case. There is a variety of possible use
cases like stream processing, augmented/virtual reality, connected cars, etc. that could
be evaluated using EmuFog in combination with MaxiNet.

Currently, it is possible to use Docker container containing the Fog Computing application
to evaluate in EmuFog. But it might be useful to pass additional information to emulated
nodes via environment variables. Such information could be specified in the settings file
to be written dynamically to the output file.

75

A Autonomous Systems in Detail

Nodes Edges Backbone Nodes Edge Nodes
10 17 4 6
10 27 9 1
10 23 8 2
10 20 8 2
10 23 9 1
100 602 57 43
100 660 71 29
100 657 74 26
100 593 65 35
100 487 57 43
1,000 7,217 592 408
1,000 7,896 596 404
1,000 7,279 635 365
1,000 8,095 604 396
1,000 7,824 593 407
10,000 78,641 5,717 4,273
10,000 78,837 5,739 4,261
10,000 79,157 5,690 4,310
10,000 78,627 5,718 4,282
10,000 79,330 5,855 4,145

Table A.1: The Autonomous Systems of the BRITE Dataset

77

A Autonomous Systems in Detail

AS Identifier Nodes Edges Backbone Nodes Edge Nodes
7486 10 8 9 1
7909 10 9 2 8
9420 10 7 8 2
9587 11 8 9 2
9890 10 6 8 2
60227 98 99 6 92
60672 102 95 8 94
61806 100 99 1 99
6782 95 72 76 19
34660 96 94 13 83
23791 1,002 1,021 32 970
34974 1,007 951 55 952
42730 1,005 999 109 896
39216 1,011 926 19 992
15366 957 946 34 923
12709 9,861 9,811 28 9,833
3758 10,509 11,014 2,551 7,958
5588 10,335 10,160 1,269 9,066
2110 9,728 9,877 159 9,569
2116 9,909 9,277 903 9,006

Table A.2: The Autonomous Systems of the Caida Dataset

78

Bibliography

[AB00] R. Albert, A.-L. Barabási. “Topology of Evolving Networks: Local Events and
Universality.” In: Physical Review Letters 85.24 (24 Dec. 2000), pp. 5234–
5237. DOI: 10.1103/physrevlett.85.5234. URL: https://doi.org/10.1103%
2Fphysrevlett.85.5234 (cit. on pp. 24, 63, 70).

[ADHK08] J. Ahrenholz, C. Danilov, T. R. Henderson, J. H. Kim. “CORE: A real-time
network emulator.” In: MILCOM 2008 - 2008 IEEE Military Communications
Conference. IEEE, Nov. 2008, pp. 1–7. DOI: 10.1109/milcom.2008.4753614.
URL: https://doi.org/10.1109/milcom.2008.4753614 (cit. on p. 29).

[AGA11] J. Ahrenholz, T. Goff, B. Adamson. “Integration of the CORE and EMANE
Network Emulators.” In: 2011 - MILCOM 2011 Military Communications
Conference. IEEE, Nov. 2011, pp. 1870–1875. DOI: 10.1109/milcom.2011.
6127585. URL: https://doi.org/10.1109/milcom.2011.6127585 (cit. on
p. 29).

[AGC17] S. Alonso-Monsalve, F. Garcia-Carballeira, A. Calderon. “Fog computing
through public-resource computing and storage.” In: 2017 Second Inter-
national Conference on Fog and Mobile Edge Computing (FMEC). IEEE,
May 2017, pp. 81–87. DOI: 10.1109/fmec.2017.7946412. URL: https:
//doi.org/10.1109/fmec.2017.7946412 (cit. on pp. 18, 21).

[AH14] M. Aazam, E.-N. Huh. “Fog Computing and Smart Gateway Based Com-
munication for Cloud of Things.” In: 2014 International Conference on
Future Internet of Things and Cloud. IEEE, Aug. 2014, pp. 464–470. DOI:
10.1109/ficloud.2014.83. URL: https://doi.org/10.1109/ficloud.2014.83
(cit. on pp. 18, 21).

