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Abstract

Manual interaction tasks, such as playing a musical instrument, require certain amounts
of training until users are proficient. Electromyography (EMG) can bridge this gap
and is able to provide proficiency feedback without the need for supervision. EMG
measures the electrical potential that is related to muscular activity and has been used
in Human-Computer-Interaction (HCI) in a variety of applications. This thesis explores
the usage of EMG together with domain-specific movements, such as playing guitar
chords, in the context of musician-instrument interaction. This includes a review of
related work, an evaluation of suitable features, and machine learning methods as well
as the realization of an EMG guitar tutor system. The results of this thesis show that it is
possible to classify guitar chords with an average F1-measure of 87%. We identified a
trade-off between classifier-accuracy and window size, which is an important finding
regarding real-time interaction. Further, we evaluated a guitar tutor system within a
study. The results suggest, that electrodes and wires did not limit the participants in
playing the guitar. An analysis of inter-person generalizability shows that dimensionality
reduction methods can slightly increase the classifier performance. We propose further
solutions to enhance the guitar tutor system from a machine learning perspective as
well as from an usability perspective. Ultimately, we discuss how our findings can be
transferred to related domains.



Kurzfassung

Manuelle Interaktionen, wie z.B. das Spielen eines Musikinstrumentes, erfordern
ein gewisses MaRR an Ubung, bevor Nutzer diese sicher beherrschen. Elektromyo-
graphie (EMG) kann diesen Prozess unterstiitzen und den Nutzern Feedback geben,
ohne diese zu tiberwachen. EMG misst die, durch Muskelaktivitdt erzeugten, elek-
trischen Potentiale und wurde vielfach im Rahmen der Mensch-Computer-Interaktion
(MCI) benutzt. Diese Bachelorarbeit untersucht die Verwendung von EMG zusam-
men mit doman-spezifischen Bewegungen, wie z.B. Gitarren-Akkorden, im Bezug auf
die Musiker-Instrument-Interaktion. Diese Untersuchung umfasst einen Uberblick ver-
wandter Forschung, eine Evaluierung verschiedener Merkmale (Features) und Methoden
des machinellen Lernens, sowie die Entwicklung eines EMG Gitarren-Assistenz-Systems.
Die Ergebnisse dieser Bachelorarbeit zeigen, dass Gitarren-Akkorde mit einem durch-
schnittlichen F1-Wert von 87% klassifiziert werden konnen. Desweiteren konnten wir
eine Beziehung zwischen der Qualitit der Klassifikation und der verwandten Fenster-
GroRRe erkennen. Die Auswertung eines Gitarren-Assistenz-Systems fiihrten wir im
Rahmen einer Studie durch. Die Ergebnisse legen nahe, dass die angebrachten Elektro-
den und Kabel die Teilnehmer nicht beim Gitarrenspielen beeintrachtigt haben. Eine
Analyse der Inter-Personen-Generalisierbarkeit zeigte, dass Methoden zur Dimensional-
itatsreduktion die Qualitét der Klassifikationen leicht verbessern konnen. Wir beleuchten
Losungen zur Verbesserung des Gitarren-Assistenz-Systems im Kontext des maschinellen
Lernens als auch im Hinblick auf die Nutzbarkeit (Usability). Schlussendlich diskutieren
wir mogliche Anwendungen unserer Ergebnisse auf verwandte Forschungsbereiche.
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1 Introduction

Exploring the usage of biosignals is an emerging topic in the HCI community. One
especially promising type of biosignal is the electrical signal that is generated by neural
and muscular activities. This type of signal can be used to draw conclusions about brain
activity (electroencephalography) and muscle activity (electromyography).

In the field of HCI a broad range of novel interaction techniques using EMG have
been explored. These include sign-language recognition [Abr+16], wheelchair con-
trol [Moo+03] or detecting emotions using facial EMG [Vra93]. Moreover, musician-
instrument-interaction has been addressed using EMG in multiple ways ([TK02]
[Ars+06] [DCT+13]). However, the usage of domain-specific motions, such as playing
a chord on a guitar, in combination with EMG, has not been explored yet. This bachelor
thesis aims at making a first step in closing this gap. Besides conceptual insights, this
topic also offers great real-world applications. These include systems that support assem-
bly workers, help athletes to improve an exercise or tutor aspiring musicians to improve
their playing beyond audible characteristics. A prototype of a guitar tutor system will be
developed in the scope of this thesis.

Structure

This thesis is structured in seven chapters, each chapter’s content is briefly outlined
in the following. After the introduction, a presentation of related work will be given
in Chapter 2. Covering an explanation of the physiological foundations of EMG and
an overview of work on EMG in HCI. In Chapter 3 common analysis techniques of
EMG signals will be introduced. In Chapter 4 the findings of Chapter 3 will be applied
on classifying guitar chords using muscle signals of the upper forearm. Chapter 5
addresses the design and realization of an EMG guitar tutor system. Within Chapter 6
interesting questions for future work that arised throughout the work on this thesis will
be highlighted. Finally a conclusion of this thesis will be given in Chapter 7.






2 Background and Related Work

This chapter briefly introduces the physiological foundations of EMG. Further, it presents
work in the field of HCI that is related to this thesis.

2.1 Physiological Foundations

In order to interpret EMG signals correctly, one first has to understand how they are
produced and what one can infer from a given signal regarding the muscular activity.
Therefore, we start with a look at which processes and units are involved in the activation
of a muscle.

Motor Unit Action Potential (MUAP)

The motor unit can be considered "[...] the basic functional unit in muscular contraction."
[Hof84]. This term comprises "[the] ensemble of a motor neuron and the muscle fibers
it innervates." [Hof84]. "Each muscle is made up of many motor units." [Sap+08]. A
depiction of motor units and connected components is shown in Figure 2.1.

In order to activate a muscle, a signal is sent from the brain along the nervous system to
the motor neurons. The motor neurons then, activate the muscle fibers to which they are
connected via so called action potentials. These action potentials are electrical signals
that cause a contraction of the muscle fibers [Sap+08].

"The sum of all the electrical activity in a motor unit during contraction is referred to as
a motor unit action potential (MUAP)" [Sap+08]. This MUAP is what EMG measures
[Sap+08]. In particular, this means that EMG precisely measures the isometric muscle
activity [TKO2], that is the contraction of the muscle without a movement of the body
(e.g. pushing against a wall). In contrast to that, EMG is less appropriate to measure
isotonic muscle activity, that is a contraction with a motion but no change in tension
[TKO2].



2 Background and Related Work

Spinal cord

/
. Motor neuron axons

| -

Figure 2.1: The figure shows two motor units (one colored in red and one in blue)
based on Figure 12.18, Dee U. Silverthorn, Physiologie, 4., updated version,
Pearson 2009 [Sil09]. Usage permission granted by Pearson Deutschland.

Firing Rate and Recruitment

The exerted muscle force depends on two parameters, the firing rate wich corresponds
to the "firing frequency of the motor units" and the recruitment which corresponds to the
"number of active motor units" [Hof84]. Hof describes this with the following analogy:

This effect is analogous to what happens when one listens to the applause of
an audience, at various levels of participation (‘recruitment’) and enthusiasm
(‘firing rate’).

- A. L. Hof, [Hof84]

As Tanaka notes, this in particular means that "[...] EMG is ultimately not a continuous
signal, but the sum of discrete neuron impulses" [Tan]. This should be kept in mind
when one processes and analyzes EMG signals.

Furthermore, it is important to note that the single "[motor] units fire asynchronously”
[Hof84].
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2.1 Physiological Foundations

Invasive and Non-Invasive Electrodes

EMG signals can be acquired using two different techniques — invasive and non-invasive
electrodes. Both methods measure an electrical potential between one or more elec-
trodes and a reference electrode.

Invasive electrodes are inserted into the muscle using an injection needle [Hof84].
This method is also called needle EMG and ensures that one obtains a very selective
signal within a range of approximately 0.3 mm [Hof84]. Nevertheless, its main disad-
vantage is the need for an injection which makes it barely usable for HCI.

Non-invasive electrodes are applied onto the surface of the skin. This is also called sur-
face EMG (sEMG). Due to their placement on the skin surface, the signals are influenced
by different tissues between the muscle fibers and the skin. This degrades the signal
and makes it more challenging to draw detailed conclusions about the activity of single
muscles.

Within this thesis we will only address sEMG. If not further specified, EMG refers
to sEMG throughout all chapters.

