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Abstract

Dynamic graphs build complex data structures composed of vertices, edges, and time
steps. Visualizing these evolving structures is a challenging task when we are not only
interested in the dynamics based on a fixed time granularity, but also in exploring the
subsequences at multiple of those time granularities. In this thesis, we introduce a
multi-timescale dynamic graph visualization. The dynamic graph is displayed with
interleaved parallel edge splatting focusing on visual scalability to generate an overview
of dynamic graph patterns first. Different time scales can then be displayed in a vertically
stacked scale-to-space mapping showing finer time granularities in linked side-by-side
views, which is in particular useful for comparison tasks. To obtain an uncluttered view
of the evolving graph patterns, the data is first preprocessed by clustering and vertex
ordering techniques. It is then plotted in a 1D bipartite layout, splatted, smoothed,
and enhanced with contour lines for perceptual augmentation. Inner- and inter-scale
comparisons are supported visually and algorithmically.
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1 INTRODUCTION

1.1 Motivation

In our world, we can hardly find anything being static. From the day we born we are
connected to something else. i.e., to the family. Being part of the family network allows
us to share information and resources with other family members who are themselves
connected to other networks like the neighbors, the work associates, or the school
friends, who are connected to other networks which are connected to other networks
and so on.

This theme of networking is ubiquitous to our world, where objects are connected to each
other by one relation or another. The network could model physical phenomena, like in
the family network. But it could also describe non-physical one; like the online social
networks with friendships between people or the e-mail networks where e-mails are
sent between email accounts. Some other examples are the networks of transportation
where people and goods are transported between cities; the call graph of a computer
program where different subroutines call each other; the neural network inside the
human brain where electrical signals are transmitted between neurons; the protein
interaction networks in a cell where interactions occur between protein molecules, et
cetera.

Node-link diagrams are the most familiar representation to visualize networks (see
Figure 1.1). Each object is depicted as a node and each relation is depicted as an
edge connecting two nodes. This representation is good at showing the overall graph
structure and works better than other representations (i.e., adjacency matrices) for
graph exploration tasks. However, when the underlying network consists of several
hundred vertices and several thousands of edges, which is often the case, the resulting
graph becomes very dense, suffering from visual clutter. Hence, this makes the graph
exploration a real challenge and non-trivial task.
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1 INTRODUCTION

Figure 1.1: Node-link representation, each object is depicted as a node and each relation
is depicted as an edge connecting two nodes

1.1.1 Dynamic Graphs

In many scenarios, networks are not static but exhibit a dynamic behavior where the
structure of the network changes over the time. Dynamic graphs are frequently used to
model such temporal behavior. Getting an overview of long graph sequences is one of
the biggest challenges in dynamic graph visualization.

To obtain insights into the evolution of the graph, the temporal patterns such as trends,
countertrends, temporal shifts, oscillations, outliers, and time-dependent anomalies need to
be identified. To reach this goal, a visual scalable approach that uncovers patterns in the
dynamic graph data is required. Such an approach would provide a starting point for
further data exploration tasks.

1.1.2 Multiple Time Scales

Visualizing dynamic graphs is a challenging task when we are not only interested in the
dynamics based on a fixed time granularity, but also in exploring the graph subsequences
at multiple of those granularities and comparing them without losing the context.

Showing the graph dynamics at multiple time granularities allows us to uncover the
temporal patterns at the finer granularities. Such patterns are harder to detect at coarser
levels as they are aggregated and compressed. Therefore, a multi-timescale visualization
approach that shows the dynamic graph structures on multiple time scales directly in a
combined fashion is needed.

1.2 Objective

In this work, we are trying to answer the following question:
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1.3 Contributions

“ How to provide an overview of multiple time scales of the time-varying relational
data, allowing an analyst to inspect the dynamics on these scales separately, but
also in combination? ”To address this question we follow an experimental approach in which a prototype is

implemented and continuously enhanced and improved to reach our proposed design
goals. Also, we integrate extensive interaction techniques into our solution. Such
techniques help users to filter data, maintain context information and to compare, either
visually or algorithmically, between individually selected time periods.

Additionally, we illustrate the visual scalability and the usefulness of our solution by
means of an application example based on a real world dataset which demands a scalable
visualization.

1.3 Contributions

In this thesis, we introduce a multi-timescale dynamic graph visualization approach that
is visually scalable in any of the three data dimensions (vertices, edges, and time). To
reach this goal, we follow a concept recently developed by Burch et al. [BHW17] based
on the interleaved parallel edge splatting technique to generate an overview of dynamic
graph patterns first. We then extend our visualization by displaying different time scales
in a vertically stacked scale-to-space mapping showing finer time granularities in linked
side-by-side views, which is in particular useful for comparison tasks.

The key contributions of this thesis are:

1. Introducing a visually scalable dynamic graph visualization approach based on the
interleaved parallel edge splatting technique. It maps time points to a time axis in
which each time point has a certain extent allowing a meaningful application of
the interleaving concept. This is particularly useful when the graph structure has
to be identified while being visually scalable in the time dimension.

2. Using the compact layout of our visualization technique, we show the dynamic
graph structures on multiple time scales directly in a combined fashion. The
multiple timescales are stacked on top of each other, while several time periods
can be selected on the same temporal granularity placed next to each other. By
following this design, we are able to compare the dynamic graphs side-by-side and
to set them in context to the coarser granular visualizations placed on top of them
while guiding lines support the comparisons tasks.

17



1 INTRODUCTION

3. To obtain an uncluttered view of the evolving graph structures and temporal
patterns, clustering and ordering techniques are implemented to improve the
aesthetics of the diagrams and to reveal certain graph structures over time.

4. To uncover important graph structures, we apply several interactive filtering
techniques in any of the three data dimensions (vertices, edges, and time). It helps
reducing the amount of visual clutter, overdrawing, and occlusions.

5. To illustrate the usefulness and applicability of our technique. We introduce an
application example based on a real world dataset, which demands a scalable
visualization in all three data dimensions.

Our approach guarantees that several dynamic graph visualizations are visualized in
a single static view. Such a horizontal time-to-space mapping for each time scale and
vertical scale-to-space mapping is in favor to a time-to-time mapping (graph animation)
since it supports comparison tasks over longer time periods [TMB02] while it visually
scales well in the time dimension reflecting dynamic patterns.

1.4 Outline

The remaining of this thesis is organized as follows:

Chapter 2 discusses the related work of dynamic graph visualization. We review different
visualization techniques based on the three major concepts for representing the time
aspect in graphs, time-to-time mappings, time-to-space mappings and hybrids techniques.
For each method, we identify the limitations and the open problems.

Chapters 3 to 6 contain the main contributions of this thesis. In Chapter 3, we explain
the preprocessing phase of dynamic graph data. First, we introduce the data model of
vertices and edges in the graph layout. Then, we discuss the clustering and reordering
techniques adopted by our solution.

In Chapter 4 we present the novel multi-timescale dynamic graph visualization approach.
First, we review the interleaved parallel edge splatting technique developed by Burch et
al. [BHW17]. Next, we introduce the visualization on multiple time scales. Finally, we
discuss the effect of the user-defined parameters on the visual appearance of the final
visualization.

Chapter 5 focuses on the interaction techniques implemented in our solution. We present
the clustering and ordering techniques followed by different filtering options. Finally,
we investigate the usability of our technique in conducting comparison tasks between
dynamic graph sequences, both visually and algorithmically.
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1.4 Outline

In Chapter 6, we present an application example to illustrate the usefulness and applica-
bility of our approach based on a real dynamic graph dataset, while in Chapter 7 we
provide the necessary implementation details to reproduce the claimed results of this
thesis.

Finally, Chapter 8 concludes the thesis by discussing the scalability issues of our proposed
solution followed by the conclusions and directions for future work.
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2 RELATED WORK

2.1 Introduction

In the previous chapter, we have introduced the motivation and the main contributions
of this thesis. In this chapter, we explore the state-of-the-art of dynamic graph visualiza-
tion. Visualizing the dynamics of a graph has become an important research topic in
visualization and visual analytics [BBDW17; LKS+11]. There are three major concepts
for the representation of the time aspect in graphs that can be classified into time-to-time
mappings, i.e., animated diagrams (Section 2.2), time-to-space mappings, i.e., static
diagrams (Section 2.3), or hybrid approaches that combine both (Section 2.4). In the
following sections, we briefly present selected works for each mapping concept with
more focus towards time-to-space mapping.

2.2 Animation (Time-to-Time Mapping)

In this section, we shortly review two methods where the time dimension of the graph is
encoded as an animation. i.e., animated node-link diagrams.

Based on Foresighted Layout [DGK01], Diehl et al. [DG02] introduced a generic al-
gorithm to compute the graph animations. The algorithm consider all graphs in the
sequence (offline) instead of just the previous ones (online) when computing the layout
of the current graph. The Foresighted Layout is extended so that it trades aesthetic
quality of the graph for dynamic stability and vice versa. The smooth transition between
two graphs are animated in the following phases. First all deleted edges shrink and
disappear. Then all deleted nodes disappear. Next all remaining nodes and edges are
moved to their new positions using linear interpolation. Finally all new nodes appear
and all new edges expand. However, the generic nature of the approach comes at the
cost of performance.

Frishman et al. [FT04] presented a force-directed based approach for visualizing clus-
tered graphs. To maintain the clustered structure, dummy vertices and edges are
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2 RELATED WORK

introduced. Additionally, invisible place-holders, called spacer vertices, are used to re-
duce the change in clusters’ boundaries and minimize the movement of clusters between
successive layouts, whereas the weight and length of the edges are used to control the
changes made to the layout. When calculating the outline of each cluster (the bounding
box) the spacer vertices are treated the same as the visible vertices (see Figure 2.1). Due
to the complexity of the algorithm, the running time is higher than other methods.

Figure 2.1: Force-directed based approach for visualizing clustered graphs [FT04].

