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Abstract 

Bluetooth Low Energy (BLE) is a short range, low power wireless networking technology that is 

increasingly used in various applications of the Internet of Things (IoT). Whereas the performance 

of classical Bluetooth has already been intensively studied using analytical models and simulative 

methods. These studies are not directly applicable to BLE since BLE is based on a fundamentally 

different design targeting extremely low power consumption rather than high data rates. In 

particular, there are no sufficient models to simulate the performance of BLE in multi-device 

environments where several BLE peripheral devices are connected to a master device in a piconet 

(star topology). This lack of comprehensive models for the simulative analysis hinders the 

development and evaluation of IoT systems based on BLE.  

 

Keeping them in mind, the goals of this thesis is to design, implement, and evaluate simulation 

models for BLE focusing on multi device environments. Relevant performance metrics include the 

delay and energy consumption. Suitable abstraction of the different protocol layers has been 

defined to allow for implementing relevant aspects for the simulator. The simulation results are 

compared with real world hardware to measure the difference and to find the reasons for the 

differences.   
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1 Introduction 

1.1 Motivation 

Bluetooth Low Energy is the power-version of classical Bluetooth that was built for the Internet 

of Things (IoT). Bluetooth is wireless technology standard using short range radio links, intended 

to replace the cables connecting portable electronic devices. This technology offers internet to any 

electronic systems. Services over the internet have been evolved based on the needs that have been 

identified from person-to-person interaction, machine-to-person interaction and machine-to-

machine interaction thus building to pervasive computing. Such a computing is being built to 

automate tasks and build a smart world. Internet of Things (IoT) allows a lot of services to be built 

over the network and serves as a meeting point between the real world and virtual world. The 

Internet of Things (IoT) refers to the interconnection of these devices which are denoted as “smart 

objects”. 

 

BLE is the distinctive feature of the Bluetooth 4.0 specification. BLE-based sensors are able to 

operate on a coin cell for several months to several years, depending on its processing and 

communication demands and the parameterization of the (BLE) protocol. The protocol has been 

standardized in 2010 as the part of Bluetooth Core Specification version 4.0. While there is some 

overlap with classic Bluetooth, BLE actually has a completely different lineage.  

 

A multi-device environment is where many smart devices are connected to share data among them. 

In a BLE based multi-device environment, there exist many smart devices operated by batteries 

which are connected through BLE wireless protocol. BLE protocol thus allows the devices to have 

very low power consumption. The BLE connection can be configured using various configuration 

parameters allowed by Bluetooth core specification. The performance of the smart objects changes 

depending on configuration parameters. Thus it is evident that these configuration parameters have 

a greater effect on overall performance of a multi-device environment. 

 

Modeling and simulation of a BLE environment will aid in tuning the right configuration 

parameter for any application scenario. The configuration parameters which play a major role are 

advertising interval of the slave device, scanning interval and scanning window of the master 

device, connection interval and connection latency of both slave and master devices. Deducing 

sensitivity of each configuration parameters will assist in realizing any application scenario. 

 

Validation of the simulation is done by implementing the same scenario in a real hardware 

environment. Comparison of results from hardware implementation with the results from 

simulation will expose the accuracy of our software model. Achieving the above will allow 

developers to use the simulation model to realize any new application scenarios. The model should 
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also be flexible when new core specification is announced by Bluetooth SIG. The simulation is 

done in OMNeT++ network simulator.  

1.2 Objectives  

The objectives of the master thesis would be to 

 Definition of exemplary multi-device scenario, and analysis of the requirements with 

respect to the relevant properties to be modelled 

 Modelling the parameters of BLE environment 

 Simulating the BLE sensor network in OMNeT++ (Network Simulator) 

 Validation of results with real world hardware 

 Evaluating the accuracy of the simulation model by comparing with hardware results 

 

1.3 Thesis Organisation 

The thesis has been organized as described below: 

Chapter 2 provides an overview of topics which are necessary for understanding to the thesis. 

It includes an overview on OMNeT++, MiXiM, Bluetooth Low Energy concepts. 

Chapter 3 provides a description of system model and the problem statement of the thesis. 

Chapter 4 provides a description of implementation involved for the proposed system. 

Chapter 5 provides an overview of the evaluations and an analysis of results. 
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2 Background 

2.1 Simulation tools for Wireless technology 

In the expeditiously growing Internet of Things (IoT), applications from personal electronics to 

industrial machinery are getting connected wirelessly to the internet. There are numerous wireless 

standards deployed in the market, spreading over various frequency bands and using different 

communication protocol. Choosing the right wireless technology is becoming more and more 

challenging every day. Bluetooth Low Energy (BLE) is a fresh addition to the Bluetooth 

Specification. Bluetooth Smart is a synonymous term to BLE. Designed specifically for lower data 

throughput, BLE significantly reduces the power consumption, enables years of operation using 

coin cell batteries. One of the most important advantages of Bluetooth standard is that it includes 

application profiles. These profiles define how application exchange information to achieve the 

specific job.  

 

Three main traditional techniques for analyzing the performance of wireless networks; 

analytical methods, computer simulation, and physical measurement. Traditionally, formal 

modeling of systems has been via a mathematical model. The mathematical model attempts to 

derive analytical solutions to problems and so that enable the prediction of the behavior of the 

systems from a set of parameters and initial conditions. However, it is widely popular that 

comprehensive models for wireless ad-hoc networks are mathematically intractable. Each 

individual layer and the interactions between the layers in the protocol stack magnifies complexity. 

The construction of real test beds for any predefined application scenario is usually expensive in 

terms of time and effort. Simulation is the most common approach to develop and test new or 

existing protocol for a wireless network [1]. It is also understood that the simulation model cannot 

represent the 100% of a real hardware. An acceptable abstraction of the real hardware should be 

achieved.   

  

It is a necessity to analyze different simulation tools that are suitable to test and evaluate 

wireless technology particularly BLE. Few advantages of these simulators are that it allows 

simulating geographically distributed devices and allows code reuse. Some of the simulation tools 

that are available are OMNeT++, Ns-3, GloMoSim, J-Sim, OPNeT, QualNet, and JiST/SWANS. 

These tools can be used in different areas of applications. Since there exist various simulation 

tools, a detailed study and comparison of all the most important tools are needed. 

  

2.1.1 Discrete event simulation 

In the computer simulation, the behavior of the system is modeled over time. Discrete event 

simulation is one of many simulation approaches that has been proposed in history. With respect 

to other simulation approaches, it has good expressiveness and is easy to use. A discrete event 
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simulation is represented by a simulated model with a set of state variables and their sequence of 

events is processed in chronological order. Here each event occurs at a given instant of time and 

represents a change in the simulated model state. The whole evolution of the simulated system is 

obtained through an ordered sequence of events that are stored, created and processed. Here each 

event is tagged by a timestamp that specifies the simulated time the event has to be processed. This 

has substantial advantages compared to sequential simulation 

 

2.1.1 OMNeT++ 

OMNeT++ is a C++ based discrete event simulator for modeling communication networks, 

multiprocessors, queueing networks and distributed and parallel systems. It is an open source 

discrete event simulation tool that can be used by educational, research and academic institutions. 

OMNeT++ represents a framework approach. Instead of directly providing simulation components 

it provides the basic machinery and tools to write such simulation. It supports various simulation 

models and frameworks such as Mobility Framework and MiXiM framework [2]. The common 

file types that are present in OMNeT++ include 

 

 .ned -- where the simulation components and networks are defined 

 .cc  -- C++ source files of simulation components 

 .msg -- message descriptions that are automatically translated to C++ classes 

 _m.cc,_m.h -- generated files created from msg files during the build process 

 .ini -- parameter settings and configuration options for simulation 

 

2.1.1.1 Design of OMNeT++ 

OMNeT++ was designed to support network simulation on a large scale. It consists of modules 

that communicate by passing messages. The active modules are the simple modules which are 

written in C++ using the simulation class library. Simple modules can be grouped into compound 

modules Figure 1. Messages are sent via connections that connect the modules or directly to their 

destination modules. The simple and compound modules are instances of module types. The user 

creates a system module as a network module which is a compound module without gates to the 

external world. These modules can be reused with the help of model frameworks like mixed signal 

(MiXiM) framework, INET framework and Mobility framework. 
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Figure 1: Model structure in OMNET++ [2] 

The modules communicate with messages which contains some attributes and data. Gates are the 

input and output interfaces of the modules: messages are sent out through output gates and they 

arrive through input gates. The input and the output gate are linked by a connection. Properties 

such as propagation delay, data rate and bit error rate can be assigned to connections. We can also 

assign some specific properties termed channels and reuse them at several places [2]. 

 

2.1.1.1.1 Design of NED Language 

The structure of the model (the modules and interconnection) in OMNeT++ are described using 

topology description language file called NED. Typical NED descriptions include simple module 

declarations, compound module declarations and network definitions. Simple module declarations 

describe the interface of the module, the gates and parameters. Compound module definitions 

consist of the declaration of the module’s external interfaces like gates and parameters and 

definition of submodules and their interconnection. Network definitions are self-contained 

simulation models with the simple modules and compound modules. Some of the major features 

of NED language in OMNeT++ include 

 

 Inheritance 

 Interfaces 

 Packages 

 Inner types 

 Metadata annotations 

 

OMNeT++ consists of a graphical editor which helps to edit network topology files graphically or 

in NED source view.  

2.1.1.1.2 Model and Experiments 

 

In OMNeT++ model behavior is captured in C++ files as code while model topology is defined by 

the NED files. This approach allows to keep the different aspects of simulation at different places 
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thus allowing to have cleaner model. The different inputs for the simulation are stored in the INI 

files. INI files are used to specify the parameters during the simulation. 

2.1.1.1.3 Simple Module Programming Model 

 

Simple modules are the active elements in a model. These modules are programmed in C++ using 

the OMNeT++ simulation class library. OMNeT++ has an integrated C++ development 

environment to write, run and debug the code. The functionality of the simple module is 

implemented using the cSimpleModule class. Functionality can be added via one of the two 

programming models. They are coroutine based and event processing function [2].  

 

2.1.2 Ns-3 

Ns-3 is a discrete event network simulator for internet systems. It is a free software available for 

research, development and use. The ns-3 software infrastructure encourages the development of 

simulation models which are realistic to allow ns-3 to be used as real time network simulator, 

interconnected with the real world thereby allowing many real world protocol implementations to 

be reused within ns-3. Ns-3 is built using C++ and Python scripts. Some of the distinguishing 

features of ns-3 are 

 

 Ns-3 is designed as a set of libraries that can be combined with external software libraries. 

While some simulation platforms provide users with a graphical user interface 

environment, ns-3 is more modular in this regard. External simulators, data analytics and 

visualization tools can be used with ns-3. However unlike OMNeT++, in ns-3 we have to 

work at command line. 

 Ns-3 is primarily used in Linux systems 

 Ns-3 is not officially supported by any company. It is being developed by the interests of 

ns-3 users [3]. 

 

2.1.3 JiST/SWANS 

JiST represents a interesting approach in building a high performance Java based simulation 

environment. It modifies the Java virtual machine to run the programs in simulation time instead 

of real time. JiST is basically a simulation kernel and as such it lacks most of the features present 

in OMNeT++ package. SWANS is a scalable wireless network simulator which is built atop the 

JiST platform. The development of this software has been stopped since 2005  [4]. 

 

2.1.4 J-SIM 

J-Sim is an application development environment based on component based software 

architecture, Autonomous component Architecture (ACA). J-Sim has a specific platform dedicated 
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to network simulation. J-Sim is a real time process driven simulator. It runs like a real system 

where the event execution are run real time as opposed to fixed time points in discrete event 

simulation. Two languages are used in J-Sim: Java to describe and implement models and a script 

language to construct, configure and control the simulation at run time. Here it makes 

implementions with graphical editors impossible like Ns-3. J-Sim provides Runtime Virtual 

commands to simplify the manipulation and configuration of the network components during run 

time. J-Sim is similar to OMNeT++ in several points. But it doesn’t have features like OMNeT++. 

Here the simulation performance is significantly weaker than with C++ [5]. 

 

2.1.5 OPNET 

It provides a global environment to model, simulate and evaluate all kinds of wired and wireless 

communication networks and distributed systems. The OPNET environment consists of graphical 

tools for scenarios and model conception, scenarios simulation, data analysis and data collection. 

OPNET has rich simulation libraries. Its simulation library is based on C and its architecture is 

similar to OMNeT++ but with few restrictions. OPNET models are of fixed topology. The network 

is defined using graphical editor, where the editor stores models in a proprietary binary file format 

and they are usually difficult to generate by program. Its main advantage over OMNeT++ is that 

it has large protocol library but makes development and problem solving harder [6].  

 

2.1.6 MATLAB 

MATLAB is a numerical computing environment. It allows matrix manipulations, plotting of data 

and functions, implementation of algorithms, math functions and creation of user interface. 

MATLAB is primarily intended for numerical computing but additional package like Simulink 

allows model based design for dynamic and embedded systems. It has lot of additional blocksets 

like communication system toolbox, Data acquisition toolbox, Image acquisition, SimEvents, 

Stateflow and many more. SimEvents and Stateflow are the two discrete simulators of MATLAB.  

 

2.2 Comparison of OMNeT++ with other simulation tools 

OMNeT++ offers many advantages when compared to other tools like Ns-3, and OPNET Modeler. 