Related Biosignals

There are several other biosignals that are linked to EMG closely. As some of them are
mentioned multiple times within this thesis, Table 2.1 gives a brief overview of the most
common signals.

Another related biosignal is the MMG (mechanomyogram)!. In contrast to EMG, it is
not an electrical signal, but an acoustical one. It can be measured as the muscle fibers
oscillate and thereby produce a signal that can be measured using contact microphones
[Ort12]. MMG and EMG have been successfully combined for musical practice, making
use of their complementing relation [DCT+13].

I'Throughout literature MMG is also known as acoustic myogram (AMG), phonomyogram (PMG) and
viromyogram (VMG) [Ort12].
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2 Background and Related Work

Signal Type Source Amplitude Frequency

EMG (electromyogram) muscles 50 uV-5mV 2 Hz - 500 Hz
EEG (electroencephalogram) brain 2 uV-100 pnv 0.5 Hz - 100 Hz
ECG (electrocardiogram) heart 1 mV-10 mV 0.05Hz - 100 Hz
EOG (electrooculogram) eye movements 0.5 uV-5mV up to 100 Hz

Table 2.1: Overview of a selection of electrical biosignals based on [Sch15].

2.2 EMG in HCI

EMG has been extensively studied in medical diagnosis. Although EMG is relatively new
to the HCI community, it has been used in a variety of applications and scientific work
which is presented in this section.

Prostheses

Controlling robotic prostheses, in particular hand-prostheses, is one of the most popular
and often repeated applications of EMG ([SG82], [AOY96], [BVDS06], [Ten+07],
[CS09]). The most prominent approaches are either to classify movements or gestures
based on the EMG signal [SG82], or to continuously map characteristics of the signal to
a parameter of the prosthesis (e.g. the exerted force or the angle of a finger) [AOY96].
The same techniques can be applied to related modalities. For example, Moon et al.
[Moo+03] use the signals of a muscle at the back of the neck to map the commands
"Go", "Stop", "Left" and "Right" of a wheelchair.

Gesture Classification

The problem of predicting the correct gesture given the EMG signal is directly linked
to prostheses. Nevertheless, gesture classification comprises a much wider field of
applications. These include controlling a portable music player using hand gestures
[Sap+09], recognizing the different gestures of "Rock-Scissors-Paper" [Hir+16] and
classifying sign language gestures [Abr+16]. Besides hand-gestures, EMG has also been
applied to facial expressions. For example, Vrana [Vra93] explored the muscle pattering
of the face during different emotional states.

12



2.2 EMG in HCI

Music and Instrument Control

One field of applications that is particularly interesting within the context of this thesis
is the usage of EMG to control music or instruments. Tanaka et al. [TK02] used EMG
together with relative postion sensing to control electronic musical devices. Arslan et
al. ([Ars+05], [Ars+06]) combined EMG with EEG and created the so called "bio-
orchestra". Furthermore, Donnarumma et al. [DCT+13] combined EMG and MMG to
modulate two instrument-components using only one complex arm gesture. Saponas
et al. [Sap+09] developed a real-time finger-gesture classification that they tested in
different scenarios. In their scenario "Air-Guitar-Hero", users used four pinching gestures
that were mapped to four buttons in the game "Guitar Hero".2 An image from the video
of the "Air-Guitar-Hero" system can be found in Figure 2.2.

Figure 2.2: Image of the demonstration video to "Air-Guitar-Hero" [Sap+09]

Similar to the work regarding prostheses, the presented EMG-instruments can be divided
into instruments that first classify the signal and then trigger an event or switch a state
on the one hand and instruments that adjust their parameters continuously, depending
on the EMG signal on the other.

Altogether, all previous work known to the author focused on either inventing completely
new interaction-patterns or introducing an intermediate gestural representation that is

2A demonstration of the system can be found at https://youtu.be/pktVSTwC8qo (followed last on June
26, 2017).
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2 Background and Related Work

mapped to instrument parameters afterwards. The usage of domain-specific movements
such as the hand gesture of playing a guitar chord or the finger positions on a saxophone
or a keyboard, has — to the best of our knowledge — not been investigated yet.
Nevertheless, domain-specific gestures offer multiple advantages. If one uses the same
movements as they are used to play a real instrument, there is no need to learn the
interaction for users that know how to play the instrument. Similarly, an interaction can
be practiced using the virtual system and then be used on a real instrument. This inter-
changeability enables the interaction with the virtual system to be implicitly performed
while interacting with a real instrument.

Apart from implicitly interacting with musical instruments, the usage of domain-specific
movements can be used in any manual interaction task, such as recognizing hand-
writings or pointing gestures, or detecting the exerted muscle force in a virtual reality
environment.

Consumer Market

In addition to the progress made in research, there is also a noticeable progress in
the consumer market regarding EMG. The Myo armband? features eight electrodes, a
gyroscope and an accelerometer [NHJ15]. At the time of this thesis it is available for
2008$. This development suggests that EMG will take a more dominant role in the future
of consumer electronics and every-day HCI.

Given all these properties, we think exploring domain-specific movements using EMG
is a promising field of research that can open up new possibilities for more natural
interactions.

3https://www.myo.com (followed last on June 26, 2017)
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3 Technical Realization

In this chapter we showcase how an EMG signal can be acquired and processed. Fur-
thermore, it addresses the selection of features and machine learning methods that are
commonly used to classify EMG signals. All these steps are consecutive parts of our
machine learning pipeline. Figure 3.1 shows the pipeline for our EMG system. The
details of the muscle activity have been discussed in section 2.1, the post processing will
arise again in Chapter 5. In this chapter, we address the steps from signal acquisition to
classification.

Muscle Activity Ac?qlugigﬁilon HPreprocessingh
Feature Classification Postprocessin
Extraction P g

Figure 3.1: Machine learning pipeline for the classification of an EMG signal

3.1 Signal Acquisition

As a first step, the analogue neuron impulses have to be converted into a digital signal.
This process involves amplification, sampling and quantization of the EMG signal. We
used an actiCHamp recorder! to handle these steps. This recorder is designed to be
used for EEG recordings, which also makes it suitable for EMG recordings as the EMG
amplitude is higher than the EEG amplitude (see Table 2.1). Due to active surface

Thttp://brainvision.com/actichamp.html (followed last on June 26, 2017)
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3 Technical Realization

electrodes, the recorder provides a signal with a low noise level and high signal-to-noise
quality. The electrodes are attached to the skin using adhesive rings to prevent them from
moving on the skin. To improve the conductivity between the skin and the electrodes,
a conductive gel is injected between the electrodes and the skin. Similar to Saponas
et al. [Sap+08], we attached the electrodes in a narrow band around the left upper
forearm (see Figure 3.2). In total we used ten electrodes including one ground- and one
reference-electrode. This gave us eight channels.

Figure 3.2: Attachment of the electrodes in form of two rings around the upper forearm

Figure 3.3 shows a single-channel EMG recording of the biceps. One can recognize
where the muscular activity begins and where the muscle is relaxed by looking at the
signal plot. This representation of the signal is not that clear to a computer or more
precisely, to a machine learning system. Therefore, one extracts features based on the
signal. These features are discussed in Section 3.3. However, before one can extract
features from the signal, the signal has to be cleaned. This is done by preprocessing the
signal.

16



3.1 Signal Acquisition
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Figure 3.3: EMG signal of a biceps contraction. The signal was recorded using a 500 Hz
sampling rate and cleaned using the preprocessing that will be explained in
Section 3.2.
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3 Technical Realization

3.2 Preprocessing

In order to enhance the signal, two filters are applied in consecutive order:

1. Bandpass filter: Similar to Saponas et al. [Sap+08], we apply a bandpass filter
between 2 Hz and 100 Hz as their pilot studies and our own tests on the data
acquired in Chapter 4 showed that this is the most usable spectrum. A Butterworth
filter [But30] of order 5 was used. The removal of low frequencies is important to
remove long-term drifts and the DC offset (see Figure 3.5(c)).

2. Bandstop filter: Also based on the experiences of Saponas et al. [Sap+08], we
filter out the band between 49 Hz and 51 Hz to reduce the typical recording noise
(e.g. due to main line frequency). This type of filter is called bandstop. It is also
realized using a Butterworth filter of order 5.

Raw Signal Bandpass Bandstop

Figure 3.4: Conceptual filter pipeline of the preprocessing step
The resulting pipeline is depicted in Figure 3.4. The effects of the single filters can be

seen very clearly in the frequency domain after applying a Fourier transform. Figure 3.5
shows the signal after each step of the pipeline.