[Ahr10] J. Ahrenholz. “Comparison of CORE network emulation platforms.” In:
2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE. Insti-
tute of Electrical and Electronics Engineers (IEEE), Oct. 2010, pp. 166–171.
DOI: 10.1109/milcom.2010.5680218. URL: https://doi.org/10.1109%
2Fmilcom.2010.5680218 (cit. on p. 29).

79

https://doi.org/10.1103/physrevlett.85.5234
https://doi.org/10.1103%2Fphysrevlett.85.5234
https://doi.org/10.1103%2Fphysrevlett.85.5234
https://doi.org/10.1109/milcom.2008.4753614
https://doi.org/10.1109/milcom.2008.4753614
https://doi.org/10.1109/milcom.2011.6127585
https://doi.org/10.1109/milcom.2011.6127585
https://doi.org/10.1109/milcom.2011.6127585
https://doi.org/10.1109/fmec.2017.7946412
https://doi.org/10.1109/fmec.2017.7946412
https://doi.org/10.1109/fmec.2017.7946412
https://doi.org/10.1109/ficloud.2014.83
https://doi.org/10.1109/ficloud.2014.83
https://doi.org/10.1109/milcom.2010.5680218
https://doi.org/10.1109%2Fmilcom.2010.5680218
https://doi.org/10.1109%2Fmilcom.2010.5680218

Bibliography

[BA99] A.-L. Barabási, R. Albert. “Emergence of Scaling in Random Networks.”
In: Science 286.5439 (Oct. 1999), pp. 509–512. ISSN: 0036-8075. DOI:
10.1126/science.286.5439.509. URL: https://doi.org/10.1126%2Fscience.
286.5439.509 (cit. on p. 24).

[BEH+02] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, M. S. Marshall.
“GraphML Progress Report Structural Layer Proposal.” In: Graph Dra-
wing: 9th International Symposium, GD 2001 Vienna, Austria, September
23–26, 2001 Revised Papers. Ed. by P. Mutzel, M. Jünger, S. Leipert. Ber-
lin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 501–512. ISBN:
978-3-540-45848-7. DOI: 10 . 1007 / 3 - 540 - 45848 - 4 _ 59. URL: https :
//doi.org/10.1007/3-540-45848-4_59 (cit. on p. 35).

[BMNZ14] F. Bonomi, R. Milito, P. Natarajan, J. Zhu. “Fog Computing: A Platform
for Internet of Things and Analytics.” In: Big Data and Internet of Things:
A Roadmap for Smart Environments. Ed. by N. Bessis, C. Dobre. Cham:
Springer International Publishing, Mar. 11, 2014, pp. 169–186. ISBN:
978-3-319-05029-4. DOI: 10.1007/978-3-319-05029-4_7. URL: https:
//doi.org/10.1007/978-3-319-05029-4_7 (cit. on p. 20).

[BMZA12] F. Bonomi, R. Milito, J. Zhu, S. Addepalli. “Fog Computing and Its Role
in the Internet of Things.” In: Proceedings of the first edition of the MCC
workshop on Mobile cloud computing - MCC 12. MCC 12. Helsinki, Finland:
ACM Press, 2012, pp. 13–16. ISBN: 978-1-4503-1519-7. DOI: 10.1145/
2342509.2342513. URL: https://doi.org/10.1145%2F2342509.2342513
(cit. on pp. 17, 19).

[BT02] T. Bu, D. Towsley. “On distinguishing between Internet power law topology
generators.” In: Proceedings.Twenty-First Annual Joint Conference of the
IEEE Computer and Communications Societies. Vol. 2. Institute of Electrical
and Electronics Engineers (IEEE), 2002, 638–647 vol.2. DOI: 10.1109/
infcom.2002.1019309. URL: https://doi.org/10.1109%2Finfcom.2002.
1019309 (cit. on pp. 24, 26).

