
Institute of Software Technology
Reliable Software Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelor’s Thesis

Automated Performance
Regression Detection in

Microservice Architectures

Nils Wenzler

Course of Study: Softwaretechnik

Examiner: Dr.-Ing. André van Hoorn

Supervisor: Dr.-Ing. André van Hoorn
Teerat Pitakrat
Cor-Paul Bezemer

Commenced: March 23, 2017

Completed: September 23, 2017

CR-Classification: C.2.4, D.2.8

Abstract

The emergence of microserive architectures has lead to a need for software performance
techniques which cater to the needs of these architectures. Microservice achrictectures
are architectures which are build out of small independent processes which communicate
by use of language independent interfaces such as REST. Microservice environments
challenge common software performance engineering techniques by their highly dis-
tributed nature, their rapidly changing systems and their extensive use of virtualization
and containers. Detecting performance changes of a system during development, so-
called performance regression detection, is a valuable addition to the development and
maintenance of software systems. How software performance regression detection can
be performed in microservice architectures is the non-trivial question, on which this
thesis focuses to answer.

To reach this goal, in a first step extensive research on by the microservice orchestration
technology Kubernetes and the containerization technology Docker provided software
performance metrics is performed. Results show that some major performance metrics
can not be considered to be stable concerning redeployments of the microservice system.
They suggest that performance metrics of a microservice instance can be highly impaired
by other microservices running on the same node.

A second step empirically evaluates the performance of existing performance regression
detection techniques in the context of a microservice environment. After a thoroughly
comparison of the different approaches, selected approaches were implemented and
their performance was evaluated empirically in the test setup. The results show that
some approaches are not applicable or show a bad performance in the microservice setup.
Although none of the approaches performed well enough for practical application, two
of the approaches showed promising results, which could lead to enabling performance
regression detection in microservice archtectures.

iii

Kurzfassung

Das Aufkommen von Microservice Architekturen hat zu einem Bedarf an neuen Software-
Performanz-Techniken, die an die Eigenschaften dieser Architekturen angepast sind,
geführt. Microservice Architekturen sind Architekturen die aus kleinen und unab-
hängigen Prozessen aufgebaut sind, die über sprachenunabhängige Schnittstellen wie
REST kommunizieren. Microservice-Umgebungen stellen auf Grund ihrer massiven
Verteiltheit, den sich schnell und häufig ändernden Systemen und ihrer Verwendung von
Virtualisierung und Containerisierung eine Herausforderung für Software-Performanz-
Ingeniuere dar. Performanceänderungen eines Systems zu erkennen, so genannte
Performance-Regressions-Erkennung, ist eine wertvolle Ergänzung zur Entwicklung und
Wartung von Softwaresystemen. Die nicht-triviale Frage, wie Performance-Regressions-
Erkennung im Umfeld von Microservice-Umgebungen durchgefürht werden kann, steht
deshalb im Fokus dieser Arbeit.

Um Antworten auf diese Frage zu finden, werden zunächst die von der Microservice-
Orchestatrationstechnologie Kubernetes und der Containerisierungstechnologie Docker
zu Verfügung gestellten Performanz-Metriken untersucht. Die Ergebnisse dieser Arbeit
zeigen, dass manche Microservice-Performanz-Metriken im Bezug auf Redeployments
des selben Systems auf dem selben Cluster nicht als stabil angesehen werden können.
Sie suggerieren, dass Performanz-Metriken einer einzelnen Microservice-Instanz mas-
siv durch andere Microservice-Instanzen auf dem selben Knoten beeinflusst werden
können.

In einem zweiten Schritt wird die Performanz existierender Performanz-Regressions-
Erkennungsverfahren im Microservice-Umfeld empirisch untersucht. Nach einem
gründlichen Vergleich der unterschiedlichen Verfahren, wird eine Auswahl der Ver-
fahren nachimplementiert und ihre Performanz in einem Test-Microservice-System mit
künstlichen Regressionen evaluiert. Die Ergbnisse zeigen, dass manche Verfahren nicht
anwendbar sind oder sehr schlechte Ergebnisse erzielen. Obwohl keins der untersuchten
Verfahren für eine praktische Anwendung gut genug wäre, zeigen zwei der unter-
suchten Verfahren vielversprechende Ergebnisse, die zielführend für die Entwicklung
von Performanz-Regressions-Erkennung im Microservice Architekturen sein könnten.

v

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Thesis structure . 3

2. Foundations 5
2.1. Performance testing . 5
2.2. Performance regressions . 6
2.3. Performance regression detection . 7
2.4. Evaluation of performance regression detection approaches 8
2.5. Anomaly detection . 8
2.6. Microservice architectures . 10
2.7. Performance metrics . 12

3. Related work 17
3.1. Microservice performance research . 17
3.2. Existing performance regression detection approaches 18

4. Comparison and implementation of approaches 33
4.1. Selection criteria . 33
4.2. Comparison of approaches . 34
4.3. Selection of approaches . 37
4.4. Implementation of approaches . 38

5. Evaluation 45
5.1. Evaluation goals . 45
5.2. Evaluation methodology . 46
5.3. Evaluation setup . 49
5.4. Metrics . 52
5.5. Description of results . 56
5.6. Discussion of results . 67

vii

6. Threats to validity 71
6.1. External validity . 71
6.2. Internal validity . 72

7. Conclusion 77
7.1. Summary . 77
7.2. Discussion . 77
7.3. Future work . 78

8. Acknowledgements 79

Bibliography 81

A. Metric measurements 87

viii

List of Figures

2.1. The different levels of load testing. Adaption of Mike Cohn’s test pyramid
[CG09]. 6

2.2. The process of performance regression detection 7

3.1. Visualization of the process of regression models on clustered performance
counters regression detection . 20

3.2. Visualization of the process of performance signature-based regression
detection . 22

3.3. Visualization of the proposed filtering technique of Nguyen et al. 27
3.4. Visualization of the process of statistical process control-based regression

detection . 27
3.5. Visualization of the process of mining performance regression testing

repositories regression detection . 31
3.6. Examples for association rules . 31

5.1. Steady state detection visualization . 47
5.2. Overall view on the test environment . 50
5.3. Cpu/usage_rate distribution relative to median value 57
5.4. Cpu/usage_rate median in different deployments 59
5.5. Relative deviations of median CPU measurements during runs compared

to requests per minute of the load driver 60
5.6. Memory usage and working set behavior during different deployments . 61
5.7. Relative deviations of median memory measurements during runs com-

pared to requests per minute of the load driver 62
5.8. Network rx and tx rate behavior during different deployments 63
5.9. Relative deviations of median network measurements during runs com-

pared to requests per minute of the load driver 64

6.1. Requests per minute median in different deployments 73
6.2. Node CPU usage throughout series of load tests 75

ix

A.1. Cpu/usage_rate development in different deployments 87
A.2. Memory/usage development in different deployments 88
A.3. Memory/page_faults_rate development in different deployments 88
A.4. Memory/working_set development in different deployments 89
A.5. Network/tx_rate development in different deployments 89
A.6. Network/rx_rate development in different deployments 90
A.7. Requests per minute of load driver development in different deployments 90
A.8. Cpu/usage_rate distribution relative to median value 94
A.9. Memory/usage distribution relative to median value 95
A.10.Memory/page_faults_rate distribution relative to median value 95
A.11.Network/tx_rate distribution relative to median value 96
A.12.Network/rx_rate distribution relative to median value 96

x

List of Tables

3.1. Overview Student-T-Test . 19
3.2. Overview regression models on clustered performance counters 21
3.3. Overview signature-based performance regression detection 23
3.4. Overview transactional profiles . 25
3.5. Overview statistical process control techniques using machine learning . 25
3.6. Overview performance regression unit tests 29
3.7. Overview differential flame graphs . 30
3.8. Overview mining performance regression testing repositories 32

4.1. Tabular comparison between approaches 36

5.1. Specification of the testing nodes . 50
5.2. The different kinds of injected regressions 53
5.3. Available CPU metrics in Heapster . 54
5.4. Available memory metrics in Heapster 54
5.5. Available filesystem metrics in Heapster 55
5.6. Available network metrics in Heapster 55
5.7. Collected response metrics in Locust . 56
5.8. Normal distribution findings . 58
5.9. Performance evaluation of the four performance regression detection

approaches . 65
5.10.Performance of Student t-test regression detection 65
5.11.Performance of statistical process control regression detection 66
5.12.Performance of signature-based performance regression detection 66
5.13.Mining performance regression testing repositories performance 67

A.1. Median of cpu/usage_rate per test run (original unit: millicores) 91
A.2. Variance of cpu/usage_rate per test run (original unit: millicores) 92
A.3. Median of memory/usage per test run (unit: mebibytes) 93
A.4. Variance of memory/usage per test run (original unit: bytes) 93

xi

List of Algorithms

4.1. Student t-test regression detection pseudo code 39
4.2. Statistical process control techniques regression detection pseudo code . 41
4.3. Signature-based performance regression detection pseudo code 42
4.4. Mining performance regression testing repositories pseudo code 43

xiii

Chapter 1

Introduction

1.1. Motivation

Microservice architectures promise to reduce complexity, to give the possibility of scaling
independently, to remove and deploy independent parts of the system easily, to support
usage of different frameworks and languages, to increase the overall system elasticity
and finally to improve the resilience of the system [Ama+15]. Many companies already
use this by service oriented architectures inspired architectural style. To software
performance engineers these architectures pose a lot of new challenges and a need for
software performance applications which cater to the specific needs of microservice
environments has emerged [Hei+17].

Performance regression detection is one of those software performance applications.
Performance regression detection detects significant changes in the performance of a
software system during development and helps to avoid performance decreases. It
basically answers the question whether the overall systems performance has changed
because of the most recent changes to the code base.

The approach of tackling software performance during development has per se some
advantages compared to dealing with performance issues at the end of the development
of a project. On the one hand, it can be very challenging to try to target performance
issues at the end of software development because the sources of the bad performance
may be hidden somewhere in the system. Oppositely, if the developer is notified directly
when a performance decrease, a so-called performance regression was introduced during
development, it should be less challenging to find and resolve the issue. On the other
hand, stands the fact that nowadays software systems, and microservice systems in
special, are subject to continuous change caused by techniques such as continuous
delivery. It therefore sounds reasonable to monitor the performance of a software system
on a base of the different changes during development.

1

1. Introduction

This setting leads to the central question of this thesis’s work: How and how well can
performance regression detection be realized in the context of microservice environ-
ments?

Some of the challenges in the context of microservice systems which have to be beat
to enable performance regression detection in such an environment are dealing with
the distributed nature of the systems independent microservices, understanding the per-
formance behavior of the microservice systems, researching the available performance
metrics of microservice environments and their properties, finding software performance
techniques for testing elasitc systems, and deciding on how to incorporate the different
metrics of the different microservice instances into the performance regression detection.
Because of the distributed nature of microservice systems, virtualization and container-
ization are commonly used technologies. These themselves add challenging aspects to
software performance engineering tasks. Basic foundations to software performance
engineering, such as the performance metrics behave differently in containerized appli-
cations. E.g., this thesis shows that performance metrics of containers are impaired by
other microservices running on the same physical node.

Although this thesis is not able to answer all of the questions concerning performance
regression detection in microservice achitectures, it offers in-depth research and first
results to some of those challenging questions. In this work, a reference microservice
system is used for an empirical study on the possibilities of performance regression
detection in microservice environments. Extensive experimentation on the different
available performance metrics of microservices is performed and their properties are
investigated. The stability of measurement results during test runs and in comparison
between different deployments of the same system are researched. In this work, it
is shown that most of the measurements were not of a normal distribution, that the
performance metrics did not show any unexpected deviations during single test runs, but
that massive deviations of up to 16% of performance measurement results were observed
in the comparison of different deployments of the same microservice system and on the
same cluster. The reason for these deviations was found in scheduling decisions of the
used microservice orchestration technology Kubernetes.

To further investigate the possibilities of performance regression detection in microser-
vice architectures, in-depth research on existing performance regression detection ap-
proaches was performed. After a thoroughly comparison of the different approaches,
selected approaches were implemented and their performance was evaluated empirically
in the test setup. The results show that some approaches are not applicable or show a
bad performance in the microservice setup. None of the existing approaches performed
on a level which would be usable in a productive environment. Two of the implemented
approaches show promising results and may lead to solutions for performance regression

2

1.2. Thesis structure

detection in the context of microservices. The best approach could detect 67% of the
injected regressions with an accuracy of 73%.

Finally, this work shows possible future directions for research to enable performance
regression detection in microservice environments.

1.2. Thesis structure

The remainder of this thesis is structured as follows:

Chapter 2 – Foundations explains the basic concepts needed to understand this work.
It offers a short introduction into the theory of load testing, regression detection
and microservice architectures.

Chapter 3 – Related work presents a detailed description of the existing research work
on the different performance regression detection approaches.

Chapter 4 – Comparison and implementation of approaches offers a reasoning con-
cerning which existing approaches were chosen to be evaluated in a microservice
environment. It offers a collection of criteria by which the selection was performed
and compares the different approaches concerning these criteria.

Chapter 5 – Evaluation shows the setup and methodology of the evaluation of this the-
sis. Furthermore, the findings of the experiments concerning microservice metrics
behavior and performance of the performance regression detection approaches in
a microservice environment are described and afterwards discussed.

Chapter 6 – Threats to validity lists possible threats to the validity of the findings
presented in this work. For the different threats, a short evaluation and steps to
minimize the risks are presented.

Chapter 7 – Conclusion gives a short walk through the thesis, its evaluation and its
findings. An outlook concerning possible future research is given.

Chapter 8 – Acknowledgements lists the people without whom this work would not
have been possible or who gave valuable inputs during the creation of this thesis.

The original measurements of this work were published at [Wen17b]. The original
code base of this work was published at [Wen17a]. This code base does only offer
the exact implementation of the prototype. It neither offers further documentation
nor a performance regression detection tool which could be used in a productive
environment.

3

Chapter 2

Foundations

This chapter explains the basic concepts needed to understand the following work. It
offers a short introduction into the theory of load testing, regression detection and
microservice architectures.

2.1. Performance testing

Performance testing is a type of software testing, which strives to determine the respon-
siveness, throughput, reliability, and/or scalability of a software system under a given
load [Mei+07]. A load is a, most commonly artificially, produced set of operations which
are performed on the system under test (SUT) to observe its behavior when working.
Performance testing helps to identify bottlenecks in a system, supports performance
tuning and enables evaluating compliance of a system with service level agreements
(SLA). SLAs specify requirements to the product build in a software development project.
Examples for such requirements could be guaranteed up time, certain response time
limits for a specified number of users or a guaranteed throughput of documents per
hour.

In general, there are four different types of performance testing: load tests, stress tests,
performance tests and capacity tests [Mei+07]. Those types of testing mainly differ
in the goal that they strive to reach. Performance tests target to determine the speed,
scalability or stability of the SUT. Scalability describes the system’s ability to adapt to
increasing workloads by usage of additional resources (see Section 2.7.1). Load tests
strive to evaluate the SUTs behavior under normal and peak conditions. Stress tests
evaluate the behavior of the SUT under loads which exceed those of normal or peak
conditions. Capacity tests target the question of how many users/transactions per time
slot the SUT is able to support while still meeting its performance requirements.

5

2. Foundations

Unit Test

Component Test

Integration test

System Test

Figure 2.1.: The different levels of load testing. Adaption of Mike Cohn’s test pyramid
[CG09].

Independent of the type of a performance test, there are different levels at which load
testing can be performed. Figure 2.1 shows how those levels build on each other. While
unit tests, focus on testing small code passages and classes, component tests focus
on testing the behavior of whole components. Integration tests focus on testing the
interaction between single components while system tests strive to test the overall
systems performance. The main focus of this thesis will be on testing on a system and
component level.

2.2. Performance regressions

Functional regression tests are a commonly used method for assuring that a newer
version of a software system still fulfills the functionality of the older version [LL13].
Such tests are called (functional) regression tests. Analogically, performance regressions
describe a significant change of performance compared to an older version of the
software system. Although functional regression tests are well established, performance
regression tests are not as commonly performed in practice.

Examples for typical performance regressions are [Ngu+12] [Sha+15]:

Increasing memory usage Adding a (large) field in a very often used object will lead
to a prominent increase of overall memory usage.

Increasing CPU usage Additional calculations or algorithms with a bad run-time will
increase the CPU load of the SUT.

Increasing I/O access times Since storage device accesses are in comparison to mem-
ory accesses more time consuming, introducing an increased amount of such
(blocking) I/O accesses will decrease the performance of the SUT.

6

2.3. Performance regression detection

commit
Performance regression

detection

regression detected

no regression

Figure 2.2.: The process of performance regression detection

Increasing network usage In comparison to memory accesses, network I/O is more
time-consuming and can have an overall negative impact on inter-microservice
communication. Introducing an increasing amount of network calls will decrease
the performance of the SUT.

Unnecessary system prints System prints, which are sometimes used for debugging,
may slow down parts of the system, since the output depends on slow I/O opera-
tions.

Wrong configurations A wrong configuration of the system components may slow
down the system significantly. Examples of such configuration errors may be:
number of available threads in a thread pool, number of parallel connections to a
database or resource limits for single processes.

2.3. Performance regression detection

Performance regression detection deals with the detection of performance regressions.
Although approaches for performance regression tests exist, they are uncommon com-
pared to functional regression tests. Figure 2.2 shows the general process of performance
regression detection. After a new commit, a change in the software system is submit-
ted, the performance regression evaluates the new system’s performance and inspects
whether a performance regression was added or not. Performance regression detection
compares the performance measurements of a new version vi of a software system to the
performance measurements of a subset of the earlier observed versions v0, ...vi−2, vi−1 of
the software systems. In between different versions the code base, the functionality of
the software and even the load of the evaluation may change.

7

2. Foundations

2.4. Evaluation of performance regression detection
approaches

For later evaluation of the performance of the performance regression detection ap-
proaches the following metrics are introduced. There are four general results which
a single evaluation of a performance regression detection approach can have. The ap-
proach can report a performance regression when the system indeed has a performance
regression. This is called a true positive (TP). The approach may report that there is no
performance regression when the system’s performance indeed has not changed. This
is called a true negative (TN). For a perfect approach which does not make mistakes,
these two results would be sufficient, but there are two cases in which the approach
could make errors. If it reports no regression although in reality one could observe a
regression, this kind of error is called a false negative (FN). Finally, if the system reports
a regression although there is no performance anomaly, we observe a false positive (FP)
[DG06].

