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Abstract

Nowadays performance is very important in the software business. For example, if the
search of an online shopping website takes too long, the customers won’t buy and the
web site loses money. For measuring and optimizing performance, there are various
solutions available. In this thesis, the focus is set on so-called profilers, more precisely
on profiler data from YourKit, which is one of the leading tools in this segment. Profilers
are used in development and can monitor all runtime data during the execution of
a program. It measures for example the response time and saves the exact CPU and
memory usage at any given time.

The main aspect of this thesis is to analyze and detect different performance anti-
patterns in the profiler’s data export. Anti-patterns are the opposite of programming
patterns, which are capturing expert knowledge of ”best practices“ in software design.
Anti-patterns, on the other hand, document common mistakes made during software
development. The goal is to automatically detect performance anti-patterns in the
profiler data and show what the problem is and where it occurs. Therefore, this research
is conducted with a company operating in the open-source domain. Together with them,
we made a case study about the manual detection of anti-patterns in profiler data from
load tests. This data is used in order to develop analysis strategies for the detection of
anti-patterns with the help of a program called PADprof, which is also been developed
in this thesis.

The results show that most of the selected performance anti-patterns can be automatically
detected in the available data. Nevertheless, more tests need to be conducted in order
to evaluate if the anti-patterns can be detected in different data from other systems.
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Kurzfassung

Performance ist heutzutage ein sehr wichtiges Thema bei der der Softwareentwicklung.
Niemand kauft etwas in einem Onlineshop ein, wenn das Suchen eines Artikels mehrere
Sekunden benötigt. Deswegen wird bei der Entwicklung immer mehr auf diesen Aspekt
geachtet. Um die Performance sicherzustellen, gibt es viele Wege. In dieser Arbeit
liegt der Fokus auf dem Instrumentieren des Systems mit einem so genannten „Pro-
filer“, in unserem Fall YourKit — einen der führenden in diesem Segment. Profiler
werden während der Entwicklung eingesetzt und loggen performancerelevante Daten,
wie zum Beispiel Antwortzeit und Prozessor-/Speicheraustung im Zusammenhang mit
der Programmausführung mit. So ist es möglich, detaillierte Informationen über alle
Performance-Aspekte zu erlangen. Mit Hilfe dieser Daten kann die Geschwindigkeit des
Systems nach und nach verbessert werden. Jedoch geschieht das Analysieren dieser
Profilerdaten noch vollkommen händisch und ist deswegen ziemlich aufwändig.

In dieser Arbeit soll dieser Prozess automatisiert werden. Dabei liegt der Fokus auf
dem Erkennen und Analysieren von sogenannten „Performance-Anti-Patterns“ aus den
Profiler-Daten. Anti-patterns sind das Gegenteil von Programmier-Patterns, welche gute
Wege Software zu entwickeln darstellen. Anti-Patterns dagegen beschreiben häufig
gemachte Fehler während der Softwareentwicklung.

Das Ziel dieser Arbeit ist es, Performance-Anti-Patterns automatisch in Profiler-Daten
zu erkennen und darzulegen wo und was das Problem ist. Dafür werden Profiler-
Daten aus einer Fallstudie einer im Open-Source-Bereich arbeitenden Firma analysiert.
Mit Hilfe der Daten, wird außerdem in dieser Arbeit ein Programm namens PADprof
entwickelt, welches die Daten aus YourKit analysisert, um die Performance-Anti-Patterns
zu erkennen. Die Ergebnisse der Arbeit zeigen, dass die meisten der untersuchten
Performance-Anti-Patterns automtatisch in den uns vorliegenden Daten erkannt werden
können. Trotzdem müssen noch mehr Tests durchgeführt werden, um sicherzustellen,
dass dies auch auch mit Daten aus anderen Systemen funktioniert.
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Chapter 1

Introduction

This thesis presents an approach for automatic detection of anti-patterns from profiler
data.

The intention of this chapter is to explain why such an approach is required. To do
this, the chapter starts with a short motivation in Section 1.1. Afterwards the goals
of this research are presented in Section 1.2. The developed approach is explained in
Section 1.3. Lastly the structure of this document is outlined in Section 1.4.

1.1. Motivation

Nowadays, it is natural that every company monitors its software to check whether the
performance is good and if everything runs as expected. But what happens when a
problem occurs, like the response time of a website is higher than usual?

Today, this can be seen in peaks of a graph in a monitoring software, like an Application
Performance Monitoring tool [HHOM17]. After a company noticed that something
is wrong with their system, the developers need to find the problem. This is usually
very difficult and can only be achieved with the help of software tools. Aside from
the Application Performance Monitoring tools, there are also so-called profilers which
instrument the execution of an application by recording performance data like CPU-
utilization, memory usage, response times or a call tree of methods from the application.
Normally these tools are used in combination with load tests.

With the help of the data from a profiler, software architects can look for the problem.
Today, this is done mainly manually by having a look at a big chunk of gathered data in
the profiler which can cost a lot of time. In order to speed up and simplify this process,
this research presents an approach of automatically detecting Software Performance
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1. Introduction

Anti-Patterns (SPAs) in profiler data. An anti-pattern describes a poor recurrent approach
to design problems which may have a negative impact on particular software quality
attributes like the performance [Wer13]. For SPAs, there are also common solution
strategies documented, which can help the developer fix the specific problem.

With the help of such a tool, the software architect would be relieved, because the
problem is found automatically. This is particularly good, because in general a developer
team consists of just one architect and many developers. Also, the automatic analysis
is much faster than the process of doing it manually. In order to develop such an
analysis tool, we work together with an innovative company operating in the open-
source ecosystem domain. Together with them we did a case study about SPAs in profiler
data and providing data and results of the tests from the case study.

1.2. Goals

The goal of this thesis is to develop an approach for automatic detection of SPA, which
should then, in the end, lead into a software that can read the different profiler data files
and later, after some analyzing, shall output which methods can cause a performance
problem and what SPA is occurring there.

In order to develop a software that can automatically detect SPAs, the following sub
goals need to be fulfilled:

Evaluation of YourKit: The contributing company in this thesis is using the profiler
YourKit for their analysis. Therefore, it is important to research what data YourKit
[profiler16] can provide. How and in which formats it can be exported is also important.
For the future it is also important to know which anti-patterns can be detected and which
cannot, because there can be either not enough or not the proper data for detecting the
anti-pattern. After that, it is a logical step to analyze the different data formats to know
how to implement an importer for those later on.

Evaluation of the case study: The second goal is to evaluate the case study from
the company to get insights which anti-patterns were investigated and how they were
detected manually.

Anti-pattern research: Another goal is to research which SPAs exist and if they can be
detected with the available data. Also, there is the possibility that different analysis
processes are needed for detecting them. Certain ones could need more than just one
measurement file for the detection, because they need historical data.

Developing concepts for detecting anti-patterns: The next goal is to develop a way
of how the specific anti-patterns can be detected with the available data. For that it is
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1.3. Overview of the Approach

necessary to think of boundaries which need to be exceeded in order to assign the data
to a specific anti-pattern.

Implementation: The next goal is the implementation of the software, which needs
to read the exported files from YourKit and then check the boundaries made in the
previous goal in order to identify whether there is an SPA located. In the end of the
analysis process there should be an output with the problem method name and which
anti-patterns causes the performance decrease.

Evaluation of the implementation: After the implementation of the concepts, the
system needs to be tested with different kinds of data to evaluate the quality of the
detection. For this purpose, it is very helpful that we can access real data from a running
development. Also, we can run tests on the system to generate data we need to evaluate
the software properly.

1.3. Overview of the Approach

The base of this research is a case study which is presented in Section 3.2. In this study,
the company investigated profiler data in order to find performance problems. After one
problem was found, a Software Performance Anti-Pattern was assigned and the problem
was fixed. Afterwards, they searched for other performance flaws in the new iteration.
Overall, four iterations were made in order to improve the performance of the system.
From every iteration, the profiler data was saved for this research. The approach for the
automatic detection was to look at the given data with the help of the profiler YourKit
and understand how the software architect diagnosed the problem manually in the study.
This was the first step to elaborate how an automatic detection of anti-patterns with the
data recorded by the profiler could work. The detection has two stages: First, identify
that there is a problem present in the data (for example method times are higher than
usual), second assign a Software Performance Anti-Pattern to it.

To achieve this, our approach was to develop a software which can read the different
files that can be exported with YourKit (Section 3.3.2) and then analyze them. In order
to detect the SPAs, it was necessary to develop rules for each of the anti-patterns. For this
purpose, we worked together with a performance engineer from the company that made
the case study in order to get insights of the system and the data. Also, he supported us
with new data we needed to test our approach. Also, Mrs Trubiani helped us a lot by
examining the developed analysis methods and contributing her expertise to our ideas
of how to detect the different SPAs.

To control, if our detection works as we wanted, we compared the saved profiler data of
the different iterations from the case study to each other. Additionally, data that has no
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1. Introduction

problems or anti-patterns in it, called baseline data here, was used for the comparison.
With the help of this baseline data it was possible to compare the "anti-pattern infested“
data with normal “good” data. We noticed that comparing different snapshots to each
other, either with baseline data or just historical data is the only way to detect if there
is a performance problem, because just from one file it is not possible to say if some
behavior is abnormal. The reason is that it is not clear how the “normal” state of the
investigated system looks like.

Another approach was to compare data from different loads, but with the same software
version. This could be an analysis variation where no historical or baseline data would
be needed to detect a certain anti-pattern, because a comparison between the different
loads could be made. But for this approach, very limited data was available, wherefore
the focus was set on the comparison between data of different software revisions.

1.4. Document Organization

This thesis is structured as follows:

Chapter 2 – Foundations and State of the Art: In this chapter, all the investigated
Software Performance Anti-Patterns as well as the related work is presented.

Chapter 3 – Case Study and Research Design: Here, the case study on which this re-
search bases is explained. Furthermore, the profiler YourKit is presented with
details about the graphical user interface and the exportable data.

Chapter 4 – Automated Anti-Pattern Detection: This chapter is the main chapter, be-
cause most of the work is noted here. The analysis process of every anti-pattern is
explained as well as their limitations. Also, the developed tool of this research is
presented in this chapter.

Chapter 5 – Evaluation: In chapter 5 the evaluation of the developed approach is
conducted. Research questions are presented as well as the results and a discussion
of them.

Chapter 6 – Conclusion: In the last section, a summary of the complete thesis can be
found. Furthermore, possible future work is presented.

Appendix A – Example data: The appendix holds exported example data from YourKit.

Tool available at github [TBH+17].
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Chapter 2

Foundations and State of the Art

In this chapter, the Software Performance Anti-Patterns that are investigated in this
research are introduced in Section 2.1. Furthermore, the releated work is presented in
Section 2.2

2.1. Software Performance Anti-Patterns

An anti-pattern describes a poor recurrent approach to design problems which may
have a negative impact on particular software quality attributes [Wer13]. In terms
of performance anti-patterns, the affected quality attribute is the performance of the
software.

Circuitous Treasure Hunt (CTH)

This anti-pattern is originally focused on database statements, where data is retrieved
from a first table to get data from a second table, to then receive data from a third table
[SW00a]. This can be arbitrarily continued until the “ultimate results” are obtained,
which leads into long processing times to get the requested data. To solve this problem
the data organization needs to be refactored. In our case, the CTH is used for describing
a problem within the code itself. It is not related to database requests, but for calling
other methods. This means that the Circuitous Treasure Hunt exists when a method
calls too many other methods before it is completely executed.

5



2. Foundations and State of the Art

Extensive Processing (EP)

In this anti-pattern, one processor or thread is blocked because of a long running
process which monopolizes it [SW03b]. The processor is removed from the pool, this
is particularly problematic if the extensive processing is on the processing path that
is executed for the most frequent workload. For solving this problem, identifying the
processing steps that may cause the slow downs is required. Then these steps can be
delegated to processes, that do not restrain the fast path.

Wrong Cache Strategy (WCS)

Using cache is not always beneficial in terms of performance [Wer13]. If a cache is used
in inappropriate situations, it may lead to an increased pollution of the memory and,
thus, may result in hiccups which are caused by garbage collections. The WCS can be
found in any abstraction layer (architecture, design and implementation). To solve this
problem, the caching strategy needs to be rethinked.

Unnecessary Processing (UP)

Unnecessary processing is processing that is executed, but is either not needed, or not
needed at that time [SW03b]. This is particularly problematic if this is done on the
processing path that is executed most of the times. There are several solutions to this
anti-pattern. If the processing is completely nonsensical, it can be deleted. Otherwise
a rearrangement of the processing steps or a restructuring of the processes, where for
example a background task can do the unnecessary processing, could help.

