
Institute of Software Technology
Reliable Software Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 335

Handling Quality Trade-Offs in
Architecture-based Performance

Optimization

Sebastian Frank

Course of Study: Softwaretechnik

Examiner: Dr.-Ing. André van Hoorn (Prof.-Vertr.)

Supervisor: Dr.-Ing. André van Hoorn

Commenced: Mai 27, 2016

Completed: November 26, 2016

CR-Classification: D.2.11 / D.2.8 / I.6.4

Abstract

The goal of software architecture optimization is to find architecture candidates that
satisfy the expectations of all relevant stakeholders with regard to some quality attributes,
e.g., performance, modifiability, or reliability. Quality attributes usually compete with
each other, which makes trade-offs inevitable.

In the SQuAT project the suitability of distributed search strategies for architecture
optimization is investigated. This approach is based on the way human architects
would conduct architecture optimization. Related works from the domain of software
architecture optimization are usually monolithic and only extendable to a certain degree.
The SQuAT approach tries to overcome these drawbacks.

This thesis contributes a SQuAT module for the analysis and optimization of software
architecture with regard to the quality attribute performance. Therefore, the already
existing approach for architecture-based performance optimization PerOpteryx is inte-
grated. In addition, this module gets evaluated with an example system and it is shown
that it reaches a similar quality than PerOpteryx. In conclusion, this work is the first
step to gain new insights into the applicability of distributed search strategies, modu-
larization of design knowledge, and negotiation techniques for software architecture
optimization.

3

Kurzfassung

Das Ziel von Software Architektur Optimierung ist das Auffinden von Architekturkan-
didaten, welche die Anforderungen aller relevanten Interessengruppen bezüglich bes-
timmter Qualitätsattribute, wie z. B. Performanz, Änderbarkeit oder Zuverlässigkeit,
erfüllen. Qualitätsattribute neigen jedoch gewöhnlich dazu, miteinander zu konkurri-
eren, wodurch Kompromisse unausweichlich sind.

Im SQuAT-Projekt wird untersucht, inwieweit verteilte Suchstrategien für die Architektur
Optimierung geeignet sind. Dieser Ansatz orientiert sich dabei an der Arbeitsweise von
Menschen. Existierende Arbeiten aus dem Bereich der Software Architekturoptimierung
sind in der Regel monolithisch und nur begrenzt erweiterbar. Mit dem SQuAT Projekt
sollen diese Nachteile überwunden werden.

Diese Bachelorarbeit steuert ein SQuAT-Modul für die Analyse und Optimierung von
Softwarearchitektur bezüglich des Qualitätsattributs Performanz bei. Dafür wird der
bereits existierende Ansatz für architekturbasierte Performanzoptimierung PerOpteryx
eingebunden. Das entwickelte Modul wird außerdem anhand eines Beispielmodels
evaluiert und gezeigt, dass es eine ähnliche Qualität wie PerOpteryx erreicht. Diese Arbeit
stellt somit die Basis für weitere Erkenntnisse über die Anwendbarkeit von verteilten
Suchstrategien, Modularisierung von Entwurfswissen und Verhandlungstaktiken für
Softwarearchitekturoptimierung aus dem SQuAT-Projekt dar.

5

Contents

1. Introduction 13
1.1. Motivation . 13
1.2. Limitations of Existing Works . 14
1.3. SQuAT Approach . 15
1.4. Goals . 18
1.5. Thesis Structure . 18

2. Foundations 21
2.1. Quality Attributes . 22
2.2. Quality Metrics . 23
2.3. Degrees of Freedom . 23
2.4. Models . 25
2.5. Scenarios . 26
2.6. Architecture Evaluation . 26
2.7. Optimization Process . 27
2.8. Multi-Criteria Optimization . 28
2.9. Optimization Strategies . 29
2.10.Evolutionary Algorithms . 30
2.11.Optimization Goal . 31
2.12.Palladio Component Model . 32
2.13.Palladio-Bench . 34
2.14.PerOpteryx . 36

3. Performance Bot 39
3.1. Interface . 39
3.2. Assumptions and Requirements . 41
3.3. Implementation: Search for Alternatives 44
3.4. Implementation: Analyze . 49

7

4. Evaluation 53
4.1. Example Systems . 53
4.2. Experimental Setup . 61
4.3. Experimental Results . 64
4.4. Result Interpretation . 67

5. Conclusion 69

A. Evaluation Result Tables 75

Bibliography 81

8

List of Figures

1.1. The SQuAT approach consists of the analysis phase, the searching phase,
and the negotiation phase. [Pac+16] . 16

2.1. Sample performance scenario. [CKK02] 26
2.2. General optimization process [Ale+13]. 27
2.3. Example for Pareto Optimal Solutions [Koz14]. 28
2.4. Basic evolutionary algorithm [Koz14]. 30
2.5. Repository example. [BKR09] . 32
2.6. RDSEFF example. [BKR09] . 33
2.7. System exmaple. [BKR09] . 33
2.8. Usage model example. [BKR09] . 34
2.9. Concept of the Palladio Bench. [Pal] . 35
2.10.Abstract software architecture of PerOpteryx 37

3.1. SQuAT approach from the architecture view. [Pac+16] 40
3.2. Simplified architecture design of the SQuAT Bots. [Pac+16] 40
3.3. Comparison between PerOpteryx (top) and the requirements for the

optimization of the Performance Bot (bottom). 45
3.4. Architecture of the Performance Bot for optimization (simplified). 47
3.5. The configuration package in Headless PerOpteryx (simplified). 48
3.6. Architecture of Headless PerOpteryx (simplified). 49
3.7. Comparison between the Palladio LQN Solver (top) and the requirements

for the optimization of the Performance Bot (bottom). 50
3.8. Architecture of the Performance Bot for analysis (simplified). 51

4.1. Repository diagram of the Media Store Example. 55
4.2. Repository diagram of the Simple Tactics Example. 57
4.3. Repository diagram of the Extended Simple Tactics Example. 58
4.4. All found candidates with response time lower than 500 s for the opti-

mization of the Extended Simple Tactics Example. 59

9

4.5. Pareto-optimal candidates for the optimization of the Extended Simple
Tactics Example. 60

4.6. Boxplots for the response times of the best found candidates. 66
4.7. Boxplots for the runtime of the optimization. 66
4.8. Boxplots for the number of iterations at which the last significant change

on the response time of the best found candidate occurred. 67

10

List of Tables

2.1. Percentage of papers investigated by Aleti et al. [Ale+13] which opti-
mized the mentioned quality attribute. 22

2.2. Percentage of papers investigated by Aleti et al. [Ale+13] which used the
mentioned degree of freedom. 24

4.1. Results for different tools analyzing the initial candidate of the Extended
Simple Tactics Example. 65

A.1. Results for the runtime for the different analysis methods (30 runs each).
For PerOpteryx and the Palladio LQN Solver, the results for the complete
workflow and the analysis job are presented. 76

A.2. Results for the response times of the best found candidate by PerOpteryx
after 20 iterations with population size 200, and the runtime for this task. 77

A.3. Results for the response times of the best found candidate by Perfor-
mance Bot after 20 iterations with population size 200, and the runtime
for this task. 78

A.4. Last iterations in which a significantly improved candidate was found. . 79

11

Chapter 1

Introduction

The importance of software quality and architecture optimization, as well as the chal-
lenges in architecture optimization are presented in Section 1.1 of this chapter. In
Section 1.2 related work to this thesis is mentioned and common restrictions of these
approaches are described. The SQuAT approach is presented in Section 1.3 as a new
approach to overcome these restrictions and because this thesis contributes to this
project. Section 1.4 then summarizes the goals and contributions of this project. Finally,
the structure of this thesis is presented in Section 1.5.

1.1. Motivation

The main objective of architecture optimization is to fulfill the requirements of a software
system’s stakeholders regarding different quality attributes. This is done by evaluating
different variants of software architectures without changing the functionality of the
software system. Quality attributes like performance, reliability, or modifiability are
influenced by architectural changes.

While software developers have laid there focus mainly on the functional requirements
in the past, many quality attributes are today considered important for the success of
software projects. For some software projects over 90% of the total costs are caused by
the maintenance and the management of the software system’s evolution [Erl00]. In
addition, approximately 50% of the working time of software maintainers is spent on
understanding the code, which has to be maintained [FH83] [Sta84]. Improvements
to the modifiability of software systems can thus be a sufficient measure for software
companies to save a lot of money. Other quality attributes, like performance, can highly
influence the satisfaction of the users. Google conducted several experiments on their
services [Far06]. In one experiment they increased the results per page from 10 to 30.

13

1. Introduction

While the loading time was only half a second longer, the searches decreased by 25%.
This shows how much performance is related to user satisfaction, especially for web
applications.

Reducing costs and increasing the satisfaction of their customers should always be
the goal of every software company to be successful. Nevertheless, satisfying quality
attributes is most times not an easy task for big software systems. Some software systems
today can easily have millions of SLOCs, e.g., the source code of Red Hat Linux 7.1
contains over 30 million physical SLOC [Whe]. The size of such systems offers many
possibilities for combinations of changes to influence quality attributes. Besides, the
environment of the software can be changed, too. Even if the optimization is limited
to only one quality attribute, this task could be a lot of work for a human software
architect.

Considering more than one quality attribute leads to even more challenges. Many quality
attributes tend to compete with each other, because changes to the software architecture
can have side effects on other quality attributes, e.g., adding additional abstract layers
usually increases modifiability, but obviously causes the performance to decrease. As
a result there is usually not only one best solution, there are several Pareto-optimal
solutions. For that reason it is necessary to make trade-offs. At some point the architect
must determine his preferences and then choose the architecture, which fits them the
best. Therefore human participation in the optimization process is considered useful,
but the optimization itself should be done by tools due to the huge size of the design
space.

1.2. Limitations of Existing Works

The size of the design space is usually so big, that even the most recent approaches are
based on heuristics. Nevertheless several approaches exist, they are often limited to
one or a few quality attributes from a small group of well discovered quality attributes,
e.g., performance, reliability, and modifiability. This restriction is also related to the
assumption of an underlying architectural model, which is usually not applicable for
other quality attributes. Furthermore, the knowledge needed for the optimization is
often hard-wired within the tool and highly coupled with the underlying architecture
model, which makes these tools hardly extendable. Some tools already offer humans the
possibility to influence search, however most of them are far from being interactive.

Many rule-based systems for performance optimization exist. One of them is Perfor-
mance Booster [Xu12], which is based on Layered Queueing Networks (LQN). However,
the optimization capabilities of these approaches are limited by the availability of rules.

14

1.3. SQuAT Approach

Other approaches, like Planner2 [ZW03] and CERAS Deployment Optimization [Li+09]
are specialized on specific tasks. Planner2 is also based on Layered Queueing Networks
(LQN) and changes scheduling and allocation. CERAS Deployment Optimization mini-
mizes cost with regard to performance constraints. However, these approaches are too
specialized to use them for other tasks or to extend them for other quality attributes.

Some more general applicable and extendable approaches exist as well, e.g.,
ArcheOpterix [Ale+09], SASSY [MCD08], GDSE [SK10], and ArchE [Bac+05]. However,
ArcheOpterix is restricted to the Architecture Analysis & Design Language (AADL) and
focuses on embedded systems. SASSY is only extendable with regard to the limitations
of service-oriented systems and quality aggregation functions, which are used in this
approach. The quality attributes of GDSE can also be extended, but only as far as they
are expressible by an arithmetic function. ArchE is different from these approaches,
because the knowledge for each quality attribute is provided by separate frameworks.
However, this approach is more an assistant for architecture optimization and automated
strategies for negotiation are missing.

1.3. SQuAT Approach

The research project SQuAT (Search Techniques for Managing Quality-Attribute Trade-
offs in Software Design Optimizations) conducted by the University of Stuttgart and the
Universidad Nacional del Centro (UNICEN) tries to overcome these drawbacks by inves-
tigating a new semi-automated approach for design space exploration by particularly
focusing on three major points. Firstly, distributed search techniques are investigated
for this project. Secondly, the approach should reach a high modularization of design
knowledge. Finally, negotiation techniques for managing quality attribute trade-offs
should be applied.

Instead of using a monolithic analysis, this approach is based on local optimization
and negotiation, inspired by how human architects would do architecture optimization
in real life. A human architecture analysis team would presumably be composed of
experts for each quality attribute, the client, and a product manager. The experts
contribute the knowledge to analyze and optimize the architecture for their particular
quality attributes, e.g., performance, modifiability, and reliability. To achieve a satisfying
result, it is necessary for all the people to discuss and negotiate in order to find suitable
trade-offs. The participation of the client will make sure that his requirements and
priorities will be considered all the time in the negotiation. In contrast to that, the
product manager adds additional constraints to the negotiation, especially regarding the
development time and the project budget. In the end it is unlikely to have a result that
makes everybody happy, but a compromise can usually be achieved.

15

1. Introduction

Figure 1.1.: The SQuAT approach consists of the analysis phase, the searching phase,
and the negotiation phase. [Pac+16]

16

1.3. SQuAT Approach

Instead of humans, the SQuAT approach uses specialized modules, which are named
bots. These bots participate in three different phases. The first phase is the analysis
phase, in which the initial architecture gets analyzed. In the second phase, the bots
search for alternative architectures. Finally, in the negotiation phase the results will be
compared and it is tried to reach an agreement on one architecture. All three phases are
shown in Figure 1.1 in more detail.

The analysis performed by the bots is based on scenario templates as the ones defined
by the SEI at Carnegie Mellon, like for instance used in ATAM (Architecture Tradeoff
Analysis Method) [CKK02]. In these scenarios a stimulus to an artifact results in
a response, which can be measured. These measurements can be compared to the
architects expectation and thus the bot is able to determine whether an architecture
satisfies these requirements or not. Each instance of a bot processes one scenario. To
solve this scenario a bot must contain its own solver and architectural model. The input
model itself is a more abstract and general model, which will usually be transformed to
a more specific model by the bot.

In the searching phase every bot performs a local optimization, to find alternative
architectures. Therefore each bot is able to apply tactics, which can be described
as transformations of the architecture to improve the satisfaction of a single quality
attribute. Performance tactics often perform changes on the hardware or used resources,
whereas modifiability tactics are often changes in the modularization of the software.
Nevertheless tactics can be quite different from each other. Every alternative architecture
can be described as a number of tactics applied to the initial architecture. Every instance
of a bot will try to return a certain number of alternative architectures at the end of
the phase, which at least satisfy their own scenario. The optimization techniques used
by each bot can be different for each bot. Thus, bots can make use of optimization
techniques, which usually deliver good results for their quality attributes, e.g., in the
domain of performance, evolutionary algorithms are considered to be a good choice.

The bots have to choose one of their found alternative solutions as their favorite can-
didate, before the negotiation phase begins. The process is very simple as long as
at least one of these solutions satisfies all other bots. If this is not the case, one bot
has to concede, either by choosing another alternative solution, or by decreasing the
expected response measure of its scenario. At some point, both options might not be
applicable, then the negotiation will end with a conflict, causing the whole process to
fail. The negotiation phase also offers some suitable situations for human architects to
interactively influence the outcome of the negotiation. The architect knows the priorities
for each quality attribute and can therefore assist in the decision which bot and how a
bot has to concede.