Out of those four kinds of results, three different metrics are commonly calculated. The
precision, the recall and the F-measure.

The precision describes how many of the reported regressions are indeed regressions. It
fits to the common understanding of the word precision.

Precision = TP

TP + FP

The recall describes how many of the real regressions were reported to be a regression.

Recall = TP

TP + FN

Additionally there is the F-measurement which combines both metrics.

F = 2 · Precision ·Recall

Precision + Recall

For all three metrics, the results range from 0 to 1, with one being the optimal case.

2.5. Anomaly detection

Performance regression detection is a special use case of anomaly detection. Anomaly
detection is the problem of finding patterns, so called anomalies, in data. Anomalies are

8

2.5. Anomaly detection

patterns which are considered to be not normal. In the context of this work, performance
regressions can be considered to be anomalies concerning software performance.

In a survey, Chandola, Banerjee, and Kumar [CBK09] give an overview over the different
kinds of anomaly detection and offer basic algorithms for the different types. If not
otherwise stated, the information of this section refers to [CBK09].

Defining what is normal behavior, how to deal with an adapting definition of normal
behavior and how to deal with noise in the input data, are challenges in anomaly
detection. Noisy data is data which is corrupted or distorted.

Different techniques deal with different kinds of data. Some techniques may only work
for data in form of attributes (Mining performance regression testing repositories serves
as an example), while others use ordinal or continuous data (Student t-test based
performance regression detection serves as an example).

The following section explains what general types of anomalies exist, how anomaly
detection techniques are trained to recognize normal and uncommon behavior and
finally which general techniques are used to detect anomalies.

In general, there are three categories of anomalies:

Point anomalies are anomalies where a single measurement can be considered to be
an anomaly in reference to the remaining data set.

Contextual anomalies are anomalies, where the single measurement itself can not be
considered to be an anomaly since the value of it can be common. Contextual
anomalies are deviating concerning their context. While a temperature of 30
degree Celsius can be considered normal in the context of summer, a temperature
of 30 degree Celsius in winter would be considered to be a contextual anomaly.

Collective anomalies are anomalies concerning related data samples, which can only
be considered uncommon because of their existence as a collection. A possible
example for such anomalies would be tracking actions in the field of intrusion
detection and seeing a suspicious series of events in the tracking logs.

The performance regression detection approaches, which are described in this thesis
vary in the kind of anomalies they detect. Although the classification is to some amount
subject of interpretation, the approach which is described in Section 3.2.8 could be seen
as focusing on contextual anomalies while the approach of Section 3.2.5 could be seen
as focusing on point anomalies. No approach presented in this work deals with collective
anomalies.

Anomaly detection approaches need to build a model of normal behavior. The process
of building such a model is called training. According to Chandola, Banerjee, and
Kumar [CBK09] three different kinds of techniques concerning training exist: supervised,

9

2. Foundations

semi-supervised and unsupervised training. Supervised training offers training data with
labels for normal as well as for anomalous data. Semi-supervised training offers training
data which only shows normal behavior. Finally, unsupervised techniques do not use
labeled data at all. They most commonly assume frequent patterns to be normal. The
performance regression detection approaches in this thesis are setup in an environment
where they may use old performance measurements, which are considered to be of
normal behavior. Therefore, performance regression detection, as understood in this
work, can be categorized into the section of semi-supervised training.

Another classification is given by the general approach which the different techniques
use:

• classification based

• nearest neighbor based

• clustering based

• statistical techniques

• information theory

• spectral theory

The research concerning the different existing approaches in the field of software
performance regression detection are hard to categorize. Nonetheless, some approaches
can be considered to be in the category of the statistical techniques.

2.6. Microservice architectures

Many modern software businesses focus on the use of microservice architectures. Being
a fine grained Service Oriented Architecture (SOA), they promise to cater to the needs
of cloud computing and continuous delivery (CD) [BHJ16]. A microservice architecture
is built out of single independent processes, so called microservices. The main reasons
for the emergence of microservice architectures are their promise to reduce complexity,
to give the possibility of scaling independently, to remove and deploy independent
parts of the system easily, to support usage of different frameworks and languages, to
increase the overall system elasticity and finally to improve the resilience of the system
[Ama+15]. Scalability is a prerequisite for elasticity and describes the degree to which
a system is able to sustain increasing workloads by making use of additional resources
[LEB15]. Elasticity adds the aspects of how fast how often and at what granularity the
system adapts. Resilience describes “ the ability of a system to sustain external and

10

2.6. Microservice architectures

internal disruptions without discontinuity of performing the system’s function or if the
function is disconnected, to fully recover the function rapidly” [HBRM16].

Container virtualization is commonly used in microservice architectures. It allows to run
applications like microservices on one single system side-by-side in isolated containers.
Containers offer virtualization on the level of the operation system and are therefore
more lightweight, compared to full server virtualization [Ama+15]. They promise to
be easy to setup, since all dependencies of a software are defined and bundled into the
container.

Since microservice architectures are mostly used together with CD approaches, mi-
croservice environments are rapidly changing and it is hard or even impossible to find a
steady state for performance regression detection [Hei+17]. Therefore, approaches for
performance regression detection in microservice architectures should target that fact
in a certain way. The overall lack of software performance engineering approaches for
microservice systems [Hei+17] is one of the main motivations for this thesis.

The remainder of this section will give a short introduction to the terminology of the
used container orchestration tool Kubernetes [Kubd].

Kubernetes is an open-source system which offers deployment and management func-
tionalities for a microservice system. In this thesis, Kubernetes is used for deploying
the microservices. This short subsection tries to explain the terminology and most
basic concepts of Kubernetes, so that future references to such terminology will be
understandable.

A single microservice is in most cases build out of a containerized application, which
allows independent deployment and execution. Since in some cases a microservice
might be built out of several containers, Kubernetes base unit is a pod. A pod represents
one single instance of a microservice in the system.

Since pods may be redeployed or several instances of one pod may run simultaneous to
make up for high demand of this microservice, there is a need to have one central point
to ask for instances of one kind of microservice. In Kubernetes, this concept is called a
service. Commonly requests are not issued to a pod but to a service which forwards the
request to one of the available microservice instances associated with one service.

To control the number of instances of a single microservice, so called replica sets allow
to horizontally scale it. Horizontal scaling describes the process of providing more or
less instances of a microservice to adapt to a changing load. Opposed to that, vertical
scaling describes the process of making more or less resources available to one single
existing instance of a microservice.

11

2. Foundations

In terms of hardware, there are so called nodes. A node corresponds to one single system
in the cluster. Such nodes may be independent hardware systems or may be a set of
virtual machines.

When mentioning a redeployment in this work, it means to delete all pods, services and
replica sets of the system under test and to reinstantiate them afterwards.

2.7. Performance metrics

According to the IEEE standard 610.12, metrics are a quantitative measure, to which
degree a system, component or process possesses a given attribute. Metrics are used to
evaluate an attribute of a system and to help comparing attributes between different
systems. Performance metrics are metrics which measure aspects which help when
evaluating performance of a system.

Typically, there are four main types of system performance metrics: CPU utilization,
memory utilization, network I/O and disk I/O [Ngu+12]. Additional measurements of
metrics are collected on application level. A performance counter is a concrete dataset
of a given performance metric. A typical load test may collect thousands of performance
counters [Sha+15]. Therefore, tooling support is needed when software performance
analysts try assessing the performance of a system.

The performance attributes scalability, elasticity and resilience are of special importance
for evaluating microservices. Scalability is a performance attribute, which describes
the degree to which a system is able to sustain increasing workloads by making use
of additional resources [LEB15]. Elasticity adds the possibility of decreasing available
resources and is based on how much time the system needs to perform such an adaption
[LEB15]. Resilience describes “ the ability of a system to sustain external and internal
disruptions without discontinuity of performing the system’s function or if the function
is disconnected, to fully recover the function rapidly” [HBRM16].

Since those performance attributes can not be directly measured, software performance
engineers use special metrics and combinations of metrics to evaluate scalability, elastic-
ity and resilience.

2.7.1. Measuring scalability

Scalability is a performance attribute, which describes the degree to which a system is
able to sustain increasing workloads by making use of additional resources [LEB15]. In
contrast to scalability, it contains the possibility of reducing available resources. Tsai,

12

2.7. Performance metrics

Huang, and Shao [THS11] propose to observe performance change and performance
variability for evaluating scalability in a cloud computing environment. This thesis
assumes that microservice environments and cloud computing environments are compa-
rable in their requirements to scalability. Tsai et al. build their scalability metric upon
the following definitions.

• The waiting time Tw is defined as the sum of the queuing time Tq and the execution
time Te.

Tw = Tq + Te

• CR is the sum over all resources of the product of all resource allocations of a
resource Ri and the time Ti the resource is used.

CR =
∑

i

Ri ∗ Ti

• The performance/resource ratio PRR is the product of the inverse waiting time Tw

and the inverse CR value.

PRR = 1
Tw

∗ 1
CR

• Finally the performance change PC is defined as

PC = PRR(t)W (t)
PRR(t′)W (t′)

with PRR(t) as the performance resource ratio of the system under a certain work
load W (t) and PRR(t′) and W (t′) being the performance resource ratio and the
work load at a different time t′. In a scalable system, PC should have a value close
to 1. A value of 1 means, that the resource need per work instance does not change
with working loads.

• The performance variance PV is the standard deviation of the performance change
for multiple test runs with the same constant workload.

PV = E[(PCi −
1
n

n∑
i=1

PCi])2]

A scalable system should have a performance variance close to zero. A value of
zero represents that the performance change is constant.

13

2. Foundations

2.7.2. Measuring elasticity

Scalability is a prerequisite for elasticity [HKR13]. While scalability describes the
ability of a software system or component to adapt to increasing workloads by making
usage of additional resources, elasticity adds the aspects of how fast, how often and
at what granularity the system or component adapts. Herbst, Kounev, and Reussner
[HKR13] propose a metric for elasticity which uses the concept of underprovisioned
and overprovisioned states. Underprovisioned states are states in which the system
or component does not have enough resources available. Overprovisioned states are
states in which the system has more resources available than needed. To recognize such
states, Herbst et al. propose to build a matching function which gives information on
when the system should scale down or up. Afterwards they use metrics like average
time for the system to leave an underprovisioned state and the average amount of
underprovisioned resources in the system to evaluate the overall elasticity. Another
approach for measuring elasticity, is given in the work of Islam et al. [Isl+12]. It is
the most commonly referenced approach [LEB15]. They as well consider under- and
overprovisioned states, but use a cost penalty for evaluating the elasticity. In general
Islam et al. integrate over cost resulting out of the difference between resources which
were needed and resources that were available. They propose different approaches to
evaluate a cost of under- and overprovisioning. The approach for underprovisioning
uses quality of service metrics to calculate a violation metric regarding the SLAs. For
overprovisioning they use the actual cost, which the additional resources cost.

2.7.3. Measuring resilience

While all the three software attributes, scalability, elasticity and resilience, are challeng-
ing to measure, resilience seems to be the toughest one to measure. The most common
definition [Pas+15] of resilience is, the one given by Hollnagel, who defines it as: “the
intrinsic ability of a system to adjust its functioning prior to, during, or following changes
and disturbances, so that it can sustain required operations under both expected and
unexpected conditions” [Hol13]. Pasquini et al. [Pas+15] mention in their work, that
although this definition is good for understanding the general concept of resilience, parts
of the resilience engineering community argue that it is not well suited for measuring
resilience. Strigini [Str12] states in his work that resilience and dependability are broad
concepts, covering several attributes and therefore several possible metrics are available.
One possible metric which targets the dependability is the overall system availability in
a realistic setup. Such a metric is very dependent on the SUT and its load, it therefore
does not perform well when comparing different systems. Furthermore, the results when
artificial load is being used as a reference highly depend on what kind of disturbances of

14

2.7. Performance metrics

the system are present in the load. In addition, the possibility of a human aspect exists
as well. If the system which is regarded, includes human beings, which it often does,
factors like alertness or fatigue will influence the system resilience [Str12]. Even aspects
like the graphical user interface may be considered, since it may cause more frequent
failures and therefore may be less often able to sustain required operations. Other
metrics which target tolerable disturbances, may be metrics like the ability to return to
the original state with k faulty components, communication up to a t-bit communication
error or m erroneous inputs.

15

Chapter 3

Related work

This section describes related research concerning the topic of automated performance
regression detection not limited to microservice architectures. Surprisingly, at the time
of writing the existing research work on performance of microservice systems seems
to be limited. The computer science bibliography dblp [Dbl] returns only 8 results for
the query “microservice performance”. The related work on microservice architectures
therefore is a short section. Nonetheless this chapter will give a short overview over the
existing research work on microservice performance attributes. Afterwards it offers a
detailed description of existing performance regression detection approaches.

3.1. Microservice performance research

Most similar to this work is the master thesis “Performance anomaly detection in mi-
croservice architectures under continuous change” by Düllmann [Dül17]. Although the
title suggests that the research focus was nearly identical, the two works differ a lot.
Düllman focused on observing the performance impacts of changes in a running microser-
vice environment, while this work focuses on redeploying a test system for regression
detection. In his work, he changed performance attributes of a single microservice
during runtime. Opposed to that, the approach of this work focuses on observing the
whole system and redeploying the whole system for every single change. Furthermore,
Düllmann used architectural knowledge of the microservice system and focused mainly
on how to prevent false positives triggered by high loads, which are observable during
the deployment of a microservice. This work does not rely on architectural knowledge,
although some of the approaches internally build a model of the relationship between
the different metrics. Additionally, Düllmann used an artificial microservice system
which consisted out of three microservice instances. This thesis evaluates an existing
microservice platform which consists out of more than 20 microservice instances and has

17

3. Related work

to some amount a realistic use case. Finally, this work includes some general research
focusing on the behavior of microservice metrics.

Gribaudo, Iacono, and Manini [GIM17] performed research on simulation-based estima-
tion of performance attributes of microservice architectures. Their work mainly focused
on infrastructure parameters of a microservice system which may influence performance.
A simple example for such a parameter would be the number of available nodes in a
cluster.

In a general survey, presented different problems and possible research directions in
the field of microservices. They argue that special solutions for performance regression
detection have to be investigated. Although this thesis’s work evaluates the possibilities
of common techniques and researches their possibilities and challenges. It shows their
performance and highlights existing challenges.

The work of de Camargo et al. [Cam+16] focused on developing a testing framework for
microservice systems. They tried to tackle test automation and the problem of keeping
test specification consistent with rapidly changing microservices.

3.2. Existing performance regression detection approaches

There are several approaches to performance regression detection available. Since
one of the main goals of this thesis is evaluating and investigating their usability for
microservice architectures, the following sections will go into detail on how the different
approaches work.

Inspired by the principles of a systematic literature review, the following approaches
were found. The main goal of the research was to find a broad collection of performance
regression detection approaches. To find those approaches, the two common research
search engines dblp and Google Scholar, were used. As initial search queries “perfor-
mance regression detection” and “performance regression test” were chosen. Out of
those results, relevant papers which describe approaches for performance regression
detection were selected. The related work sections of the selected papers, were used for
finding further relevant research works.

3.2.1. Student t-test based performance regression detection

Statistical tests, such as the Student t-test are a commonly used approach in comparing
measurements of two different versions of the same software system [Sha+15]. In
a study, Shang et al. [Sha+15] propose a new approach to performance regression

18

3.2. Existing performance regression detection approaches

Table 3.1.: Overview Student t-test

Sp
ee

d
of

de
te

ct
io

n

Su
pp

or
t

of
m

et
ri

cs

A
da

pt
.

to
ch

an
gi

ng
lo

ad
s

C
om

pl
ex

it
y

Lo
ad

te
st

in
g

re
po

si
to

ry
C

om
m

on
ne

ss

C
ha

ng
e

in
di

st
ri

bu
ti

on

Several
runs till
reaching
confi-
dence
thresh-
old

Yes No* 1 step No Very
common

No*

detection. They compare their results, which will be presented in Section 3.2.2, to
classical statistical hypothesis tests such as the Student t-test [Sha+15]. They conclude
that such tests do not perform well and lead to a high number of false positives. Although
their research shows that the quality of results depends highly on the chosen SUT, they
conclude that the overall performance is not very promising.

3.2.2. Regression models on clustered performance counters

In the above mentioned work, Shang et al. [Sha+15] propose an approach which uses
regression models on clustered performance counters. Regression models are models
which allow to make predictions about dependent variables, given the values of some
other explanatory variables. Such models are built out of sets of data points. There are
different types of regression models. For example, linear regression models try to model
the relationship of the data set by use of a linear function.

Clustering is a method which allows bundling of similar datasets. Since software systems
can have thousands of performance counters, it is important to do a selection of metrics
which shall be regarded. Especially when working with a model-based approach it
would be infeasible to build a model for every counter.

19

3. Related work

Shang et al. therefore eliminate performance counters which can be considered redun-
dant. In terms of redundancy analysis they use R2 to step-wise eliminate performance
counters over a predefined threshold. In a second step, Shang et al. cluster the per-
formance counters, to reduce the models to be build. They use an n-dimensional
representation for the performance counters. Each dimension represents a time step /
slice of the load test and holds the corresponding value of the performance counter. By
use of the Pearson distance metric, a hierarchical clustering based on average cluster
distance is performed. By use of the Calinski-Harabasz stopping rule the clusters are
split into separate clusters. Out of every cluster, the performance counter which deviates
the most between the two software versions, is selected. Deviation is measured by
use of a Kolmogorov-Smirnov test. For this counter, a linear regression model with
the remaining counters as independent variables is build. Finally, for the performance
regression detection, the model which was build out of the performance counters of
an earlier version is used to predict the expected value for the selected performance
counter of every cluster. This prediction is compared to the real values and the average
prediction error is calculated. If the maximum of all average prediction errors, is higher
than a given threshold, a performance regression alert is issued. Figure 3.1 visualizes

remove
redundant
counters

cluster
performance

counters

for each
cluster

build
regression

model

accum.
errors

predict
expected

values

threshold
to trigger

alert

old

new

Figure 3.1.: Visualization of the process of regression models on clustered performance
counters regression detection

the general process of the approach.

The results of the approach are promising. The proposed approach leads to better
results than pure statistical Student t-tests or manual selection of variables for regression
models.