18



3.2 Preprocessing
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(a) EMG signal without preprocessing (b) FFT of the unprocessed EMG signal
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(c) EMG signal after the bandpass filter. One can (d) FFT after the bandpass filter. Low and high
observe the removal of the DC offset. frequencies are attenuated.
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(e) EMG signal after the bandpass- and the (f) FFT after the bandpass and the bandstop filter.
bandstop-filter. The effects of the bandstop-filter The 50 Hz band is cut out.
cannot be seen like the effects of the bandpass-
filter as the respective frequencies are too high.

Figure 3.5: Effects of the preprocessing filters
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3 Technical Realization

3.3 Features

Features can be described as properties of an instance. In our case an instance is an EMG
signal window. It is a common technique to split the signal into equally sized (e.g. 250
ms) windows to obtain a set of time-independent instances [Sap+08]. For each of these
instances a set of of features is evaluated. Figure 3.6 shows a segmented EMG signal on
which RMS features have been evaluated. In this case, each of the four windows would
be represented by a one dimensional vector (a scalar) with the respective RMS value.

400¢
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m I
o . :
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> : : :
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—a00} | | |

0 100 200 300 400 500

sample index

Figure 3.6: Segmented EMG signal using 250 ms windows (125 samples). The red lines
show the windows’ RMS.

In general, features should express properties of the signal segment by numeric or
nominal values. These values are then passed to a machine learning method which we
will discuss in Section 3.4.

A broad range of features has been suggested in the context of EMG signals. The
following gives an overview over the most commonly used ones.
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3.3 Features

Root Mean Square (RMS)

Root Mean Square (RMS) is one of the standard features of EMG signals and has been
used in a variety of applications ([Sap+08], [KMAO8], [Amm+15]). Given the EMG
signal as sample points {xy, zs, ..., z,, }, the RMS is defined as

1

To visualize the effect of the RMS, Figure 3.7 shows an EMG signal snippet that was
preprocessed as described above and the corresponding RMS signal after applying RMS
within a rolling window of 125 samples and a hop size of one sample.? The motivation
behind using RMS is that the EMG amplitude increases with increasing muscular activity
as discussed in Section 2.1. Further features can be calculated by taking the relative RMS
values between multiple EMG channels [Sap+08]. This will be discussed in Chapter 4.

150 400

1000

Voltage [uV]

—100 0

0 5000 10000 15000 20000 0 5000 10000 15000 20000
sample index sample index
(a) Preprocessed EMG signal snippet (sampled at 500 (b) RMS values of a 250 ms (or 125 sam-
Hz) ples) rolling window over the signal with
hop size 1

Figure 3.7: RMS feature visualization

Frequency Energy

As the motor neurons’ firing rate changes with the exerted force (see Section 2.1), the
frequency information of the signal encloses valuable information about the muscular

2The hop size specifies how far the window is moved (to the right) to generate the next window. We use
a hop size of one to show how the RMS evolves over the exemplary signal. In the rest of this thesis we
will use distinct windows, corresponding to a hop size equal to the window size.
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3 Technical Realization

activity. A fast Fourier transform (FFT) transforms the signal into a representation in the
(discrete) Fourier basis. This yields (complex) coefficients corresponding to frequencies
up to half the sampling frequency. As we sampled the EMG with 500 Hz, the highest
frequency is 250 Hz. Plots of different Fourier spectra are depicted in Figure 3.5(b),(d)
and (f). Like Saponas et al. [Sap+08], we used the power of the coefficients and
summed them up into 10 bins between 0 Hz and 100 Hz. This yields the (real-valued)
energy per frequency bin. One could also consider a more fine- or coarse-grained
summation. The advantages and disadvantages of generating many or few features will
be addressed in section 4.4.

Phase Coherence

Given multiple EMG channels, another interesting feature is the phase coherence. It
measures how synchronous the motor units fire and is a feature that is extensively used
in EEG work [Sap+08]. We used the mean coherence as an aggregated feature like
Saponas et al. [Sap+08].

ARIMA Models

A typical mean for time series analysis are ARIMA (auto-regressive integrated moving
average) models. These models are used to predict future values in social sciences or
economics (e.g. predicting sales of a certain product). As the name suggests an ARIMA
model relies on three basic concepts:

* Auto-Regressive (AR): This part of the model expresses the assumption that one
can predict future values as a linear combination of their preceding values. The
number of previous values the model considers is often denoted by p.

* Integrated (I): ARIMA models require the time series to be stationary. To fulfill this
assumption it is often necessary to difference the time series — that is subtracting
each value from its subsequent value. The order of differencing is often denoted
by d.

* Moving Average (MA): In contrast to the AR component, the MA component does
not model future values depending on preceding values but only as a linear
combination of preceding error terms. The number of the error terms taken into
account is often denoted by g.

22



3.4 Machine Learning Methods

To extract features from a given EMG signal segment, one fits an ARIMA model to the
segment and uses the respective AR and MA coefficients as features. This is conceptually
similar to fitting a linear regression and using the slope and the intercept as features.
ARIMA and the related AR, MA and ARMA have been applied to EMG signals multiple
times ([PK93], [RHMYO06], [Kar14]).

Wavelet Transform

Like the Fourier transform, the wavelet transform (WT) transforms a time series into
another basis that yields frequency information. For this transform it is the wavelet
basis. In contrast to the Fourier basis, a signal in the wavelet basis is not only localized
in frequency but additionally in time. WT coefficients are a common feature in EMG
signal classification ([RHMYO06], [Kar14]).

3.4 Machine Learning Methods

In machine learning classification is the problem of finding the correct class (or label)
to a given instance. In the context of EMG signals, an instance corresponds to a
window’s feature vector. Possible sets of classes in a gesture recognition system could be
{active, inactive} or {pointing, waving, clapping}.

Within supervised machine learning, one trains a model using training data that contains
a set of instances and their respective labels. This training comes down to minimizing a
loss function with respect to the model’s parameters. Discussing the different models
and methods exceeds the scope of this thesis.

When classifying EMG signals, the most common models are Support Vector Machines
(SVMs) ([Sap+08], [Abr+16], [PJT16]) and Artificial Neural Networks (ANNs) ([AIK11],
[Guo+15]). The performance of these two models depends on the choice of features,
but overall SVMs and ANNs showed similar results throughout literature ([Karl4],
[Guo+15]). Therefore, this thesis will use SVMs as classification model.

In the context of EMG signals, it is especially important to discuss the impact of high
dimensional feature vectors and common pitfalls when evaluating the classification
performance, which we will address in Chapter 4 and Chapter 5.
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4 Evaluation of Features and Parameter
Choices

We introduced features that are commonly used in EMG classification in Chapter 3. This
chapter evaluates these features and further methods for a special set of gestures — that
is guitar chords. Guitar chords differ from usually used gestures in the exerted force and
the level of granularity. This imposes challenges on the classification of these gestures.
To quantify the suitability of the presented features for this task, we evaluate their dis-
criminative power leveraging SVMs. Apart from evaluating the features, we investigate
the effects of different parameter choices on the classifier’s performance. These include
parameters such as the size of a signal-segment and hyperparameters of the classifier.

4.1 Method

Design

In order to acquire labeled data, we implemented a recording system that gathers the
EMG signals of eight electrodes together with the chords that the left hand® plays.

We used two laptops to handle the recording and the experimental setup, handling the
synchronization of the EMG and marker signals via Lab Streaming Layer (LSL)?. LSL
was designed to handle near real-time data exchange within research experiments. A
validation® showed that LSL introduces timing errors under 1ms which is sufficiently
low for our use case. The detailed marking procedure will be explained in the following.
A schematic depiction of the whole setup is shown in Figure 4.1.

We used an electric guitar where the chords are played with the left hand and the strings are strummed
with the right hand.