[CDZ97] K. Calvert, M. Doar, E. Zegura. “Modeling Internet topology.” In: IEEE
Communications Magazine 35.6 (June 1997), pp. 160–163. ISSN: 0163-
6804. DOI: 10.1109/35.587723. URL: https://doi.org/10.1109%2F35.
587723 (cit. on pp. 22, 23, 25).

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algo-
rithms, Third Edition. 3rd. The MIT Press, Sept. 11, 2009. ISBN: 978-0-262-
03384-8 (cit. on pp. 48, 49).

80

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126%2Fscience.286.5439.509
https://doi.org/10.1126%2Fscience.286.5439.509
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145%2F2342509.2342513
https://doi.org/10.1109/infcom.2002.1019309
https://doi.org/10.1109/infcom.2002.1019309
https://doi.org/10.1109%2Finfcom.2002.1019309
https://doi.org/10.1109%2Finfcom.2002.1019309
https://doi.org/10.1109/35.587723
https://doi.org/10.1109%2F35.587723
https://doi.org/10.1109%2F35.587723

Bibliography

[DCKM04] F. Dabek, R. Cox, F. Kaashoek, R. Morris. “Vivaldi: A Decentralized Network
Coordinate System.” In: ACM SIGCOMM Computer Communication Review
34.4 (Oct. 2004), pp. 15–26. ISSN: 0146-4833. DOI: 10.1145/1030194.
1015471. URL: https://doi.org/10.1145/1030194.1015471 (cit. on p. 59).

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs.” In:
Numerische Mathematik 1.1 (Dec. 1959), pp. 269–271. ISSN: 0945-3245.
DOI: 10.1007/bf01386390. URL: https://doi.org/10.1007%2Fbf01386390
(cit. on p. 46).

[Doa96] M. Doar. “A better model for generating test networks.” In: Proceedings of
GLOBECOM’96. 1996 IEEE Global Telecommunications Conference. Institute
of Electrical and Electronics Engineers (IEEE), Nov. 1996, pp. 86–93. DOI:
10.1109/glocom.1996.586131. URL: https://doi.org/10.1109%2Fglocom.
1996.586131 (cit. on pp. 22, 25).

[FFF99] M. Faloutsos, P. Faloutsos, C. Faloutsos. “On Power-law Relationships of the
Internet Topology.” In: ACM SIGCOMM Computer Communication Review
29.4 (Oct. 1999), pp. 251–262. ISSN: 0146-4833. DOI: 10.1145/316194.
316229. URL: https://doi.org/10.1145%2F316194.316229 (cit. on p. 23).

[GKN+11] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, T. Razafindralambo. “A
survey on facilities for experimental internet of things research.” In: IEEE
Communications Magazine 49.11 (Nov. 2011), pp. 58–67. ISSN: 0163-6804.
DOI: 10.1109/mcom.2011.6069710. URL: https://doi.org/10.1109/
MCOM.2011.6069710 (cit. on p. 26).

[GSG02] K. P. Gummadi, S. Saroiu, S. D. Gribble. “King: Estimating Latency Between
Arbitrary Internet End Hosts.” In: Proceedings of the second ACM SIGCOMM
Workshop on Internet measurment - IMW ’02. IMW ’02. Marseille, France:
ACM Press, 2002, pp. 5–18. ISBN: 1-58113-603-X. DOI: 10.1145/637201.
637203. URL: https://doi.org/10.1145/637201.637203 (cit. on p. 59).

[GVGB17] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, R. Buyya. “iFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, Edge and Fog computing environments.” In: Software:
Practice and Experience 47.9 (June 2017). spe.2509, pp. 1275–1296. ISSN:
1097-024X. DOI: 10.1002/spe.2509. URL: https://doi.org/10.1002/spe.
2509 (cit. on p. 21).