The SQuAT approach is currently not yet evaluated and still work in progress. For a first
evaluation of the project it is planned to implement a Performance Bot and Modifiability

17

1. Introduction

Bot, both based on the Palladio Component Model. While the University of Stuttgart is
responsible for delivering the Performance Bot, the UNICEN researchers implement the
Modifiability Bot. If the suitability of this approach can be shown, it is planned to extend
it in later steps, e.g., by a more abstract architectural input model and more bots.

1.4. Goals

For this thesis the main goal is to develop an approach for performance architecture
optimization, that conforms to the bot interface of the SQuAT project. This approach
should be able to analyze and optimize an initial Palladio Component Model [BKR09].
It should return not only the response measure for common performance metrics, but
also the changed models of the investigated candidates. Therefore the approach should
contain its own solver, optimization technique and underlying architectural model. It is
also necessary to evaluate the applicability of this approach by comparing it to another
state-of-the-art approach.

While this thesis contributes a new approach to the domain of performance architecture
optimization, it is also the precondition to foster new insights into architecture optimiza-
tion in general by the SQuAT project. This will lead to a better understanding of the
applicability of distributed search techniques for architecture optimization. Besides, the
resulting approach will be more extendable than existing approaches and one of the
first approaches that considers negotiation for architecture optimization. In addition,
the evaluation can be reused and extended for this project.

1.5. Thesis Structure

This thesis is structured in the following way:

Chapter 2 – Foundations: This chapter contains the theoretical knowledge necessary
to understand how software architectures can be evaluated and optimized. In
addition, the technologies used for the Performance Bot are described in more
detail.

Chapter 3 – Performance Bot: The developed approach for the Performance Bot is
described here.

Chapter 4 – Evaluation: An example model and the evaluation of the approach is
presented in this chapter.

18

1.5. Thesis Structure

Chapter 5 – Conclusion: Concludes the results of this work and mentions possible
future works.

19

Chapter 2

Foundations

This chapter gives an overview of the foundations of architecture optimization. Although
software architecture optimization is not restricted to a single domain, this chapter
partially focuses on architecture optimization from the perspective of performance,
because the goal of this work is to provide a bot for SQuAT, which contains the knowledge
for performance architecture optimization. However, there is also information about
other quality attributes presented in this chapter to provide a better understanding of
architecture optimization in general.

Section 2.1 presents different quality attributes which are usually considered for software
architecture optimization. Section 2.2 describes how these quality attributes can be
measured through metrics. In Section 2.3 typical transformations on the software
architecture are outlined. As architecture optimization is performed on models, an
overview of different models is given in Section 2.4. Section 2.5 introduces the concept
of scenarios to evaluate the satisfaction of non-functional requirements, while Section 2.6
presents methods to evaluate software architectures in practice.

Section 2.7 introduces the general optimization process for software architecture op-
timization. Methods for multi-criteria optimization are subsequently outlined in Sec-
tion 2.8. Following this, different approaches and strategies for software architecture
optimization are summarized in Section 2.9. The most frequently used optimization
strategy, evolutionary algorithms, is subsequently presented in Section 2.10. Section 2.11
outlines possible types of optimization goals.

The most important technologies used in this thesis are described at the end of this
chapter in more detail. Section 2.12 outlines the characteristics of the Palladio Compo-
nent Model, which can be used to model software architectures. The Palladio-Bench
supports architects with modeling and evaluation of instances of the Palladio Component
Model. Therefore, it is presented in Section 2.13. Section 2.14 presents PerOpteryx, a

21

2. Foundations

multi-objective software architecture optimization approach, which is also integrated
into the Performance Bot described in Chapter 3.

2.1. Quality Attributes

As the goal of architecture optimization is to improve the quality of software without
changing the functionality, quality attributes must be used to describe this quality.
In general, the relevant quality attributes can be derived from the non-functional
requirements of the software. While the selection of relevant quality attributes can vary
between software systems, some of them appear more often than others.

Quality Attribute Percentage

Performance 44%
Cost 39%
Reliability 37%
Availability 13%
General 12%
Energy 9%
Weight 3%
Safety 2%
Reputation 2%
Modifiability 2%
Area 2%
Security <1%

Table 2.1.: Percentage of papers investigated by Aleti et al. [Ale+13] which optimized
the mentioned quality attribute.

The literature review of Aleti et al. [Ale+13] investigated 188 research papers from the
domain of software architecture optimization. Among other things, it was investigated
which quality attributes have been considered in these papers. The results, which are
shown in Table 2.1, indicate the importance of the three most commonly used quality
attributes performance, cost, and reliability. They are optimized in about one third of
the investigated papers. Therefore, they can be considered as well investigated and
important in practice. However, there are also quality attributes which can not be
considered as classical software quality attributes, e.g., energy consumption or weight.
Other quality attributes, e.g., security, are considered as important in practice [BCK03],
but are not well investigated. This indicates that automatic optimization of some quality

22

2.2. Quality Metrics

attributes is more easy than for others. Some quality attributes also appear only in
specific domains, e.g., safety in embedded systems.

Cost is obviously the most important quality attribute for most companies, because the
cost of a software system should not exceed its monetary benefit. At some point the
improvement of other quality attributes will influence the cost of the software system.
As a result, considering costs together with other quality attributes, will usually lead to
trade-offs.

2.2. Quality Metrics

It is necessary to quantify quality attributes in order to compare software architectures.
Quality metrics can be used for this task. Typical performance metrics are response time,
throughput, and resource utilization [Jai90]. Response time can be measured by the
time difference between sending a request to the software system and receiving the
answer. Throughput describes the number of tasks, that can be performed within a time
span. Resource utilization on the other hand describes how long a resource, e.g., the
CPU, is utilized within a time span.

Other quality attributes have to be measured in a different way. Reliability, for example,
states whether a software system provides its functionality as expected. Therefore,
a commonly used reliability metric is the probability of failure on demand (POFOD)
[Koz14]. For cost, often a common currency is chosen, e.g., Dollars [Koz14]. It is
also possible to compute the cost of a software system as the sum of its components
development costs. However, the costs for the whole software life cycle can be considered.
In addition to the development costs, there are often maintenance costs, hardware
procurement costs, operating costs and licensing costs.

For some quality attributes, it is harder to find suitable metrics. One approach uses the
number of dependencies as metric for the modifiability of software systems [YC88]. The
underlying assumption is that a high intramodular and intermodular localization also
increases the modifiability of the software system.

2.3. Degrees of Freedom

In architecture optimization, changes to the architecture lead to a change in the quality
of the software system. It is therefore necessary to have degrees of freedom in the
architecture which influence the specified quality attributes. The literature review of
Aleti et al. [Ale+13] also investigates which degrees of freedom are commonly used.

23

2. Foundations

Table 2.2 presents the results of the investigation. The most common degree of freedom
is allocation. Software components can be allocated to different servers to influence the
quality of the software system. Other frequently used degrees of freedom are hardware
and software replication. While software replication is restricted to changes in the
number of copies of software entities, hardware replication is related to redundancy of
hardware, e.g., a second database sever is provided.

Degree of Freedom Percentage

Allocation 31%
Hardware replication 21%
Hardware selection 20%
Software replication 18%
Scheduling 17%
Component selection 16%
Service selection 15%
Software selection 13%
Other problem specific 9%
Service composition 6%
Software parameters 5%
Clustering 3%
General 3%
Hardware parameters 2%
Architectural pattern 2%
Not presented 2%
Partitioning 1%
Maintenance schedules 1%

Table 2.2.: Percentage of papers investigated by Aleti et al. [Ale+13] which used the
mentioned degree of freedom.

Not all degrees of freedom have the same impact on every quality attributes. While
scheduling is likely to influence the performance of the software system, it will probably
have no effect on modifiability. For that reason, quality attributes usually appear together
with only some of the existing degrees of freedom. Allocation, scheduling, and service
selection are frequently used to influence performance, for instance.

Most degrees of freedom together with different quality attributes. That is also the
reason for trade-offs being necessary in software architecture optimization. For instance,
hardware selection can influence the three quality attributes performance, reliability,
and cost at the same time.

24

2.4. Models

2.4. Models

The purpose of software architecture optimization is to choose the best architecture for
a software system. Usually the architecture of a software system gets already defined in
the design phase of a software project. As a consequence, it is often not possible to get
measurements for the real system. Because of that, software architecture optimization
is usually applied on models, because they can be created before the implementation.
However, it is also possible to use measurements from an existing software systems to
improve the model (also see Section 2.6).

Aleti et al. [Ale+13] describe three general categories for models in software architecture
optimization. The first category is named “architecture models” and summarizes models
based on components and connectors to describe the architecture of the software system.
The Unified Modeling Language (UML) [RJB04] is a popular example of this category.
Other architecture models are the Architecture Analysis and Design Language (AADL)
[Aad] and the Palladio Component Model (PCM) [BKR09]. These two models were both
developed for the purpose of architectures analysis. “Evaluation models” do not model
the architecture, but can be used to evaluate the software architecture, e.g., Markov
Chains [Nor98] and Layered Queueing Networks (LQN) [Fra+09]. As third category
the “optimization models” are described. These models connect the architecture and
the design decisions to the decision variables and the objective function. They are used
in every optimization process, but they can be derived from models of the other two
categories.

It should be kept in mind that models are only abstract representations of the reality. By
modeling a software system some information could get lost, either because the model
is not capable of storing this information, or because the modeler decides not to model
everything. LQNs for example represent a view on the hardware of the system, whereas
UML is designed for the representation of software. The UML MARTE [(OM] profile
however extends the basic UML to be applicable for performance modeling.

If two models are in some way similar to each other, then it is also possible to apply
transformations, e.g., for PCM to LQN [KR08]. Properties which can only be represented
in one of these two models, will get lost in this transformation. In conclusion, the choice
of the initial model is important in architecture optimization, because it decides which
degrees of freedoms are available in the optimization process. Therefore, it is also a
decision about which quality attributes can be considered in the approach.

25

2. Foundations

2.5. Scenarios

Scenarios [CKK02] are a concept to investigate, whether non-functional requirements
are satisfied or not. In the SQuAT approach, many scenarios can be defined and each
bot is responsible for exactly one of these scenarios.

A scenario consists of six parts: the source, the stimulus, the environment, the artifact,
the response, and the response measure. The source is an actor which generates the
stimulus, e.g., a human or a computer. The stimulus is best described as a condition
that arrives at the artifact, which can be the whole system or pieces of it. This can also
happen under certain conditions which are described by the environment. The reaction
to the stimulus is the response. A response can be measured with a quality metric.
Finally, it is possible to compare this response to the expectation and decide whether the
requirement is fulfilled or not.

Figure 2.1.: Sample performance scenario. [CKK02]

Figure 2.1 illustrates the performance scenario “Users initiate 1,000 transactions per
minute stochastically under normal operations, and these transactions are processed
with an average latency of two seconds”. This example uses the response time as metric
for performance. It is typical for performance, because performance scenarios describe
usage situations, while modifiability scenarios are usually related to a desired change of
functionality.

2.6. Architecture Evaluation

Depending on the current development phase of the investigated software system, there
are different methods to evaluate this system. For a running system it is possible to
measure the responses for the system for a real stimulus. Some approaches already

26

2.7. Optimization Process

exist, which can monitor software systems, e.g., Dynatrace [Dyn], AppDynamics [App],
and Kieker [VHWH12]. These measurements can be event-driven or sampling-based.
In any case, it has to be considered that every measurement method also influences
the measured system. Nevertheless, models created on the base of measurements often
achieve a higher accuracy than without measurements [Bru+15]. It is even possible to
use model generators to model software systems based on measurements, e.g., like in
the approach of Willnecker and Krcmar [WK16].

Measurements can at least be used for the initial candidate for software architecture
optimization, but in most cases it is impracticable to implement every generated ar-
chitecture to evaluate it. In software architecture optimization two different types of
technologies exist for the evaluation of model instances. Solvers calculate the metrics
based on mathematical methods. They are able to treat the model as equation, which
has to be solved. Solvers exist for some models, e.g., a solver for LQN [Fra+09]. In
contrast to solvers, simulators are able to operate on the model itself. They simulate
the model and measure the behavior of the simulated system. EventSim [MH11], for
instance, is an existing approach for PCM. Simulators are usually considered to be more
accurate, but slower than solvers.

2.7. Optimization Process

Figure 2.2.: General optimization process [Ale+13].

27

2. Foundations

The general optimization process for software architecture optimization is shown in
Figure 2.2, as described by Aleti et al. [Ale+13]. As input for the optimization process
a representation of the architecture has to be provided. This is a model from one of
the three categories described in Section 2.4. While human readable input models
are often preferred, performing transformations internally are common practice to
achieve a more suitable presentation for the optimization. Depending on the chosen
optimization strategy, at least one alternative architecture is generated. To enable
a comparison between the different architectures, the quality of these architectures
have to be evaluated. Solvers or simulations are often used in this step, as described
in Section 2.6. A stopping criteria must be implemented to decide, whether more
candidates have to be generated. Ff the optimization is successful, the output of the
optimization process will be the improved architecture for the software system.

2.8. Multi-Criteria Optimization

A real software system can have several non-functional requirements for different
quality attributes. Thus, architecture optimization also has to be applicable for multiple
scenarios. Each objective can then by seen as one dimension forming a multi-dimensional
design space. Each candidate represents a vector in this design space after its evaluation.
Three different methods can exist to deal with this situation [Koz14].

The “a priori method” suggests to capture the preferences of the stakeholders to generate
a preference model. As a result, a scalar objective function can be defined and all
solutions are ranked. Therefore, this method transforms a multi-objective optimization
problem into a single-objective optimization problem. On the one hand this problem
is easier to solve, on the other hand it is usually difficult for the stakeholders to define
realistic preferences for the quality attributes.

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140

O
bj

ec
tiv

e
1

Objective 2

(Weakly) dominated solu�ons

Pareto op�mal solu�ons

Figure 2.3.: Example for Pareto Optimal Solutions [Koz14].

The “a posteriori method” moves this decision behind the optimization process. In this
method several solutions are presented instead of a single best solution. The concept of

28

2.9. Optimization Strategies

Pareto-optimality can be used to determine a group of best solutions. Pareto-optimal
solutions can not be compared to each other without defining a preference model. For
example, it is not possible to generally say a solution with a high modifiability and a
low performance is better than a solution with low modifiability and high performance.
However, there is always at least one Pareto-optimal solution for every non-Pareto-
optimal solution that achieves better values for all objectives. Figure 2.3 illustrates this
concept for an example with two objectives.

Finally, the “interactive method” enables the participation of a human architect in the
optimization process. The tool presents intermediate solutions to the architect, who can
then influence the further optimization by adjusting the preference model. In general, a
priori methods can always be extended to become interactive methods.