2https://github.com/scen/labstreaminglayer (followed last on June 26, 2017)

3https://scen.ucsd.edu/~mgrivich/LSL_Validation.html (followed last on June 17, 2017)
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4 Evaluation of Features and Parameter Choices

Recording PC Playback and Marker PC

Switch

EMG Recorder
AN Electrodes

‘%@O o
AR

Figure 4.1: Schematic depiction of the recording setup

Stimulus Monitor

We decided to task the participants to play the chord sequence:

-, Am, C,-,G,D, -, Em,F, -, Fm.
"-" refers to no chord being played by the left hand. This yields eight classes of chords.
From a music theory perspective, in the context of the C major scale, these chords
include I (C), III (Em), IV (F), V (G), VI (Am). This choice of chords is realistic, as a
vast amount of songs can be played using these chords or transposed versions of them.
The five mentioned scale degrees cover a large majority of the distribution found within
the RS 5 x 20 corpus. This corpus contains annotated scale degrees of popular rock
music [DCT11].
A musical piece also contains rests. During this time, no chord is played and thus, we
include the "-" state. As we cannot assume a distribution of chords and pauses, we chose
to introduce a pause at the beginning and after two chords each. Based on the selected
chords we chose the pattern shown in Figure 4.2. The chords were presented to the
subjects using the simple Ul depicted in Figure 4.3. The current chord is colored red,
whereas the next chord is shown in black. In addition, a bongo sound was triggered
each beat to help the subjects to stay in the right rhythm. The first beat was highlighted
using a different bongo sound. To realize the playback, we sent MIDI notes to the digital
audio workstation Ableton Live. A LSL marker containing a chord identifier was sent
each time a new chord was displayed.
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Figure 4.2: The chord pattern the participants were tasked to play. "-" indicates that no

chord is to be played (all strings are open).

Please play the displayed chord:

Figure 4.3: Recording Ul that presented the chords the participants played.

To keep the task as easy as possible, the subjects were asked to strum each chord of
the sequence four times with a tempo of 100 beats per minute, thereby minimizing the
amount of false annotations due to erroneous play. Before starting the experiment, the
subjects practiced the chord sequence until they felt confident playing it. Each subject
repeated the pattern for five minutes. After a subject had finished, the EMG signal and
the marker data were stored.
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4.2 Evaluation Procedure

We applied the preprocessing steps explained in Section 3.2 to the recorded EMG signals.
These included a bandpass- and a bandstop filter. Given the cleaned signals and the
chord markers, we divide each EMG recording into segments corresponding to one bar
of the same chord. Subsequently, we split each segment into fixed-size, non-overlapping
windows. We used 250 ms windows for the standard window size as suggested by
Saponas et al. [Sap+08]*.

Since the window size is not an integer divisor of the length of one bar, we dismiss
the partial window at the end of each bar. Similar to Saponas et al. [Sap+08], we
additionally neglect a fixed number of full windows at the end of the remaining windows
(see Figure 4.4), as they may be distorted by the change of chords. At a tempo of 100
beats per minute (BPM), a quarter note has the length of 600 ms. Thus, a chord change
has to take less than 600 ms. Therefore, we chose to neglect two full windows (500 ms)
and a partial window (100 ms) at the end of each segment throughout this chapter.

250 ms window 1 bar 250 ms window 1 bar
A A

r N o N )

Lgsenggsngssnggss

used data neglected used data neglected

Figure 4.4: Depiction of the neglected and used signal parts, each box represents one
bar. The dotted lines mark 250 ms windows. We neglect two full windows
and a partial one at the end.

The extracted windows are transformed into instances using different subsets of the
feature functions presented in Section 3.3. The resulting data set is split into training
data (the first 80%) and test data (the remaining 20%). Whereas one often shuffles the
data set before dividing it into train- and test-sets, it is important to keep the temporal
order of instances of EMG signals as shuffling could artificially boost the classifier’s
performance [Sap+08]. This also reflects the real-world procedure of calibrating the
system before using it.

*If not stated differently, we used 250 ms windows throughout all results in this chapter.
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Before fitting a SVM with the training data, we first normalize the whole data set. There-
fore, we estimate the mean and the standard deviation on the training data®. We center
the feature values around zero by subtracting the estimated mean. Additionally, we
scale the feature values to unit variance by dividing each component with its estimated
standard deviation. A zero mean and unit variance are often assumed, for example
when using the RBF kernel®.

We use the training data to fit a SVM. In essence, this is an optimization problem where
we maximize the margin between two classes in the feature space. This adjustment
happens within a fixed setting of specific parameters such as a regularization coefficient,
a specific kernel and more. These parameters are called hyperparameters and influence
the performance of a classifier. For best performance, optimization of hyperparame-
ters can be approached in multiple ways. We are using a grid-search cross-validation.
This method performs an exhaustive search over all combinations of hyperparameters’
and chooses the best combination with respect to some metric (such as accuracy or
F1l-measure) using a cross-validation (CV).

A cross validation estimates the performance on unseen data, that is data that was not
used for training. The k-fold cross validation splits the training data into & sets and uses
one set for validation and only the remaining k — 1 sets for training®. This is repeated for
all £ combinations, resulting in k iterations. An example for £ = 3 is shown in Figure 4.5.

As the EMG signal of one bar (and hence one chord) is transformed into multiple
instances, the instances are not distributed independently. Therefore, we want to avoid
that the instances of one bar are used for training and validation during one iteration
as this could artificially improve the classifier’s performance. To this end, we apply
a group k-fold that ensures that instances of one bar stay together during the k-fold.
Throughout our experiments we chose k£ = 3 as higher k values induced an unacceptably
high computation time.

SWe do not include the test data for the estimation, as this would corrupt the separation of train and test
data.

5The radial basis function (RBF) kernel is commonly used in SVMs.

’We tested, linear, polynomial and RBF kernels, the gamma values (kernel coefficients for RBF and
polynomial kernels) 0.0000001, 0.001, 0.01, 1.0, 10.0 and 100.0 and the penalty parameters for the
error term 0.0000001, 0.001, 0.01, 0.1, 1.0, 10.0 and 100.0.

8This means that all & splits are part of the 80% training data, the data of the 20% test set is not used in
the CV.
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80% training data 20% test data
e e
. R R
CV iteration 1
T T
used for training used for validation
CV iteration 2
o X
as g g
used for training used for validation used for training
CV iteration 3
— i
Y Y
used for validation used for training

Figure 4.5: Depiction of a three-fold cross validation. The test data is never used
throughout all iterations.
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4.3 Results

We collected data of three male participants to gather training data of 15 minutes length
in total. We analyzed the classifier’s performance with respect to different feature sets.
The results are shown in Table 4.1.° We tested further combinations of features, all
tested combinations could not outperform the combination of RMS and RMS ratios.
The respective confusion matrices for the individual subjects using RMS and RMS ratio

features are depicted in Figure 4.6.

Feature Group Accuracy  Precision Recall F1
RMS 83 85 83 83
SD=5 SD=4 SD=5 SD=4
RMS Ratios 83 84 83 83
SD=1 SD=1 SD=1 SD=1
Frequency Bins 47 41 47 41
SD=6 sD=13 SD=6 sp=11
Phase Coherences 62 62 62 59
SD=3 SD=5 SD=3 SD=3
ARIMA 52 50 52 49
SD=4 SD=4 SD=4 SD=4
Wavelet Transform 43 36 43 37
SD=11 sD=13 sp=11 sD=12
RMS and RMS Ratios 87 88 87 87
SD=3 SD=3 SD=3 SD=3
All Features 73 75 73 73
SD=5 SD=5 SD=5 SD=5

Table 4.1: Weighted average accuracy, precision, recall and F1-measure for different
feature groups averaged over all participants. All metrics are measured in

percent.

?We report weighted averages throughout this thesis. The single classes’ measures are weighted with

their respective instance count in the test data.
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(c) Confusion matrix of participant 3

Figure 4.6: Confusion matrices with respect to the classifier’s performance on the test-
data. The total number of instances per class varies over the three par-
ticipants because of the random starting position in the pattern and the
train-test split.

To gain an overview of how well the different features can be used in a real-time system,
we measured the processor time that is required to calculate the features within our
setup. The results are shown in Table 4.2 together with the feature groups’ dimensions.
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Feature Group Dimensionality Averaged Processor Time
RMS 8 1.32s
RMS Ratios 28 1.38s
Frequency Bins 10 1.73 s
Phase Coherences 36 7.20 s
ARIMA 16 582.34s
Wavelet Transform 1008 0.90 s
RMS and RMS Ratios 36 1.40s
All Features 1106 597.59 s

Table 4.2: Dimensions and averaged processor times required to compute the respective
features for a five minute recording.

