
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Bachelor Thesis No. 171

Integration and Extension of a Cloud
Data Migration Support Tool

Andreas Rempel

Course of Study: Software Engineering

Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisors: Steve Strauch

Dr. Vasilios Andrikopoulos
Commenced: September 18, 2014
Completed: May 20, 2016

CR-Classification: C.2.4, D.2.5, D.2.7, D.2.12, H.2.4

Abstract

Since the growth of Cloud computing, the desire to use this novel computing approach has
increased. It is not necessary to redevelop an existing application to target the Cloud and ben-
efit from its advantages. Sometimes, it is even more sensible to migrate existing applications
running in a static environment. Since many of those application have strict layers, where
not each layer might benefit from an elastic hosting environment, it is sometimes sufficient
to migrate only individual layers. To cover as many use cases as possible, broad convertible
scenarios, not uncommonly going beyond proprietary approaches, must be offered. Because a
migration process is still a pretty complex matter, it is convenient to have a guided conversion
to cover all requirements and achieve the desirable result.

This bachelor thesis focuses on aspects of migrating data to the Cloud by using a previously
developed prototype of a Cloud Data Migration Support Tool. Particularly, the integration of
already existing modifications and evaluations of this tool, which were already developed
independently, into one stable prototype were required. A further objective of this thesis is to
gain platform independence by extending the prototype by a plug-in mechanism to allow
the use of native Java DataBase Connectivity (JDBC) drivers for exporting data from existing
storage sources and subsequently importing this data into a target data environment, whose
types may differ from the types of the source data environment. Furthermore, applying
proven concepts on architecture and design are part of this work as well.

Contents

1. Introduction 1
1.1. Motivating Scenario . 2
1.2. Problem Statement and Scope . 3
1.3. Definitions and Conventions . 4

1.3.1. Terms . 4
1.3.2. Abbreviations . 4

1.4. Outline . 6

2. Fundamentals 9
2.1. Cloud Computing . 9
2.2. Differences of Databases . 11

2.2.1. Relational Databases . 11
2.2.2. Object Relational Databases . 12
2.2.3. Column-Family Stores . 13
2.2.4. Document Databases . 14
2.2.5. Key-Value Stores . 15
2.2.6. Graph Databases . 16

2.3. Data Migration . 18
2.3.1. Challenge . 19
2.3.2. Migration Tool and Methodology - Bachmann 19

2.4. Software Integration Strategies . 22
2.4.1. Bottom-up Integration . 22
2.4.2. Top Down Integration . 25
2.4.3. Conclusion . 26

2.5. Java Extension Mechanism . 27
2.5.1. Class Loading . 27
2.5.2. Extension Loading . 28

3. Related Work 31
3.1. Previous Results . 31

3.1.1. Migration Scenario: RDBMS to NoSQL 31
3.1.2. Evaluation of Methodology for DBL Migration: Industry 32
3.1.3. Evaluation of Methodology for DBL Migration: eScience 34
3.1.4. Positioning and Distinguishes . 35

3.2. Multi-tenant Open-Source Enterprise Service Bus 35

4. Concept and Specification 37
4.1. Integration and Adaption . 37

4.1.1. Adapters . 38

iii

Contents

4.1.2. Functional Requirements . 38
4.2. Add-on Extension Mechanism . 41

4.2.1. Add Adapter . 42
4.2.2. Delete Adapter . 43
4.2.3. Assign Adapter . 44
4.2.4. Dismiss Adapter . 45

4.3. Non-Functional Requirements . 46
4.3.1. Extensability . 46
4.3.2. Usability . 46
4.3.3. Reuseability . 46
4.3.4. Integratability . 46
4.3.5. Maintainability . 46
4.3.6. Backward Compatibility . 47
4.3.7. Security . 47
4.3.8. Portability . 47

5. Design 49
5.1. Adaptations . 49

5.1.1. Presentation Layer . 49
5.1.2. Workflow . 50

5.2. Extension Mechanism Architectural Overview 53
5.2.1. Architecture of the Extension Mechanism 53
5.2.2. DB Schema Extension . 55

6. Implementation 57
6.1. Implementation of the Integration . 57

6.1.1. Tools and Libraries Used for Integration 57
6.1.2. Integration Strategy . 59

6.2. Migration and Reconstruction . 60
6.2.1. Motivation . 61
6.2.2. Extended Toolset . 61
6.2.3. Build Cycle . 62
6.2.4. Deployment . 63

6.3. Adaptation of Migrated Project . 64
6.3.1. Libraries . 64
6.3.2. User Control . 65

6.4. Extension of CDMT . 66
6.4.1. Web-UI Navigation Controls . 67
6.4.2. Dashboard . 68
6.4.3. Adapter Overview Page . 70
6.4.4. New Adapter Page . 71
6.4.5. Approval of Implementation and Integration 74

6.5. Exemplary Adapters . 74
6.5.1. MySQL Source Adapter . 75
6.5.2. PostgreSQL Target Adapter . 75

iv

Contents

7. Validation 77
7.1. Tool and Services . 77
7.2. Test Data . 78
7.3. Test Cases . 80

7.3.1. Use Case Based . 80
7.3.2. Based on Previous Results . 80

7.4. Validation Result . 81
7.4.1. Outcome of Use Case Based Tests . 81
7.4.2. Outcome of Tests Based on Previous Results 82

8. Conclusion and Future Work 83

A. Interfaces 85
A.1. Source Adapter Interface . 85
A.2. Target Adapter Interface . 86

Bibliography 89

v

Contents

vi

List of Figures

2.1. Relational Database Schema . 12
2.2. ORDB Data Model . 13
2.3. Cassandra Data Model . 14
2.4. MongoDB Data Model . 15
2.5. Key-Value Store Data Model . 16
2.6. Graph Data Model . 17
2.7. System Component Diagram and Layer Diagram of CDMT 20
2.8. Methodology for Data Migration . 21
2.9. Isolated Modules Bottom-up Test . 23
2.10. Isolated Components Bottom-up Test . 23
2.11. Overall System Test . 24
2.12. Testing Highest Invoking Module . 25
2.13. Testing Components’ Highest Invoking Module 26
2.14. JRE Class Loader Hierarchy . 27
2.15. Schematic Functionality of a Class Loader . 28