2.9. Optimization Strategies

Due to the size of the design space, the majority of the software architecture optimization
approaches uses strategies which provide only approximate solutions. Nevertheless,
some approaches use optimization methods like standard mixed integer linear program-
ming or problem-specific methods to find the exact solution of the optimization problem
[Ale+13].

For performance, rule-based approaches, specialized approaches, and metaheuristic
approaches can be distinguished [DG+12]. Rule-based approaches, like Performance
Booster [Xu12] and ArchE [Bac+05], use domain-specific knowledge to optimize a
software architecture. The rules defined for these tools are often based on experience and
limited to the domain of a particular quality attribute. Although specialized approaches
are more efficient, they are limited to performance and certain tasks, e.g., the CERAS
Deployment Optimization [Li+09] to deployment.

Metaheuristic approaches are almost independent from domain-specific knowledge.
Therefore, they are not limited to a particular quality attribute. ArcheOpterix [Ale+09]
and SASSY [MCD08], for instance, use metaheuristic approaches. Two different types of
metaheuristics can be distinguished, namely trajectory methods and population-based
methods [BR03]. Trajectory methods perform a local search around a single candidate in
order to find a better one. Because of that, they are difficult to apply for multi-objective
methods. Simulated annealing, tabu search, and variable neighborhood search [BR03]
are commonly used trajectory methods. Population-based approaches generate multiple
solutions in one iteration. For this reason they can be easily applied to multi-objective
optimization problems. Besides evolutionary algorithms (see Section 2.10), ant colony

29

2. Foundations

optimization and swarm optimizations [BR03] are also categorized as population-based
approaches.

2.10. Evolutionary Algorithms

Evolutionary algorithms [CLV06] are a common way to solve multi-objective problems
for in the domain of software architecture optimization. They are based on the con-
cept of evolution from biology. Figure 2.4 presents the basic evolutionary algorithm,
which consists of three repeatedly executed phases. The input for the algorithm are n

randomly generated candidates, in which n is the size of the population. For software
architecture optimization, one of these candidates is the initial candidate which should
be optimized.

R esulting
optimal
solutions

 E valuation of new candidates

S et of n (+ λ) solutions

S
et

 o
f n

 +
 λ

 s
ol

ut
io

ns
C rossover Mutation

R eproduction: G enerate new candidates
c

a

S election: C hoose candidates for next generation
b

S et of n candidates

n random
solutions

 μ promis ing ones are marked

Figure 2.4.: Basic evolutionary algorithm [Koz14].

In the evaluation phase (a), all not already evaluated candidates get evaluated. After
this phase the candidates can be ranked and the best candidates can be determined.
For the evaluation, the objectives can be weighted or an approach based on the Pareto-
dominance is used, e.g., the Pareto rank or Pareto strength. To rank the candidates
within a group of Pareto-optimal solutions, density measures can be used to assure a
high diversity of solutions [Deb+02].

The ranked solutions can now be filtered in the selection phase (b). Only the n best
solutions will stay part of the population after this phase. Of course, no candidates
are removed in the first iteration, because there are only n solutions at this point. In
addition, a group of µ candidates is selected as parents for the next step in the algorithm.

30

2.11. Optimization Goal

A common selection strategy is the tournament selection. In the tournament selection a
candidate with better ranking has a higher probability to be chosen.

The last step is the reproduction phase (c), in which λ new candidates are generated.
Usually two different operations are applied on the chosen parents in this phase. The
crossover operation combines parts of two candidates to generate a new candidate. A
fixed cut point, a randomly chosen cut point, or a random selection for each degree
of freedom can be used to select these parts. While the crossover operation tries to
improve candidates by combining two promising candidates, the mutation operation
applies small random changes to a single candidate. Again, there are different possible
configurations for this operation. The number of degrees of freedom to change can be
random or static. Finally, the whole population is passed back to the evaluation phase.

If the stop criterion is satisfied, the algorithm returns the optimized candidates. For
multi-objective optimization, this is a set of Pareto-optimal solutions. Bounded archives
can be used to store the current Pareto-optimal solutions to assure that no already
investigated Pareto-optimal candidate is removed in the selection phase. Evolutionary
algorithms which always return all Pareto-optimal candidates are called elitist.

Heuristics offer the possibility to further improve evolutionary algorithms. Other repro-
duction operators can be integrated into the reproduction phase. PerOpteryx [Koz14],
for instance, integrates so-called tactics for performance and cost, which contain domain-
specific knowledge. It has been shown, that these tactics can speed up the evolutionary
algorithm [KKR11].

While the starting populations for evolutionary algorithms are usually generated ran-
domly, it is also possible to use starting population heuristics [Gre87]. For example, a
starting population created by a simplified quality prediction and limited degrees of
freedom has been shown to be beneficial in a case study [Mar+10].

2.11. Optimization Goal

Koziolek [Koz14] presents different ways architects can formulate the goal of the
optimization. In any case, a critical value must be defined based on the requirements.
If this value is reached, the requirement is satisfied and no further optimization is
necessary. It is also possible to define a quality bound instead that should be optimized
further. The optimization will stop, if all requirements are fulfilled.

Additional stopping criteria should also be formulated for evolutionary algorithms.
Sometimes not all quality criteria can be fulfilled. Thus, the maximum number of
iterations or a time limit should be set. It is also possible to use more sophisticated

31

2. Foundations

stopping criteria, e.g., the significance of the Pareto-front improvements after a number
of iterations.

2.12. Palladio Component Model

The Palladio Component Model (PCM) [BKR09] is an architecture modeling language
designed for component-based software architectures (CBSA). An instance of PCM
consists of different models, which can be provided by different persons. PCM allows
persons with four different roles to contribute to a PCM instance, because huge software
systems are usually created by teams and not every person knows everything about the
whole system.

Figure 2.5.: Repository example. [BKR09]

Component developers are responsible for the development of software components
and are able to describe which interfaces a component provides and requires. Each of
these components can be added to a repository model, as shown in a simple example in
Figure 2.5. Additionally, they are also responsible for the implementation of the services
of the components. Therefore, they can describe the control flow of these services
in an abstract way. Service effect specifications (SEFF) represent the control flow as
internal and external actions. While internal actions describe resource demands on hard-
ware, external actions represent calls to other components within the software system.
Resource demanding service effect specifications (RDSEFF) can be used to annotate
the components with performance annotations, e.g., number of CPU instructions. An
example for a RDSEFF, also containing a branch and a loop, is shown in Figure 2.6.

If components have been added to the repository model, the software architects can
assemble the components. The system is modeled based on assemblies and interfaces in
an architecture model. Existing components can then be linked to the assemblies with
regard to their interfaces. Figure 2.7 shows an example for such a system model, in
which component A is used twice.

System deployers are the experts for the environment of the software system. Because
of that, they model the available hardware resources, e.g., servers and links between the

32

2.12. Palladio Component Model

Figure 2.6.: RDSEFF example. [BKR09]

Figure 2.7.: System exmaple. [BKR09]

servers. Another task for system deployers is to annotate the models with the hardware
specifications, for example, processing rates of the CPU and the HDD. It is also possible
to annotate the scheduling policy and reliability properties, e.g., mean time to failure
(MTTF) and mean time to repair (MTTR). System deployers are also responsible for
modeling the allocation of the components to the hardware resources.

Business domain experts can contribute a usage model to the PCM instance. Usage
models describe the interaction of humans with the software system. Open or closed
workloads can be defined and their properties can be selected. In addition, the business

33

2. Foundations

Figure 2.8.: Usage model example. [BKR09]

domain experts can model the usage of the system. They describe which methods are
called and how often. A complete flow of calls can be created with branches and loops,
as shown in the closed workload example in Figure 2.8.

Other features of PCM are that also failure probabilites of software components and
software resources can be modeled. In addition, PCM instances can be annotated with
fixed and variable costs for software components and hardware. In conclusion, a PCM
instance can contain several degrees of freedom for architecture optimization. Software
and hardware as well are modeled, which makes PCM applicable for quality evaluation
of different quality attributes.

2.13. Palladio-Bench

The Palladio-Bench is the integrated modeling environment for PCM. This project is
open source and integrated into the Eclipse IDE [Ecl]. The Palladio-Bench supports the
software architects by providing a graphical editor for the creation of PCM instances.
This editor uses an UML-like concrete syntax, as shown in the figures from Section 2.12,
to simplify working with PCM for most users.

However, the Palladio-Bench is not limited to modeling, it also allows to evaluate PCM
instances. PCM is designed to be unambiguous. Therefore, some approaches for model-
to-model and model-to-code transformations can be applied to it. The transformed
model is then solved or simulated to evaluate it for a particular quality attribute. In
addition, the Palladio Bench can create a performance prototype for measurements.

34

2.13. Palladio-Bench

It is also possible to create Java code skeletons to start with a real implementation of
the system. Thus, the Palladio-Bench supports methods to evaluate PCM instances in
different software development phases. The basic concept of the Palladio-Bench is also
illustrated in Figure 2.9.

Figure 2.9.: Concept of the Palladio Bench. [Pal]

For performance, transformations to different types of queueing networks can be applied.
The discrete-event simulator SimuCom [BKR09] applies a model-to-code transformation
to evaluate PCM instances for response time, throughput, and resource utilization. A
PCM-to-LQN transformation [KR08] can be applied, which enables the use of simulation
or solving. The LQN solver [Fra+09] applies a heuristic performance analysis. Although
it is usually fast, it does not support all PCM features, e.g., passive resources. While the
original Palladio-Bench is integrated into Eclipse, a Headless LQN Solver [Kel16] has
also been developed. This approach runs Palladio with the LQN Solver without Eclipse,
because of that it is called “headless”.

The Palladio-Bench is not limited to performance, it also supports the evaluation of
reliability, cost, and maintainability. The evaluation methods are different for each
quality attribute, for instance, reliability evaluation can be performed by a solver for
Markov chains. Another feature of the Palladio-Bench is the visual representation of the
evaluation results in graphs. This feature improves the usability of the tool and supports
the result interpretation.

35

2. Foundations

2.14. PerOpteryx

PerOpteryx [Koz14] is a plugin for the Palladio-Bench, which is able to perform multi-
objective software architecture optimization on an initial PCM instance. This plugin is
designed to present Pareto-optimal solutions to software architects in order to support
them by making trade-offs. In the categorization presented in Section 2.8, PerOpteryx
would be categorized as a posteriori approach. The approach has also been proofed to
be applicable for complex software systems in an industrial case study [DG+12].

The quality attributes performance, reliability, and cost can be optimized. In addition,
it is possible to define constraints for these quality attributes. Both simulators and the
LQN Solver can be used to determine performance values for response time, throughput,
and maximum CPU utilization. POFOD can be predicted by the solver based on Markov
chains for reliability. A solver for cost is also available, which can determine general
cost, initial cost, and operating cost.

Although only performance, reliability, and cost can be chosen by default, the approach
is considered to be extendable for other quality attributes due to the used evolutionary
algorithm. However, this is only possible with regard to the capabilities of PCM and the
available degrees of freedom. Up to six different types of degrees of freedom can be
used, namely component selection, component allocation, continuous processing rate,
scheduling, passive resource capacity, and server replication. Degrees of freedom in a
PCM instance can be detected automatically, so manual configuration is not absolutely
necessary.

The implemented optimization strategy is an evolutionary algorithm. Therefore, the
maximum number of iterations and the population size has to be defined. The evolution-
ary algorithm is the NSGA-II [Deb+02] which has been shown to converge faster and
assures a high diversity than similar approaches. The evaluation is based on the Pareto
rank in combination with a density measure. In addition, the algorithm is elitist.

Performance and cost tactics are implemented to speed up the optimization process.
Koziolek [Koz14] describes five tactics for performance and two for costs. “Spread
the Load” suggests a reallocation of components or resources, if the load is not evenly
distributed. If a high resource utilization is detected, “Scale-Up Bottleneck Resources”
suggests to use better hardware. “Scale-Down Idle Resources” is applied for low resource
utilization instead and uses cheaper hardware. In addition to this cost tactic, the second
cost tactic “Consolidate Servers” can be applied, if no cheaper hardware is available.
The tactic “Scale-Out Bottleneck Resources” considers to buy additional hardware, if the
existing hardware can not be improved much further. If much communication between
components is detected, the performance tactic “Reduce Remote Communication” moves

36

2.14. PerOpteryx

these components to the same server in order to reduce the communication link utiliza-
tion. The fifth performance tactic is called “Remove One Lane Bridge” and increases the
capacity of passive resources, if their waiting queue exceeds a certain length. All these
tactics can be formalized to be strict rules. Some thresholds and tactic weights can be
changed in the run configuration of PerOpteryx.

In contrast to the Palladio-Bench, the results of the PerOpteryx are not visually presented
to the software architects. Instead, the predicted quality values and the used design
decisions are exported to CSV Files. Besides, additional features are available, e.g.,
stopping criteria and starting population heuristics.

User Interface

Con�guration
and Jobs

Optimization O
pt

4J
Pe

rO
pt

er
yx

Ec
lip

se

O
pt

4J
Pe

rO
pt

er
yx

Ec
lip

se

Figure 2.10.: Abstract software architecture of PerOpteryx

The architecture of PerOpteryx is best described as three layer architecture and an
abstract presentation is shown in Figure 2.10. As PerOpteryx is a plugin for the Palladio-
Bench, and the Palladio-Bench is integrated into Eclipse, the first layer mostly consists
of classes which implement interfaces related to the Eclipse IDE. This layer is therefore
strongly coupled to Eclipse. The optimization framework Opt4J [Luk+11] is used
to realize the optimization itself. PerOpteryx actually connects the other two layers
and implements the remaining logic, which is represented as the layer in the middle.
However, there are many dependencies between the PerOpteryx layer in the middle and
the other two layers.

37

Chapter 3

Performance Bot

This chapter gives an overview over the design and the implementation of the Perfor-
mance Bot, which utilizes PCM-to-LQN transformations to analyze the resulting LQNs
fast. Section 3.1 describes the interface of the SQuAT Bots in general. Based on the
interface of the SQuAT Bots, Section 3.2 derives the assumptions and requirements for
the implementation of the Performance Bot. Section 3.3 then derives more specific
tasks for the implementation of the optimization done by the Performance Bot from the
specification of PerOpteryx. In addition, the architecture of the implementation is shown
and explained. The same is done for the analysis performed by the Performance Bot,
based on the Headless LQN Solver, in Section 3.4.

3.1. Interface

For the implementation of the SQuAT approach, which was presented in Section 1.3, a
general interface has been defined. Figure 3.1 presents the basic idea of this approach, in
which a SQuAT Bot has to work with an instance of an architecture. As the intention of
the SQuAT approach is not to focus on a specific architectural model or quality attribute,
there is no general implementation of a SQuAT Bot, but the interface AbstractSQuATBot
instead. Nevertheless, the first phase of the project focuses on the development of a
Modifiability Bot based on KAMP and a Performance Bot based on PerOpteryx. Both
approaches assume PCM as the underlying architectural model. Because of that both
bots implement the more specific AbstractPCMBot.