Taking into account the research question we are trying to address in this thesis, animated
diagrams are considered worse for exploration tasks [APP11; TMB02], in particular,
for comparisons between different time steps and time periods, also on different time
scales as proposed in this work. The reason behind this is the preservation of the mental
map that is responsible for reducing cognitive efforts caused by the weaknesses of our
short term memory [War04]. Moreover, sophisticated algorithms are needed to generate
stable dynamic layouts [DG02] that still show graph structures like clusters.

2.3 Timeline (Time-to-Space Mapping)

In this section, we explore a big family of dynamic graph visualization methods where
the graph can be drawn onto timeline instead of using the animation. Timeline based
approaches are considered better at providing an overview of the graph evolution over
the time since the entire graph sequence get visualized in a single static image.

Based on node-link diagrams, the prominent visual metaphor, Collberg et al. [CKN+03]
introduced Gevol, a system for visualizing the evolution of software. The system extracts
the inheritance graphs, the call graphs, and the control-flow graphs of Java programs and
displays the changes the graphs have gone through since the inception of the program.
The node color is used to encode the change. They start out being red and grow paler
and paler for every time-slice they have remained unchanged until finally, they become
blue. The system utilizes the force-directed method of Kamada and Kawai to lay out
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the nodes in the graph. To construct the "time-slice-graph" the daily graphs are merged
together by identifying nodes correspondence in subsequent graphs. This method,
however, does not scale visually with large graphs. Additionally, it is space-inefficient
considering graphs with thousands or more time steps.

By using adjacency matrices as a visual metaphor, Bach et al. [BPF14] presented Cubix
an easy-to-understand approach to visualize dynamic networks based on the space-time
cube metaphor, It is created by stackin adjacency matrices in chronological order, one
for each time step (see Figure 2.2). Different interaction techniques are supported. i.e.,
slicing, projection, rotation, small multiples, filtering, brushing and linking.

(a) (b) (c)

Figure 2.2: Cubix an easy-to-understand approach to visualize dynamic networks based
on the space-time cube metaphor. (a) Adjacency Matrices (b) Matrix Cube
(c) Vertex Slices [BPF14].

Small MultiPiles [BRD+15] is another matrix-based approach designed to explore time-
series of dense, weighted networks. The technique is based on the physical analogy
of piling adjacency matrices, each one representing a single temporal snapshot. The
similar matrices are grouped together forming a pile. The user can adapt the distance
threshold used to create piles by steering a piling slider. High threshold results in fewer
piles, while lower threshold results in more and smaller piles but with a higher similarity
within each pile. A matrix previews is stacked on the top each pile to give quick pile
size comparison (see Figure 2.3). Additional operations on piles including formation,
exploration, aggregation, filtering, propagation.

Although both Cubix and Small MultiPiles provide a compact visual representation and
a more readable visualization due to their matrix representation, they don’t scale to
thousands of graphs nor do they reflect the evolution over time on different time scales.
Also, visual and algorithmic comparison tasks among time scales are not supported.

Hlawatsch et al. [HBW14] introduced a visual representation for dynamic weighted
graph based on the concept of adjacency lists. In the basic layout, two orthogonal axes
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Figure 2.3: MultiPiles is based on the physical analogy of piling adjacency matrices,
each one representing a single temporal snapshot [BRD+15].

are used: one for all nodes in the graph, the other for the corresponding links (see
Figure 2.4(a)). Labeling can be used to identify the nodes. However, using color improve
the visual scalability. To encode the time dimension, nodes are positioned on the node
axis in the center and groups the time steps of incoming (left) and outgoing (right)
links. Time evolves from the center to the outside. Due to the difficulty of comparing
the incoming and outgoing links of a specific time step using this layout. a Gantt Layout
is introduced where it is possible to subdivide the row for a single node. In this case, if a
single link exists for several time steps, it is visually connected through these time steps
(see Figure 2.4(b)).

(a) (b)

Figure 2.4: Adjacency Lists. (a) The concept of visual adjacency lists, the classic node-
link diagram (left) and the corresponding adjacency list (right) (b) Gantt
layout. it is possible to subdivide the row for a single node. [HBW14].

Adjacency lists provide clutter-free visual representation just like the adjacency matrices.
However, in the case of sparse graphs, adjacency list provides a more compact design
compared to adjacency matrices. Furthermore, it obtains better results with respect to
the weight-related tasks. On the other hand, it is very hard to detect clusters and other
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graph structures since the color coding of visual adjacency lists usually provides a lower
resolution on typical output devices. Additionally, the current method doesn’t visually
scale with respect to the network size and the number of timesteps.

Burch et al. [BD08] introduced TimeRadarTrees, a radial-layout based approach to
visualize sequences of compound graphs (see Figure 2.5(a)). Each node in the graph
is represented by a sector of the inner circle (Time Radar). The sectors are subdivided
into a number of smaller sectors depending on the number of incoming edges of the
associated node. The outer circles (Thumbnails) attached to each sector show the
outgoing edges of the related node. To encode time, both inner and outer circles are
subdivided into tracks. Each track resembles a graph sequence. The first graph of the
sequence is represented by the innermost track, the next graph sequence is represented
by the next outer track and so on. In such way, time evolves from the center to the
outside.

Van den Elzen et al. [EHBW14] proposed a similar approach based on Extended Massive
Sequence View (short: MSV) [CHZ+07]. The idea is to extend the MSV by allowing
edges to wrap around, which results in a (circular) MSV with much reduced visual
clutter (see Figure 2.5(b)). Using the circular representation an edge can always be
drawn in two ways, using either the longest or shortest path between two nodes. Similar
to TimeRadarTrees, time is encoded by the radius of the circle. As time progresses edges
are drawn with an increasing amount of ink. To avoid that bias, an interaction technique
is added to reverse the time direction.

Circular visualizations need much screen space to visualized large graphs. Addition-
ally, comparisons of time moments are harder to conduct using radial-layout based
visualizations.

A clever way to tackle the problem of visualizing large dynamic graphs is to reduce the
dimensions of the problem. Inspired by that, Van den Elzen et al. [EHBW16] proposed a
novel approach where graph sequences, called snapshots, are vectorized and considered
as points in high-dimensional space (see Figure 2.6). Each point in this high-dimensional
space represents the graph at a different time-interval. Points correspond to similar graph
sequences are positioned closer to each other and form a cluster. While for timesteps
where the graph is different from the common sequences, the points will be outliers. To
project the points in two dimensions, dimensionality reduction techniques are applied.
Finally, two juxtaposed linked views are introduced: one shows the projection of the
snapshots and the second provides a network visualization for a selected point. Due to
the memory requirement, this approach has visual scalability concerns, with respect to
graph size and number of timesteps involved. Also, non-linear dimensionality has the
downside that it is harder to interpret the resulting dimensions.
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(a) (b)

Figure 2.5: Dynamic graph visualization based on radial layout. (a) TimeR-
adarTrees [BD08] (b) Circular MSV [EHBW14].

Figure 2.6: Visual analytics approach for the exploration and analysis of dynamic
graphs [EHBW16].

Similarly, Burch et al. [BVB+11a] reduced the dimensionality of the problem by in-
troducing the Parallel Edge Splatting technique where graph vertices are placed on a
1D vertical line (bipartite layout) perpendicular to the horizontal time line. The graph
sequences are drawn side-by-side from left to right as a sequence of narrow stripes. Each
stripe is composed of two vertical, parallel lines, where the hierarchically organized
vertices are placed on both lines with the same order. The edge direction information
is encoded in the left-to-right reading direction (see Figure 2.7). To address massive
overplotting of edges in huge graphs, a splatting approach is employed that transforms
the edges to a pixel-based scalar field. The technique is more scalable because of the spe-
cial 1D vertex layout and the edge splatting technique. a graph becomes space-efficient,
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ambiguities caused by edges crossing vertices are avoided, and the alignment leads to a
better comparability of graphs throughout the sequence.

(a) (b)

Figure 2.7: Parallel Edge Splatting technique. (a) Classic node-link diagram (b) Bipartite
layout [BHW17].

In his recent work [BHW17]. Burch et al. extended the algorithm one step further
by interleaving the vertical stripes together with only one pixel offset. As a result, the
horizontal distance occupied by the graph is reduced even more freeing more space
for visualizing thousands or more time steps. Also, the visual fusion resulted from the
interleaving emphasizes the graph structures and allow easy detection of the temporal
patterns (see Figure 2.8).

Figure 2.8: Interleaving the vertical stripes together with only one pixel offset [BHW17].

In this thesis, we are trying to extend this method [BHW17] by displaying different time
scales in a vertically stacked scale-to-space mapping showing finer time granularities in
linked side-by-side views, which is in particular useful for comparison tasks.
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2.4 Hybrids

Other visualization techniques try to combine both animation and timeline in a hybrid
approach. Beck et al. [BBV+12] proposed such approach that combines the concepts of
Parallel Edge Splatting [BVB+11a] and Rapid Serial Visual Presentation (RSVP) [Spe02].
In this method, the concept of a sliding time window is used to represent a subsequence
of a longer dynamic graph dataset. Instead of showing the single graphs of a sequence
at the same location on the display one after each other, many graphs are shown side-by-
side, all contained in the same time window, which can be moved by a given delay. When
two consecutive graphs differ strongly from each other, the animation automatically
slows down.

While this approach provides a good alternative by combining both paradigms; animation
and timeline, it still requires some time to analyze the dynamics of a large dynamic
graph. Additionally, it is difficult to detect patterns over longer time. This is due to
our short term memory [War04] and challenging perceptual problems like change
blindness [HE12].