3.1. Extended Methodology for the Migration Scenario RDBMS to NoSQL 32
3.2. Methodology of AWS and Bachmann Combined 34
3.3. Architecture of an ESB Instance . 36

4.1. Use Cases Overview . 41

5.1. Component Connection of the Presentation Layer 50
5.2. Workflow for the Decision Support . 52
5.3. Add-on Mechanism Overview . 53
5.4. Snipped of Extended DB Schema . 55

6.1. Structure of Deployed System . 63
6.2. Initiative View After Creating a new Project . 65
6.3. Message Exchange Schema . 66
6.4. Welcome Page . 67
6.5. Navigation Concept of CDMT . 68
6.6. Dashboard of CDMT . 69
6.7. Adapters Overview . 70
6.8. Available Actions . 71
6.9. Page for Adding a new Adapter . 72
6.10. File Upload Area in Detail . 73

7.1. Crowfoot Diagram of the Test DB . 79

vii

List of Figures

viii

List of Tables

2.1. Overview of DB Types . 19
2.2. Data Migration Scenarios by Bachmann . 22

3.1. First Iteration of Evaluation by Nachev . 33
3.2. Second Iteration of Evaluation by Nachev . 33
3.3. Envaluation Iterations by Guo . 34

4.1. Overview of Provided Adapters . 38
4.2. Functional Requirements for CDMT After Integration 40
4.3. Use Case Add Adapter . 42
4.4. Use Case Delete Adapter . 43
4.5. Use Case Assign Adapter . 44
4.6. Use Case Dismiss Adapter . 45

7.1. Test Case Migration . 81

ix

List of Tables

x

List of Listings

2.1. PostgreSQL Inherintance Example . 13
2.2. Neo4J Indexed Search Example . 18
2.3. Fragment of Interface Definition . 28
2.4. Fragment of Add-on Implementation . 29
2.5. Extend Class Loader Snippet . 29
2.6. Snippet to Load a Plug-in . 29

A.1. Source System Interface . 85
A.2. Target System Interface . 86

xi

1. Introduction

With its pay per use approach Cloud computing changed not only business model of vendors
in the area of IT, but rather the way of application development and data management.
A considerable number of business branches have to deal with fluctuation in the utilisation of
their systems, since some tasks are done at equal intervals and mostly concurrently. Between
the peaks of workloads a recognizable part of their infrastructure runs at idle, hence the
arising costs for running the entire infrastructure without gaining any profit.
Related problems arise for companies with an unpredictable growth using conventional IT
solutions. On the one hand these companies have to face malinvestments by extending their
systems too soon and before it is necessary, on the other hand a loss of revenue may occur if
they wait too long and cannot handle the growing workload.

As a reimplementation of released software for a completely different and quite novel envi-
ronments is prohibitive the fewest small and middle range software companies can afford it.
A more practicable strategy is to adapt applications for the Cloud environment, as reasoned
in [ABLS13]. Since many applications have layered architectures it is conceivable to migrate
software of that kind layer-by-layer, or just the parts which profit from an elastic environment
the most. To give an entry point for manage such an intention a Web-based Cloud Data
Migration Tool (CDMT) was developed by Bachmann as part of his diploma thesis [Bac12] and
further used for [SAK+14] and [SAB+13]. It supports many scenarios to migrate data between
different environments and databases (DB) as well. Additionally it supports the user to find
the most suitable scenario and gives advices for essential customisation of the application
which data layer is to migrate. The above-mentioned tool was evaluated and extended in the
master’s thesis of Lamllari [Lam13] as well as the diploma thesis of Nachev [Nac13], which
will be used as basis for this thesis.

1

1. Introduction

1.1. Motivating Scenario

In the past decades the Internet and technologies associate to it became more prevailing,
which was especially amplified by the upcoming of Web 2.0. Many customers as well as
vendors tending to use and respectively provide off-premise solutions for IT products.
These trend is encouraged, among other things, by the properties of Cloud computing. In
respect to provide services it is of high importance to support software architectures which
leverage the exchangeability of function or service providing components. However, using
services of third party providers is a common approach among software companies. If we
consider the mentioned Web-based CDMT, on the one hand it supports anyone interested
to provide individual applications for deployment in a Cloud environment, as introduced
in [SAB+13], but on the other hand it remains an isolated and slightly scalable application
itself. Furthermore, to extend CDMT changes have to be done within its source code. Since
specifications of Cloud Data Hosting Solutions (CDHS) can be changed by the vendors to fulfil
requirements that arise with new technologies. Another side effect of progress in the context
of Cloud computing is the appearance of new vendors. To prevent CDMT getting obsolete is
an appropriate consideration to extend its architecture to enable an extension mechanism that
does not claim to access the original source code. For that approach many software products,
like Mozilla Firefox1, have implemented an "add-on functionality" to support extensions that
fulfil the desires of their users. In addition, not only the desires of users can be satisfied by
such an approach, but also changing requirements of the environment of a software to a
certain extend.

A further aspect to take into account are Not Only SQL (NoSQL2) [SF12] databases. Since their
upcoming the maturity and diversity of this movement is growing successively. Additionally
many of the support out-scaling which in turn unburdens data distribution and replication. In
this case even the vendors services could profit from the usage of DBs in this vein, since it
eases to use technologies like virtualization and clustering for hosting Cloud services, what
again lowers the cost for hardware commodity and bypass the physical limit of up-scaling
to a certain degree. Yet another plus enabled by this strategy is the exclusion of the DB as
a single point of failure, since replication becomes easier and less costly compared to the
same approach realized with the most Relational DataBase Management System(s) (RDBMS).
Even big companies, which are also used on a daily bases - eBay3, Netflix4, just to mention a
few- [Vai13] are utilizing products of such kind. Moreover, the potential of NoSQL databases
was recognized by popular companies, like Oracle5 to give one sample, providing their own
NoSQL databases.