39

3. Performance Bot

PerOpteryx
Performance

Bot

KAMP
Modifiability

Bot

«abstract»
ArchitectureInstance

PCMArchitecture
Instance

«abstract»
AbstractPCMBot

«interface»
AbstractSQuATBot

Palladio

Figure 3.1.: SQuAT approach from the architecture view. [Pac+16]

Figure 3.2 shows more details about the design of the SQuAT Bot interface. To be able
to execute the analysis phase and the searching phase, each bot has to implement the
two methods analyze and searchForAlt. Both methods require the ArchitectureInstance,
an initial candidate, to analyze or to optimize respectively.

«abstract»
AbstractResult

type {num, real, time, perc, etc.}
response: Comparable

«interface»
ArchitectureInstance

modulesView, c&cView,
deploymentViews, usageViews, ...
load()
applyTactic()

«abstract»
AbstractScenarioResult

appliedTactics

«abstract»
AbstractScenario

optimization {max, min}
isSatisfied(AbstractScenarioResult)

«interface»
AbstractSQuATBot

+analyze(ArchInstance): AbstractScenarioResult
+searchForAlt(ArchInstance, Limit): ArchInstance[]

has an expected
response (or goal)

registers a
response

corresponds to a
modified architecture

is created
by

wants to
fulfill

Figure 3.2.: Simplified architecture design of the SQuAT Bots. [Pac+16]

A response of the methods has to be registered, which is the computed value for a
chosen quality attribute’s metric. In addition, the optimization should also return the
architectural models of the optimized candidates and the knowledge about the applied
tactics necessary to generate the alternative candidates. As each bot wants to satisfy a

40

3.2. Assumptions and Requirements

scenario, the AbstractScenario represents the goal for the bot. The scenario does not
only determine the metric and the direction of the optimization, it must also contain an
expected response, to decide whether the scenario is satisfied or not.

3.2. Assumptions and Requirements

First, a fundamental choice must be made on the approach of the Performance Bot.
As outlined in Chapter 2, developing a new tool for architecture-based performance
optimization would require much effort. Besides, it is not necessary, because several
approaches already exist, as mentioned in Section 2.9. For the first evaluation of
the SQuAT approach, a common input model would be beneficial, at least as long as
no abstract model is available. PCM supports modifiability and performance and is
designed to support model-to-model and model-to-code transformations. Thus, PCM is
a promising starting point for the SQuAT project.

Further investigations based on the literature review conducted by Aleti et al [Ale+13]
led to the conclusion that PerOpteryx seems to be the only existing approach which uses
PCM instances as input. It would be necessary to apply additional model transformations
to integrate other approaches. Besides, PerOpteryx is already validated and supports
additional features, as described in Section 2.14. The performance tactics implemented
in PerOpteryx are another reason to choose PerOpteryx as approach for the Performance
Bot.

The integrated Palladio LQN Solver is chosen as analysis methods for two different
reasons. As solvers are usually faster than simulators, choosing a solver will more likely
prevent long waiting times for the other bots. The other reason is the Headless LQN
Solver. This solver can be integrated into the Performance Bot as its analysis method.
In addition, parts of it can be used as blueprint for the development of a Headless
PerOpteryx.

It is possible to derive assumptions and requirements from the SQuAT approach described
in Section 1.3 and the interface of its Bots described in Section 3.1. Assumptions
are necessary to define the boundaries of the implementation and to show which
functionalities are really necessary. PerOpteryx is a sophisticated approach for multi-
objective architecture optimization, but only a part of its functionality has to be utilized
in the Performance Bot. Thus, the assumptions restrict the implementation for the first
version of a Headless PerOpteryx. They also restrict the necessary effort for the testing
and evaluation of the Performance Bot.

41

3. Performance Bot

The following three assumptions were identified for the Performance Bot:

A1 Only Performance: As each bot should contain the knowledge to analyze and
optimize exactly one quality attribute, the Performance Bot must only be able to
analyze and optimize software architectures with regard to performance metrics.

A2 Single Response: As each bot is assigned a single scenario and only a single
response value is returned, the Performance Bot only optimizes a single objective at
a time. This also means that the optimization is running with just one performance
metric.

A3 Single Input: The Performance Bot optimizes only one initial candidate and not a
whole starting population. In addition, it is not necessary to continue a stopped
optimization.

Defining requirements is important to make a comparison between the intended behavior
and the already available functionalities of the existing approaches. Tasks for the
implementation can be derived from requirements, which are not fulfilled.

As the analysis and the optimization itself are intended be done by the existing ap-
proaches Palladio LQN Solver and PerOpteryx, essential parts of the functionalities
are already available and must not be implemented again. However, it is even more
important to assure the input and output of these tools is compatible to the interface
of the Performance Bot. It is also necessary to consider the fact, that these tools are
usually executed within the Eclipse environment. Finally, the tools must be configured
and called by the Performance Bot and the results must be returned in the format of the
defined result objects.

The applied tactics are consciously missing in the requirements for the optimization,
because evolutionary algorithms make a lot of changes to a candidate throughout
the whole optimization process. The tracing of all these changes is not supported by
PerOpteryx and it would also be a lot of work to apply them again. Besides, for the first
phase of the SQuAT project it is acceptable to just have the resulting PCM instances. As
tracing of changes is not absolutely necessary for this phase of the project, it is not part
of the requirements.

42

3.2. Assumptions and Requirements

The following requirements for the optimization can be identified, based on the already
mentioned categories:

R1opt: Input Data

(1) The optimization should take a single PCM, which gets optimized.

(2) The optimization should take a single objective as input, to enable the
extraction of the correct response values.

(3) The optimization should take path information, so the tool knows where
the exported files should be located. In addition, the paths to files usually
provided by the Eclipse environment have to be entered.

(4) As few as possible additional parameters have to be specified, default
values should be used to keep the Performance Bot simple.

R2opt: Environment

(1) A new environment has to be created to imitate the environment of Eclipse.

(2) The new environment takes path information from the input of the analysis.

R3opt: Output Data

(1) The optimization must return a single response value for each returned
candidate, depending on the chosen objective.

(2) The optimization should be able to return the PCM instances for the found
candidate.

(3) The optimization should be able to return a specified number of best
candidates, e.g., the best 10 candidates. As a bot needs alternatives for the
negotiation phase, returning only the best candidate is not enough. On the
other hand, returning all candidates would be too much.

R4opt: Bot Implementation

(1) The results have to be converted into a proper result object.

(2) The optimization must be configured and PerOpteryx must be called by
the Performance Bot.

43

3. Performance Bot

Requirements for the analysis can be derived in a similar way than for the optimization,
based on the same four categories:

R1an: Input Data

(1) The analysis should take a single PCM, which gets analyzed.

(2) The analysis should take a single objective as input, to enable the extraction
of the correct response value.

(3) The analysis should take path information, so the tool knows where ex-
ported files should be located. In addition, the paths to files usually pro-
vided by the Eclipse environment have to be entered.

(4) As few as possible additional parameters have to be specified, default values
should be used to keep the Performance Bot simple.

R2an: Environment

(1) A new environment has to be created to imitate the environment of Eclipse.

(2) The new environment takes path information from the input of the tool.

R3an: Output Data

(1) The analysis must return a single response value, depending on the chosen
objective.

R4an: Bot Implementation

(1) The results have to be converted into a proper result object.

(2) The analysis must be configured and the LQN Solver must be called by the
Performance Bot.

3.3. Implementation: Search for Alternatives

The state-of-the-art approach PerOpteryx has been chosen as the underlying approach
for the implementation of the optimization. PerOpteryx has the advantage of using
PCM, like the Modifiability Bot. The available LQN Solver is also considered as fast in
comparison to other analysis methods, e.g., simulation. The optimization is therefore
expected to run within an acceptable amount of time. Section 3.3.1 investigates in
how far PerOpteryx is able to fulfill the requirements for the search for alternatives of
the Performance Bot and derives the necessary tasks, to complete to integration of the
approach into the Performance Bot. Section 3.3.2 then describes how the architecture of
the Performance Bot and Headless PerOpteryx has been designed to fulfill these tasks.

44

3.3. Implementation: Search for Alternatives

3.3.1. Tasks

PerOpteryx is basically able to optimize a given PCM and is therefore suitable to under-
take the task of searching for alternative architectures for the Performance Bot. The
three performance metrics response time, throughput, and maximum CPU utilization can
be used for the optimization. A comparison between the functionalities of PerOpteryx
and the formulated requirements from Section 3.2 however reveal some differences.
Figure 3.3 also illustrates this comparison.

Eclipse Environment

PerOpteryx

PCM Instance

Parameters
Paths

Objectives
QML File

Response
Values
Design
Decisions

Fake Eclipse Environment

Headless
PerOpteryx

PCM Instance

Parameters

Paths

Objective

Response
Values

Performance Bot

Best PCM
Instances

Figure 3.3.: Comparison between PerOpteryx (top) and the requirements for the opti-
mization of the Performance Bot (bottom).

Requirement R1opt(1) is already fulfilled for PerOpteryx, because the approach is based
on PCM and also takes a PCM instance as input. However, the multi-objective approach
is not fully compatible with requirement R1opt(2). Usually a QML file has to be provided
to specify which objectives should be activated for the optimization. For the Performance
Bot it is only necessary to choose one of the three performance metrics, which does
not require the wide range of options a QML file offers. As well as this requirement,
requirement R1opt(3) is not fulfilled, too. Most paths are provided by Eclipse, the
analysis methods are also provided by a registry. The integration into Eclipse is also
the main reason why PerOpteryx does not completely fulfill requirement R1opt(4). All
the parameters can be selected in the run configuration of Eclipse and there are many
available options. On the one hand default values are also available there, on the other
hand they will not be set without Eclipse. As a result, these values have to be set again in

45

3. Performance Bot

a Headless PerOpteryx. In addition, many of the available parameters are not necessary
for the Performance Bot.

The requirements R2opt(1) and R2opt(2) are obviously not fulfilled due to the integration
of PerOpteryx into Eclipse. It is also not possible to simply call classes of PerOpteryx
from a lower layer, because there are calls to Eclipse from multiple locations in the
code. It is therefore necessary to make small changes to the code of PerOpteryx itself to
provide the necessary path information in another way. However, the goal must be to
keep these changes as small as possible, to reduce the manual effort to update Headless
PerOpteryx to newer versions of PerOpteryx.

Another issue with PerOpteryx is the way it returns its results. PerOpteryx exports
CSV files for all candidates, the populations and the Pareto-optimal candidates. These
CSV files contain the desired response values and the choices made for the degrees of
freedom. However, this only partially fulfills requirement R3opt(1), because these values
are needed as Java objects for the Performance Bot. In addition, requirement R3opt(2) is
completely unsatisfied, as only design decisions and no PCM instances are exported by
PerOpteryx. For requirement R3opt(3) it is also necessary to sort the results to extract a
specified number of the best results.

As the requirements R4opt(1) and R4opt(2) can not be satisfied without an implementa-
tion for the Performance Bot, the following general tasks can be derived to fulfill the
unsatisfied requirements:

T1opt: Develop a component to set the parameters for Headless PerOpteryx, which is
simple and uses default values.

T2opt: Develop a component to convert the given objective to a simple QML file.

T3opt: Provide an environment, which imitates the Eclipse environment.

T4opt: Develop an export component, which extracts response values and PCM in-
stances of a specific number of best candidates.

T5opt: Integrate Headless PerOpteryx into the Performance Bot method searchForAlt.

3.3.2. Architecture

Headless PerOpteryx is seperated from the Performance Bot to keep it extendable,
so this part of the approach can be reused in other bots in the future. The tasks
T2opt and T5opt are solved on the level of the Performance Bot, which is presented in
Figure 3.4. The PerformancePCMScenario implements the PCMScenario and extends it
with a PerformanceMetric, which is necessary to determine which response value should

46

3.3. Implementation: Search for Alternatives

be returned. To satisfy task T2opt the PerOpteryxQMLConverter creates a simple QML file
for the chosen PerformanceMetric. This file is used as input for Headless PerOpteryx, so
the Performance Bot does not necessarily require a QML file as input.

SQuAT

PerOpteryxPCMResult

+getValue() : Double
+getAllocationPath() : String
+getRepostiroyPath() : String
...

export

Headless PerOpteryx

Configuration

PerOpteryxPCMBot

+searchForAlternatives(currentArchitecture
 : PCMArchitectureInstance)
 : List<PCMScenarioResult>

HeadlessPerOpteryxRunner

+init(configuration : Configuration}
+call() : List<PerOpteryxPCMResult>

start

configuration

returns

calls

converts

converts
1

calls
calls

PCMScenarioResult

-bot : AbstractPCMBot
-resultingArchitecture
 : PCMArchitectureInstance
-appliedTactic : PCMTactic
-result : PCMResult

1

1

PCMArchitectureInstance

-name : String
-repository : Repository
-system : System
-allocation : Allocation
-resourceEnvironment
 : ResourceEnvironment
-usageModel : UsageModel

requires
1

PerOpteryxQMLConverter

+convert(usageModelPath : String,
 scenario : PerformancePCMScenario)
 : String

PerOpteryxResultConverter

+convert(result : PerOpteryxPCMResult)
 : PCMScenarioResult

1

«abstract»
PCMScenario

#expectedResult : PCMResult
#type : OptimizationType

«enumeration»
PerformanceMetric

RESPONSE_TIME
THROUGHPUT
MAX_CPU_UTILIZATION

PerformancePCMScenario

Figure 3.4.: Architecture of the Performance Bot for optimization (simplified).

Task T5opt is satisfied through the integration of Headless PerOpteryx into the Per-
formance Bot. A Configuration is necessary to construct the PerOpteryxPCMBot itself,
because it already carries basic information about the paths and is then filled up by the
Performance Bot. This configuration must be passed to the HeadlessPerOpteryxRunner,
which is called to execute the optimization. To complete the task, the PerOpteryxResult-
Converter converts the results of Headless PerOpteryx to the desired format.

The Configuration is an important class in Headless PerOpteryx, because it provides
all the values necessary to run the optimization. Figure 3.5 therefore presents the
structure of the configuration package in more detail. The Configuration provides a
more comfortable and structured interface to the raw data, which is converted into
a configuration for PerOpteryx later. More specialized configuration classes assure
a separation of concerns, e.g., LQNSConfig is only responsible for the configuration
of the LQN Solver. They also provide default values as far as possible. These more
specialized configurations can be accessed through the general Optimization. Finally,
the PerOpteryx class DSEWorkflowConfiguration can be build from the configurations

47

3. Performance Bot

TacticsConfig

TerminationCriteriaConfig

PerOpteryxConfig

PCMModelsConfig

PCMInstanceConfig

LQNSConfig

DSEWorkflowConfigurationBuilder

+init(config : Configuration)
+build() : DSEWorkflowConfiguration

ExporterConfig

Configuration

AbstractConfiguration

#initializeDefault()
#copyValuesTo(attr :
 Map<String, Object>)
#validate() : boolean

1

1

1

1

1

1

1

requires

Figure 3.5.: The configuration package in Headless PerOpteryx (simplified).

and passed to the optimization itself. So in conclusion, this package assures task T1opt is
fulfilled by providing a simple and structured interface with default values for Headless
PerOpteryx.