20

3.2. Existing performance regression detection approaches

Table 3.2.: Overview regression models on clustered performance counters

Sp
ee

d
of

de
te

ct
io

n

Su
pp

or
t

of
m

et
ri

cs

A
da

pt
.

to
ch

an
gi

ng
lo

ad
s

C
om

pl
ex

it
y

Lo
ad

te
st

in
g

re
po

si
to

ry
C

om
m

on
ne

ss

C
ha

ng
e

in
di

st
ri

bu
ti

on

One run Yes - 6 steps No - No*

Since there is no direct need for two separate test runs, the duration of this detection
approach is smaller than the classical approach of two separate runs to make the loads
comparable. This approach could be used for microservice performance metrics such as
scalability, elasticity, and resilience as well.

3.2.3. Signature-based performance regression detection

Malik, Hemmati, and Hassan [MHH13][Mal10] propose an approach which is similar
to the one of Shang et al. [Sha+15]. They focus on the reduction of relevant datasets
as well. Malik et al. call the resulting small sets of performance counters with its
values signatures. Their performance regression detection focuses on comparing such
signatures.

Instead of clustering, they make use of principal component analysis (PCA). Principal
component analysis is a statistical procedure which projects an n-dimensional dataset to
a q-dimensional dataset with q < n. The results of the PCA are principal components
(PC). PCA keeps the information loss of this projection low. Malik et al. suggest that PCA
scales better than clustering algorithms. Afterwards they select a subset of PCs which
represents 90% cumulative variability. This means that the selected PCs explain at least
90% of the variability of the collected measurements.

Afterwards they do a “PC decomposition” with the goal of extracting the most relevant
performance counters out of the PCs. The exact technique of “PC decomposition” is not
described in detail and there is no common technique with that name. For a possible
reimplementation in later parts of this work, “PC decomposition” is understood as using
the values of the linear combinations for the single PCs and metrics. For extracting the

21

3. Related work

most relevant performance counters out of this decomposition, they calculate weights
for each performance counter and principal component and select the most relevant
ones by use of a tunable threshold. The resulting weights of performance counters of
a baseline test, are compared to the weights of the same performance counters in the
newer version of the system. A deviation in weights suggests, that the distribution of the
performance counter values have changed between the two versions. If the deviation
crosses a certain threshold, a performance regression alert is issued.

principal
component

analysis

select 90%
cumulative
variance

for each
PC

calculate
weights of

metrics

bundle
old

new

compare
signatures/

weightsprincipal
component

analysis

select 90%
cumulative
variance

for each
PC

calculate
weights of

metrics

bundle
signa-
ture

signa-
ture

Figure 3.2.: Visualization of the process of performance signature-based regression
detection

Figure 3.2 visualizes the general process of the approach.

Malik et al. propose another approach, which is supervised. This means, that manual
inspection and labeling of data is needed. Although the labeling is only needed for the
performance counters of the baseline tests, this approach is not considered in this paper.
There are two reasons for this:

1) Malik et al. conclude that it is rarely possible for performance engineers to do such
a labeling and

2) the alternative approach of PCA does only perform slightly worse.

Since the signature-based approach does not have specific requirements towards the
used performance measurements, it is expected to be easily adapted for microservice
performance metrics. Nonetheless, it is unclear whether the microservice performance
metrics would be excluded in the performance counter reduction phase.

A big advantage of this approach is that it focuses on large scale software systems and
therefore is expected to perform well in terms of scalability to big software systems.
Additionally, Malik et al. suggest that the PCA approach performs better than clustering
approaches. A direct comparison to the approach of Shang et al. [Sha+15] may not
be possible, since Malik et al. use k-means clustering as a reference opposed of the
hierarchical clustering of Shang et al. .

In terms of disadvantages, it’s worth mentioning that the given approach offers no direct
solution for changes in load and therefore would need the common double set of load

22

3.2. Existing performance regression detection approaches

Table 3.3.: Overview signature-based performance regression detection

Sp
ee

d
of

de
te

ct
io

n

Su
pp

or
t

of
m

et
ri

cs

A
da

pt
.

to
ch

an
gi

ng
lo

ad
s

C
om

pl
ex

it
y

Lo
ad

te
st

in
g

re
po

si
to

ry
C

om
m

on
ne

ss

C
ha

ng
e

in
di

st
ri

bu
ti

on

40+
samples

Yes No* 3 steps No - No*

tests to assure comparability. Furthermore Malik et al. found out, that their approach
needs at least a base of 40 samples to work. Although they suggest that higher sampling
rates easily tackle the problem, it is an additional requirement which other approaches
do not have.

3.2.4. Performance regression detection with transaction profiles

Ghaith et al. [Gha+13] proposed a new approach for performance regression detection
and did further research on it which was published later [Gha+16]. Their approach is
based on so-called transaction profiles. Transactions are interactions of a user with the
software system to invoke various application functions (e.g., login, browsing catalogs,
etc.). In contrast to the common load metrics of total response time for such transactions,
the approach of Ghaith et al. focuses on calculating the load-independent transaction
profile for a transaction. A transaction profile describes which resource utilization a
single transaction request produces (e.g., CPU usage on node 1, memory usage on node
2, etc.). The associated value to the whole transaction profile is the total time needed
for one single transaction of this profile. Since such a transaction profile therefore
describes the load of a single request, such transaction profiles are considered to be
load-independent. In common setups, often two separate load tests are performed for
performance regression detection to be able to compare the measurements made in
different loads. One test is performed under the same load as the previous one, to be
able to compare the results of both tests in performance regression detection. The other
test is performed under the load which fits the current productive setup and loads. It is
used for capacity analysis or future regression detection. Ghaith et al. report that such a

23

3. Related work

load independent metric makes it possible to eliminate the first of those two test runs,
since the load independent metrics are directly comparable to their earlier values. This
leads to a reduction of load testing duration of up to 50% [Gha+16].

For calculating the transaction profile values, three input parameters are needed. The
first two, response times and resource utilization are common metrics for load testing
setups and have good tooling support. The third one is a Queuing Model Network
(QNM) of the SUT. Building and validating a QNM must be performed manually for
complex systems. After an initially building a QNM, it can be used and updated for later
runs. Furthermore, QNMs of typical deployment topologies exist in research and can
support building the QNM.

Finally, the QNM has to be what Ghaith et al. call reverse-solved. Although there is
no analytical solution for this process, search-based approaches for approximating the
result are applicable. To optimize the duration of such search-based approaches, the
transaction profile of earlier runs may be used as initial starting points.

Case studies of Ghaith et al. show that transaction profiles can be considered a more load
stable metric than total response time, although the transaction profile values still are
impacted by different load levels. Especially loads which lead to high levels of software
contention, are impacting the transaction profile values. For performance regression
detection based on transaction profiles, such loads must be avoided.

Additional inaccuracies in the method result out of ignoring network delays and usage
of the BCMP approximation for QNMs. The BCMP is an often-used class of queuing
networks, which does not exactly fit to realistic setups because it uses concepts such as
infinite queues for servers or the estimation of equal service time for every customer.

For the performance regression detection Ghaith et al. use thresholds calculated by test
runs on software versions with so called performance-safe changes. Those changes are
considered to be of no performance impact. They use a 95% percentile of the deviations
for each transaction type.

3.2.5. Statistical process control techniques using machine learning

Nguyen et al. [Ngu+12] propose an approach to performance regression detection
which is backed by control charts. Control charts are commonly used in statistical quality
control of manufacturing processes. Control charts show whether a process deviates from
an earlier baseline of the same process. To use control charts, two requirements have to
be fulfilled. First, the input parameters of the process should be considerable constant
and secondly, the process output should be of a normal distribution. When trying to use
control charts in software performance regression detection, those two requirements are

24

3.2. Existing performance regression detection approaches

Table 3.4.: Overview transactional profiles

Sp
ee

d
of

de
te

ct
io

n

Su
pp

or
t

of
m

et
ri

cs

A
da

pt
.

to
ch

an
gi

ng
lo

ad
s

C
om

pl
ex

it
y

Lo
ad

te
st

in
g

re
po

si
to

ry
C

om
m

on
ne

ss

C
ha

ng
e

in
di

st
ri

bu
ti

on

One run Yes Yes 4 steps No - No

Table 3.5.: Overview statistical process control techniques using machine learning

Sp
ee

d
of

de
te

ct
io

n

Su
pp

or
t

of
m

et
ri

cs

A
da

pt
.

to
ch

an
gi

ng
lo

ad
s

C
om

pl
ex

it
y

Lo
ad

te
st

in
g

re
po

si
to

ry
C

om
m

on
ne

ss

C
ha

ng
e

in
di

st
ri

bu
ti

on

One run Yes Yes 3 steps Yes Use of
common
tech-
nique

No*

25

3. Related work

not fulfilled. The input parameters of the process, which resembles the load of the SUT,
are not constant. This is the case because load tests use randomizers for load generation,
but even more importantly, load should be adaptable to real production loads, which
change over time. Nguyen et al. propose to use machine learning techniques to learn
parameters of a linear scaling factor to make performance metrics of different loads
comparable. Their assumption is, that in a well-structured system performance metrics
stand in a linear relationship to load. Their evaluation suggests, that this procedure is
very accurate. The second requirement, a normal distribution of output parameters, does
not hold without adaption either. Furthermore, their research shows that most of the
distributions are bi-modal. They explain this with bookkeeping tasks which the system
performs in idle states. Because of those bookkeeping tasks, the normal distribution
does not drop to zero on the left-hand side. Nguyen et al. propose to search for the
local minimum between real load and bookkeeping tasks load in the distribution and
eliminate all loads to the left of it. This filtering leads to a highly improved fitting to
normal distributions in their measurements. Figure 3.3 gives a visual aid for explaining
the filtering approach. The red line shows the original distribution. Some small spikes
on the left-hand side in the lower area of the distribution are cut away by removing
the first maximum. All measurements with values lower than 70 are removed. The
remaining distribution (blue dotted line) fits better to a normal distribution than the
original red one.
The approach of Nguyen et al. stores all results of performance regression tests in one

repository as baseline tests. The performance regression detection therefore does not
have to rely on a single reference version.

Figure 3.4 visualizes the general process of the approach.

This approach has some requirements concerning the used metrics. They have to be
of a normal distribution, or at least have to be filterable to reach a normal distribution
and they have to be in a linear relationship to load. Because of the adaption of the
performance metric values to fit to different loads, a double execution of load tests to
make their results comparable under different loads is not necessary.

Nguyen et al. see their biggest advantage compared to other approaches in the simplicity
and intuitiveness of the approach.

3.2.6. Performance regression unit testing

The approach of Horký et al. [Hor+13] focuses on how performance tests can be inte-
grated into the software development life cycle from the very beginning of development.
They argue that at early stages of development load testing can not depend on the

26

3.2. Existing performance regression detection approaches

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

density plots for CPU usage rate original and adjusted

N = 586 Bandwidth = 1.502

D
en

si
ty

original density curve
adjusted density curve

Figure 3.3.: Visualization of the proposed filtering technique of Nguyen et al.

scale
measurements

create
control
charts

new
compare
violation

ratios
scale

measurements

violation
ratio old

violation
ratio new

filter
measurements

filter
measurementsoldoldold

Figure 3.4.: Visualization of the process of statistical process control-based regression
detection

27

3. Related work

availability of large components and therefore propose an approach which they call
performance unit testing. Unit testing is a technique which is very common in functional
tests. In functional tests, unit tests allow to test even small code segments based on
example data calculated by use of the specification. Performance unit testing is not as
easy as functional unit testing. Most of the time there is no specification of performance
requirements on a low level, which makes verifying fulfillment of those impossible.
Furthermore, performance is hardware dependent which makes a naive comparison
of execution times senseless. Horký et al. therefore propose to use so-called baseline
functions as reference. For example, a baseline function for a sorting algorithm could
be the Java Array sort implementation. In terms of performance regression such a
baseline function could be an earlier version of the method which was considered to be
of sufficient performance. With Stochastic Performance Logic (SPL), a first order logic
for performance comparisons, Horký et al. introduced a way of specifying performance
relations between methods. The evaluation of such a SPL formula is done by statistical
hypothesis testing.

The formulas can be annotated directly into Java code. The tooling support is surprisingly
good if only Java is considered. A command line interface for test execution, automated
HTML report generation, an Eclipse plugin as well as Git and SVN integration for
automated pulls of older project versions as baseline are available [Dev].

The performance regression detection in this approach is done with the Welch’s t-test
[Wel47], although the needed assumption of two sets of independent observations of
random variables with the same distribution does not hold. Horký et al. conclude that
the test is none the less usable, but test repetitions of around tens of thousands are
needed. Furthermore, because of the non-deterministic behavior of load tests, they
propose a 5% threshold for regression detection to avoid false positives. In their case
study, test durations of 27 minutes for a code coverage of 18% are needed. To reach
better test durations, they propose caching of earlier results to prevent duplication of
performance tests.

Opposed to all other approaches of this work, this approach focuses on a unit level. Most
commonly regression detection is performed on a component, integration or system level.
To reach a system level evaluation with performance unit tests, all single components
would need a performance requirement specification and performance unit tests. It
is hard to imagine in a microservice environment because there the spectrum of used
languages and tools is very broad.

28

3.2. Existing performance regression detection approaches

Table 3.6.: Overview performance regression unit tests

Sp
ee

d
of

de
te

ct
io

n

Su
pp

or
t

of
m

et
ri

cs

A
da

pt
.

to
ch

an
gi

ng
lo

ad
s

C
om

pl
ex

it
y

Lo
ad

te
st

in
g

re
po

si
to

ry
C

om
m

on
ne

ss

C
ha

ng
e

in
di

st
ri

bu
ti

on

Thousands
of func-
tion
runs

No Yes Impl.
avail-
able

No Inspired
by com-
mon
tech-
nique

?

3.2.7. Differential flame graphs

Bezemer, Pouwelse, and Gregg [BPG15] propose a visualization approach called dif-
ferential flame graphs for supporting performance regression detection. Flame graphs
visualize how much time a program spends in a certain stack trace during test execution.
The visualization shows the aggregated time on the x-axis and visualizes the given stack
traces on the y-axis. A software performance engineer can use such a flame graph for
developing a better understanding of how much time given functions need for execution
and on which layers of a function call was spent which amount of time. Out of the
flame graphs of two distinct versions of the system, Bezemer et al. propose to build a
differential flame graph. The differential flame graph uses color to show whether and
how much a function’s performance metric increased or decreased. Furthermore, a
differential flame graph can be built upon the differences of the two flame graphs, so that
the resulting differential flame graph only visualizes stack traces of function calls which
changed their performance behavior between the two versions of the software. This
approach is usable for visualizing stack based metrics, such as stack traces of execution.
In an earlier paper Bezemer et al. [Bez+14] did research on how I/O usage could be
collected as a stack based metric.

Although this approach is meant to support a manual performance regression detection
process, an automated implementation is imaginable. A big issue concerning this
approach is the availability of stack based metrics. Especially considering a microservice

29

3. Related work

Table 3.7.: Overview differential flame graphs
Sp

ee
d

of
de

te
ct

io
n

Su
pp

or
t

of
m

et
ri

cs

A
da

pt
.

to
ch

an
gi

ng
lo

ad
s

C
om

pl
ex

it
y

Lo
ad

te
st

in
g

re
po

si
to

ry
C

om
m

on
ne

ss

C
ha

ng
e

in
di

st
ri

bu
ti

on

One run No No* Impl.
avail-
able

No Use of
common
tech-
nique

No

environment, the majority of metrics is not based on stack traces. In their paper, Bezemer
et al. mention that differential graphs may as well be used in graphical user interface
evaluation. A stack-trace equivalent would be the navigation of the user through the
user interface. For microservices, an interesting approach could be using the traces of
a request through the microservice architecture. A possible differential flame graph
would show how a request uses different microservices and how much time the single
interactions need.

3.2.8. Mining performance regression testing repositories

Foo et al. [Foo+10] propose to use data from earlier performance tests to extract associ-
ation rules, which show relations between different performance counters. Figure 3.6
gives examples for possible rules. On the left hand side of each rule are zero to n
observations, which lead to 1 to m resulting observations.

Foo et al. [Foo+10] suggest to detect performance regressions by testing those associ-
ation rules of earlier runs against the data of a newer run. If the confidence in a rule
deviates more than a given threshold, a performance regression alert is issued. In a first
step of their approach, the data of the performance metrics is converted into cardinal
data (low, medium, high). Foo et al. afterwards extract the association rules by use
of data mining concepts on this cardinal data set. They find frequent data sets and
association rules by use of the apriori algorithm which returns support and confidence

30

3.2. Existing performance regression detection approaches

values for possible association rules. These confidence levels are compared between
different versions of a software system, to detect performance regressions.

metric
disrectizationnew

compare
confidences

metric
discretization

rule set
new

rule set
old

apriori
algorithm

apriori
algorithmoldoldold

Figure 3.5.: Visualization of the process of mining performance regression testing repos-
itories regression detection

Figure 3.5 visualizes the general process of the approach.

The results of the approach seem to be comparable to others. The flexibility concerning
use of different metrics seems to be promising for usage in a microservice environ-
ment. The need for a big repository of existing performance load test data may be a
disadvantage of the approach.

{carts network/rx_rate high} → {carts cpu/usage_rate high}

{carts cpu/usage_rate high} → {carts network/tx_rate high, carts-db network/rx_rate high}

{} → {carts memory/usage medium}

Figure 3.6.: Examples for association rules

31

3. Related work

Table 3.8.: Overview mining performance regression testing repositories
Sp

ee
d

of
de

te
ct

io
n

Su
pp

or
t

of
m

et
ri

cs

A
da

pt
.

to
ch

an
gi

ng
lo

ad
s

C
om

pl
ex

it
y

Lo
ad

te
st

in
g

re
po

si
to

ry
C

om
m

on
ne

ss

C
ha

ng
e

in
di

st
ri

bu
ti

on

One run Yes No* 3 steps Yes - No

32

Chapter 4

Comparison and implementation of

approaches

After giving a short overview over the different approaches of performance regression
detection, this thesis first compares the presented approaches to performance regression
detection. In a second step, a subset of the approaches is chosen to be implemented
and evaluated in a microservice environment. Criteria by which the approaches are
compared are introduced.

A second chapter describes how the selected approaches were implemented.

4.1. Selection criteria

This thesis strives to research performance regression detection approaches which are
especially promising for microservice architectures. Therefore, the selection focuses on
criteria which are relevant to the microservice environment.