1https://www.mozilla.org/en-GB
2http://nosql-database.org
3http://http://www.ebay.com
4https://www.netflix.com
5http://www.oracle.com

2

https://www.mozilla.org/en-GB
http://nosql-database.org
http://www.oracle.com

1.2. Problem Statement and Scope

1.2. Problem Statement and Scope

The problem on the current state of the CDMT is that there are several different versions of it.
Each has its own benefits but also some shortcomings. While the initiative version, which
was implemented by Bachmann [Bac12], and the version came up by Nachev, only support
proprietary NoSQL databases Lamllari extended the prototype by adaptors for MongoDB6

and Cassandra7 allowing using both of them as the target environment for data migration.
Allowing a more differentiated migration of data, and provides additional use cases for
CDMT, to satisfy requirements of even more users. Then again Nachev’s results [Nac13] fix
some issues with respect to usability and functionality of CDMT besides the direct context of
data migration.

To increase the applicability of the introduced tool we will use the results of the work above
outlined to benefit from the findings acquired during their elaboration. More precisely the
existing prototypes of the tool will be integrated into one version which shall comprise already
usable functions of each.

The common problem as yet of all the implementations, which we mentioned above, is that
external tools are used to establish connection to RDBMS, such as MySQL8 or PostgreSQL9,
which provide the required drivers.

Proprietary software always brings limitations by conventions inflicted by vendors of the
particular products. A far-reaching restriction, even if it is the only one, is the mutual
compatibility of modules used as part of an application, which also restricts the extensibility
and environmental independence of the respective software. To reduce the restrictions in
respect of the extensibility, in the context of the connectivity to MySQL and PostgreSQL, we
will implement an add-on mechanism.

Furthermore, we will provide exemplary adapters, which use JDBC10 to establish connection
to a respective store. Additionally, JDBC-based adapters are able to handle transactions with
a store as well. One practical intention beneath that add-on mechanism is to even the way
for the usage of ESBMT11, which was introduced in [SAGSL13] and [SALM12], and is using
JDBC for database connectivity as well.

6https://www.mongodb.org
7http://www.cassandra.apache.org
8http://www.mysql.com
9http://www.postgresql.org

10http://www.oracle.com/technetwork/java/javase/jdbc/index.html
11http://www.iaas.uni-stuttgart.de/esbmt

3

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

1. Introduction

1.3. Definitions and Conventions

Terms, abbreviation, and the meaning of each are defined in this section. This thesis uses
these definitions correspondigly.

1.3.1. Terms

Add-on: A software component that adds functionality to a system without
claiming to change the system’s implementation.

Component: A piece of software which couples modules of similar type.
A component is enclosed and should only communicate with
its environment through its defined interfaces.

Horizontal scaling: Increasing storage, computing power, or connectivity by upgrad-
ing a particular machine, which may represent a node in a cluster
or comparable structures.

Module: Represents a collection of functions and interfaces, which are
necessary to provide a fundamental functionality or service. An
Example file handling.

Plug-in: A synonym for Add-on

Service: A set of programming interfaces and classes providing access to
some specific application feature or functionality.

Use Case: A sequence of interactions between an actor (or actors) and a
system triggered by a specific actor, which produces a result for
an actor [LL10].

Vertical scaling: Adding more computing nodes in a network for the same pur-
pose.

Software life cycle:

1.3.2. Abbreviations

BLL: Business Logic Layer
BS: Bootstrap
CAP: Consistency, Availability, Partition tolerance
CQL: Cassandra Query Language
CDHS: Cloud Data Hosting Solution
CDMT: Cloud Data Migration Tool

4

1.3. Definitions and Conventions

CSI: Continual Service Improvement
CSS: Cascading Style Sheets
DAL: Data Access Layer
DB: DataBase
DBL: DataBase Layer
DBMS: DataBase Management System
DOM: Domain Object Language
ESB: Enterprise Service Bus
FK: Foreign Key
FMC: Fundamental Modeling Concepts
GUI: Graphical User Interface
IDE: Integrated Development Environment
ITIL: Information Technology Infrastructure Library
JBI: Java Business Integration
JDBC: Java DataBase Connectivity
JRE: Java Runtime Engine
JSP: Java Server Page
JVM: Java Virtual Machine
IaaS: Infrastructure as a Service
NoSQL: Not only Structured Query Language
PaaS: Platform as a Service
PK: Primary Key
POM: Project Object Language
RAM Random Access Memory
RDBMS: Relational DatabBase Management System
SaaS: Software as a Service
SOA: Service-Oriented Architecture
SQL: Structured Query Language
UI: User Interface
UML: Unified Modeling Language
UUID: Universally Unique IDentifier
VM: Virtual Machine
VS Visual Studio

5

1. Introduction

1.4. Outline

This section gives a short overview of the following chapters with a brief description of their
content. Each chapter covers a different aspect and stage of work. Almost all chapters are
divided in sections, which again are subdivided in subsections to give a specific and precise
scope and to focus on every certain issue separately.

• Fundamentals (Chapter 2):
This chapter lists and explains basic theoretical approaches used in this thesis. At the
beginning it contains the main properties of Cloud Computing (Section 2.1), followed
by Differences of Databases (Section 2.2) introducing NoSQL with focus on Cassandra
and MongoDB including their mutual distinctions. Additionally we introduce Graph
databases and key-value-stores to complete the list of the most common stores of the
NoSQL domain. The third subsection handles basics of Data Migration (Section 2.3).
Subsequent Section (see Sect. 2.4) deals with Integration Strategies and depicts the two
most common ones. This chapter finishes with Section 2.5 in which we introduce the
Java extension mechanism and give a short example of its usage.

• Related Work (Chapter 3): In this chapter we encompass previous work which is
related the context of this thesis. Beginning with Section 3.1 we give an overview of
recently published work which focus on the CDMT with different emphasis. In its
Subsection 3.1.1 we present findings of Lamllari elaborated in [Lam13] by extending the
methodology of the CDMT. Afterwards Subsection 3.1.2 gives an insight in Nachev’s
work of an evaluation of the CDMT by migrating a Database Layer (DBL) in cooperation
with a company [Nac13]. The last work in this scope we present in Subsection 3.1.3.
It introduces an evaluation of the CDMT as well, but was done by Guo in a scientific
context as part of his thesis [Guo13]. We terminate this section by positioning our work
compared to the previously introduced in Subsection 3.1.4.
In Section 3.2 we present concepts of ESBMT, introduced by Strauch et al. [SAGSL13],
which are important for this thesis.

