
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 260

Evaluation of Reduced Neural
Network Models for Predicting Go

Game Moves

Thomas Wendt

Course of Study: Softwaretechnik

Examiner: PD Dr. rer. nat. habil. Holger Schwarz

Supervisor: Mark Blaxall (Sony Deutschland GmbH)

Commenced: September 21, 2015

Completed: March 22, 2016

CR-Classification: C.1.3, I.4.8, I.5.1

Abstract

With increasing processing power and the introduction of GPUs, convolutional neural
networks are getting more and more complex. While these networks are able to solve more
complex tasks, they are less suited for use on a mobile platform where there are stricter
memory and power constraints. We will look at neural network reduction methods, which
aim to reduce the memory and power requirements of convolutional neural networks,
whilst maintaining their quality. These methods are applied and evaluated with a Go move
predicting network. Additionally an Android App is developed that is able to recognize a
Go board and stone positions in order to use the reduced network to predict the next best
moves.

3

Contents

1 Introduction 11
1.1 About Sony . 12
1.2 Outline . 12

2 The Game of Go 13
2.1 Rules . 14
2.2 Go AIs . 15

3 Android App 17
3.1 Overview . 18
3.2 Board and Stone Detector . 18
3.3 Go Engine . 27
3.4 Move Predictor . 28
3.5 GUI . 28

4 Convolutional Deep Neural Networks 31
4.1 Notation . 31
4.2 Hidden Layer . 33
4.3 Training . 34
4.4 Affine Layer . 34
4.5 Convolution Layer . 35

5 Deep Neural Network Reduction 39
5.1 Number of Parameters and Operations . 39
5.2 Affine Layer Reduction . 40
5.3 Convolution Layer Reduction . 41
5.4 Rank selection . 46

6 Implementation 49
6.1 Layers . 50
6.2 C-Exporter . 53

7 Go Network Reduction and Evaluation 57
7.1 The Original Network . 57

5

7.2 Metrics . 60
7.3 Methods . 61
7.4 Evaluation . 64
7.5 Summary . 78

8 Summary and Outlook 79
8.1 Future Work . 80

A Appendix 81
A.1 C-Exporter Source Code . 82
A.2 3D Printed Marker Bases . 85

Bibliography 87

6

List of Figures

2.1 A typical end position of a Go game. 13
2.2 Examples showing stone liberties, capturing stones and conquering territory. 14
2.3 The KO rule: Black captures a white stone with the move shown in (b)

resulting in the board shown in (c). White is not allowed to capture the
previously played black stone, as it would result in the same position, as
shown in (a). 15

3.1 The preliminary demonstration setup with a smartphone mounted above
a large Go board and a TV mirroring the display from the phone. On the
right the final setup with the marked travel board and a mobile device. . . 17

3.2 The Android App components and communication flow. 19
3.3 The basic steps of the doard and stone detection. 20
3.4 The HSV color space visualized on a cylinder and the effects of the saturation

and value components for H = 0◦ shown on the right side. 21
3.5 A perspective transformation is used to transform the corner points in image

coordinates to coordinates on a rectangle. 22
3.6 The effect of reflections and color range adjustments on the marker detec-

tion. The first two detections use the same range to detect the red color.
On the right side the range is increased resulting in many misdetections. . 23

3.7 The two marker types used for the board detection. The bottom right
quarter of the marker is empty as it is cut away so it can be attached to the
Go board. On the right is the reference image that is matched against a real
picture of the board. 24

3.8 The keypoints of an image matched to the keypoints of the reference marker
image. 25

3.9 The reference marker projected into the source image. 26
3.10 The Circle Hough Transform. 26
3.11 Main screen after starting the App. 29
3.12 Analyzed board with the predictions in green, game and timing information.

Better moves are more opaque. 29
3.13 The settings screen of the App . 30

4.1 A feed-forward CDNN. 32

7

4.2 Different non-linear activation functions used in CDNNs and the effect of
the bias b. 33

4.3 An affine layer with I inputs and J outputs. Each input i is weighted with
wji and added to output j. 35

4.4 Three steps of a 1D convolution with a kernel of size 3. 36
4.5 A 10×10 input convoluted with a 3×3 kernel using different border handling. 37

5.1 The SVD of A into A = UΣVT with n < m. 40
5.2 A SVD convolution with 3 input maps, 2 output maps and R = 2. Each input

map is convolved with an intermediate kernel boi and then decompressed
with the output factors ũ

(r)
oi into the corresponding output maps. 43

5.3 A 3D CP decomposition of W into R rank-one tensors [KB09]. 44
5.4 A CP convolution with 3 input maps, 3 output maps and R = 2. The input

maps are compressed with the input factors a
(r)
i into intermediate maps Ỹr,

then convolved with the basis kernels c(r) and finally decompressed with
the output factors b(r)

o into the corresponding output maps. 46

6.1 The standard convolution layer convolves each input/output map combina-
tion with a separate kernel. By using only specific kernels, the behavior of
the CP convolution can be simulated. 53

7.1 A 7×7 kernel where the tied weights have the same color. 60
7.2 The effect of p on the reduction rates when the rates are chosen based

on the layer sizes. The bars show the size of the layers as the number of
parameters. 63

7.3 Accuracy comparison between SVD and CP based reduction for different
reduction rates of the convolution layers 65

7.4 Stability of the CP uniform reduction showing the mean, minimum and
maximum accuracy. The orange area is the standard deviation of the
non-finetuned models. 66

7.5 Accuracy comparison between uniform and non-uniform CP based reduc-
tion for different reduction rates for the convolution layers. 68

7.6 Mean values of the weight approximation error per layer for different
reduction rates. 69

7.7 Accuracy of the weight difference based reduction for the thresholds 0.1,
0.15, 0.2, 0.25, 0.275, 0.3, 0.325, 0.35 and 0.4. 70

7.8 Accuracy of the affine layer reduction. 71
7.9 Accuracy of finetuned models using 1m and 17m moves. 72
7.10 Accuracy of affine layer reductions with finetuning. 73
7.11 Accuracies of models were all layers have been reduced uniformly. 74
7.12 Improvements of the computation time and memory consumption for differ-

ent reduction rates. The gray curve is the theoretical expected improvement. 76

8

7.13 Battery consumption of the original and a 80% reduced model over the
course of 14 hours. 77

A.1 A render of the marker base with a paper sheet of the marker image stuck
on top. 86

A.2 The marker base in the process of being printed by a MakerBot. Printing
one marker base took 3 hours. 86

List of Tables

5.1 Formulas to calculate the number of parameters and FLOPs (without bias). 40
5.2 Formulas to calculate the number of parameters and FLOPs for original and

reduced layers. 47

7.1 Layers and sizes of the original model with the totals shown in the last row
for each type of layer. 57

7.2 Win rates of different DCNNs against GnuGo on the highest difficulty. . . . 61
7.3 Comparison between SVD and CP for different reduction rates. The colors

indicate good, acceptable and bad accuracy results. 65
7.4 Results of the analysis of over 500 CP reduced models and 100 finetuned

models. The table shows the selected reduction rate together with the
mean, minimum, maximum and standard deviation of the accuracies. . . . 67

7.5 Accuracies of finetuned convolution layer reductions. 72
7.6 Accuracies of affine layer reductions. 73
7.7 Accuracies of uniform global-network reductions with and without the use

of finetuning. 74
7.8 The computation time and memory usage of models reduced with increasing

rates together with their speedup/improvement over the original model. . 75

List of Listings

6.1 Simplified Python implementation of the affine layer. 50

9

6.2 Simplified Python implementation of the convolution layer. 50
6.3 Simplified Python implementation of the SVD convolution layer. 51
6.4 Simplified Python implementation of the CP convolution layer. 52
6.5 Simplified Python implementation of the optimized CP convolution layer. . 53

A.1 C implementation of the 1D convolution. 82
A.2 C implementation of the 2D convolution. 83
A.3 C implementation of the 2D CP convolution layer (part 1). 84
A.4 C implementation of the 2D CP convolution layer (part 2). 85

List of Algorithms

6.1 1D convolution . 54
6.2 2D convolution . 55

10

1 Introduction

Deep Neural Networks are getting more and more complex. The introduction of GPUs
to machine learning has made it possible to process more data and to generate bigger
models. The memory requirements of these models can be in the order of several hundred
Megabytes, which can be too much for mobile devices. On battery powered devices it is
also important to consider the power consumption needed by the model. These two factors
make it difficult, if not entirely impossible, to use these models on mobile and embedded
platforms where the hardware is not powerful enough and the available memory is too
small. A usual solution is to move these tasks to cloud services where it is possible to use
powerful servers equipped with multiple GPUs.

The reduction methods outlined in the thesis are applied and evaluated on a Go move
predicting neural network with the goal to produce a reduced model that is more suitable
for deployment on a smartphone without losing its prediction performance. Different
reduction approaches are applied to the network and evaluated in detail.

With around 10170 legal states of the board, Go is one of the most complex board games
[TF07; Wik16a]. This poses a difficult problem for traditional tree search based artificial
intelligences as they cannot fully search the state space and find good moves. No Go
artificial intelligence had been able to beat a non-handicapped professional Go player up
until October 2015, when Google DeepMind’s AlphaGo won 5 – 0 against the current
and three time European Go Champion Fan Hui. In March 2016, AlphaGo wrote history
again when it won 4 – 1 against Lee Sedol, one of the worlds strongest Go players[Lib16;
Alp16].

In 2014 C. Clark and A. Storkey developed a neural network that can predict an expert
players move with an accuracy of 44% and beat GnuGo, a popular Go artificial intelligence,
in 86% of the games [CS14]. The network is rated at around 4-5 kyu, which means it
is still beatable by advanced Go amateurs, yet stronger than GnuGo. When starting this
thesis it was the strongest network publicly available. A trained model was published that
is used in this thesis as the baseline. By reducing and integrating this model into a mobile
App, it is possible to provide a better artificial intelligence than the majority of available
Apps on the Android Play Store, which heavily rely on GnuGo.

This thesis is written in cooperation with Sony, which is interested in exploring the
possibilities of neural networks on mobile devices. During an internal Sony conference,

11

1 Introduction

which was held in Tokyo in November 2015, the reduction methods and their benefits were
presented. As the game of Go is well known in Japan, the reduction methods were shown
as part of a Go demo developed in this thesis. To catch the attention of the attendees, a
real Go board is analyzed by an Android App, the positions of the stones are detected and
the predictions for the next best moves are displayed.

1.1 About Sony

The Stuttgart Technology Center (STC) is Sony’s biggest R&D site outside of Japan and
the home of the European Technology Center (EuTEC). At EuTEC, Sony’s engineers
are actively working in the areas of Computational Imaging, Communications & Radar
Systems, Speech & Sound Processing and Machine Learning. EuTEC contributions to the
product and technology portfolio of Sony include:

• Mm-wave radar systems

• Digital demodulation ICs for worldwide reception of analogue TV standards (audio
& video)

• Speech recognition and natural language processing for Sony devices (EU languages)

• 3D surround sound

• Depth estimation technologies by with and without active illumination

• Design for optical engines

Part of EuTEC is the Speech and Sound Group (SSG) which has its roots in Speech
Recognition. But nowadays 9 employees and over 10 students from around the world are
also doing innovative research in the areas of Natural Language Processing and Machine
Learning in general.

1.2 Outline

In Chapter 2 the concepts and rules of Go are introduced and why Go is an interesting topic
right now. The developed Android App and its components are covered in Chapter 3 where
the most interesting component is the board and stone detection. A short introduction
into convolutional deep neural networks is provided into Chapter 4. After that, the
neural network reduction methods are explained in Chapter 5 and their implementation is
detailed in Chapter 6. This leads to the evaluation of the reduction methods in Chapter 7
and the final words in Chapter 8.

12

2 The Game of Go

Go is an ancient board game that originated in China 2500 years ago. The board usually
consists of a 19 × 19 grid and two players try to surround areas or capture stones of the
opponent by placing their own stones on the board in turns. A typical Go board at the end
of a game can be seen in Figure 2.1.

Figure 2.1: A typical end position of a Go game.

The basic Go rules, which are covered in the next section, are relatively simple however,
the size of the board and the number of possible moves in each turn make it impossible
for a computer to evaluate all of them.

Players in Go are ranked from beginner to professional, with some titles reserved for
special players. Beginners are ranked from 30k to 10k (kyu) and intermediate players
from 9k to 1k, where a lower number indicates a better player. Advanced players are
ranked with increasing numbers from 1d to 9d (dan). Finally the best players are ranked
from 1p to 9p (professional).

13

2 The Game of Go

(a) A white stone with two lib-
erties, a black stone with
four and a group with
three.

(b) Group of white stones with
no liberties. The white
stones were captured and
have to be removed.

(c) Bottom left territory belong-
ing to white. Remaining ter-
ritory is neutral.

Figure 2.2: Examples showing stone liberties, capturing stones and conquering territory.

2.1 Rules

There are different rulesets for Go, with the Japanese and Chinese rules being the most
common ones. Fortunately, the differences are not too relevant for this thesis as they
largely only affect the final scoring.

The basic Go rules are as follows:

• Common sizes of a Go board are 9 × 9, 13 × 13 or 19 × 19, with the latter being
the official size for tournaments.

• Black is first to play and has to place a stone on the grid of the board.

• The number of liberties of a stone is the number of free adjacent top, right, bottom
or left positions. Figure 2.2a shows the liberties as circles next to the stones.

• Adjacent stones with the same colors are grouped together and share their liberties
as shown in the bottom right of Figure 2.2a.

• Single stones or a group of stones can be captured by surrounding them as seen in
Figure 2.2b. Captured stones are removed from the board after the move.

• The goal is to capture opponent stones and to conquer territories on the board
similar to Figure 2.2c.

• Players are not allowed to place a stone at a previously captured position, if the
resulting position appeared previously as shown in Figure 2.3.

• The game ends when a player forfeits or both players pass a move by deciding not
to place a stone.

• The score is calculated by adding the number of captured stones to the size of the
territory a player holds, and taking a possible handicap into account. The exact way
to calculate the score differs from ruleset to ruleset.

14

2.2 Go AIs

(a) (b) (c)

Figure 2.3: The KO rule: Black captures a white stone with the move shown in (b)
resulting in the board shown in (c). White is not allowed to capture the
previously played black stone, as it would result in the same position, as
shown in (a).

2.2 Go AIs

Today’s strongest Go AIs, such as Fuego and Pachi, are based on Monte Carlo Tree Search
(MCTS) methods that play out the complete game randomly or based on heuristics and
then select the move with the highest probably of winning the game. These AIs are ranked
between 2 kyu and 2 dan, making them easily beatable by strong Go players. On average,
a player can make 250 different moves at any given time. And with an average length of
150 moves, this results in a huge number of combinations [All94]. Therefore, this method
can only explore a fraction of the possibilities. The number of possible states the board
can have is equally large. Each position on a Go board can be black, white or empty. For a
19×19 board, this gives 319·19 ≈ 1.74 · 10172 number of total states. The number of legal
states is smaller and calculated to be “only” around 10170. This makes Go many times more
complex than, for example, chess. In fact it is one of the most complex board games.