2.5 Our Approach

The recent work of Burch et al. 2017 tries to integrate both the scalability aspect as
well as the visibility of the graph structure over time into an individual static diagram
with the goal to provide an overview of the dynamics. We follow the design of Burch et
al. and also support intermediate representations for multi-timescale views [AMST11]
on dynamic graph data. On the one hand, we focus on visually preserving the graph
structure to some degree and on producing a visualization technique that is visually
scalable in any of the three data dimensions (vertices, edges, and time). On the other
hand, our visualization is based on a visual concept that supports the design of multi-
timescale representations providing a technique for comparison tasks of several time
periods selected from a longer graph sequence. To reach this goal, we first make the
individual graphs artificially bipartite [BVB+11a] since this layout is compact, then we
interleave the resulting node-link diagrams to achieve an even more space-efficient and
compact diagram, and finally, apply a splatting technique to generate density fields that
are colored and perceptually enhanced by contour lines [Bur16]. As a novel contribution,
we use this compact layout of a dynamic graph for stacking it on several layers consisting
of several selected time periods in any of the layers while still providing an overview of
the dynamic relational data on multiple time scales.
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2.5 Our Approach

Some approaches from the field of dynamic graph visualization try to solve this multi-
timescale challenge interactively, e.g., the egoSlider technique [WPZ+16] describes a
microscopic, mesoscopic, and macroscopic view on the dynamic graph data. But these
multiple interactively coordinated views do not show the dynamic graph structures on
multiple time scales directly in a combined fashion, but rather show different partially
summarized network data. Moreover, the graph visualization component does not scale
to hundreds or thousands of vertices, edges, and time steps with the goal to provide
overviews about the graph dynamics.
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3 PROCESSING DYNAMIC GRAPH DATA

3.1 Introduction

In the previous chapter, we discussed the state-of-art in the dynamic graph visualization
area. In this chapter, we present the preprocessing phase of dynamic graph data which
equivalent to the data transformations step in the visualization reference model as
described by Card et al. [CMS99]. First, we introduce the data model to get a clear
picture of vertices and edges in the graph layout (Section 3.2). Then, we show how, by
applying the clustering (Section 3.3) and reordering techniques (Section 3.4), we could
obtain a good visual representation. Finally, we see how the quality of the reordered
vertices can be measured compared to the original ordering or to other orderings and
subsequence selections (Section 3.5).

3.2 Data Model

We describe dynamic graph data

Γ = (G1, . . . , Gn)

consisting of n ∈ N individual graphs

Gi = (Vi, Ei)

Each graph Gi = (Vi, Ei) exists at a certain time point ti ∈ TΓ ⊂ N where TΓ is the time
period the entire dynamic graph lives in.

The preprocessing algorithms can be applied to individual time points t ∈ TΓ, to a certain
time period T ⊂ TΓ, or to the entire graph sequence TΓ. We denote the involved vertices
in the clustering by VT and the edges by ET , while T expresses the time interval the
graph subsequence is based on, i.e., T = [ts, te] with ts ∈ TΓ being the start point and
te ∈ TΓ being the end point in the corresponding time interval. If the context is clear,
we omit the subscript T in both the vertex set V and the edge set E. A time scale in
this context is the visual granularity of the temporal graph data, i.e., it depends on the
selected time period.
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3.3 Vertex Clustering

Visualizing dynamic graphs with hundreds of vertices and thousands of edges in an
efficient and effective way remains a challenging task. A good visualization strategy
has to reduce the amount of visual clutter, overdrawing, and occlusions. One way to
reach this goal is through applying graph clustering algorithms where vertices that are
topologically similar are placed next to each other in the same cluster or group. Hence,
reducing the amount of visual clutter. In addition, those clusters provide an aggregated
visual representation which is in particular useful for understanding the evolution of
graph patterns over the time.

Hierarchical clustering meets our needs since it is generally applicable to most types
of graph data with an acceptable runtime complexity of O(m2log m) if m ∈ N is the
number of vertices in the clustered graph. It does not require any predefined parameter
and, hence, is suitable for handling large real-world data where finding a suitable
set of parameters can be tricky, hence, it can be applied as an interactive clustering
approach in our dynamic graph visualization. Our approach investigates the usefulness
of agglomerative (bottom-up) hierarchical clustering with an average linkage. In this
algorithm, we start with N clusters and iteratively merge or agglomerate the two most
similar clusters until all clusters are hierarchically merged into one single cluster that
contains all graph vertices.

Algorithmus 3.1 Hierarchical Clustering

1: procedure CLUSTERGRAPHVERTICES(v1,...,vN)
2: for i := 1 to N do
3: for j := 1 to N do
4: C[i][j] := DISTANCE(vi, vj) // calculate the distance matrix
5: end for
6: end for
7: A := []
8: for k := 1 to N − 1 do
9: < i, m >:= arg mini ̸=m C[i][m] // find two most similar clusters

10: A[k] :=< i, m >

11: for j := 1 to N do // update rows and columns of merged clusters
12: C[i][j] := DISTANCE(< i, m >, j)
13: C[j][i] := DISTANCE(< i, m >, j)
14: end for
15: end for
16: return A

17: end procedure
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3.3 Vertex Clustering

The clustering algorithm is listed in Algorithm 3.1. We first compute distances for all
vertex pairs vi ∈ V and vj ∈ V and take into account the weights of the edges between
those vertices leading to two different similarity matrices. We have used the Jaccard
coefficient to exploit the probability that two vertex sets Vi and Vj have a common
feature fVi,Vj

that expresses how similar two vertices vi, vj ∈ V are.

• The first metric describes a measure for a common neighborhood of vertices, i.e.,
if those are strongly related they should belong to the same hierarchical cluster
which should also be indicated by the visualization. For this reason, we build two
sets of direct neighbors (reachable by a path of length 1) of each vertex pair vi and
vj denoted by Vi ⊆ V and Vj ⊆ V. Then, the Jaccard coefficient generates those
pairwise distances expressed by

J(Vi, Vj) = |Vi ∩ Vj|
|Vi ∪ Vj|

∈ [0, 1] (3.1)

• The second metric solves the problem where we consider two vertices along with
their edge weight w attached to them, a scenario that typically holds for general
network data. Then, the weighted Jaccard coefficient can be computed by the
following expression if Vi ⊆ V and Vj ⊆ V are the two sets of direct neighbors of
vi and vj:

Jw(Vi, Vj) =

∑
u∈Vi∩Vj

W (u)
∑

u∈Vi∪Vj

W (u) ∈ [0, 1] (3.2)

while
W (u) := w(u, vi) + w(vi, u) + w(u, vj) + w(vj, u).

To inspect the usefulness of the clustering algorithm, we applied it to dynamic graph
data consisting of several hundred vertices, several thousand edges, and thousands of
time steps (see Figure 3.1). In this visualization, The y-axis represents the vertices,
while the x-axis represents time. The vertical axis is depicted as two bar charts placed
back-to-back at the right of visualized layout. Green bar-charts encode the frequency of
the in-edges, whereas blue ones encode the frequency of the out-edges.

As shown in Figure 3.1(a), visualizing the graph raw data without applying any clustering
or ordering techniques resulted in a very noisy graph with much visual clutter. We
can hardly detect or identify the temporal patterns of the graph. On the other hand,
Figure 3.1(b) shows the same data after applying the hierarchical clustering algorithm.
As one may notice, some of the graph patterns started to emerge. Also, a less oscillating
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3 PROCESSING DYNAMIC GRAPH DATA

behavior can be noticed on the vertical axis since similar vertices get placed next to
each other, as a result of the clustering algorithm. To gain some insights about the main
clusters in data, we depicted the clusters hierarchies as horizontal dendrograms where
each merge is represented by a vertical line and the x-coordinate of the vertical line is
the similarity distance at which the two clusters have been merged. In Figure 3.2(a), we
annotated the six main clusters in visualized dynamic graph data.

3.4 Vertex Reordering

All available vertices after clustering can further be ordered in multiple ways. In graph
theory, the problem of linearly ordering the vertices to optimize a cost function is known
as minimum linear arrangement [GJ79], or MinLA problem, if the goal is to reduce the
sum of link lengths between all pairs of vertices if those are visually mapped to a linear
axis. This NP-hard problem is of particular interest for our dynamic graph visualization
since a bipartite layout with vertices placed on vertical axes builds the basis for obtaining
a visually scalable and graph structure-preserving visualization. We investigate several
heuristical approaches to achieve good visual results that are still interactively applicable
and that generate cluster-preserving structures over time.

Inspired by the successive augmentation approach [Sil98], we apply a vertex reordering
technique to the hierarchy tree produced by the hierarchical clustering algorithm. The
reordering algorithm is listed in Algorithm 3.2. In this technique, we are trying to find a
better arrangement of vertices while preserving the hierarchical relationships between
clusters. The cluster tree is traversed level by level (Breadth-first Approach). For each
traversed cluster, we swap the left and right children and calculate the edge-crossing cost
for the whole hierarchy before and after the swapping, so that we keep the arrangement
that achieves the minimum cost. The edge-crossing cost of the whole hierarchy is
computed by accumulating the weighted costs of all graph edges. The weighted edge
cost is expressed by the distance between the edge end-points weighted by the frequency
of that edge.

Figure 3.1(c) shows the resulted graph after applying the vertex reordering algorithm. As
one may notice, the reordering of vertices has produced a less cluttered representation.
However, due to the preserved hierarchy relationships, the overall graph structures
generated by the hierarchical clustering algorithm (see Figure 3.1(b)) remains the same.
In Figure 3.2(b) we can see how the swapping of the left and right children changed the
order of six main clusters. If we look closer, we can detect changes at the bottom levels
of the hierarchy as well.
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3.5 Quality Judgements for the Vertex Order

Algorithmus 3.2 Vertex Reordering

1: procedure EDGECROSSINGCOST(tree)
2: c := 0
3: vertices := GETTREELEAFS(tree)
4: for all v ∈ vertices do
5: neighbors := GETNEIGHBORS(v)
6: for all n ∈ neighbors do
7: c := c + (| vpos − npos | ×weight(v, n))
8: end for
9: end for

10: end procedure
11: procedure REORDERCLUSTERHIERARCHY(root, tree)
12: Q := []
13: ENQUEUE(Q, root)
14: while Q is not empty do
15: cluster := dequeue(Q)
16: if cluster is not leaf then
17: costLR := EDGECROSSINGCOST(tree) // cost before swapping
18: SWITCHCHILDREN(cluster, tree) // swap children
19: costRL := EDGECROSSINGCOST(tree) // cost after swapping
20: if costLR < costRL then
21: SWITCHCHILDREN(cluster, tree) // swap children back
22: end if
23: left := GETLEFTCHILD(cluster)
24: right := GETRIGHTCHILD(cluster)
25: ENQUEUE(Q, left)
26: ENQUEUE(Q, right)
27: end if
28: end while
29: end procedure

3.5 Quality Judgements for the Vertex Order

In the case a dynamic graph dataset does not contain a clear evolving cluster structure,
the hierarchical clustering and ordering algorithms based on the entire time period TΓ
cannot produce a visually suitable dynamic graph visualization that reflects these clear
dynamic patterns. For example, if a group of strongly connected vertices disappears over
time and new clusters are build containing a subset of the vertices from the original
cluster, the algorithms based on the entire time period are not able to take into account
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3 PROCESSING DYNAMIC GRAPH DATA

these data changes to produce a visually effective diagram. The reason is the time-
aggregated clustering and ordering strategy that does not care for local dynamic patterns
and cannot treat the clusters as intertwined ones separately. This is the drawback of
the mental map preserving dynamic graph visualization focussing on a high degree of
dynamic stability, i.e., a certain well-defined vertex order has to be kept stable over time
never mind how bad a vertex order may become for later time steps.