• Specification (Chapter 4): This chapter scopes requirements towards an extension of
CDMT prototype’s functionality. In Section 4.1, we outline functionally features and
topics, which have to be fulfilled after integrating different versions of CDMT. In Section
4.2 we specify functional requirements for the extension of CDMT, besides of previous
realisations and suggestions. Finally, we present non-functional requirements which
are valid throughout all programmatic tasks, in Section 4.3 .

• Design (Chapter 5): This chapter ties on the specification and explains the design,
which we use, to fulfil requirements, that are imposed in Chapter 4. In Section 5.1,
we explain how the adaptations of the presentation layer and the workflow lead to
fulfilment of the specified requirements of the integration. In Section 5.2 we give an
overview of the system’s architecture. Furthermore, it contains several extensions to
provide a higher functionality of the CDMT.

6

1.4. Outline

• Implementation (Chapter 6) In this chapter we present the impact on CDMT by im-
plementing the design and architectural changes. Section 6.1 has its scope on the
implementation of the integration. In Section 6.2, we introduce the innovative develop-
ment environment, tools, which we use for further development, as well as a defined
build cycle, and a changed deployment. Afterwards, in Section 6.3, we introduce adap-
tations of the prototype, which provide a new way of interaction during migration
projects. In Section 6.4 we describe the mechanism to load add-ons during runtime.
Furthermore, we explain the modern navigation concept and Web-UI design, which we
implement. Additionally, we outline what needs to be done to implement connectivity
adapters as add-ons, in Section 6.5.

• Validation (Chapter 7) In this chapter, we describe the validation of our implementation
and its outcome. In Section 7.1 we introduce tools and services, which we use for
validation. Afterwards, we describe the test data we use, in Section 7.2. In Section 7.3,
we explain which test cases we used to prove the correctness of our implementation, as
well as how we defined them. Following this, we present the results of the validation,
in Section 7.4.

• Outcome (Chapter 8) This is the final chapter. It summarizes our contribution to the
subject of this work. Additionally, we provide suggestions on further improvement of
CDMT and possible related topics for future work.

7

1. Introduction

8

2. Fundamentals

This chapter narrows the domain and conceptual attempts to solve the given tasks. These
attempts are used as fundamental to elaborate the solution. Furthermore, it aims at giving a
better comprehension of the work which is done within the scope of this thesis. In Section 2.1,
we explain the major principals of Cloud computing. We give a brief overview of distinctions
between relational databases and different types of NoSQL data stores, such as document,
or key-value stores for instance, in Section 2.2. We briefly describe the challenges of data
migration in Section 2.3, as it is a topic of this work as well. Additionally this section gives a
slight overview on the tool and methodology of Bachmann [Bac12], of which both are essential
for this work. In Section 2.4, we explain the most common strategies for software integration
as well as the assets and drawbacks may occur from using one of them. Finally, in Section 2.5,
we introduce a mechanism to provide add-on functionality for Java applications.

2.1. Cloud Computing

In this section we give an introduction on Cloud computing. To clear what is meant in this
thesis by the term cloud computing we provide an overview of the main aspects which define
cloud computing.

First of all, we deliver a definition of Essential Characteristics published by National Insti-
tute of Standards and Technology (NIST) [MG11]:

• On-demand self-service: "A consumer can unilaterally provision computing capabilities,
such as server time and network storage, as needed automatically without requiring human
interaction with each service provider."

• Broad network access: "Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, tablets, laptops, and workstations)."

• Resource pooling: "The provider’s computing resources are pooled to serve multiple con-
sumers using a multi-tenant model, with different physical and virtual resources dynamically
assigned and reassigned according to consumer demand. There is a sense of location indepen-
dence in that the customer generally has no control or knowledge over the exact location of
the provided resources but may be able to specify location at a higher level of abstraction (e.g.,
country, state, or datacenter). Examples of resources include storage, processing, memory, and
network bandwidth."

• Rapid elasticity: "Capabilities can be elastically provisioned and released, in some cases auto-
matically, to scale rapidly outward and inward commensurate with demand. To the consumer,

9

2. Fundamentals

the capabilities available for provisioning often appear to be unlimited and can be appropriated
in any quantity at any time."

• Measured service: "Cloud systems automatically control and optimize resource use by lever-
aging a metering capability1 at some level of abstraction appropriate to the type of service (e.g.,
storage, processing, bandwidth, and active user accounts). Resource usage can be monitored,
controlled, and reported, providing transparency for both the provider and consumer of the
utilized service."

Even large suppliers provide Cloud solutions for small business with the option of extending
their infrastructure as soon as necessary. Furthermore, not every client wants or needs to set
up every specific detail to provide his software in an remotely accessed manner. Some of these
customers even pass on developing proprietary software solutions by reason of cost, time, or
capabilities. Instead they rather would like to use a service providing needed functionality as
long as they want to use it. To satisfy customers’ desires, regarding the scope and type of IT
systems, they can choose from three main Service Models [MG11]:

• Software as a Service (SaaS): Customers have their individual business models they
want to implement. Vendors provide applications supporting customers’ intentions.

• Platform as a Service (PaaS): Customers want to host applications in a certain environ-
ment. Vendors provide such environments for running individual applications, but also
some mandatory criteria, like a certain style for developed applications.

• Infrastructure as a Service (IaaS): Customers are share common physical and virtual
hardware. Vendors are managing this hardware.

Besides the above-mentioned decisions can be made a further topic is to chose a deployment
model. The choice of a certain model often depends on security concerns, diversity, and
extent of work shall be handled within the environment. The following four main Deployment
Models [FLR+14] can be strictly distinguished:

• Private Cloud: IT resources are provided as a service exclusively to one customer in
order to meet high requirements on privacy, security, and trust while enabling elastic
use of static resource pool as good as possible.

• Community Cloud: IT resources are provided as a service to a group of customers
trusting each other to enable collaborative elastic use of a static resource pool.

• Public Cloud: IT resources are shared among a huge customer group for the purpose
of elastic use of a static resource pool.

• Hybrid Cloud: Different Cloud and static data centres are integrated to form a homo-
geneous hosting environment.

In addition each of these can be divided into more specific variants depending on the physical
location of data inside the Cloud and the hardware used for the Cloud environment.