In Figure 3.6 Headless PerOpteryx is presented in more detail. The central interface of
this tool is the HeadlessPerOpteryxRunner, which is also called by the Performance Bot.
A part of the Eclipse environment is imitated by PalladioEclipseEnvironment, which is
inspired by the implementation of the Headless LQN Solver. While the Headless LQN
Solver only sets up an environment for Palladio, additional efforts are made for Per-
Opteryx in the PerOpteryxEclipseEnvironment. Both classes register paths and factories,
which are usually provided by the Eclipse environment. The PerOpteryxEclipseEnviron-
ment also takes care of the ExtensionRegistry, which provides the correct analysis method
for the optimization.

Several classes from PerOpteryx had to be overwritten to be able to run it without the
original Eclipse environment, like the MyPerOpteryxJob. This class runs several other jobs
to make preparations and then kicks off the optimization process in MyOptimizationJob.
The Opt4JStarter then runs the optimization with Opt4J. Many classes in the middle
layer of PerOpteryx had to be overwritten, often in order to change or add only one or a
few lines of code. No changes have been made to the optimization process of Opt4J,
including the Opt4JStarter. Only the SequentialExecutionInjector is necessary to prevent
Opt4J from running a multi-threaded optimization, which leads to wrong results and
exceptions. The described architecture is able to run PerOpteryx without the original
Eclipse environment and it therefore fulfills task T3opt.

48

3.4. Implementation: Analyze

Headless PerOpteryx

«interface»
IAnalysis

MyLQNSolverAnalysis

#analyse(...)
#retrieveResult(...)

ExtensionRegistry

+getExtensionPoint(...)
 : IExtensionPoint

«interface»
IExtensionRegistry

«interface»
IRegistryProvider

RegistryProvider

+getRegistry() : IExtensionRegistry

PerOpteryxEclipseEnvironment

+INSTANCE

+setUp()

PalladioEclipseEnvironment

+INSTANCE

+setUp(pathmap:String)

DSEWorkflowConfiguration

PCMResultsProvider

+getInstance()
+extractValues()
+provide()
 : List<PerOpteryxPCMResult>

PCMFileExporter

+getInstance()
+init(storagePath : String)
+savePCMChecked(...)

DSEWorkflowConfigurationBuilderConfiguration

SequentialExecutionInjector

+inject()

Opt4JStarter

+init(config
 : DSEWorkflowConfiguration,...)
+runOpt4JWithPopulation(...)
+getAllIndividuals()

MyOptimizationJob

+execute()

MyPerOpteryxJob

+execute()

HeadlessPerOpteryxRunner

+init(configuration : Configuration}
+call() : List<PerOpteryxPCMResult>

retrieve results from

calls

retrieve
PCMs from

 save

reinitializes

provides

provides

1

calls

1

builds

needs
1

needs
1

initialize

executes

runs

 executes

calls

Figure 3.6.: Architecture of Headless PerOpteryx (simplified).

The remaining task T4opt is fulfilled by the classes PCMFileExporter and PCMResult-
sProvider. The PCMFileExporter saves the PCM instances of already analyzed candidates
to the hard disk. As soon as the optimization terminated, the PCMResultsProvider extracts
the response values of all candidates. In addition, it sorts the results and provides the
desired amount of best alternative candidates.

In conclusion, the presented design enables the Performance Bot to search for alter-
natives by utilizing the optimization pipeline of PerOpteryx. In combination with the
implemented extensions, it also fulfills all the defined requirements under the formulated
assumptions from Section 3.2.

3.4. Implementation: Analyze

One possibility would be to use the Headless PerOpteryx approach described in Sec-
tion 3.3 for the analysis of a single candidate. If the optimization is run for only one
iteration with one candidate, it is actually an analysis. However, this approach would

49

3. Performance Bot

contain a large overhead due to the setup of the whole optimization pipeline, which
is not needed in this case. The already existing Headless LQN Solver, mentioned in
Section 2.13, can be considered as promising approach for this part of the Performance
Bot, as it is already able to run without Eclipse. Section 3.4.1 describes which tasks
are necessary to integrate this approach into the Performance Bot. Section 3.4.2 then
describes which extensions have to be made in the architecture to fulfill these tasks.

3.4.1. Tasks

A comparison between the Palladio LQN Solver and the analysis method of the Per-
formance Bot is illustrated in Figure 3.7 and reveals some differences. However, the
Headless LQN Solver already solved some of these compatibility issues. Especially the
requirements R2an(1) and R2an(2) are already fulfilled, because the Headless LQN
Solver already sets up the environment.

Eclipse Environment

Palladio
LQN Solver

PCM Instance

Parameters

Paths

Raw Data

Fake Eclipse Environment

Headless
LQN Solver

PCM Instance

Paths

Objective
Response
Values

Performance Bot

Raw Data

Figure 3.7.: Comparison between the Palladio LQN Solver (top) and the requirements
for the optimization of the Performance Bot (bottom).

As the input for the Headless LQN Solver is still a PCM instance and the PCM-to-LQN
transformation is applied internally, requirement R1an(1) is also fulfilled. Requirement
R1an(2) is basically not fulfilled, but this is not a big issue at all. The LQN Solver does
always perform a full analysis, so the objective is only required to choose the response
to return in the end. Requirement R1an(3) and R1an(4) on the other hand are already

50

3.4. Implementation: Analyze

fulfilled through the design of the Headless LQN Solver. The paths can be given as input
and the solver can be executed with predefined values.

The biggest problem is the output of the results by the Headless LQN Solver, because
it only delivers a file, which contains a large number of computed values for the given
PCM instance. The response values for the desired performance metrics still have to
be computed from these values. Because of this, requirement R3an(1) is obviously not
fulfilled.

As the requirements R4an(1) and R4an(2) can not be satisfied without an implementa-
tion for the Performance Bot, the following general tasks can be derived to fulfill the
unsatisfied requirements:

T1an: Develop an export component, which computes the response value for the given
objective from the raw output of the solver.

T2an: Integrate the Headless LQN Solver into the Performance Bot method analyze.

3.4.2. Architecture

Figure 3.8 shows the architecture for the analysis of the Performance Bot. The Headless
LQN Solver already provides the classes and the functionality for the configuration
of the solver. After the required values have been passed, the analysis can simply be
executed.

SQuAT

CriteriaInitializer

+initializeCriteria(...)
+getCriterions()
 : List<Criterion>

LQNSResultConverter

+convert(lqnsResult : LQNSResult, ...)
 : PCMScenarioResult

LQNSResult

+getMeanValue() : double
+getThroughput() : double
+getMaxUtilisation() : double

LQNSResultExtractor

+extract(..., outputPath : String)
 : LQNSResult

PcmLqnsAnalyzerContext

+executePalladio()

PcmLqnsAnalyzer

+setupAnalysis(
 inst : PCMInstance)

PcmLqnsAnalyzerConfig

+defaultConfig()
+getOutputPath()

Headless LQN Solver

FileSystemProvider

+provide()

PcmModelConfig

+setAllocationModel(path : String)
+setUsageModel(path : String)

PCMInstance

PerOpteryxPCMBot

+analyze(currentArchitecture
 : PCMArchitectureInstance)
 : PCMScenarioResult

needs1

calls
1

converts
1

provides
1..*

 read in
1..* 1

 returns result of
1

 calls
1

extracts

1

analyzes
1

 read in
1..* 1

creates
1

provides
1..*

creates
1

Figure 3.8.: Architecture of the Performance Bot for analysis (simplified).

51

3. Performance Bot

A LQNSResult is then extracted from the raw output file by the LQNSResultExtractor.
As PerOpteryx is already able to extract the required response values, it is possible to
reuse code from PerOpteryx for this classes. The CriteriaInitializer is required to run the
PerOpteryx code without making major changes to it. Finally, the LQNSResultConverter
just has to choose the values for the given performance metric and converts the result to
the correct format for the Performance Bot.

In conclusion, not much effort is required to solve the tasks T1an and T2an. This makes
the integration of the Headless LQN Solver into the Performance Bot simple, especially
because the Headless LQN Solver already fulfills most of the formulated requirements
from Section 3.2.

52

Chapter 4

Evaluation

This chapter describes the evaluation of the Performance Bot presented in Chapter 3 and
shows the suitability of the chosen approach. Section 4.1 describes the requirements
for example systems, which are needed to evaluate the approach, and presents three
example systems in more detail. The hypothesis and the most important information
about the setup for the experiment are presented in Section 4.2. Section 4.3 gives
an overview over the results of the experiment, which are subsequently analyzed in
Section 4.4.

4.1. Example Systems

The evaluation of the Performance Bot requires an appropriate example system. This
system will be analyzed in the experiment. Section 4.1.1 presents the requirements,
which should be satisfied by such an example system. The Media Store Example from
Section 4.1.2 and the Simple Tactics Example from Section 4.1.3 were both considered
for this evaluation and are therefore presented in the following. The Extended Simple
Tactics Example presented in Section 4.1.4 is a combination of the two other systems
and overcomes the drawbacks of these systems.

4.1.1. Example System Requirements

The example system should fulfill some requirements to make the evaluation more
meaningful and to assure the example system is also useful for the SQuAT project. Three
primary requirements and one secondary requirement have been identified and are
described in the following:

53

4. Evaluation

Complexity: The most important requirement is the complexity of the example system.
Software systems in the real world usually consist of several components. The
example system should therefore also contain at least five components and some
dependencies to reflect the complexity of real software systems.

Solvability: Another important requirement is the solvability of the example system.
The Performance Bot uses a transformation from PCM to LQN and afterwards
solves the resulting LQN model. This method will not work for every system and
especially not for every PCM feature. As a consequence the chosen example system
should be a system that can be solved by this method.

Support for modifiability: Modifiability can not be modelled in default PCM and it is
therefore not expected that an example system contains annotations for modifiabil-
ity. However, it would be convenient to have an example system that can also be
analyzed by the Modifiability Bot and shows some tradeoffs between performance
and modifiability. This requires an example system that contains at least some
degrees of freedom for modifiability and can be annotated later.

Support for other quality attributes: This is a secondary requirement, but the support
of more quality attributes could make the example system more useful for future
work, e.g., analysis with a Performance Bot and a Reliability Bot.

As creating PCM instances from scratch is an ambitious and time-consuming task, already
existing examples should be used for the evaluation. There are some example systems
available [Exa]. However, they had to be configured for the use with PerOpteryx
and could not all be investigated in full detail. In conclusion, all applied tests failed,
because they were not compatible with the current version of PCM or returned errors.
Nevertheless, the tests of two example systems worked fine enough to consider them for
the evaluation and are therefore described in the following sections. The Media Store
Example was already successfully used for modifiability in the SQuAT project and the
Simple Tactics Example was already configured for the use with PerOpteryx and the LQN
Solver.

4.1.2. Media Store Example

The Media Store Example models a Web Music Store [SK16], where users can download
and upload songs. The basic architecture (see Figure 4.1) is a three-tier architecture,
which consists of a web-front-end, the application and a database running on its own
server. Users can make requests to the WebGUI, which is the web interface of the
application and will forward the requests to the MediaStore component. The songs itself
are retrieved from the AudioDB and get watermarked by the DigitalWatermarking to

54

4.1. Example Systems

assure copy protection. Finally, the requested files are send to the user. The system also
allows the upload of files, but this only occurs in 20% of all cases, in contrast to the 80%
for downloading.

Figure 4.1.: Repository diagram of the Media Store Example.

This model also contains the three optional features Caching, Pooling, and Encoding.
The DBCache keeps some songs in a cache, which reduces the number of required
hard disk drive accesses, but requires additional computational effort for availability
checks. Pooling requires the use of the PoolingAudioDB and can reduce the number of
concurrent accesses to the hard disk drive, for the cost of having only a limited amount of
concurrent transactions and thus possibly more waiting users. The EncodingMediaStore
and the Encoding components can be used to reduce the size of high quality song files
by reencoding them. The encoding causes additional computational efforts, but the
reduced file size can lower the usage of the data link between the application server and
the database server, as well as the hard disk usage of the database.

This example system contains 10 different components, but depending on the used
features only 4 to 5 of them are used simultaneously. Nevertheless, this system can
be considered as complex enough for the evaluation. The optional features of the

55

4. Evaluation

Media Store also lead to the assumption, that this model can be annotated to get
some tradeoffs between performance and modifiability. Degrees of freedom mainly
grounded on hardware changes are supposed to have only a small or even no impact
on the modifiabiliity of the system, thus changes to the components itself must be
made. The optional features Caching, Pooling, and Encoding include several degrees
of freedom from the component selection category, which can likely have an impact on
modifiability.

The most critical issues with this model occurred for the second requirement: the
solvability. PerOpteryx did not return exceptions, but the solver seemed not to be able
to solve this model. Changes in the configuration and the model itself did not resolve
this issue. It is therefore assumed, that this model contains PCM features the solver can
not solve or another restriction of the solver exists, e.g., the computed utilization of a
CPU exceeds 100%. The possibility that this model was not configured in the right way
can also not be completely denied. The exact reason might be unknown, however this
example can not be solved and therefore this example system can not be used for the
evaluation.

4.1.3. Simple Tactics Example

The Simple Tactics Example was originally part of the Palladio Example collection and
models a business trip management system (see Figure 4.2). Despite from the booking
and managing different payment options, this also includes making reimbursements.
For the Simple Tactics Example an open workload is assumed. As already implied by the
name, this example system is simple and contains only four components. The user can
call the method plan of the BusinessTripMgmt component. The parameters determine if
the user wants the system to make a reimbursement or a booking. The BookingSystem is
then called to start a booking. In any case the PaymentSystem is called in this process to
make payments or reimbursements.

This system provides some degrees of freedom, mainly related to the hardware. The
components can be allocated to three different servers and the CPU clock rate can be
changed. In addition, the QuickBooking component is available as alternative for the
BookingSystem.

One benefit of the Simple Tactics Example is the solvability of this example system. This
model was already configured for the use with PerOpteryx and the LQN solver, because
of that there were no bigger issues detected in the tests. Another benefit of this example
system is that it can also be used for optimization of reliability and costs, because the
model is already annotated for this tasks. Thus, this example system fulfills at least one
primary requirement and the secondary requirement for the evaluation.

56

4.1. Example Systems

Figure 4.2.: Repository diagram of the Simple Tactics Example.

The support of modifiability is nevertheless expected to be low, because there are mainly
degrees of freedoms with influence on the hardware of the system. One alternative for a
component is unlikely to be sufficient for providing many tradeoffs between performance
and modifiability. However, the most critical issue with the Simple Tactics Example is the
complexity. Only three components are used simultaneously and there is only one initial
method to call. In conclusion, this example system does not fulfill all requirements and
can therefore not be used in the evaluation.