2.2. Related Work

Software Performance Anti-Patterns as well as strategies to avoid or temper performance
problems were firstly described by Smith and Williams in [SW00b] and were later refined
in [SW02; SW03a]. There are also some anti-patterns that are directly related to Java
which is the development platform of our case study. Additionally, some anti-patterns
are related to specific Java technologies, such as Enterprise Java Beans [TCL03], Java
EE [TCL03], and Java multithreading [HAT+04].

There are different ways of detecting performance problems in a system. Very popular
are static analysis tools like PMD [RAF04] or FindBugs [APM+07; HP07]. They can find
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potential root causes for performance anti-patterns like resource leak which can be the
cause for the “Ramp”. However, just a few of the found issues really caused a serious
problem [AP10]. The problems are often found during tests in the development process.
Also, these tools have a high number of false positive rate. Therefore the developers do
not trust those tools anymore. Additionally, the real problems can get lost in the noise
[BBC+10].

However, most of the performance issues cannot be detected statically, because they can
be only observed at runtime. There is an automatic anti-pattern detection bachelor thesis
from Hidiroglu [HG16] for Application Performance Management (APM) traces. With
the same data Heger et al. [HHO+16] are discovering recurring performance issues with
diagnoseIT. APM tools are used during production and are not designed for load testing
or profiling. Also, there are other papers that tackle this problem in different ways. Like
Wert et al.’s [WOHF14] elaboration of automatically detecting so-called “communication
performance anti-pattern” such as “Empty Semi-Trucks”. They also provide heuristics
for the Circuitous Treasure Hunt anti-pattern. Furthermore, there is a framework for
detecting design and deployment anti-patterns [Par05]. The performance anti-patterns
are detected there from summarized data, using a rule-engine approach. There is also
an approach of modeling and detecting performance anti-patterns has been done in the
past [Tru11] [CDT14]. We are in touch with Ms Trubiani and we moreover flew to Italy
to work together for this research. At the time this paper was written, nobody has done
automatic detection of anti-patterns in profiler data yet.
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Chapter 3

Case Study and Research Design

In this chapter the fundament of this research is presented. Furthermore, an overview of
the available data and the profiler YourKit is given. Lastly the current method of finding
performance problems is presented. Section 3.1 explains how the research was driven.
In Section 3.2 the case study from where this research started is presented. YourKit is
described in Section 3.3, where the profilers’ interface is shown with screenshots and
the different data sets are investigated. Last but not least, the current analysis process is
explained in Section 3.4.

3.1. Methodology

The base of this research is the case study which was conducted together with a company.
For every profiled load test experiment (see the next section for more information), we
had access to the recorded profiler data. The first step was then to reproduce which
values the software architect investigated in order to assign the specific anti-patterns
manually. This was done by looking at every available value in the profiler YourKit
which is presented in Section 3.3. Because in every experiment, a certain anti-pattern
was fixed, we also compared the different snapshots to each other in order to identify
deviations in the data. A snapshot is the data format from YourKit where all the recorded
data is saved. After some time, we also had access to “baseline data”, which represents
the profiled system without any problems, respectively without anti-patterns inside. We
were able to compare every “problem data” to it in order to detect differences. With this
insights, we searched closer for deviations that can be detected automatically. After that
we developed rules for detecting the anti-pattern for which we used different values
from the data of YourKit. In order to test the detection, many tests were conducted. The
tests, thoughts, and data sets that are used for the analysis of the three anti-patterns can
be found in Section 4.3.

9



3. Case Study and Research Design

3.2. Case Study
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Figure 3.1.: Bar chart with the normalized performance for Http Gets and Puts

Figure 3.1 shows the results of the case study from a software component repository
system provided by contributing company. The system provides services to upload and
download software artifacts via an HTTP-based API. In the study, we distinguish only
between GET and PUT operations. The performance requirement to be analyzed during
the load tests is that requests must not exceed a response time of 100 milliseconds on
average. The system is deployed to an environment for executing performance tests, in
this case to Amazon Web Services. Apache JMeter is used as the load testing tool, and
YourKit is used as the profiler tool.

• Experiment 1: The first experiment consisted of running a baseline system. In the
bar chart in Figure 3.1 the normalized performance was rated to 100 for the two
analyzed operations. The delay in this test of the GETs and PUTs was significantly
larger than the allowed average of 100 ms. The output of this experiment was a
YourKit snapshot that was manually analyzed in order to assign an anti-pattern
to it. This manual analysis process is described in Section 3.4. The refactoring
that was done in order to improve the performance of this experiment consisted of
inverting the order of parsing expressions and checking for permission per user.
This problem was mapped to the Circuitous Treasure Hunt (CTH) anti-pattern.

• Experiment 2: After the first refactoring, the load test execution produced an
average normalized performance that was rated as 60.60 for GETs and 104.93
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3.3. YourKit

for PUTs. To boost performance, the refactoring here was done by correcting the
permission resolver cache method. The manual investigation of the profiler data
from this snapshot mapped the Extensive Processing (EP) anti-pattern.

• Experiment 3: The fixed software version of Experiment 2 produced an average
normalized performance of 12.70 for GETs and 12.63 for PUTs. The PUT delay
decreased in comparison to the previous experiment by 92.3 %, respectively
47.90 % for the GETs. The action implemented for refactoring was a change in a
method specification from pass by value to pass by reference, which prevented the
repeated execution of serialization and de-serialization. The experimental data
was manually mapped to the Wrong Cache (WCS) anti-pattern.

• Experiment 4: Here, the normalized performance for GETs is 7.28 and for PUTs
9.72. In this Experiment, the Unnecessary Processing (UP) anti-pattern was
mapped. The solution to this performance problem was to remove a method that
was marked as unnecessary.

• Experiment 5: In the last experiment the normalized performance was rated as
1.96 for GETs and 1.89 for PUTs. Throughout the experiments the normalized re-
sponse time was 50 times faster. The performance of experiment 5 was significantly
better than the objective performance requirements.

The analysis of the different anti-patterns data can be found in Section 4.3. Except for
the UP SPA, because it requires that the analysis tool has knowledge about the system
in order to distinguish between necessary and unnecessary processing/methods. This
is because of the definition of the anti-pattern itself which was declared in Section 2.1.
This knowledge could not be provided with our approach of the automatic detection.
For this purpose, an artificial intelligence or something similar would be necessary.

3.3. YourKit

This chapter is about the profiler YourKit. Here it is described what profiling is and why
YourKit is used exclusively in this research. Afterwards it is explained which data can
be used for the automatic anti-pattern detection and how it should be exported. Lastly,
some analysis is presented which can be made inside the profiler itself.

In Section 3.3.1, a short overview is given about what a profiler is and why YourKit is
used in this research. Also in this part, it is explained how the analysis data is gathered.
In Section 3.3.2 a summary of the available data is given, which is then described with
the help of multiple screenshots from Section 3.3.3 to Section 3.3.7. These chapters
present what YourKit can do and what data it provides. Additionally, it is explained which
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3. Case Study and Research Design

data could be useful for the analysis. In Section 3.3.9, the export process of the different
data sets is explained in order to use the automatic detection. There an automatic, as
well as a manual way, of doing the export process is presented. Section 3.3.10 deals
with the question which kind of analysis is already built into YourKit and where the
limitations from it are in comparison to the automatic anti-pattern detection.

3.3.1. General information

YourKit is a so-called “profiler” which is available for Java and .NET [profiler16]. Profilers
are used for dynamic program analysis by measuring, for example, the space or the time
complexity of a program. YourKit supports a variety of monitoring options, like memory,
CPU and database monitoring. In this thesis, YourKit is the only profiler which will be
investigated, because this it is used in the case study by the company. All the profiler
data that will be used for this research is thankfully provided by this company. So there
is no need to investigate other profilers, because the available data is limited to YourKit
only. Gathering data is achieved by profiling the application. There are different types of
profiling:

• So-called telemetry data like CPU usage or memory consumption is available as
soon as the profiler is connected to the application. The standard buffer for this
kind of data is one hour, but can be customized by changing the startup option
[YourKit Documentation, Section 5.1]. This data gives an overview of for example
CPU and memory utilization.

• The next type is CPU profiling, with which most of the data we use is collected.
There are several settings for this recording type [YourKit Documentation, Sec-
tion 5.2]. All of our data is recorded with the “sampling” option. Here, the profiler
periodically queries stacks of running threads in order to estimate the slowest part
of the code. Therefore it measures the CPU time spent with the different methods.
This is also the best option in order to discover performance bottlenecks, because
it adds virtually no overhead to the profiled application. There is also “Tracing”
which gathers more data like the method invocation count. But, also noticeably
slows down the profiled application, because YourKit needs to execute special
code on each enter to and exit from the methods. Additionally, the CPU times are
affected too because of this circumstance. “Call counting” is the opposite of that,
because it has almost zero overhead. But it just provides a plain method list with
method invocation counts. All the profiling options, including CPU profiling, need
to be manually activated by the user. We cannot communicate the exact settings of
the CPU sampling due to confidential reasons
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• The last profiling method that is used in this research, is the “Monitor profiling”
in which the blocked and waiting threads are recorded [YourKit Documentation,
Section 11]. This profiling needs to be started manually, too.

• Additionally, there is the possibility to record so called “Memory snapshots” by
doing “Memory profiling” [YourKit Documentation, Section 8]. This kind of
snapshot includes more memory-related data such as loaded classes, existing
objects and references between objects.

3.3.2. Available data

Data can be exported from YourKit in XML, CSV, HTML, plain text, and zip formats.
In this research, the focus is set on the XML and CSV data outputs, because these are
the easiest to read automatically. Also, YourKit saves its data in so-called “snapshots”
which we are using to look at the data, measured at the collaboration company, with
YourKit directly. This file format is proprietary to YourKit and gives, by reading it, access
to all data. For future processing, the snapshot is loaded into YourKit and then XML or
CSV data is exported. In this research we only use “Performance Snapshots”, but there
are also "Memory Snapshots“ as described above. Also, there are multiple options to
customize the snapshot within the profiler.

Using this profiler, not everything is exported at once in a big XML file. YourKit has
at least one separate export file for all of their views within the profiler (overall 10
views). Here the most important exportable data of the different views is summarized.
Important to note is, that the exported data looks exactly like the view in the graphical
user interface. For example: If the call tree is not fully extended, then also the hidden
methods are not included in the XML file. This is particularly problematic if the “Call
tree - By thread” view shall be exported. To get all the data, it is necessary to do a right
click on every displayed thread and select “Expand Node Fully”, which can be exhausting
when many threads are measured. But there are ways around this problem, which we
will present in Section 3.3.9. In the next sections, all the views of YourKit from which
we use the data are presented.

3.3.3. CPU View

This CPU view is divided in four subviews, marked with the number 1 to 4 in Figure 3.2,
from which data can be exported:
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Figure 3.2.: Screenshot of the “Call tree - All threads together”

1. First of all the “Call tree – All threads together” section which is shown in Fig-
ure 3.2. Here, all the different methods that are called during the CPU tracing are
summarized in a call tree. As the name says, there is no categorization between
different threads. Everything is packed together and also the method times are
added from all threads if a method is called in multiple threads of the system. In
the exported data the method name, the time each method took and the own time
(time spent in method excluding the subcalls) are included.

2. The “Call tree – By thread” section is very similar to the first one, except that there
is a call tree for every single thread of the system. This view is good if an analysis
or comparison should be made of different threads. The structure of the XML file is
exactly the same as the one from the first section. For this reason, also the included
data is similar.
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Figure 3.3.: Screenshot of the hotspot section of YourKit

3. The next very important section is called “Hot spots” which is shown in Figure 3.3.
YourKit lists all the methods that are suspicious because they have a high method
time in comparison to the other methods of the system. This is also the main data
for the detection, because from here we extract the methods names which we want
to investigate further by analyzing, if the method time is really abnormal and, if it
is so which anti-pattern can be assigned to it. The list of hotspot methods includes
only the method time in milliseconds.

4. The last section is called “Method list”. We never use it, because the methods are
also notated in the first two sections with better representation of the system and
not just listed one after another.
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For each of the subsections there is a separate view under the main view which can also
be exported separately. Namely, there is the “Callees list” (marked with B in Figure 3.2),
which is a list of all the methods invoked inside a selected subtree in the main view.
Secondly, there is the “Back Trace” (marked with B in Figure 3.3), which is the call tree
of a selected method in reverse. Lastly, there is the “Merged Callees”. This view shows
merged callees for a particular method, i.e. all call traces started from this method. This
gives a summary of method execution and its “overall” behavior. We never use data from
any of these three views. Examples of the two call trees can be found in Appendix A.1
and Appendix A.2, an example of a hotspot file can be found in Appendix A.3.