The main aspects, which are expected to be relevant for performance regression detection
in a microservice environment are:

Speed of detection Since microservice architectures are rapidly changing environ-
ments, one of the biggest issues in integrating performance tests into the delivery
pipeline, is the duration of the overall detection time. Different approaches vary in
the number of test runs needed (e.g., two runs with different loads) or the number
of data points needed for a reliable detection.

33

4. Comparison and implementation of approaches

Support of different metrics/Adaptability to microservice metrics Since the selected
approaches should be able to be enriched with microservice performance metrics
like scalability, elasticity and resilience, it is important that the approach would
generally support use of such metrics.

Adaptability to changing load Not only the overall system is rapidly changing in mi-
croservice architectures, the load of the system under test must be adapted over
time as well to fit the load of the productive system. Approaches which have some
possibility of adapting to changing loads are better suited than those who do not.

Complexity The complexity of the selected approaches is relevant out of two reasons.
First, a complicated approach is hard to understand and results may be complex in
evaluation and communication. Secondly since the extent of this thesis is limited,
approaches which offer an existing implementation or are easier to implement are
more likely to be chosen than more complex ones. Since there is no direct way of
measuring the complexity of an approach, the comparison is done by estimating
the number of different steps which have to be performed to perform the regression
detection. This estimation is not precise and to some extend influenced by personal
experience and subjective opinion.

Need for a load testing result repository Some approaches need a repository of old
load testing results. Since this is considered to be an additional effort for software
performance engineers, such a requirement is considered to be a disadvantage.

Commonness Performance regression detection approaches which are currently more
common than others, are considered to be of more interest in research. Not only
are findings concerning such approaches of common interest, but they may offer an
opportunity to help establishing such an approach in microservice environments.

4.2. Comparison of approaches

Table 4.1 shows a tabular comparison between the approaches for performance regres-
sion detection. The first row, speed of detection, gives an overview what effort in terms
of performance testing is needed for starting the regression detection.

The second row, support of metrics, expresses how easily the given approaches are
adaptable to new or different metrics.

Unit testing is considered to be not adaptable, since the tests are performed on a function
level, where interesting aspects such as inter process communication and scalability are
not directly visible. Since differential flame graphs are only usable for datasets which
are stack-based, this approach is only usable for few metrics.

34

4.2. Comparison of approaches

The third row, adaptability to changing loads, expresses whether the algorithm of the
approach includes mechanisms to deal with changing loads when comparing the current
system with an older version. The value “No*” indicates that although the approach
does not tackle the issue, the solution of repeating the new test under the old load set
up is possible. Since this approach doubles the load testing time, it is considered to be a
disadvantage.

The forth row, complexity, tries to grasp the complexity of the given approach. Since
such a comparison is not possible in general, the comparison is done by estimating
the steps needed to execute the algorithm. As an example: Considering the approach
of signature-based performance regression detection (Section 3.2.3), one must do a
principle component analysis, afterwards a principle component decomposition and
finally do a comparison of the retrieved performance signatures. Overall those are
considered 3 separate steps. As said, this comparison is only chosen because of a lack of
better ways to compare complexity.

The fifth row, load testing repository, expresses whether the given approach needs a
repository of old load tests. The approach of statistical process control (Section 3.2.5)
needs a repository for machine learning of the α and β values of the linear models.
Mining Repositories (Section 3.2.8) needs a repository to build the association rules.

The sixth row, commonness, describes how common the approaches are in comparison
of usual techniques of software performance engineering. The Student t-test (Section
3.2.1) is a very common approach [Sha+15]. The statistical process control approach
(Section 3.2.5) uses control charts, which are commonly used charts in process control.
The unit testing approach (Section 3.2.6) is inspired by common functional unit tests.
The differential flame graph approach (Section 3.2.7) uses the, according to Bezemer et
al. [BPG15], common visualization of flame graphs.

The last row, change in distribution, shows whether the approach is sensitive to changes
in the distribution of the collected data sets. “No*” means, that the algorithm itself does
not do a distribution change detection, but when using the right metrics, like variance
of total response time, a detection of distribution change is possible.

35

4.
C

om
parison

and
im

plem
entation

ofapproaches

Table 4.1.: Tabular comparison between approaches

Approach Student T-
Test

Clustered
counters

Signature-
based

Transac-
tional
profiles

Statistical
process
control

Unit test-
ing

Differential
flame
graphs

Mining
reposito-
ries

Description 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8

Speed of
detection

Several
runs till
confidence
threshold

One run 40+ sam-
ples

One run One run Thousands
of function
runs

One run One run

Support of
metrics

Yes Yes Yes Yes Yes No No Yes

Adaptability
to chang-
ing loads

No* - No* Yes Yes Yes No* No*

Complexity 1 step 6 steps 3 steps 4 steps 3 steps Impl. avail-
able

Impl. avail-
able

3 steps

Load test-
ing reposi-
tory

No No No No Yes No No Yes

Common-
ness

Very com-
mon

- - - Use of
common
technique

Inspired by
common
technique

use of com-
mon tech-
nique

-

36

4.3. Selection of approaches

4.3. Selection of approaches

Table 4.1 gives a tabular overview over the aspects of the different approaches.

In this thesis, the approach of performance unit testing and differential flame graphs
will not be further researched. Performance unit testing does not fit the targeted
testing scenario because it tests on a unit level. Although regression testing can be
performed on unit level, the more common use case is to perform it on a system or
component level. Furthermore, use of different tools and languages is very common
in microservice environments. Proper implementation of performance unit tests would
therefore be nearly impossible since they depend highly on the chosen languages. The
existing research concerning scalability, elasticity, and resilience offers no possibilities of
collecting those metrics on a unit level.

Differential flame graphs will not be further considered in this thesis because their
use case, especially in terms of metrics, is too narrow. Furthermore, it is unclear how
an automated regression detection approach would be realized with those graphs.
Additionally, future applications of including measurements w.r.t. scalability, elasticity,
and resilience are not applicable. Differential flame graphs could nonetheless be a
promising visualization for traces throughout the microservice system.

Although offering a performance boost by trying to perform load independent tests,
the technique of transaction profiles is not further looked into. The main reasons are
that the implementation of the approach seems quite time consuming. Additionally, the
results of the research work suggested that the results were only to a limited degree load
independent. Furthermore, the need for a queuing model of the specific system under
test is an additional burden that is non-trivial to realize for a microservice architecture.
Networking delays were not considered in the original approach. Since network traffic
is one important key aspect of microservice architectures, this might be more important
than first expected. Lastly it is unclear how well and how fast a search-based reverse
solving of a queuing network could be performed.

The Student t-test, the signature based approach and the statistical process control
approach will be suspect of a practical evaluation.

The Student t-test is chosen because it is very common and simple to implement. It is
therefore a good choice to evaluate other approaches against. This technique is often
used although it is expected that not all performance metrics are normal distributed and
it therefore should not be applicable or handled with care.

The approaches of “Regression models on clustered performance counters” and
“Signature-based performance regression detection” are considered to be similiar. Both
approaches focus on minimizing the number of relevant counters to compare. Malik

37

4. Comparison and implementation of approaches

[Mal10] directly compares his PCA based algorithm to a cluster based algorithm and
concludes that the PCA based algorithm outperformed a clustering approach. Although
Shang et al. [Sha+15] do not stop after clustering but do further work by building
regression models on top of them, together with the fact that [Mal10] promises to be
easier to implement, Signature-based performance regression detection” is chosen while
“Regression models on clustered performance counters’ is not being implemented.

The approach of Nguyen et al. [Ngu+12] is interesting for two reasons. First of all,
they propose a technique to turn most of the non-normal distributed measurements into
normal distributed measurements. This could be interesting for the Student t-test as
well. Secondly by choosing control charts as basic technique they use a very common
approach known in software performance monitoring.

Last but not least, the approach of Foo et al. [Foo+10] is chosen because of its simplicity
in implementation and because by sticking to very basic ordinal versions of the data
set, it is very special in its way of approaching the problem of performance regression
detection. It is expected that because of its nature it should perform differently and it
may be able to detect different kinds of regressions.

4.4. Implementation of approaches

For all selected approaches, the basic setup shown in Figure 5.2 was chosen. A local
mirror of the InfluxDB, a Java implementation and an R server were used. The main work
of the implementation was implementing the approaches in Java. Since all approaches
use similar functionalities, first a general framework for performance regression analysis
was written. The key features of it are connecting to the InfluxDB by use of the REST
API, extracting single test runs out of the raw measurements, normalizing the recorded
measurements as described in Section 5.2.2, offering a connection to the R server
and evaluation functionalities to later evaluate the set of runs with regressions and
without. As described later, the R server offers a set of different statistical and numerical
techniques which are well documented and tested. It helps avoiding implementation
errors by building upon well tested structures.

The following sections give a short description of the implemented approaches as well as
an algorithmic pseudo code representation. All algorithms share the same basic interface
of DetectRegressions(repo, test). repo is the representation of the load testing repository
containing all past load tests and test contains the performance measurements of the
new test run on which the regression detection should be performed. Those two data
structures should be imagined like databases where the corresponding fields link to
corresponding datasets. The reason for this analogy is that in the real implementation

38

4.4. Implementation of approaches

repo and test indeed are kept in the InfluxDB. For example repo.pods returns a set
of representations of all the pods which were observed in the load testing repository.
pod.metrics for example would return a set of all metrics which were collected for a
certain pod.

4.4.1. Student t-test based performance regression detection

The Student t-test was the easiest to implement. Since there was no reference paper
describing a performance regression detection approach with the Student t-test, the
approach was implemented in a way which would be expected in a performance engi-
neering use-case. Algorithm 4.1 shows the algorithm used for performance regression
detection with the Student t-test. The algorithm basically describes that for every singe
pod and metric a Student t-test is performed (line 7) and if the p value is lower than
0.05 a regression is reported (line 9). For the Student t-test and calculating means the R
implementations was used.

Algorithm 4.1 Student t-test regression detection pseudo code

1: procedure DETECTREGRESSIONS(repo, test)
2: for all pod ∈ repo.pods do
3: for all metric ∈ pods.metrics do
4: allOldData← repo.LASTMEASUREMENTSOF(pod,metric)
5: allNewData← test. ALLMEASUREMENTSOF(pod,metric)
6: if allOldData.variance ̸= 0 then
7: pV alue←TTEST(allOldData.mean,allNewData)
8: if pV alue ≤ 0.05 then
9: REPORTREGRESSION(pod,metric)

10: end if
11: end if
12: end for
13: end for
14: end procedure

4.4.2. Statistical process control techniques using machine learning

The machine learning aspect of this approach was neglected in the evaluation, since
it is not directly associated to the detection approach. For sake of reducing evaluation
complexity, no different loads were used in the observation. Therefore, the machine
learning part of the approach should not be relevant.

39

4. Comparison and implementation of approaches

Algorithm 4.2 shows the used approach in pseudo code. For every pod and metric, the
algorithm performs an evaluation of the control chart violation ratios. If the violation
ratio increased, a performance regression is reported. The lines 6 to 14 may be irritating.
They implement the filtering approach to get more normal distributed data. The filtering
is only performed if the p value of the Shapiro Wilk test increased by doing so. The R
implementation was used for performing the Shapiro Wilk test and calculating means
and standard deviations.

4.4.3. Signature-based performance regression detection

The signature-based performance regression detection approach extracts performance
signatures by use of principal component analysis (PCA). Algorithm 4.3 shows the
pseudo code implementation of the algorithm. Basically, the performance signature
of an old and a new test are generated (line 2 to 5) and afterwards compared (line 6
to 15). The signature extraction applies PCA (line 20) to a matrix of the performance
measurements. In this matrix, the single rows represent different measurements and
the different columns represent different metrics. To apply the PCA, zero variance
measurements have to be removed first. This step is left out in the pseudo code to make
understanding the code easier. The final signature is build out of the first x principal
components which have an accumulated variance of 90% of the original data set. For
every principal component the weights of the metrics are afterwards extracted out
of the corresponding fields of the eigenvector. The eigenvector represents the linear
combination of the metrics that results in the certain principal component.

4.4.4. Mining performance regression testing repositories

The approach of mining performance regression testing repositories uses the apriori
algorithm to extract association rules out of the measurements. Algorithm 4.4 shows
a pseudo code implementation of the approach. After extracting the association rules
(line 2 to 3) the confidence change is calculated. If it is higher than a certain threshold
(0.02 in this example) a performance regression is reported.

For performing the apriori algorithm the measurements first have to be transformed into
a solely ordinal type of data (line 13 to 27). Afterwards the resulting data set is put into
the apriori algorithm. The apriori algorithm extracts all rules which have a minimum
support and confidence level. These two thresholds are adjustable but not shown in this
pseudo code representation.

40

4.4. Implementation of approaches

Algorithm 4.2 Statistical process control techniques regression detection pseudo code

1: procedure DETECTREGRESSIONS(repo, test)
2: for all pod ∈ repo.pods do
3: for all metric ∈ pods.metrics do
4: allOldData← repo.ALLMEASUREMENTSOF(pod,metric)
5: allNewData← test. ALLMEASUREMENTSOF(pod,metric)
6: pV alueOrig ←SHAPIROWILKTEST(allOldData).pV alue

7: if pV alueOrig ≤ 0.05 then
8: allOldDataF iltered, cutV alue←REMOVEFIRSTPEAK(allOldData)
9: pV alueF iltered←SHAPIROWILKTEST(allOldDataF iltered).pV alue

10: if pV alueF iltered > pV alueOrig then
11: allOldData← allOldDataF iltered

12: allNewData← {x ∈ allNewData : x > cutV alue}
13: end if
14: end if
15: bV io←GETVIOLATION(allOldData,allOldData)
16: tV io←GETVIOLATION(allNewData,allOldData)
17: if tV io > bV io then
18: REPORTREGRESSION(pod,metric)
19: end if
20: end for
21: end for
22: end procedure
23:

24: procedure GETVIOLATION(testData, refDat)
25: total← 0
26: violation← 0
27: for all val ∈ testData do
28: total← total + 1
29: if val /∈ [refDat.mean− 3× refDat.sd, refDat.mean + 3× refDat.sd] then
30: violation← violation + 1
31: end if
32: end for

return
violation

total
33: end procedure

41

4. Comparison and implementation of approaches

Algorithm 4.3 Signature-based performance regression detection pseudo code

1: procedure DETECTREGRESSIONS(repo, test)
2: lastOldRun← repo.last

3: lastNewRun← test.last

4: oldSignature←EXTRACTSIGNATURE(lastOldRun)
5: newSignature←EXTRACTSIGNATURE(lastNewRun)
6: for all x ∈ newSignature.range do
7: for all metric ∈ newSignature.pcs[x].metrics do
8: if x ∈ oldSignature.range ∧ oldSignature.pcs[x].contains(metric) then
9: if abs(newSignature.pcs[x][metric] − oldSignature.pcs[x][metric]) >

0.02 then REPORTREGRESSION(‘signature changed significantly ’,metric)
10: end if
11: else if newSignature.pcs[x][metric] > 0.02 then
12: REPORTREGRESSION(‘signature has new significant metric’,metric)
13: end if
14: end for
15: end for
16: end procedure
17:

18: procedure EXTRACTSIGNATURE(run)
19: measurementMatrix←GETMEASUREMENTMATRIX(run)
20: pcaRes←PCA(measurementMatrix)
21: cummulativeV ariance← 0
22: result← {}
23: for all pc ∈ pcaRes.pcs do
24: if cummulativeV ariance < 0.9 then
25: cummulativeV ariance← cummulativeV ariance + pc.var

26: result.add(pc)
27: for all metric ∈ run.metrics do
28: result.lastPc[metric]← result.lastPc.eigen[metric.numb]
29: end for
30: else
31: break
32: end if
33: end forreturn result

34: end procedure

42

4.4. Implementation of approaches

Algorithm 4.4 Mining performance regression testing repositories pseudo code

1: procedure DETECTREGRESSIONS(repo, test)
2: allOldRules← repo.EXTRACTRULES(repo)
3: allNewRules← repo.EXTRACTRULES(test)
4: for all x ∈ allOldRules, y ∈ allNewRules : x.type = y.type do

5: confidenceChange← 1− x.conf · y.conf + (1− x.conf) · (1− y.conf)√
x.conf 2 + (1− x.conf)2 ·

√
y.conf 2 + (1− y.conf)2

6: if confidenceChange > 0.02 then
7: REPORTREGRESSION(x,y)
8: end if
9: end for

10: end procedure
11:

12: procedure EXTRACTRULES(data)
13: cardinalDataMap← {}
14: for all pod ∈ repo.pods do
15: for all metric ∈ pods.metrics do
16: data← repo.ALLMEASUREMENTSOF(pod,metric)
17: for all val ∈ data do
18: if val.value > data.mean + data.sd then
19: cardinalDataMap.put(val.time, metric + ‘high′)
20: else if val.value > data.mean− data.sd then
21: cardinalDataMap.put(val.time, metric + ‘low′)
22: else
23: cardinalDataMap.put(val.time, metric + ‘medium′)
24: end if
25: end for
26: end for
27: end for

return APRIORI(cardinalDataMap).rules
28: end procedure

43

Chapter 5

Evaluation

The following section introduces the main research questions of this thesis and presents
the chosen methodology for answering them. By use of an empirical study, it presents
an evaluation of the formulated research questions. It gives an in-depth explanation of
the used setup, the system under test and the architecture of the performance regression
detection prototype.

5.1. Evaluation goals

This section gives a short explanation of the research questions of this thesis. Since the
main goal was researching the possibilities and challenges of automated performance
regression detection in a microservice environment, two different focuses were set.
The first one targets possible differences between common monolithic systems and
the microservice environment and its metrics. Since most metrics of microservice
architectures are collected on virtualized systems, different virtualization containers of
one node may influence each other. The second focus is set on the concrete performance
regression detection approaches and their performance in a microservice environment.
The goal of this second focus is to evaluate how well current performance regression
detection approaches perform in the new environment of microservices.

5.1.1. Evaluation of microservice performance metrics behavior

RQ1.1 Which metrics are available and commonly collected?

RQ1.2 How stable are metrics during a run?

RQ1.3 Can metrics be considered or adapted to be of normal distribution?

45

5. Evaluation

RQ1.4 How stable are metrics between system redeployments?

