

Abstract

Diese Bachelorarbeit präsentiert einen neuen Ansatz zum Trainieren von tiefen neuronalen

Netzen. Während des Rückwärtspropagierens in solchen tiefen Architekturen wird häufig

beobachtet, dass der Gradient verschwindet. Weiterhin wird beobachtet, dass Schichten mit

einer logistischen Aktivierungsfunktion von oben nach unten saturieren, was die Konver-

genz verlangsamt, da der Gradient nur schlecht hinter diesen Schichten propagiert. Beide

Beobachtungen erzeugen den Wunsch Eigenschaften des Gradienten direkt beeinflussen zu

können und seine Eigenschaften direkt festlegen zu können. Diese Arbeit ermöglicht ein

solches Vorgehen, indem sie die Kostenfunktion des Netzwerks modifiziert. Hierdurch werden

die klassischen ”back propagation”-Gleichungen modifiziert, weshalb neue ”extended back

propagation”-Gleichungen hergeleitet werden. Abschließend werden zwei Methoden und

deren Kombination zur Regulierung des Gradienten vorgestellt und an einem zwei-Klassen,

sowie einem mehr-Klassen (MNIST) Klassifikationsproblem getestet, um die Vorteile des

Trainierens mit dieser Methode herauszustellen. Das Ergebnis ist, dass diese Methode

das Trainieren von tiefen neuronalen Netzen mit logistischer Aktivierungsfunktion stark

verbessert und einerseits die sonst unmögliche Klassifikation im mehr-Klassen-Fall ermöglicht,

während andererseits eine Verbesserung der Konvergenzgeschwindigkeit im ein-Klassen Fall

erreicht wird.

Abstract

This bachelor thesis presents a novel approach to training deep neural networks. While

back propagating on these deep architectures, it is often found that the gradient vanishes.

Further, layers with logistic activation functions will saturate from top to bottom, which is

slowing down convergence as the gradient can’t propagate well past these saturated layers.

Both observations awaken the wish to have the ability to regularize the gradient and directly

force its properties. This thesis enables such regularization by modifying the network’s cost

function. Such changes modify the classic back propagation equations and therefore, the new

extended back propagation equations are computed. Finally, two methods of regularization

and their combination are presented and tested on a binary and a multi-class (MNIST)

classification problem to show the benefits of training with these methods. A result of this

thesis is the finding that this setup massively improves training on logistic networks, on the

one hand enabling otherwise impossible classification in the multi-class case, while on the

other speeding up training on a single class.

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Related Work . 3

2 Standard Back Propagation 7

2.1 Neural Network Notation . 7

2.2 Back-Propagation . 8

3 Regularizing Gradient Properties 12

3.1 Gradient Regularization (Extended Backprop) 12

3.2 Zero-Gradient Training . 14

3.3 Good Gradient Regularization . 15

3.4 Training A Deep Network With Good Gradients 17

4 Experiments 18

4.1 Preliminary Experiments . 18

4.2 Pre-Training Good Gradients . 18

4.3 Training A Deep Network On MNIST . 20

5 Conclusion and Discussion 24

1

1 | Introduction

1.1 Motivation

In recent years, training of deep architectures, especially neural networks, has drawn in-

creased attention from the machine learning community. Research in this area has been

made possible by the collection of large data sets, advancements in parallel computing

(GPU-computing) and proposals of new algorithms to tackle training of several stacked

hidden layers.

A problem encountered, while exploring these architectures, is the error’s gradient, which

’fades’ as the network depth increases. This causes high layers to receive big updates, while

low levels barely experience change in weights resulting in slow or impossible convergence.

Observations indicate that the choices of used non-linearity and method of initialization

greatly influences this behavior.

In literature a common choice to circumvent this issue is the usage of ReLUs (rectifier

linear units) [6] or similar looking functions like softmax. Recently proposed highway

networks [15] are another choice. These, similar to LSTM-networks, use identity neurons

to ensure good back propagation of the gradient. An alternative approach is the usage of

sigmoid or tanh transfer functions paired with careful initialization [5] and pre-training to

find good starting points for gradient descent. Above approaches alter the gradient in two

ways. The first two modify the network’s structure and thereby ensure good behavior of

the gradient. Latter intelligently chooses the region from which gradient descent training

should start. These initially chosen weights allow for a good propagation.

Yet there is another tuning parameter that can be modified in order to ensure good

gradients: the objective function. This would be done by adding a regularization term to the

loss function, similar to L1 or L2 norms sometimes applied to the weights. Unfortunately it

is difficult to see how a function based upon the network layers’ activation or blunt weights

will alter the gradient. It would be a lot simpler if the gradient could be used directly

within the error function to express desired properties. Hence, the first effort of this thesis

is to derive update equations that enable direct use of the loss function’s gradient in the

error function. Next a selection of possible regularization functions will be discussed each

2

CHAPTER 1. INTRODUCTION

forcing the network to learn different desirable weight compositions with good propagation

properties. In the experiment section it will be shown how this addition to the loss can

beneficially influence optimization and even succeed in training deep networks that use

logistic (y = 1/(1− e−x)) units.

1.2 Related Work

1998 LeCunn et al. [10] published a paper displaying implementation tricks on neural

networks. The paper shows that, in order to properly train neural networks with back

propagation, the following points should be concidered:

• input data should be centered, normalized and decorrelated

• the desired output value should be inside the output functions reachable space

• weights should be initialized, so that the input distribution to a neuron is N (0|1)

• learning rates should be individualized for each neuron, proportional to
√

#inputs and

biased depending on the depth of the neuron; The deeper the node, the higher the

learning rate.

• the transfer function should be symmetric to 0 and adding a small linear term can

help to avoid plateaus encountered during training

It is further mentioned, that classical 2nd order gradient descent methods are impractical

for current training tasks as they are either to computational expensive or don’t work with

stochastic descent used in conjunction with big data sets. Further the logistic function is not

recommended due to its non-zero mean, which introduces a bias for each layer, massively

slowing down convergence.