However, to provide some solution to this problem, we can compute a quality value
based on a certain clustering and ordering which can be applied to individually selected
time periods. This means if a generated vertex order does not meet the requirements
in a different time period, this can be algorithmically reflected by a quality measure
based on a user-defined suitable vertex order that outputs a value of, e.g., the sum of
link lengths which is one criterion we base the vertex ordering on. If this sum exceeds a
certain number at a certain time point, we might consider reordering the corresponding
vertices of the graphs.
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3.5 Quality Judgements for the Vertex Order

(a)

(b)

(c)

Figure 3.1: Applying clustering and reordering techniques to dynamic graph data con-
sisting of several hundred vertices, several thousand edges, and lots of time
steps: (a) Raw data (b) After clustering (c) After clustering and reordering
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3 PROCESSING DYNAMIC GRAPH DATA

(a) (b)

Figure 3.2: Clusters hierarchies visualized as dendrograms. (a) Dendrogram generated
by the clustering algorithm without reordering. (b) Dendrogram after
applying vertex reordering
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4 MULTI-TIMESCALE DYNAMIC GRAPH
VISUALIZATION

Figure 4.1: A multi-timescale view on a dynamic graph dataset acquired from the US
domestic flight database consisting of several hundred vertices (airports),
several million edges (flight connections), and more than ten thousand time
steps (from January 1st, 2000 to December 31st, 2001). Three levels from
top to bottom represent monthly, daily, and hourly patterns, respectively.

4.1 Introduction

In the previous chapter, the clustering and ordering techniques adopted by our visual-
ization method are presented. In this chapter, we introduce our novel multi-timescale
dynamic graph visualization approach. The technique is visually scalable in vertex, edge,
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4 MULTI-TIMESCALE DYNAMIC GRAPH VISUALIZATION

and time dimensions. It is able to show evolving graph structures based on cluster
properties, visually improved by a suitable vertex ordering. And it reflects the dynamics
of the relational data on multiple time scales. It supports a graph analyst at the task
of comparing the graph subsequences while setting them in context to each other. All
views are linked to each other helping an analyst to track changes over time in each of
them.

Following the information visualization reference model [CMS99], after raw data be-
ing transformed, hierarchically clustered and ordered, individual graph sequences go
through a visual mapping pipeline (see Figure 4.2). First, they are transformed into
bipartite layout then interleaved, splatted, smoothed, and finally, augmented by contour
lines (Section 4.2). This is similar to the approach investigated by Burch et al. [BHW17],
but we extended it to make it applicable on multiple timescales with inter-linked views
and scales (Section 4.3). By doing so, we become able to conduct direct algorithmic
comparisons between selected time periods (Section 4.4). The quality of the visual
appearance depends on many user-defined parameters that we will be described in
Section 4.5.

Figure 4.2: A visual mapping pipeline to visualize dynamic graphs with thousands or
more time steps. Individual graph sequences are transformed into a bipartite
representation, interleaved, splatted, smoothed, and finally, augmented by
contour lines.

4.2 Visualizing a Sequence of a Thousand Graphs

Inspired by the massive sequence view approach [EHBW14] and the scalability and sta-
bility effects of the parallel edge splatting technique [BVB+11b], Burch et al. [BHW17]
proposed a visualization technique that is particularly useful in visualizing dynamic
graphs with thousands or more time steps. The technique is not focusing on showing
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4.2 Visualizing a Sequence of a Thousand Graphs

every single detail in the dynamic graph but rather on showing the overview of the
evolution of graph dynamics over time. It is based on a time-to-space mapping where
the graph gets transformed into a bipartite representation, which is particularly useful
in preserving the mental map [MELS95; PHG07] and reducing the cognitive efforts
while doing the comparison tasks. Moreover, the interaction techniques can be easier
integrated into this visualization in comparison to animated graphs where the analyst
has to stop and replay the graph several times to gain insights into the data.

Each time step of the graph is represented by a small vertical stripe (see Figure 4.3(c)).
To produce a less cluttered visual representation, the splatting technique[BVB+11b] is
applied where a scalar density field that aggregates the overlapping edges is computed
and displayed. To achieve an even more visually scalable visualization, an interleaving
approach is introduced where the graphs are pushed close to each other resulting in
overlapping bipartite graphs. Therefore, generating a time-compressed, compact, and
space efficient representation while the dynamic graph patterns are still visible.

4.2.1 Encoding of Individual Time Steps

(a) (b) (c)

Figure 4.3: Transforming a node-link diagram in 2D (a) into a bipartite layout with
vertices mapped to vertical lines (b). The vertex labels and arrow heads can
be removed for better visual scalability (c).

A central component of our techniques is the transformation of the graph into a bipartite
representation. A general graph

G = (V, E)

is made artificially bipartite by first copying vertices set V to another vertex set denoted
by Vc. All vertices from vertex set V are equidistantly mapped to a vertical axis. A second
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4 MULTI-TIMESCALE DYNAMIC GRAPH VISUALIZATION

vertical axis is used to map all vertices from the copied vertex set Vc. We use a depth-first
approach to traverse the hierarchical clustering tree. we follow subhierarchies according
to their order in memory and position the leaf nodes accordingly. For the bipartite layout,
it is important that each vertex and its copy is mapped to the same vertical position on
both axes. This is particularly important for displaying dynamic graphs to preserve the
dynamic stability in the time-to-space mapping.

The bipartite representation has several benefits. It is visually scalable in visualizing
dynamic graphs with a large number of time steps. As shown in Figure 4.3(a), the
traditional node-link diagram is good at showing the overall graph structures. However,
such representation has a limited scalability when it comes to visualizing dynamic graphs
with thousands or more time steps. Furthermore, in node-link diagrams, an explicit
representation of the edge direction is required (the arrow). Such a representation is
not needed in a bipartite layout since the direction is already encoded in the left-to-right
reading direction (see Figure 4.3(b)). Even after removing the vertex labels and the
arrow heads the diagram still remains readable (see Figure 4.3(c)). Using the bipartite
layout we are able to visually encode the graph in one direction while still preserving
the graph structures to some degree.

4.2.2 Interleaving

(a) (b) (c) (d) (e)

Figure 4.4: Interleaving two graphs in a bipartite layout as node-link diagrams. The
horizontal distance between the graphs is reduced step-by-step (a) to (d)
until we reach a one-pixel offset (e).

The traditional approach for showing dynamic graphs with a bipartite layout is to draw
all time steps in a side-by-side layout next to each other [BVB+11b]. Although this
concept provides a natural mapping of the time aspect in the dynamic graphs, it is
restricted to the size of the display medium. Therefore, it has a limited scalability with
time-varying graph data with several hundreds or thousands time steps. A possible
remedy could be reducing the width of the vertical stripes. However, the width can only
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4.2 Visualizing a Sequence of a Thousand Graphs

be reduced to a certain degree. Otherwise, it would be difficult to see the structures of the
graph since the density is strongly compressed in the horizontal direction. Furthermore,
placing the graph sequences next to each other does not work best for detecting the
evolving structures of the graph. Typically, the analyst has to revisit different graph
sequences several times until he could obtain insights into the data.

To avoid those problems and to improve the visual scalability, we, therefore, apply a
concept that we refer to as interleaving (Figure 4.4). We keep a rather large horizontal
width of the stripes representing the individual time steps but let the stripes overlap with
only one pixel offset. As we can see, the horizontal distance is more and more reduced
until all graphs are nearly placed on top of each other, with only one pixel offset. This
results in a visual fusion of the links existing in several time steps; they appear as thicker
lines. Hence, with every subsequent time step in which a link exists, the thickness of the
representing line increases by one pixel due to the offset. Therefore, the thickness or
width of the visible structures is an indicator for the time period covered by them. Since
we use color coding for representing the edge weights, changes in color can indicate if
weight changes occurred.

4.2.3 Edge Splatting

Edge splatting is a technique proposed by Burch et al. [BVB+11b] to address the problem
of visual clutter that occurs when drawing many links onto a small area of screen space.
In this technique, the edges are not drawn as line-based graphical primitives. Instead,
they are transformed into a pixel-based scalar field. In this way, when two or more edges
cross each other at a certain point, an aggregated scalar field of all overlapping edges is
computed and displayed.

This is illustrated in Figure 4.5. Directly drawing three crossing links (Figure 4.5 (a))
would result in occluded parts (Figure 4.5 (b)), which might prevent the visibility of
edge weights. With our splatting approach, the three links and their edge weights are
aggregated into a density field which leads to new quantitive values based on all edge
weights (Figure 4.5 (c)). As we can see, the crossing point of the three links is now
shown with a larger value because the edge weights of all links are taken into account.