[Him97] M. Himsolt. “GML: A portable graph file format.” In: (1997). URL: https:
//www.researchgate.net/publication/228572038 (cit. on p. 35).

81

https://doi.org/10.1145/1030194.1015471
https://doi.org/10.1145/1030194.1015471
https://doi.org/10.1145/1030194.1015471
https://doi.org/10.1007/bf01386390
https://doi.org/10.1007%2Fbf01386390
https://doi.org/10.1109/glocom.1996.586131
https://doi.org/10.1109%2Fglocom.1996.586131
https://doi.org/10.1109%2Fglocom.1996.586131
https://doi.org/10.1145/316194.316229
https://doi.org/10.1145/316194.316229
https://doi.org/10.1145%2F316194.316229
https://doi.org/10.1109/mcom.2011.6069710
https://doi.org/10.1109/MCOM.2011.6069710
https://doi.org/10.1109/MCOM.2011.6069710
https://doi.org/10.1145/637201.637203
https://doi.org/10.1145/637201.637203
https://doi.org/10.1145/637201.637203
https://doi.org/10.1002/spe.2509
https://doi.org/10.1002/spe.2509
https://doi.org/10.1002/spe.2509
https://www.researchgate.net/publication/228572038
https://www.researchgate.net/publication/228572038

Bibliography

[HLC+14] S. N. Han, G. M. Lee, N. Crespi, K. Heo, N. V. Luong, M. Brut, P. Gatellier.
“DPWSim: A simulation toolkit for IoT applications using devices profile for
web services.” In: 2014 IEEE World Forum on Internet of Things (WF-IoT).
IEEE, Mar. 2014, pp. 544–547. DOI: 10.1109/wf-iot.2014.6803226. URL:
https://doi.org/10.1109/wf-iot.2014.6803226 (cit. on p. 21).

[HPSS03] O. Heckmann, M. Piringer, J. Schmitt, R. Steinmetz. “On Realistic Network
Topologies for Simulation.” In: Proceedings of the ACM SIGCOMM workshop
on Models, methods and tools for reproducible network research - MoMeTools
’03. MoMeTools ’03. Karlsruhe, Germany: Association for Computing Ma-
chinery (ACM), 2003, pp. 28–32. ISBN: 1-58113-748-6. DOI: 10.1145/
944773.944779. URL: https://doi .org/10.1145%2F944773.944779
(cit. on p. 26).

[KK95] G. Karypis, V. Kumar. METIS – Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 2.0. Tech. rep. Jan. 1995. URL: https:
//www.researchgate.net/publication/246815679 (cit. on p. 28).

[KNF+11] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, M. Roughan. “The Internet
Topology Zoo.” In: IEEE Journal on Selected Areas in Communications 29.9
(Oct. 2011), pp. 1765–1775. ISSN: 0733-8716. DOI: 10.1109/jsac.2011.
111002. URL: https://doi.org/10.1109%2Fjsac.2011.111002 (cit. on
p. 22).

[LHC03] H. Lim, J. C. Hou, C.-H. Choi. “Constructing Internet Coordinate System
Based on Delay Measurement.” In: Proceedings of the 2003 ACM SIGCOMM
conference on Internet measurement - IMC ’03. IMC ’03. Miami Beach, FL,
USA: ACM Press, 2003, pp. 129–142. ISBN: 1-58113-773-7. DOI: 10.1145/
948205.948222. URL: https://doi.org/10.1145/948205.948222 (cit. on
p. 59).

[LHM10] B. Lantz, B. Heller, N. McKeown. “A Network in a Laptop: Rapid Prototy-
ping for Software-defined Networks.” In: Proceedings of the Ninth ACM
SIGCOMM Workshop on Hot Topics in Networks - Hotnets ’10. Hotnets-IX.
Monterey, California: Association for Computing Machinery (ACM), 2010,
19:1–19:6. ISBN: 978-1-4503-0409-2. DOI: 10.1145/1868447.1868466.
URL: https://doi.org/10.1145%2F1868447.1868466 (cit. on p. 27).