Regarding real-time usage, we evaluated the classifier’s performance depending on the
window size. To keep the results comparable, we discard more windows if the windows
get smaller. This ensures that the neglected signal parts (see Figure 4.4) stay constant
when the window size is varied. As the combination of RMS and RMS ratios yields the
best performance, we used these two sets of features. The detailed results are shown in
Table 4.3. To get a more intuitive understanding of those values, we additionally plotted
the averaged F1-measure in dependence of the window size in Figure 4.7.
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Window Discarded = Accuracy  Precision Recall F1
Size Segments
500 ms 1 88 90 88 89
SD=3 SD=3 SD=3 SD=3
250 ms 2 87 88 87 87
SD=3 SD=3 SD=3 SD=3
166 ms 3 84 84 84 84
SD=4 SD=3 SD=4 SD=4
126 ms 4 82 83 82 82
SD=4 sD=3 SD=4 sD=3
84 ms 6 79 79 79 79
SD=4 SD=4 SD=4 SD=4
64 ms 8 75 75 75 75
SD=5 SD=4 SD=5 SD=4
50 ms 10 72 72 72 72
SD=5 SD=5 SD=5 SD=5
32 ms 16 68 67 68 67
SD=4 SD=5 SD=4 SD=5
20 ms 24 63 61 63 61
SD=3 SD=4 SD=3 SD=4

Table 4.3: The performance of the classifier given the window size of the segments used

for classification. All values are calculated using RMS and RMS ratio features.
Window sizes like 126 ms are used instead of 125 ms in order to keep the
neglected signal size constant. All metrics are measured in percent.
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Figure 4.7: Averaged F1-measures of the classifier in dependence of the used win-
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4.4 Discussion

In addition to the separate analysis of the subjects’ EMG recordings, we also evaluated
the inter-person generalizability. Therefore, we trained a SVM using a leave-one-subject-
out approach. This means that the SVM was trained on the joint instances of two subjects
and tested on the remaining third subject’s data. The results are shown in Table 4.4.

Test Set Training Set Accuracy Precision Recall F1
Subject 1 Subject 2 U Subject 3 23 14 23 17
Subject 2 Subject 1 U Subject 3 18 39 18 12
Subject 3 Subject 1 U Subject 2 39 40 39 36

Table 4.4: Inter-person performances using RMS and RMS ratio features. All metrics
are measured in percent.

4.4 Discussion

The results show that the combination of RMS and RMS ratios yields the best perfor-
mance whereas using RMS and RMS ratios alone results in slightly lower values. The
measures for frequency bins, phase coherences, ARIMA coefficients and the wavelet
transform show an evidently lower performance. The wavelet transform gives the lowest
performance, however, we believe this can be attributed to the high number of dimen-
sions of this feature group (1008 dimensions) and the resulting sparsity problem!°. We
did not evaluate this in more detail, but suggest to reconsider less detailed coefficients
for our application in future work. We believe that the mentioned sparsity problem also
causes the decrease in performance from RMS and RMS ratios to using all features. At
first sight, it is counter-intuitive to gain a lower performance even though the classifier
can use the same and more information. However, it’s more difficult for the classifier to
distinguish between the classes if the number of dimensions increases but the number
of instances stays the same as this results in an undersampling and the so called curse
of dimensionality [BisO6]. This problem can be addressed by dimensionality reduction
methods. Overall, our results show that different features should be tested prior to
adapting existing work in the field of EMG to new gestures.

Considering the computation times, we want to highlight two values. Firstly, the ARIMA
coefficients time exceeds all other features calculation time by more than factor 80. This
very high time consumption has to be attributed to the implementation we used. We do
not investigate this in detail, as the coefficients do not yield a beneficial performance

0For a high number of dimensions, one needs exponentially many training instances.
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regarding our application. Secondly, the computation time of the joint RMS and RMS
ratio is faster than all other feature groups except the RMS and RMS ratios alone and
the wavelet transform. This suggests that RMS and RMS ratio are suitable features for a
real-time setting.

Altogether, the combination of RMS and RMS ratios is a promising set of features regard-
ing both, classification performance and computation time. A possible trade-off between
discriminative power and computation-time could not be observed in our results.
Besides performance and computation time, the results show an interesting phenomenon
regarding the used window sizes. Starting with an F1-measure of 89% for a window
size of 500 ms, the performance drops to 87% for a 250 ms window. Further shrinking
the window size monotonously decreases all reported measures and finally drops to a
Fl-measure of 61% for a 20 ms window. Smaller windows intuitively carry less informa-
tion. However, it is important to note that with a fixed calibration time, the number of
training instances increases with a decreasing window size. In theory, this effect might
counteract the information loss. Yet the reported performance of small window sizes
suggests that this advantage can not compensate the information loss.

Overall, our results show that there is a trade-off between real-time feasibility and
classification performance. On one hand, a short window size is desirable as the sys-
tem’s latency depends on it. On the other, large window sizes decrease the number of
misclassifications. This should be considered when designing new interactive system
that rely on EMG to detect hand- or finger-gestures.

The three reported confusion matrices indicate that classification on a binary level (a
chord is played versus no chord is played) seems to be very accurate throughout all
participants. However, the confusion matrices show that the distinction between Am and
C seems to be more difficult than classifying the other labels. Especially in the confusion
matrix of participant 1, there seems to be a misconception of the C-chord. However,
this phenomenon cannot be observed clearly in the other two confusion matrices. This
leaves the question whether the distinction between Am and C is a general challenge or
just a result of the participant’s playstyle or physiology. We will further investigate this
in Chapter 5.

In addition to the training and testing on each subject’s data separately (intra-person per-
formances), we also reported the inter-person performances. With a highest F1-measure
of 36% and a lowest Fl1-measure of 17%, these results show that the models aren’t
able to generalize to data of a subject that was not observed yet. This is due to two
reasons. Firstly, the slight changes in the electrodes position and the different physiology
of the participants’ arms result in a change of intensity the electrodes capture from each
muscle. PCA and other dimensionality reductions are a promising approach to tackle
this problem. We will address this within Chapter 5. Secondly, our training database of
only two participants does not contain enough variance to enable the classifier to learn
robust concepts of chords. This problem can be addressed by recording data from more
subjects. We will reconsider this question in Chapter 5 using a larger data set.
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In Chapter 4 we showed that we can classify guitar chords using the EMG signal of
the left forearm with an average F1-measure of 87% on the data of our three subjects.
Nevertheless, these results raised new questions:

* Can we reach a higher inter-person? classification performance using training data
of more participants?

* Is the distinction between specific chords (such as Am and C) a general problem?

We decided to conduct another study to address these questions. Furthermore, we
investigate a real-world scenario. We implemented an EMG guitar tutor system to
achieve this.

5.1 Scenario

Systems, which support an aspiring musician in learning to play an instrument, already
exist in the consumer market. However, the majority of these systems use a microphone
to evaluate the musicians’ play by the sound they produce. This is a reasonable way to
evaluate playing skills, as the produced sound is, more or less, what matters most to the
musician. Nevertheless, the audio-based tutor systems fail to detect how the musician
plays. Interfaces with EMG capabilities are able to close this gap. We can measure
at which chord changes the musician is slow. The system then provides advise which
chords and chord changes should be practiced. Additionally, the EMG signal provides a
notion of the applied pressure exerted by the player, which can be used to detect bad
hand postures. These advices cannot be given using the audio signal.

In the first version of our system we focus on the adjustment of the tempo depending on
the playing accuracy. To make lasting progress in increasing one’s playing proficiency,
it is vital to start off slow. If the player is comfortable with the current tempo, one can
increase the speed gradually until the desired speed is reached. Hence, we want to

!This means that we train on the other subject’s data and predict labels of a subject that classifier has
not seen.
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5 Guitar Tutor System

determine whether the user is comfortable at a given speed by estimating the playing
accuracy. If the accuracy is low, we slow down the tempo for the next iteration. If the
accuracy is high, we speed it up.

This system is complex enough to evaluate how the musicians interact with an EMG
tutor system and which requirements and problems arise when they use the system.

5.2 Method

In Chapter 4 we evaluated seven chords and the rest state. In this study, we want
to focus on a specific set of chords: C, G, Am, F. We do not include the rest-state, as
our evaluation already showed good classifier performances regarding it. The chosen
chords form the I-V-vi-IV-progression. This progression is one of the most used in pop
music?. We do not want to limit the chord changes to this progression. Therefore, we
shuffled all possible permutations of these four chords and divided the resulting set into
two patterns. Inside each pattern, we repeated each chord as often as the others. We
distributed the number of successive repetitions of one chord arbitrarily. The resulting
patterns can be seen in Figure 5.1 and Figure 5.2.

As we changed the set of chords, we also changed the calibration pattern. In order to
record a sufficient amount of samples, we tasked the participants to play two bars per
chord. The resulting calibration pattern is depicted in Figure 5.3. The participants were
asked to repeat the pattern two times during each calibration.