3.3.4. Threads View

Figure 3.4.: Screenshot of the Threads View

The threads view is shown in Figure 3.4. It is separated horizontally in three parts
marked with A, B and C in the screenshot. On the top there is a timeline, where all
threads are displayed as a long beam. Different colors are showing the state in which
the process is. The state can be runnable, blocked sleeping, or waiting. Beneath this bar
chart in section B, there is a graph which is showing the CPU usage from the kernel and
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the user aggregated as well as just the usage from the kernel. Additionally, there is also
a graph for the time that is spent in the garbage collection. The bottom part of this view
can display the CPU Usage Estimation if a time range is selected by marking an area
with the mouse in the bar chart/graph as it is done in D of the Figure 3.4. Furthermore,
stack traces can be displayed in the same area if a time is selected by clicking in the
chart/graph as shown in Figure 3.5. It is possible to export a call tree by selecting a time
range in the graph of the different threads. It is also possible to just get the call tree from
a selected thread. The call tree includes CPU time in milliseconds (see Section 3.3.8 for
explanation) and samples. This is the number of time points in which a corresponding
stack trace has been registered. The charts can be exported as CSV files, whereas the
stack traces can only be copied to the clipboard.

Figure 3.5.: Screenshot of the Stack Trace compartment in YourKit

3.3.5. Memory View

In the memory view, which is shown in Figure 3.6, there are six different graphs that show
Heap Memory (A), Non-Heap-Memory (B), Garbage Collections (C), Object Allocation
Recording (D), Classes (E) and Garbage Collection Pauses (F). The two memory graphs
hold data for the different memory states of Java which is visualized by different colors.
In the Heap Memory chart (A) are graphs for the “PS Old Gen”, “PS Survivor Space”, “PS
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Figure 3.6.: Screenshot of the Memory section of YourKit

Eden Space” and the complete allocated memory usage from all pools. In the Non-Heap
Memory chart (B) are graphs for “Code Cache”, “Metaspace”, “Compressed Class Space”
and the memory allocated from all pools can be found. More information about the
different memory types can be found in [YourKit Documentation, Section 5.12]. The
graph marked with C shows the number of garbage collections per second over the
complete time. All the graphs can be only exported in the CSV format. Also, in all graphs
it is marked with a vertical red line, when the “Monitor Profiling” and “CPU Sampling” is
started and finished. In a separate view, it is possible to get information about the classes
that are loaded in form of the name, the object count, and the shallow size (marked
with G in Figure 3.6). Additionally, it is possible to click in one of the graphs and get the
stack traces as well as marking a time range in one graph and getting the CPU Usage
Estimation which should be the same as in the Threads view. Furthermore, it is also
possible to get more information about the objects and when they are allocated in a
memory snapshot, to which we did not have access. An example of the output CSV file
can be found in Appendix A.6.

3.3.6. Monitor Usage View

In the Monitor Usage View, it is possible to inspect which threads are waiting or blocked
during the profiling. Additionally, it holds the wait-/block-time as well as the class name
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Figure 3.7.: Screenshot of the Monitor Usage section of YourKit

of the waiting class, respectively the thread(s) that are blocking another thread. With
this information it is possible to count how many threads are blocked and also of what
quantity of threads they are blocked. Furthermore, because there is information about
every blocked or waiting thread, it is possible to elaborate the maximum/average/mini-
mum amount of threads that block another thread. As shown in Figure 3.7 the blocked
threads are marked with a red, waiting ones with an orange and the threads that block

19



3. Case Study and Research Design

other ones are marked with a green color. An example of the output XML file can be
found in Appendix A.4.

3.3.7. Performance Charts

Figure 3.8.: Screenshot of the Performance Charts section of YourKit

In the view, that is shown in Figure 3.8, only diagrams of different metrics are displayed.
Every chart can be exported as a CSV file. It is not possible to select a custom time range.
Furthermore by default, every chart is limited to the last sixty minutes of the snapshot.
That means, if a snapshot is one hour and thirty minutes, only the time range from
minute thirty until the end of the snapshot is shown. This setting can be changed with
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a startup option [YourKit Documentation, Section 5.1]. Different charts like the CPU
usage or the memory usage can also be found in previous views. An export example of
the CPU usage can be found in Appendix A.5.

3.3.8. Problem with CPU Usage Estimation

The first way of getting information about the method times is to have a look at the
call tree data that is only recorded when “CPU sampling” is enabled. The second way
of getting method times is looking at the “CPU usage estimation” which is available
as long as “stack telemetry” is enabled [YourKit Documentation, Section 5.12]. In our
data, this is applicable and the data is gathered from the beginning throughout the
complete snapshot. But, as the name says, the estimation is not as accurate as the
sampling method. Especially, the measurement struggles when the method times are
very low, because the standard sampling rate is set to one sample per second which
can be changed if necessary. So, it is only good for measuring events or method calls
that take at least several seconds, which should not be a problem, because it is mainly
used to locate problematic code responsible for a CPU spike. For our purpose, there are
several problems in this kind of data. First of all, it is not very accurate and we want to
compare different results to each other, which leads to inaccurate comparison and their
results are then not very representative. Also, the export process to get the CPU usage
estimation data needs to be done completely manually by selecting a time range in the
telemetry graph and then hitting export. Plus, the user cannot really know which time
range he should pick. If the whole time range is selected, the spikes cannot be analyzed
because they almost disappear in the big data set. Also, the exportation of the complete
time range is very frustrating, because there is no way of selecting everything with one
click. There is also another big problem with this export method. We tested different
time ranges for the same method in different snapshots. Then we noted the percentage
the method took in relation to the whole execution time. We look at the percentages,
because we need to somehow look at the data in relation, because the time range length
differs from snapshot to snapshot, regardless of which of the two methods we use for
getting the data.

Example results for one specific method:

• Circuitous Treasure Hunt: 76% - 82%

• Extensive Processing: 69% - 81%

• Wrong cache Strategy: 71% - 76%

• Unnecessary Processing: 12% - 24%
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There is a significant difference between the percentages just because a different time
range is selected in the same data graph. Therefore, this data cannot be used for our
purpose because the comparison between it would be too inaccurate and random. So,
we cannot use this data, but in different chats we had with Mr. Avritzer, he said, that the
“CPU sampling” is just started if they see that there is a problem. He also said that they
ensure that the problem is included in the recorded data. Thus, we should not need
more data than the call tree is covering for our detection.

3.3.9. Export Process

As said before, there is not just one data file that YourKit exports. There are several
ones per view and not every export is feasible in every data format. The available
data formats in YourKit are XML, CSV, HTML, plain text, and zip. In this research, the
focus is set on the XML and CSV data outputs, because they are more suited for an
automatic analysis. It is possible to export some of the views automatically with the
help of a command line tool [YourKit Documentation, Section 21]. This is particularly
useful, because the export process of some views is fairly complicated as described in
Section 3.3.2 for the call trees. The main command for the export is:

java -jar <Profiler Installation Directory>/lib/yjp.jar -export <snapshot file> <target

directory>

With this command, every available view is being exported. However, because we do
not need every single view, we can add filters. We add one filter to just export XML files
and one to only export the call trees. The result would be:

java -Dexport.xml -Dexport.call.tree.cpu -jar <Profiler Installation

Directory>/lib/yjp.jar -export <snapshot file> <target directory>

It is also possible to export the needed CSV data by adding -Dexport.csv

-Dexport.charts to the command. But then, all the charts that are available (46 in total)
and additionally the call trees are again exported as CSV files. Our recommendation is
to only export the call trees automatically and the carts by hand, because their export
process is simple and therefore no unnecessary files are exported.

Both of the charts can be exported by right clicking in the correspondent chart and
selecting “Export to...”. The CPU chart can be found in the CPU, Threads, and Perfor-
mance Charts view. The heap memory usage graph can be exported the same way and
is located in the Memory view as well as in the Performance Charts view. Sadly, the
“Monitor-usage-statistic” XML file cannot be exported automatically. Thus, a manual
exportation is necessary. In order to get the data we need for the analysis, it is necessary

22



3.3. YourKit

to first tick the checkbox “Show block threads only” on the top of the view and then
click on “Export to...” in the File menu.

3.3.10. Available Analysis

Our goal is to automatically analyze the exported files from YourKit in order to detect
possible anti-patterns in the methods. But, there are also different kinds of analysis
methods already built in YourKit.
The first one, which we use as well, is the hotspot section. In this view (Figure 3.3),
YourKit already lists the methods that consumed the most time. For us, this is a good
indicator for a problem method. YourKit also provides a good documentation on how to
find different performance problems [YourKit Documentation, Section 4], like memory
leaks by using different capabilities of the profiler. But in all cases, the problem needs to
be found manually, the tool just helps by displaying useful data.

Figure 3.9.: Screenshot of the Inspections section of YourKit

There is also a view, called “Inspections” (Figure 3.9), where different analysis pro-
cesses can be run in order to identify various of problems, like not closed files, created
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threads that are not started or not closed socket connections [YourKit Documentation,
Section 14]. Last, but not least, there is also a way of comparing two snapshots to
each other in order to detect deviations [YourKit Documentation, Section 5.11]. But, as
before, no problem suggestions are delivered. Just the data is compared to each other
and the deviation is displayed. In general, it can be said that YourKit provides a lot of
different measurements, but we have not found a real automatic problem detection
which says where and what the problem is.

3.4. Current Analysis Process

This is the current process, from discovering a problem until finding a solution to it.

1. A performance decrease is noticed, for example the response times are higher than
usual.

2. Load tests are started and the system meanwhile is profiled with YourKit in the.

3. A software architect investigates the gathered profiler data in order to find what
the problem is and where it is located in the source code.

4. He contacts the responsible developer of the code who then thinks of a solution
for the problem.

5. After the problem is fixed, new load tests needs to be made in order to verify that
the performance is up to its paces.
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Chapter 4

Automated Anti-Pattern Detection

In this chapter, the different analysis processes for detecting the Software Performance
Anti-Patterns are presented. In order to detect a SPA, certain data is used which is also
introduced in this chapter. Lastly, the program is presented that was developed within
this thesis.

In Section 4.1, it is shown how our software integrates into the test process of the devel-
opment and some differences to the manual analysis process are noted. In Section 4.2,
all the used export data from YourKit is presented. It is also explained why exactly this
kind of data is used for the analysis. Finally, a summary of problems and limitations of
the chosen data is given. In Section 4.3, for every anti-pattern, our ideas, the analysis
process, the use of the data and the limitations of the analysis itself are explained. Also,
the problems and difficulties the detection had are exhibited. In Section 4.4 the software
that we have developed in this research is presented. Therefore, it is explained how
it works and how it should be used in order to perform the automatic detection by
yourself.

4.1. Analysis Process

Figure 4.1 shows the workflow with Performance Anti-pattern Detection from profiling
data (PADprof) which will be introduced in Section 4.4. At first, load tests are ran
periodically with the instrumentation of a profiler. After all data is gathered, the
automatic detection can start. As described in the next section, in order to use PADprof,
more than one snapshot is necessary, aside from the snapshot that should be investigated,
a minimum of one comparison snapshot is required. After the detection is finished,
PADprof outputs the name of problem methods where a performance anti-pattern is
detected. With this information, a developer can directly think of a solution and fix
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Figure 4.1.: Automatic detection of anti-patterns with PADprof

the problem, because he knows where the problem is located, why the slow down is
happening and what the standard solutions for this anti-pattern are. In comparison
to the manual detection described in Section 3.4, nobody needs to look at the profiler
data and the responsible developer can be found directly with the name of the method.
After a problem is fixed, it is possible to run a load test again in order to check if the
performance has increased. Apart from that, after a certain time, another test can be
run in order to identify new performance problems caused by anti-patterns.

4.1.1. General Analysis Explanations

There are two kinds of Software Performance Anti-Patterns: Single value ones that can
be detected by a single value of a performance metric like mean, maximum or minimum
value. But there are also SPAs that can only be detected with a trend of performance
indices. Therefore also historical data is required in order to detect the anti-pattern.
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These are called multiple-values performance anti-patterns [CDT14].
In our research, we noticed that these rules can not be applied, because in a system
we don’t know, it is not possible to say that a certain mean, max or min value is bad.
Hence, we need a comparison between multiple data points in order to distinguish
between good and bad values. This means that for every anti-pattern we analyze here,
it is necessary to have more than just one snapshot for detecting it. More of how the
comparison works is described in the sections below.