The neural network approach is different, as it avoids the extensive tree search based
approach for a purely pattern matching method. By training a neural network with
recordings of thousands of Go games and millions of moves it tries to mimic human
players. The expectation is that the moves done by the players are good, and by merely
repeating them, when a similar board is detected, a good Go playing model can be
generated.

A network is then able to predict the next move by just looking at the current board
and returns a probability per board position to be an expert’s move. No information
about previous moves or exploration of the state space is required. In [CS14] this
approach showed promising results, predicting the correct moves by 44%. Independently,
[MHSS14] achieved a 55% move prediction accuracy. Both networks win against GnuGo
in the majority of games and can win some games against stronger Go AIs like Fuego and
Pachi.

15

2 The Game of Go

Based on the new research, a Go AI using MCTS and neural networks managed to beat a
professional human player for the first time in October 2015. Google Deepmind’s Alpha
Go won this match 5 – 0 against Fan Hui, the current European Go Champion. While
Go AIs have managed to win against professional players in previous matches, they had
advantage of 4 – 9 stones and AlphaGo’s achievement was previously thought to be at
least a decade away [Lib16; SHM+16].

16

3 Android App

Part of this thesis was the development of a demonstration setup to present the benefits of
the reduced models in terms of computational time, memory usage and energy consump-
tion on mobile devices. The developed reduction technologies were shown at an internal
Sony exhibition which took place in Japan during November 2015. As this exhibition is
attended by many people with different backgrounds, the demonstration was intended to
serve as an eye-catcher for the attendees. The game of Go is well known in Japan, so it
was an obvious choice to create a demonstration setup, that lets a human player challenge
the neural network, and compare the reduced model to the original one.

Figure 3.1: The preliminary demonstration setup with a smartphone mounted above a
large Go board and a TV mirroring the display from the phone. On the right
the final setup with the marked travel board and a mobile device.

Initially, the proposed plan was to mount a smartphone above a fixed Go board to ensure
easy detection of the board position. The smartphone would then analyze the images from
the camera, calculate the predictions for the original and a reduced model and show the
move prediction on its display. The narrow angle of view of the smartphone camera and

17

3 Android App

the big Go board required the camera to be mounted at high position. This made it hard
to see the actual results on the smartphone display. Therefore a TV, to mirror the display
contents though MHL, was added to the setup as seen in Figure 3.1.

The jig allowed the position of the smartphone to be extended and adjusted in height
through two sliders. It was created by an in-house technician with our requirements
in mind, which included easy disassembly and assembly for transportation to Japan.
However, the jig was too big and heavy for regular luggage and the whole setup exceeded
the space that was allocated to us at the exhibition. It was decided to switch to a hand-held
operation of the smartphone or tablet, which allowed us to remove the TV and jig and
highlight the mobile aspect even more. The initial Go bard was additionally swapped with
a more compact travel board.

3.1 Overview

The App can be separated in four distinct components that can be considered useful on their
own. Yet there was no focus on making sure the components are totally independent.

Board and Stone Detector: Responsible to extract the position and color of stones on a
Go board from an image.

Go Engine: Implementation of the Go rules to indicate illegal placed stones or stones that
should be removed. It also keeps track of the board history to make the KO position,
the position illegal under the KO rule, available.

Move Predictor: Implementation of the neural network. It calculates the move predic-
tions based on the board state.

GUI: Displays the detection and prediction result and allows interaction such as taking a
picture and changing settings.

An overview of the architecture and the communication between the components is shown
in Figure 3.2. The individual components will be explained in more detail in the following
sections.

3.2 Board and Stone Detector

The Board and Stone Detector is responsible for finding the Go board in an image and to
detect the color and position of the individual stones. The basic steps are shown in Figure
3.3. This component is implemented using OpenCV, a computer vision library. OpenCV is
a powerful toolkit, providing many useful functions for the given task. OpenCV can be

18

3.2 Board and Stone Detector

Board and Stone
Position Detector

Go Engine

Move Predictor

GUI
stone positions

board
state

board state

pr
ed

ict
ion

s

camera image

Figure 3.2: The Android App components and communication flow.

used in conjunction with Java, which is important for the development of an Android App.
The OpenCV libraries are also available in the Google Play Store.

Development of the of the Board and Stone Detector was primarily done under Linux
to avoid updating the App on the Android device all the time. To make the move to
the Android system as seamless as possible, the first prototypes were created using the
OpenCV Java bindings. It was quickly apparent, that due to limitations of the Java
language, bad documentation and lack of good Java examples, the development in Java
would be cumbersome. An simple example of a Java limitation is the non-existence of
operator overloading, which allows the redefinition of basic operators like +, − or ∗. To
multiply two OpenCV matrices in Java one has to write the following code:

Mat C = new Mat();

Core.multiply(A, B, C);

In other languages, such as C++, this can be written as:

Mat C = A * B;

19

3 Android App

(a) An image of a Go
board.

(b) The exact position
of the Go board is
detected.

(c) The Go board in
the image is trans-
formed into a rect-
angle.

A B C D E F G H
1
2
3
4
5
6
7
8

(d) Average color on a
expected stone po-
sition is used to de-
tect the stones.

Figure 3.3: The basic steps of the doard and stone detection.

The Java bindings for OpenCV are also very restrictive about the types of arguments
functions require. In C++ many functions take anything resembling a set of numbers,
such as an OpenCV matrix object, an OpenCV vector object or a C++ vector of numbers,
as input. This is not possible when using the Java bindings and causes a constant manual
data conversion to the required data type.

Therefore, the programming language was changed to C++, which made the development
easier and had the additional benefit of an improved documentation. The Board and
Stone detector is then compiled as a native library for the Android platform. A Java class
handles converting the input and output for the library.

Detecting the exact position of the board is critical as this is the basis for the stone
coordinates produced by the stoned detector in Section 3.2.3. Misdetection at this stage,
or being just slightly off, will result in stones being placed on the wrong coordinates or not
detected at all. Two board detection approaches where tried. The first one is detailed in
the next section and tries to detect the board based on colored markings. As the detection
results were not good enough, an alternative was necessary. This alternative second
approach is explained in Section 3.2.2 and uses special markers for an accurate detection
of the board.

3.2.1 Colored Board Detection

The initial idea was to mark the board using colors, so it can be easily recognized in
images. As a first prototype it was asked to detect the board by using the algorithm found
in the “color-blob-detection” sample from OpenCV [Ope16a]. The sample App uses the
preview frames from the Android camera and outlines the areas with the selected colors.
Different colors can be selected by touching areas in the image with the wanted color.

The image processing in the sample consists of the following steps.

1. Convert the preview frame (720p or 1080p) from the camera API into a RGB image.

20

3.2 Board and Stone Detector

(a) The HSV color space mapped to a cylin-
der[Wik16b].

0◦ 120◦ 240◦ 360◦

(b) Hue values in degree and their colors.

0% 100%

(c) The effect of the saturation for red.

0% 100%

(d) The effect of the value for red.

Figure 3.4: The HSV color space visualized on a cylinder and the effects of the saturation
and value components for H = 0◦ shown on the right side.

2. Downsample and blur the image to reduce the data size and noise.

3. Convert the RGB image to the HSV color space.

4. Find all pixels within a specific color range.

5. Dilate the found areas to combine areas that are very close together.

6. Remove too small areas.

The HSV color space is particular useful for this task, as it allows to match a specific
color independent of the brightness. HSV stands for hue, saturation and value where
hue component can be interpreted as the desired color (e.g. red or blue), the saturation
component as the brightness and the value component as colorfulness. In Figure 3.4a the
HSV color space is visualized on a cylinder and the effects of the components shown on
the right side. The hue is specified as an angle from 0 to 360◦, as shown in Figure 3.4b,
and saturation from 50 to 100% and value also from 50 to 100%.

The board was marked with four red stickers in the corners of the board and the image
processing adjusted to the specific use-case to expect exactly four red markers. For each
detected color blob, the pixel farthest away from the image center is used to span a
polygon around the board as shown in Figure 3.3b.

By having the coordinates of the corner points, it is possible to calculate a transformation,
which transforms the image in such a way, that the board contents take up the whole
image. To calculate this perspective projection, four points (x0, y0) . . . (x3, y3) in the camera

21

3 Android App

y

x

P0(2, 3)

P1(6, 7) P2(18, 7)

P3(14, 3)

Transformation

P ′
0(0, 0)

P ′
1(0, 12) P ′

2(12, 12)

P ′
3(12, 0)

y

x

Figure 3.5: A perspective transformation is used to transform the corner points in image
coordinates to coordinates on a rectangle.

image and four points (x′
0, y′

0) . . . (x′
3, y′

3) in a reference image are needed (see Figure 3.5).
A mapping matrix A can then calculated that performs the necessary mapping[Ope16d]:

x′
i

y′
i

ti

 = A ·


xi

yi

1

 (for i = 03)

The reference points are placed on a rectangle to make it easy to interpolate
the stone positions on the board. The transformation matrix is calculated using
OpenCV’s getPerspectiveTransform function and the image is transformed by using
the warpPerspective function.

Even though the board detection based on colored markers was quite fast on a phone and
could analyze an input video stream at around 10 FPS on a Xperia Z1 smartphone, the
detection robustness was not up to par with our expectations. In many cases the markers
were not detected or there were false detections. But even when all markers were properly
detected, the detection itself was not accurate enough, causing the stone detector to miss
or incorrectly place the stones. The reasons for these problems were identified quickly, but
some turned out to be fundamental ones.

1. Depending on the lighting conditions the exact color values were different and could
lie outside the expected range.

2. Light reflections from ceiling lights (see Figure 3.6b) or sunlight resulted in white
spots on the markers.

3. Unfocused parts of the picture blurred the markers and they were not fully detected.

4. The automatic white balance of the camera was initialized to different values.

5. The red color of the markers is too similar to the color of the board.

6. Stones on the corners cover parts of the markers.

22

3.2 Board and Stone Detector

(a) Near perfect detection of
the markers. Detected ar-
eas are outlined in green.

(b) Bad detection of the right
markers because of reflec-
tions.

(c) Many misdetections where
the black lines blend into
the board.

Figure 3.6: The effect of reflections and color range adjustments on the marker detection.
The first two detections use the same range to detect the red color. On the
right side the range is increased resulting in many misdetections.

Problems 4-6 would have been easily resolved by disabling the automatic white balance,
choosing a color that differs more from the board (e.g. green or pink) and placing the
markers outside of the board. But the fundamental problems 1-3 remained. Possible
solutions to these problems, like using a calibration phase for the color or surrounding the
complete border of the board with markers, were discussed. But after a consultation with
a computer vision expert within EuTEC, it was advised to not rely on colors for exactly
the given reasons. Markers with distinctive shapes that are placed outside of the board
were proposed. By extracting features from the images and the markers it should then be
relatively easy to detect the position of the markers and therefore also the board.

3.2.2 Marker Board Detection

Special markers are often used for augmented or virtual reality applications. These
markers usually contain a high contrast pattern that is surrounded by a black border on a
light color background [PSPS11; Fia04]. The pattern is used to distinct between markers
and can be used to encode numbers, letters or other information [Hir08].

The markers in Figure 3.7 were designed so that they could be attached to the four corners
outside of the board. They are big enough so that they still can be recognized in a 720p
image from the camera. The pattern inside contains simple shapes that provide enough
feature points for matching them against the reference image on the right. One marker is

23

3 Android App

Figure 3.7: The two marker types used for the board detection. The bottom right quarter
of the marker is empty as it is cut away so it can be attached to the Go board.
On the right is the reference image that is matched against a real picture of
the board.

used to mark the top-left position of the board to make sure the reference image is always
matched with the same rotation. The marker reference image takes the exact dimensions
of the printed markers and the dimensions of the used Go board into account making sure
they the proportion matches the ones in the real world. This is important because the
later perspective transformation may not find a good mapping otherwise. The marker
images themselves have been printed on a regular sheet of paper, cut out and sticked to a
3D printed marker base designed for this use case. More detailed pictures can be found in
Appendix A.2.

The reference image in Figure 3.7 is analyzed by a Speeded-Up Robust Features (SURF)
detector, that extracts potentially interesting points, so called keypoints. Each keypoint is
then described by a SURF vector that is calculated by taking the surrounding area into
account. This feature vector is designed to describe a keypoint independent of the rotation
and scaling of the source image [SZG+09].

The same feature extraction and description is then applied to the images from the camera,
resulting in a second set of keypoints. The keypoints from the source image are matched
against the keypoints from the reference image by calculating the Euclidean distance
between them. The result of this matching can be seen in Figure 3.8, where keypoints are
matched to zero or more similar keypoints in the reference picture.

Doing the perspective transformation, described in the previous chapter, requires four
correctly matched keypoint pairs. However, because of the similarities between the

24

3.2 Board and Stone Detector

Figure 3.8: The keypoints of an image matched to the keypoints of the reference marker
image.

individual markers (in fact, three are exactly the same), it is not directly possible to know
which keypoints from the reference picture are correctly matched to the camera picture. A
transformation can still be found by taking all matching pairs into account and applying
a method called random sample consensus (RANSAC). RANSAC, like the name suggests,
RANSAC selects a random sample of four from the matching keypoints and calculates the
perspective transformation. It then checks how many other matches fit this transformation
to estimate the quality of the transformation. The process is repeated until a good
initial transformation is found and refined further by taking more points into account
[Ope16b]. Matching keypoints that do not fit the resulting transformation are called
outliers. OpenCV’s findHomography is used to calculate the perspective transformation
using RANSAC.

In Figure 3.9 the transformation, resulting from applying RANSAC to the matches from
Figure 3.8, has been inversely applied to the reference marker image. Even though there
are many outliers, the image is be perfectly projected.

3.2.3 Stone Detection

The stone detection algorithm expects an image that contains the complete board in order
to correctly find the position of the detected stones. Finding the stones can be as easy
as interpolating the stone positions between the top-left and bottom-right corners of the
image and checking if the average color at a position is white, black or something else.
But due to distortions in the transformed image and the fact that a human player rarely
places a stone perfectly on an intersection, the actual position of a stone can be too far off
the expected position. The average color at an interpolated position might then not be
detected to be either a white or black stone.

25

3 Android App

Figure 3.9: The reference marker projected into the source image.

(a) The binary image internally used by the Cir-
cle Hough Transform.

(b) Circles detected by the Hough Transform.
The red circles are too far way from a possi-
ble stone position.

Figure 3.10: The Circle Hough Transform.

A solution to this problem is to find the stones based on their shape. By using a Circle
Hough Transform, an image can be analyzed and even imperfect circles of different sizes
detected. Internally this transformation operates on a binary image, resulting from an
Canny edge detection algorithm as seen in Figure 3.10a [Ope16c]. To filter out possible
false detections, the sizes and positions have to be checked. Too big or too small circles

26

3.3 Go Engine

or circles not near an expected stone position, are probably no valid stones. The Circle
Hough Transform is implemented using the HoughCircles function from OpenCV and the
result can be seen in Figure 3.10b.

After the circle detection, the position of each circle is checked to be near a possible stone
position and the circle is discarded if that is not the case. The expected stone positions
are simply calculated by a 19×19 grid that is overlaid on the input. For possible stone
candidates, the average color inside the circle is calculated and compared in HSV color
space. For a white stone, the saturation component is checked to be below and the value
component to be above a specific threshold. For a black stone, it is enough to check if the
value component is low enough. See Figure 3.4c and 3.4d for an explanation of the HSV
components.