Above speaks against the usage of the logistic function as a transfer function in neural

networks. To avoid the well known plateauing effect, adding a linear term is suggested, with

the purpose of propagating the gradient well in regions where the non linearity is unable

to. The approach differs from this thesis in that the work presented here aims to make

the network organize its ’good gradient’ property by itself and not artificially change the

structure to circumvent it as suggested by the authors.

2010 A stud, made by Glorot et al. [5] investigates the issue of why plain gradient descent

preforms so poor on deep architectures. Experiments were made using neural networks with

1− 5 hidden layers. These nets were trained to test the sigmoid, tanh and the softsign as

activation functions. The goal was to observe how the gradient propagates through these

networks over time. It was shown that, when using the softsign, all layers will saturate

with the same speed while, when using tanh, the layers saturate starting with the lowest

one and moving up.

Odd performance was found when testing the sigmoid as in this case the top hidden

layer starts to saturate first. This is exceptionally bad as saturated sigmoid units have

3

CHAPTER 1. INTRODUCTION

a low derivative, depleting the back propagated gradient even further. The hypothesized

reason for this is that random initialization causes the network to start in a poor state.

Fortunately the layer moves out of the saturation regime if trained long enough allowing

deeper layers of the network to converge. Hence, the first conclusion of the paper is that

sigmoid transfer functions are unsuited for deep architectures and further that this behavior

might explain an effect described as plateaus during training.

In account for the decay of gradient, a new initialization scheme is purposed. Weights

are to be initialized using

w = U [−
√

6√
ni + ni+1

,

√
6√

ni + ni+1
] . (1.1)

This is done to approximately satisfy the two objectives of 1) maintaining activation vari-

ances and 2) preserve the back propagated gradients.

The idea of monitoring the saturation and propagation of gradients presented in the

paper is further advanced in this thesis. The goal of doing this is to understand how a

network can be regularized to avoid the saturation regime mentioned in et al.’s publication.

2010 Asking ’Why does unsupervised pre-training help deep learning?’, Erhan et al. [4]

presented an in-depth study showing the influence of pre-training.

It is argued that gradient descent is difficult, as deep and shallow layers have to be

trained at the same time. Further, the top two layers often suffice to already (over-)fit the

training data causing poor generalization. The authors conclude that pre-training helps

because it initializes the weights in basins with good generalization allowing better training

on the deeper layers. This is achieved by having the network learn an unsupervised objective

function, learning the input sample distribution P (X). Afterwards the network is trained

on a supervised goal, learning P (Y |X) similar to classical gradient descent.

In a sense this regularizes the network, as pre-training chooses the starting point and

thus the region which is reachable in parameter space. A possible explanation why this

works is that small disturbances in the parameters allow ’skipping’ into another basin of

attraction in the early stages of training. Later this doesn’t seem possible anymore. Erhan

et al. test above theory on a set of neural networks, stacked auto encoders [16] and restricted

Boltzmann machines [14] with varying depth finding that pre-training significantly improves

the results, as network depth increases.

This idea will also be used in the present work. Training a network only to have good

gradient properties, regardless of the resulting loss value, is a kind of pre-training. However,

the gradient indirectly depends on the chosen loss, not an unsupervised one. It is shown

that this has beneficial influence on the network such as allowing deep logistic networks to

perform prediction, which can’t be achieved with standard back propagation.

2011 One way of circumventing the problem of poor gradient propagation is the usage of

deep sparse rectifier networks, presented by Glorot et al. [6]. These networks use a different

transfer function, so called rectifier units y = max(0, x). The paper argues that this is a

4

CHAPTER 1. INTRODUCTION

(biologically) more plausible choice then sigmoid or tanh as it is closer to the activation

model commonly used by biologists but additionally has good numeric properties desired

by the machine learning community. Rectifier units have the interesting behavior to create

sparse networks in which only a fraction of the units have a nonzero value. This combined

with the observation, that they yield better results if no prior pre-training stage is used make

rectifier units an interesting choice for training of neural networks. It is further stated, that

the hard 0, compared to the numeric 0 or −1 in other non linear functions, is beneficial for

training the activation.

This presents a different approach to the problem this thesis is solving. As a rectifier

unit does not saturate slowly like usual activation functions, a unit always propagates well

until it receives negative input and completely turns off, circumventing the issue of very low

gradients (and thus very slow convergence) in saturated regions of other activation functions.

2011 Bekir Karlik and A Vehbi Olgac preformed a performance analysis comparing differ-

ent transfer functions [8]. The studies were made on small multi-layer-perceptrons testing

different transfer functions for speed of convergence and quality of generalization. Simi-

lar to the findings by Glorot et al. [6], the logistic function converged slowest and lacks

generalization power compared to commonly used tanh or symmetrical sigmoid.

2012 A new training theme for deep networks has been proposed by Weston et al. [17],

showing how a network’s generalization power can be increased by learning simultaneously

from an unsupervised task and a supervised one using unlabeled pairs of examples. This

is done by constructing a weight matrix Wij , which measures the similarity of two samples

xi, xj . Using this matrix and the prediction of both examples, a loss can be created for

each pair: ∑
ij

L(f(xi, α), f(xj , α),Wij) . (1.2)

The authors purpose that above loss can be used in three ways: First it can be added

directly to the supervised training’s loss. Second it can be applied to each hidden layer,

regularizing these. And finally, an auxiliary layer can be added that branches from any

arbitrary hidden layer and serves as input for the unsupervised loss. This layer is discarded

after training. This approach can be generalized for multi-layer Neural Networks and is easy

to optimize using standard or stochastic gradient descent. Although it is easy to implement

and cheap to compute as there is no need for a decoder compared to stacked auto-encoders,

a drawback of this approach may be the construction of the weight matrix W , which may

be time consuming for big data sets.