[LPD11] E. Lochin, T. Pérennou, L. Dairaine. “When should I use network emula-
tion?” In: annals of telecommunications - annales des télécommunications
67.5-6 (July 2011), pp. 247–255. ISSN: 1958-9395. DOI: 10.1007/s12243-
011-0268-5. URL: https://doi.org/10.1007%2Fs12243-011-0268-5
(cit. on p. 27).

82

https://doi.org/10.1109/wf-iot.2014.6803226
https://doi.org/10.1109/wf-iot.2014.6803226
https://doi.org/10.1145/944773.944779
https://doi.org/10.1145/944773.944779
https://doi.org/10.1145%2F944773.944779
https://www.researchgate.net/publication/246815679
https://www.researchgate.net/publication/246815679
https://doi.org/10.1109/jsac.2011.111002
https://doi.org/10.1109/jsac.2011.111002
https://doi.org/10.1109%2Fjsac.2011.111002
https://doi.org/10.1145/948205.948222
https://doi.org/10.1145/948205.948222
https://doi.org/10.1145/948205.948222
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145%2F1868447.1868466
https://doi.org/10.1007/s12243-011-0268-5
https://doi.org/10.1007/s12243-011-0268-5
https://doi.org/10.1007%2Fs12243-011-0268-5

Bibliography

[MLMB01] A. Medina, A. Lakhina, I. Matta, J. Byers. “BRITE: an approach to universal
topology generation.” In: MASCOTS 2001, Proceedings Ninth International
Symposium on Modeling, Analysis and Simulation of Computer and Tele-
communication Systems. Institute of Electrical and Electronics Engineers
(IEEE), 2001, pp. 346–353. DOI: 10.1109/mascot.2001.948886. URL:
https://doi.org/10.1109%2Fmascot.2001.948886 (cit. on p. 24).

[MMB00] A. Medina, I. Matta, J. Byers. “On the Origin of Power Laws in Internet
Topologies.” In: ACM SIGCOMM Computer Communication Review 30.2
(Apr. 2000), pp. 18–28. ISSN: 0146-4833. DOI: 10.1145/505680.505683.
URL: https://doi.org/10.1145%2F505680.505683 (cit. on pp. 23, 24, 26).

[Nor16] A. Nordrum. Popular Internet of Things Forecast of 50 Billion Devices by
2020 Is Outdated. Aug. 16, 2016. URL: https://spectrum.ieee.org/tech-
talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-
devices-by-2020-is-outdated (visited on 09/14/2017) (cit. on p. 17).

[NZ02] T. Ng, H. Zhang. “Predicting Internet network distance with coordinates-
based approaches.” In: Proceedings.Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies. Vol. 1. IEEE, 2002,
170–179 vol.1. DOI: 10.1109/infcom.2002.1019258. URL: https://doi.org/
10.1109/infcom.2002.1019258 (cit. on p. 59).

[Ope17] OpenFog Consortium Architecture Working Group. “OpenFog Architecture
Overview.” In: White Paper, February (Feb. 2017). URL: https://www.
openfogconsortium.org/ra/ (cit. on p. 18).

[PBG+13] G. Z. Papadopoulos, J. Beaudaux, A. Gallais, T. Noel, G. Schreiner. “Adding
value to WSN simulation using the IoT-LAB experimental platform.” In:
2013 IEEE 9th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). IEEE, Oct. 2013, pp. 485–490.
DOI: 10.1109/wimob.2013.6673403. URL: https://doi.org/10.1109/
WiMOB.2013.6673403 (cit. on p. 26).