Since load testing measurements and their metrics are the foundation for performance
regression detection, research on the overall behavior of typical metrics is performed.
Main goals of evaluation concern the stability of those metrics. This stability will be
evaluated during a single deployment as well as between several redeployments. If a
metric has a high variance during a test run, long testing durations are needed to gather
statistical significant results. If a metric does vary highly between redeployments, the
values of such a metric during a single test run and deployment are not representative
and several deployments and test runs may be needed to get significant results.

5.1.2. Evaluation of performance regression detection approaches

RQ2 How do the implemented approaches perform in a microservice environment?

The evaluation shall show advantages and disadvantages of existing approaches and shall
evaluate their performance in a microservice setup. A perfect microservice performance
regression detection approach would be expected to be efficient concerning needed
load testing durations as well as the needed evaluation time. Furthermore, the results
of the approach should have a high precision and recall. It should be simple to set up
and use. Furthermore, the results of the regression detection approach should help the
performance engineer in understanding what kind of regression and where it was found.
The selected and implemented performance regression detection approaches will be
evaluated in these categories.

5.2. Evaluation methodology

To answer the question of which metrics are commonly collected, the documentation of
Kubernetes default monitoring tool Heapster was used as a reference.

The remaining questions were answered by performing an empirical study on a reference
microservice system. To evaluate the research questions concerning the behavior of
performance metrics in the context of microservice environments (Section 5.1.1), a
series of 19 load tests, each 4 hours long, was performed in this test setup (Section 5.3).
The SUT and load specification did not change in between the different load tests and
redeployments, since the focus of the metrics behavior research is set on the stability
during a run, in between runs and the distribution of the metrics’ measurements.

A second set of runs was performed on the SUT to answer the remaining research
question of how well the single performance regression detection approaches perform

46

5.2. Evaluation methodology

in a microservice environment. To answer this question, a set of 44 load tests with
durations of 2 hours each were performed. Out of the 44 test runs, 20 were performed
without regressions and contained the unchanged system. Five of the 20 unchanged
runs were used to simulate a performance test repository, which some approaches need.
The remaining 15 runs without regressions were used to evaluate false positives of the
performance regression detection approaches. Additionally, to the 20 unchanged runs,
24 runs were performed with injected regressions. For this purpose, 6 different kinds of
regressions were injected (Section 5.3.6) and of each type of regression 4 load testing
runs were executed. The load specification was not changed in between the single
runs.

The final evaluation of the performance regression detection approaches was performed
by testing every approach with each of the 15 regression-free and 24 regression-including
versions of the SUT. For this final evaluation, all metrics which are described in Section
5.4, except for network and filesystem metrics were used. These metrics were excluded
because they triggered a lot of false positive regression alerts.

5.2.1. Steady state detection

0 20 40 60 80 100 120

15
0

20
0

25
0

30
0

Steady state detection example data

time (minutes)

cp
u

us
ag

e
ra

te
 (

m
ill

ic
or

es
)

selected steady state data

Figure 5.1.: Steady state detection visualization

47

5. Evaluation

When a SUT is deployed and put under load, it needs time to reach a so-called steady or
stationary state. The steady state describes a state of the SUT in which the metrics can
be considered stable. It is expected that in such a steady state, initial loads which may
result from startup, caching and warming up of the overall system have reached a state
in which they change negligibly. The difference between measurements influenced by
early warm up and deployment tasks and steady state metrics is visible in Figure 5.1.
The figure shows CPU usage rate (Table 5.3) of one test run. The red line marks the
point after which the system can be considered to be in steady state.

An often-used naive approach for ignoring initial anomalies in metrics, is to ignore a fixed
time span at the start of each test. Steady state detection is a possibility for speeding up
the regression detection process since it allows to be more precise in removing samples.
Therefore, a relevant amount of load testing is collected earlier.

In this thesis, the naive approach of ignoring a fixed time span at the beginning of
load tests is being used. This approach was chosen since the steady state detection
is not relevant for evaluating the performance between the selected approaches. For
the sake of completeness, it is nonetheless worth mentioning it. One possible way to
implement steady state detection is performing a trend analysis on the measurements
while iteratively removing measurements from the beginning. When a point is reached,
where no trend is observed, the remaining measurements can be considered to be in
steady state. A more detailed description of possible ways to perform steady state
detection is given by Shumway and Stoffer [SS06].

5.2.2. Metric normalization

Since microservice architectures are most commonly deployed in distributed setups,
some challenges rise concerning the simultaneous collection and analysis of those.
According to Foo et al. [Foo+10], there are mainly three issues to tackle:

Clock Skew Since the cluster is built out of different independent machines, the clocks
of the different machines may not be identical. There may be offsets between them,
which could lead to misinterpretations when comparing measurements performed
with different clocks. Furthermore, different metrics may be observed at different
rates, which leads to the fact, that at one certain point of time, there may be one
metric available, but others are not.

Extended Test There may be several measurements collected directly after the test,
where the system may not be under load anymore.

48

5.3. Evaluation setup

Delay The measurements may start collecting data at different offsets. This may be
caused by different start up times or different resource utilizations on the different
nodes.

These challenges were tackled in the testing environment by use of the following
solutions:

Clock Skew In the test environment, measurements were only taken approximately ev-
ery minute. The time offsets of the different clocks therefore should be neglectable,
since no such time intervals are observed which are in the magnitude of common
offsets. Furthermore, for later evaluation of the single metrics and measurements
in the performance regression approaches, the measurements are first linearly
interpolated in strict one-minute intervals, to allow for a best approximation of
the real values of the different metrics at certain times.

Extended Test Similarly to ignoring data collected at the beginning of the test because
of not steady states, a fixed offset at the end of the tests is ignored.

Delay Delays considering the collection of first measurements on the different nodes
are not relevant, since the time to reach a steady state is longer than that of
measurement collection startup. Since all measurements before reaching a steady
state are ignored, this delay can be ignored.

5.3. Evaluation setup

The following section presents an overview over the systems which were used for the
evaluation. It describes the architecture of the performance regression detection setup,
the different software tools which were used and describes the cluster on which the
evaluation was performed.

5.3.1. Overview

Figure 5.2 shows the overall testing and evaluation environment used in this thesis.
Visualized as blue boxes on the left, one can see the system under test. In this thesis
Sock Shop (Section 5.3.2), an artificial sock web shop, is used as a system under test.
To observe the system in a busy state, several Locust (Section 5.3.4) instances simulate
users putting the system under load. The Locust instances are visualized at the bottom
of the figure. Heapster (Section 5.3.3) observes the resource consumption of the system
and the single microservices. Heapster and the Locust load drivers store their collected
data in a central InfluxDB (Section 5.3.3), which is visualized in the center of the figure.

49

5. Evaluation

Figure 5.2.: Overall view on the test environment

Table 5.1.: Specification of the testing nodes
Image Fedora-Cloud-Base-25-1.3.x86_64
CPU cores 4
CPU MHz 2300
RAM 8 GB
Disk space 80 GB

Which metrics are observed, is presented in detail in Section 5.4. The performance
regression detection approach on the right of the figure, communicates with the InfluxDB
and requests the information of the load test metrics. For statistical evaluation of the
data sets, the implemented approaches use an R Server (Section 5.3.5), which is shown
in the bottom right corner. The arrows in the figure visualize data flows between the
single components and show how the components are connected.

Kubernetes (Section 5.3.3) is used for container management and deployment. It runs
on an OpenStack cluster [Ope]. In the cluster, Kubernetes uses three virtual machines
whose specifications are shown in Table 5.1.

5.3.2. Sock shop — a microservices demo application

In their work, Aderaldo et al. [Ade+17] research requirements for microservice research
benchmarks. They research available candidates and evaluate whether they fulfill those
requirements. Although Aderaldo et al. conclude that none of the available open-source
candidates are mature enough to be used as a community-wide benchmark, they argue

50

5.3. Evaluation setup

that they already can be valuable for empirical research. Sock Shop [Soc], one of the
proposed candidates, is a microservice demo application developed by Weaveworks, a
company which focuses on cloud solutions. It consists out of 19 microservices which
are implemented in Java, Go, and Node.js. Although the system is built as an artificial
benchmarking platform, it resembles the back-end of a web shop which sells socks. Sock
Shop was chosen as an evaluation platform for several reasons.

Documentation Sock Shop is quite well documented. Deployment instructions for the
most common platforms are available. An architecture description exists and basic
documentation for the single microservices is available.

Microservice architecture Sock Shop was designed with common architectural pat-
terns in mind. Aderaldo et al. mention service discovery, database per service, and
messaging as examples.

Load tests Sock Shop already offers extensive Locust [Loc] load testing scripts, which
simulate users registering, logging in, browsing the catalogue, ordering socks and
simulating even credit cards in checkout.

Autoscaling Sock Shop offers horizontal scaling scripts for Kubernetes [Kubb]. There-
fore, one of the key aspects of the microservice architecture, high elasticity and
automated adaption to load, is thoroughly represented.

Monitoring Zipkin is integrated in some of the microservices and collects traces through-
out the system. A trace shows how a request propagates through the microservice
system.

5.3.3. Kubernetes, Heapster, and InfluxDB

Kubernetes [Kubb] is an open-source system which offers functionality for deployment,
orchestration, and scaling of microservice containers. Heapster [Heab] is an open source
software which enables container cluster monitoring and performance analysis of the
single containers. In the test setup of this thesis Heapster runs on the Kubernetes cluster
and collects basic performance metrics such as CPU usage, memory usage, or network
load on a container level. The collected data of the load testing tool Locust [Loc] and the
data of Heapster are stored in an InfluxDB. InfluxDB [Inf] is an open source time series
database. A time series database is a database which specializes in storing and querying
data which has an ordered time dimension. Since the obtained metric measurements
are essentially a tuple of time and value, it is sensible to use a time series database like
InfluxDB in this setup.

51

5. Evaluation

5.3.4. Locust — a python load testing tool

Locust [Loc] is an open source load testing tool. It is used to put the SUT under a
constant load. The load testing script of this thesis is inspired by the load testing scripts
which Sock Shop is offering. To make sure that variance in recorded performance metrics
is not a result of high variance in the load which was put on the SUT, it is important that
the load testing tool is able to put the SUT under a steady load with low variance. The
behavior of the load during measurements is evaluated in detail in Section 6.2.1.

5.3.5. R

The R project for statistical computing [R] is a software environment for statistical
calculations and plotting. It offers a TCP server implementation called Rserve. In
this thesis R is used for all kinds of calculations, such as means, median, standard
deviation, apriori algorithm and principal component analysis. Since the libraries are
well documented and tested, the use of R helps avoiding implementation errors. Even
easy calculations such as mean or variance hold a risk of being faultily implemented when
looking at metrics such as available filesystem space in bytes over 400 measurements.

5.3.6. Regression injection

Concerning regression injection, this thesis strives to insert common and realistic perfor-
mance regressions into the microservice system. The regressions were inserted into the
carts microservice. The carts microservice was chosen because it was written in Java
and is easy to adapt. It is connected to a MongoDB database. The carts microservice
was chosen as well for the general research of metric behavior in subsection 5.5.2.
The injected regressions were inspired by performance antipatterns as e.g., researched
by Smith and Williams [SW03] as well as the work of other performance regression
detection research papers [MHH13] [Ngu+12]. The implementations of the antipatterns
“The Ramp” and “One-lane-Bridge” were inspired by pseudo-code from a paper of Keck et
al. [Kec+16]. Section 5.2 shows a tabular overview of the different kinds of regressions
which were inserted.

5.4. Metrics

This section answers research question 1.1 “Which metrics are available and commonly
collected?”. It describes which metrics are commonly available and explains what the

52

5.4. Metrics

Table 5.2.: The different kinds of injected regressions

Type of regression Description

System print [Ngu+12] Adding unnecessary logs in the system standard
output. Comparable to setting a wrong logging
level in production.

DB connection [Ngu+12] A wrong configuration in the database client limits
the number of concurrent open connections to 1
opposed to the default of 100.

One-lane bridge [Kec+16] Occurs when a bottleneck of concurrency exists in
the program. To inject this regression semaphores
were added at critical points in the program.

Ramp [Kec+16] Occurs when processing time increases over time.
This regression was artificially injected inspired
by [Kec+16].

Unnecessary processing [SW03] A calculation does some heavy processing which
would not be necessary. For example evaluating
additional data after a searched result already was
found.

Increased memory usage [Ngu+12] The systems memory usage increases significantly.
This may be due to a so-called memory leak, which
prevents increasing memory loads to be released.

different metrics measure. It offers reasoning for the fact that some metrics are ignored
in the performance regression detection set up.

5.4.1. CPU

CPU metrics are collected by use of the Kubernetes [Kubb] default Container Cluster
Monitoring tool Heapster [Heab]. In Kubernetes, an important unit concerning CPU
usage is millicores (m). Millicores describe a fractional usage of one single core, vCore
or hyperthread, depending on the base system. A container which requests 100 m is
guaranteed half as much CPU as one asking for 200 m [Kubd]. The available CPU
metrics on pod level are listed in Table 5.3 [Heaa].

The metric cpu/usage_rate can be considered to be the microservice equivalent of
common CPU usage. The metric cpu/usage is not considered in this work, since its
cumulative nature would lead to a need for special handling. Furthermore, its data
represents an integral over the cpu/usage_rate.

53

5. Evaluation

limit The limit of available millicores for the pod.
request The guaranteed amount of available resources

meassured in millicores.
usage The cumulative CPU usage on all cores.

usage_rate
The CPU usage of all cores at a certain point of
time measured in millicores.

Table 5.3.: Available CPU metrics in Heapster

Table 5.4.: Available memory metrics in Heapster
limit The limit of available memory for the pod measured in

bytes.
major_page_faults The cumulative number of major page faults of the pod.

A major page fault occurs when memory has to be loaded
from the disk.

major_page_faults_rate The number of major page faults which occurred in the
pod in one certain second. A major page fault occurs when
memory has to be loaded from the disk.

page_faults The accumulative number of page faults of the pod. A page
fault occurs when memory is already available but has to
be mapped by the operating system.

page_faults_rate The number of major page faults which occurred in the pod
in one certain second. A page fault occurs when memory
is already available but has to be mapped by the operating
system.

request The guaranteed amount of memory resources to be avail-
able measured in bytes.

usage The total memory usage of the system measured in bytes.
working_set The working set of the pod measured in bytes. The working

set describes all referenced memory of the pod.

5.4.2. Memory

Memory metrics are collected by use of the Kubernetes [Kubb] default Container Cluster
Monitoring tool Heapster [Heab]. If feasible, the unit of memory metrics is bytes. The
available memory metrics on pod level are listed in Table 5.4 [Heaa].

54

5.4. Metrics

Table 5.5.: Available filesystem metrics in Heapster
usage The total number of bytes used on the filesystem.
limit The total size of the filesystem.
available The number of remaining bytes in the filesystem.

Table 5.6.: Available network metrics in Heapster
rx The total number of incoming network bytes.
rx_errors The total number of errors concerning incoming traffic.
rx_errors_rate The number of errors concerning incoming traffic per sec-

ond.
rx_rate The number of incoming network bytes per second.
tx The total number of outgoing network bytes.
tx_errors The total number of errors concerning outgoing traffic.
tx_errors_rate The number of errors concerning outgoing traffic during

on second.
tx_rate The number of outgoing network bytes per second.

The metrics major_page_faults and page_faults are not considered in this work, since
their cumulative nature would lead to a need for special handling. Furthermore, their
data is represented in the according rate metrics.

5.4.3. Filesystem

Filesystem metrics are collected by use of the Kubernetes [Kubb] default Container
Cluster Monitoring tool Heapster [Heab]. If feasable, the unit of filesystem metrics is
bytes. The available filesystem metrics on pod level are listed in Table 5.5 [Heaa].

5.4.4. Network

Network metrics are collected by use of the Kubernetes [Kubb] default Container Cluster
Monitoring tool Heapster [Heab]. If feasible, the unit of network metrics is bytes. The
available network metrics on pod level are listed in Table 5.6 [Heaa].

55

5. Evaluation

Table 5.7.: Collected response metrics in Locust
status_code The HTTP status code of the response
reason The Reason-Phrase of the response (OK/Accepted/Not

found/...)
url The full request url of the request.
path_url The relative url of the request.
method The method of the request (GET/POST/DELETE).
elapsed The elapsed time of the request in seconds.

5.4.5. Response time

Response time metrics are collected by use of the load driver Locust[Loc]. To implement
this logging, an establishing and writing to the InfluxDB was added to the Python load
testing script. The collected metrics are shown in Table 5.7.

5.5. Description of results

The research question of which metrics are commonly collected in a microservice setup
was already answered in Section 5.4. Section 5.5.1 describes work on research question
RQ 1.2. Section 5.5.2 describes work on research question RQ 1.3.

5.5.1. General metrics behavior

Deviation of measurements during runs

To answer research question RQ1.2 “How stable are metrics during a run?” the distribu-
tions of the single relevant measurements were examined. The corresponding plots can
be found in Appendix A. Figure 5.3 is shown as an example for those plots. The plot
shows the distibution of the measurements divided by its median value. This is done
to facilitate recognizing relative deviations. The measurements exclude a 40-minute
startup time to avoid showing influences of data which were not in steady state. The red
lines show the 25% and 75% quantiles. None of the observed metrics had high devia-
tions of their median values. Only memory/page_fault_rate had some more significant
outliers. No deviations were found out of which major issues for performance regression
detection were found.

56

5.5. Description of results

0.90 0.95 1.00 1.05 1.10

0
2

4
6

8
10

cpu/usage_rate relative to median value density plot

N = 200 Bandwidth = 0.01094

D
en

si
ty

Figure 5.3.: Cpu/usage_rate distribution relative to median value

Normal distributed metrics Nguyen et al. [Ngu+12] mention approaches to filter per-
formance measurements, so that the resulting data is of normal distribution. They do
this because their approach is based on control charts which need normal distributed
data as an input. In their work, they saw that around 88% of their runs have a bi-modal
distribution. 66% of the runs are not of normal distribution concerning the Shapiro-Wilk
test (α = 0.05). After their filtering approach, they could raise the number of runs which
passed the Shapiro-Wilk test to 91%. The main idea for their filtering approach was that
they expected the bi-modal distribution to result out of phases where the system idles
and performs bookkeeping tasks. Therefore, they propose their filtering technique of
removing the data sets which are represented in the first peak of the distribution of the
measurements.

To evaluate whether their findings can be reproduced in the microservice environment of
this thesis, the measurements of the single runs of the 19 redeployments were evaluated.
The findings are depicted in Table 5.8.