Tests were performed on several data sets including MNIST. Further a semantic role la-

beling task was trained and the approach was used in an object recognition task on unlabeled

video data. Training on MNIST was done by comparing a convolutional neural network to a

shallow neural network. Afterwards experiments on very deep architectures were made with

scaling depth of up to 15 layers. While the discussed approach always outperforms clas-

sic back propagation, it additionally starts acting as a regularization for increasing depth

5

CHAPTER 1. INTRODUCTION

preventing the network from overfitting.

Above is similar to the procedure chosen in this thesis. Additional training of the hidden

layers on a specific task enables learning deep representations and fulfills a regularizing

property. This thesis’ approach builds upon the work done by Weston et al. as it adds new

choices to the design of the unsupervised function. A difference is that this thesis only looks

into unsupervised losses that origin from a single sample instead of considering similarity

between two samples.

2015 Very recently an altered architecture [7], called batch normalization, has been pro-

posed by Ioffe and Szegedy, massively improving the speed of convergence. It evolves around

removing the internal covariate shift from the network by whitening each layer individually.

This is beneficial as regular training requires each network’s layer to learn optimal weights

for a distribution, which changes on each training step due to stochastic training. This

constant shift in the layer’s input distribution forces low learning rates if the network is to

converge. As it is known to be beneficial to whiten the input of a network, the authors argue

that the same procedure is beneficial for each individual layer. It is proposed that this has

positive effects not only on the normalized layer but also on previous and prior layers.

In order to achieve this effect an additional layer is added between the non-linear transfer

function and the calculation of the neuron’s activations. This layer centers and decorrelates

each neuron individually for each mini-batch. It is better to decorrelate each unit individ-

ually then the entire input data jointly as it is significantly less computationally expensive.

However this may reduce the network’s representation capability. To compensate for this

reduced capability, two new hyper parameters are introduced removing the need of a bias

layer in the process. Because this procedure directly modifies the network’s structure, the

authors compute the new, resulting back propagation equations. Experiments displayed in

the paper suggest that, when doing batch normalization, the need for dropout is removed.

Further it allows for larger learning rates compared to classic gradient descent and even

succeeds in training networks with bounded non-linearities.

This framework is another example of how changing the networks structure can over-

come problems in training deep architectures. It differs from other papers in a way that it

regularizes the non-linearity’s input to assure well designed gradients, rather then choosing

an activation function with a nicer gradient. It stands in contrast to this thesis, as the good

propagation is again achieved by a modification of structure rather then clever design and

avoidance of saturated region.

6

2 | Standard Back Propagation

2.1 Neural Network Notation

For all experiments and calculations this thesis will examine feed forward neural networks

using a logistic transfer function. The first and last layer are special as they will be using

linear transfer functions. Such networks contain L layers, having N neurons each, again

with exceptions for the first and last layer. Each layer n is fully connected to its predecessor

n−1 and ancestor n+1, meaning that a neuron in one layer has a connection to all neurons

in the other.

A single layer can be described by the equation

zl+1 = Wlxl + λl (2.1)

xl = σ(zl) ,

in which Wl is a matrix where each row contains the magnitude of influences from the

previous layers’ neurons on a neuron in the current layer. λl is a linear bias and σ is the

logistic function applied component wise to the vector zl. The final output of the network

in the last layer is given as

zL+1 = WLxL + λL (2.2)

and the input data is denoted as x1. Iterating (2.1) for all l = 1, . . . , L computes the

prediction of the network and is usually called forward propagation. The predicted class

label is the index of the largest entry in zL+1, which is computed by

argmax
i

(zL+1,i) . (2.3)

Therefore, a neural network in this thesis is a chain of functions fl given in (2.1)

zL+1 = (fL ◦ fL−1 ◦ · · · ◦ f1)(x) (2.4)

Sigmoid Function A specialty, not that popular in research anymore, is the use of the a

logistic transfer function

σ(x) =
1

1 + e−x
. (2.5)

7

CHAPTER 2. STANDARD BACK PROPAGATION

1

x1

x2

x3

∑
σ(·) z

θ

w1

w2

w3

(a) A preceptron

Input (biased) Hidden Layer Output

x3

x2

x1

1

a5

a4

a3

a2

a1

a5

a4

a3

a2

a1

b2

b1

1

(b) A small sample network build of preceptrions.

Figure 2.1: Left: A preceptron, which is the simplest element of a neural network. This one
has three inputs xi, weighted by wi and a bias weight θ which are summed up and fed into
a non-linear activation function σ, resulting in the output of the unit.
Right: A sample neural network with 3 inputs xi, 5 preceptrons ai and 2 outputs bi. Each
ai represents a preceptron, with their inputs drawn as edges between the nodes. Each edge
has its own weight, which is omitted for readability. The ones represent a constant input
for the bias weight. Replacing the output layer b with an arbitrary amount of layers filled
with preceptrons a followed by the output layer creates deep networks.

This function has the convenient mathematical derivative

σ′(x) = σ(x)(1− σ(x)) (2.6)

and only reaches 0 and 1 in its limits. Further the logistic function satisfies the conditions

made by Cybenko [3] and thus enables the network to approximate any function on a com-

pact subset of Rn provided the layers are big enough. A disadvantage of this particular

activation function is that it has non-zero mean, which slows down convergence [10]. To

compensate for this effect and to center the data, a bias λl is trained for each layer. This

bias may be considered as an extra input neuron that has a variable weight together with

a fixed activation of 1, which integrates it smoothly into the networks, as sown in Figure

2.1. Although it may be viewed as an attempt to ’shift’ the logistic function and make it

symmetric around 0, the range of it would remain half of tanh’s range ([−0.5; 0.5] compared

to [−1; 1]). This suggests that, despite adding the bias, a logistic activation function may

still be inferior to a scaled sigmoid or the tanh.