[QSFB09] B. Quoitin, V. V. den Schrieck, P. Francois, O. Bonaventure. “IGen: Gene-
ration of router-level Internet topologies through network design heuris-
tics.” In: 2009 21st International Teletraffic Congress. Sept. 2009, pp. 1–8.
ISBN: 978-1-4244-4744-2. URL: https://ieeexplore.ieee.org/document/
5300250/ (cit. on p. 24).

[SCM15] S. Sarkar, S. Chatterjee, S. Misra. “Assessment of the Suitability of Fog
Computing in the Context of Internet of Things.” In: IEEE Transactions on
Cloud Computing PP.99 (2015), pp. 1–1. ISSN: 2168-7161. DOI: 10.1109/
tcc.2015.2485206. URL: https://doi.org/10.1109/tcc.2015.2485206
(cit. on p. 18).

83

https://doi.org/10.1109/mascot.2001.948886
https://doi.org/10.1109%2Fmascot.2001.948886
https://doi.org/10.1145/505680.505683
https://doi.org/10.1145%2F505680.505683
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://doi.org/10.1109/infcom.2002.1019258
https://doi.org/10.1109/infcom.2002.1019258
https://doi.org/10.1109/infcom.2002.1019258
https://www.openfogconsortium.org/ra/
https://www.openfogconsortium.org/ra/
https://doi.org/10.1109/wimob.2013.6673403
https://doi.org/10.1109/WiMOB.2013.6673403
https://doi.org/10.1109/WiMOB.2013.6673403
https://ieeexplore.ieee.org/document/5300250/
https://ieeexplore.ieee.org/document/5300250/
https://doi.org/10.1109/tcc.2015.2485206
https://doi.org/10.1109/tcc.2015.2485206
https://doi.org/10.1109/tcc.2015.2485206

Bibliography

[SG16] M. Slabicki, K. Grochla. “Performance evaluation of CoAP, SNMP and
NETCONF protocols in fog computing architecture.” In: NOMS 2016 -
2016 IEEE/IFIP Network Operations and Management Symposium. IEEE,
Apr. 2016, pp. 1315–1319. DOI: 10.1109/noms.2016.7503010. URL:
https://doi.org/10.1109/noms.2016.7503010 (cit. on p. 21).

[SMG+14] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutierrez,
R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, D. Pfisterer. “Smart-
Santander: IoT experimentation over a smart city testbed.” In: Computer
Networks 61 (Mar. 2014). Special issue on Future Internet Testbeds – Part
I, pp. 217–238. ISSN: 1389-1286. DOI: 10.1016/j.bjp.2013.12.020. URL:
https://doi.org/10.1016/j.bjp.2013.12.020 (cit. on p. 26).

[SOE17] C. Sonmez, A. Ozgovde, C. Ersoy. “EdgeCloudSim: An environment for
performance evaluation of Edge Computing systems.” In: 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC). IEEE,
May 2017, pp. 39–44. DOI: 10.1109/fmec.2017.7946405. URL: https:
//doi.org/10.1109/fmec.2017.7946405 (cit. on p. 21).

[SPPS08] M. Szymaniak, D. Presotto, G. Pierre, M. van Steen. “Practical large-scale
latency estimation.” In: Computer Networks 52.7 (May 2008), pp. 1343–
1364. ISSN: 1389-1286. DOI: 10 .1016/ j . comnet . 2007 . 11 .022. URL:
https://doi.org/10.1016/j.comnet.2007.11.022 (cit. on p. 59).

[Sta16] Statista, Inc. Global desktop PC shipments from 2010 to 2020. Jan. 2016.
URL: https://www.statista.com/statistics/269044/worldwide-desktop-pc-
shipments-forecast/ (visited on 09/14/2017) (cit. on p. 17).

[SXBL06] P. Sharma, Z. Xu, S. Banerjee, S.-J. Lee. “Estimating Network Proximity and
Latency.” In: ACM SIGCOMM Computer Communication Review 36.3 (July
2006), pp. 39–50. ISSN: 0146-4833. DOI: 10.1145/1140086.1140092.
URL: https://doi.org/10.1145/1140086.1140092 (cit. on p. 59).