Just checking the average color inside the detected circles has shown to to produce some
false white stone detections, in areas where the board is very bright because of light
reflections. By comparing the average color inside the detected circle to the average
outside color and checking if the inside is darker than the outside, these false detections
can be removed.

The white and black stone classification thresholds, as well as the brightness difference for
white stones, is adjustable to allow the user to make adjustments at runtime from inside
the Android App, if the detection does not produce the desired results.

3.3 Go Engine

Although the primary focus of the App is to highlight the network reduction benefits and
the predictive capabilities of the original and reduced networks, a basic knowledge of the
Go rules is required to properly create the input for the neural network. For the network
input creation the Go Engine needs to be able to

• return the occupied positions for each player,

• calculate the liberties of a stone and

• detect the KO position.

But to improve the user experience and to be able play some moves against the neural
networks, the engine also

• knows which player is next,

• is able to detect stones placed on illegal positions,

• and knows which stones have been captured and need to be removed from the
board.

27

3 Android App

The Go Engine is built on top of GnuGo, which is an Open Source Go AI. GnuGo also
implements all the above requirements and has support for interfacing with different
frontends and user interfaces through a standardized Go Text Protocol or a C-API. GnuGo
is compiled as a ARMv71 native shared library and a custom JNI2 is used for changing and
retrieving the state the Go board and information about liberties or legality of a move.

3.4 Move Predictor

The Move Predictor is the interface to the neural networks, which are supplied as shared
libraries. In Section 6.2 these shared neural network libraries are explained in more
detail. The libraries are dynamically loaded through a JNI when the application starts.
The JNI returns pointers to the loaded libraries that need to be passed to the JNI again
when making a function call. This pattern treats the networks as plugins which can
be loaded and unloaded during the runtime of the application. It also allows network
implementations to be provided as a separate Android App although that functionality
would require more work. Each loaded network is encapsulated within a Java class that
handles creating the network input, provided by the Go Engine, and formats the network
output to an easily accessible 19×19 Java array containing the prediction probabilities per
position.

3.5 GUI

The App user interface is inspired by the camera App that comes pre-installed on Sony
Xperia smartphones. When the App is started, a splash screen is displayed during initial-
ization of the other components. After initialization, the App switches to the main screen
which can be seen in Figure 3.11. The main screen contains the camera preview, a shutter
button and a button to access the settings. Pressing the shutter button takes a picture
and transitions to the result screen. The picture is analyzed in the background with the
Board and Stone Detector and upon completion the Go Engine is updated with the stone
positions. The Go Engine then informs the result screen about the new stones positions
and initiates the Move Predictor. When the prediction results are available the, result
screen is updated again and will look like Figure 3.12.

The buttons on the result screen allow the user to go back to the main screen, save the
taken picture to the SD card and access the App settings. The “Game Info” part on the right

1ARMv7 is the CPU architecture of the used Android phones
2Java Native Interface

28

3.5 GUI

Figure 3.11: Main screen after starting the App.

Figure 3.12: Analyzed board with the predictions in green, game and timing information.
Better moves are more opaque.

29

3 Android App

Figure 3.13: The settings screen of the App

side displays the number of stones on the board, the current player which should place
the next stone and the move done by the previous player. Below the game information,
the App displays the time it took to detect the board and stones and the prediction time of
the loaded networks. By tapping on the name of a network it is highlighted in bold and
the move predictions of this network are displayed.

The settings screen shown in Figure 3.13, that is accessed by touching the cog button,
allows the user to tweak various parameters of the Stone Detection. Changing the parame-
ters will immediately update the stone detection and to see the result, the background was
made slightly transparent. The adjustable parameters are explained in detail in Section
3.2.3.

30

4 Convolutional Deep Neural Networks

In this chapter Convolutional Deep Neural Networks (CDNNs) are introduced. It is
however no general introduction into neural networks and skips over many details. A
good introduction into neural networks can be found in [Bis06].

Neural networks find their origin by attempting to recreate the way biological systems
process information, where neurons are connected and interchange information when
activated. Since then neural networks have partly moved away from sticking to the
biological model and new types of networks emerged. For pattern recognition CDNNs
have shown impressive results in various domains and achieved state of the art results for
image classification tasks [SZ14].

Neural networks are separated by layers and besides an input and output layer, the
network can contain an arbitrary number of so called hidden layers. Input data is passed
top-down from the input layer, through the hidden layers, to the output layer, which then
contains the prediction or output of the network. This is also called a forward pass.

CDNNs introduce the convolution layers as hidden layer type, which are commonly placed
before any single affine layer [SZ14]. A typical network structure for a CDNN is shown
in Figure 4.1. In CDNNs the data, that is passed though the network, takes the form
of a multi-dimensional matrix. The first dimension is called the feature map, or when
talking about the input/output of a layer the input/output feature map or just input/output
map. The remaining dimensions are the contents of the feature map. The sizes of the
dimensions may change, when the data is passed though a layer.

Considering an image classification DCNN, that maps images to the classes “whale”, “dog”
and “cat”. The input could be a single feature map with a RGB image. In this case the
second dimension could be the height of the image, the third the width and the last
dimension would be the color channel, so a 1 × height × width × 3 matrix. The output
may be a 1× 3 vector with the probability distribution over the three classes.

4.1 Notation

This and the following chapter will use the following notation:

31

4 Convolutional Deep Neural Networks

Input Layer

Convolution Layer 1

Convolution Layer 2

Convolution Layer N

Affine Layer 1

Affine Layer 2

Affine Layer N

Output Layer

Hidden LayersForward Pass

Figure 4.1: A feed-forward CDNN.

• A is a tensor and the element at (i, j, k) is aijk

• A is a matrix and the element at (i, j) is aij

• a is a vector and the ith element is ai

• Indices range from 1 to their capital version, so i = 1, . . . , I

For simplification of some formulas the following is defined additionally:

• The letter X is used to denote the input of a layer

• The Letter Y is used to denote the output of a layer

• Im, Om are the number of input and output maps

• Ih, Oh, Kh are the heights of the input, output and kernel

• Iw, Ow, Kw are the widths of the input, output and kernel

32

4.2 Hidden Layer

−6 −4 −2 0 2 4 6
−1

−0.5

0

0.5

1

x

y

b = 0
b = −2
b = 2

(a) Sigmoid

−6 −4 −2 0 2 4 6
−1

−0.5

0

0.5

1

x

y

b = 0
b = −2
b = 2

(b) TanH

−6 −4 −2 0 2 4 6

−5

0

5

x

y

b = 0
b = −2
b = 2

(c) ReLU

Figure 4.2: Different non-linear activation functions used in CDNNs and the effect of the
bias b.

• ID = Im · Ih · Iw is the number of elements in the input

• OD = Om ·Oh ·Ow is the number of elements in the output

• KD = Kh ·Kw is the number of elements in the kernel

4.2 Hidden Layer

A hidden layer in a CDNN is a non-linear function y, which receives the input x and takes
the following form:

y(x) = f (ϕ(x, w) + b)

f is a non-linear function, called the activation function, ϕ is the layer function, w are the
weights for the layer function and b is the bias. Together the weights and the bias form
the parameters of a layer.

An activation function f is an important part of a neural network, as it breaks the linearity
between the different layers. Without a non-linear activation function, layers that have a
linear layer function, may be reduced to a single layer.

Commonly used activation functions are:

Sigmoid: f(x) = 1
1+e−x ;

TanH: f(x) = 2
1+e−2x − 1;

ReLU: f(x) = max(0, x);

Figure 4.2 shows the of these functions on the output of a simple layer function ϕ(x, w) = x

and different values for the bias b, which shifts the resulting curves to the left or right.

33

4 Convolutional Deep Neural Networks

4.3 Training

The training of a neural network is the process of finding values for the layer function
weights w and the bias b that produce the desired outputs for as many inputs as possible.
Often these parameters are initialized to random values and then gradually refined by
comparing the output of the network to the expected output, calculating an error value and
then updating the parameters to reduce the error. The parameters are usually optimized
by a Gradient Descent, which chooses the update to make a small step in the direction
of the negative gradient of the error function [Bis06]. The parameters are updated for
all layers in the network by propagating the error backwards in a process known as
backpropagation.

The backpropagation and optimization process is repeated until all samples from a training
set have been processed, which is when one epoch has passed. Most of the time, one
epoch is not enough and the whole process is repeated until the error stops improving. A
training set may contain many million of samples and updating the parameters after each
sample can be a costly operation. A common solution is to use mini-batches to process
many samples at once and only update the parameters after each batch. The size of these
mini-batches is referred to as the batch size.

The granularity of the parameters updates can be influenced by adjusting the learning rate
of the training. A lower rate decreases the step size of the Gradient Descent and increases
the training time. A higher rate has the opposite effect with the disadvantage that it might
not find the optimal parameters. It is therefore advisable to adjust the learning rate during
the training process by lowering it after or even during an epoch.

4.4 Affine Layer

An affine, or fully connected, layer combines each input element with each output element
as shown in Figure 4.3. Every input xi is weighted with a separate weight wji and added
to the output yj. This way an affine layer can map an arbitrary number of inputs to an
arbitrary number of outputs. This is often used to make the final decision in a CDNN,
which assigns probabilities to the output classes.

A single output yj can be calculated with the following formula:

yj = f

(
I∑

i=1
wji · xi + bj

)

34

4.5 Convolution Layer

x1

x2

xI

z1

zJ

y1

yJ

w11

wJ1

w21

wJ2

w1I

wJI

b1

bJ

Figure 4.3: An affine layer with I inputs and J outputs. Each input i is weighted with wji

and added to output j.

Which, for a one dimensional input, can be represented as a vector multiplication:

yj = f


(
wj1, wj2, . . . , wJI

)


x1

x2
...

xI

+ bj


The complete output vector can therefore be calculated as a matrix multiplication:

y = f




w11 . . . w1I

...
wJ1 . . . wJI




x1
...

xI

+


b1
...

bJ




= f (Wx + b) (4.1)

The last formula is similar to the formula of affine transformation in geometry, which gives
us the name for this layer. To handle multi-dimensional input, the input can be reshaped
into a long vector, analogous for the output that can be reshaped into the desired shape. It
therefore makes sense to save the weights W as a OD × ID matrix.

4.5 Convolution Layer

Like the name implies, a convolution layer applies a convolution operation to the input
and is often used when handling image data. Common convolution operations on images

35

4 Convolutional Deep Neural Networks

Input

Kernel

Output

1 2 3 4 5 . . .

1 2 3

10 0 0 . . .

···

+++

(a)

1 2 3 4 5 . . .

1 2 3

10 16 0 . . .

···

+++

(b)

1 2 3 4 5 . . .

1 2 3

10 16 22 . . .

···

+++

(c)

Figure 4.4: Three steps of a 1D convolution with a kernel of size 3.

include blurring and sharpening the picture. The operation is done by applying a con-
volution kernel to each pixel of the input. The convolution kernel linearly combines the
current and neighboring pixels into a new pixel.

The idea of a convolution layer is, that nearby pixels are more strongly correlated than
pixels far away and therefore local features are extracted. These layers also handle data,
that is invariant to rotation, better than affine layers [Bis06]. Rotational invariant data
can for example be picture of a dog, which, when rotated by 180◦, is still a picture of a
dog.

The convolution operation slides a flipped kernel over the input, multiplies each input
element with the corresponding flipped kernel element and sums the results to get one
output element as shown in Figure 4.4.

For a 1D convolution using a 1D kernel w ∈ RKD , this can be written as:

yj = f

KD∑
k=1

xj−(k−KD+1) · w(KD−k+1) + bj

 (4.2)

The indexing of w will cause the kernel to be flipped. Using the convolution operator ∗
this can be simplified to:

y = f (x ∗w + b)

Input and output for convolution layers is separated into feature maps and each map com-
bination is convoluted with a separate kernel. All input maps have the same dimensions,
the same applies to the output maps. The formula to calculate the result for an output
map is:

Yo = f

(
Im∑
i=1

Xi ∗Wio + bo

)
(4.3)

36

4.5 Convolution Layer

(a) Only valid input is used, output is smaller
than input.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(b) Input is implicitly padded with zeros, output
has the same shape.

Figure 4.5: A 10×10 input convoluted with a 3×3 kernel using different border handling.

where Wio is the kernel for input map i and output map o.

The size of a output maps depends on the size of the input map and the border handling
as visualized in Figure 4.5. On the left side the valid border mode handling is used, which
means only outputs where the kernel does not need elements outside of the input are
returned. See (4.2) where the calculation of y1 would need a value for x0. This reduces
the output map dimension by half the kernel size −1. This can be avoided by assuming
values outside the input are zero. When the input and output dimensions are equal then
this is called the same border mode.

For the later formulas is important to know that the convolution is

• commutative: x ∗ y = y ∗ x,

• associative: x ∗ (y ∗ z) = (x ∗ y) ∗ z,

• distributive: x ∗ (y + z) = x ∗ y + x ∗ z.

37

5 Deep Neural Network Reduction

In this chapter methods for the reduction of affine and convolution layers are introduced
and explained. The methods are based on two matrix/tensor decomposition approaches
(SVD and CP), that allow the original weights of a layer to be represented as a low
rank approximation with fewer parameters. Interestingly, it is possible to directly work
with reduced number of parameters and no reconstruction of the original weights is
needed. This not only saves space to store the network on disk, but also reduces memory
consumption and computation costs.

The goal of the reduction methods is to produce a smaller network, that uses less memory
and computes results faster, whilst maintaining a similar quality as the original network.
Without the introduced techniques one would need to

• reduce the number of layers,

• reduce the size of the layers or

• reduce the size of the convolution kernels

in order to produce such a smaller network. This has the negative side effect that the new
network needs to be trained from scratch, which can be very time consuming. The smaller
network architecture can also make it harder to achieve the original accuracy.

5.1 Number of Parameters and Operations

Before introducing the reduction methods, the size and computational costs of the original
affine and convolution layers should be known, to make comparisons possible. The size of
a layer is simply measured as the number of parameters required to store the weights. This
excludes the bias because it will not be changed by any of the introduced methods. For the
computational cost, the number of Floating Point Operations (FLOPs), which are required
for one forward pass, are counted. Adding the bias is also excluded and a multiplication
with an additional addition is counted as one operation to simplify the formulas shown in
Table 5.1.

An affine layer combines each input element with each output element by multiplying
it with a weight specific for this combination and adding it to the corresponding output

39

5 Deep Neural Network Reduction

Type # Parameters FLOPs

Affine Im · Ih · Iw ·Om ·Oh ·Ow Im · Ih · Iw ·Om ·Oh ·Ow

Convolution Im ·Om ·Kh ·Kw Im ·Om ·Oh ·Ow ·Kh ·Kw

Table 5.1: Formulas to calculate the number of parameters and FLOPs (without bias).


a11 a12 . . . a1n

a21 a22 . . . a2n

a31 a32 . . . a3n
...

...
am1 an2 . . . amn


︸ ︷︷ ︸

A

=


u11 u12 u13 . . . u1m

u21 u22 u23 . . . u2m

u31 u32 u33 . . . u3m
...

...
um1 um2 um3 . . . umm


︸ ︷︷ ︸

U

·



σ1 0 . . . 0
0 σ2 0 0
0 0 . . . 0
...