Some of the advantages include they have good graphical environment, support wide variety of 

tools, good simulation performance, reuse of existing models and by allowing parametric 

topologies. In the Table 1 a comparison of different simulation tools over their characteristics is 

made. In the Table 2 a comparison over the merits and demerits of different tools is been made.  
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      Simulator 

 

Characteristics  

OMNET++ Ns-3 J-SIM 

Language supported C++ C++, 

Python 

Java 

Network support type Wired network, Wireless 

managed node 

 

Wired and 

wireless 

network 

 

Wired and wireless 

network 

 

Platform Windows, Linux, Mac OS Linux, 

Windows 

Windows, Linux 

GUI support Yes No Yes 

Time taken to learn Moderate 

 

Long 

 

Moderate 

 

Interaction with real 

systems 

Yes Yes Yes 

Vendor and available site Omnest 

http://www.omnetpp.org/co 

mponent/docman 

/cat_view/17-downloads/1- 

omnet-releases 

http://www.

nsnam.org/n

s-3- 

13/downloa

d 

https://sites.google.co

m/site/ 

jsimofficial/dow 

nloads 

Table 1: Comparison of Tool 

file:///D:/Master%20Thesis-new/Omnest%20http:/www.omnetpp.org/co%20mponent/docman%20/cat_view/17-downloads/1-%20omnet-releases
file:///D:/Master%20Thesis-new/Omnest%20http:/www.omnetpp.org/co%20mponent/docman%20/cat_view/17-downloads/1-%20omnet-releases
file:///D:/Master%20Thesis-new/Omnest%20http:/www.omnetpp.org/co%20mponent/docman%20/cat_view/17-downloads/1-%20omnet-releases
file:///D:/Master%20Thesis-new/Omnest%20http:/www.omnetpp.org/co%20mponent/docman%20/cat_view/17-downloads/1-%20omnet-releases
file:///D:/Master%20Thesis-new/Omnest%20http:/www.omnetpp.org/co%20mponent/docman%20/cat_view/17-downloads/1-%20omnet-releases
http://www.nsnam.org/ns-3-%2013/download
http://www.nsnam.org/ns-3-%2013/download
http://www.nsnam.org/ns-3-%2013/download
http://www.nsnam.org/ns-3-%2013/download
http://www.nsnam.org/ns-3-%2013/download
https://sites.google.com/site/%20jsimofficial/dow%20nloads
https://sites.google.com/site/%20jsimofficial/dow%20nloads
https://sites.google.com/site/%20jsimofficial/dow%20nloads
https://sites.google.com/site/%20jsimofficial/dow%20nloads
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Features NS-3 JSIM OMNeT++ 

Merits -It has network 

visualization tools 

-It has analysis tool 

and trace file 

-It is possible to design 

and modify the 

network scenarios 

-Supports both wired 

and wireless 

communication of 

protocols 

-Interaction with real 

time system is possible 

  

-It has network visualization 

tools 

-It has analysis tool and trace file 

-It is possible to design and 

modify the network scenarios 

-Supports both wired and 

wireless communication of 

protocols 

-Provides support for energy 

modeling with the exception of 

radio energy consumption 

-supports mobile wireless 

networks and sensor networks 

-component oriented 

architecture  

 

--It has network 

visualization tools 

-It has analysis tool and 

trace file 

-It is possible to design 

and modify the network 

scenarios 

-Supports both wired 

and wireless 

communication of 

protocols 

-powerful graphical 

user interface making 

tracing and debugging 

easy 

-simulate power 

consumption problem 

 

De Merits -Python bindings do 

not work on Cygwin 

-Only IPv4 is 

supported  

-Low efficiency of simulation-

the only MAC protocol provided 

for wireless networks is 802.11 

-unnecessary run time overhead 

-number of protocols 

are not enough 

 

Table 2: Comparison of tools over properties 

 

2.3 MiXiM Framework 

OMNeT++ provides a clear and powerful simulation framework. But there are no concise models 

for wireless communication. Mixed simulator (MiXiM) combines and extends several existing 

simulation frameworks developed for wireless protocol simulations in OMNeT++. MiXiM 

provides detailed models of a wireless channel like fading, wireless connectivity, mobility models, 

models for obstacles, many communication protocols at the medium access control (MAC) level 

and a supporting infrastructure. This framework provides a user-friendly graphical representation 

of wireless and mobile networks and supports debugging in OMNeT++. Simulating wireless 
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communication systems can be achieved only when a befitting abstraction of the environments, 

the radio channels, and the physical layer [7] are designed.  

 

2.3.1 Environmental models 

The abstraction of the environmental area or playground where wireless nodes and objects are 

placed has an ample impact in the simulation. Node embodies the wireless devices with their 

protocol stack. They are modeled as isotropic radiators not involving a physical dimension. An 

object, in contrary, is something with a physical dimension that occupies the propagation 

environment. These objects tend to attenuate a wireless signal. Both nodes and objects can be 

mobile. It is also possible for a node to combine with objects e.g. sensor node mounted on a car. 

MiXiM provides a user-defined update interval for mobility modeling of nodes and objects. This 

parameter defines how often the position of an object is updated. 

 
The position information contains the start time, start position, direction, and the speed of an 

object. The shadowing effect of objects that reside in the propagation environment causes different 

received signal strengths at equal distance. This property is called the stochastic model and has to 

be adapted to the characteristics of the environment that are to be simulated. Objects are 

characterized by position, an angle of rotation, dimension, and frequency- dependent attenuation 

factor. Like in Figure 2 the wireless signal can get affected by any object in the line of sight 

between transmitter and receiver.  

 

2.3.2  Connection modeling 

Compared to wired simulations, connectivity modeling is a complicated task in the wireless 

simulation. It can be defined in two parts, the wireless channel and its attenuation property is the 

first part and the connectivity between nodes becomes the second part. MiXiM channel models 

enable multiple parallel radio channel in frequency and space. The radio propagation effect in each 

of this channel is expressed as a time variant factor of instantaneous Signal-to-Noise Ratio (SNR) 

of the received signal. MiXiM modular structure enables to include models operating on digital 

signal level e.g. modulation symbols. In SNR abstraction level, MiXiM includes widely accepted 

channel models for path-loss, shadowing, large and small scale fading.  

Figure 2: Environment with ‘S’ as signal transmitter and ‘a’ and ‘b’ as signal receiver    
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In theory, a signal sent out by a node will be affected by any other nodes in the simulation (if 

operating in the same frequency range). As a result of signal attenuation, the received signal power 

at nodes that are far away from the sending node will be so low. In MiXiM, nodes are connected 

only when they are within the maximal interference distance in order to reduce the computational 

complexity. The maximal interference distance is a conservative bound on the maximal distance 

at which a node can still possibly disturb the communication of a neighbor. It is also important to 

note that the maximal interference distance does not specify the maximal distance at which 

messages can be received. Nodes which wants to receive a message from a communication peer 

also receives all interference signals and can thus, decide on the interference level and resulting 

bit errors. The existence of objects in the propagation environment also affects the maximal 

interference distance [7].  

 

2.3.3 Physical layer  

The physical layer is the core part of a wireless node in MiXiM. It is accountable for message 

sending and receiving, bit error calculation and collision detection. Additionally, it is responsible 

for applying channel models used in the simulation. The MiXiM physical layer is divided into 

three parts, which are described in detail in the following subsections. The base physical layer 

provide the interfaces to the MAC layer and the physical layers of other nodes. The Analog models 

are responsible for simulating the attenuation (like fading, shadowing, and path-loss) of a received 

signal. The decider helps in evaluation (classification as noise or signal) and demodulation (bit 

error calculation) of the received messages. In the physical layer, the modulation that has been 

used, forward error correction (FEC) coding and decoding functions define the bit error rate and 

throughput of a system. The effects of these functions in the wireless channels can be modeled at 

SNR level. 

 

2.3.3.1 Notion of the Signal  

The signal strength of a message sent from one node to another is controlled by the environment 

it travels through. This can be modeled with attenuation factors as a result of path loss, shadowing 

and fading. Moreover, a message can be sent using multiple frequencies (e.g. OFDM) and using 

multiple antennas (MIMO). As a result of all these phenomena, a message can have varying 

sending power, bit rate, and attenuation. In MiXiM, the signal class is created to model this 

complex process. During the process of sending a message, a node has to specify the sending 

power and bit-rate in the appropriate dimensions. The receiving node then adds the attenuation. 

Based on the whole signal, bit errors can be calculated [8, 9].  
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2.3.3.2 BasePhylayer  

Other than message sending and receiving, the BasePhylayer works as an interface between 

physical layer messages (Airframes) and the analog model and the Decider. In node, when 

receiving a message, the physical layer first passes the message to the analog model. The analog 

model calculates the attenuation part of the signal. The physical layer then simulates propagation 

and transmission delay of the message. The message is passed at least twice to the decider: at the 

beginning and at the end of the message. Finally, after the decider calculates the bit errors, the 

message will then be handed over to MAC layer.  

 

2.3.3.3 Analogue models  

MiXiM also simulates feature like path loss, shadowing and fading. The attenuation of a signal is 

calculated by implementations of shadowing, fading and path-loss models. Any number of analog 

models can be plugged into the physical layer of MiXiM. Each model is simply a filter class for a 

signal. Integrating the attenuation of all analog models gives the attenuation part of the signal, 

which is calculated at the start of the reception of a message. By sending the power of a received 

packet the decider can, later on, calculate the SNR and thus, bit errors. 

 

2.3.3.4 Decider  

The decider has three main tasks. Firstly, the decider has to classify incoming messages into 

receivable message or noise. Secondly, the decider has to calculate the bit errors for the message 

at the end of receiving receivable messages. Finally, it has to hand over the information about the 

current state of the channel. MiXiM has several models determining how and when a physical 

layer decides whether a message can be received or is just noise. The decider can request the 

message from physical layer at the end of the receiving process of the message. At this time, the 

decider has to calculate the bit errors for the message. For this process, decider requests all 

intersecting messages from channel info in order to calculate the SNR for the message. After this, 

decider can make a simple binary decision (received correctly or not). Providing channel state is 

the last task of a decider. The channel state is needed at the MAC layer. The decider will sense the 

channel for a certain amount of time on the request of the MAC layer. The decider then returns 

whether the channel is currently idle or busy [7].  

 

2.3.4 MiXiM Protocol library 

MiXiM permits every module to be replaced by another module in the simulation, adding 

functionality to the base implementation. There is a wide choice of implemented protocols are 

available in MiXiM protocol library. 
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2.3.4.1 MAC Protocols 

A Medium Access Control (MAC) protocol is devised to make decisions about the sharing of a 

medium for communication between nodes of a system. In the case of wireless systems, the shared 

medium is air. The main role of a MAC protocol is its needs to decide when a node should send 

out messages so that the messages do not interfere with messages of other nodes. Additionally, for 

low power devices (BLE devices) – the MAC protocol is responsible to determine at what times 

the radio can be switched off to avoid listening to the medium (which consumes power) when no 

nodes are sending. In MiXiM we have two base classes for building sensor network specific MAC 

protocols. 

1. BaseMACLayer – basic MiXiM-style layering, providing en/decapsulation of packets, but 

no other functionality 

2. EyesMACLayer – supplies a number of support functions for sensor network MACs, 

comprise support functions for low-power listening and sift inspired carrier sense period 

choosing, also generating statistical information about MAC protocol performance. 

MiXiM implements standard MAC protocols for wireless Local Area Networks (WLAN) and 

Personal Area Networks (PANs). The IEEE 802.11b/g family and IEEE 802.15.4 standards can be 

ported from the Mobility framework to MiXiM.  

 

2.3.4.2 Network layer Protocols 

MiXiM reinforces networking protocol with a wide variety of traffic paradigms, these are further 

supported by other simulation models, e.g. localization data for geographic routing, motion data 

derived from mobility module.  

2.3.4.3 Mobility models  

MiXiM has an elaborate library of mobility modules which include simple modules like “constant 

speed mobility” and “Circle mobility”. It has a simplified way to create new mobility modules, by 

sub-classing from the base BaseMobility class. The BaseMobility class offers all the functionality 

needed for mobility handling in MiXiM.  