A SPA is always related to a method. Therefore, it is necessary to select methods
that can cause a problem and analyze them. For this purpose, YourKit already filters
methods with the highest execution time and aggregates them in the hotspot section
(see Section 3.3.10). These methods are very likely to have a performance problem,
because they have a very high execution time in the snapshot compared to the others.
So it is necessary to get those methods by reading the hotspot export. Afterwards, the
methods are checked if one of the supported anti-patterns causes the problem.

4.2. Used Data

As described in Section 3.3.2, there is a variety of data that can be exported from YourKit.
In this chapter, the differences between the data sets is discussed as well as the use of
them in the analysis.

Profiling Data

All the data, we are using for the detection is listed in Table 4.1. Call trees can be
exported in two ways: one is the “By thread” export, and the other is the “All threads
together” export (see Appendix A.1 and A.2 for examples). The difference between
those two is pretty simple. In the first data set, the method calls are separated for each
thread. Hence, it is possible to investigate every thread separately. For example, this
is good when the problem does not occur in any thread, but in certain ones. Also, as
we discovered, this data holds all the methods that are called, whereas the “All threads
together” data does not need to list every single method. In the export file, each method
is listed with the name including the source code line and Java class name, how long the
execution of the method took in milliseconds and the, so called, own time which is the
time that just the method itself took excluding all methods that are called from it. These
same values are also available in the “All threads together” data with the difference that
it is not possible to assign a method to a specific thread. Here, the data is aggregated
throughout every thread. Therefore all method times are summarized as well as the call
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Exported data CTH EP WCS

CPU-hot-spots method names method names method names
Call-tree All-Threads-together method time method time

Call-tree By-Thread method call count
Monitor usage-statistics blocked threads count

Chart-CPU-time avg CPU usage
Chart-Heap-Memory (avg memory usage)

Table 4.1.: Overview of the used data in the different detection strategies

tree itself. Both of these data sets are only recorded when “CPU profiling” is started,
which needs to be done manually.

Furthermore, there is the “Monitor Usage Statistics” data, from which it is possible to
determine how many threads are blocked, including the time how long they are blocked
and also the count of how often they are blocked. Additionally, there is the information
included which threads are the cause for a blocked thread. This means, we can extract
which threads are blocking a specific thread and also the reason why they are blocking
it. It is also possible to get information about the threads that are calling wait(), but
we are not interested in this data so we excluded it in the export file. More of how the
data is exported can be found in Section 3.3.9. This kind of data is only gathered when
“Monitor profiling” is enabled.

All data we presented until now is exportable as an XML file that we use. The following
two other data sets are only available as a CSV file. For our analysis, we also consider
values from two charts. The first one is the “CPU-time” chart which is exportable in
the CPU view, the memory view and in the performance charts view. It holds the CPU
usage over a maximum time of sixty minutes (can be changed [YourKit Documentation,
Section 5.1]). This data is available from the beginning where the profiler was connected
to the application. If the data set is longer than one hour, only the last sixty minutes are
shown by default, but can also be changed manually. The second chart data that we use
in form of a CSV file is the “Heap-Memory” usage. Like before, the data is only available
for a certain time range of the snapshot if nothing is customized. For our analysis, we
are only using the “PS Eden Space” data although there is more (see Section 3.3.2). It
shows the usage of the heap memory space in megabytes over time.

4.2.1. Data Limitations

Because the analysis is done with a comparison between different snapshots, each of the
data set needs to be comparable. As described in the section before, we need to rely on
the CPU profiling data which needs to be turned on manually. For that reason the CPU
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profiling record times are different in the snapshots (see Section 3.3.1 for explanation).
Here is a comparison between the snapshots we investigated:

• Circuitous Treasure Hunt: 53 000 ms

• Extensive Processing: 20 000 ms

• Wrong cache strategy: 100 000 ms

• Unnecessary Processing: 9 000 ms

• Baseline data: 3000, 4000 and 18 000 ms

Now for instance, the unnecessary processing anti-pattern file is not comparable with the
other ones, because certain methods are not executed yet and also the relation between
the different method times are not meaningful because of the short recording time. For
that reason also the “baseline files” are not really comparable, in 3000 ms not a whole
execution is covered and also methods that are executed in a short time are in this little
snapshots relatively higher in comparison to the others. Also in comparison, the wrong
cache strategy file has throughout the worst method times which can be explained by
the high recording time in comparison to the others, because in a short time it is less
probable for a method to take an abnormal period of time than when data is gathered
for a long time.
The conclusion of this analysis is that for a good detection of SPAs the CPU profiling
time should not be too low, and for a good comparison between different snapshots the
time should be similar. How long a recording needs to be made depends on the software
system that is being investigated.
Here, in our research, everything above 50 000 ms was reasonable. For a good compari-
son between the different snapshots, we instrumented the EP and the UP once again
with 140 000 ms.

Also we are limited due to the fact that we do not have access to so-called “memory
snapshots”. This snapshots can offer more data like recording of object allocations
and information about garbage objects. This could be relevant for anti-patterns like
“Excessive Dynamic Allocation” [Tru11].

4.2.2. Analysis Limitations

Because we cannot detect a SPA just by investigating one snapshot, there are a couple of
limitations that come along with this kind of analysis. First of all, there is the limitation
that more than one data file is required in order to detect any anti-pattern. Therefore it
is not possible to analyze a complete new system. Also, if there is more than just one file
for comparison, the rate of wrong detections can be decreased because we have more
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data points to compare the problem file with.
Also, it is not possible to detect a problem which exists from the beginning, because it is
necessary that a value, like the method count or the method time, does poorly in the
problem file. If the problem exists from the beginning and does not get worse over time,
our analysis thinks that this is normal and should be like that, because no deviation
can be found in comparison to the historical data. For this reason, only performance
problems that occur by adding new stuff or by changing something, can be detected.
This means, that problems existing from the beginning of the data recording cannot be
detected.

4.3. Detection Strategies

This section is subdivided into the three anti-patterns Circuitous Treasure Hunt (CTH),
Extensive Processing (EP), and Wrong Cache (WCS). Then, in each subsection the
idea of the analysis, the process of detection, the use of the data, and the limitations
are explained. Therefore, pseudo code is provided for each analysis. Because the
WCS anti-pattern cannot be detected as good as the other ones, in Section 4.3.3 there
is additionally a subsection called “Difficulties” which explains why this SPA is more
complicated to detect.

4.3.1. Circuitous Treasure Hunt

Idea

The basic idea for the analysis is directly derived from the definition of the anti-pattern
itself (see Section 2.1. The main aspect is the count of how many methods are called
from each method. Therefore it is necessary to detect, if too many calls are required in
order to execute a method until the end. Firstly, we thought that this is possible with
just one snapshot file. The idea was to somehow define an average method count over
all methods in one snapshot. This sounded easy because we have the call tree of the
whole execution and it should be a simple task to just divide the tree into certain “main”
methods in order calculate the method count of each of these. Afterwards, the last step
only serves for calculating an average over these method calls.

But it did not work, because all the snapshots had just three to four “main” methods.
Also one of them was the java.lang.Thread.run() method, which can be found in
every thread and starts all the work. Therefore, it also had a big method call count
(500+), because it is the main method that is being executed in every thread. This high
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method count was afterwards being compared to the very low count of the other two to
three methods (mostly below 50 method calls). The outcome was a not very meaningful
average method count of the snapshot.

The next approach was then to divide these main methods, especially the Thread.run()

method, into smaller sub methods to get a finer granularity of the count. An automatic
partitionment just by iterating through the call tree and separating methods that have a
certain method call count was not successful because then the parts were more or less
random and would not have been comparable to other divisions.

We think that dividing a big method into smaller sub methods only makes sense when
they also call many other methods. Otherwise, we end up on a huge number of methods
which call only one other method. To test if this can work, we looked how many methods
are calling other “blocks” of methods. And this is our result: The test file contained
19106 method calls. 985 of them did not call any other method. The majority with
17408 called one other method. 688 called two, 22 called three and 64 called 4 other
methods, which is the maximum of direct methods calls. Sure, every method that is
called, can then also call another method, and then this method can call another one
and so on. But this is not the apportionment we want. Because if we want to divide
these chains of one method calls another and the other calls another again and so on,
it is really difficult to set a boundary for when this chains should be cut. The cutting
can just be set with some thresholds which may cause a pretty random decision when
a method is divided, which leads into incomparability between different results as
described before.

After this investigation we looked for methods that at least call two different other
methods in order to identify important nodes from the tree. We also thought, it is
not a good idea to divide methods into very many parts, because then the method
count is again not representative. So we set some boundaries for dividing the methods
which included a minimum method count. This worked pretty good, but because of the
somehow “calculated” division, the method counts of different snapshot were nearly
similar. Also, the count of problem methods from the hotspot section were significantly
lower than the calculated average count over the whole snapshot, which leaded to no
possible detection at all.
At the end, we opted for a comparison between different snapshots instead of relying
on just one file. This gave us the possibility to compare the method count of the same
method in different snapshots, which is a much better approach than comparing an
average count of one snapshot, because this count gets higher if a method really has the
Circuitous Treasure Hunt anti-pattern, especially when the method is called multiple
times.

As operational data, we use the CPU-usage to determine if the CTH is present in a certain
snapshot. We use this information, because we found out that the CPU utilization is
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significantly higher in the CTH snapshot in comparison to the other snapshots we have.
The CPU usage averaged out at 95% and the maximum was at 100%. The remainder
snapshots reported an average usage of 71%, 76% and 18%. Furthermore, the maximum
usage was with 69% and 80% significantly lower than in the CTH snapshot. Also, this
value is a good indicator that the system is stressed by calling many methods. It is not a
problem, if there are many method calls, but the CPU utilization is low, because then
the calls can be made without decreasing the performance.

Used Data

For this analysis we use the data that holds information about every thread, because only
in this data set we can compare the execution of all threads to each other. Hence, we can
go through the call tree and identify the thread that has the highest or smallest method
count. Furthermore it is also possible to calculate the average method count throughout
all threads. Every option (min/max/average) is selectable in the PADprof tool and can
be helpful for different analysis approaches. Mainly important is the maximum count,
because in software performance the spikes count, not the overall performance. For
the second part of the analysis, we use the CPU usage CSV file in order to calculate the
average CPU utilization.

Analysis Process

The pseudo-code of the CTH detection procedure is reported in Algorithm 4.1. The
analysis process is divided in two parts. First of all, we need to check, if the CPU usage
of the problem file is higher than the one from the average overall files. For this purpose,
we analyze the CPU usage chart CSV file. Because the data is recorded as soon as the
profiler is connected, the system often idles in the beginning since the load test has not
started yet. Therefore we filter the CPU usage data by deleting all values that are below
five percent utilization. This method gave us good results and could be easily realized.
Also, it is no problem to delete all the values below a small threshold, because when the
system is load tested, a significantly higher utilization of the CPU is expected as described
in the previous section. After this filtering, the average usage can be calculated from
the left over data. Then, the CPU usages from the problem file and the average overall
files can be compared by adding the CPU threshold for this analysis. The threshold
is customizable, but the default for this analysis is set to 10%. So, the problem files’
average CPU usage needs to be ten percent higher than the average overall files.
When the condition is fulfilled, the hotspots from the problem file are read in order
to know which methods can cause a problem. Then, the hotspot method names are
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searched in the call tree of every snapshot that is available for the analysis. The name is
searched in every thread, and the number of method calls is compared to each other.
Then selectively the highest, lowest or the average count of all threads of the snapshot
is saved for the comparison at the end. After all files are analyzed, the average of all
method counts, including the problem file, is calculated. This value is then compared to
the specific method count of the problem file.

For this comparison, we first look if the problem files’ method count is higher than the
calculated average count over all snapshot. If this is the case, we need to make sure
that the deviation is big enough to say that the Circuitous Treasure Hunt can be the
problem. For this analysis, we looked at the results and decided that the anti-pattern is
detected, when the problem method has 25% more calls than the average count from
all the inspected files. But, because this software can be used in different scenarios
where a higher or lower threshold could be useful, the number of the percentage for the
detection can be customized. Thus, the developer can investigate the profiler data as he
wants. Also, with this feature, the data can be analyzed multiple times with different
thresholds if it is reasonable.