The first row shows the number of metric runs. This terminology is chosen to describe
one set of measurements for a single metric and run. Out of those metric runs a majority
describe metrics which are not relevant because they show no variance. Those are for
example metrics such as cpu/request, cpu/limit, memory/limit which are static during

57

5. Evaluation

Table 5.8.: Normal distribution findings
number of metric runs 548
runs with variance ̸= 0 110

runs not normal before filtering 110
runs not normal after filtering 97

runtime or metrics such as filesystem/available for microservices which do not interact
with the filesystem. All of those metric runs show a p-value ≤ 0.05 when performing
a Shapiro-Wilk test and are therefore not considered to be of a normal distribution.
After applying the filtering technique, 97 of those 110 still do not pass the Shapiro-Wilk
test. Those findings are mostly expected. The used dataset already removed the startup
and shutdown phases of the load tests and the system was put under static load. The
idle phases which the filtering tries to eliminate, should already have been removed.
Nonetheless, this shows that the majority of collected metrics can not be considered
to be of normal distribution. Two of the described approaches, the Student t-test as
well as the control chart based approach therefore are at least on a theoretical level not
applicable.

5.5.2. Metrics behavior with redeployments

Behavior of CPU metrics

Figure 5.4 shows the behavior of the cpu/usage_rate metric concerning different rede-
ployments of the same system configuration in the carts microservice. The median is
built upon the test data with the first 40 minutes removed (5.2.1, A.1). 40 minutes
into the test runs there are no trends observable in the cpu/usage_rates any more. The
single points show the corresponding median value during one single test run. The red
line shows the mean value of the median values of the runs for orientation purposes.
Between the maximum and minimum median value of those 19 test runs, lies a range
of 123 millicores. Compared to the mean median value of 113 millicores this range is
highly relevant. The variance of the data set is 703 and therefore comparably high. The
plot suggests that the recorded data has patterns. The median values are strictly alter-
nating between higher and lower values. Furthermore, there are three clusters visible
throughout the test runs. Concerning the alternating behavior of the measurements,
Section 6.2.2 offers a possible explanation, although the reason for the different clusters
would still be unclear.

Figure 5.5 shows the relative deviations of the median CPU measurements throughout
the runs compared to the relative deviations of the median requests per minute of the

58

5.5. Description of results

5 10 15

0
20

40
60

80
10

0
12

0
14

0

cpu/usage_rate median values in different deployments

test run

cp
u/

us
ag

e_
ra

te
 in

 m
ill

ic
or

es

Figure 5.4.: Cpu/usage_rate median in different deployments

load driver. It is clearly visible that the relative deviations of the cpu_usage_rate are
significant higher than the relative deviations of the requests per minute of the load
driver.

Behavior of memory metrics

Figure 5.6 shows plots of the memory usage of the 19 test runs. Every different line
shows the observed behavior of one single test run. This depiction is used because the
memory/usage does not reach a clear steady state. As clearly visible, the memory/usage
plots all show a trend. Therefore, a visualization of the median values is not able to
show a clear picture of the behavior. In the figure, it is clearly visible that memory usage
varies enormously between different deployments. Figure 5.7 shows the distributions of
absolute relative deviation of the median values of the runs. For orientation purposes,
the first violin chart shows the distribution of the median values of the requests per
minute in the different deployments. The figure shows significant differences between
the distribution of the requests per minute and the memory usage as well as the memory
working set. Although the median requests per minute only deviate by a maximum of
around 3%, the median measurements of memory usage and working set deviate by a
maximum of around 14 % during the recorded test runs. This is a finding which could

59

5. Evaluation

0.
00

0.
05

0.
10

0.
15

requests per minute usage_rate

distribution of relative deviations for cpu metrics
re

la
tiv

e
de

vi
at

io
n

fr
om

 m
ed

ia
n

te
st

 r
un

Figure 5.5.: Relative deviations of median CPU measurements during runs compared to
requests per minute of the load driver

be a topic for future research.

Behavior of filesystem metrics

None of the observed microservices produced significant measurements concerning
filesystem usage. The load testing scripts only worked with a fixed number of articles
and used only a fixed number of user accounts. This setting was chosen to reduce the
effect of random action selection. Therefore, at this point no conclusions concerning
filesystem metrics are available.

Behavior of network metrics

Figure 5.8 shows plots of the network rx and tx rate of the 19 test runs. Every different
line shows the observed behavior of one single test run. Opposed to the memory usage
and working set, there’s no clear relationship in between the different runs visible. Even
with different kinds of smoothing the plots do not suggest that the noisy behavior is
similar between the different runs. Nonetheless one can see that the measurements
for network rx and tx rate do not show trends in the different runs. Figure 5.9 shows

60

5.5. Description of results

0 50 100 150 200 250 300

60
0

70
0

80
0

90
0

10
00

memory usage behaviour in different deployments

measurements

m
em

or
y/

us
ag

e
(m

eb
ib

yt
es

)

0 50 100 150 200

60
0

70
0

80
0

90
0

10
00

memory working set behaviour in different deployments

measurements

m
em

or
y/

w
or

ki
ng

_s
et

 (
m

eb
ib

yt
es

)

Figure 5.6.: Memory usage and working set behavior during different deployments

61

5. Evaluation

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

requests per minute usage page_fault_rate working_set

distribution of relative deviations for memory metrics

re
la

tiv
e

de
vi

at
io

n
fr

om
 m

ed
ia

n
te

st
 r

un

Figure 5.7.: Relative deviations of median memory measurements during runs com-
pared to requests per minute of the load driver

the distributions of absolute relative deviation of the median values of the runs. For
orientation purposes, the first violin chart shows the distribution of the median values of
the requests per minute in the different deployments. The figure shows that there is no
significant difference between the relative deviations between the network metrics and
the requests per minute of the load driver. This suggests that the deviations of network
metrics may have only been implicated by variance of load during the different runs.

5.5.3. Approaches

In the following tables, the results show in how many of the total 39 test cases the
single approaches reported which results. R1 to R6 represent the different types of
regressions.

They stand for:

R1: mongo database misconfiguration

R2: unnecessary processing

62

5.5. Description of results

0 20 40 60 80 100

65
70

75
80

85
90

95

network rx rate behaviour in different deployments

measurements

ne
tw

or
k/

rx
_r

at
e

(k
eb

ib
yt

es
)

0 20 40 60 80 100

75
80

85
90

95
10

0
10

5

network tx rate behaviour in different deployments

measurements

ne
tw

or
k/

tx
_r

at
e

(k
eb

ib
yt

es
)

Figure 5.8.: Network rx and tx rate behavior during different deployments

63

5. Evaluation

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

requests per minute rx_rate tx_rate

distribution of relative deviations for network metrics

re
la

tiv
e

de
vi

at
io

n
fr

om
 m

ed
ia

n
te

st
 r

un

Figure 5.9.: Relative deviations of median network measurements during runs com-
pared to requests per minute of the load driver

R3: a one line bridge antipattern injection

R4: unnecessary memory usage

R5: unnecessary system prints

R6: a the ramp antipattern injection

Since the load testing script was focusing on putting load on the carts microservice, some
parts of the system were nearly under no load. Since some approaches struggle with such
measurements, measurements with a median cpu/usage_rate below 10 millicores were
removed. Furthermore, the network tx_rate and rx_rate triggered a lot of false positives.
These metrics were therefore ignored by the approaches. The zipkin microservices were
ignored as well because of too low load.

If an approach issued one or more performance regression alerts, a regression was
found. If no regression alert was triggered, the approach reported no regression in the
system.

Concerning the size of the regressions, R2, R4 and R6 triggered significant changes to
some metrics’ measurements and were expected to be easy to spot. R1, R3 and R5 did

64

5.5. Description of results

Table 5.9.: Performance evaluation of the four performance regression detection ap-
proaches

Approach t-test-based process-
controll-based

signature-
based

mining
repositories-
based

TP 24 16 16 7
TN 0 9 8 10
FP 15 6 7 5
FN 0 8 8 17
Precision 63% 73% 70% 58%
Recall 100% 67% 67% 29%
F-measure 77% 70% 68% 39%
Time needed 3 min 3 min 2 min 26 min

Table 5.10.: Performance of Student t-test regression detection
No change R1 R2 R3 R4 R5 R6

Regression detected 15 4 4 4 4 4 4
No regression detected 0 0 0 0 0 0 0

not have a too significant influence of the system’s behavior those three were expected
to be useful for a more fine-grained evaluation of sensitivity of the approaches.

Table 5.9 shows the resulting cumulative true positives, true negatives, false positives,
false negatives, precision, recall, and F-measure values of the approaches.

Student t-test based performance regression detection Table 5.10 shows the detection
results of the Student t-test-based regression detection. The performance metrics of
the approach are depicted in Table 5.9. The Student t-test did not perform well in this
evaluation. With an α-value of 0.05 the Student t-test issued a performance regression
alert in every set of the test runs. Although the number of detected regressions per test
set varied, they resulted in a range of 46 to 84 regression alerts per test set. It therefore
is far from reaching the needed zero alerts for detecting no regression.

The evaluation metrics for the Student t-test-based approach are depicted in Table 5.9.
The approach has the overall highest F-measure. This is caused by the 100% recall which
the approach reached by reporting every possibility as a performance regression.

Statistical process control techniques using machine learning

65

5. Evaluation

Table 5.11.: Performance of statistical process control regression detection
No change R1 R2 R3 R4 R5 R6

Regression detected 6 2 4 2 2 2 4
No regression detected 9 2 0 2 2 2 0

Table 5.12.: Performance of signature-based performance regression detection
No change R1 R2 R3 R4 R5 R6

Regression detected 7 0 1 4 3 4 4
No regression detected 8 4 3 0 1 0 0

The results of the evaluation runs of the statistical process control-based regression
detection approach are depicted in Table 5.11. It detected 16 out of 24 of the runs with
regressions, although six false positive performance regression alerts were issued as
well. Every type of regression was at least detected once. Concerning the different kinds
of regressions, it was able to detect every kind of regression. As expected, the more
significant regressions R2 and R6 were detected in every of the 4 runs. Although R4,
increased memory usage, was considered easy to spot as well, only 2 of the 4 runs were
categorized right. Overall, it performed better than the Student t-test.

The evaluation metrics for the Student statistical process control-based approach are
depicted in Table 5.9. The approach has with 73% the overall highest observed precision.
It reached a recall rate of 67%.

Signature-based performance regression detection

The detection results of the signature-based approach are depicted in Table 5.12. It
was one of the fastest regression detection approaches. It did build in between 10
to 13 principal components for signature generation. The evaluation metrics for the
signature-based approach are depicted in Table 5.9. The results show a quite similar
performance of this approach as the statistical process control-based. Its performance
metrics are only faintly lower. These differences are not significant.

One of the biggest reasons of why this approach did not perform better is probably
the high and changing number of principal components that had to be to considered
to reach a cumulative variance of 90%. The number of used principal components
varied between 10 and 13. The order of the principal components is relevant to this
approach, but changed in between runs as well. This behavior lead to the fact that only
a small number of metrics per principal component did fit to each other. The regression
detection therefore was quite limited.

66

5.6. Discussion of results

Table 5.13.: Mining performance regression testing repositories performance
No change R1 R2 R3 R4 R5 R6

Regression detected 5 0 4 1 0 2 0
No regression detected 10 4 0 3 4 2 4

Mining performance regression testing repositories

The detection results of the mining performance regression testing repositories approach
are shown in Table 5.13. Its evaluation metrics are depicted in Table 5.9. The approach of
mining performance regression testing repositories did not perform well. Its precision of
58%, recall of 29%, and F-measure of 39% were the worst of all researched approaches.
Three out of six types of regressions were not detected at all (R1, R4, and R6). Two
of those three, R4 and R6, were in the categories of high significance and should have
been easy to spot. It performed worse than all other approaches. It was not able to
detect three out of 6 types of regressions at all. Although it did have the highest number
of true negatives in this evaluation, it seems that it simply had a bias to reporting no
regression. Additionally, this approach was significantly slower. The reason for that is
the used apriori algorithm, which does not scale well to an increasing number of input
elements. For an isolated evaluation of a single microservice’s metrics, the time which
the approach needed was not significantly longer than to other approaches. In such a
setup, all approaches needed around 2 minutes. The approach did need a lot of RAM (4
GB) and time (26 min). The other approaches needed 3 or less minutes and 2 GB of
RAM each.

5.6. Discussion of results

5.6.1. General metrics behavior

The findings suggest that there is no unexpected behavior of performance metrics during
a run. The measurements did not deviate significantly. Therefore the existent deviations
should not be challenging to the performance regression techniques.

5.6.2. Metrics behavior with redeployments

Results for CPU metrics

67

5. Evaluation

The observed behavior of the cpu/usage_rate concerning redeployments has huge
implications for performing performance regression detection in a microservice setups
based on cpu/usage_rate. The difference in metric results between redeployments
is high enough to trigger performance regression detection approaches, although the
system was not changed at all. Furthermore, a CPU performance regression may be
hidden by the fact, that the cpu/usage_rate strives for a lower level in this certain testing
deployment. A possible but very time-expensive solution to this problem would be to run
several test runs throughout several redeployments. This solution would stand opposed
to the very frequent changes, which can be observed in microservice systems.

Further research should be done on why such behavior can be observed. What does
influence the metrics? Are different devisions between the nodes of the cluster and the
microservices a reason for the high variance? Does the busy cluster lead to such high
noise in the recorded median values? Which alternative CPU metrics could be collected
to reach more stable measurements between redeployments?

Results for memory metrics

The observed behavior of the memory/usage has huge implications for performing
performance regression detection. The measurements of the different runs strive for
different target values. This leads to similar issues as with the cpu/usage_rate.

Results for network metrics

The observed behavior of the network metrics does not have huge implications for
performing performance regression detection. The measurements of the different runs
vary approximately equally as the produced load of the load driver.

5.6.3. Approaches

Student t-test based performance regression detection

These measurements are a good example of why the F-measure can not blindly be
trusted for evaluation. In the set of test cases the distribution of tests with a regression
and without a regression is approximately equal. In reality, one would expect that the
big majority of changes to a software system do not introduce performance regressions
to the system. In such a more realistic setup the precision of the approach would drop
significantly. In the current setup, the precision of the approach is already the second

68

5.6. Discussion of results

worst, this would be even worse by using a more realistic ratio of tests without and with
regressions. The approach probably reports that many performance regressions because
its foundation needs normal distributed data. As this work showed, the performance
measurements of the microservice environment were not normal distributed. Further-
more, the deviations of metrics resulting out of redeployments probably had a negative
influence as well. The approach of Student t-test performance regression detection in
microservice systems, is considered to be not applicable at all. A performance regression
detection approach with such a high number of false positives would be of no value in a
realistic setup.

Statistical process control techniques using machine learning

Although the precision of 73% is comparable to the findings of the original work
[Ngu+12], the recall of 67% is quite low for a practical application. These findings are
to some amount surprising, since it was observed that the input data was not of normal
distribution. Normal distributed data sets are a requirement for control charts, which
the approach is based on. During development it was observed, that the sensitivity of
the approach highly depends on the size of the load testing repository. Small repositories
lead to a high number of false positives. It is suspected that one of the main reasons why
this control chart-based approach was outperforming the Student t-test that significantly,
is that the control chart-based approach was able to make use of the whole load testing
repository, while the Student t-test only used one test out of the repository as reference.
Since this approach is easy to understand and had some promising results, it may be a
possible solution for performance regression detection in microservice environments.
Nonetheless, the observed performance is considered to be too low for practical applica-
tions.

Signature-based performance regression detection

The approach seemed to be very fast and may therefore be promising for future research.
Nonetheless a solution for the failing mapping of old and new principal components
would have to be found. One huge disadvantage of the approach is that the weights of
metrics in a principal component are a concept not as easily understood as for example
violation ratios. Therefore, it is sometimes not easy to understand why a performance
regression was reported.

Mining performance regression testing repositories

It is suspected that the bad performance concerning true positives, is as well based on
the big data set. The more different measurements have to be consider when extracting
the association rules, the more rules may be lost compared to a smaller subset of
such measurements. The thresholds for selection rules are support meaning the relative

69

5. Evaluation

proportion of the dataset where the rule occurs and confidence describing the probability
that the conclusion of the rule holds true. Support may be sensitive to increasing data
set sizes. For smaller test evaluations, the observed performance of the approach was
better. Nonetheless because of its inability to scale, it does not make sense to apply the
approach to a setting like microservice environments.

70

Chapter 6

Threats to validity

This chapter gives an overview over the different threats to validity of this work. To
every threat an explanation is provided, what was done to reduce the impact of the
threat.

6.1. External validity

External validity describes how far the findings of a work can be generalized. The
remainder of this section will focus on such possible threats [Woh+12].

6.1.1. Sock shop environment

The Sock Shop System [Soc] is as Aderaldo et al. [Ade+17] mention in their work, not a
perfect system for microservice. They conclude that no system is currently major enough
to be used as a community wide benchmark. Some of the conclusions of this thesis may
be influenced by the chosen system under test and describe special properties of the
Sock Shop system. Distributions and measurements may be unique to this system. Since
Sock Shop was implemented as a microservice demonstration platform the associated
risk is considered to be reasonably low.

6.1.2. Kubernetes and Docker

This work focuses on the container orchestration tool Kubernetes and its used default
monitoring tool Heapster. Kubernetes is built upon the virualization of Docker. Some
findings of this work depend on the implementation of Kubernetes (Section

71

6. Threats to validity

refloadOnCluster). Furthermore, the metrics which are available and collected depend
on the used virtualization and the used monitoring tool as well. The findings of this work
can not easily be generalized for use in other orchestration, monitoring or virtualization
tools.

6.1.3. Regression injection

The injected performance regressions of this thesis are of artificial nature. To evaluate
the performance of a single approach, this may lead to bias concerning constructing
artificial regressions, in which selected approaches work especially well. Since this thesis
focuses on an empirical comparison between approaches, there is no approach which is
preferred to work especially well by the conductors. Furthermore, the resulting values
are not used to benchmark the approaches independently. The resulting information is
only used as an ordinal measure, comparing how well the single approaches behave in
direct comparison. These points relativize the influence of the artificial nature of the
performance regressions. In terms of generalization, it is unclear how far the findings of
this work can be used for detecting real regressions in a system.