 

2.3.4.4 Localization 

Localization is a feature to determine position information of the current node. This service is 

made available by the optional localization layer. Optional shows that it is not included in the 

standard software protocol stack, but must be added to the node module explicitly. This optional 

nature permits the placement of the localization layer beneath the network layer, such that 

geographic routing algorithms can utilize the localization layer for position information.  The 

BaseLocalization layer aims to supply base functionality for a wide range of localization 

algorithms. The localization layer embeds position information in the header message from the 

upper layer, such that algorithms can be created that have little or no message overhead [7].   
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2.4 Bluetooth Low Energy - Overview 

Bluetooth Low Energy is the power-version of Bluetooth that was built for the Internet of Things 

(IoT). BLE is the distinctive feature of the Bluetooth 4.0 specification. BLE-based sensors are able 

to operate on a coin cell for several months to several years, depending on its processing and 

communication demands and the parameterization of the (BLE) protocol. The protocol has been 

standardized in 2010 as the part of Bluetooth Core Specification version 4.0. Internet of Things 

(IoT) can be benefited largely by Bluetooth with low energy functionality. Bluetooth Low Energy 

is sometimes referred to as “Bluetooth Smart”. While there is some overlap with classic Bluetooth, 

BLE actually has a completely different origin and was started by Nokia as an in-house project 

called ‘Wibree’ before being adopted by the Bluetooth SIG. There are good-deal of wireless 

protocols out there for engineers and product designers. BLE remains in sleep mode constantly 

except for when a connection is initiated. It is vital for applications that only need to exchange 

small amounts of data periodically. Appealing factor about BLE is that it helps to easily design 

something that can talk to any modern mobile platform out there (iOS, Android, Windows phones, 

etc) and particularly in the case of apple devices it’s the only Hardware (HW) design option that 

doesn’t require any developers to bounce through interminable circlet. The Bluetooth SIG 

envisioned that by 2018 more than 90 percent of Bluetooth-enabled smartphones will up-hold 

Bluetooth Smart. The Bluetooth SIG officially proclaimed Bluetooth 5. Bluetooth 5 will double 

the speed, quadruple the range, and furnish an eight-fold increase in data broadcasting capacity of 

low energy Bluetooth transmission compared to Bluetooth 4.x, which could be important for IoT 

applications especially in smart industry, logistics, and also in smart homes.   

 

2.4.1 Classic Bluetooth and Bluetooth Smart 

Classic Bluetooth technology was originally designed for continuous streaming data application 

such as voice and was successful in getting rid of wires in many consumers as well as industrial 

and medical applications. Classic Bluetooth technology will continue to grant a robust wireless 

connection between devices ranging from headsets and cars to industrial controllers and streaming 

medical sensors. The IEEE standardized Bluetooth as IEEE 802.15.1, but no longer maintains the 

standard. Bluetooth Low Energy was introduced in 2011. As with classic Bluetooth technology, 

BLE operates in the 2.4 GHz ISM band and has similar radio frequency (RF) output power. 

However, because a BLE is in sleep mode most of the time and wakes up only when a connection 

is commenced, the power consumption can be kept to minimum. Power consumption is kept low 

because the actual connection times are of only a few ms. The maximum, or peak power 

consumption is only 15 mA, and the average consumption is only about 1µA. Classical Bluetooth 

operates in the 2400 - 2483.5 MHz range within the ISM 2.4 GHz frequency band. Table 3 

describes the difference between classical Bluetooth and Bluetooth Low Energy.  
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Technical Specification  

 

Classical Bluetooth  BLE Smart technology 

Data rate over the air 1 Mbps 1-3Mbps 

Range /Distance 

(Theoretical) 

~10 – 100 meters ~10 – 100 meters 

Frequency Channels  79 channels from 2.4 GHz to 

2.483 GHz with 1 MHz 

spacing 

40 channels from 2.4 GHz to 

2.48 GHz (3 advertising and 

37 data channel) 

Throughput  0.7 – 2.1 Mbits/s 0.27 Mbits/s 

Security 56/128 bit and application 

layer user defined 

128 bit AES with Counter 

Mode CBC-MAC and 

application layer defined 

Robustness  Adaptive fast frequency 

hopping, FEC, fast ACK, 

FHSS 

Adaptive frequency hopping, 

24 bit CRC, 32 bit Message 

integrity check, FHSS 

Latency (from a non-

connected state) 

100ms 6ms 

Link Layer  TDMA TDMA 

Network Topology Point-to-point, scatternet Point-to-point, star, scatternet 

Modulation  TDMA TDMA 

Power consumption 1 (reference value) 0.01 to .5 

Message size (bytes) 358 (Max) 8 to 47 

Profile concept Yes Yes 

Primary use cases Mobile phones, headsets, 

stereo, automotive, PCs  

Mobile phones, gaming, PCs, 

Sport & fitness, medical, 

automotive, automation, home 

electronics 

 

Voice Capable  Yes  No 
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Table 3: High level comparison between Classic Bluetooth and Bluetooth Low Energy  

 

2.5 Bluetooth Core Specification 

The Bluetooth core specification defines the technology building blocks that act as a guiding 

manual for developers to create the interoperable devices that make up the thriving Bluetooth 

ecosystem. Bluetooth Special Interest Group (SIG) oversees the Bluetooth specification [10]. This 

section presents the BLE protocol stack and defines the main mechanism and features of each 

layer.     

 

2.5.1  General Description 

The Bluetooth wireless technology was introduced as a short-range communication system 

designated to replace the cables. Core specification has many features which are optional, allowing 

product differentiation. There are two modes of Bluetooth wireless technology systems: Basic Rate 

(BR) and Low Energy (LE).  

 

Both the Basic rate (BR) and Classical Bluetooth and Low Energy systems include device 

discovery, connection establishment, and connection mechanism. The Basic Rate system includes 

optional Enhanced Data Rate (EDR), Alternate Media Access control (MAC) and Physical (PHY) 

layer extensions. The LE system includes features designed to enable products that demand lower 

current consumption, lower complexity, and lower data rates and has lower duty cycles depending 

on the use case or application. The Bluetooth core system consists of a Host and one or more 

Controllers. A Host is a logical entity enclosed of all of the layers below the non-core profiles and 

above the Host Controller Interface (HCI). A Controller is a logical entity defined as all of the 

layers below HCI. The Host Controller Interface (HCI) takes care of the communication between 

the Host and the Controller. The Controller includes the Physical layer and the link layer. The Host 

includes upper layer functionality which is Logical Link Control and adaptation Protocol 

(L2CAP), the Attribute Protocol (ATT), the Generic Attribute Profile (GATT), the Security 

Manager Protocol (SMP) and the Generic Access Profile (GAP) [11]. Figure 3 illustrates the BLE 

Protocol Stack.   



 Master Thesis: Institute of Parallel and Distributed Systems   

17 

 

 

 

2.5.1.1 Physical Layer  

Bluetooth Low Energy (BLE) device operates in the 2.4 GHz Industrial Scientific Medical (ISM) 

band. The transceivers use frequency hopping mechanism [8] to fight interference and fading. The 

LE system uses 40 RF Channels. The center frequency of these RF channels is 2402 + k*2 MHz, 

where k = 0, ..., 39. There are two types of RF channels: advertising channel and data channels.  

 

Regulatory Range  RF Channels 

2.400 – 2.4835 GHz  f = 2402 + k*2 MHz, where k = 0, ..., 39 

Table 4: Operating frequency Bands 

Advertising channels are utilized for device discovery, connection establishment and broadcast 

transmission. Data channels are used for bi-directional communication between connected 

devices. Three channels are defined as advertising channels. An adaptive frequency hopping 

mechanism is used over data channels to counter balance interference and wireless propagation 

issues, such as fading and multipath. This frequency hopping mechanism picks one of the 37 

available data channels for communication during a given time interval. 

 

All physical channels follow Gaussian Frequency Shift Keying (GFSK) modulation [8], which are 

simple to implement. The modulation index is in the range between 0.45 and 0.55, which permits 

reduced peak power consumption. The data rate in physical layer is 1 Mbps.  The sensitivity of the 

receiver is defined in BLE as the signal level at the receiver for which a Bit Error Rate (BER) of 

10-3 is reached. This sensitivity should be better than or equal to – 70 dBm according to Core 

Specification [11]. 

Figure 3: BLE Protocol Stack [1] 
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2.5.1.2 Link Layer  

The operations in the link layer can be expressed in terms of state machine with following five 

states 

 Standby state  

 Advertising state 

 Scanning state  

 Initiating state 

 Connection state 

The link layer in the Standby state does not transmit or receive any packets. The Standby state can 

be entered from any other state.  

 

In BLE, if a device wants to broadcast some data, it can transmit the data in advertising packets 

through advertising channels. That device which transmits advertising packets is termed as 

advertisers. The transmission of packets take place in the interval of time called advertising event. 

This interval is known as the advertising interval and it is a multiple of 0.625 ms and it can range 

from 20 ms to 10.24 s. Inside an advertising event, the advertisers sequentially employ each 

advertising channel for data packet transmission. The advertising state can be entered from the 

Standby state.  

 

The link layer in the Scanning state will be listening for advertising channel packets from 

advertisers. A device in the Scanning state is known as scanners. The link layer in the Initiating 

state will be listening for advertising channel packets from particular devices and responding to 

initiate a connection with that advertising device. The devices which perform scanning and 

initiating are called scanner and initiator respectively. Scanning is performed for a duration of scan 

window in a periodic interval. This interval is called scan interval. Scan interval and scan window 

are multiples of 0.625 ms and can range from 2.5 ms to 10.24 s. As shown in Figure 4, the 

Connection state can be entered from either Advertising state or the Initiating state [11].  

 

The connection creation between two devices is an asymmetric procedure by which an advertiser 

disclose that it is a connectable device, at the same time the other device which is referred to as an 

initiator listens for such advertisements. As soon as an initiator discovers an advertiser, it can 

transmit a Connection Request message to the advertiser. This is the procedure to create a point-

to-point connection between two devices. Link layer has only one packet format for both 

advertising channel packets and data channels packets. The packet format is shown in Figure 5. 

Each packet consists of four fields: the preamble, the Access address, the PDU, and the CRC. The 

preamble is 1 octet and the access address is 4 octets. The Range of PDU is from 2 to 257 octets. 
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The CRC is 3 octets. The packets in this connection can be recognized by a randomly generated 

32-bit access code.   

 
Figure 4: State diagram of the link layer state machine [9] 

 
Figure 5:  Link Layer packet format [10] 

The master and the slaves are the devices in connection state that act as initiator and advertiser 

during connection creation, respectively. From [10] the master has the capability to manage 

multiple simultaneous connections with different slaves, whereas each slave can only be connected 

to one master. Thus, the network our constructed by a master and its slaves, which is called a 

piconet, follows a star topology. By default, slaves are in sleep mode and wake up periodically to 

listen for possible packet receptions from the master, to save energy on the slave side. 

  
Figure 6: Connection Request PDU payload [1] 
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The master coordinates the medium access b using a Time Division Multiple Access (TDMA) 

scheme. The masters also inform the slave about the frequency hopping algorithm (including the 

map of data channels to be used) and for the connection supervision. The connection management 

based parameters are transmitted in the Connection Request message. The connection message 

payload is shown in Figure 6 and Figure 7.   

 

 

Figure 7: LLData field structure in Connection Request PDU Payload [10] 

Formally after the creation of a connection between a master and a slave, the physical channel is 

divided into non-overlapping time units called connection events. Every connection event starts 

with the transmission of a packet by the master. When the slave receives a packet, it must send a 

packet to master in response. At the same time, the master is not required to send a packet upon 

receipt of a packet from the slave. Minimum, an Inter Frame Space (IFS) pf 150 µs must pass 

between the end of the transmission of a packet and the start of the next one. The connection event 

is considered to be open, while master and slave continue to alternate in sending packets. Data 

channel packets (Figure 8 and Figure 9) include a More Data (MD) bit which signals whether the 

sender has information to transmit. If none of the devices has more data to transmit, the connection 

event will be closed and the slave will not be required to listen to the beginning of next connection 

event. 

 

 
Figure 8: Data Channel PDU [10] 

Other situations that force the end of a connection event include the reception of two consecutive 

packets with bit errors by either the master or the slave and the corruption of the access address 

field of a packet sent by any device.  

 
Figure 9: Data channel PDU Header [9] 
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For a new connection event, master and slave make use of a new data channel frequency. This 

frequency is computed by using the frequency hopping algorithm. The time between the start of 

two consecutive connection event is denoted by the connInterval parameter, which is a multiple of 

1.25 ms in the range between 7.5 ms and 4 ms. The connSlaveLatency is also one of the important, 

which defines the number of consecutive connection events during which the slave is not required 

to listen to the master and thus can keep the radio turned off. This parameter is an integer between 

0 and 499 and must not cause a supervision timeout. When the time since the last received packet 

exceeds the connSupervisionTimeout parameter, a supervision timeout will happen. This 

parameter can range from 100 ms to 32 s. To detect the loss of a connection due to severe 

interference or the movement of a device outside the range of its peer, is the purpose of this 

mechanism. The data channel packet header contains two one-bit fields: the Sequence Number 

(SN) and the Next Expected Sequence Number (NESN). The SN determine the packet, while the 

NESN indicates which packet from the peer device should be received next. Whenever a device 

successfully receives a data channel packet, the NESN of its next packet will be incremented, and 

that packet will serve as an acknowledgment. Alternatively, if a device receives a packet with an 

invalid CRC check, the NESN of the received packet cannot be relied upon. This force the 

receiving device to resend its last transmitted packet. This mechanism serves as a negative 

acknowledgment. 

 

2.5.1.3  L2CAP 

The L2CAP of the classical Bluetooth is optimized and simplified to be used in BLE. In BLE, the 

main objective of L2CAP is to multiply the data of three higher layer protocols, ATT, SMP, and 

Link Layer control signaling, on top of a Link Layer connection. The maximum payload size of 

L2CAP is equal to 23 bytes in BLE, thus avoiding the use of segmentation and reassembly 

capability.  

 

2.5.1.4  ATT 

The ATT describes the communication between two devices paying the roles of server and client 

respectively. The server manages set of attributes. An attribute is a data structure that stores the 

information controlled by the GATT, the protocol that operates on the top of the ATT. The client 

of server role is identified by the GATT and is independent of the master or slave role. 