Algorithmus 4.1 Circuitous Treasure Hunt

1: procedure CTHANALYSIS(countThreshold, cpuThreshold, analysisOpt)
2: avgCpuUsageAll← getAvgCpuUsage(allData, filterThreshold)
3: avgCpuUsageProb← getAvgCpuUsage(probData, filterThreshold)
4:

5: if avgCpuUsageProb > (avgCpuUsageAll ∗ cpuThreshold) then
6: for all hotspotMethods do
7: probMethodCount← getMethodCount(probData, hotspotMethod, analysisOpt)
8: avgMethodCount← getMethodCount(allData, hotspotMethod, analysisOpt)
9: if probMethodCount > (avgMethodCount + countThreshold) then

10: display(hotspotMethod detected as Circuitous Treasure Hunt anti-pattern!)
11: end if
12: end for
13: end if
14: end procedure

Limitations

Because, we are looking at the CPU usage, it is possible that this anti-pattern can be
marked as solved if only the power of the CPU is increased. But in reality, there is a
problem in the procedure itself. Otherwise just the limitations from Section 4.2.2 were
discovered.
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4.3.2. Extensive Processing

Idea

Like before, the main idea is derived from the definition of the anti-pattern itself (see
Section 2.1). The problem is present, if a long running process is blocking other processes
to use a certain resource. So, we first look at the amount of blocked threads in every
snapshot and compare the problem count to the average count. Second, we need to
detect a high method time, because the resource is blocked and the method cannot
be executed as fast as it could. And second, we need to look for a resource that is
blocked because of a certain process. To get the first information we need, we analyze
the “Monitor usage view” which was presented in Section 3.3.2. With this data it is
possible to determine how many threads are blocked. For the second value that we need
for the analysis, we can just look at the method times of the different hotspot methods
in the call tree.

Used Data

For the first part of the analysis, we use the “Monitor usage statistics” data in order to
find out how many threads are blocked. There is more data available, as described in
Section 3.3.2, but the amount of blocked threads is sufficient for our analysis.

For getting the different method times, we prefer the export file that has all threads
summarized. This is particular advisable, because then a comparison between methods
is simpler as comparing every thread to each other. Also, with this data, we have a better
overview over all the method times. Also, we can not use the CPU estimation data, as
described in Section 3.3.8. In the same part, we also spoke over the problems that come
with the CPU profiling. Hence, we can not use the absolute method times and need to
calculate the percentages of each method in relative to the complete execution time.

Analysis Process

The pseudo code of the EP detection procedure is reported in Algorithm 4.2. Like in
the other anti-patterns, the first step is to look if the operational threshold is fulfilled.
In this case, we are investigating the number of blocked threads in every snapshot.
Therefore we analyze the “Monitor-usage” export file. Because we have exported the file
as described in Section 3.3.9, we just need to count the number of entries in this file to
get the amount of blocked threads. After that a check is made to find out, if the problem
count is bigger than the average count, plus the defined threshold. Like in the Circuitous
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Treasure Hunt analysis, the threshold is customizable. The default value is set to 25%,
which means that the problem files’ count needs to be 25% higher than the average.
If this is fulfilled, we look for the hotspots of the snapshot by analyzing its export file.
Then we go through the call tree of the “All threads together” file and search for the
method names. After we found these, the next step is to calculate the method time
relative to the complete execution time in percentage. This could be done by dividing
the method time through the complete time profiling. In the end, these values can be
compared to other snapshots. In the comparison, a threshold is necessary for detecting
the SPA, because in different snapshots there are small deviations that should not be
detected by the software. For this reason, a method is only detected as the Extensive
Processing anti-pattern when the percentage of the problem method is 10 points higher
than the average over all the available snapshot files. Like in the Circuitous Treasure
Hunt analysis, this threshold can be changed by the developer to fit custom scenarios.

Algorithmus 4.2 Extensive Processing

1: procedure EPANALYSIS(blockedThreadsThreshold, methodTimeThreshold)
2: blockedThreadsCountAll← getBlockedThreadsCount(allData)
3: blockedThreadsCountProb← getBlockedThreadsCount(probData)
4:

5: if blockedThreadsProb > (blockedThreadsAll ∗ blockedThreadsThreshold) then
6: for all hotspotMethods do
7: probMethodTime← getMethodTimeInPercent(probData, hotspotMethod)
8: avgMethodTime← getMethodTimeInPercent(allData, hotspotMethod)
9: if probMethodTime > (avgMethodTime + methodTimeThreshold) then

10: display(hotspotMethod detected as Extensive Processing anti-pattern!)
11: end if
12: end for
13: end if
14: end procedure

Limitations

The snapshots that are compared should have fairly the same length in order to compare
the amount of blocked threads. Also, the longer method times does not need to be
connected to the blocked threads count. It is also possible that the correlation is just
a unlucky accident. This is because the method time itself is a very good indicator for
almost every anti-pattern.
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4.3.3. Wrong cache strategy

Idea

Like in the Extensive Processing anti-pattern, we thought that this analysis consists of
two parts. Firstly, we need to compare the method times to identify a performance
problem. Because if the cache is used wrong, the method execution should be slowed
down. This should be the case, because when the cache is implemented incorrectly,
accessing it could miss and the data needs to be loaded once again. Secondly, we need
to identify that there is a problem in the cache itself. For that reason, we need data
about the memory usage which can be found in the memory section of YourKit described
in Section 3.3.2. Then, if a method is slower than before and the memory usage is
worse, we can assign this anti-pattern to it. We had also the idea to calculate the time
how long methods with the name “cache” in it take in every snapshot. And we also
thought of counting the calls of this “cache-methods” like in the Circuitous Treasure
Hunt anti-pattern. The results of this testing are presented in the next section.

Difficulties

We know, that the method time comparison can be made, because this was already done
in the Extensive Processing anti-pattern analysis. But with the memory data analysis,
we had our problems. It is possible to gain data from all possible kinds of memory
types. But, as we investigated all the different snapshot, we noticed that this data does
not really change. Because there is a graphical representation of the memory usage
in form of a graph, the data is easily comparable by just looking at it. We found out
that sometimes the graphs look different, but it cannot be said that especially the data
from the Wrong Cache Strategy snapshot has noticeable problems. There are different
kinds of spikes in the graph, but nothing that could be automatically detectable, because
everything is more random than has a specific structure which can be seen in Figure 4.2.
As can be seen in the image, there is a difference when comparing the first two graphs
with the last ones. But this did not help us, as described later. In order to proof this, we
analyzed the heap-memory usage in all snapshots. Therefore, we needed to filter the
values, because of the idle times of the system which we introduced in the Circuitous
Treasure Hunt anti-pattern. Hence, we looked again at the CPU usage data, filtered it
as before and then transferred it to the memory usage by just using the data points in
which the CPU usage is above five percent. Then we calculated the average over the
complete analysis time of the snapshots. The results are shown in Table 4.2.

The amount of data in the different spaces are very similar. For us, the “EdenSpace”
is the important part of this analysis, because this is the memory section which is
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average usage CTH EP WCS UP

EdenSpace 673 MB 671 MB 643 MB 676 MB
SurvivorSpace 4 MB 4 MB 5 MB 9 MB

Old Gen 325 MB 987 MB 163 MB 220 MB

used values 3039 2128 182 928

Table 4.2.: Average filtered heap memory usage

most related to cache, since it is the space where all data is initially allocated [Java
documentation16]. Furthermore, it is the space which changes the most in the different
snapshots. However, in the Wrong Cache Strategy snapshot this space was even used at
least from all snapshots. We also did a run, where no filtering was applied. The results
are shown in Table 4.3.

average usage CTH EP WCS UP

EdenSpace 662 MB 679 MB 828 MB 723 MB
SurvivorSpace 4 MB 6 MB 1 MB 17 MB

Old Gen 300 MB 655 MB 102 MB 124 MB

used values 3583 3592 845 3428

Table 4.3.: Average heap memory usage without filtering

This looks better in view of the usage in the Wrong Cache snapshot, but we cannot use
this data, because it does not represent the situation when the system is running. We
also noted the used amount of values we used for the analysis. The least amount of
values is used in the Wrong Cache Strategy snapshot. This is because the snapshot is
the shortest one with just about 14 minutes, the other ones have data for over one hour,
but it is by default cut by YourKit to sixty minutes (this limit can be changed [YourKit
Documentation, Section 5.1]). But, it should not affect our analysis, because we are
looking at the average usage. Furthermore, just to be sure, we also made a test, where
we selected a two-minute time range, in order to also compare the complete usage and
not just the average. The results for the “EdenSpace” is shown in Table 4.4.

After this test, it was clear that this data can not be part of the detection. Here the WCS
was the second weakest, which does not help for the detection. Just to be sure, we also
investigated the non-heap-memory usage. The results with 5% Threshold for the CPU
Usage and without filtering can be seen in Table 4.5 and in Table 4.6.

Also this data did not show us a significant difference in the Wrong Cache snapshot. So,
in our opinion, it is not possible to detect something abnormal in this data in order to
assign the Wrong Cache anti-pattern. We then investigated the method times as well as
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CTH EP WCS UP

Total 71,33 GB 82 GB 80,80 GB 83,36 GB
Count 119 119 119 119

Time spent 118,2 s 118,1 s 120,6 s 119 s
Data/timepoint 0,6 GB 0,69 GB 0,67 GB 0,7 GB

Table 4.4.: Total heap memory usage in two minutes

average usage CTH EP WCS UP

Compressed Class Space 16 MB 16 MB 15 MB 15 MB
Metaspace 156 MB 152 MB 137 MB 148 MB
Code cache 97 MB 98 MB 61 MB 85 MB

used values 3039 2128 182 928

Table 4.5.: Average filtered non-heap memory usage

average usage CTH EP WCS UP

Compressed Class Space 16 MB 16 MB 15 MB 15 MB
Metaspace 155 MB 151 MB 134 MB 137 MB
Code cache 93 MB 97 MB 48 MB 56 MB

used values 3583 3592 845 3428

Table 4.6.: Average non-heap memory usage without filtering

the method count. First, we looked how long methods take with the word “cache” in the
name in relation to the complete execution time:

• Circuitous Treasure Hunt: 13,72% (11 main methods)

• Extensive Processing: 96,8% (11 main methods)

• Wrong cache strategy: 85,9% (8 main methods)

• Unnecessary Processing: 96,9% (23 main methods)

This analysis did not show what we expected, because the WCS does not stick out. So,
we looked for the occurrences of the word cache in all methods (“All threads together
data”). The search included method names, package names and class names.

• Circuitous Treasure Hunt: 90 calls

• Extensive Processing: 336 calls
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• Wrong cache strategy: 118 calls

• Unnecessary Processing: 198 calls

Filtered to only look at the method names:

• Circuitous Treasure Hunt: 56 calls

• Extensive Processing: 216 calls

• Wrong cache strategy: 74 calls

• Unnecessary Processing: 144 calls

After looking at this data, it should be clear, that we also did not find here a good
evidence for the automatic detection of the WCS anti-pattern. Every data we look at, is
either the same in every snapshot or has not the effect in the Wrong cache snapshot as
we thought. We think the solution that was invented to solve this specific problem is not
represented in the YourKit data. Now data is passed by reference and not by value, in
order to not have to deserialize the object. This cannot be seen in the YourKit data, and
as also Mr. Avritzer said, that is “pretty tough” to detect, because therefore the program
needs to know what every method is doing and how they are connected. But, we think
that maybe other cache-related problems can be detected. Hence, we thought of a more
basic approach to detect this anti-pattern which is described in the next section.

Figure 4.2.: Heap memory comparison for CTH, EP, WCS, UP from left to right

Used data

Like in the Extensive processing anti-pattern, we use the “All threads together” data in
order to compare the method times of the hotspots and also count the method calls for
testing reasons. Additionally, we are using the “Heap-Memory” data to help the user
identify a problem in the memory.

Analysis Process

The pseudo-code of the WCS detection procedure is reported in Algorithm 4.3. This
process is very similar to the one of the the EP, because we first analyze the method
times of the hotspots. But this time we also concentrate on the name of the method.
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If a certain method is slower than before and also has the word “cache” as part of the
method name, we clarify it as the Wrong Cache Strategy anti-pattern. Additionally, the
average heap-memory usage is also displayed as a help for the user but does not affect
the detection. For this purpose, we use the filtered “EdenSpace” values as described in
the previous section.