4.2.4 Low-Pass Filter

Our technique focused on providing an overview of the dynamic behavior rather than
showing every small detail in the dynamic graph. Drawing the interleaved time steps
directly can lead to a cluttered view due to the presence of many overlapping and
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Figure 4.5: Edge splatting illustrated for three crossing edges with different weights. (a)
Three edges crossing each other. (b) Directly drawing the edges would result
in this image; the last drawn edges occlude parts of the others. (c) The edge
weights are aggregated into a scalar density field in the rightmost subfigure.
Color coding is changed due to a new maximum value [BVB+11b].

crossing structures. To obtain a less cluttered visual representation, we apply a low pass
filter several times to produce a smoother result. Figure 4.6 shows the density field
visualization before and after applying the filter. In this example, we used a 3 × 3 box
filter since it achieves good results at low computation cost. Figure 4.6(b) shows the
result after applying the filter 5 times. As one may notice, the small details are not
visible anymore. However, the large-scale structures still preserved.

4.2.5 Contour Lines

The visual cortex of our brains contains mechanisms specifically designed to seek out
continuous contours [War04]. Considering that, we augmented black contour lines in
the density field of our visualization. Therefore, the patterns and structures become
easier to detect. Figure 4.7 shows the density field after contour lines augmentation.
Notice how contours emphasize the shapes of the visible structures.
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4.3 Visualizing on Multiple Time Scales

(a)

(b)

Figure 4.6: Smoothing the density field visualization using a 3 × 3 box filter applied 5
times. (a) Before smoothing. (b) After smoothing. Notice the small details
are not visible anymore. However, the large-scale structures still preserved.

4.2.6 Color Mapping

To obtain the final pixels color, A logarithmic function is applied to the pixels scalar
weights. Next, all scalar weights are normalized on a scale of 0 to 1. For each pixel,
the scaled value is then mapped to a discrete color bar with five bins (see Figure 4.8).
Finally, a linear interpolation is done to approximate the final pixel color.

4.3 Visualizing on Multiple Time Scales

To provide a static overview of the dynamics of the graph data, we can vertically stack
several interleaved diagrams since they are visually scalable. Moreover, even if they are
scaled down vertically or horizontally, they still show the overall dynamic patterns, but
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Figure 4.7: Augmenting contour lines in the density field of our visualization. Notice
how contours emphasize the shapes of the visible structures.

Figure 4.8: Discrete color bar with five color bins (white, gray, red, yellow, and green).

negatively, individual details are hidden. Hence, the focus of this work is to provide
an overview of time-varying patterns on multiple levels, and then supporting a graph
analyst by additional interaction techniques to dig deeper into the dynamic graph
data. Figure 4.1 illustrates how the stacking works based on user-defined time period
selections in each of the time scales. To reach this goal, we provide two different ways
of timescale stacking, i.e., top-down stacking and side-by-side stacking.

• Top-down stacking: The top-down stacking of time scales describes an order
among the time granularities, i.e., from coarse granularities to fine ones going
from top to bottom. The visualization is designed in a way to preserve the context of
finer time granularities within the coarser granular time granularities by providing
guiding clues (see Figure 4.1).

• Side-by-side stacking: We display views on the same time scales next to each
other on the same level, a concept that is intuitive and that allows a comparison
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between them. Moreover, these can be set in context to each other and also with
coarser time scales (see Figure 4.1).

The top-down and side-by-side stacking of the timescales result in a hierarchy of
timescales in which the vertices are the dynamic graph subsequences and the parent-
child relations express the user-defined selections from one timescale to the next one on
a finer level.

Following this idea, a graph analyst can start from a coarse-grained temporal overview
of the dynamic graph data, identify details and patterns on several levels of temporal
granularities and then explore those detailed patterns in all the coarser-grained time
scales. The dynamic graph visualization starts from overview to detail and supports the
way back, i.e., from detail to overview.

4.4 Algorithmic Dynamic Graph Sequence Comparison

Visually comparing dynamic graph sequences is a challenging task, but, the overall
dynamic patterns in several of these timescales can be compared easily and rapidly
due to the strengths of the perceptual abilities of the humans’ visual system [War04].
Negatively, if two dynamic patterns look rather similar, tiny features in the visualization
might nonetheless be different which cannot be found due to problems caused by the
effect of change blindness [HE12]. To support a graph analyst with a more algorithmic
approach we can directly compare two graph subsequences by computing the edge
differences for each time step giving a new dynamic graph that typically contains fewer
edges than the compared ones unless they have no edge in common.

In our approach we support the comparison of two equally long time periods T ⊆ TΓ
and T ′ ⊆ TΓ (| T | = | T ′ |) like, for example, two days or two hours of a dynamic graph.
The individual graphs of each of the subsequences based on those time periods T and T ′

are then algorithmically compared by subtracting the edge set of the second graph G′
i

from the first graph Gi while i ∈ N denotes the i-th time step, i.e., the i-th graph in any
of the time periods. The resulting dynamic graph can then be visualized in the same
visual metaphor in a different view.

4.5 Parameter Adjustments

The visual appearance depends on many user-defined parameters that we will describe
in the following.
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• Stripe width: Changing the width parameter can be useful to make the graph
structures more apparent but also the overlap of neighbored graphs in a sequence
will be increased with a larger stripe width.

• Horizontal offset: Interleaving graphs from a longer sequence means pushing
them horizontally together. Depending on the number of graphs, the horizontal
display space, and the stripe width, we can achieve different visual pattern results.
Typically we apply 1 pixel offset if enough display space is available. If less display
space (in pixels) than graphs to be displayed is available we plot them on top of
each other and compute densities from the overplotted graphs.

• Density: Computing densities can be based on the fact if an edge is present or
not, or the edge weight can be incorporated into the density generation. Moreover,
the level of detail and the granularity of the timescale plays a crucial role in the
density computation.

• Splatting: Applying a box filter can be done multiple times which leads to some
kind of washing out effect of the sharp contours. The box filter can be changed by
interactively adapting the radius of the filter. The box filter can be applied to each
timescale separately.

• Logarithmic values: If the density values differ a lot in their range we can apply
logarithm functions several times to reduce the differences between maximal and
minimal values. This effect can be applied to each of the timescales separately
which is in particular useful if the node-link diagrams are rather dense and produce
lots of hot spots in regions where many links are crossing and overlapping.

• Clustering/ordering: Since we are displaying the dynamic graph data on multiple
timescales we provide an option to cluster and reorder the graph data on each of
those time granularities. This can be particularly useful if one wishes to keep track
of an identified cluster structure in a certain time period and how it evolves before
or after the selected time period. Moreover, several of those graph structures can
be compared, either visually or algorithmically.

• Color coding: We support several color scales to visually enhance the computed
density fields. The color coding can also be used to map identified clusters in
a certain time period to the dynamic data visualization on a different (probably
coarser) timescale to get insights about the contextual information.

• Contour lines: Only showing the density values as color coded visualizations can
be perceptually problematic in particular if the task is to track certain data changes
over time. For this reason, we provide contour lines indicating larger regions of
similar density values and how they change their shape over time.
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• Horizontal display space: The display space plays a crucial role for the visual
density structures in the dynamic graph visualization. If multiple timescales are
used to display the data we probably have less horizontal space to display the
selected region and hence, the densities will be different.

• Vertical display space: If multiple timescales have to be displayed those have
to be mapped to the vertical display space, i.e., stacking many of them means
that the vertical display space for each is restricted to only a few pixels, but as
a benefit, the generated diagram is visually scalable and hence, allows for the
detection of time-varying patterns even if individual details cannot be derived in a
coarse-grained view.
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5 INTERACTION

5.1 Introduction

In the previous chapters, we introduced our approach to visualize dynamic graph data on
multiple timescales. The dynamic graph is displayed as an interleaved splatted diagram
focussing on visual scalability to generate an overview of dynamic graph patterns first.
Starting from such an overview, a graph analyst can build explorative hypotheses about
the graph data which can be explored in more temporal detail and commented whether
hypotheses need to be confirmed, refined, or rejected. This can be achieved by first
looking into details and then setting those details into context with the coarser-grained
overview representation of the dynamic graph data. To achieve this goal, we integrate
several interaction techniques into our solution to help users steering the analysis
according to their information need, and to drill down to useful peaces of information.

In this chapter, we present several interaction techniques supported by our visualiza-
tion. First, we discuss the clustering and ordering techniques in Section 5.2. Next, in
Section 5.3, we explore different filtering options. Then, we investigate the usability
of the algorithmic compare feature in conducting comparisons between dynamic graph
sequences in Section 5.4. Finally, in Section 5.5 we discuss the selection interaction
technique.

5.2 Exploratory Analytics

The visualization technique is designed in a way to first generate a suitable vertex
clustering and ordering based on the entire graph sequence since we do not know how
chaotic the evolution of a graph will be right from the beginning. Clusters might be
staying constantly over time, they might be growing, shrinking, splitting, merging, or
moving to other graph substructures. For this reason we start with a time-aggregated
graph clustering and ordering focussing on a preservation of the mental map in the
dynamic graph visualization. Consequently, the clusters and ordering cannot be changed
in an individual timescale, but typically, on multiple of those.
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As a benefit of our approach, we are able to apply a reordering of the vertices in each of
the timescales separately, i.e., if the graph structure changes frequently, the ordering can
be based on individual time periods while the generated order can also be applied to
the entire graph sequence. To explore the quality of each computed vertex ordering we
compute the average link lengths based on an initially chosen vertex order. This quality
measure describes if the generated vertex clustering and ordering are still appropriate in
other time periods or if a new one should be computed. Consequently, the exploratory
analysis starts with a cluster evolution overview, provides temporal details while allowing
to reorder the vertices based on a certain time period or time step, and can either show
the reordered vertices in context to the entire sequence or other selected time periods.

The detailed view can be useful to get an information about individual edges or graph
properties that are hidden in the visually scalable dynamic graph visualization. Conse-
quently, the graph analyst can look into spatial and temporal details, select interesting
features or graph properties, and show those in the overview view by highlighting the
selected details in context to the entire graph sequence. This interaction technique is
applicable in any of the timescales. For example, a certain vertex may have various
adjacent edges, but this vertex cannot be found in the overview visualization. Once it is
found in a detail view, it might be selected, while all adjacent edges can be highlighted
in the overview (coarser-grained views) to visually illustrate the evolution of this specific
graph property.