10

2.2. Differences of Databases

2.2. Differences of Databases

This section clears the main differences and challenge of migration from Relational Databases
(RDB)s to DBs of other types. The following subsections discuss the main characteristics of the
DBs which will be used in further steps of this thesis. As RDBs have just slight differences in
usage and have a common model we just introduce their characteristics in general in Section
2.2.1. In Section 2.2.2 we introduce Object Relational Databases which have plenty properties
in common with RDBs, but have the characteristic of inheritance as well. In Section 2.2.3
we discuss the way these Column-Family Stores work with focus on CassandraDB, since this
is the DB we use. Section 2.2.4 depicts the functionality of Document Databases with respect
to MongoDB. Short introductions of Key-Value Stores in Section 2.2.5 and Graph Databases in
Section 2.2.6 will accomplish the listing of the currently most important NoSQL store types.
Though the last two won’t be used as part of this thesis they are important for the sake of
completeness.

2.2.1. Relational Databases

The approach of Relational Databases was firstly discussed by E.F Codd in [Cod70]. Nowadays
there are huge offering of RDBMS of which we use MySQL for this work.
A great benefit of Structured Query Language (SQL) based DB is that their query language is
based on the ISO/IEC 9075 standard. Still not all vendors provide the same dialect yet and
"the number of differences that do exist can be confusing"[O’N14]. Nevertheless it is not a hard
task to understand the core of the other dialects when you already learned one [Far13]. This
DB basically consist of tables which have mostly several columns. One column of each table
should contain a Primary Key (PK), which is unique for each tuple of the particular table,
to identify datasets. The rows of each table is homogeneous and can not vary in types of
each cell or the amount of contained cells. A tuple is basically a row of a certain table. Every
column in tables of a DB has a domain, which restricts the possible values which can be
entered. A further characteristic in these is the Database schema (DBS). It has to be declared at
the beginning and defines relations between tables, contained in the DB, and their structure,
as well as the domains of each column, as depict in Figure 2.1.
Once a DBS is defined and used over a certain time it becomes a "segnificant undertak-
ing" [VMZ+10] to alter it.
Relations between tables are represented by foreign keys whose values are identical to the
values of PK in the table to link to. A down side of RDBs is the effort if you need to meet new
requirements, you cannot make ad-hock changes, but have to adjust the schema. However,
the effort for this task depends on the complexity of the changes.

11

2. Fundamentals

Cars

Car_IDPK

Engine

Wheels

Tyres

Tyre_IDPK

Manufacturer

Size

Engines

Engine_IDPK

Capacity

Fuel

Wheels

Wheel_IDPK

Tyre

Rim

Rims

Rim_IDPK

Colour

Size

Figure 2.1.: Relational Data Model

2.2.2. Object Relational Databases

The content in this section is based on the official documentation of PostgreSQL [Gro09].
Object relational databases store data, like their relatives RDBs described in previous section,
in tables with a predefined schema. Additionally, they support object-oriented principals to
model relations or connection between data sets. One quite beneficial property is inheritance
among schemes of different tables as exemplified in Figure 2.2 below. The table Capitals
inherits the schema of the table Cities and extends it by additional columns. In this example
the outstanding feature is that every entry made in Capitals will be automatically inserted in
the table Cities with the required values for the defined schema. While the vice versa entries
in cities are for that table exclusively since capitals can be considered as an extension of the
schema the table Cities and might require more values for a valid insert operation.
Since the rest of the properties is quite similar to relational DBs (see Sect. 2.2.1) we just
depicted a simple example which shows the difference. The code for the described scenario
is shown in Listing 2.1. In this work we will use PostgreSQL as a representative this type of
databases.

12

2.2. Differences of Databases

Cities

IDPS

Name

Population

Capitals

IDPS

Name

State

Population

Inherit from

Cities

Figure 2.2.: ORDB Data Model, adapted from [Gro09]

1 CREATE TABLE cities (
2 ID int,
3 name text,
4 population int
5);
6

7 CREATE TABLE capitals (
8 state char(15)
9) INHERITS (cities);

Listing 2.1: PostgreSQL Inherintance Example, adapted from [Gro09]

2.2.3. Column-Family Stores

One of the most popular column-family stores is CassandraDB. The information we deliver in
this section is based on [SF12]. Once developed by Facebook it became an open-source project
and is currently managed by Apache1. The biggest data-container of Cassandra is the keys-pace,
where it puts column families. A column family is a collection of rows of similar content. Each
row is identified by a row key and contains columns of which each stores a name-value-pair.
Values can be a map of columns in which case we call the column containing this map a super
column. A column family created of super columns is called a super column family, which can be
considered as an equivalent to tables of RDBMS. This data structure is illustrated in Figure 2.3.

The rows belonging to a particular column family can have different columns which can
be added at any time. This property makes it easier to customise the data structure while
runtime. Besides the difference of the data structure compared to the relational model there
are also idiosyncrasies in how the data is managed and requested. Cassandra has its own

1http://apache.org

13

http://apache.org

2. Fundamentals

Row Key A
Name2 : value2 Name3 : columnD Name1 : value1

Column A1 Column A2 Column A3
RowA

Column Family

Row Key B
Name2 : value2 Name3 : value3 Name1 : value1

Column B1 Column B2 Column B3
RowB

Figure 2.3.: Cassandra Data Model, adapted from [SF12]

query language, called Cassandra Query Language (CQL), which has syntactical similarities
with SQL. Some operations, such as joins, known from SQL are not supported by CQL.
Furthermore, Cassandra supports different replication factors for the data that is written as
well as a minimum number of nodes to respond on a read request, which can be set. Anyway
there is always a tradeoff between consistency and availability regarding the consistency level2

you set. According to [SF12] a reasonable compromise is the level Quorum, up if writes or
reads are more important for your needs.

2.2.4. Document Databases

Document databases store data sets in documents of types like XML, JSON, or BSON and
so on [SF12]. In this section we will stick on the information given by [SF12]. One famous
representative is MongoDB stores its document in BSON format. Each document is specified
by the field _id, which has to be a Universally Unique IDentifier (UUID), like an ObjectID.
MongoDB’s query language is expressed via JSON and has some constructs which have an
equivalent in SQL. A document can be considered as a row in an RDBMS. The data model of
document databases allows to nest sub-documents within documents, that again increases
the performance and the ease of access. Additionally documents can have different schema,
but still belong to the same collection. A collection can be considered as equal to a table in
an RDBMS. Furthermore, documents can be defined at any time and do not have to follow a
certain schema, if some fields are contained in one document but not in the other, then there

2http://www.datastax.com/documentation/cassandra/2.1/cassandra/dml/dml_config_consistency_c.
html

14

http://www.datastax.com/documentation/cassandra/2.1/cassandra/dml/dml_config_consistency_c.html
http://www.datastax.com/documentation/cassandra/2.1/cassandra/dml/dml_config_consistency_c.html

2.2. Differences of Databases

is no empty field, hence a null-value cannot be returned. A view on the data model is depicted
in Figure 2.4.