2An incomplete list of songs using this progression can be found at https://en.wikipedia.org/w/index.
php?title=List of songs containing the I-V-vi-IV_progression&oldid=784377090 (followed last on
June 26, 2017).
A video that shows a compilation of popular songs using this progression can be found at
https://youtu.be/oOlDewpCfZQ (followed last on June 26, 2017).
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Figure 5.3: Calibration pattern

The procedure of our study is depicted in Figure 5.4, a picture of the setup is shown
in Figure 5.5. After we welcomed the participants, they were given some minutes to
familiarize themselves with the guitar. Subsequently, we conducted the first calibration
with 40 BPM. After this, the subjects were asked to play one of the patterns A or B for
five times. After each repetition, the playback stopped and the tempo was adjusted. This
adjustment was either made manually (the participants chose the next tempo freely) or
automatically (the system showed the estimated accuracy to the subject and adjusted
the tempo respectively). In both cases the tempo had to be between 40 BPM and 90
BPM as a tempo below 40 BPM is hardly playable and our choices of window size and
the number of neglected windows do not allow classification of chords played faster
than 90 BPM. Despite this range seems to be quite slow, quarter note chord changes at a
speed of 90 BPM are thoroughly challenging. We chose the new tempo as

min (90, max(40,p + (a — 0.5) - 100))

with the previous repetition’s tempo p and the estimated accuracy a. We empirically
evaluated this mapping during test runs. Throughout all five repetitions in each run,
the system type (automatic or manual) was kept consistent. In either case, the tempo
started with 40 BPM. After the fourth round, the tempo was set to 90 BPM. This ensures
the same starting and end tempo for each subject. Following the five rounds, another
calibration was conducted. Then, the subject was asked to play another run of five
repetitions, but this time using the other pattern and the other system (manual or
automatic). The combinations of patterns and systems were assigned to the participants
using a Latin Square design.
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Figure 5.4: Study procedure. The colored arrows indicate a participants path through

the study. If, for example, pattern A is played manually in the first run, the
subject is assigned pattern B with the automatic system in the second run.
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Figure 5.5: A picture showing the setup of the EMG guitar tutor system study
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At the end of the study, we asked the subjects to fill out three questionnaires. The first
and the second questionnaire both contained a 7-point Likert scale and the questions:

* "How well did you feel mastering the piece?" (not well at all to very well)

* "How correct did you feel you played?" (not correct at all to very correct)

* "How easy was it to learn the piece?" (very hard to very easy)

* "How enjoyable was it to learn the piece?" (not enjoyable at all to very enjoyable)

These questions are based on the work of Yuksel et al. [Yuk+16] who explored the
usage of EEG signals within a piano tutor system. The first questionnaire referred to the
system that was used first by the subject, the second questionnaire respectively referred
to the second system. The third questionnaire asked questions regarding the ease of use
and the realistic usage of the system. It included the questions:

* '"Please rate your perceived accuracy of the system in evaluating your performance."
(5-point Likert item from Very bad to Perfect)

* "How did you perceive the tempo adjustments the system made?" (5-point Likert
item from Did not suit my needs at all to Did perfectly suit my needs)

* "How challenging were the system’s tempo choices?" (5-point Likert item from Too
challenging to Too easy)

* "Did the electrodes limit you in playing the guitar?" (5-point Likert item from No
to Could not play at all)

* "Did the system help you to learn the chords? Why, or why not?" (free text)
* "Would you use the system to learn to play guitar? Why or why not?" (free text)

* "Imagine the system/electrodes could be integrated into your garments. How does
this change your perceived usability of the system?" (free text)

e Further comments (free text)

Throughout the study we used the same preprocessing and feature extraction steps as
outlined in Section 4.2. Our evaluation had shown that RMS and RMS ratios had yielded
the best classifier performance. Therefore, we chose this feature set and used a window
size of 250ms3. In the previous evaluation we neglected two windows. Contrary, we
only neglect one window in this experiment as we now also have chord changes after
one and not only after four beats. With the highest tempo of 90 BPM one segment

has a length of approximately 667 ms (% = 0,6 s ~ 667 ms). Thus, we can neglect

3We used the same window size as we did in Section 4.3.
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at most one full window to keep at least one window for classification. If we apply
these changes to our previous evaluation (the dataset from Chapter 4), the average F1
measure decreases from 87% (SD=3%) to 84% (SD=3%) regarding all chords. If we
only measure the performance on the four chords we selected, the performance also
decreases to 84% but with a standard deviation of 9%.* To counteract the introduced
noise (due to chord-change artifacts), we set up a majority vote post-processing for the
accuracy estimation. This improves the performance for slower tempos, that is when
multiple windows can be used to predict a chord.

5.3 Results

We collected data of 8 participants (2 female, 6 male) with a mean age of 22.6 (SD=2.3).
Due to technical problems, we discarded one participant’s data. All subjects reported
normal sight and hearing. They all played the guitar before and knew how to finger the
four chords.

We compared the automatic system answers with the manual system answers regarding
the four questions. The respective boxplots are shown in Figure 5.6. A Wilcoxon
Signed-ranks test showed that the reported Likert scores for all four questions were not
significantly affected by the system the subjects were using. The detailed results of the
test are shown in Table 5.1.

Question T SD V  p (apx.)
How well did you feel mastering the piece? 4.43 1.72 2.5 0.42
How correct did you feel you played? 414 1.77 5.0 0.28
How easy was it to learn the piece? 400 1.73 100 1.00
How enjoyable was it to learn the piece? 5.00 1.63 125 0.20

Table 5.1: Statistics and results of the Wilcoxon Signed-ranks test for the four ques-
tions including the mean, the standard deviation, the test statistic and the
approximate p-value.

Figure 5.7 shows the boxplots of the Likert-items in the third questionnaire.

4This high variance can be explained by the classifier’s problems regarding Am and C.
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Figure 5.6: Boxplots of the compared first and second questionnaire’s responses. The
boxplots’ reach from the lower to the upper quartile. The whiskers mark
the furthest observation within a distance of 1.5 times the box size from the
box. The small circles correspond to outliers.
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Figure 5.7: Boxplots of the third questionnaire’s responses. The boxplots’ reach from
the lower to the upper quartile. The whiskers mark the furthest observation
within a distance of 1.5 times the box size from the box. The small circles
correspond to outliers.
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Regarding the textual feedback for the question "Did the system help you to learn the
chords? Why, or why not?" we received mixed answers. Those include:

"Yes it did. The given tempi helped to challenge me in play more quickly but still
accurate." [P7°]

"Yes, because my own adjustment was probably too high, the system probably is
more realistic." [P2]

"No, I think the system’s suggested accuracy of playing the chords is not so
precise." [P4]

"No direct feedback what chord was wrong, which chords where wrong or which
transitions where wrong." [P6]

Among the answers for the question "Would you use the system to learn to play guitar?
Why or why not?" we received:

"Yes because it’s fun and it has the self learning aspect into it without having a
teacher to keep telling me what to do." [P3]

"No, I did not have the feeling that the system supported me in my learning-
process." [P4]

"Why not. The right hand is not checked. Yes, if it has more functions." [P6]

"Maybe at the beginning to learn the riffs and train to change the riffs. But you
need much time to fix the electrodes, so it wouldn’t be this often. Furthermore,
it would be more joyful if there were known songs to play along." [P7]

For the question "Imagine the system/electrodes could be integrated into your garments.
How does this change your perceived usability of the system?" we received answers
including:

"That would be much easier and cooler." [P3]
"It wouldnt change much." [P1]
"If it would not be at the upper forearm it would be better." [P6]

"I would probably use this system more often and would learn to play the guitar
faster." [P7]

>We refer to the participants with P1 to P7.
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5.3 Results

We compared the tempo adjustments of the manual with the automatic system. One
plot for each of the systems is shown in Figure 5.8. The respective accuracy estimates
regarding the automatic system can be seen in Figure 5.9.
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(a) Manual tempo adjustments after the first three rounds. The
lines corresponding to participant 1 and participant 7 are
identical. The dashed line visualizes a linear regression.
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(b) Automatic tempo adjustments after the first three rounds.
The dashed line visualizes a linear regression.

Figure 5.8: The plots show the results of the manual and automatic tempo adjustments
per participant together with the plots of the respective linear regressions.