6.1.4. Approach reimplementations

The selected approaches had to be reimplemented, because no reference implementa-
tions were available. The implementation is highly depended on the referenced research
papers. Inaccuracies in the description of approaches, or misinterpretation may have
lead to an implementation, which does not behave like the original authors intended.
Differences in observations may be based on this fact. The quality of description of the
approaches was considered in the selection of approaches. The approaches which were
implemented, seemed to be clear in their description in most parts. Some minor parts
which were not described in detail, were either not relevant or implemented based on
an educated guess.

6.2. Internal validity

Internal validity focuses on the question of to which extend the conclusions of a work
are valid. It describes whether the performed actions really caused the observed effect
[Woh+12].

72

6.2. Internal validity

6.2.1. Artificial load

Often when performing load tests, one issue considering the validity of results, is whether
the system was put under a steady load. Otherwise, the reason for observed deviations
could lie in variances of the input load. Sometimes, the test drivers, which simulate
users putting load on the system, are not able to put the system under the requested
load. Variance in inputs load lead to a variance in measured metrics. This is of special
relevance to the observations in Section 5.5.2

5 10 15

34
00

35
00

36
00

37
00

38
00

39
00

median requests per minute for different redeployments

test run

re
qu

es
ts

 p
er

 m
in

ut
e

Figure 6.1.: Requests per minute median in different deployments

Figure 6.1 shows the median requests per minute of the Locust load driver. In all runs,
the requests per minute reached a nearly constant level after a short warm up time. A
comparison between median values therefore seems sensible. The standard deviation of
the data set is 48 which is very low in comparison to the mean, which is 3653. Therefore,
the deviations of the input load can be considered to be low. Correlations between the
patterns, which were observed in Figure 5.4, are not obvious. Although not perfectly
constant the median values are distributed in the small range of 172 requests per minute.
Therefore, the load is considered to be of sufficient stability between redeployments.

73

6. Threats to validity

6.2.2. Load on cluster

The cluster itself should not be put under a too high load. If the cluster is not able
to cater to the resource requests of the SUT, measurements may be influenced by this
fact. Figure 6.2 shows the CPU usage of the three nodes of the Kubernetes cluster
throughout the load testing concerning the metric research. The x axis shows the
sequential measurements while the y axis shows the relative CPU usage of the whole
system. There are several things observable. First of all, the different redeployments
can be seen. At the start of each redeployment, all three nodes show a high CPU peak.
Between the redeployments, the nodes all reach a CPU usage level which is not critically
high. The Kubernetes master shows the highest stationary CPU usage with approximately
60% usage rate during a load test. The second plot shows an excerpt of the nodes’
CPU usage rates. A clearly alternating behavior is visible. When the third node (green)
has comparably high CPU usage, the first node has a low usage rate. The same holds
for high CPU usage of the third and low CPU usage of the first node. This probably
depends on the distribution of the single microservices on the different nodes. This
behavior may give at least to some degree an explanation to the behavior observed in
Figure 5.4. The scheduler of Kubernetes, which decides on where to deploy the single
microservices, uses several rules like spreading pods of the same replication controller
over several nodes and keeping resource utilization on the different nodes balanced
[Kubc]. Beginning with version 1.4 of Kubernetes, some controlling exists, which allows
to manually influence how pods are distributed [Kuba]. It may be necessary to restrict
this flexibility of Kubernetes to reach more consistent results.

6.2.3. Busy cluster

The load tests of this thesis were performed on an OpenStack cluster of the University of
Stuttgart. This cluster is being used for other purposes as well. The test environment
therefore was based on a so called busy cluster. Although on the level of virtualization,
the system was under no other load, measurements may be influenced by that fact. This
may be considered an advantage as well, since realistic environments, can be considered
busy as well.

74

6.2. Internal validity

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cpu/node_utilization on different nodes

measurements

cp
u

us
ag

e
of

 th
e

no
de

10.0.14.15
10.0.14.16 (kubernetes master)
10.0.14.17

0 500 1000 1500

0.
05

0.
10

0.
15

0.
20

cpu/node_utilization on different nodes (excerpt)

measurements

cp
u

us
ag

e
of

 th
e

no
de

10.0.14.15
10.0.14.17
10.0.14.15
10.0.14.17

Figure 6.2.: Node CPU usage throughout series of load tests

75

Chapter 7

Conclusion

7.1. Summary

After giving an introduction to the field performance regression detection and to the field
of microservices, this work has given an in-depth overview over research work on ap-
proaches to performance regression detection. The different approaches were compared
to each other and a subset of them were implemented for a future evaluation. Basic
research on the behavior of software performance metrics in between redeployments of
a microservice system has been performed. The measurements showed that some key
metrics such as CPU usage rate and memory usage show significant deviations resulting
out of redeployments.

The evaluation of the different performance regression detection approaches in the
microservice environment showed that some existing approaches do not perform well
considering recall and precision of the regression detection. Although some approaches
such as performance signature-based regression detection and control charts-based
regression performed better than others, the results render no approach fit for practical
use. In the evaluation, the most promising approach was able to reach a recall of 67%
and a precision of 73%.

7.2. Discussion

The most interesting finding of this thesis are the so far unknown performance metric
deviations resulting out of redeployments of a microservice system. Although redeploy-
ments of the whole system are not commonly performed in a microservice environment,

77

7. Conclusion

these findings show that microservice performance measurements have additional pa-
rameters influencing them, compared to measurements in a monolithic application.

This work concludes that the deviations resulting out of decisions of the Kubernetes
scheduler, which decides how to partition the different microservices on the nodes of
the cluster, highly influences the performance of performance regression detection. If
this conclusion is true, microservice performance measurements of one microservice
may be influenced by other microservices with no connection on a software level, but
just are deployed to the same node.

Microservice environments promise some chances to software performance engineers
such as isolated observation of performance metrics in a single microservice. But
there are some open and even unknown challenges like these probably Kubernetes
scheduler-based deviations of measurements.

A more general understanding of microservice performance and the behavior of mi-
croservice performance metrics, would help building efficient performance regression
detection approaches for microservices.

This work showed that performance regression detection has a need for special solutions
in the field of microservice environments. In the following section, some possible future
work is presented.

7.3. Future work

Future work could put a focus on how and to which amount the performance mea-
surements of single microservice instances can be influenced by microservices with
high load on the same node. A possible solution for avoiding the high deviations in
measurements of redeployments, would be to perform the regression detection by only
redeploying the changed microservices. It is unclear whether and to which amount past
developments in the microservice environment would influence such measurements.
Another approach would be to focus on the performance evaluation of single dedicated
microservice instances. Challenges in such research would be how to avoid having to
build extensive stubs for such an isolated evaluation or how to minimize the influence
of other microservices when evaluating in a real microservice environment. In this work,
possible approaches to measuring scalability, elasticity, and resilience were presented.
Future work could evaluate how well those measurements work in a microservice
environment.

78

Chapter 8

Acknowledgements

This work would not have been possible without André van Hoorn and Teerat Pitakrat of
the Reliable Software Systems Research Group at the University of Stuttgart. Especially
without the technical support of Teerat Pitakrat setting up the microservice environment
would have been a lot more work. Additionally, I have to make a shout out to Cor-
Paul Bezemer, who gave valuable feedback and inspired the research on microservice
performance metrics behavior. Last but not least, I want to express my thanks to Alberto
Avritzer who helped polishing this work with his feedback.

79

Chapter 8

Bibliography

[Ade+17] C. M. Aderaldo, N. C. Mendonça, C. Pahl, P. Jamshidi. “Benchmark require-
ments for microservices architecture research.” In: Proceedings of the 1st
International Workshop on Establishing the Community-Wide Infrastructure
for Architecture-Based Software Engineering. IEEE Press. 2017, pp. 8–13
(cit. on pp. 50, 71).

[Ama+15] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, M. Steinder.
“Performance Evaluation of Microservices Architectures Using Containers.”
In: Proceedings of the 2015 IEEE 14th International Symposium on Network
Computing and Applications. 2015, pp. 27–34 (cit. on pp. 1, 10, 11).

[Bez+14] C Bezemer, E. Milon, A. Zaidman, J. Pouwelse. “Detecting and analyzing
I/O performance regressions.” In: Journal of Software: Evolution and Process
26.12 (2014), pp. 1193–1212 (cit. on p. 29).

[BHJ16] A. Balalaie, A. Heydarnoori, P. Jamshidi. “Microservices Architecture En-
ables DevOps: Migration to a Cloud-Native Architecture.” In: IEEE Software
33.3 (2016), pp. 42–52. ISSN: 0740-7459 (cit. on p. 10).

[BPG15] C. P. Bezemer, J. Pouwelse, B. Gregg. “Understanding software performance
regressions using differential flame graphs.” In: Proceedings of the 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). 2015, pp. 535–539 (cit. on pp. 29, 35).

[Cam+16] A. de Camargo, I. Salvadori, R. d. S. Mello, F. Siqueira. “An Architecture
to Automate Performance Tests on Microservices.” In: Proceedings of the
18th International Conference on Information Integration and Web-based
Applications and Services. iiWAS ’16. New York, NY, USA: ACM, 2016,
pp. 422–429. ISBN: 978-1-4503-4807-2 (cit. on p. 18).

[CBK09] V. Chandola, A. Banerjee, V. Kumar. “Anomaly detection: A survey.” In:
ACM computing surveys (CSUR) 41.3 (2009), p. 15 (cit. on p. 9).

81

Bibliography

[CG09] L. Crispin, J. Gregory. Agile testing: A practical guide for testers and agile
teams. Pearson Education, 2009, pp. 276 –279 (cit. on p. 6).

[Dbl] dblp: computer science bibliography. http://dblp.uni-trier.de/ (cit. on p. 17).

[Dev] Performance Awareness in Software Development - Research @ D3S - De-
partment of Distributed and Dependable Systems. http://d3s.mff.cuni.cz/
research/development_awareness/ (cit. on p. 28).

[DG06] J. Davis, M. Goadrich. “The Relationship Between Precision-Recall and ROC
Curves.” In: Proceedings of the 23rd International Conference on Machine
Learning. ICML ’06. ACM, 2006, pp. 233–240. ISBN: 1-59593-383-2 (cit. on
p. 8).

[Dül17] T. F. Düllmann. “Performance anomaly detection in microservice architec-
tures under continuous change.” MA thesis. 2017 (cit. on p. 17).

[Foo+10] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou, P. Flora. “Mining
Performance Regression Testing Repositories for Automated Performance
Analysis.” In: Proceedings of the 10th International Conference on Quality
Software, QSIC 2010, Zhangjiajie, China, 14-15 July 2010. 2010, pp. 32–41
(cit. on pp. 30, 38, 48).

[Gha+13] S. Ghaith, M. Wang, P. Perry, J. Murphy. “Automatic, load-independent
detection of performance regressions by transaction profiles.” In: Proceed-
ings of the 2013 International Workshop on Joining AcadeMiA and Industry
Contributions to testing Automation. ACM. 2013, pp. 59–64 (cit. on p. 23).

[Gha+16] S. Ghaith, M. Wang, P. Perry, Z. M. Jiang, P. O’Sullivan, J. Murphy. “Anomaly
detection in performance regression testing by transaction profile estima-
tion.” In: Software Testing, Verification and Reliability 26.1 (2016), pp. 4–39
(cit. on pp. 23, 24).

[GIM17] M. Gribaudo, M. Iacono, D. Manini. “Performance evaluation of massively
distributed microservices based applications.” In: Proceedings of the 31st
European Conference on Modelling and Simulation, ECMS 2017. European
Council for Modelling and Simulation. 2017, pp. 598–604 (cit. on p. 18).

[HBRM16] S. Hosseini, K. Barker, J. E. Ramirez-Marquez. “A review of definitions and
measures of system resilience.” In: Reliability Engineering & System Safety
145 (2016), pp. 47–61 (cit. on pp. 11, 12).

[Heaa] heapster/storage-schema.md at master kubernetes/heapster. https://github.
com/kubernetes/heapster/blob/master/docs/storage-schema.md (cit. on
pp. 53–55).

[Heab] kubernetes/heapster: Compute Resource Usage Analysis and Monitoring of
Container Clusters. https://github.com/kubernetes/heapster (cit. on pp. 51,
53–55).

82

http://dblp.uni-trier.de/
http://d3s.mff.cuni.cz/research/development_awareness/
http://d3s.mff.cuni.cz/research/development_awareness/
https://github.com/kubernetes/heapster/blob/master/docs/storage-schema.md
https://github.com/kubernetes/heapster/blob/master/docs/storage-schema.md
https://github.com/kubernetes/heapster

Bibliography

[Hei+17] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl,
S. Schulte, J. Wettinger. “Performance Engineering for Microservices: Re-
search Challenges and Directions.” In: Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering Companion. ICPE ’17
Companion. New York, NY, USA: ACM, 2017, pp. 223–226. ISBN: 978-1-
4503-4899-7 (cit. on pp. 1, 11).

[HKR13] N. R. Herbst, S. Kounev, R. H. Reussner. “Elasticity in Cloud Computing:
What It Is, and What It Is Not.” In: Proceedings of the ICAC. 2013, pp. 23–27
(cit. on p. 14).

[Hol13] E. Hollnagel. Resilience engineering in practice: A guidebook. Ashgate Pub-
lishing, Ltd., 2013 (cit. on p. 14).

[Hor+13] V. Horký, F. Haas, J. Kotrč, M. Lacina, P. Tůma. “Performance Regression
Unit Testing: A Case Study.” In: Computer Performance Engineering: 10th
European Workshop, EPEW 2013, Venice, Italy, September 16-17, 2013.
Proceedings. Ed. by M. S. Balsamo, W. J. Knottenbelt, A. Marin. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 149–163. ISBN: 978-3-
642-40725-3 (cit. on p. 26).

[Inf] influxdata/influxdb: Scalable datastore for metrics, events, and real-time
analytics. https://github.com/influxdata/influxdb (cit. on p. 51).

[Isl+12] S. Islam, K. Lee, A. Fekete, A. Liu. “How a consumer can measure elasticity
for cloud platforms.” In: Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering. ACM. 2012, pp. 85–96 (cit. on
p. 14).

[Kec+16] P. Keck, A. Van Hoorn, D. Okanović, T. Pitakrat, T. F. Düllmann.
“Antipattern-based problem injection for assessing performance and reli-
ability evaluation techniques.” In: Proceedings ot the Software Reliability
Engineering Workshops (ISSREW), 2016 IEEE International Symposium on.
IEEE. 2016, pp. 64–70 (cit. on pp. 52, 53).

[Kuba] Assigning Pods to Nodes - Kubernetes (cit. on p. 74).

[Kubb] Kubernetes - Production-Grade Container Orchestration. http://kubernetes.io
(cit. on pp. 51, 53–55).

[Kubc] Kubernetes: Advanced Scheduling in Kubernetes (cit. on p. 74).

[Kubd] Managing Computer Resources for Containers | Kubernetes. https : / /
kubernetes.io/docs/concepts/configuration/manage-compute-resources-
container/ (cit. on pp. 11, 53).

83

https://github.com/influxdata/influxdb
http://kubernetes.io
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

Bibliography

[LEB15] S. Lehrig, H. Eikerling, S. Becker. “Scalability, elasticity, and efficiency in
cloud computing: A systematic literature review of definitions and metrics.”
In: Proceedings of the 2015 11th International ACM SIGSOFT Conference on
Quality of Software Architectures (QoSA). 2015, pp. 83–92 (cit. on pp. 10,
12, 14).

[LL13] J. Ludewig, H. Lichter. Software Engineering: Grundlagen, Menschen,
Prozesse, Techniken. dpunkt. verlag, 2013 (cit. on p. 6).

[Loc] Locust - A modern load testing framework. http://locust.io/ (cit. on pp. 51,
52, 56).

[Mal10] H. Malik. “A methodology to support load test analysis.” In: Proceedings of
the 2010 ACM/IEEE 32nd International Conference on Software Engineering.
Vol. 2. 2010, pp. 421–424 (cit. on pp. 21, 37, 38).

[Mei+07] J Meier, C. Farre, P. Bansode, S. Barber, D. Rea. Performance testing guidance
for web applications: patterns & practices. Microsoft press, 2007 (cit. on
p. 5).

[MHH13] H. Malik, H. Hemmati, A. E. Hassan. “Automatic detection of performance
deviations in the load testing of Large Scale Systems.” In: Proceedings of the
2013 35th International Conference on Software Engineering (ICSE). 2013,
pp. 1012–1021 (cit. on pp. 21, 52).

[Ngu+12] T. H. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. Nasser, P. Flora.
“Automated detection of performance regressions using statistical process
control techniques.” In: Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering. ACM. 2012, pp. 299–310 (cit. on
pp. 6, 12, 24, 38, 52, 53, 57, 69).

[Ope] Home » OpenStack Open Source Cloud Computing Software (cit. on p. 50).

[Pas+15] A. Pasquini, M. Ragosta, I. A. Herrera, A. Vennesland. “Towards a Measure
of Resilience.” In: Proceedings of the 5th International Conference on Appli-
cation and Theory of Automation in Command and Control Systems. ATACCS
’15. New York, NY, USA: ACM, 2015, pp. 121–128. ISBN: 978-1-4503-3562-
1 (cit. on p. 14).

[R] R: The R Project for Statistical Computing. https://www.r-project.org/
(cit. on p. 52).

[Sha+15] W. Shang, A. E. Hassan, M. N. Nasser, P. Flora. “Automated Detection of Per-
formance Regressions Using Regression Models on Clustered Performance
Counters.” In: Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering, Austin, TX, USA, January 31 - February 4, 2015.
2015, pp. 15–26 (cit. on pp. 6, 12, 18, 19, 21, 22, 35, 38).

84

http://locust.io/
https://www.r-project.org/

Bibliography

[Soc] Microservices Demo: Sock Shop. https://microservices-demo.github.io/
(cit. on pp. 51, 71).

[SS06] R. H. Shumway, D. S. Stoffer. Time series analysis and its applications: with
R examples. Springer Science & Business Media, 2006, pp. 23–29 (cit. on
p. 48).

[Str12] L. Strigini. “Fault Tolerance and Resilience: Meanings, Measures and As-
sessment.” In: Resilience Assessment and Evaluation of Computing Systems.
Ed. by K. Wolter, A. Avritzer, M. Vieira, A. van Moorsel. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 3–24. ISBN: 978-3-642-29032-9 (cit.
on pp. 14, 15).