4.1.4. Extended Simple Tactics Example

The Extended Simple Tactics Example is a combination of the Simple Tactics Example
and parts of the Media Store Example. On the one hand the Simple Tactics Example has
the advantage of being solvable and offers support for reliability and cost, while on the
other hand the Media Store example is more complex and likely to provide support for
modifiability in the future. Thus, the idea was to extend the Simple Tactics Example with
new components, which are based on the Media Store Example to create an example
system, which fulfills all the requirements at the same time.

Different components often differ in their modifiability values. Thus, the Modified
Simple Tactics Example contains some alternative components, which can make trade-
offs necessary. The extended version also saves information about booked business
trips to a database, similar to the one from the Media Store Example. If a business trip
is booked, a new file has to be added to the database. If a reimbursement is made,

57

4. Evaluation

Figure 4.3.: Repository diagram of the Extended Simple Tactics Example.

the file in the database has to be updated. The default database component is the
TripDB component. This component can be replaced by the FastReadTripDB or the
FastWriteTripDB. The FastReadTripDB improves the speed of reading from the database
for the cost of lower writing speed. The FastWritingTripDB is the counterpart to this
component. The database offers the users the possibility to export information about
booked business trips and the payment as a PDF file. The information is formatted by
the Exporter in human readable form, because the database only stores raw data. In
addition, logos have to be added to the PDF. The AlternativeExporter stores the logos in
a compressed version to improve the speed of loading the file. Figure 4.3 also shows
an overview over the available components and interfaces of the extended example
system.

The Simple Tactics Example system already contained three servers for the allocation
of the components. With the addition of the database, a new database server has been
added to them. The database server contains a much faster HDD than the other servers

58

4.1. Example Systems

and uses the same network connection as the other servers. As a result, the Modified
Simple Tactics Example provides many degrees of freedom for the optimization of the
system, which are identified automatically by PerOpteryx. The components can be
allocated to all servers. In addition, the speed of the CPU and HDD of all four servers can
be changed. However, the most important degrees of freedoms are from the category of
component selection. There is one alternative for the BookingSystem, one alternative for
the Exporter and two alternatives for the TripDB.

The size of the example system is considered big enough, because five components are
always used in every configuration. In addition to the method plan from the Simple
Tactics Example, 10% of the users also use the export method of the system, which
further increases the complexity of the system.

Figure 4.4.: All found candidates with response time lower than 500 s for the optimiza-
tion of the Extended Simple Tactics Example.

A first test was run with PerOpteryx on the Extended Simple Tactics Example to evaluate
the solvability. PerOpteryx was configured to make a run with 20 iterations and 200
individuals per generation. No tactics were used and the crossover rate has been set
to 50%. To demonstrate the possibility to support tradeoffs, response time and cost
were optimized. PerOpteryx returned a total number of 2100 candidates, including
the initial candidate. Only 153 generated candidates and the initial candidate could
be solved, which is only 7.3% of all found candidates. Figure 4.4 presents all the
successfully evaluated candidates with a response time lower than 500 and Figure 4.5
shows those which are Pareto-optimal. The low number of solvable candidates seems to

59

4. Evaluation

be a problem on first glance, but further tests showed, that the most frequent reason
for this behavior was the allocation of the components. It also has to be considered,
that the LQN solver fails, if the utilization of a CPU exceeds 100%. Such a bottleneck
would in general not be beneficial for the software system, thus it can be concluded,
that most of these candidates would probably not be Pareto-optimal and can be ignored.
It is at least possible to use the Extended Simple Tactics Example, even though most of
the candidates have no response value.

Figure 4.5.: Pareto-optimal candidates for the optimization of the Extended Simple
Tactics Example.

Figure 4.4 and Figure 4.5 also show that it is at least possible to find tradeoffs between
performance and cost. The technique of cost evaluation is partially similar to the
techniques for modifiability evaluation, because both assign values to components.
Future extensions of this example system to support modifiability therefore are assumed
to provide tradeoffs between performance and modifiability. This example system could
even be more suitable for this task than the Media Store Example, which only contains
three optional features. In addition, cost and reliability can be optimized, too.

In conclusion the Extended Simple Tactics Example fulfills all requirements for the use
as example system in the evaluation part of this work. Additionally it has the potential
to be used in a later case study for the SQuAT project.

60

4.2. Experimental Setup

4.2. Experimental Setup

Every experiment needs preparations. For the evaluation of the Performance Bot all
experiments are described in this section. The first step of every experiment is to find
a hypothesis and ways to determine whether it is confirmed or rejected. This step is
described in Section 4.2.1. Section 4.2.2 then describes the experiment to evaluate the
analysis part of the Performance Bot. Two more experiments for the optimization part
of the Performance Bot are described in Section 4.2.3 and 4.2.4. Finally, Section 4.2.5
summarizes the most important information about the general settings of the approaches
and the environment in which the experiments are conducted.

4.2.1. Hypothesis

For the evaluation the goal is to show, that the developed Performance Bot can compete
with other state-of-the-art tools for performance architecture optimization. As PerOpteryx
has already been evaluated and compared to other tools, it is sufficient to show, that
the Performance Bot does not perform worse than PerOpteryx. On the other hand, the
Performance Bot is not expected to perform better, because the underlying approach and
technology is the same.

The following concepts have been identified to be useful for the evaluation:

Quality: It is not possible to show the correctness of an approach by testing and without
a mathematical proof. However, it is highly unlikely to get two identical values
for a complex model by pure coincidence. For the analysis such a comparison
is obviously possible. For the optimization at least the computed values for the
initial candidate can be compared, because this one is not randomly generated. For
optimization in general, which is a single-objective optimization for performance,
the results for the best candidates after several runs can be statistically analyzed
and compared based on their distributions.

Convergence: Not only the quality of the results is important, it is also important
how fast a sufficient quality can be reached. It is assumed that the optimal
candidate will not improve much, as soon as it is close to the real Pareto-front.
It is therefore possible to measure the number of iterations at which the current
optimal candidate is not improved much anymore. This number of iterations can
be used to compare different approaches.

Runtime: Comparisons of runtimes for several runs for the same optimization job are
another way to compare two approaches. The runtimes for the optimization in
PerOpteryx and the Performance bot are basically assumed to be similar. However,

61

4. Evaluation

both approaches are not completely the same, e.g., PerOpteryx does not export
PCM instances. Considering the uncertainty of runtimes, the differences are
nevertheless not expected to be big.

The Performance Bot consists of two parts, the analysis and the optimization. While the
analysis is the smaller and simpler part to evaluate, the evaluation of the optimization is
more difficult. The results generated by evolutionary algorithms are random, therefore
they are unlikely to be the same in two independent runs, even for the same model. As
a result, the results of both parts of the Performance Bot have to be treated differently in
the evaluation. Three different experiments are derived from the presented concepts for
the Performance Bot and are described in the following sections.

4.2.2. Quality of Architecture Analysis

The first experiment evaluates the quality of the analysis approach. For this experiment
the results for the performance metrics response time, throughput, and maximum CPU
utilization of three different approaches are compared. The first investigated approach is
the analysis method of the Performance Bot, which utilizes the Headless LQN Solver. In
addition, the results of PerOpteryx and the optimization method of the Performance Bot
based on Headless PerOpteryx are investigated with only the initial candidate and no
further generation of candidates. The investigation of the Performance Bot’s optimization
method is made to ensure the analysis inside of it works correctly, too. PerOpteryx is
investigated, because it uses the Palladio LQN Solver and is expected to deliver the
correct results for a comparison. The Palladio LQN Solver can’t be used for this purpose,
since it does only export some raw values and does not compute the values for the
required performance metrics.

The Extended Simple Tactics Example is used for this experiment with the default
components selected. All three performance metrics are measured in one single run for
PerOpteryx. The Performance Bot is only able to report one result, thus it is executed
three times for both methods. The runtime is also reported to get a basic idea of how
long one run takes. However, a detailed investigation of the runtime for the analysis
of only one PCM instance is not planned, because it is expected to be short and several
factors can have a huge influence on the results. The runtime of the Palladio LQN Solver
will also be reported.

The values are expected to be the same for all three approaches and for all three
considered metrics. It is already logical to prefer the Headless LQN Solver over Headless
PerOpteryx with one iteration and one candidate to analyze a PCM instance, because
the Headless LQN Solver does not have to initialize the optimization for this purpose.

62

4.2. Experimental Setup

Nevertheless, it would be good to have a runtime measurement to estimate the benefit
of this choice.

4.2.3. Quality and Runtime of Architecture Optimization

The second experiment evaluates the quality and the runtime of the optimization part of
the Performance Bot. The results of the optimization method of the Performance Bot and
PerOpteryx are compared. According to the scenarios in SQuAT, it is expected that one
instance of the Performance Bot will be used to optimize one single performance metric.
For this experiment response time is chosen as the investigated performance metric.
The goal for this part of the experiment is to show that the Performance Bot optimizes
candidates. Additionally, the optimization is expected to deliver best candidates with
more than 99% of the improvement PerOpteryx is able to reach.

In addition to the response value, the runtime is measured and investigated. In contrast
to the analysis, one run is expected to take much longer and therefore the influence of
other uncontrollable factors on the runtime is expected to decrease. As the Performance
Bot has to export the PCM instances and sort the results in order to return a specific
amount of best candidates, it is expected to be slower than PerOpteryx itself. Thus,
a decrease of 5% in runtime in comparison to PerOpteryx is considered to be still
satisfying.

The Extended Simple Tactics Example gets optimized 30 times for both approaches in
this experiment. In each run a total of 20 iterations is performed and the size of the
population is limited to 200. The response value of the best candidate in every run is
stored and a distribution is computed for both tools.

4.2.4. Convergence of Architecture Optimization

A stop criteria implemented in PerOpteryx and Headless PerOpteryx can be used for
the third experiment conducted in the evaluation. If the response value of the best
candidate is considered insignificant, the optimization will stop before it reaches the
maximum of the allowed iterations. Insignificance in this stop criteria is described by an
amount of iterations in which the best candidate is only improved by less than a specific
percentage. For this experiment the amount of iterations is set to 6 and the upper limit
for the improvement to 1%.

As in the experiment before, the Extended Simple Tactics Example is optimized 30 times
for response time. This time a maximum of 50 iterations is chosen and the population is
limited to 300. The amount of executed iterations is measured and decreased by 6, due

63

4. Evaluation

to the numbers of additional runs the tools had to execute to determine no significant
change was made anymore. Again, the goal is to be at least 99% as fast as PerOpteryx in
finding nearly fully optimized candidates.

4.2.5. Experimental Settings and Environment

For all executions of optimization tasks a crossover rate of 50% and tactics probability
of 60% is used. All tactics are activated with default values, except for the antipattern
detection, because this one is not able to change anything on the example system and
reported problems on the console.

The runtime measurements for PerOpteryx and the Palladio LQN Solver are taken from
the console output of these tools and are called “workflow execution time”. It has to
be mentioned, that this time is likely to be not the complete runtime and some jobs,
e.g., the export, might be not part of this measurement. However, it is difficult to
measure them in a better way, because booth tools are integrated into the Eclipse IDE.
The measurements for the Performance Bot are all made for the full call of the method.
This includes the calls to the headless tool libraries and result conversions inside of the
Performance Bot’s project.

The first runtime measurement of a tool gets always discarded, because their values
often turn out to be much higher than the following results. The reason for this could be
caching or other improvements made by the operating system. As the measurements
can not be protected from influences through these effects, allowing them for all
measurements is the more practical solution.

The evaluation is performed on a desktop computer with a quad core CPU, 3.4 GHz
each core, and 16 GB RAM, 2 GB of them are allocated to the virtual machine of Java.
After every measurement the garbage collector is run from the Eclipse IDE. During
performance measurements the computer is not used for other purposes.

4.3. Experimental Results

The results for the measurements and the computed descriptive statistics data are
summarized in this section. Section 4.3.1 presents the results for the experiment on
architecture analysis. Section 4.3.2 then describes the results for the experiment on the
quality and runtime of architecture optimization. The results of the third experiment on
the convergence of the approaches is presented in Section 4.3.1.

64

4.3. Experimental Results

4.3.1. Quality of Architecture Analysis

Table 4.1 presents the analysis results computed by the investigated approaches for the
initial candidate of the Extended Simple Tactics Example. The response time for this
candidate has been determined to be 105.5573 s. The throughput of the candidate is
0.5 tasks

s and the maximum CPU utilization is 0.9222 It has to be mentioned that all tools
reported the same values.

PerOpteryx
Performance Bot Palladio

Optimization Analysis LQN Solver

Response Time 105.5573 s 105.5573 s 105.5573 s -
Throughput 0.5 tasks

s 0.5 tasks
s 0.5 tasks

s -
Max. CPU Util. 0.9222 0.9222 0.9222 -
Runtime 1.322 ± 0.090 s 2.754 ± 0.049 s 1.531 ± 0.064 s 0.392 ± 0.037 s

Table 4.1.: Results for different tools analyzing the initial candidate of the Extended
Simple Tactics Example.

The table also reports the measured runtime for 30 runs. As expected, the runtime for
the Performance Bot methods was nearly the same for all performance metrics. Because
of this, only the runtime for the response time run is shown in the table. In addition to
the shown values, Palladio and PerOpteryx also reported a value for the analysis only.
For the Palladio LQN Solver the analysis took 0.254 ± 0.023 s of the 0.392 ± 0.037 s and
for PerOpteryx it took 1.129 ± 0.085 s of 1.322 ± 0.090 s. The additional time comes from
other tasks, e.g., loading and validating the model.

4.3.2. Quality and Runtime of Architecture Optimization

A statistical analysis of the results for the second experiments results in a mean of
18.158 s for the response time of the best found architecture after the optimization for
PerOpteryx. The mean response time for the Performance Bot is 17.366 s. While the mean
value is slightly better for the Performance Bot, also the standard deviation 1.524 s is
lower than the standard deviation 1.908 s for PerOpteryx. The results are also presented
in Figure 4.6. The best candidate was found by PerOpteryx and it has a response time
of 14.1590 s. This is a total improvement of 91.3983 s on the response time compared to
the initial candidate. In Section 4.2.3 the decision was made to have the goal to reach
99% of PerOpteryx’s improvement with the Performance Bot, which would be at least
86.5253 s for the mean value.

65

4. Evaluation

Figure 4.6.: Boxplots for the response times of the best found candidates.

Figure 4.7 presents the results for the runtime of the optimization. A mean of 229.421 s
was determined for PerOpteryx and a mean of 226.596 s for the Performance Bot. The
standard deviation for PerOpteryx is 12.464 s and for the Performance Bot 6.089 s. It
has to be added, that the values for the PerOpteryx runs seemed to increase with the
number of runs, but the reason for this pattern in the measurement is unknown. Based
on the goal defined in Section 4.2.3 for the Performance Bot to run only 5% slower than
PerOpteryx, this would allow the Performance Bot to be more than 10 s slower in any
case.