[TGJ+02] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, W. Willinger. “Net-
work Topology Generators: Degree-based vs. Structural.” In: Proceedings
of the 2002 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications. SIGCOMM ’02. Pittsburgh, Penn-
sylvania, USA: ACM Press, 2002, pp. 147–159. ISBN: 1-58113-570-X. DOI:
10.1145/633025.633040. URL: https://doi.org/10.1145%2F633025.
633040 (cit. on p. 25).

[Wax88] B. Waxman. “Routing of multipoint connections.” In: IEEE Journal on
Selected Areas in Communications 6.9 (Dec. 1988), pp. 1617–1622. ISSN:
0733-8716. DOI: 10.1109/49.12889. URL: https://doi.org/10.1109%2F49.
12889 (cit. on p. 22).

84

https://doi.org/10.1109/noms.2016.7503010
https://doi.org/10.1109/noms.2016.7503010
https://doi.org/10.1016/j.bjp.2013.12.020
https://doi.org/10.1016/j.bjp.2013.12.020
https://doi.org/10.1109/fmec.2017.7946405
https://doi.org/10.1109/fmec.2017.7946405
https://doi.org/10.1109/fmec.2017.7946405
https://doi.org/10.1016/j.comnet.2007.11.022
https://doi.org/10.1016/j.comnet.2007.11.022
https://www.statista.com/statistics/269044/worldwide-desktop-pc-shipments-forecast/
https://www.statista.com/statistics/269044/worldwide-desktop-pc-shipments-forecast/
https://doi.org/10.1145/1140086.1140092
https://doi.org/10.1145/1140086.1140092
https://doi.org/10.1145/633025.633040
https://doi.org/10.1145%2F633025.633040
https://doi.org/10.1145%2F633025.633040
https://doi.org/10.1109/49.12889
https://doi.org/10.1109%2F49.12889
https://doi.org/10.1109%2F49.12889

Bibliography

[WCU+15] S. Wang, K. Chan, R. Urgaonkar, T. He, K. K. Leung. “Emulation-based
study of dynamic service placement in mobile micro-clouds.” In: MILCOM
2015 - 2015 IEEE Military Communications Conference. IEEE, Oct. 2015,
pp. 1046–1051. DOI: 10.1109/milcom.2015.7357583. URL: https://doi.
org/10.1109/milcom.2015.7357583 (cit. on p. 18).

[WDS14] P. Wette, M. Draxler, A. Schwabe. “MaxiNet: Distributed emulation of
software-defined networks.” In: 2014 IFIP Networking Conference. Institute
of Electrical and Electronics Engineers (IEEE), June 2014, pp. 1–9. DOI:
10.1109/ifipnetworking.2014.6857078. URL: https://doi.org/10.1109%
2Fifipnetworking.2014.6857078 (cit. on pp. 27, 72).

[WJ02] J. Winick, S. Jamin. Inet-3.0: Internet topology generator. Tech. rep. Techni-
cal Report CSE-TR-456-02, University of Michigan, 2002. URL: https :
//www.researchgate.net/publication/2522658 (cit. on p. 24).

[WKR02] A. Winter, B. Kullbach, V. Riediger. “An Overview of the GXL Graph
Exchange Language.” In: Software Visualization: International Seminar
Dagstuhl Castle, Germany, May 20–25, 2001 Revised Papers. Ed. by S. Diehl.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 324–336. ISBN:
978-3-540-45875-3. DOI: 10 . 1007 / 3 - 540 - 45875 - 1 _ 25. URL: https :
//doi.org/10.1007/3-540-45875-1_25 (cit. on p. 35).