 

2.5.1.5 GATT 

The GATT characterize a framework that uses the ATT for the discovery of services and the 

exchange of characteristics from one device to another. The characteristics are nothing but a set of 

data which includes a value and properties. The data relevant to services and characteristics are 

stored in attributes. For example, a server that performs a ‘temperature sensor’ service may present 

with a ‘temperature’ characteristic that uses an attribute for describing the sensor, another attribute 
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for storing temperature measurement values and a further attribute for the indication of the 

measurement units. 

 

2.5.1.6 Security 

BLE incorporates various security services to protect the information exchange between two 

connected devices. The supported security services can be manifested in terms of two mutually-

exclusive security modes called LE Security Mode 1 and LE Security Mode 2. These two modes 

provide security functionality at the ATT layer and Link Layer, respectively. In a connection, when 

encryption and authentication are used, a 4-byte Message Integrity Check (MIC) is appended to 

the payload of the data channel PDU (refer Figure 8). Encryption is then employed to the PDU 

payload and MIC fields.  

 

2.5.1.7 GAP and Application Profiles 

GAP makes the highest level of the core BLE stack. This specifies device roles, modes, and 

procedure for the discovery of devices and services, the management of security and connection 

establishment. The BLE GAP modulates four roles with specific requirements on the underlying 

controller: Broadcaster, Observer, Peripheral and Central. When a device is performing 

Broadcaster role, it only broadcasts data (via the advertising channels) and does not support 

connections with other devices. The Observer is the counterpart of the Broadcaster, i.e., it has the 

responsibility of receiving the data transmitted by the Broadcaster. The Central role is formalized 

for a device that is in charge of initiating and managing multiple connections, while the Peripheral 

role is formalized for a simple device which uses a single connection with a device in the Central 

role. A device may approve various roles, but only one role can be adopted at a given time. A 

highest-level profile that establishes how applications can interoperate is called an application 

profile.  

 

2.6 Literature Review 

2.6.1 Simulation of wireless networks 

A survey of various simulation tools for wireless networks available for the developers is done in 

[1]. Evaluating the behavior and performance of wireless protocols in a simulation environment, 

depends greatly on choosing the correct tool. An appropriate tool must have a good compromise 

between complexity in one hand and accuracy of results in other hand [1]. In [1], strengths and 

weakness of six most “widely used” network simulator is been discussed. In particular, the [7] 

introduces a new framework called MiXiM to provide direct support and a concise modeling chain 

for wireless communication. MiXiM provides a detailed model of wireless channels, wireless 

connectivity, mobility models and models for obstacles. This also has many communication 

protocols especially at the MAC level [7].  An IEEE 802.11g MAC and PHY simulation model in 
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the OMNeT++ simulation environment is been introduced in [12]. This model also has a 

debugging solution using network protocol analyzer. The model in [12] also considers transmitter 

output power, modulation and data rates. Furthermore, in [13], an extensive measurement study of 

wireless networks are done and these results are used to validate the accuracy of various IEEE 

802.11g model on OMNeT++. The experiments are conducted in highly controlled and almost 

error free environment [13]. The lack of the model for effect of interference from co-located 

devices using the different technologies is been addressed in [14]. Methodology of modelling 

external interference, by taking the realistic characteristics interference generated by co-located 

wireless standards, is been proposed in [14].  

 

Complete simulation environment for Bluetooth is been developed in ns (network simulator), an 

open source simulation environment [15]. This Bluetooth simulation environment support 

dynamic topology construction, enhance the behavioral control of device, provide animated 

simulation results, mobility models and support scatternets [15]. The simulation environment in 

[15] is an extended package for BlueHoc of ns. In addition, in [16] a Bluetooth network simulator 

that let user to work both on application level and on link management level is been presented. 

This Bluetooth simulator has been implemented in SystemC [16]. In the paper [17], simulation 

and security analysis of Bluetooth pairing protocol for numeric comparison using Elliptic Curve 

Diffie Hellman in NS-2 is presented. The BLE protocol is implemented in OMNeT++ environment 

for the purpose of studying the network performance [18]. The results in terms of throughput and 

energy consumption is presented [18].  

 

2.6.2 Evaluation of wireless technologies 

The presence of numerous wireless technology each having their own advantages and complexity, 

made it a tough job to choose the right technology for one application. There is lot of research 

work focusing mainly on this issue, has been conducted. The evaluation is done in many levels 

and forms concentrating on different performance metrics. In  [19], an analytical energy model for 

secure communication among multi-mode terminals has been introduced. The model in [19] 

describes the energy consumption of mobile terminals operating inside a dynamic network 

considering secure data exchange issues. Simulation in ns framework is used to validate the model 

introduced in [19]. Interestingly, [20] presents a new wireless standard which built to address the 

point that a complex and heavy networking protocol is not necessary for simple point-to-point and 

multi point-to-point applications like PC mice. To demonstrate the effectiveness of the proposed 

Wireless USB protocol, ns-2 based simulation is used in this work [20]. The paper [20] also claims 

the protocol outperforms Bluetooth in terms of packet delivery ratio, latency, and power 

consumption . Bluetooth and IEEE 802.11 which are the two main communication protocol 

standards has been compared in [21]. The survey and comparison in [21] is made in terms of 

various metrics, including capacity, network topology, quality of service support, and power 

consumption. Additionally, the study in [22] investigates BLE utilization for transmitting the 

occupancy data to server. The paper [22] focus on monitoring and comparing the energy 
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consumption of mobile phones when performing data transmission via WiFi and BLE. In the paper 

[23], an analytical model of the time, takes a Bluetooth based moving observer to discover a 

Bluetooth device within a floating traffic object is explained.  Bluetooth EDR physical layer is 

modelled and simulated in Mathworks MATLAB [24]. Simulation for 1, 2, and 3 Mbits/s data 

rates are presented. The paper [25], presents an analysis of the Bluetooth physical layer in office 

room environment, focusing mainly on the interference between piconets. The research work in 

[26], proposes an analytical model to predict the delay of the transmission in Bluetooth piconets 

employing Serial Port Profile (SPP).  The document from Nordic semiconductors  [27], gives a 

brief introduction on Bluetooth Low Energy wireless technology. In the paper [28], a comparison 

in terms of the maximum peer-to-peer throughput, the minimum frame turnaround time, and the 

energy consumption for three protocols, is studied. The protocols considered by [28] are BLE, 

IEEE 802.15.4 and SimplicitTI. SimpliciTI is a proprietary protocol developed by Texas 

Instruments. The results from [28] reveal that BLE can potentially support maximum LL (link 

Layer ) data throughput of around 320 lbits/s. The study in [28] also shows that the BLE technology 

is capable of providing a frame turnaround time of less than one millisecond. Further, in [29] focus 

is been given in improving throughput and efficiency of BLE in a multi node environment. This 

research paper [29] proposes methods to improve throughput and energy efficiency. In particular, 

[30] presents an energy model to predict the energy consumption of BLE – based wireless devices 

in all possible operating modes. The accuracy of the energy model in [30] is evaluated using both 

discrete event simulation and actual measurements. Furthermore, the research paper [31] presents 

an analytical model for the maximum throughput of BLE taking the impact of important BLE 

parameter into account. The analytical model in [31] is derived as function of BER and connection 

interval. Then in the research paper [32], an analytical model to investigate the discovery 

probability and the expected discovery latency, has been derived. The model in [32] is validated 

via experiments. 
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3 System Model & Problem Description 

In this chapter system components and assumptions related to multi-device environment will be 

named, followed by a formal specification of the problem to be solved. 

 

3.1 System Model 

Multi-device environment in a simple sense describes the system with many “Smart Things” 

connected to a central brain. In specific, in our system, multiple devices or things communicate 

wirelessly with a central or master devices. Bluetooth Low Energy (BLE) is the wireless 

communication protocol in this system.  

 

Modelling of the parameters of BLE environment for a multi-device environment will be achieved 

first. Secondly, the BLE sensor network model is simulated in OMNeT++ network simulator. The 

validation of the simulated system can be done by implementing the same system in real world 

hardware.  

 

The system will consist of many BLE slaves or peripheral devices whose objective is to 

communicate the data with a BLE master or central device. Bluetooth Low Energy follows a 

certain protocol on how a slave can communicate data to the master. The Master and slave were 

not synchronized to one another.  

 

Initially, all peripheral devices will be in advertising mode and the central device will be in 

scanning (or) initiating mode. Once the connection is made, central device will become the master 

and peripheral devices will become the slaves. The slaves will send the data to the master device 

via a secured data channel.    

 

In BLE, during advertising mode, all the advertisers use only 3 advertising channel and their 

indexes are 37, 38 and 39. The scanner (or) initiator will be listening for any possible 

advertisements only in these advertising channels. For simplicity, this phase will be called 

advertising and device discovery phase. Device discovery is when the central device receives the 

advertisement and respond to the corresponding advertiser with a connection setup request. 

Once the advertiser accepts the connection request, it sends a response to the initiator. During the 

connection phase, both slave and master communicate the data using 37 data channel. Frequency 

hopping mechanism is used to avoid fading or interference with other radio in the same channel.  

Different configuration parameters are there in BLE core specification to control these 2 above-

mentioned phases. During advertising and device discovery phase, the configuration parameters 

such as advertising Interval, scanInterval and scanWindow play a considerable role. During 

connection phase, the configuration parameters such as connection interval, supervision timeout, 
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and connection latency play a major role. These parameters will have their own sensitivity which 

impact the performance metrics of the BLE environment.   

 

3.2 Problem Statement 

 Designing the simulation model which can achieve an abstraction of the real BLE network 

behavior. 

 Implementation of the system which fully accords with BLE core specification in 

OMNeT++ simulator environment. OMNeT++ is a module based discrete event simulator. 

In order to realize the BLE protocol MiXiM framework will be used in OMNeT++. MiXiM 

framework has many compound modules to represent various wireless components.  

 The performance metrics of a system with 1 central device and with M number of 

peripheral devices can be calculated using the simulation model 

 The validation of the simulation model requires a hardware implementation and comparing 

the result with the results obtained from simulation model 

  The hardware implementation involves a BLE gateway to act as central or master device 

and a countable number of batteries operated BLE devices to act as peripheral or slave 

devices.  

 The investigation on the possible relationship between a number of slave devices and their 

impact on system performance metrics will be done. 

 Calculating the deviation in simulation model compared with hardware and investigating 

the reason for the deviation  
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4 Implementation 

4.1 Simulation model in OMNeT++ 

The modeling of BLE in OMNeT++ with the help of MiXiM framework is the first goal of the 

thesis work. The simulation model in OMNeT++ is achieved by implementing the lower layers of 

the BLE communication protocol. To implement the lower layers, we use the existing base layer 

implementations in MiXiM framework. To represent the basic functionality of BLE, we decided 

to create models of Physical layer, Link layer, and Network layer specific to BLE. 

 

4.1.1 Setting up OMNeT++ environment 

The first step in the implementation would be to install OMNeT++ 4.0, open source framework 

for the network simulators. The document [33] describes how to install the IDE in various 

platforms. Figure 10 shows the OMNeT++ IDE with MiXiM installed. MiXiM framework can be 

installed in OMNeT ++ IDE by following few steps: 

 Choose "File->Import" from the menu. 

 Choose "General->Existing Projects into Workspace" from the upcoming dialog and 

proceed with "Next". 

  Choose "Select archive file" and select the MiXiM archive file. 

 "MiXiM" should appear in the "Projects" list below. Click "Finish". 

 To build MiXiM, right-click on the project and choose "Build Project". 

 

 
Figure 10: OMNeT++ IDE with MiXiM installed 
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4.1.2 Physical Layer Module 

The physical layer is the lowest of all the layers in the BLE protocol from the figure (3). Physical 

layer module in OMNeT ++ has the task of initializing relevant Analogue models and Deciders. 

There are various Analogue models and Deciders modules available within the MiXiM module 

directory. Analogue models present within library are  

1.    SimplePathlossModel 

2.    LogNormalShadowing 

3.    JakesFading 

4.    BreakpointPathlossModel 

5.    PERModel 

  

Similarly, Deciders present within library are  

1.    Decider80211 

2.    SNRThresholdDecider 

3.    Decider802154Narrow 

For the BLE implementation, SimplePathlossModel is used. This model represents a Pathloss-

function. In this simple path loss implementation, one attenuation value is assumed to be constant 

over the signals duration. With the help of a config.XML, we select the parameters and map values 

to them. For our SimplePathlossmodel, parameter alpha (minimum path loss coefficient) is 

selected as 4. The Carrier frequency of the signal is given in Hz. For BLE we choose the carrier 

frequency as 2.412e+9 Figure 11.   

<?xml version="1.0" encoding="UTF-8"?> 
<root> 
 <AnalogueModels> 
  <AnalogueModel type="SimplePathlossModel"> 
      <parameter name="alpha" type="double" value="4.0"/> 
      <parameter name="carrierFrequency" type="double" value="2.450e+9"/> 
     </AnalogueModel> 
 </AnalogueModels> 
 
 <Decider type="SNRThresholdDecider_Multichannel"> 
<parameter name="snrThreshold" type="double" value="1.12589254117942"/> 
<parameter name="busyThreshold" type="double" value="3.98107170553E-9"/>   
 </Decider> 
</root> 

 

Figure 11: config.xml 

For BLE implementation, SNRThresholdDecider_Multichannel is used. This is an extension of 

the standard SNRThresholdDecider for enabling it to work with multiple radio channels. 