Figure 4.7.: Boxplots for the runtime of the optimization.

66

4.4. Result Interpretation

4.3.3. Convergence of Architecture Optimization

The results for the convergence are presented in Figure 4.8. Most of the runs took less
than 10 runs to find a candidate near to the optimal solution. There are even some runs,
which needed only one or two runs to fulfill this task. The mean for PerOpteryx is 4.033
and for the Performance Bot 6.067. However, the standard deviations can be considered
high compared to the mean with 3.573 for PerOpteryx and 4.234 for the Performance
Bot.

Figure 4.8.: Boxplots for the number of iterations at which the last significant change
on the response time of the best found candidate occurred.

4.4. Result Interpretation

The results for the analysis method of the Performance Bot show that the Headless
LQN Solver and Headless PerOpteryx report the same values as PerOpteryx. This
demonstrates that the chosen approach is likely to be configured correctly and able
to analyze PCM instances correctly. In addition, the results for the runtime support
the assumption, that it was a good decision to choose the Headless LQN Solver for
the analysis. Nevertheless, the runtimes are short and difficult to compare due to the
different measurement methods. Thus, a more detailed analysis is not possible, at least
with this the used measurement methods. Anyhow, it is possible to get an idea of the
runtime for a single analysis, which lies approximately between 0.2 s and 2.0 s for the
used model.

67

4. Evaluation

On the results for the experiment about the quality and runtime of the architecture
optimization a non-inferiority test based on confidence intervals was applied. In both
cases the test confirmed the expectation. For the Extended Simple Tactics Example it is
therefore possible to say, with a confidence of 95% that the Performance Bot fulfilled the
expectation to be not slower than 5% compared to PerOpteryx and that it delivers results
with at least 99% of the quality of PerOpteryx. Nevertheless, it has to be added, that the
runtime measurements for PerOpteryx contained a strange increase of the runtime, for
which no obvious reason was found. Nevertheless, even for a comparison of the fastest
runs for both approaches, the difference to the Performance Bot is still below 10 s, which
is not that much for a total runtime of over 200 s.

For the convergence no test is applied, because the results are not meaningful. The
standard deviation is high and the tools did not need many iterations to find a solution
near to the optimal solution. It is assumed, that a much larger example system is needed
to get better results. It is also possible that the chosen method is not suitable to evaluate
the convergence of the approaches.

With regard to the selection of the example system, it has also to be added that the
applicability for the approach can not be confirmed completely. It was not possible to
analyze and optimize the Media Store Example or other existing example systems. This
could mean, that there could be too many restrictions for applying the LQN Solver to
PCM in general. In addition, many evaluated candidates in the example system could
not be solved, which could have influenced the results of the evaluation.

68

Chapter 5

Conclusion

In general, automatic and semi-automatic tools for architecture optimization are impor-
tant, due to the size of the design space. In addition, making trade-offs is necessary,
because different quality attributes often compete with each other. The SQuAT project
investigates the applicability of distributed search strategies for architecture optimization
within such a semi-automated approach. The suggested approach is supposed to find
trade-offs in a more natural way and is more extendable than the existing techniques,
which are mostly monolithic. This work contributes a so-called bot for the quality
attribute performance to this project, to enable an evaluation of this approach, leading
to new insights into the applicability of distributed search strategies, modularization of
design knowledge, and negotiation techniques for software architecture optimization.

It was not necessary to develop a completely new approach for the Performance Bot,
because validated approaches for architecture-based performance optimization already
exist. The existing approach PerOpteryx has been chosen as the most promising approach
for the purpose of being integrated into the Performance Bot. The original PerOpteryx
is an Eclipse Plugin, which is able to perform multi-objective software architecture
optimization for performance, cost and reliability. PerOpteryx optimizes instances of the
Palladio Component Model (PCM) and analyzes them with solvers or simulation. Besides,
the Modifiability Bot for SQuAT also takes PCM instances as input. As a result, PCM can
be used as starting point for the early version of the SQuAT project. The concrete method
can be selected by the user. The optimization is based on evolutionary algorithms and
tactics, which speed up the optimization through domain specific knowledge.

A new version for PerOpteryx has been developed in this thesis to use PerOpteryx for
the optimization in the Performance Bot. Therefore, it was necessary to imitate the
Eclipse environment and extract the results from PerOpteryx. This so-called Headless
PerOpteryx utilizes PCM-to-LQN transformations and a LQN solver to perform perfor-
mance optimizations. The same technology is also utilized to analyze PCM instances
with the Performance Bot.

69

5. Conclusion

An already existing example system has been extended to evaluate the Performance Bot.
The evaluation showed that the Performance Bot is able to reach the same, or at least a
similar, quality for the analysis and the optimization. In addition, the runtimes of both
approaches were similar for the same optimization task, with respect to the additional
computational effort, which has to be made by Headless PerOpteryx to provide the
desired results. A comparison between the Performance Bot and PerOpteryx for the
convergence of the optimization was not possible, as the results were not meaningful
enough. A much bigger example system is required for such an evaluation. However,
the results of the evaluation indicate that the Performance Bot works as desired and can
be integrated into the SQuAT approach.

There is also evidence to suggest that the used method based on LQN solving has some
limitations. In general it was difficult to find a working example system for the evaluation.
On the one hand this can be explained by the incompatibility between different versions
of PCM, but on the other hand it was also discovered that the LQN solver was not able
to solve every PCM. This makes it difficult to determine how applicable the current
approach is for models of real software systems in general. Further evaluations with
more and bigger example systems are necessary to answer this question.

Another issue is the difference between the domains of performance and modifiability.
Especially the tracing of the used tactics is difficult for performance, because of the large
number of changes made in the optimization by evolutionary algorithms, which are
often used for sophisticated approaches in the domain of performance. This is in some
way contrary to the basic idea of the SQuAT approach, because a human architect would
never do so many changes at a time. This issue can be ignored for the first steps of the
SQuAT project, but it has to be solved later.

It also has to be mentioned, that the provided Performance Bot is just a starting point
for further research done within the SQuAT project. The next step is to combine the
Performance Bot and the Modifiability Bot to integrate negotiation techniques and
evaluate the approach.

Future Work

There are many possible ways to improve Headless PerOpteryx itself and to provide
additional alternatives for SQuAT. While improvements to Headless PerOpteryx would
most likely affect the quality of the SQuAT Performance Bot, more general changes and
extension could provide new configurations for the SQuAT bots. It might be that not
all of the suggested future works are completely realizable for technical reasons, this

70

should be examined closer before. Besides, the SQuAT project could reveal even more
directions for improvements, which could be made to Headless PerOpteryx.

Improve modifiability of Headless PerOpteryx

It was necessary to inject parameters into Headless PerOpteryx, which are usually
provided by the Eclipse environment. As PerOpteryx was not designed to run outside of
this environment, several classes had to be overwritten. Future updates to PerOpteryx
could cause conflicts between the original classes and the overwritten ones. This would
lead to the need of many manual changes and adjustments. It could be more convenient
to investigate alternative methods to reduce the possible amount of conflicts. In addition,
this could also reduce the number of solutions, which are usually considered as bad
practice.

Manage dependencies

The number of dependencies for Palladio and PerOpteryx is huge and difficult to manage.
Tools like Maven [MVM10] can be used to manage these dependencies and simplify
the build process of a project. Nevertheless the configuration of such tools can be time
consuming, it should be considered for Headless PerOpteryx.

Investigate solver fails

The external LQN solver is an important part of Headless PerOpteryx, because it evaluates
the potential architectures. Unfortunately, this part seems to be not as reliable as
expected. The Media Store Example was considered as a suitable architecture for the
evaluation in this thesis. It turned out that the solver or the transformation to the solver
failed for this system. This leads to the assumption that some features or combinations
of features of PCM cause this fail. This should be investigated further to be able to
estimate the usefulness of the current SQuAT Performance Bot. If this happens often,
it would be necessary to add other solvers or simulators to the LQN solver, in order to
reach a higher reliability for the SQuAT Performance Bot.

During the implementation and tests of Headless PerOpteryx a rare issue was observed,
in which the analysis for a valid architecture failed for no reason. A reproduction of this
error was not possible and thus the cause is unknown. A possible cause could be the
LQN solver or the PCM-to-LQN transformation, but also access problems for the output

71

5. Conclusion

files are possible. Nevertheless this issue occurred rarely, a solution for it could slightly
improve the reliability of Headless PerOpteryx.

Concurrency

Concurrency increases the use of available hardware resources and could speed up
the optimization inside of PerOpteryx. The implementation of PerOpteryx contains
methods and classes for the parallel analysis of architecture candidates. However, this
configuration caused concurrency exceptions or wrong results. For this reason the
optimization in Headless PerOpteryx is running sequential, nevertheless the benefit of
concurrency can be high enough to further pursue this idea. There might the possibility
in the future to include a version of PerOpteryx with working parallel execution into
Headless PerOpteryx.

From the view of the SQuAT approach concurrency can also be interesting. Bots with
different configurations or even bots in general could be executed concurrent. The
current implementation of PerOpteryx does not support this idea. Many changes or even
a reimplementation might be necessary to allow this, but it could be considered, if the
performance of the SQuAT approach needs to be increased.

Starting Population Heuristics

Starting population heuristics could be another way to further improve the speed of
Headless PerOpteryx. PerOpteryx itself already supports a starting population heuristic,
but this option has to be activated and configured correctly for the headless version and
the Performance Bot. It is currently not completely sure, if this method would lead to
faster termination in general.

Additional case studies

The model in the case study of this thesis contains only few modules and does not
represent an industrial software system. At least one bigger and more realistic case study
would be useful to estimate the applicability of this approach for industrial software
systems. This case study could also be designed for the evaluation of the SQuAT approach.
Such a case study would be helpful, nevertheless it requires a lot of work to model these
systems and it is difficult to find existing models.

72

PerOpteryx alternatives

PerOpteryx is a state-of-the-art tool for software architecture optimization and it fulfills
many requirements for the use in the SQuAT Performance Bot. However, it is not the only
available tool for the domain of performance. While for the start of SQuAT project one
bot might be enough, other tools could be considered in the future, e.g., Performance
Booster [Xu12] or SASSY [MCD08].

Traceability of changes

The collaboration with modifiability experts in the SQuAT project showed, that the do-
mains of modifiability and performance are very different. The domain of performance is
much more complex, due to many degrees of freedom. Thus methods like evolutionary
algorithms in PerOpteryx are commonly used to search for optimal architecture candi-
dates. For the SQuAT approach it would be beneficial to have only a few changes to get
an architecture candidate and to know which tactics were applied to reach it. This is
currently not the case for Headless PerOpteryx, therefore a more primitive optimization
could be more suitable for the SQuAT approach. At least the traceability of applied
changes should be improved.

More quality attributes

Performance is not the only quality attribute PerOpteryx is able to optimize, it also
supports reliability and cost. In addition, more quality attributes could be part of
PerOpteryx in the future. The current implementation of Headless PerOpteryx could be
extended to support additional quality attributes. Thus, a SQuAT Reliability Bot or a
SQuAT Cost Bot could be developed based on the SQuAT Performance Bot more easily.
The SQuAT approach could then be evaluated for more than two quality attributes.

More analysis methods

In PerOpteryx no other solvers are integrated for performance. However, there are
more solvers integrated in Palladio, e.g., LINE [PC13]. To integrate them could be
possible and worth the additional efforts, if they support more PCM features than the
LQN solver. PerOpteryx’s also contains simulation-based approaches, e.g. SimuCom.
These approaches could also be integrated into Headless PerOpteryx. Additional analysis
methods could increase the chance of the Performance Bot to analyze an architecture

73

5. Conclusion

successfully. It would also be possible to combine the results to achieve a higher
prediction accuracy or to support more configurations for the Performance Bot.

More performance tactics

Five performance tactics are available for PerOpteryx, which mainly influence the
allocation of components, the CPU speed and resource capacities. Compared to the
number of degrees of freedoms supported by PerOpteryx and PCM, the number of
available tactics is rather small. Koziolek [KKR11] described more performance tactics,
e.g., Caching or Remote Data Exchange Streamlining, but they were not implemented in
PerOpteryx. Some of the mentioned tactics could maybe be implemented in headless
PerOpteryx and increase the number of available tactics.

74

Appendix A

Evaluation Result Tables

75

A. Evaluation Result Tables

PerOpteryx PerOpteryx
Performance Bot Palladio Palladio

Opt. Analysis LQN Solver LQN Solver
Workflow An. Job Full Full Workflow An. Job

1.354 s 1.217 s 2.711 s 1.489 s 0.526 s 0.307 s
1.613 s 1.396 s 2.727 s 1.509 s 0.489 s 0.318 s
1.362 s 1.149 s 2.800 s 1.522 s 0.368 s 0.235 s
1.463 s 1.239 s 2.763 s 1.499 s 0.435 s 0.289 s
1.327 s 1.126 s 2.798 s 1.532 s 0.423 s 0.288 s
1.320 s 1.130 s 2.823 s 1.487 s 0.397 s 0.246 s
1.359 s 1.159 s 2.755 s 1.464 s 0.361 s 0.230 s
1.451 s 1.253 s 2.787 s 1.526 s 0.366 s 0.231 s
1.476 s 1.259 s 2.705 s 1.499 s 0.379 s 0.239 s
1.345 s 1.150 s 2.789 s 1.476 s 0.391 s 0.238 s
1.289 s 1.078 s 2.756 s 1.465 s 0.418 s 0.281 s
1.474 s 1.284 s 2.850 s 1.542 s 0.409 s 0.275 s
1.276 s 1.084 s 2.753 s 1.641 s 0.398 s 0.265 s
1.256 s 1.076 s 2.736 s 1.424 s 0.391 s 0.260 s
1.237 s 1.044 s 2.710 s 1.577 s 0.360 s 0.235 s
1.222 s 1.039 s 2.873 s 1.536 s 0.396 s 0.268 s
1.286 s 1.112 s 2.739 s 1.550 s 0.390 s 0.237 s
1.212 s 1.028 s 2.787 s 1.590 s 0.358 s 0.231 s
1.287 s 1.100 s 2.792 s 1.633 s 0.360 s 0.233 s
1.305 s 1.102 s 2.674 s 1.626 s 0.369 s 0.240 s
1.264 s 1.081 s 2.706 s 1.568 s 0.375 s 0.251 s
1.346 s 1.158 s 2.771 s 1.571 s 0.379 s 0.235 s
1.235 s 1.040 s 2.799 s 1.651 s 0.377 s 0.248 s
1.259 s 1.063 s 2.683 s 1.538 s 0.378 s 0.244 s
1.228 s 1.050 s 2.743 s 1.555 s 0.393 s 0.261 s
1.301 s 1.097 s 2.742 s 1.591 s 0.355 s 0.234 s
1.253 s 1.042 s 2.720 s 1.596 s 0.368 s 0.239 s
1.294 s 1.110 s 2.704 s 1.419 s 0.372 s 0.251 s
1.297 s 1.118 s 2.757 s 1.449 s 0.391 s 0.249 s
1.272 s 1.097 s 2.670 s 1.424 s 0.386 s 0.258 s

Table A.1.: Results for the runtime for the different analysis methods (30 runs each).
For PerOpteryx and the Palladio LQN Solver, the results for the complete
workflow and the analysis job are presented.