5.3 Interactive Filtering

If the graph data is rather dense, many links have to be rendered, i.e., the computed
scalar density fields contain many large values that can lead to hiding important graph
structures. This is a general drawback of this visually scalable visualization technique.
But since we allow interactions with the diagram, we can apply several filter options
in order to reduce the amount of visual clutter, overdrawings, and occlusions in the
visualizations that would otherwise lead to a degradation of performance at some task
while doing an explorative analytics of a large dynamic graph. Those filter options can
be particularly based on:

• Vertices: Since the vertices are hierarchically clustered and ordered we can select
certain subhierarchies or vertex groups that can be filtered out. This can be useful
to reduce the amount of nodes that are displayed with all the involved edges,
making evolving structures much clearer. As shown in Figure 5.1, the y-axis is
used to represents the vertices in our dynamic graph layout, it is depicted as two
bar charts placed back-to-back at the right of visualized layout. Green bar-charts
encode the frequency of in-edges, whereas blue ones encode the frequency of
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out-edges. The numeric values of those frequencies get displayed at the top of the
axis when the analyst hover a certain vertex position. Additionally, a side menu
popped-up showing the label of current hovered vertex.

The vertices side menu shows two different options to filter vertices, The intra-
relation option filters out edges if one of the endpoints does not belong to the
group of selected vertices. While the inter-relation option filters out edges if
both end points do not belong to the group of selected vertices.

Figure 5.1: The vertices side menu. Two different options to filter vertices are shown
on the top-right corner, the inter-relation and the intra-relation .

• Edges: In the bipartite 1D vertex layout, edges can be classified into upward,
downward, or horizontal (self) edges. A filter option is provided to select only
edges with a certain pointing direction property.

• Edge weights: Given a threshold value, edges can be filtered out whose weights
lie below the given threshold. This is in particular useful for networks in which
the direction and the weights play a crucial role and in which the evolution over
time and on several timescales is important. In our tool, we provided the analyst
with an edge weight slider (see Figure 5.2) where he can steer the threshold value
and directly see the how the graph layout changes along with the vertex list.
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Figure 5.2: The edge weight slider. Given a threshold value, edges can be filtered out
whose weights lie below the given threshold.

• Edge lengths: Apart from filtering for edge directions or weights, also the link
lengths can be important features to base a filter on. For example, after a clustering
and reordering it may be interesting to filter out long links and reorder the vertices.

• Time: Since we provide a multi-timescale dynamic graph visualization we support
time period selections in any of the timescales. Filtering out several time periods
provides more space for the remaining ones and hence, shows a more detailed
view on the finer granular temporal graph structures.

• Densities: In certain regions the densities are higher than in others. While the
evolution of the densities provides an overview about dynamic graph structures it
can still be difficult to explore the regions with smaller density values overlapped
by others.

• Textual: If textual descriptions are given (like airport or function names) those
can be filtered, e.g., by searching for a certain substring contained in the labels.

• Spatio-temporal: The dynamic graph visualization maps vertices to vertical po-
sitions and time to horizontal positions. Hence, a spatio-temporal filter can be
applied that only selects a specific time period and a group of connected nodes.

5.4 Algorithmic Comparison of Subsequences

The strengths of the human’s visual system and the ability to detect visual patterns,
compare them and to derive conclusions about similarities or differences already serve
as suitable approaches to find insights in the dynamic graph data. But to fully exploit
the strengths of our algorithmical approaches we provide a comparison algorithm that
takes two timescales as input and computes a dynamic graph difference. This algorithm
might only be applied in cases in which it is not perceptually and visually clear if two
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dynamic graph subsequences are similar or not, i.e., it serves as direct support to the
visual comparison.

The comparison algorithm can work on any kind of dynamic graph subsequence and
generates a difference dynamic graph step by step. This difference graph is then
displayed in the same visual metaphor as the original multi-timescale dynamic graphs in
a separate view. The algorithm can work on the edges alone, the edge weights, or on
the densities.

5.5 Selection

Selection is a central interaction technique in our visualization since other interaction
techniques rely on the selection in the first place (i.e. time filter, spatio-temporal filter,
algorithmic comparison). In our visualization tool, there are two modes of selection:

• Time Selection: Typically, this mode is used in conjunction with the time filter. It
allows the analyst to apply further interaction techniques to the period of time that
is bounded by the selection rectangle. In this mode, the selection rectangle can
grow and shrink in one dimension only; the time dimension (see Figure 5.3(a)).

• Space-time Selection: Similarly, this mode is used in conjunction with the spatio-
temporal filter. In this mode, the selection rectangle can grow or shrink in both
dimensions; the time and the vertices (see Figure 5.3(b)).

To support side-by-side stacking on the same time scale, multiple selections can be
performed on the same time period where each selection has a different color (see
Figure 5.4), a concept that is intuitive and allows a comparison between them. Moreover,
it supports the tracking of selected periods across multiple timescales.

It may be noted that all interaction techniques can be applied to all timescales separately.
For example, applying the filtering on a timescale can show a reduced amount of data
points, i.e., the evolving graph structure may become clearer if the right amount of
data points is filtered out. Moreover, the remaining data can also be used for vertex
reordering and can be propagated to any other timescale view.
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(a) (b)

Figure 5.3: Modes of selection interaction technique. (a) Time Selection (b) Space-time
Selection.

Figure 5.4: Multiple selections can be performed on the same time period where each
selection has a different color.
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6 APPLICATION EXAMPLE

6.1 Introduction

In the previous chapter, we discussed different interaction techniques implemented in
our system. In this chapter, we illustrate the visual scalability and the usefulness of
the multi-timescale dynamic graph visualization by applying it to a portion of the US
domestic flight traffic dataset [Tra17]. We extracted the flight dataset for two years
starting from January 1st, 2000 and ending at December 31st, 2001. The data is
available on a per-minute basis, but we have temporally aggregated the data on an
hourly basis to reduce the amount of data in the time dimension. This is possible since
changes do not occur that frequently, that we need an exploration on a per-minute basis.
The dataset under exploration finally contains 234 vertices which are the airports, more
than 10 million weighted edges which are the flight connections and their frequency,
and also 17, 544 time steps, which are given by the graphs per hour.

In this chapter, we start first by showing how the visualization of the dataset looks like
in Section 6.2. Next, we identify different graph structures and temporal patterns in
Section 6.3. Finally, we show how the visualization allows us to gain some insights
into the dataset by visualizing it on multiple timescales (Section 6.4) and by comparing
between differently selected time periods (Section 6.5).

6.2 Visualizing Dynamic Graph Data

Getting an overview of any dynamic relational dataset is challenging since most of
the existing approaches do not scale well in all three data dimensions, i.e., vertices,
edges, and time in combination. Consequently, the real benefit of our technique is to
provide a dynamic graph analyst with an overview that is visually scalable on the one
hand, but still reflects the evolving graph structures to some degree on the other hand.
Figure 6.1 shows the dynamic graph layout for data, after applying the interleaving
method illustrated in Figure 4.4. The y-axis represents the vertices (airports), while the
x-axis represents time.
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Figure 6.1: The dynamic graph visualization can show several views based on multiple
timescales. The timescale gets finer from top to bottom, but remains similar
from left to right in each level, supporting reliably conducting comparison
tasks.

To cluster the vertices hierarchically, we treated the flight connections as weighted edges
since we already aggregated the temporal data on an hourly basis. This means that the
hierarchical clustering variant from Equation 3.2 in Section 3.3 can be applied to the
vertices, which generates a hierarchical organization among the airports (vertices) and
groups together those airports that are frequently connected by flights also taking into
account the flight frequencies. To further reduce the link lengths and the visual clutter
we apply a vertex reordering technique that is based on heuristics of the minimum linear
arrangement problem (MinLA), which preserves the hierarchical order, and reduces the
sum of link lengths. The resulted dendrogram after applying clustering and ordering
algorithms are shown previously in Chapter 3 (see Figure 3.2).

To investigate the correlation between the clusters resulted from the clustering algorithm
and the geographical locations of the airports, we visualized the airports of the top
six clusters on the map of the United States by depicting them as small colored glyphs

, where the airports that belong to the same cluster have the same unique color
(see Figure 6.2). As one might notice, there is indeed some correlation between the
clusters and the geographical location. For example, all airports belong to the green
cluster are located in the south east region, while the airports of the blue cluster are
located in the north east part. Also, out of 19 airports in Alaska, 18 of them belongs
to the same cluster (the yellow cluster). the orange cluster spread over the north area,
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while the purple one concentrated more in the east region. The red cluster is the largest
cluster of all six clusters, the busiest airports of US belong to this cluster. While the
airports of the west coast region are assigned to the red cluster. However, we can also
see other red glyphs within the decision regions of other clusters. That is due to the fact
that those airports are major airports in these regions.

Figure 6.2: Clusters visualized on the map of the United States, where the airports that
belong to the same cluster have the same unique color.

As shown in Figure 6.1, the ordered airports are placed on the vertical axis at the right
of visualized layout. Each airport is depicted as two bar charts placed back-to-back.
Green bar-charts encode the frequency of incoming flights (in-edges), whereas blue
ones encode the frequency of outgoing flights (out-edges). This helps an analyst get a
quick overview of flight frequencies. Figure 6.1 (see annotation 2⃝) shows a symmetric
relationship between the frequency of both in-edges and out-edges.

In the generated diagram, although there is no filtering applied yet, one can notice
some time-varying structures. We can easily find out that all the airports with maximum
number of flights are placed at the center of the graph (the green area), while airports
with lesser number of flights are far and grouped together on both the end. By applying
filtering techniques and multiple time scales we can spot some interesting patterns as
shown in the following sections.
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6.3 Identifying Spatio-Temporal Patterns

To get rid off too many details in the visualization, we provide interactive filtering for
vertices, edge weights, and density values. Figure 6.3 shows the filtered version of the
top-level of Figure 6.1 at different thresholds values so that we keep only the edges
that have weights greater than or equal the given threshold. Notice the reflection of the
chosen threshold on the visibility of vertices of the vertical axis, only a few vertices have
an edge weight value greater than or equal 18. Those vertices correspond to the busiest
airports in the US, most notably, the airports of Los Angeles International, Phoenix Sky
Harbor International, Chicago O’Hare International, Dallas/Fort Worth International and
Hartsfield-Jackson Atlanta International.