SNRThresholdDecider decides the channel state (idle/busy) at hand of the current received total 

power level (independent from signal or noise). If it is above the threshold defined by the 

"busyThreshold" parameter, it considers the channel busy. The RSSI value returned by this 
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Decider for a ChannelSenseRequest over time is always the RSSI value at the end of the sense. 

With the help of the same config.XML file, we map SNR threshold to a value of 1.12589254. The 

parameter “busyThreshold” is mapped to a value of 3.9810E-9. 

 

The SNR-mapping for the Signal is created and checked against the Deciders SNR-threshold. 

Depending on that the received AirFrame is either sent up to the MAC-Layer or dropped. 

 

4.1.3 MAC Layer Module 

MAC layer module implementation provides an abstraction to the Link layer of BLE protocol. 

Unlike Physical layer module, this MAC layer module can only inherit very few properties from 

the existing base layer. The BLEMacLayer is an extension of the BaseMacLayer. The 

BaseMacLayer module provides functionalities such as decapsulation and encapsulation of 

messages using the standard address. It also provides basic handling of lower layer messages. The 

BaseMacLayer is an extension of BaseLayer in MiXiM library. This BaseLayer module provides 

a basic abstraction that eases development of a network or Mac layer.    

 

The BLEMac.ned declares parameters such as bitrate, header length, transmission power, and state 

of the node (standby, advertising, initiating, and connection). It also declares some of the BLE link 

layer specific parameters such as length of the header for the data packet and advertising packet, 

Interframe spacing, maximum advertising PDU duration, maximum data PDU duration, minimum 

data PDU duration, and maximum data PDU payload bytes. We also declared parameters to 

include the hardware switching timings like time taken to switch from sleep mode to transmission 

mode, from sleep mode to receiving mode, from transmission mode to receiving mode, and from 

receiving mode to transmission mode. All these parameters can be mapped to a value defined in 

the core specification. The parameters for debugging and testing were also initialized in 

BLEMac.ned file.   

 

BLE Mac layer’s C++ source has necessary classes to realize relevant functionality in Link layer 

and L2CAP. Initialization will be executed as soon as the control of the node enters the MAC 

layer. There are two stages of initialization. During stage 0 all the relevant timers and objects are 

initialized. This happens only once during the simulation. In stage 1, depending on the initState 

different function calls are made. For example, when the node is acting as an advertiser, the 

initState value will be equal to 1, then the MAC state gets updated to Advertising and a timer to 

start the advertisement will be triggered. Figure 12 shows the initialization of different parameters 

based on the value of initState.  

 

During the connection state, a new data packet is generated with the function call 

prepareNewDataPkt, to use in transmission. During connection state, connection info plays a role 

in deciding when to close the connection event.    
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         if(initState==1){//act as advertiser 
            updateMacState(ADVERTISING_2); 
            updateMacSubstate(UNUSED); 
         startTimer(TIMER_ADVERTISE_EVENTSTART); 
        } 
        else if(initState==2){//act as initiator 
            updateMacState(INITIATING_4); 
            updateMacSubstate(UNUSED); 
       startTimer(TIMER_INITIATION_WAKEUP);  
        } 
        else if(initState==3){//act as a slave (starting from CON_REQUEST) 
            updateMacState(CONNECTION_5); 
            updateMacSubstate(CONNECTED_SLV_WAITCONNECTION); 
            initVariablesAtStateStart(); 
            prepareNewDataPkt(1); 
        } 
        else if(initState==4){//act as a master (starting from CON_REQUEST) 
            updateMacState(CONNECTION_5); 
            updateMacSubstate(CONNECTED_MST_SLEEP); 
            initVariablesAtStateStart(); 
            prepareNewDataPkt(1); 
        } 
        else if(initState==5){//act as a slave (already established) 
            updateMacState(CONNECTION_5); 
            updateMacSubstate(CONNECTED_SLV_SLEEP); 
            myConnPars.ConnInfo.numMissedEvents=0; 
   myConnPars.ConnInfo.lastunmappedChannel=myConnPars.ConnInfo.unmappedChannel; 
            myConnPars.ConnInfo.transmitSeqNum=false; 
            myConnPars.ConnInfo.nextExpectedSeqNum=false; 
            myConnPars.ConnInfo.delayedGeneration=true; 
            myConnPars.ConnInfo.moreData=false; 
            startTimer(TIMER_CONNECTION_SLAVE_WAKEUP); 
            startTimer(TIMER_CONNECTION_SLAVE_SUPERVISION); 
            myConnPars.ConnInfo.timeLastAnchorReceived=0; 
            prepareNewDataPkt(1); 
            eventConnectionCompleted(); 
        } 
        else if(initState==6){//act as a master (already established) 
            updateMacState(CONNECTION_5); 
            updateMacSubstate(CONNECTED_MST_SLEEP); 
            myConnPars.ConnInfo.numMissedEvents=0; 
myConnPars.ConnInfo.lastunmappedChannel=myConnPars.ConnInfo.unmappedChannel; 
            myConnPars.ConnInfo.transmitSeqNum=false; 
            myConnPars.ConnInfo.nextExpectedSeqNum=false; 
            myConnPars.ConnInfo.delayedGeneration=true; 
            myConnPars.ConnInfo.moreData=false; 
            myConnPars.ConnInfo.timeLastSuccesfullEvent=0; 
            startTimer(TIMER_CONNECTION_MASTER_WAKEUP); 
            startTimer(TIMER_CONNECTION_MASTER_SUPERVISION); 
            prepareNewDataPkt(1); 
            eventConnectionCompleted(); 
        }  

Figure 12: Initialization of variables based on initState 
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BLE protocol layers communicate between them using the message packets. These message 

packets can be defined by .msg files in OMNeT++. Figure 13 and Figure 14 describes those BLE 

advertising and data MAC packets. The advertising and data MAC packet is an extension of base 

MAC packet from MiXiM library. The MAC packet fields like access address, advertising PDU 

type, and transmitter address, receiver address, interval, latency, sequence number, next expected 

sequence number, more data, and etc, are described in the core specification [10].   

packet BLE_Adv_MacPkt extends MacPkt 
{ 
    long     AccessAddress;    //preamble 
    int     Adv_PDU_type;  
    bool    TxAdd; 
    bool    RxAdd;  
    int     Length; 
    LAddress::L2Type AdvA;  
    LAddress::L2Type InitA;   //ADV_DIRECT, CONNECT_REQ 
    long AA; 
    int WinSize; 
    int WinOffset; 
    int Interval; 
    int Latency; 
    int Timeout; 
    int MapCh0to7; 
    int MapCh8to15; 
    int MapCh16to23; 
    int MapCh24to31; 
    int MapCh32to39; 
    int Hop; 
    int SCA; 
    LAddress::L2Type ScanA; // for SCAN_REQ 
} 

 

Figure 13: BLE_Adv_MacPkt.msg 

 

packet BLE_Data_MacPkt extends MacPkt 
{ 
    long AccessAddress; 
    int hdr_LLID; 
    bool hdr_NESN; 
    bool hdr_SN; 
    bool hdr_MD; 
    int hdr_lgth;    
    int Opcode  //Commands 
    int Instant;  //LL_CHANNEL_MAP_REQ, LL_CONNECTION_UPDATE_REQ 
    int WinSize;    //link layer channel map request fields see spec v4.1 
    int WinOffset; 
    int Interval; 
    int Latency; 
    int Timeout;  
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int MapCh0to7;      //Link layer connection update request fields see spec v4.1 
    int MapCh8to15; 
    int MapCh16to23; 
    int MapCh24to31; 
    int MapCh32to39;   
    int ErrorCode;   //LL_TERMINATE_IND 
 
} 

 

Figure 14: BLE_Data_MacPkt.msg 

The BLE MAC layer handles the messages from both upper and lower layers. Based on different 

messages, different event will be executed. The BLE MAC layer also handles the message 

generated within the same layer. These message could be a timer or an event completion message 

or state transition event. Figure 15 shows the self-message handler of BLE MAC layer. 

 

void BLEMacV2::handleSelfMsg(cMessage *msg) { 
 
//advertiser 
    if(msg==advertisementEventTimer){ 
        executeMac(EV_ADV_EVENT, msg); 
    } 
    else if(msg==advertisementNextPDUTimer){ 
        executeMac(EV_ADV_NEXTPDU, msg); 
    } 
    else if(msg==advertisementEndEvent){ 
        executeMac(EV_ADV_EVENTEND, msg); 
    } 

 
//initiator 
    else if(msg==initiatingScanIntervalTimer){ 
        executeMac(EV_INIT_INTERVAL, msg); 
    } 
    else if(msg==initiatingScanWindowTimer){ 
        executeMac(EV_INIT_WINDOW, msg); 
    } 

 
//slave in connection 
    else if(msg==slaveConnectionWakeupConnectionTimer){ 
        executeMac(EV_CON_SLV_WAKEUP_CONNECTION, msg); 
    } 
    else if(msg==slaveConnectionTransmitWindowTimer){ 
        executeMac(EV_CON_SLV_TRANSMIT_WINDOW, msg); 
    } 
    else if(msg==slaveConnectionNoBeaconTimer){ 
        executeMac(EV_CON_SLV_NOBEACON, msg); 
    }  
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    else if(msg==slaveConnectionWakeupTimer){ 
        executeMac(EV_CON_SLV_WAKEUP, msg); 
    } 
    else if(msg==slaveIFSTimer){ 
        executeMac(EV_CON_SLV_WAITIFS, msg); 
    } 
    else if(msg==slaveWaitReplyTimer){ 
        executeMac(EV_CON_SLV_WAITREPLY, msg); 
    } 
    else if(msg==slaveEndConnectionEvent){ 
        executeMac(EV_CON_SLV_ENDEVENT, msg); 
    } 
    else if(msg==slaveConnectionSupervisionTimer){ 
        executeMac(EV_CON_SLV_DROPCONNECTION, msg); 
    } 
//master in connection 
    else if(msg==masterConnectionWakeupTimer){ 
        executeMac(EV_CON_MST_WAKEUP, msg); 
    } 
    else if(msg==masterWaitReplyTimer){ 
        executeMac(EV_CON_MST_WAITREPLY, msg); 
    } 
    else if(msg==masterIFSTimer){ 
        executeMac(EV_CON_MST_WAITIFS, msg); 
    } 
    else if(msg==masterEndConnectionEvent){ 
        executeMac(EV_CON_MST_ENDEVENT, msg); 
    } 
    else if(msg==masterConnectionSupervisionTimer){ 
        executeMac(EV_CON_MST_DROPCONNECTION, msg); 
    } 
    //state switching stuff 
    else if(msg==ctrl_switchState){ 
        stopAllTimers(); 
        if(msg->getKind()==INITIALIZING_to_CONNECTION){ 
            updateMacState(CONNECTION_5); 
            updateMacSubstate(CONNECTED_MST_SLEEP); 

simtime_t FreeTime=phy->setRadioState(MiximRadio::SLEEP);            
if(FreeTime==0) eventRadioStateChanged(); 

            initVariablesAtStateStart(); 
            eventConnectionCompleted(); 
        } 
       else if(msg->getKind()==ADVERTIZING_to_CONNECTION){ 
            updateMacState(CONNECTION_5); 
            updateMacSubstate(CONNECTED_SLV_WAITCONNECTION); 

simtime_t FreeTime=phy->setRadioState(MiximRadio::SLEEP             
if(FreeTime==0) eventRadioStateChanged(); 

            initVariablesAtStateStart(); 
            eventConnectionCompleted(); 
        } 
       else if(msg->getKind()==ANY_to_STANDBY){ 

     if(phy->getRadioState()==MiximRadio::SWITCHING){ 
                Flag_DelayedSwitchOff=true; 
            else if(phy->getRadioState()!=MiximRadio::SLEEP){ 
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simtime_t FreeTime=phy->setRadioState(MiximRadio::SLEEP);                
if(FreeTime==0){ 

                    eventRadioStateChanged(); 
                    //inform host 
              myEventData->Connection_Handle=myConnPars.ConnInfo.connectionHandle; 
                    myEventData->ErrorCode=myCmdError->ErrorCode; 
                    cMessage *m; 
                    m = new cMessage("BLE_MACtoNWK_EVENT"); 
m->setControlInfo(BLE_MacToNwk::generate_DisconnectionCompleteEvent(myEventData)); 
                    sendControlUp(m); 
                    Flag_DelayedSwitchOff=false; 
                    updateMacState(STANDBY_1); 
                    updateMacSubstate(UNUSED); 

             simtime_t FreeTime=phy->setRadioState(MiximRadio::SLEEP                     
if(FreeTime==0) eventRadioStateChanged(); 

                    initVariablesAtStateStart(); 
 
                } 
else if(msg->getKind()==STANDBY_to_ADVERTIZING){ 
            updateMacState(ADVERTISING_2); 
            updateMacSubstate(UNUSED); 
            initVariablesAtStateStart(); 
        } 
        else if(msg->getKind()==STANDBY_to_INITIATING){ 
            updateMacState(INITIATING_4); 
            updateMacSubstate(UNUSED); 
            initVariablesAtStateStart(); 
        } 
    } 
    else if(msg==ctrl_terminateConnection){//terminate connection 
        dropConnection(); 
    } 
    else error("BLEMacV2::handleSelfMsg unknown message"); 
} 

 
Figure 15: Handler for self-generated messages 

Any BLE node based on their role (advertiser, initiator, master, slave), performs specific tasks 

which are defined in their MAC layer. An advertiser transmits an advertisement packet of a specific 

type in a specified time interval. After sending the advertisement packet, it turns its receiver on to 

receive any response from an initiator or a scanner. The advertiser then becomes the slave, by 

going into connection state, after receiving a connection request from Initiator. An Initiator will 

always listen for an advertisement packet. After receiving an advertisement packet, the initiator 

transmits connection request packet and becomes the master. During the connection state, an 

advertiser plays slave role and an initiator performs the master role. The function call 

updateStatusAdvertising executes all the events relevant to an advertiser. The function call 

updateStatusInitiating executes all the events relevant to an initiator. The function call 

updateStatusconnected executes all the events relevant to both master and slave. Figure (16) shows 

these function calls declaration in the BLE MAC header file.  
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    virtual void updateMacState(t_mac_states newMacState); 
    virtual void updateMacSubstate(t_mac_substates newMacSubstate); 
    virtual void updateStatusStandby(t_mac_event event, cMessage *msg); 
    virtual void updateStatusAdvertising(t_mac_event event, cMessage *msg); 
    virtual void updateStatusInitiating(t_mac_event event, cMessage *msg); 
    virtual void updateStatusConnected(t_mac_event event, cMessage *msg); 

 

Figure 16:  function call declaration in the BLE MAC header file 

MAC layer source file also has function definitions for the preparation of new data packet, 

connection terminate packet, channel map update packet, connection parameter update packet, and 

empty acknowledgment packet and also for the generation of scan response packet, scan request 

packet, and connection request packet. These message packets are used to describe the accurate 

depiction of BLE MAC layer in OMNeT++. 