Algorithmus 4.3 Wrong Cache Strategy

1: procedure WCSANALYSIS(methodTimeThreshold)
2: blockedThreadsCountAll← getBlockedThreadsCount(allData)
3: blockedThreadsCountProb← getBlockedThreadsCount(probData)
4: for all hotspotMethods do
5: probMethodTime← getMethodTimeInPercent(probData, hotspotMethod)
6: avgMethodTime← getMethodTimeInPercent(allData, hotspotMethod)
7: if hotspotName.contains(“cache”) then
8: if probMethodTime > (avgMethodTime + methodTimeThreshold) then
9: avgMemUsage← getavgMemUsage(allData)

10: probMemUsage← getavgMemUsage(probData)
11: display(hotspotMethod detected as Wrong Cache Strategy anti-pattern!)
12: display(Average Heap-Memory usage: probMemUsage vs. avgMemUsage)
13: end if
14: end if
15: end for
16: end procedure

Conclusion

After finding out that the memory data is useless for the analysis, we can say that
an automatic detection of this anti-pattern is , with our data, not possible. Also, the
performance expert Mr. Avritzer told us, that the architect, who detected the problem,
looked at the hotspots and then knew that the listed method does many things with the
cache. So, all the further investigation were then related to the cache and also by trying
to fix the problem they changed the use of the cache and had success. For us, this is a
good validation. Without knowing what the specific method is doing, it is not possible
to detect this kind of problems. But, we also think that this case may be special, and in
other cases an automatic detection can be made. Therefore, we thought about a more
basic approach to tackle this problem and hope that with future data the detection can
be improved.
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4.4. PADprof Tool

In this section our tool, PADprof that we developed within this research, is presented.
Primarily it is described which data from YourKit can be read, later in Section 4.4.1
is explained how to use the tool. Lastly, the work flow with the tool is explicated in
Section 4.4.2.

Figure 4.3.: Screenshot of PADprof under windows

After investigating the different snapshots and developing the detection processes, we
implemented the Performance Anti-pattern Detection from profiling data (PADprof) tool.
With this program all the analysis from the section before can be made and additional
strategies can be added in the future. The software is an open source project and is
available on GitHub [TBH+17]. PADprof can read the following exportable data from
YourKit (see Section 3.3.2):

• CPU-hot-spots.xml
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• Call-tree–All-threads-together.xml

• Call-tree–By-thread.xml

• Monitor-usage-statistics.xml

• Chart–CPU-time.csv

• Chart–Heap-memory.csv

These are the standard names, when the data is exported from YourKit. More information
about the data and the export process itself can be found in Section 3.3. Which data is
needed for the different analysis processes is noted in Table 4.1. The program, including
the detection rules, are written in Java. For the XML input we used JAXB as well as
opencsv for reading the CSV data. A GUI, which can be seen in Figure 4.3, is also
provided in order to simplify the analysis process for the user.

4.4.1. Using PADprof

The following steps need to be made in order to analyze YourKit snapshots for anti-
patterns:

1. Export the required files (see Table 4.1) from YourKit as described in Section 3.3.9

2. Select the hotspot file from the problem snapshot

3. Select the needed data for the analysis from the problem file in the second text
field of the GUI

4. Lastly, select the same type of files from all the comparison snapshots with the
third file selector

5. Tick which analysis should be run and additionally choose custom thresholds if
the default ones do not fit

6. Press “Start Analysis”

7. After the analysis the results are shown in the text box

Side notes: The names of the exported files must not be changed. Otherwise, the
program cannot detect which file is being processed. It is possible to add a postfix to the
standard name. Also, currently only files exported from the YourKit version 2016.02-b46
are supported. Furthermore, in order to have the best visual experience, DPI-scaling in
Windows should be disabled for PADprof. Additionally, our tool recognizes if too few
data is available for a proper comparison and displays this in the output. This can be the
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case if, for instance, a problem method is new and is not available in older snapshots.
Then there is no data to which PADprof could make a comparison.

4.4.2. Application Flow

After clicking on the start button, the program first checks if all required fields are filled
before all the files are read. Because, in the GUI all files are simultaneously selected,
PADprof needs to distinguish which files are available. This is done by searching for
keywords in the file names which is also the reason why the names must not be changed.
Now, the selected anti-pattern detection processes are run. How they work was presented
in Section 4.3. There, also pseudo-code can be found. If a method is detected as a
certain SPA the results of the individual method is shown in the text box. If no method
at all matches the chosen thresholds, PADprof communicates this to the user in the text
field. This happens also, when there is not enough data for an analysis, e.g., if a certain
method cannot be found in the comparison files, because for example it is new in the
system.
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Chapter 5

Evaluation

In this chapter the evaluation of Performance Anti-pattern Detection from profiling data
is presented.
Section 5.1 describes the questions that should be answered with this evaluation. In
Section 5.2 the experimental set-up as well as the used exported data for the analysis
is described. Section 5.3 lists all the results that came out of the testing process. For
every analysis a summary table is provided. The threats to validity in this evaluation
are described in Section 5.5. Finally, in Section 5.4, the results from the evaluation are
discussed in order to rate them and give explanations for the data.

5.1. Evaluation Goals

We have developed rules and implemented PADprof in order to detect anti-patterns
automatically from the exportable data of YourKit. Now, we want to evaluate if we
fulfilled this goal by answering the following questions:

RQ1: Does PADprof correctly detect the anti-patterns?

This is the most logical question, because it is the main reason why PADprof was invented
within this research. In this question is also integrated to check if a certain anti-pattern
is no longer detected after it is fixed. Thereby, we want to investigate if the tool can also
be used to identify if a refactoring of the source code has fixed the performance issue.

RQ2: How many false positive/negative results are detected?
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With this question, we want to investigate, how often PADprof does not recognize an
existing anti-pattern and how often it detects an anti-pattern although there is none
present or not the detected one present.

RQ3: How can the detection be improved?

The last question deals with the problems and false rate of the detection. We want to find
out what can be improved in order to fix the flaws of the detection that we discovered
within this evaluation.

5.2. Experiment Settings

We use the first release version of PADprof for our tests. The current version of it is
available on GitHub [TBH+17]. The tool is run on a Windows 10 laptop with the
necessary Jave Runtime Enviroment installed.

The following snapshots are used for the analysis:

• experiment snapshot from the Circuitous Treasure Hunt anti-pattern

• experiment snapshot from the Extensive Processing anti-pattern

• experiment snapshot from the Wrong Cache anti-pattern

• experiment snapshot from the Unnecessary Processing anti-pattern

• three baseline snapshots

The experiments from the case study are used for the evaluation, additionally three
baseline snapshots (data where no SPA should be included) are used as historical data
for the Circuitous Treasure Hunt. That is possible because, for example, the EP anti-
pattern is solved in the following, refactored snapshot (WCS). We cannot ensure that
an anti-pattern was already present in an earlier snapshots, but the CTH snapshot can
be used as historical data to find Extensive Processing, because it was profiled with an
earlier version of the system. The UP data is just used for the comparison, because there
was no detection developed for this anti-pattern.

Three test scenarios are conducted in order to be able to answer the research questions:

1. The first scenario is used to investigate if the manually found anti-pattern is also
detected with our tool. Therefore, the hotspots from the problem snapshot, where
the anti-pattern is present, is used and the data is compared to older snapshots.

46



5.3. Description of Results

2. In the second scenario the same hotspot data is used, but now snapshots that were
recorded after the problem snapshot are compared to it. With this, we want to
look if the hotspot methods got better or worse in future data. This evaluation
can also be helpful in view of the utilization of PADprof, because with this kind
of analysis, it is possible to check if certain methods became better over time (for
example they call fewer other methods). This can be a use case when developing
a system.

3. In the last scenario, we decided to make sure, that the performance issue was really
solved after the refactoring. Therefore, we take the hotspots from the old problem
file and use it with a snapshot of the refactored software version. If the same
anti-patterns are detected, then the problem still exists, if not, it is successfully
being solved in the new version. This test is also useful to find false positive results,
because naturally no SPA should be included in the data, because the problem was
fixed by refactoring.

All of the used data is exported as described in Section 3.3.9 and the tool is operated
with the default thresholds as explained in Section 4.4.1. The analysis option for the
CTH strategy is set to maximum call counts, because it is the most common analysis
method as the performance engineer approved. Only in the CTH evaluation, tests are
also conducted with all of the available options.

5.3. Description of Results

This section is divided in the three anti-patterns which are supported by PADprof. Every
subsection is additionally split into the three evaluation scenarios that were presented in
Section 5.2.

5.3.1. Circuitous Treasure Hunt

The following tests were conducted in order to evaluate the detection for the CTH
anti-pattern. A summary of all results is shown in Table 5.1.

First Scenario

In order to evaluate if the Circuitous Treasure Hunt anti-pattern is detected, the baseline
data is used for comparison, because the other experiment snapshots were all recorded
after the CTH was fixed. The hotspots are extracted from from the CTH snapshot.
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The results lists Method A as CTH and EP anti-pattern. It is listed for the CTH with a
deviation of 31.7% in call counts and 55.08% in CPU usage. For the EP, the deviation
is represented with 28.96% for the method time and 56.36% for the blocked threads
count. This is the only method that was detected and none was listed in the WCS results.
Method A represents the actual problem method of this snapshot.

An additional scenario was conducted with this SPA in order to evaluate if the anti-
pattern is detected in every selectable option for the method call count (min/max/aver-
age). The circumstances are the same. The results do just change for the CTH analysis,
because the different options do not affect the other strategies.

Noting has changed, in every possible option Method A is detected as the CTH anti-
pattern. The deviation for the average count is 40%, for the minimum count 183.33%
and for the maximum count it is the same as before (31.7%).

Second Scenario

In this scenario the comparison is among the CTH snapshot and the other three as future
data. Here, the hotspots are also exported from the CTH data.

Two methods were detected in the CTH analysis. The first is the same as in the first
scenario with a deviation of 74.19% in method call counts and 30.18% in CPU usage.
For the other method, the call count deviation is 31.81% and the aberration for the CPU
usage is the same. No method was detected in the EP or WCS section.

This scenario was also additionally conducted with the other two selectable options. In
the minimum and average analysis, a new method was discovered with a deviation of
33.33% but, in comparison, just one more method is called (3 vs. 4 calls).

Third Scenario

Now, the EP snapshot is selected as the problem instance. For comparison, the CTH is
used. In order to detect if the CTH anti-pattern is still present in the refactored data, the
original CTH hotspots are used.

No method was detected as any anti-pattern.

5.3.2. Extensive Processing

The following tests were conducted in order to evaluate the detection for the EP anti-
pattern. A summary of all results is shown in Table 5.2.
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5.3. Description of Results

Evaluation Scenario CTH EP WCS

Scenario 1: CTH vs. Baseline Method A Method A —
Scenario 2: CTH vs. EP, WCS, UP Method A, B — —

Scenario 3: EP vs. CTH — —- —

Table 5.1.: Evaluation summary for the Circuitous Treasure Hunt analysis

First Scenario

In the first scenario, the comparison is made between the EP and the CTH snapshot. The
hotspots are extracted from the Extensive Processing data.

Three methods are detected as the EP anti-pattern. For all of them the deviation for the
blocked threads count is 27.11%. The deviation does not change with different methods,
because the blocked thread count is a value that is dependent from the snapshot, not
a certain method. The deviations of the method time for the methods C, D and E is
18.09%, 19.27% and 15.27%. Method C caused the problem in the case study. Method
D and E are also detected in the WCS analysis. The method time deviation is logically
the same as before (19.27% and 15.27%). The additionally displayed heap memory
usage deviation is -0.15%. No method is declared as the Circuitous Treasure Hunt
anti-pattern.

Second Scenario

Here, the EP snapshot is compared to the newer, refactored ones (WCS and UP). The
hotspot section from the EP data is used.

In the Circuitous Treasure Hunt department, nine methods are detected including the
methods C, D and E. The exact values of the detection are not listed here for every
method because we think there is simple answer to that big amount of detected methods.
Therefore, the exact values are not important. The thoughts about this detection are
presented in the discussion part of this section (Section 5.4). Aside from this, no other
no other method is detected, neither in the EP analysis nor in the WCS analysis.

Third Scenario

In the last scenario, the refactored snapshot (WCS) is compared to the EP one. For this
kind of analysis we use the hotspots from EP with the WCS snapshot as the problem
file.
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5. Evaluation

No method is detected for any of the SPAs.

Evaluation Scenario CTH EP WCS

Scenario 1: EP vs. CTH — Method C, D, E Method D, E
Scenario 2: EP vs. WCS, UP Method C, D, E + 6 others — —

Scenario 3: WCS vs. EP — —- —

Table 5.2.: Evaluation summary for the Extensive Processing analysis

5.3.3. Wrong Cache

The following tests were conducted in order to evaluate the detection for the WCS
anti-pattern. A summary of all results is shown in Table 5.3.

First Scenario

In the first scenario, the WCS snapshot is compared to the two snapshots that were
recorded previously (CTH and EP). The hotspots are namely from the WCS snapshot.

Just one, the method D from Section 5.3.2, is detected as the Wrong Cache anti-pattern.
The method time deviation is rated with 12.6% and the heap-memory usage difference is
set to -2.92%. This was also the method that really caused the performance problem.

Second Scenario

In the second scenario, the current snapshot is compared to the one from the refactored
version. Here, the WCS snapshot is compared to the UP one.

No method is detected for any of the SPAs.