 {

 provider : SC

}

Wheel_1215

 {

 producer : ACME ,

 size : large ,

 type : slick

 }

Tyre_1345

 {

 producer : ACME ,

 size : large ,

 color : black

 }

Rim_897

 {

 capacity : 6L ,

 fuel : 98oct ,

 power : 666kW

 }

Engine_357

 {

 color : black ,

 }

Car_666

Figure 2.4.: MongoDB Data Model

This example is quite similar to the one in Section 2.2.1. Since each document has a UUID it
can be considered to have the same role like a PK within an RDBMS.
So it illustrates the "Tyre_1345" and Rim 897 as a part of "Wheel_1215". Which in turn is, as
well as "Engine_357", is a part of "Car_666". It is important to mention that a nested docu-
ment with a certain UUID has not, unlike in RDBMS, to follow any structural or substential
restrictions besides the one given by the MongoDB engine.

2.2.5. Key-Value Stores

This type of stores are the simplest NoSQL stores we introduce according to [SF12]. We gained
our knowledge of the topic in this section from [SF12]. For examples we will use Riak3, since
it is open source and has been developed since 2009.
Basically key-value stores have three different types of data fragments. The largest one are
buckets, which can be seen as name spaces for keys, which are used to identify content value.
The actual content is stored as value aside the key identifying it. To access and manipulate the
data there are just three basic operation, PUT to write the value of a key, GET to read value of
a key, and DELTE KEY to delete a certain key from the store.

3http://basho.com/products/#riak

15

http://basho.com/products/#riak

2. Fundamentals

On the one hand key-value stores support data structuring in various formats, such as blob,
text, JSON, XML and so on. In Riak the Content-Type can be specified in a POST request.
Through this simple design requests are performed highly efficient. On the other hand the
stored data has to be simply structured as well, since data relations cannot really be modelled
in such stores. Another downside are the queries which have to be simple as well. For
example the most key-value stores only support key searching by default wherefore it is
difficult to find values without knowing their keys and demands to fetch the data from the
store and search for it on the local machine. Luckily Riak supports a more sophisticated
mechanism to inspect data which allows to query data like you would use Lucene4 indexes.
Figure 2.5 illustrate a simple key-value store structure.

<Bucket = userData>

<Key = sessionID_userProfile>

<Value = UserProfileObject>

Figure 2.5.: Key-Value Store Data Model, extracted from [SF12]

In this example the bucket "userData" contains the key "sessionID_userProfiel" which identifies
the value "UserProfileObject". Another feature of this structure is that the context of the
contained data is prefixed to the key which simplifies value search.
A further important property of Key-value stores, such as Riak, allow to control the aspects
of the Consistency, Availability, Partition tolerance (CAP) theorem. For instance Riak has two
major approaches to resolve update conflicts. Either the newest write wins, or all values are
returned to the client which allows resolution by implemented criteria or even manually. We
won’t use key-value stores in this work. Hence we will drop further characteristics and a
more detailed introduction of such stores. More detail with respect to key-value stores can be
found in [SF12].

2.2.6. Graph Databases

This section handles graph databases. We give an overview of the most significant properties
of such stores which we elaborated from [SF12]. A graph database has two elements to
store entities and the relations between them. Entities can be considered as nodes having
desired properties and can be compared to objects in applications [SF12]. But the even more
important elements are the edges which represent relationships between the entities but can
have properties themselves as well. These properties of relationships can be used to query

4http://lucene.apache.org

16

http://lucene.apache.org

2.2. Differences of Databases

the graph but that leads to a high effort to model the relationships in the domain. One should
always keep in mind is the high significance of the relations’ directions [SF12]. If we take a
look at the example depicted in Figure 2.6 the entity Jeremy has the relationship repairs to the
entity Car, but vice versa it would be absurd, especially if we consider this relationship as a
real life situation. There are no restrictions for the amount or the type of relations between
entities. Everything that is relevant for the model can and will be modelled in the graph. For
instance there are multiple relations between the entities Richard and James, where again the
direction of the relations must be considered carefully.
Queries in a graph database are actually traversing of the graph and since the relationships
are persistently stored they do not have to be calculated during query time which makes data
inspection and manipulations very fast.
Another great benefit of graph DBs compared to RDBMS (see Sect. 2.2.1) is that they do not
require a predefined model, such as a DB schema, and can be changed dynamically. For
instance if we want to add an extra relation we are free to do so, without having to change
the whole DB model like RDBMS would claim it. The absence of schema gives us the ability
to have various context within one graph without having to define a certain global context, in
the form of a schema, each time we extend our application or contextual information stored
in the DB. The only thing note is the obligation of a start and targen node of a relation since no
"dead end edges" are allowed in a graph.

Jeremy

Richard

James

Car

h
a
s

sin
n
ce
=
2
0
1
4

Figure 2.6.: Graph Data Model

Nowadays there are several graph DBs available, we will broach Neo4J5 since it is widely
distributed. Certain characteristics will be introduced to give a slight insight of the function-
ality. It allows indexing of nearly everything that has a value in a graph for the sake of faster
and more comfortable opportunity to search for data inside a graph. The used service for
this approach is Lucene. An example for such an indexed query is given in Listing A.2 which

5http://neo4j.com

17

http://neo4j.com

2. Fundamentals

references the model from Figure 2.6.