47



5 Guitar Tutor System

Estimated accuracies of the automatic system

1.0 .
— Pl 5
08| — P2
— P3 |

P4 |

o
Sl

— P5
P6
— P7

e
=

O
[N

Estimated playing accuracy

0.0 i 5 5 7 5
Round

Figure 5.9: The playing accuracies estimated by the automatic system. The dashed

vertical line highlights that after the third estimate the estimates did not

influence the tempo adjustment any more as the fifth round was always

played with 90 BPM.

To assess the classifier’s performance and detect system failure, such as not correctly
recognizing the played chords, we test the SVM on the second calibration while training
it on the first one. The second calibration was conducted approximately 20 minutes
after the first one. To interpret these values regarding the performance that the classifier
reaches on single sets, we trained and tested the classifier on the first and the second set
separately. The results are shown in Table 5.2. Additionally, we extracted the per class
and per person F1-measures for the training on the first calibration and the test on the
second one. The respective values are plotted in Figure 5.10.
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5.3 Results

Subject F1 trained first, F1 trained second, F1 trained first,
tested first tested second tested second
1 96 93 71
2 79 74 36
3 89 83 65
4 82 86 72
5 96 100 70
6 92 84 35
7 94 96 64

Table 5.2: Average F1-measure in percent for different train/test settings on the first
and the second calibration
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Figure 5.10: F1-measures per chord, plotted for all subjects separately. Trained on first
calibration, tested on second calibration.
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In order to see if there is a specific structure in the classifier’s mistakes, we also plotted
the confusion matrix for each subject. Figure 5.11 shows the matrices of Subject 1, 3, 5
and 6. We selected these subjects as their matrices show typical classes of mistakes.

Confusion matrix subject 1 Confusion matrix subject 5

72
64
Am 3 0 3 64 Am 0
56
56
48
3 C 26 6 6 | [|*® T 3 40
® 40 ®
o 32 3 32
F F 1 1 0o ” = 0 24
16 16
G 24 1 1 8 21 8
Am C F G 0 C 0
Predicted label Predicted label
(a) Subject 1 (b) Subject 5
Confusion matrix subject 6 Confusion matrix subject 3 60
64
AmE 5 4 1 >4
26 48
48 42
g 8 4 2 40 g 36
< < 130
5 32 5
= 0 3 24 = 124
118
16 112
2 1 6 8
Am C F G 0 Am C F G 0
Predicted label Predicted label
(c) Subject 6 (d) Subject 3

Figure 5.11: Exemplary confusion matrices of predictions of the second calibration
using a classifier trained on the first calibration. The shown matrices
correspond to typical classes of mistakes.
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5.3 Results

To evaluate the generalizability of our approach, we analyzed the inter-person clas-
sification performance® using the same leave-one-subject-out approach as in our first
evaluation. The results for each subject are shown in Table 5.3.

Subject Accuracy Precision Recall F1
1 41 51 41 42
2 25 6 25 10
3 38 32 38 33
4 49 43 49 43
5 48 51 48 46
6 35 45 35 33
7 43 43 43 42

Table 5.3: Inter-person weighted average accuracy, precision, recall and F1-measure.
For each subject a SVM was trained on all other subject’s calibrations. All
metrics are measured in percent.

In addition, we repeated the same analysis with either a principal component analysis
(PCA) or a kernel PCA (using an RBF kernel) before the SVM. The PCA reduces the
feature-vectors’ dimensions while preserving the maximal possible variance. We intro-
duced the number of dimensions of the PCAs as another dimension in our CV grid (see
Section 4.2), covering the range from 1 to 9. In this CV, we neglected the polynomial
kernel for computational efficiency as all CVs on this data set suggested either a linear
or a RBF kernel”. The results are shown in Table 5.4. We also tested the PCA with an
additional whitening transform which ensures uncorrelated components. However, this
did not increase the performance for any of the participants compared with the classifier
without any PCA.

This means that the classifier is not trained and evaluated on one subject’s data, but trained on all
subjects except one and tested on the remaining subject.
"This refers to the kernel the SVM uses, not the kernel the kernel PCA uses.
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PCA Kernel PCA (RBF)
Subject  Optimal number of F1 Optimal number of F1
components components
1 8 44 9 53
2 9 10 9 10
(+0) (+0)
3 8 33 9 38
(+0)
4 8 43 9 40
(+0) -3)
5 9 44 8 47
(-2)
6 9 33 9 34
(+0)
7 9 42 9 29

(+0) (-13)

Table 5.4: Inter-person weighted average F1-measure in percent for an additional PCA
or an additional Kernel PCA using an RBF kernel. For each subject, a SVM
was trained on all other subject’s calibrations. The differences to the SVM
without dimensionality reduction are indicated by the values in parantheses.
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5.4 Discussion

5.4 Discussion

Questionnaires

The comparison of the manual and the automatic system with the aid of the two ques-
tionnaires reveals an unexpected behavior. Although the medians regarding the question
"How well did you feel mastering the piece?" are equal, the boxplot related to "How
correct did you feel you played?" suggests higher values for the automatic system. This
is interesting because the automatic system underestimates the playing accuracy due to
unavoidable misclassifications, but still gives the subjects the feeling of playing correctly.
We suggest that the automatic system conveys a feeling of security by relieving the users
of the need to correctly assess themselves. Additionally, we believe, that the subjects feel
more confident about playing with the tutor system as it assigned lower tempos (with a
mean of 57 (SD=18)) than the subjects chose themselves (mean of 66 (SD=12)). In
contrast, the boxplot regarding "How enjoyable was it to learn the piece" suggests that
the manual system was more enjoyable to the subjects. We believe, that this can be
explained by the low reported accuracies that might irritate the subjects. Altogether the
Wilcoxon Signed-ranks test did not reveal a significant effect of the system type on any
of the questions. This can be attributed to the low sample size of seven participants and
should be investigated in more detail in future work.

The free text answers of the third questionnaire give clear guidance what problems and
what benefits the automatic system has. First of all, the accuracy of the system has to be
improved. We think that an alternative electrode placement or a more dense electrode
grid could advance the information that is contained within the EMG signal. Rotation-
and shift-invariant features regarding the electrode positions could further improve the
performance and facilitate the setup. If a person uses the system over a longer period of
time the classifier’s performance would implicitly improve by gathering more and more
training data.

In addition to the improvement of accuracy, the subjects asked for more sophisticated
features like chord- or chord-change-specific feedback. This matches with our vision of
the system and encourages further development. Figure 5.12 and Figure 5.13 show our
vision of a chord-specific and a chord-change-specific feedback.
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Figure 5.12: The figure shows our vision of an UI that provides chord specific feedback
to the user. We map a faultless play of the chord to green, a slightly wrong
play to yellow and a wrong play to red. The required data to generate the
coloring can already be accessed in our system.
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Figure 5.13: The figure shows a visualization of problematic chord changes colored in
yellow (slightly problematic) and red (problematic). The required data
can be obtained by analyzing the instances between a pair of chords.

Further, the answers regarding the question about electrodes integrated into garments
suggest that such a system would not satisfy all users but still constitute a promising
enhancement.

The analysis of the third questionnaire’s Likert items showed that for the questions
"Please rate your perceived accuracy of the system in evaluating your performance"
and "How did you perceive the tempo adjustments the system made?" the subject’s
answers cover the whole range for the first question and the whole range except 5 for
the second question. This indicates that the perception of the accuracy and the tempo
adjustments was strongly dependent on the subject. The question "How challenging
were the system’s tempo choices?" was answered with 3 four times and with the values
1, 2 and 4 one time each. This suggests that on average, the tempo choices were neither
too easy nor too challenging. However, the answers also show that this does not hold for
all subjects. Regarding the question "Did the electrodes limit you in playing the guitar?"
the answers solely included the values 1 and 2. This is something we did not expect,
as we thought of the wires to be quite obtrusive. As the free text answers suggest that
integrating the electrodes into garments would improve the user experience, the Likert
responses indicate that the participants were not limited in playing the guitar, but wish
for a system that can be set up faster.
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Tempo adjustment

The comparison of tempo adjustments shows that the automatic system made slower
tempo increments but only decreased the tempo in two rounds throughout all partici-
pants. With the manual system, four participants decreased their tempo. This indicates
that the automatic system prevents tempo increases that are too demanding for the
musician.