2.2 Back-Propagation

Partial and Total Derivative Back-propagation was first introduced by Rumelhart et

al. [13] in 1988. This thesis uses the same method, however, it is done in a vectorized way.

8

CHAPTER 2. STANDARD BACK PROPAGATION

In order to do this, a distinction between

∂f

∂x
and

df

dx
(2.7)

has to be made. ∂f/∂x refers to the partial derivative, that only accounts for a direct

dependency from f on x. df/dx is the total derivative of f with respect to x, computing

not just direct dependencies, but also latent ones. More precise, let f depend on h1, . . . , hn

then
df

dx
=
∂f

∂x
+

n∑
i=1

∂f

∂hi

dhi
dx

. (2.8)

Concider f(g(x)) = (f ◦ g)(x) as an easy example. Then

df

dx
=
∂f

∂g

∂g

∂x
, but

∂f

∂x
= 0 . (2.9)

Hinge-Loss in Multi-Class Classification In order to do back propagation a loss func-

tion has to be designed first. Here the hinge loss is chosen, which has to be extended in

order to do multi-class classification. This was done by Crammer and Singer [2], reading as

L(zL+1, y) = max(0, 1 + max
i 6=y

(zL+1,i)− zL+1,y) , (2.10)

where zL+1,y is the networks ’score’ for the true class, while y is the desired label. The idea

behind this is that the network’s output for the true label should be 1 value bigger than

all other labels. A behavior of this loss is that the gradient is 6= 0 for two classes at most,

which is undesirable in this case. The reason for this is that maxi 6=y(zL+1,i) will only return

the currently highest-valued unwanted label. It is better to additionally update all other

undesired labels that, from the loss function’s view, don’t have enough distance from the

desired label’s score. Hence, a slightly altered loss function

L(zL+1, y) =
∑
i 6=y

max(0, 1 + zL+1,i − zL+1,y) (2.11)

is used, which accounts for the terms filtered by the maximum operator. Deriving (2.11) for

i 6= y leads to
∂L

∂zi
= [i 6= y and 1 + zi − zy > 0] , (2.12)

where [·] = 1 if the expression is true and 0 if it isn’t. For i = y

∂L

∂zy
=
∑
k

−[1 + zk − zy > 0] (2.13)

is derived.

9

CHAPTER 2. STANDARD BACK PROPAGATION

The Gradient is an Outer Product Now that a loss function has been chosen,

Wl,next = Wl − α
dL

dWl
(2.14)

can be computed and iterated for each layer l. dL/dWl can be rewritten using [12]:eq40,

which reads
∂aTWb

∂W
= abT , (2.15)

where abT denotes the outer product of two vectors. Above has to be extended to allow a

function instead of a. Let f : Rm → R, x ∈ Rn and W ∈ Rm×n. Then

df(Wx)

dW
=


df(Wx)
dW1,1

. . . df(Wx)
dW1,n

...
df(Wx)
dWm,1

. . . df(Wx)
dWm,n

 =


df1
dWxx1 . . . df1

dWxxn
...

dfm
dWxx1 . . . dfm

dWxxn


=

(
df

d(Wx)

)T
xT . (2.16)

where df/d(Wx) is the derivate of f , also known as its Jacobian.

Back-Propagation Equations Using (2.4) the loss can be reformulated

L = (L(·, y) ◦ fL ◦ · · · ◦ fl+1 ◦ fl ◦ fl−1 ◦ · · · ◦ f1)(x) (2.17)

L = (L(·, y) ◦ fL ◦ · · · ◦ fl+1)︸ ︷︷ ︸
hl+1

(Wlxl + λl)︸ ︷︷ ︸
zl+1

(2.18)

and with (2.16) derived as

dL

dWl
=

(
∂hl+1

∂zl+1

)T
xTl =

(
dL

dzl+1

)T
xTl . (2.19)

It can be seen easily, that hl = hl+1 ◦ fl, which allows to recursively compute ∂hl+1/∂zl+1

starting with hL+1.

δL+1 =
∂hL+1

∂zL+1
=

∂L

∂zL+1
, (2.20)

which is the loss gradient and has already been computed above. For hl, where 0 < l < L+1

and

δl =
∂hl
∂zl

=
∂hl+1

∂fl

∂fl
∂zl

=

(
∂hl+1

∂fl
Wl

)
· xTl · (1− xl)T . (2.21)

Here a · b denotes an element wise multiplication of two vectors. The trick used next is

fl = zl+1 and therefore ∂hl+1/∂fl = δl+1, which has already been computed. Hence, the

(vectorized) back propagation equations are

δL+1 = ∂L/∂zL+1 (2.22)

δl = (δl+1Wl) · xTl · (1− xl)T (2.23)

10

CHAPTER 2. STANDARD BACK PROPAGATION

dL

dWl
= δTl+1x

T
l (2.24)

By using these equations and modifying the training set by adding perturbed images,

state-of-the-art performance can be achieved [1]. Thus, it makes sense to compare against

back propagation in terms of quality and speed of convergence.

Regularizing Hidden Layers Currently a network can only be trained on the loss L

which has only a single direct dependency to the network, zL+1. If one may want to regularize

hidden layers, for example to be sparse ‖zi‖1 min, above equations have to be modified.

Suppose

O(z1, . . . , zL+1, y) = L(zL+1, y) +R(z1, . . . , zL+1) , (2.25)

minimizing O will minimize L while accounting for any regularization R that may be desir-

able for the hidden layers. As above is a sum, both terms can be differentiated independently

resulting in the same update as normal back propagation for L. For R it is

dR

dzl
=
∂R

∂zl
+

dR

dzl+1︸ ︷︷ ︸
ρl+1

∂zl+1

∂zl
(2.26)

which again is a recursion similar to previous back propagation algorithm. ∂zl+1/∂zl =

∂fl/∂zl has already been calculated above. Further we can use (2.16) one more time to

compute, that the update part from R is

dR

dW
=

(
dR

dzl+1

)T
xTl , (2.27)

hence both iterations can be combined to

δ̂L+1 = δL+1 +���:
0ρL+1 (2.28)

δ̂l = (δ̂l+1Wl) · xTl · (1− xl)T +
∂R

∂zl
(2.29)

dO

dWl
= δ̂Tl+1x

T
l (2.30)

which is the ’old’ back propagation algorithm but with an added term to regularize hidden

layers. An important thing to note is that, although the objective function has changed and

got more dependent on the network, gradients still pass through the same structure, causing

update equations very similar to classic back propagation. This will be encountered again

in the next chapter.