Third Scenario

As before, the hotspots from the anti-pattern of this section are used, but for the problem
data the snapshot from the newer and refactored version is selected. In this case, the
UP snapshot is compared to the WCS one from which as well the exported hotspots are
used.

One method is detected as the EP anti-pattern. Otherwise nothing more is detected, but
four other methods could not be compared because too few data is available.

50



5.4. Discussion of Results

Evaluation Scenario CTH EP WCS

Scenario 1: WCS vs. CTH, EP — — Method D
Scenario 2: WCS vs. UP — — —
Scenario 3: UP vs. WCS — Method F —

Table 5.3.: Evaluation summary for the Wrong Cache analysis

5.4. Discussion of Results

5.4.1. First Scenario

The first scenario is the most important evaluation, because we evaluate if the anti-
pattern that was manually detected in the snapshot is also detected with our tool.
The scenario was conducted as the use cases of PADprof will probably be within the
development process of a system. Snapshots from earlier development stages are
compared to the current state of the system.

The respective method that caused the anti-pattern was detected in every snapshot
which, regarding RQ1, was exactly the goal of the tool. Aside from that, in the Circuitous
Treasure Hunt analysis, the same method that was detected as the CTH, is also listed in
the EP results. This is the case because the blocked thread count in the snapshot is higher,
as well as the method time. This could be related to the fact that the baseline data
was recorded under lower load. The reason that the method time is higher in the CTH
snapshot could be because the baseline data has a shorter recording (see Section 4.2)
time or because the CTH anti-pattern also increases the method time besides the call
count. The different analysis options for the method call count have no impact at all for
the detection which does not need to be the case every time. But, if it is like that, the
anti-pattern is present with a high probability.

In the Extensive Processing test, two other methods are assigned to this pattern aside
from the real problem method. Both of the methods are also dedicated to the WCS
anti-pattern. These two methods call each other in the call tree and are later responsible
for the delay in the Wrong Cache snapshot. Hence, it seems very likely that the WCS is
already present in this snapshot and the tool directly detects it.

In the WCS snapshot only one method is detected. Like explained before, it is one of
the two methods that were already detected in the EP data. The reason why now only
one method is detected, is that just this method is included in the hotspot section of the
Wrong Cache data. But, the two others are associated, because they call one another
which was approved by looking at the call tree. Otherwise, no method in this test is
assigned to neither the CTH nor the EP anti-pattern which fulfills our goal.
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5. Evaluation

5.4.2. Second Scenario

The second scenario was conducted in order to check, if the hotspot methods got better
or worse in the newer iterations. In this case it is good when methods are detected as
a certain anti-pattern, because it shows that these methods got better over time. The
reason is because, if the performance variables are better in the newer version(s), then
the current version is assigned to an anti-pattern, because it is worse than the newer
ones.

In the Circuitous Treasure Hunt analysis the problem method was again tracked as the
same anti-pattern, which is good, because that means that it had improved. Accordingly
to the measurement, the method call count decreased by 43% and the CPU usage by
30% in average over the snapshots. A second method is also detected in this process.
Also this method has improved over time. When selecting the other two analysis options,
an additional method is detected. But because the call count is very low (4 vs. 3),
the small difference is enough to fulfill the threshold of 25%. In this case, additional
thresholds for a low call count or a boundary for a minimum difference could help.

In the Extensive Processing analysis, the three methods from the first test plus six other
methods are surprisingly detected as the CTH anti-pattern. But by further investigation,
it looks like the hotspot section from this snapshot includes methods that are on the very
top of the call tree, because they execute more than a thousand other methods. This
means, that if some of this called methods are improved then the call count decreases
drastically because of this high amount. For example if every fifth method of the call
tree calls 50% fewer methods, then a big amount of calls are saved. Hence, regarding
RQ2, this result is surprising but also, with more detailed look, explainable.

In the Wrong Cache analysis no method is detected as any anti-pattern. But this does not
say that there are no improvements made, because it is possible that the improvements
are just not good enough for the default thresholds.

5.4.3. Third Scenario

The third scenario was made in order to exactly verify, if something got worse after
refactoring. Therefore, the hotspots from the earlier analysis is used with a snapshot
that is newer. This is then compared to the old one. If no anti-pattern is detected,
then the performance for the hotspot methods did not got worse. Also, if no method is
detected, it is positive for our tool, because normally, after the system was refactored,
no performance problems should be there in comparison to the old state.
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5.5. Threats to Validity

In the CTH as well as in the EP analysis, no method is detected for any anti-pattern
which is what we have expected. However, in the Wrong Cache analysis, one method is
assigned to the Extensive Processing anti-pattern. In the same analysis, four methods
could not be analyzed because there was too few data. That, in addition to the short
record length from the UP, can maybe explain why one method is detected. Because,
when too few data is available, then a comparison is often not meaningful. Furthermore,
the WCS snapshot is one of the longest recorded ones (see Section 4.2).

5.4.4. Conclusion

RQ1: The evaluation shows that our tool can automatically detect the anti-patterns that
were discovered manually. Also it can do that earlier as with the manual detection as
seen in the EP analysis where the Wrong Cache was also detected.

RQ2: Here and there more than just the problem method are detected, but most of the
time a reasonable explanation could be found for that. There are some false positive
results, but most of them are related to a circumstance. Because of this reason, it is
important that the user also investigates the data output in order to find an answer for
the detection like the the big deviation for the call count when comparing two very small
values. Also, no problem method is missing in the detection wherefore the false negative
rate is zero. This was expected, because we needed to use the same data as we did for
the development of the tool. More about this threat is described in Section 5.5.

RQ3: In order to curtail some of the false positive results, the thresholds should be
improved by adjusting them or adding more values for detection. This could help for
example where the deviation in percent was high, but the amount of method calls
was very low. Otherwise, we could not test PADprof with other data. Therefore the
improvements are minimal because we build the detection process on this data. More
about the threats to this evaluation is described in the next section.

5.5. Threats to Validity

Conclusion validity: All the analysis processes are based on the case study (Chapter 3).
Hence, we had just one snapshot for each of the anti-patterns. That means that the
evaluation is also made with the exact same data. Therefore, we can not give a conclusion
if the anti-patterns would also be detected in other snapshots or whether it just works
with the ones from the case study.
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5. Evaluation

Internal validity: Because we have no control how the snapshots are recorded, it is
possible that some deviations are not related to the anti-patterns itself. The different
record lengths of the snapshots for examples were a problem, which was mentioned
in Section 4.1.1. We also cannot ensure that every snapshot was generated with the
exact same load test. Therefore, it is not possible to say, that all deviations that we have
noticed in the different snapshot will occur in another one with the same anti-pattern.
This circumstance is also because we have just one snapshot in order to detect special
deviations in the data. The detection process is based on this aberration which means
that it is possible that with the analysis we do not rely on deviations caused by the
anti-pattern, instead it is based on some differences while creating the snapshots or
something else.

Construct validity: This threat is very similar to the other ones. In order to develop
the analysis strategies, we investigated the data we have and searched for differences
between them. If now, a certain difference is not casual from the SPA, but we thought it
is, then it is very likely that no other data would be detected correct. We cannot prove
that our analysis is correct in any way, because we have no more data to look at.

External validity: Because we are just using YourKit as a profiler, we cannot ensure that
other profilers would record data the same way. Therefore it is not possible to generalize
our results for any available profiler.

The same can be said for the analysis process. The different anti-patterns are detected
in the data we have, because they satisfy the thresholds we have set. But we cannot
generalize it for other data, because we could not test our tool with other snapshots.
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Chapter 6

Conclusion

This last chapter of the thesis, the research is summarized and then it is checked if the
set goals are fulfilled. Also, some thoughts about future work are conducted. A short
summary of the research is given in Section 6.1. The Retrospective (Section 6.2) deals
with the goals of this research, and possible future work is presented in Section 6.3.

6.1. Summary

Throughout this thesis, we investigated the given snapshot data in YourKit in order
to develop analysis strategies to detect anti-patterns in profiler data. We conducted
different tests and in the end developed our tool — Performance Anti-pattern Detection
from profiling data.

At first, we needed to understand what profiler data is and what we can do with it.
Therefore, the profiler YourKit was investigated. There, we looked at all the data and
compared the different snapshots that we had from the case study in order to detect
deviations in the data. We had to investigate what is special about the different anti-
pattern data. With this information, multiple tests were conducted in order to test if our
ideas for the analysis can work or not.

After everything was sorted out, it was clear that not every anti-pattern can be detected
with the data that we have. The Unnecessary Processing anti-pattern was directly
excluded, because after looking at the data, we found no way of how it can be distin-
guished if a method is necessary or not. We also had our problems with the Wrong
Cache anti-pattern, because all the ideas we had for analyzing failed. After all, we came
up with analysis process for Circuitous Treasure Hunt, Extensive Processing and a more
generalized approach for the Wrong Cache anti-pattern. We then started to formulate
the rules for detection clearer in order to develop a tool that can read the exportable
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6. Conclusion

files from YourKit and analyzes them. The outcome of this was the tool Performance
Anti-pattern Detection from profiling data. With our tool it is possible to read certain
exported data from YourKit of different snapshots in order to compare them to each
other. After the analysis, the tool lists methods that could have performance problems
and to which of the three anti-pattern it is related to.

Now, because the tool was finished, we could evaluate how well the detection works.
Therefore we thought of different test scenarios in order to cover as much as possible
from the use cases of PADprof in the real world.

6.2. Retrospective

In Section 1.2, we described the goals for this thesis. Here, we discuss whether we have
reached those goals.

The first goal was to evaluate YourKit and look what kind of data a snapshot holds.
Additionally it should be investigated what and how the data can be exported in order to
know, what can be used for the analysis in the future. In Section 3.3 all the information
about the profiler are aggregated. There, Section 3.3.2 deals with the different data that
can be exported and presents the various views of the GUI from YourKit. The export
process is explained in Section 3.3.9. Furthermore, there is a section (3.3.10) included
which describes what kind of analysis is already possible in YourKit itself.

The next goal was to research the different anti-patterns in order to get ideas for the
analysis. The Software Performance Anti-Patterns which are investigated in the case
study (Chapter 3) are introduced in Section 2.1. Furthermore, in the next section there
are recommendations for other anti-patterns that could be supported in the future.

Based on the previous research, the next goal is about developing concepts for detecting
the anti-patterns. The complete Chapter 4 deals with the ideas and analysis processes for
each anti-pattern. There, for every anti-pattern a pseudo code is provided that describes
the analysis. Also, all the difficulties while finding a reasonable way to detect the SPAs
are explained.

The next goal uses all the findings of the previous one in order to implement our tool
PADprof. It is presented in Section 4.4 where also a briefly user manual about the tool is
located. The different strategies for the analysis are explained in Section 4.3.

The last goal, the evaluation of the implementation, is presented in Chapter 5. There,
the research questions (Section 5.1) are presented, the results are shown (Section 5.3)
and a discussion is made in order to rate the outcome (Section 5.4).
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6.3. Future Work

6.3. Future Work

In this section, possible future work is presented, that could not be done in the scope of
this thesis.

The first recommended work is to test our tool with more, respectively other data. As
explained in Section 5.5, we had not enough data in order to prove that our analysis
works in every case. It was just possible to test the snapshots from which the strategies
are developed. For a next step, ordinary data should be investigated to look if a system
can be improved with the help of PADprof. Also, if possible, a similar case study should
be made in order to investigate if the SPAs can also be detected in other data.

The second recommendation would be to first improve the analysis of the anti-patterns,
especially the one for the Wrong Cache, because the approach there is fairly basic. The
reasons for that are explained in Section 4.3.3. Maybe there are better ways of detecting
the anti-patterns than we have done it. And secondly, extend the support to more
anti-patterns. In our opinion the following ones could work, because the data should be
available in YourKit [Tru11]:

• “Pipe and Filter” Architectures

• One Lane Bridge

• Excessive Dynamic Allocation

• The Ramp

For some of them, like the Excessive Dynamic Allocation, a memory snapshot could be
useful. We mainly could not investigate this SPAs, because we had no example data for
it in order to look for differences and to test an approach.

Another recommended work to do would be to add support for other export data than
the one from the YourKit version of 2016. In the time this thesis was written, version
2017 came out which changed the structure of the XML/CSV data. Therefore, PADprof
cannot read them properly. Also, some new functions were implemented, but after
investigating the change log, these are no improvements that could help for our analysis.
It could be also helpful for some developers to support older versions. Maybe, in the
future, it is also possible to support data from other profilers.
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Appendix A

Example data

In this chapter different kinds of exported data from YourKit is provided. Most of them,
except “Monitor-Usage-Statistics.xml”, is generated by instrumenting PADprof.