 

4.1.4 Network Layer Module 

BLE network layer module is implemented as an extension of the Base network layer. Network 

layer commands the MAC layer module to initialize. This layer makes use of the HCI messages to 

handle messages coming from the lower layer. Figure 17 shows the graphical view of the BLE 

network topology. Source editor of the BLE_Nwk.ned has the initialization of parameter values 

like advInterval, scanInterval, scanWindow, connLatency, connInterval, supervision timeout, and 

connection channel map.   

 
Figure 17: Design view of the BLE_Nwk.ned 

Similar to the MAC layer module, network layer module makes the initialization of parameters 

and objects when the control of BLE node is in network layer. This layer also handles the message 

from lower and upper layers. It can also handle the self-generated message.  

 

void BLE_BasicNwk::handleLowerControl(cMessage *msg){ 
 
    cObject* cInfo = msg->removeControlInfo(); 
    BLE_MacToNwk *const cEventInfo = dynamic_cast<BLE_MacToNwk *const>(cInfo); 
    switch(cEventInfo->get_EventType()){ 
    case cBLEstructs_defs::BLECMD_HCICtrl_LE_Connection_Complete_Event: 
        currentCmdConnectionPars->ConnHandle=cEventInfo->get_EventsParsPtr()-
>Connection_Handle; 
        if(cEventInfo->get_EventsParsPtr()->Role==cBLEstructs_defs::MASTER_0){ 
if(useSuggestedFastIntervalSturtupMechanism==true){//modify the parameters 
               currentCmdConnectionPars->Conn_Interval_Max=par("connInterval"); 
               currentCmdConnectionPars->Conn_Interval_Min=par("connInterval"); 
               currentCmdConnectionPars-
>Supervision_Timeout=par("supervision_Timeout");  
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               cMessage *m1; 
               m1 = new cMessage("BLE_NWKtoMAC_CMD"); 
               m1-
>setControlInfo(BLE_NwkToMac::generate_LEConnectionUpdateCommand(currentCmdConnect
ionPars)); 
               sendControlDown(m1); 
           } 
        break; 
    case cBLEstructs_defs::BLECMD_HCICtrl_LE_Connection_Update_Complete_Event: 
        EV << "BLE_BasicNwk: BLECMD_HCICtrl_LE_Connection_Update_Complete_Event 
Connection Handle:" << cEventInfo->get_EventsParsPtr()->Connection_Handle << endl; 
        break; 
    case cBLEstructs_defs::BLECMD_HCICtrl_Disconnection_Complete_Event: 
        EV << "BLE_BasicNwk: BLECMD_HCICtrl_Disconnection_Complete_Event 
Connection Handle:" << cEventInfo->get_EventsParsPtr()->Connection_Handle <<" 
ErrorCode:" << cEventInfo->get_EventsParsPtr()->ErrorCode << endl; 
        scheduleAt(simTime(), StartNode);//restart all 
        break; 
      }    delete msg; 
}  

Figure 18: Handler for the lower control message 

Figure 18 shows the handler of the control message coming from the lower layer. Based on the 

HCI control command different function call will be executed. For example 

BLECMD_HCICtrl_Disconnection_Complete_Event restarts all the BLE node by executing 

StartNode. Figure 19 describes the function call StartNode. During the start of the node, depending 

on the role, the parameter will redefined.   

void BLE_BasicNwk::startNode(void){ 
    int Role=par("NWK_DEBUG_ROLE"); 
     if(Role==1){//slave 
         // set advertisement parameters 
         int myIdx=FindModule<>::findHost(this)->getIndex(); 
         currentCmdAdvertisePars->Adv_Type=cBLEstructs_defs::ADV_IND_0; 
         currentCmdAdvertisePars->Direct_Address=(LAddress::L2Type)(myIdx); 
         currentCmdAdvertisePars-
>Direct_Address_Type=cBLEstructs_defs::DIRECT_ADDR_PUBLIC_0; 
         currentCmdAdvertisePars-
>Own_Address_Type=cBLEstructs_defs::OWN_ADDR_PUBLIC_0; 
currentCmdAdvertisePars->Advertising_Interval_Max=par("advInterval"); 
         currentCmdAdvertisePars->Advertising_Interval_Min=par("advInterval"); 
         currentCmdAdvertisePars->Advertising_Filter_Policy=cBLEstructs_defs::ANY_0; 
         cMessage *m; 
         m = new cMessage("BLE_NWKtoMAC_CMD"); 
         m-
>setControlInfo(BLE_NwkToMac::generate_LESetAdvertisingParametersCommand(currentCmdAd
vertisePars)); 
         sendControlDown(m); 
        // set advertisement data 
         cMessage *m1; 
         m1 = new cMessage("BLE_NWKtoMAC_CMD"); 
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         m1-
>setControlInfo(BLE_NwkToMac::generate_LESetAdvertisingDataCommand(currentCmdAdver
tisePars)); 
         sendControlDown(m1); 
         // start advertisements 
         currentCmdAdvertisePars->AdvEnabled=true; 
         cMessage *m2; 
         m2 = new cMessage("BLE_NWKtoMAC_CMD"); 
         m2-
>setControlInfo(BLE_NwkToMac::generate_LESetAdvertiseEnableCommand(currentCmdAdver
tisePars)); 
         sendControlDown(m2); 
     } 
     else if(Role==2){ 
         //set required channels 
         currentCmdAdvertisePars->AdvPacketLgth=0; 
 
         cMessage *m; 
         m = new cMessage("BLE_NWKtoMAC_CMD"); 
         m-
>setControlInfo(BLE_NwkToMac::generate_LESetAdvertisingParametersCommand(currentCm
dAdvertisePars)); 
         sendControlDown(m); 
         int myIdx=FindModule<>::findHost(this)->getIndex(); 
        // set scanning connection parameters 
         currentCmdScanningPars->LE_Scan_Interval=par("scanInterval"); 
         currentCmdScanningPars->LE_Scan_Window=par("scanWindow"); 
         currentCmdScanningPars-
>Own_Address_Type=cBLEstructs_defs::OWN_ADDR_PUBLIC_0; 
         currentCmdScanningPars->Peer_Address=(LAddress::L2Type)(myIdx); 
         currentCmdScanningPars-
>Peer_Address_Type=cBLEstructs_defs::PEER_ADDR_PUBLIC_0; 
         // set desired connection parameters 
         currentCmdConnectionPars->Conn_Latency=par("connLatency"); 
   if(currentCmdConnectionPars->Supervision_Timeout<10)currentCmdConnectionPars-
>Supervision_Timeout=10;//see spec v4.1 
         bool 
useSuggestedFastIntervalSturtupMechanism=par("useSuggestedFastIntervalSturtupMecha
nism"); 
         if(useSuggestedFastIntervalSturtupMechanism==true){//set the minimum 
interval 
             currentCmdConnectionPars->Conn_Interval_Max=8; 
             currentCmdConnectionPars->Conn_Interval_Min=8; 
             currentCmdConnectionPars->Supervision_Timeout=10; 
         } 
         else{//set desired interval straight away 
             currentCmdConnectionPars->Conn_Interval_Max=par("connInterval"); 
             currentCmdConnectionPars->Conn_Interval_Min=par("connInterval"); 
             currentCmdConnectionPars-
>Supervision_Timeout=par("supervision_Timeout"); 
         } 
 
  



 Master Thesis: Institute of Parallel and Distributed Systems   

38 

 

         //set used data channels 
         cMessage *m0; 
         m0 = new cMessage("BLE_NWKtoMAC_CMD"); 
         m0-
>setControlInfo(BLE_NwkToMac::generate_LESetHostChannelClassificationCommand(curre
ntCmdConnectionPars)); 
         sendControlDown(m0); 
         //switch to initialize state 
         cMessage *m1; 
         m1 = new cMessage("BLE_NWKtoMAC_CMD"); 
         m1-
>setControlInfo(BLE_NwkToMac::generate_LECreateConnectionCommand(currentCmdScannin
gPars,currentCmdConnectionPars)); 
         sendControlDown(m1); 
     } 
} 

 
Figure 19: Funtion call 'StartNode' of BLE network layer 

 

4.1.5  BLE Node  

The BLE node is a complex module which abstracts a BLE device. This BLE node accords with 

basic properties of a BLE device as defined by Bluetooth core specification [10]. 

 
Figure 20: Graphical editor with the topology of BLE node, a complex module 
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While describing a BLE network, the master and slaves in the network are formed by BLE node 

which is a complex module defined in OMNeT++.Figure 20 shows the graphical editor with the 

topology of the BLE node module and shows the hierarchy of different protocol layers from NIC 

(Network Interface card) to Application layer. Except for NIC and Network layer, the default 

layers provided by MiXiM library are used. From the Figure 21, it is shown that Physical layer 

and MAC layer constitutes a NIC. The modules like nodeStat_BLEConnection, 

nodeStat_RadioState, nodeStat_Consumption, and nodeStat_Frequency are simple modules to log 

the information during the simulation Figure 20. 

  

 
Figure 21: NIC (Network Interface Card) 

 

4.1.6 BLE network module as in a multi-device environment 

Designing a complex network module of a multi-device environment with many slaves and a 

single master is the last step in the OMNeT implementation. The BLE network module has defined 

an extension of Base network module. Figure 22 shows the graphical representation of BLE 

network module. Our BLE module has a single master with a number of slaves. The number of 

slaves can be defined with omnet.ini file. The connection manager controls all connection related 

functions. The connection manager periodically communicates with the mobility module and 

channel access. The world module provides a basic utility for the whole network. The utility 

includes the playground size in X, Y, and Z directions. 
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Figure 22: Graphical editor with topology of BLE network module  

Finally the omnet.ini file describes the parameter settings and the configuration options for the 

simulation. Figure 23 describes the omnet.ini file for our implementation.  