... 0 σn

0 0 0 0


︸ ︷︷ ︸

Σ

·


v11 v12 . . . v1n

v21 v22 . . . v2n
...

...
vn1 vn2 . . . vnn


︸ ︷︷ ︸

VT

Figure 5.1: The SVD of A into A = UΣVT with n < m.

element. Assuming the input of the layer has the dimension Im × Ih × Iw and the output
has the dimension Om ×Oh ×Ow, then the number of parameters and FLOPs for an affine
layer is simply calculated by multiplying the number of input and output elements.

A convolution layer has a separate Kh ×Kw kernel that needs to be stored for each input
and output map combination. Kh · Kw multiplications and additions are required to
calculate a single output element for one output map. For the total number of operations
this has to be multiplied with the number of output elements and the number of kernels.

5.2 Affine Layer Reduction

The affine layer reduction method is based on a low rank approximation using a Singular
Value Decomposition (SVD). Using the SVD we can decompose a matrix A ∈ Rm×n into
A = UΣVT where U and VT are m×m and n×n unitary matrices, Σ is a m×n diagonal
matrix of the positive singular values σ ordered by magnitude[Ste93]. The decomposition
is visualized in Figure 5.1.

Is ui the ith column of U and vT
i the ith row of VT then we can calculate A with a series

of weighted matrix multiplications

A = UΣVT

=
R∑

i=1
σiuivT

i R = min(m, n)

40

5.3 Convolution Layer Reduction

where R = min(m, n) is the upper bound of the rank. The singular values σi can be seen
as the significance of uivT

i contributing to A. An approximation of A is created by setting
some singular values to zero.

By choosing R < rank(A) ≤ min(m, n) we can create a low rank approximation

Ã =
R∑

i=1
σiuivT

i R < rank(A)

= ŨṼT (U and Σ combined)

that minimizes Frobenius norm of the approximation difference Ã−A [Ste93]:

∥∥∥Ã−A
∥∥∥2

F
=
√√√√ m,n∑

i,j=1
ã2

ij − a2
ij

So in simple terms, by cutting off U after R columns, σ after R singular values and VT

after R rows we create a low rank approximation of A that minimizes the Frobenius norm
of the parameter differences.

By applying the SVD to the OD× ID layer weights from Equation 4.1 and doing a low rank
approximation of W, we can approximate the weights and the affine layer output by

y = f (Wx + b)
= f

(
UW ΣW VT

W x + b
)

≈ f
(
ŨW ṼT

W x + b
)

(U and Σ combined) (5.1)

where ŨW is a OD ×R matrix and ṼT
W is a R× ID matrix. The approximation therefore

has the following number of parameters and FLOPs:

params = OD ·R + R · ID

= R(OD + ID)
flops = R(OD + ID)

5.3 Convolution Layer Reduction

Convolution layers are often responsible for the majority of FLOPs in a CDNN [JVZ14].
For larger networks it is critical to decrease these layers if a deployment in the mobile
domain is planned. But even outside the mobile domain the reductions are worthwhile to
explore.

41

5 Deep Neural Network Reduction

Recent literature quite successfully reduced networks with convolution layers by using a
low rank approximation of the kernel weights. In [JVZ14] a 4.5× speedup is achieved
with only a 1% drop in accuracy in a character recognition task. In [LGR+14] this result
was topped by achieving a 8.5× speedup on the same network. And in [KPY+15] they
measured the energy consumption improvement of a Samsung Galaxy S6 smartphone
to be higher than the FLOPs reduction rate, which they attribute to an improved CPU
cache efficiency. The good reduction ratios that are responsible for the these speedups are
traced back to high redundancy of the kernels for different maps and inside the kernel
itself [JVZ14].

5.3.1 Singular Value Decomposition

The SVD, which was introduced in the previous section, can also be used to reduce the
weights of a convolution layer. The SVD however can only operate on two-dimensional
matrices, yet the weights for a convolution layer are often stored inside a Im×Om×Kh×Kw

tensor, which makes accessing a kernel for a specific input map and output map easy. The
two dimensions for the kernel may be flattened, giving us a Im ×Om ×KD tensor.

As the the SVD requires 2D matrices the kernel weights are separated into Im matrices
W0, · · ·WI with the dimensions Om × KD, where each row represents a kernel wio to
convolve with input map i and add the result to output map o. The matrices are separately
approximated using a SVD low rank approximation

Wi = UiΣiVT
i (SVD factorization)

≈ ŨiṼT
i (approximation with rank R)

where Ũi is a Om ×R and ṼT
i is a R×KD matrix.

A single kernel wio is now approximated by R basis kernels Bi = ṼT
i .

wio ≈ ũioṼT
i (one row taken from Ũi)

= ũioBi

=
R∑

r=1
ũ

(r)
io bri

where ũ
(r)
io is the rth element of the ith row of Ũi and bri the rth row of Bi.

42

5.3 Convolution Layer Reduction

∗
∗

∗
∗

∗
∗

·

+
· +

·
+

·

+

·

+

·

+

·

+

·

+·

+·

+

· +

·
+

X1

X2

X3

b11

b21

b12

b22

b13

b23

Ỹ(1)
1

Ỹ(2)
1

Ỹ(1)
2

Ỹ(2)
2

Ỹ(1)
3

Ỹ(2)
3

ũ
(1)
11

ũ
(2)
11

ũ
(1)
21

ũ
(2)
21

ũ
(1)
12

ũ
(2)
12

ũ
(1)
22

ũ
(2)
22

ũ
(1)
13

ũ
(2)
13

ũ
(1)
23

ũ
(2)
23

Y1

Y2

Figure 5.2: A SVD convolution with 3 input maps, 2 output maps and R = 2. Each input
map is convolved with an intermediate kernel boi and then decompressed with
the output factors ũ

(r)
oi into the corresponding output maps.

The whole output map Yo can be computed like:

Yo = f

(
Im∑
i=1

Xi ∗Wio

)

≈ f

(
Im∑
i=1

Xi ∗
(

R∑
r=1

ũ
(r)
io bri

))

= f

(
Im∑
i=1

R∑
r=1

ũ
(r)
io (Xi ∗ bri)

)
(5.2)

The linearity of the convolution allows us to reorder the operations resulting in (5.2).
Inspecting this formula shows, that the convolution operation itself is independent from a
specific output map. The index o is not required to calculate all results for Xi ∗ bri. This
allows the convolution results to be reused between output maps.

An efficient implementation would convolve each input Xi with R basis kernels bri and
then weight each result with the factor ũ

(r)
oi before adding it to the output map. This is

43

5 Deep Neural Network Reduction

W

c(1)

a(1)

b(1)

c(2)

a(2)

b(2)

c(R)

a(R)

b(R)= + + · · ·+

Figure 5.3: A 3D CP decomposition of W into R rank-one tensors [KB09].

visualized in Figure 5.2. By this the number of convolutions is reduced from Im · Om to
Im ·R if R < Om. The total number of parameters and FLOPs are:

params = R · Im ·KD︸ ︷︷ ︸
basis kernels

+ R · Im ·Om︸ ︷︷ ︸
output factors

= R · Im · (Om + KD)
flops = R · Im ·Oh ·Ow · (Om + KD)

5.3.2 Tensor Rank Decomposition

Another method of reducing the weights for a convolution layer is by approximating
them using a Tensor Rank Decomposition. A tensor is a multidimensional array where
the order of a tensor denotes the number of dimensions. This section introduces the
Canonical Polyadic Decomposition (aka CANDECOMP/PARAFAC), which will be called CP
decomposition from here on. This method can be seen as a higher-order extension of the
SVD [KB09].

The CP decomposition has the advantage that it can approximate the full third-order
Im ×Om ×KD weights instead of operating on a set of separated Om ×KD matrices like
the previous SVD low rank approximation. This promises a better compression compared
to the SVD approach as this method allows to take advantage of correlations between
kernels from different input maps.

By applying the CP decomposition, a N -order tensor X is decomposed into a series of
rank-one tensors where the sum of a subset of these tensors, is an approximation of X. A
N -order rank-one tensor is a tensor X ∈ RI1×I2×···×IN that can be computed by the outer
product of N vectors and is written as:

X = a(1) ◦ a(2) ◦ · · · ◦ a(N) (with a(i) ∈ RIi)

The outer product ◦ means that to compute element xi1i2...iN
the corresponding elements

of all vectors are multiplied:

xi1i2...iN
= a

(1)
i1 a

(2)
i2 . . . a

(N)
iN

44

5.3 Convolution Layer Reduction

Unfortunately, finding the best CP approximation for a given rank is an ill-posed problem.
The CP decomposition cannot be easily computed and a possible solution needs to be
found and optimized [dSL08; LGR+14]. Depending on the optimization, this may result
in different approximations for the same input and rate.

With the above definitions the formula for the approximated kernel weights W ∈
RIm×Om×KD is

W ≈
R∑

r=1
a(r) ◦ b(r) ◦ c(r) .

Where a(r) ∈ RIm , b(r) ∈ ROm and c(r) ∈ RKD . A visualization can be seen in Figure 5.3.

A single kernel Wio is approximated multiplying the c vector with the ith element of a
and oth element of b for each rank:

Wio =
R∑

r=1
a

(r)
i b(r)

o c(r) (5.3)

To compute output map Yo, (5.3) is inserted into the convolution (4.3) and the operations
reordered in the following way:

Yo = f

(
Im∑
i=1

Xi ∗Woi

)

≈ f

(
Im∑
i=1

Xi ∗
(

R∑
r=1

a
(r)
i b(r)

o c(r)
))

= f

(
Im∑
i=1

R∑
r=1

a
(r)
i b(r)

o

(
Xi ∗ c(r)

))

= f

(
R∑

r=1
b(r)

o

Im∑
i=1

a
(r)
i

(
Xi ∗ c(r)

))

= f

(
R∑

r=1
b(r)

o

(
Im∑
i=1

a
(r)
i

(
Xi ∗ c(r)

)))

= f


R∑

r=1
b(r)

o

Ỹr︷ ︸︸ ︷((
Im∑
i=1

a
(r)
i Xi

)
︸ ︷︷ ︸

X̃r

∗c(r)
) (5.4)

From (5.4) we can see that there is an efficient way to calculate the result by

1. compressing Xi into R intermediate input maps X̃r,

2. convolving them with c(r) to produce R intermediate output maps Ỹr

45

5 Deep Neural Network Reduction

X1

X2

X3

a
(1)
1

a
(2)
1

a
(1)
2

a
(2)
2

a
(1)
3

a
(2)
3

X̃1

X̃2

c(1)

c(2)

Ỹ1

Ỹ2

b
(1)
1

b
(2)
1

b
(1)
2

b
(2)
2

b
(1)
3

b
(2)
3

Y1

Y2

Y3

·
+·

+·
+

·
+

·

+

·
+

∗

∗

·
+

·
+

·

+

·

+

·
+

·
+

Figure 5.4: A CP convolution with 3 input maps, 3 output maps and R = 2. The input
maps are compressed with the input factors a

(r)
i into intermediate maps Ỹr,

then convolved with the basis kernels c(r) and finally decompressed with the
output factors b(r)

o into the corresponding output maps.

3. and finally decompressing them with b(r)
o into the output map.

Figure 5.4 visualizes this approach.

Assuming that the height and width of the input and output stay the same, the number of
parameters and FLOPs for the reduced layer are calculated as follows:

params(R) = R · Im︸ ︷︷ ︸
a

+ R ·KD︸ ︷︷ ︸
b

+ R ·Om︸ ︷︷ ︸
c

= R · (Im + Om + KD)
flops(R) = R · Im · Ih · Iw︸ ︷︷ ︸

Step 1

+ R ·Oh ·Ow ·KD︸ ︷︷ ︸
Step 2

+ R ·Om ·Oh ·Ow︸ ︷︷ ︸
Step 3

= R ·Oh ·Ow(Im + Om + KD)

5.4 Rank selection

We have now seen three reduction methods Affine (SVD), Convolution (SVD) and Con-
volution (CP). The resulting parameter count and FLOPs are summarized in Table 5.2.
The only adjustable variable for the reduction methods is the rank R of the low rank
approximation. In order to get an reduction of either the parameters or the FLOPs, the
rank R has to be chosen so that the number of parameters in the reduced layer is smaller
than the number of parameters in the original layer.

46

5.4 Rank selection

Type # Parameters FLOPs

Affine ID ·OD ID ·OD

Affine (SVD) R(OD + ID) R(OD + ID)

Convolution Im ·Om ·KD Im ·Om ·Oh ·Ow ·KD

Convolution (SVD) R · Im(Om + KD) R · Im(Om + KD) ·OD

Convolution (CP) R(Im + Om + KD) R ·Oh ·Ow(Im + Om + KD)

Table 5.2: Formulas to calculate the number of parameters and FLOPs for original and
reduced layers.

A convolution layer with Im = 3, Om = 4 and Kh = Kw = 5 needs 3 · 4 · 5 · 5 = 300
parameters. The SVD convolution for this layer requires R · 3 · (4 + 25) = R · 87 parameters.
In order to get an reduction of the parameters by a factor of 2, the rank of the SVD
convolution has to be chosen such that:

R · 87 = rate · 300

R = 1
2 ·

300
87 ≈ 1.72

Because the rank is an integer, it has to be rounded down to 1, resulting in an actual
reduction of 1− 87

300 = 0.71 = 71% instead of the desired 50%.

The CP convolution requires R · (3+4+25) = R ·32 parameters and for the same reduction
the rank has to be chosen so that:

R · 32 = rate · 300

R = 1
2 ·

300
32 ≈ 4.69

The rank is rounded down to 4, giving us an actual reduction rate of 1 − 4·32
300 ≈ 0.57 =

57%.

47

6 Implementation

When working with neural networks there are several open-source frameworks like
Caffe or Torch, which assist the user during development and evaluation. Nowadays
it is critical that a given framework supports GPU assisted computations, as they can
massively speed up the training process. Together with colleagues from Japan, SSG
members are developing an internal Deep Learning toolkit called sDeePy, which is used
in this thesis. The sDeePy toolkit allows the definition of neural networks as directed
graphs where the nodes are the layers of the network. It contains implementations of
the convolution and affine layers needed for CDNNs and provides a gradient descent
method for training networks. sDeePy is written in Python and is heavily using the NumPy
and Theano packages. NumPy is a powerful package which adds support for working
with multidimensional data and implements many operations used in linear algebra such
as matrix multiplications. The Theano package builds on this and extends NumPy by
allowing the definition of mathematical expressions which are then optimized for the
execution on a CPU or GPU.

Even though sDeePy is a proprietary framework, I decided to use it because

• employees at SSG are familiar with it and can provide first-class support,

• it has the ability to export models into C code (e.g. for Android),

• it already implemented the SVD affine and CP/SVD convolution reduction techniques
in Python,

• and it is written in Python (a familiar and popular language).

However sDeePy was not completely usable right out of the box. The biggest missing
feature was an implementation of the reduced layers for the C-Exporter, which was a
requirement to execute the model under Android. However, the Python side of things
provided all required functionality from the beginning and besides some small bug fixes
here and there, the only improvement added was a faster variant of the CP convolution
that will be explained later.