Our results in Chapter 4 showed that classifier performance is limited at approximately
87% accuracy given 8 classes. This indicates that an EMG-based tutoring system — as
deployed here — needs to consider misclassifications and incorporate those into the
tutoring assistance. We addressed this in the selection of our tempo mapping function.
Nevertheless, more sophisticated feedback such as shown in Figure 5.12 requires a more
fine-grained estimation-correction. We suggest to formulate this correction in form of a
hidden Markov model (HMM) (see Figure 5.14) or a more complex dynamic Bayesian
network. The respective probability distributions can be learned given a training set of
observations of classifier decisions and ground truth labels.

Most likely
sequence

Observed sequence
(classifier responses)

Figure 5.14: This figure shows a schematic depiction of the application of a second-order
HMM to the correction of chord estimates. The most-likely sequence is
calculated based on the estimated transition and observation probabilities.

— C — C — Am — Am —

The estimated playing accuracies we measured during this experiment were between
30% and 70%. One can observe predominantly high or low accuracies for some subjects
(P6 has a throughout low accuracy, P4 a respectively high one). This can be attributed
to subject-specific physiology and guitar playing skills. The accuracy of 70% shows that
it is possible to classify the chord gestures, even if the chords are changed quickly. Vice
versa, it is important to note that low accuracy estimates do not necessarily correspond
to a low classifier performance. A 30% accuracy estimate may correspond to a 100%
classifier accuracy, if the subject played 70% of the chords incorrectly. To evaluate the
pure classifier performance, we have to evaluate it on the calibration data as it is free
from playing errors.
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Intra-Person Performance

Our tests on the first and the second calibration show that on the training data we reach
high F1-scores for most of the participants (four participants over 90% and two over
80%). However, high scores on the training data do not correspond to high scores on the
test set (the second calibration). This suggests that the classifier does not generalize well
enough using our feature set. We analyzed the per class F1-measure for each subject to
find out, for which classes the performance is low. Figure 5.10 shows that the chords
Am and C have low scores with a mean of 55% and 47%. With a mean score of 54%
the G chord’s performance is even lower than the Am one’s. Only the F chord reaches a
relatively high score with a mean of 79%. To investigate how the mistakes are structured
we have to consider the confusion matrices (see Figure 5.11). These let us identify three
types of problems:

Complete misconception (see Figure 5.11(c)) The classifier is nearly unable to distin-
guish between classes (except F as it is a barre chord®). This indicates that the features
drifted too much, e.g. due to a shifted electrode or a drastic change in conductivity. This
type of error can be addressed on the hardware side or with a dynamic drift correction
during performance.

Confusion of Am and C (see Figure 5.11(d)) The classifier makes most of its mistakes
when distinguishing between Am and C. This can be explained by the similar hand
posture of both chords. The presence of this problem in this study confirms that this
problem is not an individual case but a systematic phenomenon (it also applies to
Subject 4). We suggest that future work analysis the underlying physiology in detail to
find a remedy to this problem.

Noise (see Figure 5.11(a) and (b)) In this case the classifier yields respectable per-
formance. It still has misconceptions about certain chords, but these do not seem to
follow an obvious explanation. We believe that these mistakes are caused by noise in
the training and the test data. This does not refer to noise on the signal, but to the idea
that every class has an underlying feature vector and every instance of that class is a
noisy version of it. This problem can be addressed by extending the size of the training
data.

8A barre chord is a chord where one or more fingers are used to press down multiple strings over a
single fret. This produces a distinct EMG signal.
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5.4 Discussion

Inter-Person Performance

The leave-one-subject-out classification showed that the inter-person performance in-
creased to a mean Fl-score of 36% during our guitar tutoring study, contrary to our
first evaluation featuring only three participants with a mean of 22%. This confirms our
expectation that the inter-person performance increases with the number of subjects
and rises the question for how many more subjects the score increases and to which
value it converges.

Our analysis of the classifier with an additional PCA (or kernel PCA) showed that we
cannot reach as high performance increases as the ones reported in literature [Zha+16]°.
For the PCA, the F1-measure increased by 2% for Subject 1, but also decreased by 2%
for Subject 5. Thus, the average F1-measure stays the same. For the kernel PCA, we
achieve a 11% higher F1 measure on the first participant, 5% more for the second, but
also 13% less on the seventh. In total, this increases the F1-score by two 2%. Thus, we
cannot observe a strong improvement by using a (kernel) PCA in general, but still an
evident increase for single subjects and a slight increase on average using the kernel
PCA. It is already remarkable that the average performance of the PCA stays the same if
we train on an affine subspace. This encourages the analysis of further dimensionality
reduction techniques and should be investigated in future work.

°They reported an accuracy improvement of approximately 10%.
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6 Future Work

Within this thesis we identified several challenges that need to be tackled in order to
build a real-world system. Our findings propose that to this end, three topics should be
addressed in future work:

Wearable electrodes The electrode integration into garments could facilitate the setup
and enhance the user experience. This could be realized in form of an EMG-sleeve.
Existing work on EMG electrodes explores electrodes that are embedded in garments
([Fin+07], [Tae+07], [Kar+08]). Farina et al. [Far+10] already tested a sleeve
covering the upper and lower arm for the control of prostheses. Thus, we believe that
such garments will be available within near future and should be evaluated with respect
to the requirements of our system.

Machine learning techniques From a machine learning perspective, our work offers
multiple starting-points. One is the exploration of different features and dimensionality
reductions methods on our data. Further, deep learning methods have been applied to
EMG signals regarding various research avenues [MLY16]. Du et al. [Du+17] showed
that deep domain adaption yields state of the art intra-session' and increased inter-
session and inter-person performances. We believe that similar methods will increase
the performance of our system. We further suggest to introduce classes that represent
chord changes as we believe that fast gesture changes pose a challenge on the classifier.
Another option is the reformulation of the problem as a regression which predicts how
well a gesture is performed with respect to an optimal gesture.

Expansion of system functions Regarding the current functionality of our system
we suggest an extension of the feedback to chord-changes and chord-specific feedback
as shown in Section 5.4. This matches the participant’s feedback. Further, the tempo
adjustment should be revised in a thorough empirical validation to offer the users the
best learning experience.

!This is the performance within one session, meaning that training and testing is done on a dataset that
is recorded during one session.
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We are confident that these points can push our system towards a real-world application.
The effort in tackling these challenges also pays with respect to closely related scenarios.
Possible applications include artistic usages such as an automatic chord playback. As
an example, one could realize an accompanying bass-line that adapts to the fingered
chord, even if only single or no notes of the chord are picked with the right hand. A
different scenario is the usage within rehabilitation systems that encourage patients to
practice specific movements in a playful way. Further, one could extend our prototype to

a system that allows users with hand or finger injuries — or even missing limbs — to play
guitar chords.
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7 Conclusion

In this thesis, we explored the usage of electromyography (EMG) to enable new musician-
instrument interaction. We focused on recognizing guitar chords by leveraging nerve
signals of the upper forearm. Although EMG has been discussed extensively for a variety
of hand-gestures, our approach uses domain-specific movements within a musician-
instrument interaction system, which is novel to the field.

We implemented a signal processing chain and evaluated a broad range of analysis
techniques that are proposed within related work. Our first study showed, that the best
set of features — for our application — is the combination of the root mean squares and
their respective ratios, reaching an average F1-score of 87%. As the other features did
not perform as good as we expected based upon literature, we advise to reconsider the
choice of features for each new application of EMG if maximum accuracy is vital. Fur-
thermore, our study revealed a trade-off between real-time feasibility and classification
performance that has to be considered when designing a real-time system.

We applied our findings to the development of an EMG guitar tutor system as one specific
scenario which requires fine-grained manual interaction. The tutor system estimates
the musicians’ playing accuracies based on their nerve signals. Depending on their
performance, it increases or decreases the playback tempo for the next repetition. We
compared the automatic tempo adjustments with the adjustments the participants chose
themselves in a study. The results showed that the automatic system did not reduce
the ease of use and the electrodes did not limit the participants in playing the guitar.
The recorded data allowed us to evaluate the underlying classifier. We found that the
classifier performance is dependent on the subject and attribute this to the different
physiology. We identified typical classes of mistakes (such as the confusion of the chords
Am and C) and proposed respective solutions. Moreover, we showed that dimensionality
reduction techniques can slightly enhance inter-person generalizability.

Altogether, this thesis showed that the classification of fine-grained, natural gestures
is feasible using EMG. Our findings can be applied beyond the scope of musician-
instrument-interfaces such as in supporting manual assembly tasks [Kos+16], helping
children to learn how to write, or monitoring the exertion of a sportive motion. We
believe that EMG interfaces are an emerging technology that will continue to grow into
the consumer market and open new horizons in HCI.
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