76

n Response Time Runtime

1 16.5336 s 232.917 s
2 18.5251 s 230.178 s
3 15.8290 s 221.232 s
4 18.0969 s 228.851 s
5 14.9689 s 228.693 s
6 16.4110 s 231.001 s
7 19.0045 s 232.698 s
8 15.7143 s 235.999 s
9 22.5847 s 235.242 s
10 19.6294 s 243.900 s
11 19.8464 s 246.385 s
12 19.6850 s 249.824 s
13 21.1061 s 257.736 s
14 17.4137 s 216.388 s
15 17.8620 s 214.477 s
16 21.4094 s 209.420 s
17 18.9706 s 214.435 s
18 20.5929 s 210.779 s
19 16.8322 s 213.085 s
20 16.5432 s 216.580 s
21 17.0520 s 217.185 s
22 19.9450 s 220.967 s
23 17.4852 s 221.889 s
24 17.1681 s 226.587 s
25 18.0202 s 226.083 s
26 18.0211 s 232.651 s
27 14.1590 s 237.263 s
28 17.6449 s 239.945 s
29 19.1585 s 243.758 s
30 18.5172 s 246.491 s

Table A.2.: Results for the response times of the best found candidate by PerOpteryx
after 20 iterations with population size 200, and the runtime for this task.

77

A. Evaluation Result Tables

n Response Time Runtime

1 16.6014 s 228.803 s
2 19.6165 s 216.182 s
3 17.2471 s 220.795 s
4 18.0688 s 225.273 s
5 15.4973 s 238.476 s
6 15.5618 s 232.968 s
7 17.7113 s 224.267 s
8 15.4282 s 225.962 s
9 19.0787 s 220.174 s

10 17.5782 s 221.894 s
11 15.9157 s 231.214 s
12 19.5632 s 231.019 s
13 18.1974 s 222.714 s
14 17.0842 s 225.047 s
15 18.4866 s 220.891 s
16 14.8086 s 228.787 s
17 15.9860 s 240.815 s
18 20.4044 s 220.334 s
19 16.1757 s 215.294 s
20 19.2975 s 223.246 s
21 18.6299 s 227.829 s
22 14.7017 s 226.348 s
23 18.7401 s 224.073 s
24 15.3433 s 237.179 s
25 16.1427 s 229.880 s
26 17.9666 s 227.842 s
27 17.8426 s 233.208 s
28 17.0954 s 231.927 s
29 17.7661 s 223.781 s
30 18.4334 s 221.659 s

Table A.3.: Results for the response times of the best found candidate by Performance
Bot after 20 iterations with population size 200, and the runtime for this
task.

78

n PerOpteryx Performance Bot

1 1 1
1 1 9
2 7 5
3 2 2
4 8 11
5 4 4
6 2 6
7 1 6
8 10 2
9 5 13

10 1 1
11 1 10
12 1 13
13 7 10
14 2 4
15 2 4
16 4 14
17 13 4
18 3 1
19 1 6
20 1 1
21 5 10
22 4 3
23 1 5
24 2 2
25 2 7
26 2 5
27 14 16
28 6 5
29 8 2
30 1 1

Table A.4.: Last iterations in which a significantly improved candidate was found.

79

Appendix

Bibliography

[(OM] O. M. G. (OMG). UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE). URL: http://www.omg.org/spec/MARTE/
(cit. on p. 25).

[Aad] Architecture Analysis and Design Language (AADL). Vol. AS5506. 1. SAE
Standards, 2004 (cit. on p. 25).

[Ale+09] A. Aleti, S. Björnander, L. Grunske, I. Meedeniya. “ArcheOpterix: An
extendable tool for architecture optimization of AADL models.” In: Model-
Based Methodologies for Pervasive and Embedded Model-Based Methodologies
for Pervasive and Embedded Software (MOMPES) at ICSE’09: Proceedings of
the 31st International Conference on Software Engineering. 2009, pp. 61–71
(cit. on pp. 15, 29).

[Ale+13] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, I. Meedeniya. “Software
architecture optimization methods: A systematic literature review.” In:
IEEE Transactions on Software Engineering 39.5 (2013), pp. 658–683 (cit.
on pp. 22–25, 27–29, 41).

[App] AppDynamics. https://www.appdynamics.com. 2016 (cit. on p. 27).

[Bac+05] F. Bachmann, L. Bass, M. Klein, C. Shelton. “Designing software archi-
tectures to achieve quality attribute requirements.” In: IEE Proceedings-
Software. Vol. 152. 4. IET. 2005, pp. 153–165 (cit. on pp. 15, 29).

[BCK03] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice. 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003
(cit. on p. 22).

[BKR09] S. Becker, H. Koziolek, R. Reussner. “The Palladio component model for
model-driven performance prediction.” In: Journal of Systems and Software
82.1 (2009), pp. 3–22 (cit. on pp. 18, 25, 32–35).

81

http://www.omg.org/spec/MARTE/
https://www.appdynamics.com

Bibliography

[BR03] C. Blum, A. Roli. “Metaheuristics in combinatorial optimization: Overview
and conceptual comparison.” In: ACM Computing Surveys (CSUR) 35.3
(2003), pp. 268–308 (cit. on pp. 29, 30).

[Bru+15] A. Brunnert, A. van Hoorn, F. Willnecker, A. Danciu, W. Hasselbring,
C. Heger, N. Herbst, P. Jamshidi, R. Jung, J. von Kistowski, et al.
“Performance-oriented DevOps: A Research Agenda.” In: (2015) (cit. on
p. 27).

[CKK02] P. Clements, R. Kazman, M. Klein. Evaluating Software Architectures: Meth-
ods and Case Studies. SEI series in software engineering. Addison-Wesley,
2002 (cit. on pp. 17, 26).

[CLV06] C. A. C. Coello, G. B. Lamont, D. A. V. Veldhuizen. Evolutionary Algorithms
for Solving Multi-Objective Problems (Genetic and Evolutionary Computa-
tion). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006 (cit. on
p. 30).

[Deb+02] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. “A fast and elitist multiob-
jective genetic algorithm: NSGA-II.” In: IEEE Transactions on Evolutionary
Computation 6.2 (2002), pp. 182–197 (cit. on pp. 30, 36).

[DG+12] T. De Gooijer, A. Jansen, H. Koziolek, A. Koziolek. “An industrial case
study of performance and cost design space exploration.” In: Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering
(ICPE 2012). ACM. 2012, pp. 205–216 (cit. on pp. 29, 36).

[Dyn] Dynatrace. http://www.dynatrace.com. 2016 (cit. on p. 27).

[Ecl] Eclipse IDE. https://eclipse.org. 2016 (cit. on p. 34).

[Erl00] L. Erlikh. “Leveraging legacy system dollars for e-business.” In: IT profes-
sional 2.3 (2000), pp. 17–23 (cit. on p. 13).

[Exa] Palladio Examples - SDQ-Wiki. URL: https://sdqweb.ipd.kit.edu/wiki/
Palladio_Examples (cit. on p. 54).

[Far06] D. Farber. “Google’s Marissa Mayer: speed wins.” In: ZDNet Between the
Lines (2006) (cit. on p. 13).

[FH83] R Fjeldstad, W Hamlen. “Application program maintenance-report to to
our respondents.” In: Tutorial on Software Maintenance (1983), pp. 13–27
(cit. on p. 13).

[Fra+09] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi. “Enhanced
modeling and solution of layered queueing networks.” In: IEEE Transactions
on Software Engineering 35.2 (2009), pp. 148–161 (cit. on pp. 25, 27, 35).

82

http://www.dynatrace.com
https://eclipse.org
https://sdqweb.ipd.kit.edu/wiki/Palladio_Examples
https://sdqweb.ipd.kit.edu/wiki/Palladio_Examples

Bibliography

[Gre87] J. J. Grefenstette. “Incorporating problem specific knowledge into genetic
algorithms.” In: Genetic algorithms and simulated annealing 4 (1987),
pp. 42–60 (cit. on p. 31).

[Jai90] R. Jain. The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. John Wiley &
Sons, 1990 (cit. on p. 23).

[Kel16] F. Keller. Introducing Performance Awareness in an Integrated Specification
Environment. Master’s thesis, University of Stuttgart. 2016 (cit. on p. 35).

[KKR11] A. Koziolek, H. Koziolek, R. Reussner. “Peropteryx: automated application
of tactics in multi-objective software architecture optimization.” In: Pro-
ceedings of the joint ACM SIGSOFT conference–QoSA and ACM SIGSOFT
symposium–ISARCS on Quality of software architectures–QoSA and archi-
tecting critical systems–ISARCS. ACM. 2011, pp. 33–42 (cit. on pp. 31,
74).

[Koz14] A. Koziolek. Automated improvement of software architecture models for
performance and other quality attributes. Vol. 7. KIT Scientific Publishing,
2014 (cit. on pp. 23, 28, 30, 31, 36).

[KR08] H. Koziolek, R. Reussner. “A model transformation from the Palladio Com-
ponent Model to Layered Queueing Networks.” In: Performance Evaluation:
Metrics, Models and Benchmarks. Springer, 2008, pp. 58–78 (cit. on pp. 25,
35).

[Li+09] J. Z. Li, J. Chinneck, M. Woodside, M. Litoiu. “Fast scalable optimization to
configure service systems having cost and quality of service constraints.”
In: Proceedings of the 6th international conference on Autonomic computing.
ACM. 2009, pp. 159–168 (cit. on pp. 15, 29).

[Luk+11] M. Lukasiewycz, M. Glaß, F. Reimann, J. Teich. “Opt4J: a modular frame-
work for meta-heuristic optimization.” In: Proceedings of the 13th annual
conference on Genetic and evolutionary computation. ACM. 2011, pp. 1723–
1730 (cit. on p. 37).

[Mar+10] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, R. Reussner. “A hy-
brid approach for multi-attribute qos optimisation in component based
software systems.” In: International Conference on the Quality of Software
Architectures. Springer. 2010, pp. 84–101 (cit. on p. 31).

[MCD08] D. A. Menascé, E. Casalicchio, V. Dubey. “A heuristic approach to optimal
service selection in service oriented architectures.” In: Proceedings of the
7th International Workshop on Software and Performance. ACM. 2008,
pp. 13–24 (cit. on pp. 15, 29, 73).

83

Bibliography

[MH11] P. Merkle, J. Henss. “EventSim–an event-driven Palladio software architec-
ture simulator.” In: Palladio Days (2011), pp. 15–22 (cit. on p. 27).

[MVM10] F. P. Miller, A. F. Vandome, J. McBrewster. Apache Maven. Alpha Press,
2010 (cit. on p. 71).

[Nor98] J. R. Norris. Markov chains. 2008. Cambridge University Press, 1998 (cit.
on p. 25).

[Pac+16] J. A. D. Pace, A. van Hoorn, S. Frank, A. Rago, S. Vidal. “Software Architec-
ture Optimization: Acting the Way Human Architects Do It.” In: Presented
at the Symposium on Software Performance, Kiel, 2016 (cit. on pp. 16,
40).

[Pal] Palladio Simulator Website. http://www.palladio-simulator.com. 2016
(cit. on p. 35).

[PC13] J. F. Pérez, G. Casale. “Assessing SLA Compliance from Palladio Compo-
nent Models.” In: 15th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC). 2013, pp. 409–416 (cit. on
p. 73).

[RJB04] J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modeling Language Refer-
ence Manual. Pearson Higher Education, 2004 (cit. on p. 25).

[SK10] T. Saxena, G. Karsai. “Towards a Generic Design Space Exploration Frame-
work.” In: 2010 10th IEEE International Conference on Computer and Infor-
mation Technology. 2010, pp. 1940–1947 (cit. on p. 15).

[SK16] M. Strittmatter, A. Kechaou. The Media Store 3 Case Study System. Tech.
rep. Karlsruhe Institute of Technology, Faculty of Informatics, 2016 (cit. on
p. 54).

[Sta84] T. A. Standish. “An essay on software reuse.” In: IEEE Transactions on
Software Engineering 5 (1984), pp. 494–497 (cit. on p. 13).

[VHWH12] A. Van Hoorn, J. Waller, W. Hasselbring. “Kieker: A framework for ap-
plication performance monitoring and dynamic software analysis.” In:
Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE 2012). ACM. 2012, pp. 247–248 (cit. on p. 27).

[Whe] D. A. Wheeler. More than a gigabuck: Estimating GNU/Linux’s size. Version
1.07, June 30, 2001 (updated July 29, 2002). URL: http://www.dwheeler.
com/sloc/redhat71-v1/redhat71sloc.html (cit. on p. 14).

[WK16] F. Willnecker, H. Krcmar. “Optimization of Deployment Topologies for Dis-
tributed Enterprise Applications.” In: Proceedings of the 12th International
ACM Sigsoft Conference on the Quality of Software Architectures (QoSA
2016). Apr. 2016 (cit. on p. 27).

84

http://www.palladio-simulator.com
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html

[Xu12] J. Xu. “Rule-based automatic software performance diagnosis and improve-
ment.” In: Performance Evaluation 69.11 (2012), pp. 525–550 (cit. on
pp. 14, 29, 73).

[YC88] S. S. Yau, P.-S. Chang. “A metric of modifiability for software maintenance.”
In: Proceedings of the Conference on Software Maintenance, 1988. IEEE.
1988, pp. 374–381 (cit. on p. 23).

[ZW03] T. Zheng, M. Woodside. “Heuristic optimization of scheduling and alloca-
tion for distributed systems with soft deadlines.” In: Computer Performance
Evaluation. Modelling Techniques and Tools. Springer, 2003, pp. 169–181
(cit. on p. 15).

All links were last followed on November 11, 2016.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Limitations of Existing Works
	1.3 SQuAT Approach
	1.4 Goals
	1.5 Thesis Structure

	2 Foundations
	2.1 Quality Attributes
	2.2 Quality Metrics
	2.3 Degrees of Freedom
	2.4 Models
	2.5 Scenarios
	2.6 Architecture Evaluation
	2.7 Optimization Process
	2.8 Multi-Criteria Optimization
	2.9 Optimization Strategies
	2.10 Evolutionary Algorithms
	2.11 Optimization Goal
	2.12 Palladio Component Model
	2.13 Palladio-Bench
	2.14 PerOpteryx

	3 Performance Bot
	3.1 Interface
	3.2 Assumptions and Requirements
	3.3 Implementation: Search for Alternatives
	3.4 Implementation: Analyze

	4 Evaluation
	4.1 Example Systems
	4.2 Experimental Setup
	4.3 Experimental Results
	4.4 Result Interpretation

	5 Conclusion
	A Evaluation Result Tables
	Bibliography