49

6 Implementation

6.1 Layers

This section covers how the different layers are implemented in the Python part of sDeePy.
Fortunately, the used libraries, like Theano, provide many useful building blocks making
the actual implementations in sDeePy often just a couple of lines of code. But at least in
the case of the reduced convolution layers, an optimized solution is not available and a
simple solution is challenging within the limits of the high-level Python interface of the
Theano library. The implementation of the activation function in sDeePy is separate from
the actual layer, that is why it does not appear in the following sections.

6.1.1 Affine, SVD Affine and Convolution

An affine layer with one-dimensional input is simply implemented by the dot product
of the weights with the input. For multi-dimensional input this is not possible anymore.
Thankfully, Theano provides a tensordot function which covers this case.

Listing 6.1 Simplified Python implementation of the affine layer.
def affine(input, params):

output = tensordot(input, params.weights)

return output + params.bias

The SVD affine layer does not require a special implementation as it can simply be
implemented by replacing the previous affine layer with two affine layers that contain the
reduced weights from (5.1). In this case the first affine layer does not have an activation
function nor a bias.

When available, the convolution implementation uses cuDNN, a library provided by
NVIDIA, which contains a very fast and GPU optimized CUDA implementation of the
convolution layer[NVI16]. Otherwise it falls back to the nnet.conv2d function from
Theano, which implements the same operation in a platform independent way.

Listing 6.2 Simplified Python implementation of the convolution layer.
def conv(input, params):

Dimensions input: I_m x I_h x I_w

weights: I_m x O_m x K_h x K_w

if CUDNN_INSTALLED:

output = cudnn.dnn_conv(input, params.weights)

else:

output = nnet.conv.conv2d(input, params.weights)

return output + params.bias

50

6.1 Layers

6.1.2 SVD Convolution

The SVD convolution is implemented as explained at the end of Section 5.3.1 and as
shown in Figure 5.2. Each input map is convolved with R basis kernels bri to produce the
intermediate output maps. The intermediate output maps are then decompressed into the
respective output maps by using the output factors ũ

(r)
oi .

Listing 6.3 Simplified Python implementation of the SVD convolution layer.
def conv_svd(input, params):

Convolve each input with R basis kernels.

Dimensions input: I_m x I_h x I_w

basis_kernels: I_m x rank x K_h x K_w

output = theano.map(fn=conv, sequences=(input, params.basis_kernels))

output = tensordot(output, params.output_factors)

return output + params.bias

The map function of Theano loops over the first dimension of the elements in the sequences

tuple and calls the function fn for each pair. It basically executes:

for m in range(InMaps):

output[m] = conv(input[m], params.basis_kernels[m])

And herein lies a limitation of Theano because the operations could be executed in parallel,
thus making the SVD convolution layer slower than the optimized standard convolution
layer although it requires less operations.

6.1.3 CP Convolution

The implementation of the CP convolution is similar to the implementation of the SVD
convolution and explained at the end of Section 5.3.2 and shown in Figure 5.4. The
input is compressed with the input factors a into R intermediate input maps, which are
convolved with the basis kernels c producing the intermediate output maps, which are
decompressed with the output factors b into the output maps.

51

6 Implementation

Listing 6.4 Simplified Python implementation of the CP convolution layer.
def conv_cp(input, params):

intermediate = tensordot(input, params.input_factors)

Convolve each intermediate input with one basis kernel.

Dimensions intermediate: rank x I_h x I_w

basis_kernels: rank x 1 x K_h x K_w

output = theano.map(fn=conv, sequences=(intermediate, params.basis_kernels))

output = tensordot(output, params.output_factors)

return output + params.bias

The same limitation of the map operation, that was mentioned in the previous section, also
applies to the CP convolution. Unfortunately, there is no optimized implementation for
CP convolution available and the logic has to be implemented in sDeePy itself, making
the straight forward implementation very slow when compared to the implementation of
standard convolution which is heavily parallelized and optimized.

A workaround was implemented that uses the standard convolution instead of the map

function. For R input maps and R output maps, the standard convolution expects R×R

kernels, one kernel for each input/output combination. By using only the kernels where
the index of the input and output map are the same, the behavior of the CP convolution
can be simulated. All other kernels have to be set to 0. See Figure 6.1, where the kernels
Wij with j ̸= j have been grayed out to indicate that they are set to 0. Instead of only
R sequential convolutions, R × R parallel convolutions are calculated. This obviously
increases the amount of required calculations but has the potential to result in a speedup,
when the rank R is not too big. If this is not the case, then this workaround will have a
negative effect. Basic testing showed, that a reduction by 50% is enough to ensure that
the rank R is low enough to result in a speedup.

52

6.2 C-Exporter

∗ +
∗

+

∗

+
∗

+

∗ +
∗

+
∗

+

∗

+

∗ +

X1

X2

X3

W12

W11

W13

W22

W21

W23

W32

W31

W33

Y1

Y2

Y3

Figure 6.1: The standard convolution layer convolves each input/output map combination
with a separate kernel. By using only specific kernels, the behavior of the CP
convolution can be simulated.

Listing 6.5 Simplified Python implementation of the optimized CP convolution layer.
def conv_cp2(input, params):

intermediate = tensordot(input, params.input_factors)

Create a rank x rank x kernel_height x kernel_width tensor

that contains the basis kernels on the diagonal axis

kernels = numpy.zeros((params.rank, params.rank, params.kernel_height,

params.kernel_height))

rng = numpy.arange(params.rank)

kernels[rng, rng] = params.basis_kernels

Dimensions intermediate: rank x I_h x I_w

kernels: rank x rank x K_h x K_w

conv(intermediate, kernels)

output = tensordot(output, params.output_factors)

return output + params.bias

6.2 C-Exporter

With the help of the sDeePy C-Exporter it is possible to create a pure C implementation of
a network implemented in sDeePy. This is necessary for the Android App as there is no
way to use sDeePy itself on a mobile phone. The exporter saves the layer parameters into

53

6 Implementation

a binary file and generates a C file that declares the network structure. When compiled,
this C file is linked against a static C library, provided by sDeePy, that implements the
algorithms for the layers and support code to load the parameters from a file. A compiled
library of a model exports three main functions:

mallocNet(char *path) loads the parameters from the file pointed to by path and allo-
cates all memory required by the layers.

forward(float *input, float *output) calculates the result of one forward pass.

freeNet() frees the memory allocated by the model.

The C-Exporter however was incomplete and had to be extended to be usable in this thesis.
The two biggest missing features were no support for border mode of type same for the
convolution layer (see Section 4.5) and no implementation for the CP convolution layer.
To add support for the same convolution border mode, I implemented the 1D convolution
that can be seen, in Algorithm 6.1.

Algorithmus 6.1 1D convolution
function CONV1D(In, InSize, Kernel, KernelSize, OutSize)

Out[0 . . . OutSize]← 0
Padding← ⌊KernelSize/2⌋
for o← 0 . . . OutSize do

i← o - Padding
for k← 0 . . . KernelSize do

if i+k ≥ 0 or i+k < InSize then
Out[o]← Out[o] + Kernel[KernelSize - k - 1] · In[i + k]

end if
end for

end for
return Out

end function

Inside the inner loop it is checked, if the index i+k for the input is inside valid bounds
and the calculations are performed. If that is not the case, then nothing is done, thus
simulating zero-padded input.

A 2D convolution can then be implemented by calling the 1D convolution for the rows of
input and kernel, as seen in Algorithm A.2.

54

6.2 C-Exporter

Algorithmus 6.2 2D convolution
function CONV2D(In, InHeight, InWidth, Kern, KernHeight, KernWidth, OutHeight,

OutWidth)
Out[0 . . . OutHeight][0 . . . OutWidth]← 0
Padding← ⌊KernHeight/2⌋
for o← 0 . . . OutHeight do

i← o - Padding
for k← 0 . . . KernHeight do

if i+k ≥ 0 or i+k < InHeight then
Out[o]← Out[o] + CONV1D(In[i], InWidth, Kern[KernSize - k - 1],

KernWidth, OutWidth)
end if

end for
end for
return Out

end function

When implementing and testing this code in C, it was noticed that the if-statement
inside the 1D convolution slowed down the algorithm significantly. The statement checks
unnecessarily often, if the index is inside the bounds and also prevents the compiler from
applying optimizations to the loop. The actual C implementation of the 1D convolution,
which can be seen in Listing A.1, optimizes this by splitting the algorithm into three parts.
The first and third part, which handle the left and right zero-padded cases, still check the
index, but the middle part can omit the check. Otherwise the algorithm is straight forward
and does not use special SIMD1 or NEON2 instructions, that could be used to process
multiple inputs at once. These instructions would make the generated code faster but also
harder to read and understand. The usage might also cause problems with portability to
other platforms that do not support these instruction sets. In the optimal case a compiler
would detect that it can vectorize the calculations and generate optimized code.

1Single Instruction, Multiple Data
2ARM Advanced SIMD extension

55

7 Go Network Reduction and Evaluation

In Chapter 5 techniques for the CDNN reduction were introduced and explained. This
chapter shows how these techniques can be applied to an already existing Go move
predicting model and how the performance is affected.

7.1 The Original Network

The original neural network was developed and trained by C. Clark and A. Storkey as part
of their research for “Training Deep Convolutional Neural Networks to Play Go” [CS14]
which was first published in late 2014. They claim that their most recent 8-layer CNN
beats previous networks by significant margins and that it wins 9 out of 10 games against
GnuGo on the highest difficulty. They score the network at around 4-5 kyu, which is
considered an intermediate amateur. This is evident, as it loses most games against Fuego,
a advanced Go artificial intelligence, which is currently rated just above 3d on the KGS
server [KGS16].

Type Input Output Kernel # Parameters # FLOPs

1 Convolution 8x25x25 64x19x19 7x7 25 088 9 056 768
2 Convolution 64x19x19 64x19x19 5x5 102 400 36 966 400
3 Convolution 64x19x19 64x19x19 5x5 102 400 36 966 400
4 Convolution 64x19x19 48x19x19 5x5 76 800 27 724 800
5 Convolution 48x19x19 48x19x19 5x5 57 600 20 793 600
6 Convolution 48x19x19 32x19x19 5x5 38 400 13 862 400
7 Convolution 32x19x19 32x19x19 5x5 25 600 9 241 600
8 Affine 32x19x19 361x 1x 1 4 170 272 4 170 272

Total (Convolution) 428 288 154 611 968
Total (Affine) 4 170 272 4 170 272

Table 7.1: Layers and sizes of the original model with the totals shown in the last row for
each type of layer.

57

7 Go Network Reduction and Evaluation

A trained network was published as part of a web page where one can play against the
said network [CS15]. This network will be used as our baseline and the structure is shown
in Table 7.1. The last two lines of the table show the total number of parameters and
FLOPs for each layer type summed up. One can immediately see that most parameters
are contained in the single affine layer (≈ 91%) but most calculations are done inside the
convolution layers (≈ 97%). This means that in order to reduce the number of calculations
we need to reduce the convolution layers and to reduce the memory usage, we need to
reduce the affine layer.

Assuming all 428288 + 4170272 = 4598560 parameters are stored in memory as a 4 Byte
floating point number, the model consumes around 4Byte·4598560

1024·1024 ≈ 17.5MiB of memory and
no modern smartphone should have problems loading the model into memory. Therefore,
the focus is to reduce the number of FLOPs to speed up the calculation and to reduce the
power consumption.

The input of the Go network is separated into 8 25× 25 feature maps (see first layer in
Table 7.1). Elements in the maps are binary and either set to 0 or 1. A 19× 19 area in the
center of each map represents the positions of the Go board while the area surrounding
the board is always set to 0. The singe exception is the last feature map, where the padded
area is set to 1 but everything else is 0. Maps 1, 2 and 3 contain the stones with 1, 2 or
more liberties of the current player. Maps 4, 5 and 6 contain the same for the opponent.
Map 7 marks the single ko position if it exits. The result of the network is a 361× 1 vector
containing the probabilities for each position to be a move an expert would do. To make
interpretation of the result easier, the output can be reshaped into a 19× 19 matrix.

7.1.1 Databases

Training of the original network is done using recorded Go games dating back to the year
196. Only moves from players above a specific rank should be considered, to ensure that
the network learns only from good moves. The Go Games on Disk1 (GoGoD) and KGS2

databases provide Go games where most players are 5 dan or better and only very few
players are beginners. Training, validation and testing of the original network was done by
using all 81 000 games from the GoGoD database and 86 000 games (out of 171 000) from
the KGS database. With around 16 Million moves per database this results in a total of 32
Million individual Go moves used for the training, validation and testing. Unfortunately
it is unknown which exact games and moves are part of the training, validation and test
sets. But the use of any games, that were used for training, should not be used for testing
because it is not possible to properly evaluate, if the model is generalized enough. Using

1http://gogodonline.co.uk
2http://www.gokgs.com/

58

http://gogodonline.co.uk
http://www.gokgs.com/

7.1 The Original Network

the same data for training and testing may result in unusual good results because the
model could be exactly fitted to the training data. The same model might have very bad
results when tested on data that was not used for the training. A separate set of testing
data is therefore required.

C. Clark and A. Storkey first published their results on the 10th December 2014, so it is
assumed that no games from 2015 or newer can be part of their data set. As the GoGoD
and KGS databases used are now more recent, I have access to over 1 400 new games that
contain over 300 000 moves from the GoGoD database and over 4 500 new games and
900 000 moves from the KGS database. To make sure no data, that was used to train the
original model, is used for testing, only the new games are used. The remaining games
from the GoGoD database (everything including December 2014) are used for training.
The KGS database contains 85 000 games older than December 2014 but not used to train
the original model. Training on these additional games might give the finetuned models
an advantage over the original model, because it ultimately has seen more games. To
avoid this problem the KGS database is not used for training, resulting in a total of only
81 000 games with 16 Million moves from the GoGoD database available for training.

7.1.2 Reflection Preserving Kernels

It is important to note that the original model was trained using reflection preserving
kernels, which improved the accuracy. These reflection preserving kernels can be mirrored
horizontally, vertically and diagonally and the result will be the same kernel, as seen
in Figure 7.1. The weights with the same color are tied together and always contain
the same value. If one weight is updated during training, so are the others. The idea
behind this method is, that a Go board can be mirrored the same way without changing
its meaning and the authors of the original network noticed that even without tying the
weights together, some some of the learned kernels were already reflection preserving.
They claim that the same could be achieved by applying the reflections on the training
data, but this would increase the data by factor of 8, thus also increasing the training time
by the same factor.

The use of reflection preserving kernels means that the kernel weights are highly redundant.
This should allow a good compression of the convolution layers without losing accuracy.
In theory, we only need to save 10 out of 49 weights for a 7×7 kernel and for a 5×5
kernel, 6 out of 25 weights are necessary. This results in a theoretical loss-less reduction
of 76.56% of all convolution layers in the Go model.

The reflection preserving kernels were not implemented during this thesis and the available
training data is also used as-is. As the previous section explained, only half the training
data, used to train the original model, is available in the first place and with the assumption

59

7 Go Network Reduction and Evaluation

Figure 7.1: A 7×7 kernel where the tied weights have the same color.

that reflection preserving kernels artificially increase the data by a factor of 8, this means
that effectively only 1/16th of the data can be used for training.

7.2 Metrics

Overview and explanation of the metrics used to assess the quality of Go networks.