11

3 | Regularizing Gradient Prop-

erties

3.1 Gradient Regularization (Extended Backprop)

Extending the objective function to contain not just zL+1, but any term depending on

zl, l ∈ [1, L+1], described in section 2.2, enables many kinds of regularization. Nevertheless,

it is not possible to regularize on δl, which is the gradient of L with respect to zl. To

solve above issue, the first goal of this thesis is to derive update equations to enable such

regularization. Hence, consider in the following equation

O(y, zk, δk) = L(y, zL+1) +R(zk, δk) , (3.1)

where zk and δk are short terms for z1, . . . , zL+1 and δ1, . . . , δL+1 respectively. This again

leads to
dO

dWl
=

dL

dWl
+

dR

dWl
(3.2)

with an unknown expression for dR/dWl. To further break this down, it will be usefull to

introduce a utility variable κl = δl+1Wl, so that the derivative can be written as

dR

dWl
=
�
�
��

0
∂R

∂W
+

(
dR

dκl

)T
δl+1 +

(
dR

dzl

)T
xTl . (3.3)

Again this can be computed iteratively using a back propagation like syntax. Practically

speaking, that means the gradients are propagated forward and then backward through the

network an additional time using values from all previous passes on each propagation.

Another possibility of looking at this is to view the calculation of zk and δk as one

extended forward propagation step, as both are needed to compute O. Afterwards an

extended back propagation step is being performed, computing an element based on its

predecessor and the data from forward propagation.

12

CHAPTER 3. REGULARIZING GRADIENT PROPERTIES

Starting with dR/dκl the gradient can be computed using

dR

dκl
=
dR

dδl

∂δl
∂κl

=
dR

dδl︸︷︷︸
ηl

·xTl · (1− xl)T . (3.4)

Note that instead of looking at dR/dδl+1 depending on κk, it can be viewed as dependent on

the prior δk, where k < l+ 1. Therefore, dR/dδk can be computed iteratively and from this

the update dR/dκl can be calculated. δ1 does not have any δk prior to it (with a smaller

index), thus its respective derivative is only a partial one

dR

dδ1
=
∂R

∂δ1
. (3.5)

All other values are computed as

ηl =
∂R

∂δl
+ ηl−1

∂δl−1
∂δl

(3.6)

ηl =
∂R

∂δl
+
(
ηl−1 · xTl−1 · (1− xl−1)T

)
WT
l−1 , (3.7)

which is the forward pass through the network mentioned earlier. Next on the list are

gradients with respect to zL+1. If the loss derivative L still depends on zL+1, the activation

may influence δL+1. The hinge-loss however has a constant derivative, so

∂δL+1

∂zL+1
=

∂2L

(∂zL+1)2
= 0 (3.8)

and thus

dR

dzL+1
=

∂R

∂zL+1
+

��
�
��

��*
0

dR

dδL+1

∂δL+1

∂zL+1
. (3.9)

Meaning that above computed ηL+1 does not influence the starting value of the now following

backward propagation. From here derivations are similar to above classic back propagation

with added possibility for regularization on hidden layers. A twist is that ∂δl/∂zl 6= 0 for

l 6= L + 1, which means that there is another term added in each step of the iteration. In

more detail
dR

dzl
=
∂R

∂zl
+
dR

dδl

∂δl
zl

+
dR

dzl+1

∂zl+1

∂zl
(3.10)

and

ξl =
dR

dδl

∂δl
∂zl

= ηl · (δl+1Wl) · (1− 2xl)
T · (1− xl)T · xTl . (3.11)

The other derivatives are known from the previous section and computed in the same way.

Hence, the entire update equation reads as follows

ξl =
∂R

∂zl
+ (ξl+1Wl) · (1− xl)T · xTl + ηl · (δl+1Wl) · (1− 2xl)

T · (1− xl)T · xTl (3.12)

To compute above equation, ξl+1 and ηl have to be known. Therefore, the resulting iteration

13

CHAPTER 3. REGULARIZING GRADIENT PROPERTIES

equations read as follows

η1 =
∂R

∂δ1
(3.13)

ηl+1 =
∂R

∂ηl+1
+
(
ηl · (1− σ(xl))

T · σ(xl)
T
)
WT
l (3.14)

ξL+1 =
∂R

∂zl+1
+

∂2L

(∂zL+1)2
(3.15)

ξl =
∂R

∂zl
+
(
(ξl+1Wl) + ηl · (δl+1Wl) · (1− 2xl)

T
)
· (1− xl)T · xl . (3.16)

and the gradient with respect to the weights is

dO

dWl
=
(
ηl · (1− xl)T · xTl

)T
δl+1 + ξTl x

T
l + δTl+1x

T
l . (3.17)

Like above, ξl and δl can be factored together resulting in

ξl + δl+1 =
∂R

∂zl
+
(
(ξl+1 + δl+2)Wl + ηl · (δl+1Wl) · (1− 2xl)

T
)
· (1− xl)T · xl . (3.18)

This propagates all the way to ξL + δL+1, which is

ξL + δL+1 =
∂R

∂zl
+

∂L

∂zL+1
+
(
(ξl+1Wl) + ηl · (δl+1Wl) · (1− 2xl)

T
)
· (1− xl)T · xl (3.19)

and thus can be computed efficiently.