1 Node richard =nodeIndex.get("name", "Richard").getSingle();
2 Node james = nodeIndex.get("name", "James").getSingle();
3 PathFinder<Path> finder = GraphAlgoFactory.shortestPath(
4 Traversal.expanderForTypes(OWES,Direction.OUTGOING)
5 ,MAX_DEPTH, 15);
6 Iterable<Path> paths = finder.findAllPaths(richard, james);

Listing 2.2: Neo4J Indexed Search Example, Changed From [SF12]

The first two lines in the Listing search the nodes by their indexed property "name". In the
first line we search for the value "Richard" and in the second corresponding for "James".
In this example line three to five is significant, where we specify the incoming parameters
for the method expanderForTypes. The first argument is "OWES" and specifies the relation
we are searching for. The second value "Direction.OUTGOING" defines the direction of the
relation, other possible values are "INCOMINT" or "BOTH". The method is specified as follows:
shortestPath(Path Expander exp, int maxDepth, in maxHitCount)6

It returns an algorithm which finds the shortest path between two nodes. In line six we
search with the returned algorithm for all paths between the nodes richard and james which
are of the type "OWES". Although the nodes have two edges between them the relationship
"FRIENDS" won’t be returned since it does not fulfil the specified criteria.
Neo4J also supports the query language Cypher. Nevertheless, there are quite many benefits
of graph DBs, but there is a pretty serious downside. Graph DBs are not aggregate-oriented,
but relationship-oriented and any given node can be connected to any other, hence sharding
is difficult. To scale such a DB a common way is to load the working set of nodes and rela-
tionships entirely in the memory. But still the set to work with has to fit in a realistic amount
of Random Access Memory (RAM) [SF12].

2.3. Data Migration

Migration is not just a simple task which can be done rashly within one step, like a "copy and
paste operation". It is rather a process that requires careful consideration and strategies to
avoid disasters by moving an entire application or even just a layer of it. Within this section
we will describe the main challenges of data migration, as well as their causes in Section
2.3.1. We will not discuss the economic influences and impacts of data migration, since it is
not a part of our work. For the one who desire more detailed information on practical data
migration in general we recommend [Mor12] for further reading. Later on in Section 2.3.2 we
will introduce a "Cloud Data Migration Support Tool" including its methodology and decision
support initially developed by Bachmann [Bac12]. We will refer to this tool as CDMT for the
sake of comprehension.

6http://neo4j.com/docs/stable/javadocs/org/neo4j/graphalgo/GraphAlgoFactory.html

18

http://neo4j.com/docs/stable/javadocs/org/neo4j/graphalgo/GraphAlgoFactory.html

2.3. Data Migration

2.3.1. Challenge

As already indicated in Section 2.2 there are several types of Database Management System(s)
(DBMS) with quite different data models. In Table 2.1 are the four most important for this
work outlined. The greatest distinctions between them are recognisable in the columns "Type"
and "Data Structure Definition".

Name Storage Type Data Structure Definition Query Language
MySQL rational DB schema SQL
PostgreSQL object relational DB schema SQL
Cassandra column family dynamically while runtime CQL
MongoDB document dynamically while runtime JSON expressions

Table 2.1.: Overview of DB Types

While MySQL and PostgreSQL require a DB-schema, which defines restrictions of entries and
the relation between them, Cassandra and MongoDB do not have mandatory requirement of a
predefined data structuring.
A more detailed consideration reveals a possible problem even between the migration from
MySQL to PostgreSQL and vice versa. Although both use query languages based on the
SQL standard and require a DB schema PostgreSQL supports inheritance within the schema
and as relation between tables. This aspects for instance often claims refactoring steps in
the DB-schema and the Data Access Layer (DAL) to provide a proper data handling without
changing the concept of the representation layer.
Besides the obvious differences of querying the considered DBs there is a even bigger obstacle,
the different ways how data is stored in the respective DB, more details are in Section 2.2.

Since each of this DBs has an own data model there is no simple, generally valid way
to migrate data from one system to another. Hence, it is recommendable to use an already
developed methodology which covers the indicated scenarios with a solution support for
upcoming problems and challenges. There are nowadays some products on the market with
the required functionality, like AWS Database Migration Service7, but it is only limited to AWS
as target platform.
In the following Section 2.3.2 an introduction and a short overview on an general methodology
is given.

2.3.2. Migration Tool and Methodology - Bachmann

A major problem which led to this work was that there were several services to migrate data
to the Cloud, but they were just for several specific Cloud service solutions mostly.
Moreover there was not any support for migration between the respective Cloud services.
A further difficulty was that there was not a methodology to classify a migration scenario
in context of Cloud migration. The goal was to develop a holistic method to migrate the

7https://aws.amazon.com/dms/

19

https://aws.amazon.com/dms/

2. Fundamentals

Database Layer (DAL) into the Cloud.
As part of his diploma thesis Bachmann developed, besides the methodology, a Java Web
application for data migration. It includes a decision support and some drivers to migrate
data properly.

Application Structure
CDMT consists of two main components, as illustrated in Figure 2.8. The component Decision
Support Tool helps the user to identify the most fitting solution for his needs. The second
component Migration Tool migrates the data after the user has configured his desires and in
some circumstances adapted his DAL and his Business Logic Layer (BLL) to the new require-
ments for data usage. It contains different adapters for respective data stores and hosting
solutions. In order to be extensible more drivers can be added if necessary. The architecture
of the application is layer based and is composed of three layers. The User Interface (UI) is
included in the Presentation Layer and combines several technologies, but is mostly realized
with Java Server Pages (JSP)s (see Fig. 2.7). Beneath is the BLL which is entirely implemented
in Java. The lowest layer is the Data Layer that can be decomposed in further components.
The layers which do not belong to the application, but are necessary to run it are represented
with dashed boarders.

Cloud Data Migration Tool

Decision Support Tool

(classification)

Decision Support Tool

(classification)

MySQL Source

Adapter
Decision Support Tool

(classification)

TargetSource

MySQL Source

Adapter
EC2 MySQL Target

Adapter

Migration Tool

(migration)

Presentation Layer

(HTML, JS, CSS, JSP)

Business Logic layer

(Java)

Data Layer

(DAL:JDO, DBL: MySQL)

Servlet Container

(Tomcat, App Engine)

OS

(OS X, Linux, Windows)

Figure 2.7.: System Component Diagram and Layer Diagram of CDMT, adapted from
[Bac12]

Migration Methodology
The methodology defines a process which consists of eight major phases as depicted in Figure
2.8. The first seven phases demand a high degree of user interaction, since they are the
main part of the classification process. They can be fragmented in sub steps. The first four
phases (Select Migration Scenario, Describe Cloud Data Hosting Solution, Select Cloud Data Store,

20

2.3. Data Migration

Describe Source Data Store) are based on questionnaires to limit possible options for users needs.