FLOPs: The number of floating point operations required to calculate the result of a
single layer or the total network. The formulas can be taken from Table 5.2.

Reduction Rate: The reduction is based on the number of parameters or the number
of FLOPs. It is possible to use the definitions interchangeably, as a reduction of the
parameters by half also results in half the FLOPs. When talking about convolution
layers, it makes sense to relate the reduction rate to the number of FLOPs and when
talking about affine layers, to relate it to the number of parameters. The rate will
be reported as either a number between 0 and 1 or as a percentage between 0 and
100%.

Accuracy: The most important metric is the accuracy of the predictions done by a model
as it does not really matter how fast or small a model is when its output is worthless.
It is measured by comparing the position with the highest probability, with the move
done by a human player from the test database. The number of correctly predicted
moves is divided by the number of total moves to get the total average accuracy.

60

7.3 Methods

Accuracy Win Rate

40.12% 87%
37.37% 85%
33.36% 75%
26.14% 50%

Table 7.2: Win rates of different DCNNs against GnuGo on the highest difficulty.

If multiple predictions have the same exact probability, which mostly happens for
the first move, then only the move which happens to be first in a sorted list will be
considered.

Size: The number of parameters for a single layer or the complete network. The formulas
can be taken from Table 5.2. This number is used to roughly estimate the memory
consumption needed.

It is not entirely obvious that a good accuracy will result in a good Go playing AI. At the
same time it is also not obvious that a bad accuracy will result in a particular bad AI. Just
because the move with the highest probability does not match the exact move taken by a
human player, does not mean that it is a bad move. To make sure that move prediction
accuracy is a good metric, different models were matched against GnuGo on the highest
difficulty. The results can be seen in Table 7.2. With decreasing accuracies the win rate
against GnuGo drops, thus supporting using accuracy to measure how good a network
is performing. Based on the win rates against GnuGo, I make the arbitrary decision to
consider accuracies above 39% as good, between 39% and 37% as acceptable and below
37% as bad.

7.3 Methods

As there are multiple layers in our model, the reduction techniques can be combined in
various ways. We will first look at the affine and convolution layers separately and this
section will explain how the techniques are applied to the layers and how the reduction
rates are chosen. Later on we will look at the global network reduction by considering all
layers.

61

7 Go Network Reduction and Evaluation

7.3.1 Uniform reduction

A simple way to reduce a model is to apply the same reduction rate to all layers. E.g. to
get a total reduction rate of 50%, every layer is reduced by 50%. This does not take the
size of the layer into account.

7.3.2 Non-uniform Reduction based on Layer Sizes

Contrary to the uniform reduction, we can try to be more intelligent in choosing the
the individual reduction rates. The idea is to avoid bottlenecking the smaller layers
when reducing them too much. My colleagues at SSG proposed the following formula to
calculate the individual reduction rates, where L is the number of layers, Pl is the number
of parameters for layer l, P is the number of total parameters, p is the non-uniformity
parameter and τ the desired overall compression rate.

τl = τ0

(
Pl

P

)p

with

τ0 = τ
P p+1∑L

l=1 P p+1
l

Using p we can adjust the flatness of the reduction curve, with p = 0 giving us the uniform
reduction. In Figure 7.2 four reduction curves for τ = 0.5 and different values for p are
shown together with the number of parameters of the convolution layers.

7.3.3 Non-uniform Reduction based on Approximation Error

This approach assumes that some layers in a network can be compressed more than other
layers, independent of the layer size. The individual layers are reduced with increasing
rates until the approximation error surpasses a specific difference threshold. This threshold
is calculated by comparing the approximated weights to the original weights and depends
on the specific norm used. As both the SVD and CP based reduction try to minimize
the Frobenius norm

∥∥∥W̃−W
∥∥∥2

F
, where W̃ are the approximated weights and W are the

original weights, the same norm is used to calculate the approximation error.

7.3.4 Finetuning

Higher compression rates are expected to have a severe negative effect on the quality
of the reduced networks. If training data is available, it is possible to counteract this by

62

7.3 Methods

#1 #2 #3 #4 #5 #6 #7

25k

50k

75k

100k

Convolution Layer

P
ar

am
et

er
s

0.00

0.20

0.40

0.60

0.80

1.00

R
ed

uc
tio

n
R

at
e

p=1.00
p=0.50
p=0.25
p=0.00

Figure 7.2: The effect of p on the reduction rates when the rates are chosen based on the
layer sizes. The bars show the size of the layers as the number of parameters.

retraining the reduced network, or parts thereof. The distinction between normal training
and finetuning is that during finetuning, the network is only trained for one or two epochs,
on a subset of the original training data. In comparison, the original network was trained
for 9 epochs on 34 Million samples and the training process took around four days.

The available data usable for finetuning is limited anyways, as I explained in Section 7.1.1.
This means that at most 17 Million samples are used when finetuning. Due to the
unoptimized implementations of the CP convolution (see Section 6.1.3) the training
process is also too slow to handle more data. For low reduction rates the training can take
up to 4 days for one epoch and 17 Million moves on a GeForce GTX TITAN X graphics
card.

A learning rate of 0.00001 is used when training convolution layers and set to 0.001 for
affine layers. These values have shown to provide good results during finetuning. The
batch size is always set to 128. The finetuning process is restricted to only the reduced
layers, leaving the other layers untouched. This mostly means that either all convolution
layers are trained or the single affine layer.

63

7 Go Network Reduction and Evaluation

7.4 Evaluation

In this section, I will show the results of the evaluation of the different reduction techniques
and methods from the previous section. The previous sections made some assumptions
about possible reduction rates and performance of the techniques. In summary, the
following can be expected:

1. CP based reduction results in higher accuracy than the SVD based reduction when
using the same rate.

2. The convolution layers can be reduced by about 75% without losing accuracy.

3. Choosing a non-uniform distribution of the reduction rates results in a higher
accuracy for the same reduction rate.

4. Finetuning the reduced models improves the accuracy.

5. With increasing reduction rates, the reduced models compute results faster and
require less memory. A 50% parameter reduction should result in at least a 2 ×
speedup and require no more than half the memory.

6. Reduced models with fewer FLOPs consume less power on a mobile device.

7.4.1 SVD vs. CP

In Section 5.3 the two reduction methods SVD and CP were introduced. The assumption
was made that the CP decomposition will provide better reduction results because it can
operate on the complete weight tensor instead of 2D slices. For the evaluation I uniformly
reduced all convolution layers with different rates using the SVD reduction. The SVD
reduction only works on two-dimensional slices of the original weights, where the size of
one dimension is relatively small (25 - 49). This means that it often cannot exactly match
the desired reduction rate because it has to cut off the matrices at a higher rank. However,
the CP reduction can match a desired rate very closely. Therefore, to get a fair comparison,
the resulting reduction rates of the SVD reduction were used for the CP reduction.

The result of the evaluation is shown in Table 7.3 where the resulting SVD reduction
rates for a 50%, 60%, 65%, 70%, 75% and 80% reduction are shown with the number
of parameters, FLOPs and the accuracy of both reduction methods. The difference in the
number of parameter for the two methods shows, that the CP reduction can relatively
accurately match the SVD reduction rate.

From Figure 7.3 we can immediately see that both reduction techniques can reduce the
convolution layers by 62% within an acceptable loss of accuracy. With the CP reduction it

64

7.4 Evaluation

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Reduction rate

A
cc

ur
ac

y

Original
CP
SVD

Figure 7.3: Accuracy comparison between SVD and CP based reduction for different
reduction rates of the convolution layers

SVD CP
Rate # Params FLOPs Accuracy # Params FLOPs Accuracy

Original 428 288 154 611 968 40.12% 428 288 154 611 968 40.12%
56.44% 186 576 67 353 936 39.89% 187 980 67 860 780 39.89%
62.38% 161 544 58 317 384 39.39% 162 314 58 595 354 40.08%
68.34% 135 608 48 954 488 37.39% 136 858 49 405 738 39.99%
73.12% 115 136 41 564 096 29.37% 115 053 41 534 133 39.23%
77.26% 97 376 35 152 736 22.70% 97 924 35 350 564 37.26%
83.11% 72 344 26 116 184 11.86% 72 290 26 096 690 26.48%

Table 7.3: Comparison between SVD and CP for different reduction rates. The colors
indicate good, acceptable and bad accuracy results.

is possible to increase the reduction rate to 73% without a major loss in accuracy. This
confirms our first assumption that the CP reduction is better than the SVD reduction.

7.4.2 CP Reduction Stability

In the previous section it was shown that the CP reduction seems to be superior to the
SVD reduction for all rates. Yet before we can argue about results of the CP reduction we

65

7 Go Network Reduction and Evaluation

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Reduction rate

A
cc

ur
ac

y

Original
Uniform CP reduction
Uniform CP reduction with FT

Figure 7.4: Stability of the CP uniform reduction showing the mean, minimum and
maximum accuracy. The orange area is the standard deviation of the non-
finetuned models.

need to keep in mind that there is no stable algorithm to calculate the best approximation
for a given rank, as mentioned in Section 5.3.2. This means that multiple reductions using
the same rank or reduction rate can result in models having a different accuracy.

To get an idea about the instability, 50 models for different reduction rates were reduced
and evaluated. Additionally 10 models, including the best and worst, were finetuned
with 1M moves to see if the accuracy of the approximation has an effect on the finetuned
model. The result can be seen in Figure 7.4. While I initially expected the variations in
accuracy to be small and negligible, I was proven to be wrong. CP reduced models with
the same reduction rate can vary by up to 10 percentage points for certain reduction rates.
By finetuning the models we can reduce the differences substantially and the instability of
the CP reduction is alleviated. Based on these findings it is not meaningful to compare
differently reduced models on higher rates, when no finetuning is involved, as potential
differences inside the standard deviation can attributed solely to the instability of the
approximation.

From Table 7.4 we can see that without finetuning the maximum accuracy is 39.00%
for model reduced by 75%. This somewhat confirms the second assumption, that states
that the convolution layers can be reduced by 75% without a loss in accuracy. Also by
finetuning the models with only 1 Million samples, we can recover about half of the lost
accuracy, which should improve even more when using more data.

66

7.4 Evaluation

Rate Without Finetuning With Finetuning
Mean Max Min Error (σ) Mean Max Min Error (σ)

50% 39.92% 40.13% 39.84% ± 0.09% 39.48% 39.56% 39.37% ± 0.07%
60% 39.92% 40.14% 39.83% ± 0.10% 39.92% 40.16% 39.71% ± 0.15%
70% 39.66% 39.89% 39.48% ± 0.11% 39.88% 40.01% 39.76% ± 0.10%
75% 38.56% 39.00% 38.17% ± 0.17% 39.37% 39.55% 39.24% ± 0.11%
77% 37.49% 38.01% 37.00% ± 0.30% 38.91% 38.99% 38.82% ± 0.08%
80% 34.00% 35.14% 32.16% ± 0.57% 37.57% 37.81% 37.35% ± 0.16%
82% 30.77% 32.29% 29.81% ± 0.67% 36.40% 36.56% 36.18% ± 0.13%
85% 24.31% 27.28% 20.22% ± 1.56% 32.96% 33.12% 32.86% ± 0.09%
90% 13.76% 18.17% 8.06% ± 2.06% 26.59% 27.19% 26.27% ± 0.29%
95% 6.74% 9.91% 4.06% ± 1.43% 18.50% 18.98% 18.10% ± 0.30%

Table 7.4: Results of the analysis of over 500 CP reduced models and 100 finetuned
models. The table shows the selected reduction rate together with the mean,
minimum, maximum and standard deviation of the accuracies.

7.4.3 Non-uniform Reduction based on Layer Sizes

While good results can already be achieved with a uniform reduction of the layers, the
reduction rate can hopefully be increased even more by reducing the layers non-uniformly
based on their size. As the layers in our network vary greatly in size, this approach seems
so make sense.

The method introduced in Section 7.3.2 requires that a value for the non-uniformity
parameter p is chosen. Therefore different values for p also need to be evaluated. From
Figure 7.2 it can be seen that sensible values for p are in the range from 0 to 0.5 as higher
values will reduce the bigger layers by too much.

In Figure 7.5 four different non-uniform reductions are plotted against the uniform
reduction. Unfortunately the result is not what I expected. The best accuracy was achieved
using p = 0.05, which shows a small improvement for the 85% and 90% reductions. With
p = 0.05, the individual reduction rates of the convolution layers come close to a uniform
reduction. When increasing or even negating p the accuracy drops very quickly making
this approach essentially useless for our model. This unfortunately does not confirm the
third assumption made at the beginning of this section.

7.4.4 Non-uniform Reduction based on Approximation Error

Instead of defining a desired reduction rate, this non-uniform reduction requires a thresh-
old parameter to find the highest reduction rate, that keeps the approximation error below

67

7 Go Network Reduction and Evaluation

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Reduction rate

A
cc

ur
ac

y

Original
Uniform CP reduction
Uniform CP reduction with FT
Non-uniform CP reduction with FT (p=0.05)
Non-uniform CP reduction with FT (p=-0.05)
Non-uniform CP reduction with FT (p=0.10)
Non-uniform CP reduction with FT (p=-0.10)

(a) Full graph comparing the finetuned non-uniform reduction against the uniform reduction.

0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85
0.30

0.35

0.40

Reduction rate

A
cc

ur
ac

y

Original
Uniform CP reduction
Uniform CP reduction with FT
Non-uniform CP reduction with FT (p=0.05)
Non-uniform CP reduction with FT (p=-0.05)
Non-uniform CP reduction with FT (p=0.10)
Non-uniform CP reduction with FT (p=-0.10)

(b) Magnification of the range from 0.7 to 0.8 from of the above figure

Figure 7.5: Accuracy comparison between uniform and non-uniform CP based reduction
for different reduction rates for the convolution layers.

68

7.4 Evaluation

#1 #2 #3 #4 #5 #6 #7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Convolution Layer

A
pp

ro
xi

m
at

io
n

er
ro

r

0.50
0.60
0.70
0.75
0.80
0.85
0.90
0.95

Figure 7.6: Mean values of the weight approximation error per layer for different reduc-
tion rates.

this threshold. Before such a threshold can be chosen, we have to know in which range
the approximation error lies. I therefore analyzed the models created for the CP stability
analysis and calculated the error for each layer separately. In Figure 7.6 the approximation
error of all convolution layers using different reduction rates are shown. A bigger value
corresponds to a worse approximation of the weights, which is quite clear as it increases
for higher reduction rates.

We have seen that a reduction rate of 70% can result in a model with nearly no loss
in accuracy and that by going beyond 80% reduction, the accuracy drops dramatically.
Therefore it seems sensible to choose threshold values between 0.1 and 0.3. Looking
at the three curves for the 70%, 75% and 80% reduction rates, it can be seen that the
first and the last two layers seem to be the layers most sensitive to reduction as they
have the biggest error. The second and third layer have the smallest error and therefore
seem to be least sensitive to reduction. This seems to support the idea behind the non-
uniform reduction from the previous section, that small layers may be the bottle neck
when reducing. Interestingly, this does not seem to be the case for the 85% and 90%
reductions where the previous method had the best results.