Again the equations have a similar structure as back propagation, as the only change was

the objective function O becoming more dependent on the networks parameters. Similar to

above section, each update term has strong similarity to classical back propagation, however,

this time one can think of it as doing 4 back propagation iterations.

An interesting fact that originates from this is that, despite the gradient of R requiring

elements of the loss Hessian, the updates still have similar computational complexity as

back propagation has, meaning that both extended and classic back propagation have linear

runtime in the number of layers.

3.2 Zero-Gradient Training

Above equations of chapter 3.1 enable to train the network on arbitrary functions dependent

on δi. A very interesting, yet more simple way of using this is to demand∥∥∥∥ dLdWi

∥∥∥∥2 = 0 ∀ i , (3.20)

where ‖·‖ is the spectral norm. This is driving the network towards a critical point as

ḟ(x) = 0 is the necessary condition for this. Two interesting implications can be drawn

from this. For the pure convex case, above equation would find the same minimum as

classic back propagation, however, as high values in the gradient produce a quadratic error,

14

CHAPTER 3. REGULARIZING GRADIENT PROPERTIES

those weights will be reduced faster compared to the classic loss. Hence, both will converge

to the same result, but use different paths on their way. The second implication is active in

regions close to a saddle point. The regularization part of the loss is becoming zero in such

points, which allows the optimization task get close to it. As the loss is being minimized at

the same time, the optimization may skip basins of attraction to a minimum unreachable

when only minimizing the loss.

This regularization uses the Hessian to compute an update as can be motivated with a

simple example. Assume that f(x) = xTAx where A ∈ R2×2 and thus

δ = Jf =

[
∂f

∂x1

∂f

∂x2

]
. (3.21)

Minimizing ‖δ‖2, we can compute its derivative

dδT δ

dx
= 2

[
∂f
∂x1

∂2f
∂(x1)2

+ ∂f
∂x2

∂2f
∂x1x2

∂f
∂x2

∂2f
∂(x2)2

+ ∂f
∂x1

∂2f
∂x1x2

]T
= 2

[
∂f
∂x1

∂f
∂x2

] [∂2f
∂(x1)2

∂2f
∂x1x2

∂2f
∂x1x2

∂2f
∂(x2)2

]
= 2JfHf . (3.22)

Here Jf is the Jacobean of f and Hf is its Hessian. This is not the Gauss-Newton update,

which is computed using JfH
−1
f . Instead, JfHf expresses how the gradient will change

under its own update. While the example is by no means a mathematical proof, it suggests

that performing an update based on this term for each layer of a neural network means

taking control of the saturation speed, as the only two ways to have a low gradient in the

next iteration are to either classify better or to saturate the units within a layer.

In order to implement the regularization proposed above, (3.20) can be simplified using∥∥∥∥ dLdWi

∥∥∥∥2 =
∥∥δTi+1x

T
i

∥∥2 = ‖δi+1‖2 ‖xi‖2 , (3.23)

as the spectral norm, induced by the euclidean norm, of a matrix A is

‖A‖ =
√
λmax(A∗A) (3.24)

with λmax(·) returning the biggest eigenvalue of the passed matrix. This expression can

easily be derived with respect to δi and xi and updates can be computed using the extended

back propagation equations introduced in section 3.1.

3.3 Good Gradient Regularization

Using above insights the regularization presented next trains a neural network to have ’good

gradients’, meaning that every layer of the network should change at the same magnitude

during each update. This implies that the network has to set its weights in a way that they

are large enough to allow deep and shallow layers to affect the loss equally, while at the same

15

CHAPTER 3. REGULARIZING GRADIENT PROPERTIES

time setting them low enough to not saturate its activation functions, which would prohibit

learning and gradient propagation.

This is done in order to address the issue that deeper layers are reported to converge

more slowly than shallow ones. A common way to compensate for this is to choose higher

learning rates for these deep layers [10, 5]. The effect may origin from the gradient being

closer to 0 for those layers, meaning that they don’t affect the loss in same magnitude as

shallow layers. Yet it should be possible to formulate a regularization that accounts for this

effect without a human needed to fine tune each layers learning rate.

Such a regularization would not only allow to train using the same learning rate on all

layers, but additionally have the network choose a good initialization similar to unsupervised

pre-training. This is expected to increase the speed and quality of training as the loss can

sufficiently influence even deep layers right from the beginning.

With such a promising expectation, how could a regularization that is able to enforce

’good gradients’ look like? As the top layer has direct influence on the loss, an idea is to

compare every other layer with it. Because two layers don’t need to have the same amount

of neurons, their respective norms are matched, instead of comparing individual units with

each other. A regularization that can accomplish this is

R =

L∑
l=1

|‖δl‖2 − ‖δL+1‖2|2 . (3.25)

Similar to (3.20), this regularization has the property of not modifying loss function’s optimal

solutions as all δi will be 0 in the optimal case and thus the regularization will be 0 as well.

What can not be expected is that doing above will cause activation functions to escape

saturation and become unsaturated if, it is ’stuck’ already. Instead, the network should

avoid saturation until the loss can not be decreased otherwise.

Therefore, two different experiments were performed. First networks with varying size and

depth were pre-trained using this regularization while not considering the loss, to identify

if a network can be set up with ’good gradients’ prior to training representations. The

tested networks had [1000, 100, 100, 100] units and [3, 5, 10, 19] hidden layers and were run

for [1000, 1000, 1000, 5000] updates with a fixed step size of λ = 10−4. All networks were

trained on the MNIST data set [11] using stochastic gradient descent and a mini-batch size

of 100 random samples.

An additional test was made with the same set up on a network with 6 hidden layers for

10, 000 episodes. The purpose of this test was to evaluate any long-term effects that may

origin from training on an objective function that does not directly minimize the loss.