[WS98] D. J. Watts, S. H. Strogatz. “Collective dynamics of ’small-world’ networks.”
In: Nature 393.6684 (June 4, 1998), pp. 440–442. DOI: 10.1038/30918.
URL: https://doi.org/10.1038/30918 (cit. on p. 26).

[XMR16] Y. Xu, V. Mahendran, S. Radhakrishnan. “Towards SDN-based fog compu-
ting: MQTT broker virtualization for effective and reliable delivery.” In:
2016 8th International Conference on Communication Systems and Networks
(COMSNETS). IEEE, Jan. 2016, pp. 1–6. DOI: 10.1109/comsnets.2016.
7439974. URL: https://doi.org/10.1109/comsnets.2016.7439974 (cit. on
pp. 18, 21).

[YLL15] S. Yi, C. Li, Q. Li. “A Survey of Fog Computing: Concepts, Applications
and Issues.” In: Proceedings of the 2015 Workshop on Mobile Big Data -
Mobidata ’15. Mobidata ’15. Hangzhou, China: ACM Press, 2015, pp. 37–
42. ISBN: 978-1-4503-3524-9. DOI: 10.1145/2757384.2757397. URL:
https://doi.org/10.1145%2F2757384.2757397 (cit. on p. 20).

[ZCP+13] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu, F. Bonomi. “Im-
proving Web Sites Performance Using Edge Servers in Fog Computing
Architecture.” In: 2013 IEEE Seventh International Symposium on Service-
Oriented System Engineering. IEEE, Mar. 2013, pp. 320–323. DOI: 10.1109/
sose.2013.73. URL: https://doi.org/10.1109/sose.2013.73 (cit. on p. 20).

85

https://doi.org/10.1109/milcom.2015.7357583
https://doi.org/10.1109/milcom.2015.7357583
https://doi.org/10.1109/milcom.2015.7357583
https://doi.org/10.1109/ifipnetworking.2014.6857078
https://doi.org/10.1109%2Fifipnetworking.2014.6857078
https://doi.org/10.1109%2Fifipnetworking.2014.6857078
https://www.researchgate.net/publication/2522658
https://www.researchgate.net/publication/2522658
https://doi.org/10.1007/3-540-45875-1_25
https://doi.org/10.1007/3-540-45875-1_25
https://doi.org/10.1007/3-540-45875-1_25
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1109/comsnets.2016.7439974
https://doi.org/10.1109/comsnets.2016.7439974
https://doi.org/10.1109/comsnets.2016.7439974
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1145%2F2757384.2757397
https://doi.org/10.1109/sose.2013.73
https://doi.org/10.1109/sose.2013.73
https://doi.org/10.1109/sose.2013.73

[ZM04] M. Zec, M. Mikuc. “Operating system support for integrated network
emulation in imunes.” In: Workshop on Operating System and Architectural
Support for the on demand IT Infrastructure (1; 2004). Jan. 2004. URL:
https://www.researchgate.net/publication/313752401 (cit. on p. 29).

https://www.researchgate.net/publication/313752401

Declaration

I hereby declare that the work presented in this thesis
is entirely my own and that I did not use any other
sources and references than the listed ones. I have mar-
ked all direct or indirect statements from other sources
contained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 Fog Computing
	2.2 Related Work
	2.3 Topology of the Internet
	2.4 Network Emulation

	3 Objectives
	4 Concept
	4.1 Network Model
	4.2 Read the Network Topology
	4.3 Identify the Edge of the Network
	4.4 Placing Devices in the Network
	4.5 Fog Node Placement
	4.6 Write the Experiment Output
	4.7 Theoretical Complexity

	5 Implementation
	5.1 Input Data
	5.2 Output Files
	5.3 How to use EmuFog
	5.4 EmuFog Structure

	6 Evaluation
	6.1 Running Time Measurements
	6.2 Quality Measure
	6.3 MaxiNet Performance

	7 Conclusion
	A Autonomous Systems in Detail
	Bibliography