In Figure 7.7 the results for different thresholds are shown. The reduction rates for the
individual models were chosen by a binary search algorithm which starts with a 50%
reduction and selects 25% or 75% in the next iteration depending on the approximation
error. With 8 iterations this results in a reduction rate step size of 1

28 ≈ 0.0039. The result is

69

7 Go Network Reduction and Evaluation

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Reduction rate

A
cc

ur
ac

y

Original
Uniform CP reduction
Uniform CP reduction with FT
Approximation error based reduction
Approximation error based reduction with FT

Figure 7.7: Accuracy of the weight difference based reduction for the thresholds 0.1, 0.15,
0.2, 0.25, 0.275, 0.3, 0.325, 0.35 and 0.4.

similar to the layer size based non-uniform reduction in that there is no big improvement
over the uniform reduction.

The results in Figure 7.7 have to be interpreted with caution because of the instability
of the CP approximation covered in Section 7.4.2. If an approximation happens to be
particular bad, then the algorithm that chooses the reduction rates will select a lower
reduction rate. I noticed that only after I discovered the big fluctuations in the accuracy of
non-finetuned models.

Comparing the layer weights may however still be useful to find reduction rates that have a
low approximation error and therefore have a good accuracy. This is confirmed by looking
at the first data point of the non-finetuned curve that has an accuracy of 39.79% and
corresponds to a model created using a 0.1 threshold. If no data for testing is available,
then this might be a good way to conservatively reduce a model while still retaining the
original accuracy.

7.4.5 Affine Reduction

So far we have concentrated on reducing the convolution layers and achieved good results
there. The only other type of layer in our Go model is the last affine layer and we will
have a look at it in this section. The SVD, which is used to create an approximation of the

70

7.4 Evaluation

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Reduction rate

A
cc

ur
ac

y

Original
Affine reduction

Figure 7.8: Accuracy of the affine layer reduction.

affine weights, has a stable algorithm. Therefore no stability analysis has to be performed
as the approximation will always be the same.

Unfortunately reducing the affine layer even by low rates has a severe impact on the
accuracy of the Go model, as is evident from Figure 7.8. A reduction by 10% already
reduces the accuracy to 35.62% and it decreases near linear to 5.14% for a reduction rate
of 90%. This likely indicates that the affine weights do not contain redundant information
in a away that is exploitable by a SVD. In the next section we will see how we can improve
the accuracy with finetuning.

7.4.6 Finetuning

Finetuning was already used to counteract the instability of the CP reduction when
comparing reductions of the convolution layers. To speed up the finetuning process only
1 Million instead of all 17 Million moves were used. In this section we have a look at
the improvements when using all available data and when training for more than one
epoch.

The finetuning process does not try to improve the approximation of the layer weights.
Instead, the approximation can be seen as a good initialization of the weights that will be
refined by a classical neural network training. Instead of the usual random initialization of
the weights, the approximated weights already give good results. It is therefore possible
to improve a reduced model, even when using only a small amount of training data.

71

7 Go Network Reduction and Evaluation

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Reduction rate

A
cc

ur
ac

y

Original
Uniform CP reduction
Uniform CP reduction with FT
Uniform CP reduction with FT (17m moves)
Uniform CP reduction with FT (17m moves, 2 epochs)

Figure 7.9: Accuracy of finetuned models using 1m and 17m moves.

Rate 1M moves 17M moves 17M moves, 2 epochs

75% 39.37% 39.92%
80% 37.57% 38.98% 39.18%
85% 32.96% 36.46% 37.06%
90% 26.59% 31.82%
95% 18.50%

Table 7.5: Accuracies of finetuned convolution layer reductions.

As explained in Section 7.1, the original network was trained with reflection preserving
kernels and 32 Million moves for 9 epochs. We are limited to at most 17 Million moves
and all of that will be used for finetuning.

We have already seen in the CP stability analysis that finetuning with 1 Million moves
can recover about half of the lost accuracy for convolution layers. By using all 17 Million
moves, the accuracy is again improved by a significant amount, as can be seen in Figure 7.9
and Table 7.5. Another small improvement is achieved by finetuning the model for two
epochs.

Looking at Figure 7.10 and Table 7.6 we can observe similar results when finetuning the
single affine layer. With 1 Million moves, the accuracy improves by a big amount and
another big jump is achieved when using all 17 Million moves. It is very likely that training
for additional epochs will improve the accuracy even more.

72

7.4 Evaluation

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Reduction rate

A
cc

ur
ac

y

Original
Affine reduction
Affine reduction with FT (1m moves)
Affine reduction with FT (17m moves)

Figure 7.10: Accuracy of affine layer reductions with finetuning.

Rate no FT 1M moves 17M moves

10% 35.62% 38.32% 39.50%
20% 32.76% 37.38% 39.16%
30% 29.87% 36.45% 38.92%
40% 26.64% 35.57% 38.57%
50% 23.33% 34.11% 38.27%
60% 19.64% 32.88% 37.88%
70% 15.29% 31.20% 37.43%
80% 10.16% 28.23% 36.59%
90% 5.14% 20.87% 32.92%

Table 7.6: Accuracies of affine layer reductions.

73

7 Go Network Reduction and Evaluation

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Reduction rate

A
cc

ur
ac

y

Original
Global-Network Reduction
Global-Network Reduction Reduction with FT

Figure 7.11: Accuracies of models were all layers have been reduced uniformly.

Rate no FT 17M moves

10% 35.46% –
20% 32.58% –
30% 30.04% 38.85%
40% 26.63% 38.06%
50% 23.35% 37.83%
60% 19.58% 37.24%
70% 15.32% 36.72%
80% 8.17% 35.06%
85% 3.94% 33.40%
90% 1.74% 30.49%

Table 7.7: Accuracies of uniform global-network reductions with and without the use of
finetuning.

7.4.7 Global-Network Reduction

So far we have either reduced the convolution layers or the affine layer. What is missing
is applying reductions to both layer types at the same time. Due to the bad performance
of the SVD affine reduction, resulting models are expected to be quite bad and unusable
without finetuning.

74

7.4 Evaluation

Rate Time Speedup Memory Improvement

None 2714 ms – 18981 KiB –
10% 1807 ms 1.50 × 17183 KiB 1.10 ×
20% 1598 ms 1.69 × 15386 KiB 1.23 ×
30% 1397 ms 1.94 × 13590 KiB 1.40 ×
40% 1204 ms 2.25 × 11793 KiB 1.61 ×
50% 994 ms 2.73 × 9997 KiB 1.89 ×
60% 794 ms 3.41 × 8201 KiB 2.31 ×
70% 595 ms 4.56 × 6404 KiB 2.96 ×
80% 396 ms 6.85 × 4608 KiB 4.12 ×
90% 198 ms 13.71 × 2811 KiB 6.75 ×

Table 7.8: The computation time and memory usage of models reduced with increasing
rates together with their speedup/improvement over the original model.

Figure 7.11 shows the results of a uniform reduction of all layers and confirms the expected
bad results. Upon closer inspection, the accuracies of the non-finetuned models are very
similar to the accuracies of non-finetuned affine reduction up until a 70% reduction.
This makes sense when we consider that the convolution layers can be reduced by up to
75% without a loss of accuracy. Even the finetuned results are similar to the finetuning
results of the affine layer, indicating that the affine layer is still the limiting factor. Further
improvements are likely achieved by training for more epochs and adjusting the learning
rate. But the unoptimized implementations of the CP convolution layers prevented more
experiments, especially for lower rates as finetuning the model reduced by 50% already
took over three days.

7.4.8 Prediction Speed and Memory Usage

At the beginning of Section 7.4 it was mentioned that a reduction of the parameters should
lead to a model, that can compute results faster and consumes less memory. To test if
this assumption is true, a benchmark program was written, that measures the time it
takes to execute 20 forward passes and outputs the maximum memory consumption. The
benchmark program is written in C and uses the code from the sDeePy C-Exporter, because
the implementation of the convolution and CP convolution layers is comparable. Both
implementations use the same underlying convolution algorithm and are not parallelized.
Memory usage was measured using the memory tracking mechanism, that is built into
the sDeePy Exporter. The benchmark was compiled with GCC 4.8.3 using the -Ofast

optimization level and executed on a Intel Xeon X5570 CPU that runs at 2.93GHz.

75

7 Go Network Reduction and Evaluation

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

2

4

6

8

10

12

14

Reduction Rate

Im
pr

ov
em

en
t

Time
Memory
Memory (adjusted)
Theoretical

Figure 7.12: Improvements of the computation time and memory consumption for differ-
ent reduction rates. The gray curve is the theoretical expected improvement.

For the benchmark, the models of the global network reduction were used. Although this
combines the reduction of the convolution and affine layers, this should still allow us
to independently look at the effects of the respective reductions because of the unequal
distribution of parameters and FLOPs between the layer types (see Section 7.1). The timing
and memory values from this benchmark are shown in Table 7.8 and reveal suprising
results.

Already a model reduced by only 10% shows a significant 1.5 × speedup in computation
time. And a 80% FLOPs reduction should theoretically result in a 1

1−0.8 = 5× speedup,
yet it is a 6.85 × speedup. The proportionally high speedups can be easily seen in Figure
7.12, where the curve for the computation speedup is above the curve for the theoretical
improvement for all rates. By reducing the models, the number of parameters is reduced
and individual parameters may be reused more often for the calculation of the model
output. This improves the CPU cache efficiency of the algorithms and thus explaining the
speedups. The same effect was observed on the Xperia Z3 smartphone, where the original
model took 558 ms and a 80% reduced model improved it by a factor of 9.78 to 57 ms for
a single forward-pass.

Improvements in the memory usage are more in line with the theoretical improvement, but
fall behind when surpassing the 50% reduction. After analyzing how the C-code allocates
memory, it was noticed that the exported models always keep the input for all layers in
memory. The size of the layer input is not affected by the used reduction methods and

76

7.4 Evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

Runtime in hours

B
at

te
ry

Le
ve

l

Z3C original
Z3C reduced
Z1C original
Z1C reduced

Figure 7.13: Battery consumption of the original and a 80% reduced model over the
course of 14 hours.

therefore constant for all reduced models. After accounting for the 132072 float numbers
(see Table 7.1) needed to keep all layer inputs in memory, the memory improvements
come close to the theoretical expected ones.

7.4.9 Energy Consumption

Besides a faster computation and lower memory usage, the power consumption is an
important factor on a mobile device. The energy consumption was measured using an
Android service that executes 20 predictions every minute and records the battery level
after each run. A PARTIAL_WAKE_LOCK is acquired when calculating the predictions to make
sure the CPU of the smartphone can use the highest frequency and get it done as quickly
as possible. The wakelock is released immediately afterwards to allow the phone to get
back into a deep sleep state as soon as possible. To ensure the system wakes up in a timely
manner, a RTC_WAKEUP is used.

The test itself was executed on a Xperia Z1 Compact and on a Z3 Compact with the
original and a model where the FLOPs were reduced by 80%. To prevent other Apps and
updates to interfere with the test, the phones were put into airplane mode, which disables
all connectivity. The result of this can be seen in Figure 7.13. It is immediately obvious
that the battery level dropped significantly faster when using the original model compared
to the reduced one. Over the course of 14 hours the battery dropped to 41% on the Z1

77

7 Go Network Reduction and Evaluation

and to 49% on the Z3 when using the original model. When using the reduced model, the
battery dropped only to 88% and 90%, which is an 5× improvement on both phones.

When looking at the previous 6.85 × speedup in computation time, a bigger improvement
in battery consumption can be expected. But relying on the battery information from
the Android system is not a very accurate method because other hardware and software
components still consume power, even though the phone is idle. Additionally, the CPU
might not immediately go into a low power state after the computations are done and thus
drawing more power than necessary. A more accurate method would be to measure the
power consumption of the CPU directly with an external device like done in [KPY+15].

7.5 Summary

Of the introduced reduction methods, the CP reduction of the convolution layers shows
the best results. These good results are explained by the redundancy of the kernels, due
to their reflection preservation. The convolution layers can be reduced by up to 75%
without finetuning and still produce models with a good accuracy. When finetuning
the convolution layers, acceptable models can be produced with a reduction of 85%.
While finetuning improves the already good results of the CP convolution reduction, it
is absolutely necessary when reducing the single affine layer. Without finetuning a 10%
reduction already drops the accuracy of the resulting model to an unacceptable 35.62%.
By finetuning the affine layer, the layer can be reduced by up to 70% with an acceptable
drop in accuracy.

78

8 Summary and Outlook

In this bachelor thesis, a Go game demo in form of an Android App was developed. The
App is able to detect a marked Go board and the position of the stones in images taken
directly from within the App by the smartphone or tablet’s camera. Knowing the stone
positions, the App overlays the predictions for the next best moves on the image. The App
was used to show the benefits of the Convolutional Deep Neural Network reduction at an
internal Sony exhibition in Tokyo. It allows the selection of different reduced models to
compare the move predictions and computation speed. The App managed to catch the
attention of various managers and executives, including Sony’s Chief Financial Officer
Kenichiro Yoshida. The booth at the exhibition was well attended and visitors had to form
a queue to have a look at the demonstrations, which included a video playing back a
Go game to highlight the speedup of the a reduced Go model. The app was also shown
multiple times to in-house visitors in Stuttgart and based on the received feedback, can be
seen as a success.

When concentrating on the convolution layers, it is possible to reduce the model by 70%
with only dropping the accuracy by 0.46 percentage points to 39.66%. With the use of
finetuning, the reduction rate can be increased to 80% with a drop of 0.94 percentage
points. Unfortunately, the single affine layer could not be reduced by anywhere near the
same amount. Without finetuning, the affine layer reduction did not produce models with
acceptable accuracy. When finetuning the single affine layer, a large drop in accuracy could
be recovered and a 70% reduction, with an acceptable accuracy loss of 2.69 percentage
points, is possible. When reducing both layer types at the same time, the Go model can be
reduced by 60% within an acceptable drop of accuracy to 37.24%.

The reduced models show their benefits when measuring the computation time, memory
consumption or power usage. Due to improved utilization of the CPU caches, a small
reduction of 10% already speeds up the computation by 1.5 × on a Xeon X5570 CPU.
Reducing the model by 80% gives us a 6.85 × speedup on the same CPU and a 9.78 ×
speedup on a Xperia Z3 smartphone. Compared to the original model, the 80% reduced
model also reduces the power consumption of the smartphone by the same amount.

79

8 Summary and Outlook

8.1 Future Work

Based on the results of this thesis there are many ideas that can be realized in future work.
A new App could be created that uses a neural network for the artificial intelligence. With
a strength of 4-5 kyu, this App would provide a stronger computer controlled opponent
compared to many existing Android Apps that are based on GnuGo. For power users, this
app may also improve the battery life because the move predictions can be calculated
quicker and use less battery. The augmented reality aspect of the current App could also
be improved to speed up the board detection. A possible board and stone detection in real
time might be possible when utilizing the CPU and GPU together. Alternatively, the board
could be detected without the need for special markers based on the grid on the board
and shape of the stones. When considering the network reduction aspect of this thesis,
then an implementation of a parallel and fast CP convolution is something I was missing
and could potentially realized in various ways.