In the second test a pre-trained, deep network was optimized to classify MNIST in order

to investigate how a network with ’good gradients’ behaves differently from other networks.

Th is experiment will be introduced in more details during the next section.

16

CHAPTER 3. REGULARIZING GRADIENT PROPERTIES

To observe the effectiveness of this regularization and to investigate if a network can train

’good gradients’, the ‖δi‖ values are monitored during training. In the experiment section

they will be shown for a selection of the trained networks.

Another plot shown in this context is a plot of each layer’s average saturation. It is done

to compare with [5] and to see if networks saturate differently when using this regularization.

The plot is generated by folding each layers activation at σ(x) = 0.5. At this point the

logistic function is considered most ’active’ or unsaturated. σ(x) = 1 ∨ σ(x) = 0 are said to

be saturated. Folding at 0.5 maps both saturation areas onto a single side allowing for clear

visualization of the average saturation.

3.4 Training A Deep Network With Good Gradients

As mentioned earlier, both regularization terms don’t change local minimums of the loss,

meaning that a minimum of L will also be a minimum of O, however, additional minimums

may be created. This fact makes it possible to train a network on the two regularization

terms and on the hinge loss at the same time. The combined training is necessary to preserve

the ’good gradients’ pre-trained with the second regularization, as not accounting for them

would likely cause the network to unlearn this property.

To test above theses, the second experiment done for this thesis is to train such a network

for many iterations. Using 100 neurons per layer and 8 hidden layers, the network was

trained for about 3 weeks computing a total of 258, 000 updates.

The first 500 episodes were used for pre-training on the ’good gradient’ regularization.

For all following episodes training was done using

O(xi, y, δi) = L(xL+1, y) + ‖δL+1‖2 +
1

100

L∑
l=1

|‖δl‖2 − ‖δL+1‖2|2 . (3.26)

As computing the entire data set’s update is to expensive, stochastic gradient descent on

mini-batches was used. A mini-batch was created for each iteration by combining 100

random samples each, having a loss > 0. For descent, a fixed step size of λ = 10−4 has been

used.

The thought process behind the chosen O is to first obtain the ’good gradient’ property

and then bring down the top layer’s error. Focusing on minimizing this norm should also

minimize the other layer’s norms as each one is constantly adapting to the top layer’s norm.

17

4 | Experiments

4.1 Preliminary Experiments

Prior to training networks on the MNIST data set, preliminary tests on a binary classification

task have been made. The data was generated by drawing 200 samples from a 2-dimensional

Gaussian distribution, with different mean and covariance for each class. The resulting data

set with 400 elements was used to train two networks with 3 hidden layers and 100 units

per layer, using gradient descent on the entire batch with a step size of λ = 2.5 · 10−5. One

network was trained using classic back propagation on the hinge loss, while the other one

was trained on the combination of hinge loss and zero-gradient regularization.

As shown in Figure 4.1 the false classification rate on the training set descents faster if

using the regularization, while still resulting in the same quality.

Doing similar tests on MNIST [11], no improvement could be observed, as the tested

networks have all failed to converge and continued predicting the same class regardless of

the provided input. For pure back propagation the same problem, as described by Glorot

et al. [5] was encountered, leading to no new insights.

4.2 Pre-Training Good Gradients

Moving on to the first big experiment on MNIST, training networks showed that for a

random initialization ‖δi‖ decays exponentially from output to input layer. This can be

seen in Figures 4.2 and 4.3 shown by the lowest blue line, which represents the first episode.

From here all tests with exception for the long-term test showed similar results, hence

only two plots are shown.

Figure 4.2 shows the typical behavior, when pre-training on ’good gradients’. What makes

this plot interesting is that despite the 19 hidden layer network not converging to its final

solution within 5000 episodes, it is showing nicely how the regularization proceeds, matching

norms to the top layer’s one after the other. If training had continued until convergence, the

green line representing the last episode would be strictly horizontal as it could be observed

for the other networks.

18

CHAPTER 4. EXPERIMENTS

Figure 4.1: The classification error on the training set for both zero-gradient training and
standard back propagation, when training on the binary classification task.

Figure 4.2: Norm of each layers gradient for a 20 layer neural network. It is pre-trained for
5, 000 episodes on the ’good gradient’ regularization.

19

CHAPTER 4. EXPERIMENTS

A drawback discovered during training of the network with 10, 000 episodes is that pure

optimization on the regularization without minimizing the loss explicitly can lead to satu-

ration of a single hidden layer. This was observed long after the regularization converged to

the expected optimum and might be caused by the optimization trying to account for the

loss, which is indirectly accessible through δi. Saturation causes all layers deeper then the

saturated one to influence the loss much less, which is shown in figure 4.3. As assumed in

section 3.3, the network did not seem able to escape this saturation as training continued.

After 1, 000 episodes the desired result had been reached which is indicated by the violet

lines in Figure 4.3 (b) and is pointed out in (a). Continued training led to instability at about

4, 800 episodes, saturating a hidden layer. This caused other layers to saturate as well, what

can be seen in the average activation plot. Before saturation the network behaved exactly

as the other tested ones showing both, the straight line in the ‖δi‖ plot and the about 50%

saturated average activation level for each layer.

4.3 Training A Deep Network On MNIST

The results of training a neural network described in section 3.4 are presented in figure 4.4

and figure 4.5.

The first one shows the average activation per layer and the loss gradient’s norm during

training. As implied by the pre-training experiments, layers neither saturate quickly, nor do

individual ones go into saturation. This is a direct improvement to the reported performance

[5] as the layers now saturate slowly and jointly. The other part of the figure shows how the

’good gradient’ property is acquired during the first episodes and then kept, while reducing

each layers gradient at the same speed as training proceeds.

The second figure (4.5) show the false classification rate for both training and test set.

This was measured every 1000 iterations having the best performance after around 156, 000

updates with a false classification rate of 28.52% on the test set. Surprisingly the false

classification rate on the test set is always within 1% of the training set’s rate, indicating

that the trained architecture is not overfitting.