(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Filtering the graph at different thresholds values (a) Edge weight >= 1 (b)
Edge weight >= 8 (c) Edge weight >= 18 (d) Edge weight >= 25 (e)
Edge weight >= 35 (f) Edge weight >= 35.

Filtering at threshold value 18 (see Figure 6.3(c)) reveals some interesting patterns that
can be used as a starting point for further analysis. In Figure 6.4, we annotated some
of these patterns and utilized different interaction techniques of our visualization tool
to further inspect the region of interest. Figure 6.4 (see annotation 1⃝) is a constant
pattern over the entire period of 12 months. This pattern is a result of a high number
of flight connections between a small group of airports (notice the vertical axis). The
busiest airports in the US typically belong to that group. This pattern gets distorted in
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Figure 6.4: Interesting spatial and temporal patterns can be detected in the dynamic
graph visualization although details about individual graphs are not shown.

the last four months of the time period. A closer look at the time axis reveals that this
event happened on September 11, 2001, i.e., the terror attacks on 9/11 (see annotation
2⃝), which led to cancellations of the flights in the US for several hours (but also all
over the world). We can also see that the flight traffic never really regained the same
visual patterns again after 9/11, while some of the frequent connections remain nearly
unchanged.

It is also seen that the frequency of flights during the months of May to September in
both 2000 and 2001 (see annotation 3⃝) is comparatively higher than other months
of the same year. Even after filtering, it persists throughout even for the airports with
a fewer number of flights. Looking into details reflects that this pattern is a result
of frequent flight connections that go from Ted Stevens Anchorage Airport to several
airports belongs to the group of the busiest airports, most particularly, the airport of
Seattle/Tacoma International.

A similar pattern can be seen in annotation 5⃝ where the flight connections between the
airports of Dallas Love Field and William P Hobby on one hand and Austin - Bergstrom
International and Louis Armstrong New Orleans International on another, persists through-
out even after filtering. This applies also to the pattern in annotation 6⃝ which is between
Theodore Francis Green State airport and Baltimore/Washington International Thurgood
Marshall airport. However, in this pattern, the frequency of the flights dropped starting
from mid of June 2001.

A different pattern can be noticed in annotation 4⃝, which corresponds to a group of
flight connections that emerged starting from November 2000. We notice that this
pattern did not last for a long time as it started to disappear after 9/11. Looking
into detail reveals that these airports (Kona, Honolulu, Lihue, and Kahului) located in
Hawai’i.
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6.4 Multiscale View

Although the overview of dynamic graph visualization can be used to derive interesting
visual patterns, it does not support the task of looking into fine-grained temporal time
periods. Such a multi-timescale detailed feature is particularly useful if we wish to
compare several time periods and set them in context to the larger picture as shown in
Figures 4.1 and 6.1. A viewer might be interested in seeing similarities or differences
between exactly two or more selected time periods which is difficult to grasp in the
overview representation as shown in Figure 6.4, which is too compressed for this task.

Comparing periodic patterns visually on weekly or daily basis can be interesting, hence
we decided to select several patterns to show them side-by-side and also stacked on top
of each other. In Figure 6.1, January for both 2000 and 2001 is selected and scaled
down to a monthly comparison. Looking at both months confirms the patterns we have
found previously in the upper level in Figure 6.4.

Comparing the vertical axis of both months, one may notice a group of flight connections
that are introduced in January 2001 and were not exist in January 2000. Notice how
these new connections changed the graph dynamics in Figure 6.1 (see annotation 1⃝).
By looking at the upper level we can confirm that this pattern emerged starting from
January 2001 till 9/11. Hovering the vertical axis reveals the list of airports that belong
to this pattern as shown in Figure 6.5.

(a) (b)

Figure 6.5: Comparing the vertical axis of January 2000 and January 2001. (a) January
2000 (b) and January 2001.
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Similar to the month level, filtering the graph on the day level highlights the periodic
patterns that exist on a daily basis. As we can see in Figure 6.6, the dynamic patterns
are visually comparable now since the number of time steps is reduced and hence, the
remaining subsequence of the dynamic graph reveals the dynamic patterns more clearly.
Comparing daily patterns can show that on specific days there is drop in the flight traffic.
Particularly, 25th of January, 2000 shows such an event, particularly in the airports of
Newark Liberty International, Philadelphia International, and LaGuardia.

As a hypothesis, we considered bad weather conditions on this day to be blamed for this
drop. A request on the world wide web confirmed our hypothesis that a strong winter
storm occurred that resulted in a record amount of snow in North Carolina and the
Virginia region causing many cancellations.

Figure 4.1 illustrates other abnormal patterns such as 14th of June, 2000 and 23rd - 24th

of November, 2000, which correspond to the Thanksgiving public holiday in the US. It is
seen that such patterns were aggregated and compressed on the top-level, which makes
it difficult to detect without scaling the graph down to the daily basis.

Figure 6.6: Filtered flight data for January in 2000 with an unusual pattern behavior
on 25th of January.

Looking at the monthly comparison between September 2000 and September 2001
shown in Figure 6.7 reflects the differences in the flight behavior after this particular
event which becomes clearer and quite evident. Scaling down to an hourly basis for the
selected date, i.e., the 15th of September for both the years tells the story that even after
four days after the attacks, the flight frequency has not regained to normality which we
have claimed after looking into the overview of Figure 6.4.
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Figure 6.7: A visual comparison of September 2000 and September 2001.

6.5 Algorithmic Dynamic Graph Comparison

Visually comparing the dynamic data (day by day, week by week) is already useful due
to the strengths of perceptual abilities and pattern recognition, but negatively, we cannot
detect small changes in the compared figures due to the weak short term memory and
effects caused by change blindness [HE12; War04]. Consequently, the visualization is
suitable, but as an extension we provide an algorithmic approach that can compare two
time periods more exactly and provides the difference in a visualization in the same
visual metaphor (see Figure 6.8 and Figure 6.9).

In Figure 6.8, we algorithmically compared two time periods, i.e., the September
for the years 2000 and 2001, respectively. Additionally, Figure 6.9 shows algorithmic
comparison of three selected Tuesdays (11th , 18th and 25th) of January 2000, respectively.
While the difference image between 11th and 18th shows few changes, the second
difference image between 18th and 25th reflects the drop in flight connections that
occurred on 25th. This can be observed also by looking at the vertical axis of the
difference images.

The algorithmic comparison computed several differences in the time periods that are
not directly visible by a visual comparison. Also, it shows the difference in terms of the
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flight frequency on the vertical axis. The comparison results are displayed in an intuitive
way in the same visual metaphor next to the compared time periods.

Figure 6.8: Algorithmic comparison between September in both 2000 and 2001. Notice
the difference image and the difference in the vertical axis.
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Figure 6.9: Algorithmic comparison of three selected Tuesdays (11th , 18th and 25th) of
January 2000 respectively. Notice the difference between the two images
and the difference in the vertical axis
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7 IMPLEMENTATION DETAILS

7.1 Introduction

In the previous chapter, we demonstrated the applicability of our visualization approach
using a real world dataset. In this chapter, we provide the implementation details
necessary to reproduce the claimed results. First, we discuss the formatting of data in
Section 7.2. Next, we introduce the system architecture and the database schema in
Section 7.3. The implementation of our system is discussed in Section 7.4. Finally, we
review the running time in Section 7.5.

7.2 Data Format

As mentioned in the previous chapter, we used a portion of the US domestic flight
traffic dataset [Tra17] to illustrate the scalability and the usefulness of our visualization
approach. To import data into our system data files must be formatted correctly with
respect to the following:

• The data files must be uploaded in CSV (comma separated values) format.

• The first four columns in the CSV are: the flight date, the origin airport ID, the
destination airport ID, and the flight time, respectively.

• First row in the CSV file is reserved for the header.

• The format for the flight date is yyyy-MM-dd and the flight time format is HHmm

(24-hour clock).
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7.3 System Architecture

In this work, we decided to implement the visualization system as a web-based applica-
tion. This decision reflects our desire to make the system accessible to the visualization
domain experts as well as non-expert people. Additionally, it allows us to benefit from
the rich graphical user interface (GUI) capabilities of the web-based applications.

The general architecture of our system is shown in Figure 7.1 the web application is
connected to a database. The database is used to establish a mapping between the
vertices of the graph and the pixels of the image. So that for each vertex we store the
start- and end-points of the outgoing edges along with edges weights. In that way, the
visualization images are generated on the fly by querying the database. Such mapping is
done for each time level (hours, day, month, year) in a separate database table.

Figure 7.1: High level architecture of our visualization system.

Recall Figure 4.2, the steps of clustering, vertex reordering, visual encoding, and
interleaving are all completed before edges weights are stored in the database. When
the user interacts with the graph, four operations have to be applied to data after being
retrieved from the database: the edge splatting, contour lines augmentation, smoothing,
and color mapping. To optimize the response time, the system uses a progressive
approach to render the graph layout by dividing the layout into smaller segments to
be processed and rendered independently. Hence, a responsive user interaction can be
maintained.
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Field Name Description
code The unique ID of the airport between (10001 and 99999)
normalized_code The normalized code value between (1 and 9999)
description The name of the airport
coordinates The longitude and latitude coordinates of the airport

Table 7.1: tbl_airport database table description.

Field Name Description
vid The vertex ID (airport code)
img_part spatial location of the vertex edges with respect to the graph

sequence timeline
pixels_weight The start- and end- points of the vertex outgoing edges stored

as semi-colon separated text
coordinates The weights corresponding to the outgoing edges stored as

semi-colon separated text

Table 7.2: tbl_img_t0_vertices database table description.

7.3.1 Database

Figure 7.2 shows the database design of our system. The schema is rather simple. It
contains only two tables tbl_airport and tbl_img_t0_vertices. The description of
each table is provided in tables 7.1 and 7.2 respectively.