80

81

A Appendix

A Appendix

A.1 C-Exporter Source Code

Listing A.1 C implementation of the 1D convolution.
inline void convf(float *in, float *kernel, float * out, int in_size,

int kernel_size, int out_size, int padding) {

assert(in_size - kernel_size + 1 + 2 * padding == out_size);

int k, o, idx;

const float *subin;

float sum;

// Slide kernel over input

// Left part with zero padding

for (o = 0, subin = &in[o - padding]; o < padding; ++o, ++subin) {

sum = 0;

for (k = 0, idx = o - padding; k < kernel_size; ++k, ++idx) {

// Ignore values outside of the input to simulate zero-padding

if (idx >= 0) {

sum += kernel[kernel_size - k - 1] * subin[k];

}

}

out[o] += sum;

}

// Middle part of the input where no zero padding is needed

for (o = padding, subin = &in[0]; o < out_size - padding; ++o, ++subin) {

sum = 0;

for (k = 0; k < kernel_size; ++k) {

sum += kernel[kernel_size - k - 1] * subin[k];

}

out[o] += sum;

}

// Right part with zero padding

for (o = out_size - padding, subin = &in[o - padding]; o < out_size; ++o, ++subin) {

sum = 0;

for (k = 0, idx = o - padding; k < kernel_size; ++k, ++idx) {

// Ignore values outside of the input to simulate zero-padding

if (idx < in_size) {

sum += kernel[kernel_size - k - 1] * subin[k];

}

}

out[o] += sum;

}

}

82

A.1 C-Exporter Source Code

Listing A.2 C implementation of the 2D convolution.
/*

* 2D float convolution with optional zero padding around the input.

*/

inline void convf2d(float *in, float *kernel, float *out, int in_height, int in_width,

int kernel_height, int kernel_width, int out_height, int out_width,

int padding_height, int padding_width) {

assert(in_height - kernel_height + 1 + 2 * padding_height == out_height);

assert(in_width - kernel_width + 1 + 2 * padding_width == out_width);

int o, k, idx;

for (o = 0; o < out_height; ++o) {

float *out_row = &out[out_width * o];

idx = o - padding_height;

for (k = 0; k < kernel_height; ++k) {

// Ignore values outside of the input to simulate zero-padding

if (idx >= 0 && idx < in_height) {

// Flip kernel

float *kernel_row = &kernel[kernel_width * (kernel_height - k - 1)];

float *in_row = &in[in_width * idx];

convf(in_row, kernel_row, out_row, in_width, kernel_width, out_width, padding_width);

}

++idx;

}

}

}

83

A Appendix

Listing A.3 C implementation of the 2D CP convolution layer (part 1).
void cpconvolution(float *input, int in_maps, int in_height, int in_width,

float *output, int out_maps, int out_height, int out_width,

int k_height, int k_width,

CPConvolutionConfig *config) {

// Shape: outmaps x rank

float *o_factors = config->o_factors;

// Shape: inmaps x rank

float *i_factors = config->i_factors;

// Shape: kernelelements x rank

float *k_factors = config->k_factors;

// Shape: outmaps

float *b_factors = config->b_factors;

int rank = config->rank;

int pad_height = config->padding_height;

int pad_width = config->padding_width;

int m, r, i, j;

// k_factor shape is k_height x k_width x rank. But we need to pass the whole

// kernel into the convolution function. So move the rank dimension to the

// beginning.

float (*kernels)[k_height][k_width][rank] = (float (*)[k_height][k_width][rank])k_factors;

float sk[rank][k_height][k_width];

for (i = 0; i < k_height; ++i) {

for (j= 0; j < k_width; ++j) {

for (r = 0; r < rank; ++r) {

sk[r][i][j] = (*kernels)[i][j][r];

}

}

}

// Initialize output to bias values

for (m = 0; m < out_maps; ++m) {

float *map = &output[m * out_height * out_width];

float bias = b_factors[m];

for (i = 0; i < out_height * out_width; ++i) {

map[i] = bias;

}

}

84

A.2 3D Printed Marker Bases

Listing A.4 C implementation of the 2D CP convolution layer (part 2).
float tmp_map[in_height * in_width];

float conv_map[out_height * out_width];

for (r = 0; r < rank; r++) {

memset(&tmp_map, 0, sizeof(tmp_map));

memset(&conv_map, 0, sizeof(conv_map));

// Multiply each input map with the corresponding factor and sum them to

// create an intermediate input map.

for (m = 0; m < in_maps; m++) {

float *map = &input[m * in_height * in_width];

float w = i_factors[m * rank + r];

for (i = 0; i < in_height * in_width; ++i) {

tmp_map[i] += w * map[i];

}

}

// Convolve intermediate map

// Kernel for current rank

float *kernel = &sk[r][0][0];

convf2d(&tmp_map[0], kernel, &conv_map[0], in_height, in_width, k_height,

k_width, out_height, out_width, pad_height, pad_width);

// Apply the convolved output to each output map

for (m = 0; m < out_maps; ++m) {

float *map = &output[m * out_height * out_width];

float w = o_factors[m * rank + r];

for (i = 0; i < out_height * out_width; ++i) {

map[i] += w * conv_map[i];

}

}

}

}

A.2 3D Printed Marker Bases

Because the markers are placed outside the actual board, one needs to make sure that
the marker surface is on a plane with the board surface. Without a supporting structure,
markers printed on paper or cardboard drop a little at their corners and thus make it
harder for the board detection to find a good perspective projection. The developed
solution uses 3D printed marker bases, that have been designed with the height of the Go

85

A Appendix

Figure A.1: A render of the marker base with a paper sheet of the marker image stuck on
top.

Figure A.2: The marker base in the process of being printed by a MakerBot. Printing one
marker base took 3 hours.

board in mind and allow printed marker images to be slided in and out. A render of the
maker can be seen in Figure A.1. An overhang is used to fix the sheet of paper. Figure A.2
shows the process of printing the marker using a MakerBot 3D printer. The marker base
has been rotated to the side to avoid having problems when printing the overhang.

86

Bibliography

[All94] L. V. Allis. Searching for Solutions in Games and Artificial Intelligence. 1994
(cit. on p. 15).

[Alp16] AlphaGo. AlphaGo | Google DeepMind. https://deepmind.com/alpha-

go.html. 2016 (cit. on p. 11).

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006
(cit. on pp. 31, 34, 36).

[CS14] C. Clark and A. J. Storkey. “Teaching Deep Convolutional Neural Networks
to Play Go.” In: CoRR abs/1412.3409 (2014). URL: http://arxiv.org/abs/
1412.3409 (cit. on pp. 11, 15, 57).

[CS15] C. Clark and A. J. Storkey. Play Go Against a Deep Neural Network. https:
//chrisc36.github.io/deep-go/. 2015 (cit. on p. 58).

[dSL08] V. de Silva and L.-H. Lim. “Tensor Rank and the Ill-Posedness of the Best
Low-Rank Approximation Problem.” In: SIAM J. Matrix Anal. Appl. 30.3
(Sept. 2008), pp. 1084–1127. URL: http://dx.doi.org/10.1137/06066518X
(cit. on p. 45).

[Fia04] M. Fiala. ARTag revision 1, a fiducial marker system using digital techniques.
Tech. rep. NRC 47419/ERB-1117. 2004 (cit. on p. 23).

[Hir08] M. Hirzer. Marker Detection for Augmented Reality Applications. http://lrs.
icg.tugraz.at/pubs/hirzer_tr_2008.pdf. 2008 (cit. on p. 23).

[JVZ14] M. Jaderberg, A. Vedaldi, and A. Zisserman. “Speeding up Convolutional
Neural Networks with Low Rank Expansions.” In: CoRR abs/1405.3866
(2014). URL: http://arxiv.org/abs/1405.3866 (cit. on pp. 41, 42).

[KB09] T. G. Kolda and B. W. Bader. “Tensor Decompositions and Applications.” In:
SIAM Rev. 51.3 (Aug. 2009), pp. 455–500. URL: http://dx.doi.org/10.
1137/07070111X (cit. on p. 44).

[KGS16] KGS-Go-Server. KGS-Go-Server-Ranggraph. http : / / www . gokgs . com /

graphPage.jsp?user=fuego19. 2016 (cit. on p. 57).

87

https://deepmind.com/alpha-go.html
https://deepmind.com/alpha-go.html
http://arxiv.org/abs/1412.3409
http://arxiv.org/abs/1412.3409
https://chrisc36.github.io/deep-go/
https://chrisc36.github.io/deep-go/
http://dx.doi.org/10.1137/06066518X
http://lrs.icg.tugraz.at/pubs/hirzer_tr_2008.pdf
http://lrs.icg.tugraz.at/pubs/hirzer_tr_2008.pdf
http://arxiv.org/abs/1405.3866
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1137/07070111X
http://www.gokgs.com/graphPage.jsp?user=fuego19
http://www.gokgs.com/graphPage.jsp?user=fuego19

Bibliography

[KPY+15] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. “Compression of Deep
Convolutional Neural Networks for Fast and Low Power Mobile Applications.”
In: CoRR abs/1511.06530 (2015). URL: http://arxiv.org/abs/1511.06530
(cit. on pp. 42, 78).

[LGR+14] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempit-
sky. “Speeding-up Convolutional Neural Networks Using Fine-tuned CP-
Decomposition.” In: CoRR abs/1412.6553 (2014). URL: http://arxiv.org/
abs/1412.6553 (cit. on pp. 42, 45).

[Lib16] S. Library. Current state of computer go. http : / / senseis . xmp . net /

?ComputerGo. 2016 (cit. on pp. 11, 16).

[MHSS14] C. J. Maddison, A. Huang, I. Sutskever, and D. Silver. “Move Evaluation in
Go Using Deep Convolutional Neural Networks.” In: CoRR abs/1412.6564
(2014). URL: http://arxiv.org/abs/1412.6564 (cit. on p. 15).

[NVI16] NVIDIA. NVIDIA cuDNN. https://developer.nvidia.com/cudnn. 2016 (cit.
on p. 50).

[Ope16a] OpenCV. OpenCV Color Blob Detection. https : / / github . com / Itseez /

opencv / tree / master / samples / android / color - blob - detection / src /

org/opencv/samples/colorblobdetect/. 2016 (cit. on p. 20).

[Ope16b] OpenCV. OpenCV Find Homography. http : / / docs . opencv . org / 2 . 4 /

modules / calib3d / doc / camera _ calibration _ and _ 3d _ reconstruction .

html?highlight=findhomography. 2016 (cit. on p. 25).

[Ope16c] OpenCV. OpenCV HoughCircles. http://docs.opencv.org/2.4/modules/
imgproc/doc/feature_detection.html?highlight=houghcircles. 2016
(cit. on p. 26).

[Ope16d] OpenCV. OpenCV Perspective Transformation. http://docs.opencv.org/2.
4/modules/imgproc/doc/geometric_transformations.html. 2016 (cit. on
p. 22).

[PSPS11] D. Prochazka, M. Stencl, O. Popelka, and J. Stastny. “Mobile Augmented
Reality Applications.” In: CoRR abs/1106.5571 (2011). URL: http://arxiv.
org/abs/1106.5571 (cit. on p. 23).

[SHM+16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. “Mastering the game of Go
with deep neural networks and tree search.” In: Nature 529 (2016), pp. 484–
503. URL: http://www.nature.com/nature/journal/v529/n7587/full/
nature16961.html (cit. on p. 16).

88

http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1412.6553
http://arxiv.org/abs/1412.6553
http://senseis.xmp.net/?ComputerGo
http://senseis.xmp.net/?ComputerGo
http://arxiv.org/abs/1412.6564
https://developer.nvidia.com/cudnn
https://github.com/Itseez/opencv/tree/master/samples/android/color-blob-detection/src/org/opencv/samples/colorblobdetect/
https://github.com/Itseez/opencv/tree/master/samples/android/color-blob-detection/src/org/opencv/samples/colorblobdetect/
https://github.com/Itseez/opencv/tree/master/samples/android/color-blob-detection/src/org/opencv/samples/colorblobdetect/
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=findhomography
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=findhomography
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=findhomography
http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=houghcircles
http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=houghcircles
http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html
http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html
http://arxiv.org/abs/1106.5571
http://arxiv.org/abs/1106.5571
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

[Ste93] G. W. Stewart. “On the Early History of the Singular Value Decomposition.”
In: SIAM Rev. 35.4 (Dec. 1993), pp. 551–566. URL: http://dx.doi.org/10.
1137/1035134 (cit. on pp. 40, 41).

[SZ14] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition.” In: CoRR abs/1409.1556 (2014). URL: http:
//arxiv.org/abs/1409.1556 (cit. on p. 31).

[SZG+09] F. Schweiger, B. Zeisl, P. Georgel, G. Schroth, E. Steinbach, and N. Navab.
“Maximum Detector Response Markers for SIFT and SURF.” In: Vision, Mod-
eling and Visualization Workshop (VMV). Braunschweig, Nov. 2009 (cit. on
p. 24).

[TF07] J. Tromp and G. Farnebäck. “Combinatorics of Go.” In: Computers and Games.
Ed. by H. J. van den Herik, P. Ciancarini, and H. H. L. M. Donkers. Vol. 4630.
Lecture Notes in Computer Science. Springer, Oct. 1, 2007, pp. 84–99. URL:
http://dblp.uni-trier.de/db/conf/cg/cg2006.html%5C#TrompF06 (cit.
on p. 11).

[Wik16a] Wikipedia. Complexities of some well-known games. https : / / en .

wikipedia.org/wiki/Game_complexity#Complexities_of_some_well\

discretionary{-}{}{}known_games. 2016 (cit. on p. 11).

[Wik16b] Wikipedia. HSL and HSV. https://en.wikipedia.org/wiki/HSL_and_HSV.
2016 (cit. on p. 21).

All links were last followed on March 20, 2015.

http://dx.doi.org/10.1137/1035134
http://dx.doi.org/10.1137/1035134
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://dblp.uni-trier.de/db/conf/cg/cg2006.html%5C#TrompF06
https://en.wikipedia.org/wiki/Game_complexity#Complexities_of_some_well\discretionary {-}{}{}known_games
https://en.wikipedia.org/wiki/Game_complexity#Complexities_of_some_well\discretionary {-}{}{}known_games
https://en.wikipedia.org/wiki/Game_complexity#Complexities_of_some_well\discretionary {-}{}{}known_games
https://en.wikipedia.org/wiki/HSL_and_HSV

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 About Sony
	1.2 Outline

	2 The Game of Go
	2.1 Rules
	2.2 Go AIs

	3 Android App
	3.1 Overview
	3.2 Board and Stone Detector
	3.3 Go Engine
	3.4 Move Predictor
	3.5 GUI

	4 Convolutional Deep Neural Networks
	4.1 Notation
	4.2 Hidden Layer
	4.3 Training
	4.4 Affine Layer
	4.5 Convolution Layer

	5 Deep Neural Network Reduction
	5.1 Number of Parameters and Operations
	5.2 Affine Layer Reduction
	5.3 Convolution Layer Reduction
	5.4 Rank selection

	6 Implementation
	6.1 Layers
	6.2 C-Exporter

	7 Go Network Reduction and Evaluation
	7.1 The Original Network
	7.2 Metrics
	7.3 Methods
	7.4 Evaluation
	7.5 Summary

	8 Summary and Outlook
	8.1 Future Work

	A Appendix
	A.1 C-Exporter Source Code
	A.2 3D Printed Marker Bases

	Bibliography