The increasing test and training error from 150, 000 episodes onward may indicate that

the optimization has not converged yet, as the network’s loss showed consistent monotonic

behavior. However, as training is really slow on these big tasks, it was canceled prior due

to time constraints.

In contrast to the preliminary experiments done using classic back propagation or zero-

gradient regularization, the network started to predict different classes for varying inputs,

even during early stages of training. This is a significant improvement, given that only

logistic activation functions are used, which appeared to be not trainable using classic back

propagation when stacked to deep networks.

20

CHAPTER 4. EXPERIMENTS

(a) Folded average of activation of each layer.

(b) Resulting norm of the gradient in each episode

Figure 4.3: The two plots show the problem when purely training on a good gradient without
actively considering the loss. At around 5000 episodes, after training the regularization has
long converged (about 1000 episodes), a hidden layer saturates causing bad gradients for all
layers deeper down in the achitecture.
TOP: Average activations for each layer. They are generated, by folding the activation
values at σ(x) = 0.5 and averaging the result for each episode.
BOTTOM: The norm of gradients in each layer during training. One line represents one
episode moving from blue as the first episode to red in the later stages of training. Green is
highlighting the last episode.

21

CHAPTER 4. EXPERIMENTS

(a) Average Activation per layer (color)

(b) The norm for each layer during time (color)

Figure 4.4: The networks response to training on both the loss and ’good gradients’.
TOP: The Units in each layer learn a representation, while not saturating to much, allowing
the gradient to affect deeper layers at the same rate.
BOTTOM: The gradient’s norm of each layer during training. Initially the network trains
for ’good gradients’ then starts to minimize the error preserving the gradients.

22

CHAPTER 4. EXPERIMENTS

(a) False classification rate on the training data (in %)

(b) false classification rate on the training data (in %)

Figure 4.5: The false classification rate for training and test set. Train and test error rate
are always within 1% of each other.

23

5 | Conclusion and Discussion

In this thesis a novel approach on regularizing deep neural networks has been presented. New

update equations have been derived to allow regularizing the loss’s gradient. Further two

regularization methods based on the loss gradient have been presented and discussed. The

first, zero-gradient regularization, offers a different path to minimize the loss and to pull the

network towards critical points. Latter, introduced as good gradient regularization, trains

networks to have good propagation properties. Experiments have been performed, testing

the benefits of using these regularizations. Although no new benchmarks could be achieved,

significant improvements in training logistic networks were found. The experiments indicate,

that regularizing gradient properties is beneficial for pre-training and helps during actual

training.

While implementing and testing above equations, it was found that randomly initialized

logistic neural networks ’forget’ the input values. That means that despite having differences

in the beginning, forward propagation assimilates distinct inputs resulting in a similar output

and prediction of the same class.

It was shown that this behavior changes, when regularization for ’good gradients’ is

applied, using above method, which allows these networks to learn more efficiently.

While the focus of this thesis was to examine neural networks with logistic activation

functions, it was identified that the choice of non-linearity is the most constraining property

in respect to performance. Being both asymmetric around 0 and bounded, logistic activa-

tion functions are often found to be slow, poor preforming and not suited for deep neural

networks.

Changing the activation function to another one such as the tanh or a symmetric sigmoid,

may already be enough to overcome this issue resulting in a large performance gain in

prediction. Papers like [1, 5, 6, 17] back up this idea recording better results with different

activation functions.

Another approach would have been the choice of convolutional neural networks, which

have been applied very successfully by LeCunn et al. [9] on the MNIST database, out-

performing many other proposed networks. They embed a folding of the input image and

have their focus on extracting data from local regions in the image. There is no reason why

24

these networks can’t be combined with the regularizations provided in this thesis potentially

achieving even better results.

As a conclusion it can be said that, while adding a constant factor to the complexity of

the algorithm, using extended back propagation shows promising results in overcoming the

issue of bad propagating gradients, especially in the context of a logistic activation function,

where classification is massively increased. It was found that gradient regularization allows

for otherwise impossible classification on these deep architectures.

25

Bibliography

[1] Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Juergen Schmidhuber.

Deep big simple neural nets excel on handwritten digit recognition. arXiv preprint

arXiv:1003.0358, 2010.

[2] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. The Journal of Machine Learning Research, 2:265–292,

2002.

[3] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathemat-

ics of control, signals and systems, 2(4):303–314, 1989.

[4] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal

Vincent, and Samy Bengio. Why does unsupervised pre-training help deep learning?

The Journal of Machine Learning Research, 11:625–660, 2010.

[5] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-

ward neural networks. In International conference on artificial intelligence and statis-

tics, pages 249–256, 2010.

[6] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-

works. In International Conference on Artificial Intelligence and Statistics, pages 315–

323, 2011.

[7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[8] Bekir Karlik and A Vehbi Olgac. Performance analysis of various activation functions

in generalized mlp architectures of neural networks. Int. J. Artificial Intell. Expert Syst,

1(4):111–122, 2011.

[9] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[10] Yann LeCun, Leon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient back-

prop. In Neural Networks: Tricks of the Trade, pages 9–50. Springer, 1998.

[11] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of

handwritten digits, 1998.

26

[12] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Tech-

nical University of Denmark, 7:15, 2008.

[13] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-

tions by back-propagating errors. Cognitive modeling, 5:3, 1988.

[14] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann ma-

chines for collaborative filtering. In Proceedings of the 24th international conference on

Machine learning, pages 791–798. ACM, 2007.

[15] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.

arXiv preprint arXiv:1505.00387, 2015.

[16] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine

Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep

network with a local denoising criterion. The Journal of Machine Learning Research,

11:3371–3408, 2010.

[17] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via

semi-supervised embedding. In Neural Networks: Tricks of the Trade, pages 639–655.

Springer, 2012.

27