Figure 7.2: The database design of our visualization system.

The coordinates column is not available in the original dataset [Tra17], We added this
column and filled its data manually for 225 airports in the US to obtain the geographical
context of the clustering algorithm result (see Figure 6.2).
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Figure 7.3: tbl_img_t0_vertices maps between the vertices and outgoing edges.

The tbl_img_t0_vertices table used to establish the mapping between the vertices
and image pixels. The affected_pixels column contains the outgoing edges for each
vertex. The edges are saved semi-colon separated. For each edge, we store the start-
and end-points. The pixels_weight column store the scalar weight associated with each
edge. The entries of this column are semi-colon separated and maintain the same entry
order as in affected_pixels column (see Figure 7.3). There is no need to store the x

position of the end point since it can be directly driven from the x position of the start
point plus the stripe width.

The img_part column is used to store the spatial location of the outgoing edges with
respect to the entire graph sequence. We virtually subdivide the timeline of the graph
sequence into short intervals, called parts, each part is 1000 pixels width. In that way,
edges that belong to the first 1000 pixels (from 0 to 999) of the timeline have img_part

value 0. Similarly, edges that belong to the next 1000 pixels (from 1000 to 1999) of
the timeline have img_part value 1 and so on. By querying the database using specific
img_part, we reduce the size of the returned edges significantly since we only retrieve
those edges correspond to the current explored time interval. Thus, optimizing the
response time.

To establish the mapping between the vertices and edges pixels on multiple timescales,
the table tbl_img_t0_vertices is duplicated for each time scale separately. Notice that
such design is in favor of optimizing the query time rather than normalizing the database
tables. Also, tbl_img_t0_vertices table is structured that way to support the vertices
filtering in an effective way. Finally, the current database design is not final and up to
changes depending on system functionalities to be implemented in the future.

7.4 Implementation

To implement the system, we followed an experimental approach in which a prototype
is developed and continuously enhanced and improved to reach our proposed design
goals. Figure 7.4 shows the main screen of our system. We tried to keep a simple
Model–view–controller (MVC) architecture. The core system functionalities are im-
plemented in the model class DynamicGraph. There are two controllers to handle user
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Programming Language Java 8
Database 10.1.9-MariaDB
Server Side Java Servlet 3.0
Client Side HTML, CSS, Javascript, and JQuery 3.1.1
Web Server Tomcat v8.0

Table 7.3: Technologies used during the implementation phase.

requests, The first controller getDynamicGraph for handling the initialization process.
i.e., importing CSV files, building the graph, and populating database tables. The second
controller getImageSegment to handle the user interactions with the graph layout. i.e., fil-
tering, selection, scale down. For the view component, we designed a single HTML page
to display the visualization results. Figure 7.6 shows code snippet of getDynamicGraph
controller.

Figure 7.4: The main screen of our system. (1) Main graph layout (2) Time axis (3)
Vertices axis (4) Selection controls (5) Edge weight slider (6) Color legend

Table 7.3 list the technologies used during the implementation phase. The core func-
tionalities of the system are implemented using Java programming language. For
the hierarchical clustering module, we used an existing open source Java implemen-
tation [lbe]. The web application is connected to MariaDB database. To keep the
consistency with Java technology, we used Java Servlet as server-side technologies and
HTML, CSS, Javascript, and jQuery as client-side technologies. The compiled source
files are later deployed to a Tomcat web server. To give back to the visualization com-
munity, we made the source code along with the database script online available for
download [Abd].
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7.5 Running Time

Figure 7.5 shows the running times of different initialization tasks. The results this is
obtained by running our implementation on a portion of the US domestic flight traffic
dataset [Tra17]. We extracted the flight dataset for two years starting from January
1st, 2000 and ending on December 31st, 2001. The dataset contains 234, more than 10
million weighted edges, and 17, 544 time steps. We used an Intel® Core™ i7-4710HQ
CPU machine with 7,7 GiB memory and GeForce GTX 860M graphics. We utilized the
batch processing to optimize the time of database population task. Although it takes
several minutes to complete, it is tolerable since it is executed as a one-off job.

Figure 7.5: The running times of initialization tasks.
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Figure 7.6: Code snippet of getDynamicGraph controller.
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8.1 Summary

In the previous chapter, we presented the implementation details necessary to reproduce
the claimed results of this thesis. In the following lines, we provide a brief summary of
each chapter. Next in Section 8.2 we discuss scalability issues of our proposed dynamic
graph visualization technique. Finally, we discuss the directions for the future work in
Section 8.3.

In Chapter 1, we introduced the motivation, the research question, and the main
contributions of this thesis. The most recent ideas and methods in the area of dynamic
graph visualization are explored in Chapter 2. We discussed three major concepts for the
representation of the time aspect in graphs. i.e., time-to-time mappings, time-to-space
mappings, and hybrids, with more focus towards time-to-space mapping approaches.

In Chapter 3, we presented the preprocessing phase of dynamic graph data. First, we
introduce the data model to get a clear picture of vertices and edges in the graph layout.
Then, we show how, by applying the clustering and reordering techniques, we could
obtain a good visual representation. In Chapter 4, the corner-stone in this thesis, we
proposed our multi-timescale dynamic graph visualization approach. We explained
different steps of the algorithm and showed how it is applicable on multiple timescales
with inter-linked views and scales.

The interaction techniques supported by our system are introduced in Chapter 5. We
presented the clustering and ordering techniques followed by different filtering options.
Finally, we investigated the usability of our technique in conducting comparison tasks
between dynamic graph sequences, both visually and algorithmically. In Chapter 6,
we illustrated the visual scalability and the usefulness of our visualization approach by
applying it to a real world dataset. Finally, in Chapter 7, we provided the implementation
details necessary to reproduce the results claimed in this thesis.
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8.2 Discussion and Limitations

We designed a visually scalable dynamic graph visualization based on the visual metaphor
of node-link diagrams and on a bipartite layout of the graph vertices. We applied
splatting, smoothing, and augmented the generated scalar density fields with contour
lines to achieve a perceptually enhanced visualization to rapidly identify evolving graph
structures. Those structures were generated by clustering and ordering techniques while
we displayed multiple timescales on different vertically stacked layers, also in side-by-
side views which benefit from visual comparison tasks. After having experimented with
many layout, clustering, ordering, and rendering parameters, we identified a list of
possible scalability and limitation aspects worth mentioning.

• Graph layout: The bipartite layout is useful since it produces a visually scalable
1D layout of the vertices that are suitable for aligning them over time on horizontal
lines. This generates a high degree of dynamic stability and hence, the mental map
can be preserved in this time-to-space mapping of a dynamic graph. Negatively,
the bipartite layout lives in a more or less one-dimensional display space leading
to an increase of visual clutter caused by a higher probability of link crossings.
For this reason, edge splatting has to be applied to regain the otherwise cluttered
structures in the graph dynamics.

• Clustering and Ordering: Visualizing the raw data without any preprocessing
can already give some insights in the dynamics of the data, but, a clustering
and ordering is definitely useful to generate more visual structures due to the
reduced amount of visual clutter. A problematic issue in this respect is the time
period on which the clustering and ordering is based. If a dynamic graph behaves
rather chaotically over time, there is no global good clustering or ordering the
visualization can be based on.

• Rendering: Many graphs in a sequence produce many vertically dense stripes
leading to an occlusion of dynamic graph patterns. If the stripe widths, splatting
parameters, or color codings are not chosen in an adequate way, this may lead
to missing patterns in the visualization. A similar aspect holds for the multiple
timescales stacked on top of each other which produce smaller horizontal stripes
and hence, a vertical compression of the individual timescales. The display space a
dynamic graph sequence is rendered on has an influence on the density patterns,
but positively, they are treated similarly over time, still allowing to visually compare
the dynamics in a graph.

• Data Comparison: Visually comparing dynamic graph subsequences can be done
rapidly due to the strengths of the humans’ perceptual abilities and fast pattern
recognition. But, if only a few pixels are the difference between two dynamic graph
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visualizations, those can hardly be recognized in a visual way. As an additional
technique we provide an algorithmic comparison, but as a drawback, this can only
be applied to well-defined dynamic patterns, while a more general approach based
on temporal graph structures would be more suitable, but also more time-complex.

• Interaction: Interacting with the dynamic graph visualization is an important
feature since we can start with an overview about the dynamics and then look
into details step by step. Although several interactions like selections, filtering,
brushing and linking, or details on demand are implemented, we are aware of
the fact that many more should be added in future. With growing datasets in
vertex, edge, and time dimensions, such interaction techniques have to be carefully
implemented and based on well-defined effective data structures to guarantee an
interactive visualization tool.

8.3 Conclusion and Future Work

In this thesis we described a multi-timescale dynamic graph visualization based on
interleaved splatted bipartite node-link graph visualizations. The computed diagrams
are visually scalable on the one hand and are able to reflect varying graph structures to
some degree on the other hand. To achieve clearer visual structures we preprocessed the
dynamic graph data by applying a hierarchical clustering as well as a reordering of the
vertex positions focussing on reducing the sum of link lengths and hence, visual clutter.
The major focus of this work is that a dynamic graph can be displayed in an overview
representation although it contains many vertices, edges, and time steps. Based on such
an overview, several time levels can be displayed at the same time, providing an overview
of more than one time granularity of the graph data while setting all views in context to
each other. The benefit is consequently, that a graph analyst can do comparison tasks
between graph subsequences on multiple timescales while still preserving the overview
in temporally long and large graph datasets.

For the future work, there are four possible directions that could be taken to extend the
current work:

• Evaluating the current visualization approach by comparing it to a multi-timescale
visualization in which all timescales are shown in separate views.

• Designing an algorithm that automatically generates a default setting for the
multiple timescales freeing the graph analyst from initially deciding himself about
the time granularities.
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• Implementing different clustering and reordering strategies and investigating the
results.

• Implementing new interaction techniques based on well-defined effective data
structures to guarantee an interactive visualization tool.

• Further assessing the capability of our visualization approach by applying it to
other artificial and real-world dynamic datasets.
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