A.1. Call-Tree-All-Threads-Together.xml

<view description="Call tree All threads together">

<node call_tree="&lt;All threads&gt;" time_ms="12796" own_time_ms="">

<node call_tree="java.lang.Thread.run()" time_ms="12781" own_time_ms="1921">

<node call_tree="NativeMethodAccessorImpl.java (native)

gui.GuiController.startClicked()" time_ms="7125" own_time_ms="0">

<node call_tree="GuiController.java:207

analysis.AnalysisExecution.&lt;init&gt;(File, List, List)" time_ms="5781"

own_time_ms="0">

<node call_tree="AnalysisExecution.java:42

analysis.AnalysisExecution.generateObjects()" time_ms="5781" own_time_ms="15"/>

</node>

<node call_tree="GuiController.java:210

analysis.AnalysisExecution.cthAnalysis(double, int, String)" time_ms="1000"

own_time_ms="0"/>

<node call_tree="GuiController.java:217 analysis.AnalysisExecution.wcAnalysis(int)"

time_ms="187" own_time_ms="0"/>

<node call_tree="GuiController.java:213

analysis.AnalysisExecution.epAnalysis(double, int)" time_ms="156"

own_time_ms="0"/>

</node>

<node call_tree="NativeMethodAccessorImpl.java (native)

gui.GuiController.problemFileSelector()" time_ms="1078" own_time_ms="0">

<node call_tree="GuiController.java:123 guiController.MainGui.getMultipleFiles()"

time_ms="1062" own_time_ms="0">
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A. Example data

<node call_tree="MainGui.java:70

javafx.stage.FileChooser.showOpenMultipleDialog(Window)" time_ms="1062"

own_time_ms="1062"/>

</node>

<node call_tree="GuiController.java:131

javafx.scene.control.TextInputControl.setText(String)" time_ms="15"

own_time_ms="15"/>

</node>

<node call_tree="PlatformImpl.java:295 gui.GuiController$Console$$Lambda$267.run()"

time_ms="968" own_time_ms="0">

<node call_tree="gui.GuiController$Console.lambda$0(String)" time_ms="968"

own_time_ms="0"/>

</node>

<node call_tree="NativeMethodAccessorImpl.java (native)

gui.GuiController.comparisonFileSelector()" time_ms="859" own_time_ms="0"/>

<node call_tree="NativeMethodAccessorImpl.java (native)

gui.GuiController.hotspotFileSelector()" time_ms="828" own_time_ms="0"/>

</node>

<node call_tree="com.sun.javafx.tk.quantum.QuantumToolkit$$Lambda$41.run()"

time_ms="15" own_time_ms="15"/>

</node>

</view>

A.2. Call-Tree-By-Thread.xml

<view description="Call tree By thread">

<node call_tree="JavaFX Application Thread group: &apos;main&apos;" time_ms="12656"

own_time_ms="">

<node call_tree="java.lang.Thread.run()" time_ms="12656" own_time_ms="1796">

<node call_tree="NativeMethodAccessorImpl.java (native)

gui.GuiController.startClicked()" time_ms="7125" own_time_ms="0">

<node call_tree="GuiController.java:207

analysis.AnalysisExecution.&lt;init&gt;(File, List, List)" time_ms="5781"

own_time_ms="0"/>

<node call_tree="GuiController.java:210

analysis.AnalysisExecution.cthAnalysis(double, int, String)" time_ms="1000"

own_time_ms="0"/>

<node call_tree="GuiController.java:217 analysis.AnalysisExecution.wcAnalysis(int)"

time_ms="187" own_time_ms="0"/>

<node call_tree="GuiController.java:213

analysis.AnalysisExecution.epAnalysis(double, int)" time_ms="156"

own_time_ms="0"/>

</node>

<node call_tree="NativeMethodAccessorImpl.java (native)

gui.GuiController.problemFileSelector()" time_ms="1078" own_time_ms="0">

<node call_tree="GuiController.java:123 guiController.MainGui.getMultipleFiles()"

time_ms="1062" own_time_ms="0"/>
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A.3. CPU-Hot-Spots.xml

<node call_tree="GuiController.java:131

javafx.scene.control.TextInputControl.setText(String)" time_ms="15"

own_time_ms="15"/>

</node>

<node call_tree="PlatformImpl.java:295 gui.GuiController$Console$$Lambda$267.run()"

time_ms="968" own_time_ms="0"/>

<node call_tree="NativeMethodAccessorImpl.java (native)

gui.GuiController.comparisonFileSelector()" time_ms="859" own_time_ms="0"/>

<node call_tree="NativeMethodAccessorImpl.java (native)

gui.GuiController.hotspotFileSelector()" time_ms="828" own_time_ms="0"/>

</node>

</node>

<node call_tree="QuantumRenderer-0 group: &apos;main&apos; [DAEMON]" time_ms="125"

own_time_ms="">

<node call_tree="java.lang.Thread.run()" time_ms="125" own_time_ms="125"/>

</node>

<node call_tree="Thread-2 group: &apos;main&apos; [DAEMON]" time_ms="15" own_time_ms="">

<node call_tree="com.sun.javafx.tk.quantum.QuantumToolkit$$Lambda$41.run()"

time_ms="15" own_time_ms="15"/>

</node>

</view>

A.3. CPU-Hot-Spots.xml

<view description="CPU hot spots">

<node method="analysis.AnalysisExecution.generateObjects() AnalysisExecution.java"

time_ms="5781"/>

<node method="javax.xml.bind.helpers.AbstractUnmarshallerImpl.unmarshal(File)

AbstractUnmarshallerImpl.java" time_ms="4437"/>

<node method="javafx.stage.FileChooser.showOpenMultipleDialog(Window) FileChooser.java"

time_ms="1921"/>

<node method="javafx.scene.control.TextInputControl.appendText(String)

TextInputControl.java" time_ms="968"/>

<node method="javax.xml.bind.JAXBContext.newInstance(String) JAXBContext.java"

time_ms="968"/>

<node method="analysis.AnalysisExecution.getAverageMethodCount(ArrayList, String)

AnalysisExecution.java" time_ms="921"/>

<node method="analysis.CallTree.getMaxMethodCalls(String) CallTree.java" time_ms="890"/>

<node method="javafx.stage.FileChooser.showOpenDialog(Window) FileChooser.java"

time_ms="828"/>

<node method="analysis.CallTree.returnAllSubnodes(Node) CallTree.java" time_ms="812"/>

</view>

A.4. Monitor-Usage-Statistics.xml

<view description="Monitor usage statistics">

<node name="Blocked thread qtp782768455-352 native ID: 0x113C group: &apos;main&apos;"

time_ms="1065" count="28"/>
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<node name="Blocked thread qtp782768455-370 native ID: 0x116E group: &apos;main&apos;"

time_ms="935" count="30"/>

<node name="Blocked thread qtp782768455-351 native ID: 0x113B group: &apos;main&apos;"

time_ms="896" count="33"/>

<node name="Blocked thread qtp782768455-353 native ID: 0x113D group: &apos;main&apos;"

time_ms="850" count="17"/>

<node name="Blocked thread qtp782768455-348 native ID: 0x1133 group: &apos;main&apos;"

time_ms="734" count="14"/>

<node name="Blocked thread qtp782768455-362 native ID: 0x1147 group: &apos;main&apos;"

time_ms="717" count="19"/>

<node name="Blocked thread qtp782768455-354 native ID: 0x113E group: &apos;main&apos;"

time_ms="688" count="24"/>

<node name="Blocked thread qtp782768455-349 native ID: 0x1134 group: &apos;main&apos;"

time_ms="657" count="32"/>

<node name="Blocked thread qtp782768455-347 native ID: 0x1132 group: &apos;main&apos;"

time_ms="647" count="17"/>

<node name="Blocked thread qtp782768455-314 native ID: 0x1060 group: &apos;main&apos;"

time_ms="626" count="17"/>

<node name="Blocked thread qtp782768455-346 native ID: 0x112D group: &apos;main&apos;"

time_ms="607" count="27"/>

<node name="Blocked thread qtp782768455-157 native ID: 0xF82 group: &apos;main&apos;"

time_ms="565" count="29"/>

<node name="Blocked thread qtp782768455-163 native ID: 0xF88 group: &apos;main&apos;"

time_ms="526" count="15"/>

<node name="Blocked thread qtp782768455-342 native ID: 0x1129 group: &apos;main&apos;"

time_ms="482" count="15"/>

<node name="Blocked thread qtp782768455-355 native ID: 0x113F group: &apos;main&apos;"

time_ms="481" count="13"/>

<node name="Blocked thread qtp782768455-357 native ID: 0x1141 group: &apos;main&apos;"

time_ms="470" count="15"/>

<node name="Blocked thread qtp782768455-358 native ID: 0x1142 group: &apos;main&apos;"

time_ms="454" count="16"/>

<node name="Blocked thread qtp782768455-333 native ID: 0x1118 group: &apos;main&apos;"

time_ms="370" count="16"/>

<node name="Blocked thread qtp782768455-361 native ID: 0x1145 group: &apos;main&apos;"

time_ms="350" count="19"/>

<node name="Blocked thread qtp782768455-356 native ID: 0x1140 group: &apos;main&apos;"

time_ms="329" count="14"/>

<node name="Blocked thread qtp782768455-160 native ID: 0xF85 group: &apos;main&apos;"

time_ms="295" count="10"/>

<node name="Blocked thread qtp782768455-350 native ID: 0x1135 group: &apos;main&apos;"

time_ms="281" count="14"/>

<node name="Blocked thread qtp782768455-159 native ID: 0xF84 group: &apos;main&apos;"

time_ms="268" count="11"/>

<node name="Blocked thread qtp782768455-359 native ID: 0x1143 group: &apos;main&apos;"

time_ms="256" count="15"/>

<node name="Blocked thread qtp782768455-332 native ID: 0x1117 group: &apos;main&apos;"

time_ms="248" count="9"/>

62



A.5. Chart-CPU-Time.csv

<node name="Blocked thread qtp782768455-316 native ID: 0x1062 group: &apos;main&apos;"

time_ms="225" count="13"/>

<node name="Blocked thread qtp782768455-398 native ID: 0x119F group: &apos;main&apos;"

time_ms="190" count="4"/>

<node name="Blocked thread qtp782768455-397 native ID: 0x119E group: &apos;main&apos;"

time_ms="128" count="8"/>

</view>

A.5. Chart-CPU-Time.csv

"Uptime (ms)" "CPU time (user + kernel)" "CPU time (kernel)" "Time spent in GC"
"166800" "5" "0" "0"
"167800" "0" "0" "0"
"168800" "0" "0" "0"
"169800" "0" "0" "0"
"170800" "0" "0" "0"
"171800" "0" "0" "0"
"172800" "2" "0" "0"
"173800" "0" "0" "0"
"174800" "0" "0" "0"
"175800" "1" "1" "0"
"176800" "0" "0" "0"
"177800" "0" "0" "0"
"178800" "0" "0" "0"
"179800" "2" "0" "0"
"180800" "17" "1" "0"
"181800" "27" "0" "1"
"182800" "2" "0" "0"
"183800" "1" "0" "0"
"184800" "0" "0" "0"
"185800" "1" "0" "0"
"186800" "14" "2" "0"
"187800" "33" "2" "2"
"188800" "0" "0" "0"
"189800" "26" "3" "1"
"190800" "9" "0" "0"
"191800" "1" "0" "0"
"192800" "10" "1" "0"
"193800" "26" "3" "1"
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A. Example data

A.6. Chart-Heap-Memory.csv

"Uptime (ms)" "CPU time (user + kernel)" "CPU time (kernel)" "Time spent in GC"
"166800" "5" "0" "0"
"167800" "0" "0" "0"
"168800" "0" "0" "0"
"169800" "0" "0" "0"
"170800" "0" "0" "0"
"171800" "0" "0" "0"
"172800" "2" "0" "0"
"173800" "0" "0" "0"
"174800" "0" "0" "0"
"175800" "1" "1" "0"
"176800" "0" "0" "0"
"177800" "0" "0" "0"
"178800" "0" "0" "0"
"179800" "2" "0" "0"
"180800" "17" "1" "0"
"181800" "27" "0" "1"
"182800" "2" "0" "0"
"183800" "1" "0" "0"
"184800" "0" "0" "0"
"185800" "1" "0" "0"
"186800" "14" "2" "0"
"187800" "33" "2" "2"
"188800" "0" "0" "0"
"189800" "26" "3" "1"
"190800" "9" "0" "0"
"191800" "1" "0" "0"
"192800" "10" "1" "0"
"193800" "26" "3" "1"
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