[General] 
network = BLEMulti 
experiment-label = "BLE17test" 
ned-path = ../../src;.. 
tkenv-image-path = ../../images; 
 
**.playgroundSizeX = 10 m 
**.playgroundSizeY = 10 m 
**.playgroundSizeZ = 10 m 
################ MOBILITY ##################### 
**.mobilityType = "StationaryMobility" 
#**.mobilityType = "ConstSpeedMobility" 
########################################################## 
 
**.NumSlaves = ${8} 
**netwl.advInterval = 160 #in 0.625ms units 
**netwl.scanInterval = 160 
**netwl.scanWindow = 160 
**netwl.connInterval = ${connIntervalVal=10}#in 1.25 ms units 
**netwl.connLatency = 0 
**netwl.supervision_Timeout = ${connIntervalVal} #8*connInterval 
**nic.mac.advertisingAddr = -1 #-1 - advertising address equals to index 
**nic.mac.transmitWindowOffset = 0 
**nic.mac.transmitWindowSize = 1 
**nic.mac.connAccessAddress = 777 
**netwl.nodeStartupDelay = 0 s 
**master.netwl.initialData = 0 byte  
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**slave[*].netwl.initialData = 40 byte 
 
#####################################################################################
############################ 
#[Config Channel_Hopping_Chart] 
#"Channel Hopping chart" 
**master.netwl.NWK_DEBUG_ROLE = 2 #initiator/master 
**slave[*].netwl.NWK_DEBUG_ROLE = 1 #advertiser/slave 
 
**master.netwl.connDataChannelMap_0to7 = 0x03 
**master.netwl.connDataChannelMap_8to15 = 0x00 
**master.netwl.connDataChannelMap_16to23 = 0x00 
**master.netwl.connDataChannelMap_24to31 = 0x00 
**master.netwl.connDataChannelMap_32to39 = 0x00 
 
 
**netwl.connAdvertiseChannelMap_0to7 = 0x00 
**netwl.connAdvertiseChannelMap_8to15 = 0x00 
**netwl.connAdvertiseChannelMap_16to23 = 0x00 
**netwl.connAdvertiseChannelMap_24to31 = 0x00 
**netwl.connAdvertiseChannelMap_32to39 = 0xE0 #default 0xE0 
#note - the TX-RX and RX-TX times should be equal to IFS (or at least not exceed 
those!) 
**.nic.mac.Time_llSLEEPtoTX = 0.000004s 
**.nic.mac.Time_llSLEEPtoRX = 0.000004s 
**.nic.mac.Time_llTXtoRX = 0.000150s 
**.nic.mac.Time_llRXtoTX = 0.000150s 
**.nic.mac.Time_llTXtoSLEEP = 0s 
**.nic.mac.Time_llRXtoSLEEP = 0s 
 
 
########################################################## 
################ PhyLayer parameters ##################### 
**.nic.phy.usePropagationDelay = false 
**.nic.phy.thermalNoise = -100dBm 
**.nic.phy.useThermalNoise = true        
**.nic.phy.analogueModels = xmldoc("config.xml") 
**.nic.phy.decider = xmldoc("config.xml") 
 
**.nic.phy.initialRadioState = 2 #i.e., sleep 
**.nic.phy.sensitivity = -93 dBm #CC2540 datasheet (SWRS084F) p.5 - High-gain mode 
**.nic.phy.maxTXPower = 10.0 mW #according to BLE standard & Ficora regulations 
**.nic.phy.nbRadioChannels = 40 #according to BLE standard 
 
########################################################## 
#            channel parameters                  # 
########################################################## 
**.connectionManager.sendDirect = false 
**.connectionManager.pMax = 10mW 
**.connectionManager.sat = -90dBm 
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**.connectionManager.alpha = 4.0 
**.connectionManager.carrierFrequency = 2.45e+9Hz 
########################### 
####Some MAC consts #### 
**.nic.mac.llDataHeaderLengthBits = 16 bits 
**.nic.mac.llIFSDeviation = 0.0000002 s 
**.nic.mac.llIFS = 0.000150 s 
**.nic.mac.llmaxAdvPDUduration = 0.000376s #maximum duration of a advertisement 
channel packet 
**.nic.mac.txPower = 1mW #0dbm - desired TX power  

Figure 23: omnet.ini file for parameter settings and configuration options 

 

4.2 Hardware Implementation of BLE network 

Implementing the BLE multi-device environment with real-life hardware will help in evaluating 

the accuracy of our simulation model. Identification of correct hardware to use for the experiment 

is very important. For the hardware implementation, there are many BLE hardware available in 

the market. Some of the hardwares are BLE400 and core 51822 wireless module produced by the 

Nordic semiconductor, BLED 112 BLE dongle by Texas Instruments, and BLEfruit LE friend 

produced by the Nordic semiconductor. Table 5 describes the available hardware with their 

properties.  

 

Features     

Bluetooth chip 

manufacturer 

Nordic semiconductor Texas Instruments Nordic 

Semiconductor 

Hardware  Waveshare Mother 

board BLE400 

 
Core 51822 wirelss 

module  

 

BLED 112 BLE dongle 

 

Adafruit 

Bluefruit LE 

friend
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Programmability Core 51822 wireless 

module can be 

programmed using 

mother board BLE500 

Compiled hex file can be 

uploaded inside dongle 

using DFU (Device 

firmware upgrade) mode 

This cannot be 

flashed with our 

application. Can 

only be used as 

an extension of a 

host computer. 

Capability Core 51822 can act as 

both master and slave 

devices (Or) can both 

send and receive 

advertisements 

BLE dongle can act as both 

master and slave devices 

(Or) can both send and 

receive advertisements 

It can only 

perform as 

slaves.  

Table 5: Available hardware in market with their properties 

A comparison is made based on the required properties in the hardware to choose the right one for 

our experiment. Table 6 shows the comparison results. From the comparison, it is evident that 

bluegiga BLE dongle has many advantages. 

Comparison  Waveshare  Bluegiga Adafruit 

Flexibility to flash the application in the device, to 

perform as a standalone device 

   

The slave devices should be battery operable with a way 

to measure the power consumption 

   

Availability of well documented API to control the BLE 

operations 

   

Existence of relationship between the chip manufacturer 

and BOSCH 

   

Cost of module along with the battery to power them    

Along with other things the robustness and reliability in 

all environment 

   

Availability of support in the form of forum or a 

platform to ask and clarify the questions along the line 

of implementation 

   

Table 6: Comparison of the available hardware modules for the experiment 

Bluegiga dongle is based on TI’s cc2540 chip. The 128 kB flash block provides in-circuit 

programmable non-volatile program memory for the device. The master BLE dongle supports up 

to 8 connections. It also has an integrated Bluetooth Smart stack. The sensitivity of the receiver is 

-93dbm. On the dongle, applications are developed with BGScript scripting language, thus 

enabling stand-alone operation. It also has a PCB antenna. It has a SRAM of 8 kB.  

 

The master works by integrating with host computer. BGAPI, which is a simple protocol over 

UART or USB interfaces, is installed in the host computer. BGLib is a python library for host 
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processor implementing BGAPI is present. With the help of this library, a master python program 

is written. Figure 24 describes the part of python code, implementing the main functionalities of a 

master.  

 

import library_ble_bled112 

import  serial, time, optparse, sys 

global ble, ser, deviceMACid,t1, count, latency,fn,fn2 

 

#funtion to read the value from the relevant uuid 

def my_ble_evt_attclient_attribute_value(sender, args): 

    global latency, count, fn 

    if args['atthandle'] == 24: 

        ble.send_command(ser, ble.ble_cmd_connection_disconnect(connection_handle))  

        t2 = time.time() 

        diff = t2-t1 

        latency = latency + diff  

        count = count + 1 

        fi = open("%s.txt" %fn, "a") 

        fi.write("%s  " %count) 

        fi.write("time taken till disconnection of one slave %s seconds\n" %diff) 

        fi.close 

#call back function executed after disconnection  

def my_ble_evt_connection_disconnected(sender, args): 

    global Connection, connection_handle, t1,count, latency, fn,fn2 

    if count <26: 

        ble.send_command(ser, ble.ble_cmd_gap_discover(1)) 

 

#call back function executed after receiving a scan response 

def my_ble_evt_gap_scan_response(sender, args): 

    global state, PayLoadData, skipCount, Advint,t1 

    temp = args['sender'] 

    if deviceMACid[5] == temp[5]: 

        t1 = time.time() 

        ble.send_command(ser, ble.ble_cmd_gap_connect_direct(temp, 0, 6, 9, 1000, 0)) 

def main(): 

    global ble, ser, state,Parameter,temp,t1 

    p = optparse.OptionParser(description='BGLib for ble communication') 

    options, arguments = p.parse_args() 

    p.set_defaults(port="COM4", baud=115200, packet=False, debug=False) 

    ble = library_ble_bled112.BGLib() 

    ble.packet_mode = options.packet 

    ble.debug = options.debug 

   ble.ble_evt_gap_scan_response += my_ble_evt_gap_scan_response 
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     ble.ble_evt_connection_status += my_ble_evt_connection_status 

    ble.ble_evt_connection_disconnected += my_ble_evt_connection_disconnected 

    ble.on_timeout += my_timeout 

    #ble.ble_evt_attclient_find_information_found += my_ble_evt_attclient_find_information_found 

    ble.ble_evt_attclient_procedure_completed += my_ble_evt_attclient_procedure_completed 

    ble.ble_evt_attclient_attribute_value += my_ble_evt_attclient_attribute_value  

    ser.flushInput() 

    ser.flushOutput() 

    ble.send_command(ser,ble.ble_cmd_flash_ps_erase_all()) 

    time.sleep(0.5) 

    ble.ble_cmd_system_reset(0) 

    time.sleep(0.5) 

 

    ble.send_command(ser, ble.ble_cmd_gap_set_scan_parameters(0x1F40, 0x1F40, 1)) 

    ble.check_activity(ser, 1) 

    ble.send_command(ser, ble.ble_cmd_gap_discover(1)) 

   

    while (1): 

        ble.check_activity(ser) 

        time.sleep(0.00001)  
Figure 24: Part of python code implementing the important functionality of Master 

The slave has to act as a standalone device. Slaves periodically send advertisement and wait for a 

connection request from the master. BGScript is an XML based scripting language for writing 

applications. Enables very fast application development and allows programs to be executed 

directly on the BLED 112 without the need of an external MCU. The code can be developed with 

any text or source code editor. The code will be compiled with Bluegiga’s free compiler. All BLE 

configuration parameters can be modified using the script file. The project is started by creating a 

project file. Figure 25 shows the project file of a complete project [10]. 

   

<?xml version="1.0" encoding="UTF-8" ?> 

<project> 

    <gatt in="gatt.xml" /> 

    <hardware in="hardware.xml" />     

    <script in="bgdemo.bgs" /> 

    <usb_main in="cdc.xml" /> 

 <config in="config.xml" /> 

    <image out="out-bledcase_1.hex" />     

   </project> 

 
Figure 25: Project file of a complete project 
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From the Figure 25, the project configuration is described within the <project> tags 

 <gatt> tag defines the .XML file containing the GATT data base 

 <hardware> tag defines the .XML file containing the hardware configuration 

 <script> tag defines the .BGS file containing the BGScript code. If the project does not 

contain a BGScript code, this tag can be simply left out. 

 <usb_main> tag defines the .XML file containing the USB descriptors description. If the 

project does not use USB interface, this tag can be simply left out. 

 <image> tag defines the output .HEX file containing the firmware image 

 <device type> tag defines if the project is meant for BLE112 or BLE113 hardware 

 <boot fw> tag defines which interface is enabled for DFU firmware upgrades  

The .bgs file implements a standalone device without an external host processor. The application 

is created with BGScript scripting language and the code is shown in the Figure 26. BGScript uses 

an event based programming approach. The script is executed when an event takes place, and the 

programmer may register listeners for various events. The BGScript functions and events can be 

found from the [34] document. Every Bluetooth Smart device needs to implement a GAP service. 

The GAP service is a part of the “gatt.xml”. Bluetooth Smart devices can have services defined by 

programmer. The 128-bit long UUIDs which are not standardized by the Bluetooth SIG, are used 

for these services. Figure 27 shows the service in our project.  

<service uuid="00431c4a-a7a4-428b-a96d-d92d43c8c7cf"> 

        <description>Bluegiga demo service</description> 

        <characteristic uuid="f1b41cde-dbf5-4acf-8679-ecb8b4dca6fe"> 

            <properties read="true" write="true"/> 

            <value type="hex">000</value> 

        </characteristic> 

    </service>  
Figure 26: Service UUID defined for our project 

dim tmp(10) 

dim ret_result      # USB CDC RX data operation return code 

dim ret_data_size   # USB CDC RX data size 

dim ret_data(8)     # USB CDC RX data value 

event system_boot(major ,minor ,patch ,build ,ll_version ,protocol_version ,hw ) 

# enable watermark event on UART endpoint (REQUIRED for USB CDC-based DFU trigger) 

    call system_endpoint_set_watermarks(3, 1, 0) 

    

# set advertisement interval to 20-30ms, and use all advertisement channels 

  call gap_set_adv_parameters(799, 801, 7) 

#set to advertising mode 

call gap_set_mode(gap_general_discoverable,gap_directed_connectable) 

#start timer at 1second interval, handle 0, and repeating 

call hardware_set_soft_timer(32768,0,0) 

end 
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event hardware_soft_timer(handle) 

  #start adc read 

 call hardware_adc_read(15,3,0) 

end 

event hardware_adc_result(input,value) 

 #adc read complete, write result to attribute 

 call attributes_write(xgatt_battery,0,2,value) 

end 

event connection_disconnected(handle,result) 

    call gap_set_mode(gap_non_discoverable,gap_non_connectable) 

end 

# catch remote write of characteristic value 

# NOTE! This function or something similar MUST remain in the BGScript to 

# allow access to DFU mode by triggering from a characteristic value update 

event attributes_value(connection, reason, handle, offset, value_len, value_data) 

    if handle = c_dfu_reboot_trigger then 

        # remote client requested DFU reboot 

        # NOTE: this will reset on ANY written value. You can check for a specific 

        # byte or set of bytes in the "value_data" argument if desired. 

        call system_reset(1) 

    end if 

end  
Figure 27: BGScript file for the slave application 

 

4.3 Communication process between master and slave 

The communication of any data between master and slave undergoes two phases of operation. 

Device discovery phase and the connection phase are these two phases in BLE communication. 

During the device discovery phase, the advertiser sends advertisement packet of the particular type 

in all three advertising channels. The master can receive the advertisement from the slave when 

they are synchronized. Synchronization happens when master and slave are on the same channel. 