[SW03] C. U. Smith, L. G. Williams. “More new software performance antipatterns:
Even more ways to shoot yourself in the foot.” In: Proceedings of the Com-
puter Measurement Group Conference. 2003, pp. 717–725 (cit. on pp. 52,
53).

[THS11] W. T. Tsai, Y. Huang, Q. Shao. “Testing the scalability of SaaS applications.”
In: Proceedings of the 2011 IEEE International Conference on Service-Oriented
Computing and Applications (SOCA). 2011, pp. 1–4 (cit. on p. 12).

[Wel47] B. L. Welch. “The generalization ofstudent’s’ problem when several different
population variances are involved.” In: Biometrika 34.1/2 (1947), pp. 28–
35 (cit. on p. 28).

[Wen17a] N. Wenzler. Automated Performance Regression Detection in Microservice
Architectures - code base. Sept. 2017. DOI: 10.5281/zenodo.890936. URL:
https://doi.org/10.5281/zenodo.890936 (cit. on p. 3).

[Wen17b] N. Wenzler. Automated Performance Regression Detection in Microservice
Architectures - Raw Measurements. Sept. 2017. DOI: 10 .5281/zenodo .
888699. URL: https://doi.org/10.5281/zenodo.888699 (cit. on p. 3).

[Woh+12] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén.
Experimentation in software engineering. Springer Science & Business Media,
2012, pp. 102 –110 (cit. on pp. 71, 72).

All links were last followed on September 14, 2017.

85

https://microservices-demo.github.io/
https://doi.org/10.5281/zenodo.890936
https://doi.org/10.5281/zenodo.890936
https://doi.org/10.5281/zenodo.888699
https://doi.org/10.5281/zenodo.888699
https://doi.org/10.5281/zenodo.888699

Appendix A

Metric measurements

0 50 100 150 200

80
10

0
12

0
14

0
16

0

cpu usage rate behaviour in different deployments

testing time (minutes)

cp
u/

us
ag

e_
ra

te
 (

m
ill

ic
or

es
)

Figure A.1.: Cpu/usage_rate development in different deployments

87

A. Metric measurements

0 50 100 150 200 250 300

60
0

70
0

80
0

90
0

10
00

memory usage behaviour in different deployments

measurements

m
em

or
y/

us
ag

e
(m

eb
ib

yt
es

)

Figure A.2.: Memory/usage development in different deployments

0 50 100 150 200

10
0

15
0

20
0

25
0

30
0

memory page faults rate behaviour in different deployments

measurements

m
em

or
y/

us
ag

e
(k

ib
ib

yt
es

)

Figure A.3.: Memory/page_faults_rate development in different deployments

88

0 50 100 150 200

60
0

70
0

80
0

90
0

10
00

memory working set behaviour in different deployments

measurements

m
em

or
y/

w
or

ki
ng

_s
et

 (
m

eb
ib

yt
es

)

Figure A.4.: Memory/working_set development in different deployments

0 20 40 60 80 100

75
80

85
90

95
10

0
10

5

network tx rate behaviour in different deployments

measurements

ne
tw

or
k/

tx
_r

at
e

(k
eb

ib
yt

es
)

Figure A.5.: Network/tx_rate development in different deployments

89

A. Metric measurements

0 20 40 60 80 100

65
70

75
80

85
90

95

network rx rate behaviour in different deployments

measurements

ne
tw

or
k/

rx
_r

at
e

(k
eb

ib
yt

es
)

Figure A.6.: Network/rx_rate development in different deployments

0 50 100 150

25
00

30
00

35
00

40
00

45
00

requests per minute behavior in different redeployments

testing time (minutes)

re
qu

es
ts

 p
er

 m
in

ut
e

Figure A.7.: Requests per minute of load driver development in different deployments

90

Table A.1.: Median of cpu/usage_rate per test run (original unit: millicores)
PPPPPPPPPPService

Run
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 median

value
carts 133,5 110 115 107 114 108 132 121 134 123 132 120 130 112 114 107 111 106 110 114
carts-db 44 37 38 36,5 38 37 44 41 45 40,5 44 40 43 37,5 38 36 38 36 38 38
catalogue 34 33 34 34 35 34 35 34 34 33 34 33 34 33 34 34 34 33 35 34
catalogue-db 26 25 26 26 27 26 26 26 26 26 26 25 26 25 26 26 26 25 27 26
front-end 300 295 298,5 301 309 300 304 296 305 307 302 295 306 302 299,5 301 302 302 311,5 302
load-test 375 365 374 377 379 368 371 372 372 365 369 365 378 363 370 369 372 364 375 371
orders 2,5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
orders-db 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
payment 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
queue-master 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rabbitmq 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
session-db 3 5 5 5 5 5 6 5 6 5 6 5 6 5 5 5 5 5 5 5
shipping 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
user 4 4 5 4 4 4 5 5 5 5 5 5 5 4 5 4 5 4 4 5
user-db 3 3 3 3 3 3 4 3 4 3 4 3 4 3 3 3 3 3 3 3
zipkin 10 7 10 7,5 9 7 8 7 8 8 8 8 8 8 7 8 9 8 9 8
zipkin-cron 0
zipkin-mysql 55 35 52 35,5 52 34 57 34 59 34 55 34 57 34 53 35 51 35 52 51

91

A
.

M
etric

m
easurem

ents

Table A.2.: Variance of cpu/usage_rate per test run (original unit: millicores)
PPPPPPPPPPService

Run
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 median

variance
carts 37 50 37 22 25 48 48 36 47 49 41 41 30 50 29 31 26 65 31 37
carts-db 7 5 4 4 5 7 8 6 7 8 7 7 5 7 5 5 5 10 5 6
catalogue 2 1 2 2 2 3 3 3 2 2 2 3 2 3 2 3 2 7 4 2
catalogue-db 2 1 1 2 1 2 2 2 2 2 2 2 1 2 2 2 1 4 3 2
front-end 110 96 108 140 90 152 132 136 115 125 109 216 91 151 137 183 115 470 176 132
load-test 124 138 188 182 149 225 193 213 175 178 187 367 129 225 205 276 214 800 215 193
orders 22 22 11 11 11 16 13 13 11 11 11 20 12 13 8 11 10 12 10 11
orders-db 0
payment 0
queue-master 25 6 5 5 5 4 3 5 4 5 5 4 5 6 3 5 6 7 5 5
rabbitmq 0
session-db 0
shipping 4 9 13 10 18 12 20 8 15 18 12 8 9 7 11 16 10 11 16 11
user 0
user-db 0
zipkin 299 433 718 339 834 429 476 323 344 320 413 416 476 466 566 467 278 694 600 433
zipkin-cron 2 1557 1533 1206 1343 1971 2232 2100 2335 2892 2170 1953 1412 1322 1203 2189 1845 1436 2295 1845
zipkin-mysql 27 362 899 438 632 501 1063 379 1344 198 1219 489 1034 418 1015 298 1725 372 1943 501

92

Table A.3.: Median of memory/usage per test run (unit: mebibytes)
PPPPPPPPPPService

Run
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 median

value
carts 766,1 687,4 667,0 673,8 668,9 763,5 715,1 676,9 657,8 758,7 673,2 722,5 690,0 774,2 668,1 646,6 625,5 732,9 784,3 687,4
carts-db 162,0 156,4 156,3 162,1 162,9 160,9 159,2 159,4 161,7 160,5 161,1 160,2 164,3 159,2 162,7 159,2 161,7 157,7 160,4 160,5
catalogue 14,5 14,0 18,9 16,5 16,3 16,7 16,7 16,8 17,3 15,9 16,6 16,9 16,2 15,6 15,8 16,9 16,0 18,7 17,6 16,6
catalogue-db 203,5 203,1 239,1 440,9 333,2 289,1 258,5 355,3 286,5 265,9 251,0 379,1 279,9 249,7 257,1 289,0 291,9 265,6 261,9 265,9
front-end 111,5 112,0 129,2 129,2 128,2 126,7 123,9 128,7 127,0 125,1 119,0 128,2 127,5 121,0 124,0 126,3 127,3 127,1 125,0 126,7
load-test 39,1 38,9 42,3 60,6 53,2 51,3 49,7 56,8 51,8 49,0 45,9 56,9 52,7 48,7 50,9 51,3 52,1 53,0 51,2 51,3
orders 317,7 300,9 340,2 340,7 333,1 326,2 313,4 330,6 324,5 321,0 315,9 340,6 323,7 313,7 321,2 321,5 318,1 320,9 321,9 321,5
orders-db 37,2 48,7 42,1 69,3 63,8 62,9 59,2 64,5 63,3 63,2 56,8 65,0 63,9 59,2 62,6 63,0 63,6 63,5 63,3 63,2
payment 15,2 14,3 16,0 14,4 16,8 13,7 16,8 13,0 16,9 14,2 16,9 13,4 15,9 12,6 16,5 12,1 15,5 15,4 16,8 15,4
queue-master 301,9 257,3 295,0 225,8 291,3 256,1 267,6 259,9 298,9 257,0 288,1 256,6 270,4 246,5 290,3 245,5 283,4 245,7 294,1 267,6
rabbitmq 101,0 100,4 103,4 100,4 95,1 100,0 97,4 100,8 98,5 97,5 98,1 101,1 99,5 99,9 98,8 97,7 100,3 100,6 100,4 100,0
session-db 4,6 4,7 4,6 4,6 4,6 4,7 4,6 4,7 4,6 4,7 4,6 4,6 4,7 4,6 4,7 4,6 4,7 4,6 4,7 4,6
shipping 326,7 284,3 326,9 331,5 317,9 316,7 302,1 328,7 315,2 309,1 297,4 325,5 309,4 303,6 308,3 310,7 316,0 316,3 308,3 315,2
user 14,8 16,4 17,9 18,1 18,9 17,8 18,8 16,5 16,3 18,1 17,7 18,1 16,4 17,8 18,3 18,7 19,0 17,7 17,8 17,8
user-db 43,6 60,2 61,6 61,4 59,8 61,4 59,9 60,0 59,8 60,2 60,1 60,5 61,1 59,9 59,0 59,8 60,0 59,5 59,7 60,0
zipkin 1686,6 1494,4 1168,7 1540,8 1528,8 1502,3 1471,1 1504,3 1470,5 1502,1 1449,8 1480,2 1499,5 1466,7 1611,8 1421,1 1465,6 1393,5 1460,4 1480,2
zipkin-cron 40,9 293,4 211,2 208,7 181,7 217,1 213,5 283,3 233,8 322,5 203,7 280,1 233,4 277,2 200,3 258,9 151,0 195,6 200,1 213,5
zipkin-mysql 711,7 546,0 1009,3 477,4 1018,8 552,4 930,5 538,2 932,2 445,1 857,6 465,1 885,4 460,9 1083,6 466,2 1003,9 462,7 961,7 711,7

Table A.4.: Variance of memory/usage per test run (original unit: bytes)
PPPPPPPPPPService

Run
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 median

variance
carts 7,E+13 9,E+14 9,E+14 5,E+14 2,E+14 2,E+14 1,E+14 3,E+14 1,E+15 2,E+14 6,E+14 8,E+13 1,E+14 1,E+14 3,E+14 4,E+14 8,E+14 1,E+14 5,E+14 2,62E+14
carts-db 1,E+15 1,E+15 1,E+15 2,E+15 1,E+15 2,E+15 1,E+15 2,E+15 1,E+15 2,E+15 1,E+15 1,E+15 1,E+15 1,E+15 1,E+15 1,E+15 2,E+15 1,E+15 1,E+15 1,45E+15
catalogue 9,E+10 9,E+11 4,E+10 1,E+10 1,E+10 1,E+10 1,E+10 3,E+10 1,E+10 3,E+10 3,E+11 2,E+10 1,E+11 5,E+10 8,E+09 4,E+10 6,E+09 1,E+12 2,E+10 2,72E+10
catalogue-db 9,E+10 2,E+12 2,E+10 2,E+14 1,E+15 9,E+14 3,E+14 2,E+15 8,E+14 5,E+14 5,E+14 2,E+15 8,E+14 3,E+14 3,E+14 6,E+12 1,E+15 3,E+14 5,E+14 4,68E+14
front-end 2,E+12 1,E+13 3,E+12 2,E+12 2,E+12 6,E+12 8,E+12 2,E+12 7,E+12 8,E+12 2,E+13 2,E+12 2,E+12 8,E+12 4,E+12 3,E+12 4,E+12 5,E+12 5,E+12 4,43E+12
load-test 2,E+13 1,E+13 2,E+13 1,E+13 6,E+12 6,E+12 9,E+12 9,E+12 6,E+12 1,E+13 6,E+12 6,E+12 8,E+12 7,E+12 1,E+13 2,E+13 6,E+12 2,E+13 1,E+13 8,68E+12
orders 1,E+14 5,E+11 2,E+12 4,E+12 2,E+13 3,E+13 2,E+13 1,E+13 4,E+13 1,E+13 4,E+13 1,E+13 2,E+13 1,E+13 5,E+12 3,E+12 3,E+13 2,E+12 7,E+12 1,19E+13
orders-db 3,E+12 1,E+14 3,E+11 2,E+12 2,E+11 6,E+11 9,E+12 2,E+12 2,E+12 3,E+12 4,E+13 3,E+12 5,E+11 2,E+13 5,E+11 4,E+11 2,E+11 2,E+10 2,E+12 1,71E+12
payment 4,E+10 2,E+12 3,E+11 2,E+12 2,E+10 2,E+12 2,E+10 2,E+12 2,E+10 2,E+12 1,E+10 2,E+12 2,E+10 2,E+12 3,E+10 2,E+12 2,E+10 3,E+12 1,E+10 2,62E+11
queue-master 2,E+12 1,E+14 7,E+11 2,E+14 9,E+11 2,E+14 1,E+12 2,E+14 6,E+11 2,E+14 2,E+12 2,E+14 4,E+11 2,E+14 4,E+12 2,E+14 1,E+13 2,E+14 5,E+12 1,36E+13
rabbitmq 3,E+09 3,E+09 2,E+11 2,E+10 7,E+12 2,E+10 8,E+12 3,E+10 3,E+12 3,E+10 5,E+12 2,E+10 6,E+12 3,E+09 2,E+12 2,E+09 7,E+11 2,E+09 1,E+12 2,73E+10
session-db 5,E+08 2,E+09 1,E+08 1,E+08 1,E+09 1,E+07 2,E+09 5,E+07 6,E+08 3,E+08 1,E+09 2,E+08 9,E+08 5,E+08 6,E+08 2,E+08 5,E+08 5,E+08 4,E+08 4,72E+08
shipping 6,E+11 2,E+11 1,E+12 6,E+11 2,E+13 3,E+13 2,E+13 1,E+13 4,E+13 2,E+13 4,E+13 1,E+13 2,E+13 2,E+13 8,E+12 5,E+11 3,E+13 1,E+12 1,E+13 1,23E+13
user 1,E+12 4,E+10 3,E+10 5,E+10 2,E+10 5,E+10 2,E+10 4,E+10 3,E+10 4,E+10 1,E+11 2,E+11 2,E+10 4,E+10 3,E+10 5,E+10 2,E+10 3,E+10 2,E+10 4,02E+10
user-db 2,E+12 4,E+11 4,E+11 3,E+11 2,E+12 3,E+11 3,E+12 9,E+11 1,E+12 1,E+12 2,E+12 5,E+11 1,E+12 2,E+11 6,E+11 6,E+11 4,E+11 6,E+11 3,E+11 5,83E+11
zipkin 1,E+17 6,E+16 7,E+16 5,E+16 5,E+16 4,E+16 6,E+16 6,E+16 7,E+16 4,E+16 4,E+16 4,E+16 4,E+16 4,E+16 8,E+16 3,E+16 9,E+16 4,E+16 4,E+16 4,83E+16
zipkin-cron 7,E+13 2,E+15 2,E+13 1,E+16 8,E+15 7,E+15 7,E+15 8,E+15 5,E+15 1,E+16 2,E+15 2,E+15 5,E+15 3,E+15 9,E+15 1,E+16 5,E+15 7,E+15 4,E+15 5,21E+15
zipkin-mysql 1,E+16 1,E+16 2,E+17 2,E+15 1,E+17 5,E+15 1,E+17 4,E+15 1,E+17 2,E+15 1,E+17 1,E+15 1,E+17 2,E+15 1,E+17 1,E+15 1,E+17 1,E+15 2,E+17 1,41E+1693

0.90 0.95 1.00 1.05 1.10

0
2

4
6

8
10

cpu/usage_rate relative to median value density plot

N = 200 Bandwidth = 0.01094

D
en

si
ty

Figure A.8.: Cpu/usage_rate distribution relative to median value

0.990 0.995 1.000 1.005 1.010

0
20

40
60

80
memory/usage relative to median value density plot

N = 247 Bandwidth = 0.001301

D
en

si
ty

Figure A.9.: Memory/usage distribution relative to median value

0.8 1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4
5

6
7

memory/faults_rate relative to median value density plot

N = 200 Bandwidth = 0.01975

D
en

si
ty

Figure A.10.: Memory/page_faults_rate distribution relative to median value

0.90 0.95 1.00 1.05 1.10

0
2

4
6

8
10

network/tx_rate relative to median value density plot

N = 100 Bandwidth = 0.01268

D
en

si
ty

Figure A.11.: Network/tx_rate distribution relative to median value

0.90 0.95 1.00 1.05 1.10

0
2

4
6

8
10

network/rx_rate relative to median value density plot

N = 100 Bandwidth = 0.01328

D
en

si
ty

Figure A.12.: Network/rx_rate distribution relative to median value

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Thesis structure

	2 Foundations
	2.1 Performance testing
	2.2 Performance regressions
	2.3 Performance regression detection
	2.4 Evaluation of performance regression detection approaches
	2.5 Anomaly detection
	2.6 Microservice architectures
	2.7 Performance metrics

	3 Related work
	3.1 Microservice performance research
	3.2 Existing performance regression detection approaches

	4 Comparison and implementation of approaches
	4.1 Selection criteria
	4.2 Comparison of approaches
	4.3 Selection of approaches
	4.4 Implementation of approaches

	5 Evaluation
	5.1 Evaluation goals
	5.2 Evaluation methodology
	5.3 Evaluation setup
	5.4 Metrics
	5.5 Description of results
	5.6 Discussion of results

	6 Threats to validity
	6.1 External validity
	6.2 Internal validity

	7 Conclusion
	7.1 Summary
	7.2 Discussion
	7.3 Future work

	8 Acknowledgements
	Bibliography
	A Metric measurements