On receiving the advertisement packet, the master responds with either scan request or connection 

request. Once sending the advertisement packet, the slaves wait for any response from the master 

before going to next advertising event. Figure 28 shows the device discovery process and the 

connection process between a master and a slave. When master and slave in connection phase, 

data packets exchange happens through 37 data channel. At the packet reception, if the Access 

Address is incorrect, the packet shall be rejected. The packet shall also be rejected for an incorrect 

CRC bits. A packet with an incorrect CRC may still cause a connection event to continue, 

according to the specification. The master and slave always send a packet if it receives a packet to 

its peer device, regardless of a valid CRC match. In the scanner state, the scanner shall run a 

backoff procedure to minimize collisions of Scan_Req pdus from multiple scanners. As soon as 

entering the scanning state, the upper limit is set to one and the backoffcount shall be set to upper 
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limit. On receiving Adv_Ind PDU or Adv_Scan_Ind PDU, the backoffcount will be decreased by 

one until it reaches zero. The Scan_Req PDU will be sent only when the backoffcount reaches 

zero. After sending the Scan_Req PDU the link layer shall listen for Scan_Rep PDU from 

Advertiser. If the Scan_Rsp PDU was not received, it is considered as failure. On every two 

consecutive failures, the upper limit of the backoffcount shall be doubled until it reaches the value 

256. On every two consecutive successes, the upper limit shall be halved until it reaches the value 

one. For a successful discovery phase, the scanner should reply to Adv_Ind with a Scan_Req 

message. In the connection event, if the master doesn’t receive a packet from the slave, it should 

close the connection event. The connection can break down due to other reasons like device 

moving out of the range, severe interference, or a power failure condition. If the connection 

supervision timer reaches 6*connInterval before the connection is established, the connection will 

be lost. The connsupervisiontimeout is a parameter that defines the time between two received 

data packet PDUs before it is considered as a lost connection. After this the link layer transits from 

connection state to standby state. 
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Figure 28: Communication operation between a master and slave 
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5 Evaluation 

Validation of simulation model can be achieved by implementing the same configuration 

parameters in both simulation and hardware and by comparing the results. Creating the 

experimental scenarios to implement in simulation and hardware becomes the first step in the 

evaluation. The experiment scenarios are required to consider all the factors which will have an 

impact on the BLE multi-device environment.  The configuration parameters to be considered in 

our experiments are advertising interval, scan interval, scan window, and a number of slaves in the 

network. The advertising interval is a multiple of 0.625 ms and it can range from 20 ms to 10.24 

s. Similarly, scan interval and scan window is a multiple of 0.625 ms and can range from 2.5 ms 

to 10.24 s. Thus there is exponential number of configurations resulting from the above-mentioned 

parameters. 

 

Table 7 shows the different experimental scenarios for the validation of our simulation model. For 

the experiments, Continuous Scanning mode is chosen, which means the scanning interval and 

scanning window will be of same value.  Table 7 shows that some parameters are kept constant 

while changing other parameters. The experimental scenarios such as (1.1), (2.1), (3.1)…. (6.1) 

have only 4 slaves. The experimental scenarios such as (1.2), (2.2), (3.2)…. (6.2) have 14 slaves 

in their BLE network. The experimental scenarios such as (1.3), (2.3), (3.3)…. (6.3) have 30 slaves 

in their BLE network. At the same time, the experimental scenarios such as (1.1), (1.2), and (1.3) 

have same advertising interval, scanning interval, and scanning window. Similarly, (X.1), (X.2), 

and (X.3), where X=2, 3, 4, 5, and 6 have same advertising interval, scanning interval, and 

scanning window. While, the experimental scenarios (4.1), (4.2), (4.3) and (4.11), (4.21), (4.31) 

have same advertising interval and number of slaves but different scanning interval and scan 

window.  

Experiment 

scenario  

Advertising 

Interval (unit s) 

Scanning 

Window (unit s) 

Scanning 

Interval (unit s) 

Number of 

Slaves  

1.1 0.025  0.0025 0.0025 4 

1.2  0.025  0.0025 0.0025 14 

1.3 0.025  0.0025 0.0025 30 

2.1 0.100 0.200 0.200 4 

2.2  0.100 0.200 0.200 14 

2.3 0.100 0.200 0.200 30 

3.1 0.100 0.100 0.100 4 
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3.2 0.100 0.100 0.100 14 

3.3 0.100 0.100 0.100 30 

4.1 0.200 0.100 0.100 4 

4.11 0.200 0.200 0.200 4 

4.2 0.200 0.100 0.100 14 

4.21 0.200 0.200 0.200 14 

4.3 0.200 0.100 0.100 30 

4.31 0.200 0.200 0.200 30 

5.1 2 2 2 4 

5.2 2 2 2 14 

5.3 2 2 2 30 

6.1 5 5 5 4 

6.2 5 5 5 14 

6.3 5 5 5 30 

Table 7: Experimental Scenarios for Simulation and Hardware implementation 

During simulation in omnet.ini file, apart from the above mentioned configuration parameters, 

connection interval is given a value of 10ms, connection latency is given a value of 0, playground 

size is given a value of 10m2, type of mobility is given a value of “stationary Mobility”, transmit 

window offset is given a value of 0, transmit window size is given a value of 1, physical layer 

sensitivity is given a value of -93dBm, maximum transmission power is given a value of 10.0mW, 

and number of radio channels is given a value of 40.  

 

These values are chosen according to the core specification defined by Bluetooth SIG [10]. Figure 

29 shows the visualization of BLE network with 5 slaves and 1 master in OMNeT simulator. After 

initializing all the above mentioned parameters, the simulation is made to run. The simulation is 

run till master finishes the communication for all slaves. Figure 29 is a slice of simulation. In the 

Figure 29, it is apparent that both master and slaves have a transceiver as a part of them. The 

position of the slaves and master in the playground are can be defined by topology description 

language (.ned file). Using the speed tab in the graphics window, the simulation graphics phase 

can be changed.  
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Figure 29: Graphical visualization of BLE network in simulation 

For hardware implementation, in addition to the configuration parameters defined in the Table 7, 

connection interval is given a value of 10 ms, and connection latency is given a value of 0. The 

slaves are programmed with BGScript language and master is programmed with python code. 

Figure 30 shows the different devices necessary for the hardware experiment. The apparatus 

required for the experiments are BLED 112 BLE dongles, batteries, and USB hubs. Since 

stationary mobility is used in the simulation, we make sure the slaves and master are not moved 

during the experiment.  

 

In both simulation and hardware, the total time taken for the master to finish the communication 

with all advertisers is calculated. The communication involves the advertiser to send advertisement 

packet to master, the master then send a connection request or scan request based on the type of 

the advertisement packet. For the experiments, directed advertisement packet (Adv_Direct_Ind) is 

used. Advertiser after receiving the connection request packet, goes to connection phase. During 

the connection phase the master and slave exchange three data packets before terminating the 

connection. The difference in the time measurement gives the deviation percentage of simulation 

model and hardware.  
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Figure 30: Apparatus for hardware experiment 

 

The difference between the software and hardware results are in seconds. The time difference was 

distinct for diverse configuration parameters. A common unit is needed to measure the deviation 

for all the possible configuration. For this, we investigate on the main reasons for the difference in 

hardware result. When the same hardware experiment is repeated, a failure in connection is 

observed occasionally. Once the master or slave experience a connection failure, it will end up in 

repeating the device discovery phase and connection phase. Thus the main origin for the difference 

is that advertiser has to repeat the advertisement event. It is logical to measure the difference in 

terms of advInterval.  The hardware experiment is repeated 30 times. Then the difference between 

hardware and simulation is calculated. Based on the difference, the experiments are grouped in to 

green zone, blue zone, and red zone. The green zone is the number of times the hardware 

experiments give the lowest difference. The red zone is the number of times the hardware 
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experiments give the highest difference. The blue zone covers the hardware experiments with 

medium difference. Figure 31 shows the deviation of simulation results from hardware results 

while repeating the same hardware experiment for 30 times. The experimental case for the result 

in Figure 32 is 4.1 from Table 7. For the case 4.1, the advertising interval equals to 200 ms, the 

scanning window and the scanning interval are equal to 100 ms with 4 slaves in the network. 

During this hardware experiments, 23 out of 30 times resulted in difference less than 

1*advInterval. It became the green zone. Secondly, 7 out of 30 times resulted in a difference less 

than 2*advInterval but greater than 1*advInterval and became the blue zone. Finally, no 

experiment resulted in a difference more than 2*advInterval. Figure 33 shows the deviation result 

for the case 3.2 from Table 7. For the case 3.2, the advertising interval equals to 100 ms, the 

scanning window and the scanning interval are equal to 100 ms with 14 slaves in the network. 

During this hardware experiments, 28 out of 30 times resulted in difference less than 

3*advInterval. It became the green zone. Secondly, 7 out of 30 times resulted in a difference less 

than 6*advInterval but greater than 3*advInterval and became the blue zone. Finally, no 

experiment resulted in a difference more than 6*advInterval.  

 

 
Figure 31: Deviation of simulation result from hardware result 

 

Figure 32 shows the distribution of difference values with the reference to simulation value, for 

the experimental case 4.1 from Table 7. It can be observed from the Figure 32 that there are 13 

experiments resulted in a difference value greater than -1*advinterval and less than 0, 10 out 30 

experiments resulted in a difference value greater than 0 and less than 1*advinterval, 4 out of 30 

experiments resulted in a difference value between 1*advinterval and 2*advinterval and 3 

experiments resulted in a difference value between -1*advinterval and -2*advinterval. Figure 32 
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shows the distribution of difference values with the reference to simulation value, for the 

experimental case 4.1 from Table 7. It can be observed from the Figure 32 that there are 14 

experiments resulted in a difference value greater than -3*advinterval and less than 0, 14 

experiments resulted in a difference value greater than 0 and less than 3*advinterval, 2 out of 30 

experiments resulted in a difference value between 3*advinterval and 6*advinterval and no 

experiments resulted in a difference value between -3*advinterval and -6*advinterval.  

 

Thus from the experimental results, larger number of hardware experiments give very low 

deviation and thus creates a larger green zone Figure 35, Figure 36, Figure 37. This describes the 

accuracy of the software model of BLE multi-device environment.  

 
Figure 32: Distribution of the difference between hardware and simulation result for case 4.1 

Figure 35 depicts an integrated chat for six experimental scenarios with 4 slaves in their BLE 

network. Figure 36 depicts an integrated chat for six experimental scenarios with 14 slaves in their 

BLE network. Similarly figure 37 depicts an integrated chat for experimental scenarios with 30 

slaves in their BLE network. It is observed that when the number of slaves are very low i.e. 4, the 

difference between the hardware and simulation results does not exceed 3*advInterval. When the 

number of slaves grows above 8, the deviation could reach a maximum of 9*advInterval. It is 

evident that the difference does not increase above 9*advInterval even for 30 number of slaves.     
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Figure 33: Deviation for the experimental case 3.2 

 
Figure 34: Distribution of the difference between hardware and simulation result for case 3.2 
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Figure 35: Integrated chat for BLE network with 4 slaves 

 
Figure 36: Integrated chat for BLE network with 14 slaves 
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Figure 37: Integrated chat for BLE network with 30 slaves 

The different experimental scenarios become the X axis for integrated chats. It can be observed 

from the results that for all the experimental scenarios the green zone maintains the majority. The 

simple path-loss model used in the physical layer simulation model, does not consider the presence 

of objects in the real world environment. It is also assumed that the simulation model does not 

consider the mobility of any BLE node.  
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6 Conclusion 

In this thesis, the discrete event simulation tools that are available are studied based on its 

usability for the BLE simulation model designing. The configuration parameters which have an 

impact on the BLE network performance is identified. The simulation model of the BLE multi-

device environment is created by having BLE nodes as building blocks. Abstraction of a BLE node 

is designed by modelling the lower layers of BLE communication protocol. The simulation model 

is designed in OMNeT++ with the help of MiXiM framework. The simulated model for the 

physical layer, MAC layer, and network layer for BLE node is designed. For the physical layer, a 

simple path loss model form MiXiM library is used. The MAC layer represents the link layer 

properties of BLE. The MAC layer in the simulation model performs the functionality depending 

on the state (standby, advertising, initiating, and connection) of the BLE node. The network layer 

performs the functionality of Host Control Interface between lower host layers and the upper layer. 

The validation of the simulation model requires the implementation the same BLE network system 

in hardware. The hardware implementation is done with the help of bluegiga BLE dongles. The 

results from the simulation model and hardware implementation are compared. The deviation 

between the hardware implementation and simulation model is presented. From the deviation 

chart, it can be inferred that when repeating the hardware system, the probability of getting a result 

close to simulation is very high.  

 

Deviation in the results are because of the failure in the connection between master and slave. 

Reasons for the deviation between the simulation model and hardware implementation is 

identified. When there are lot of BLE devices operating independently within a multi-device 

environment there is a strong likelihood of two independent BLE devices having their transceiver 

tuned to the same RF channel resulting in a channel collision. Metal objects and electrical 

equipment emitting strong RFs can also interfere with Bluetooth or block it entirely. Apart from 

metal, Things like plaster, concrete, bullet proof glass, and etc. will still interfere with Bluetooth 

signal. If Bluetooth device is in contact with another wireless devices which uses same band, can 

be blocked.  

 

The complexity of the multi-device environment is increased with presence of different real objects 

made of various materials and the presence of different wireless protocol like Wi-Fi. In future, the 

accuracy of hardware abstraction can be achieved by modelling all the physical objects in the real 

world.   The mobility of the BLE node     
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