Select

Migration

Scenario

Describe

Cloud Data

Hosting

Solution

Select

Cloud Data

Store

Describe

Source Data

Store

Identify

Conflicts

Adapt BLL

and DAL

Migrate

Data

TCP-H

Sample Data

Figure 2.8.: Methodology for Data Migration, adapted from [Lam13]

To give an example for a better comprehension the defined Data Migration Scenarios are
summarized in Table 2.2. They form the alternatives of the first phase and were an essential
part of that work. The last phase (Migrate Data) is automated and executed by the tool.

Scenario Description

Plain Outsourcing Migration of local DBL to the Cloud without changing the datas-
tore type. Whole application is migrated, data migration is a part
of overall Cloud migration.

Usage of Highly
Available Data Store

Migration from a non-highly-scalable to a highly-scalable. Cloud
data store. Usually from From a RDBMS to a NoSQL or a Blob
store.

Geographic Replica-
tion

Data is moved close to the processing unit in order to reduce
latency. Whole Application is migrated to the Cloud as well.

Data Distribu-
tion(Sharding)

Data is split to disjunct partsand moved to different data centers.
This might reduce latency by moving data closer to the client and
additionally increase horizontal scalability.

Off-Loading of Peak
Loads (Cload Burst)

Moving data temporarily to the Cloud to deal with hight traffic
situations. Usually the whole application is moved. It is moved
back when the traffic decreases and can be handled.

Work on Copy of Data
(Data Analysis)

Cloning the data to perform recourse intense analysis without
having influences on the production server.

Data Synchronization Temporarily access to the DBL to duplicate content locally.
Changes might be done off-line and be synchronized as soon
as they are ready, or de network is available again.

Backup Creates plain copy of the DBL in a certain state and stores it to
the Cloud. Usually used to recover failed systems.

Archive Similar to Backup. The entire or parts of the DBL can be copied
and stored in the Cloud at a certain point.

21

2. Fundamentals

Data Import from the
Cloud

Creating a local copy from a Cloud service by accessing it via
API.

Data Usage from the
Cloud

Outsourcing of the DBL to the Cloud only. Local clients can access
the data from the store remotely.

Table 2.2.: Data Migration Scenarios by Bachmann, Adapted From [Bac12]

2.4. Software Integration Strategies

We extracted the information in this section from [Lig09]. The containment is mostly restricted
to the issues that are relevant for this thesis. Basically we consider two strategies Buttom
Up,in Section 2.4.1, and Top Down, in Section 2.4.2 to integrate modules into a software system.
Section 2.4.3 gives an outlook of possible combinations and of our use of this strategies.
Needless to say that it is possible to use hybrid forms of these two strategies which emphasis
could tend more to one of the strategies depending on the requirements that have to be met.
The basic difference between these two integration techniques is the order in which the
functionality of developed parts to integrate is validated and evaluated. Generally missing
invoking modules are substituted by drivers and the invoked ones are replaced by dummies
mostly with default return values. The consequence of such an approach is increased inde-
pendence during the period of development and possibly a reduction of time needed for
progress since many tasks can be handled concurrently. The following subsections illustrate
the corresponding procedures in a simplified manner.

2.4.1. Bottom-up Integration

The purpose of bottom-up integration is to set up a system from the atomic parts providing
basic functionality of the system. In this attempt the access to the individual modules and
their responses to it are tested. It could be a simple function call which return values are
evaluated by the test driver of a more sophisticated testing environment as well.
In the description below we consider test scenarios with usage of drivers. The main precon-
dition for starting the entire integration process, including the testing, is to assure that all
drivers are working as anticipated.

22

2.4. Software Integration Strategies

Module 3

Test Driver

for

Module 3

Test Data

for

Module 3

R

Module 4

Test Driver

for

Module 4

Test Data

for

Module 4

R

Module 5

Test Driver

for

Module 5

Test Data

for

Module 5

R

Figure 2.9.: Isolated Modules Bottom-up Test, Adapted From [Lig09]

As soon as a module passes all indispensable tests its implementation is assumed as corre-
sponding to the specification and its returned results as correct. Once the loose modules
passed the test they are joint to components. The structure of the components aligns on the
system architecture. As illustrated in Figure 2.10, the behaviour if the whole component is
investigated by accessing it through its interface, in this case, represented by Module 1 and
Module 2.

Component 1 Component 2

Module 3

Test Driver

for

Module 1

Test Data

for

Module 1

Module 4 Module 5

Test Driver

for

Module 2

Test Data

for

Module 2

Module 1 Module 2

R R

R R R

Figure 2.10.: Isolated Components Bottom-up Test, Adapted From [Lig09]

Such interfaces usually receive request by relying on the assumption from the previous step.
The modules for rudimentary functionality can be excluded as cause for failures possibly occur

23

2. Fundamentals

during this stage. Apart from that there is no need to search for corrupt data transformation
inside the call hierarchy above the interface, because the test data is handed over from the
test driver to the interface immediately. Therefore the only source of misbehaviour remains
within the interface itself. Considering this circumstance saves a lot of time to detect and
locate bugs.
In this final state of integration the properties of every part included in the system are
reviewed and evaluated as suitable in respect to their performance. Finally the inspected
components can be integrated into a complete system. The only outstanding point is the
evaluation of the whole system itself, as drawn in Figure 2.11. The only elements of the
systems, which are not proved, are interfaces for access from the outside. At this point any
suitable testing process can be used.

R R R

System Test Tool

System

Module 0

Component 1

Module 3 Module 4

Module 1

Component 2

Module 5

Module 2

R
R

R

R

R R
R

Human Tester

Figure 2.11.: Overall System Test, , Adapted From [Lig09]

24

2.4. Software Integration Strategies

2.4.2. Top Down Integration

The main difference to bottom-up integration 2.4.1, indicated in the previous subsection, is
the sequence of testing and the intention of what is to prove. Furthermore, the Top Down
Integration not necessarily uses drivers to pass test data to invoked modules.
Instead it is essential to provide dummies simulating the services of modules which appear
at a lower position in the call hierarchy. As pictured in Figure 2.12, the first module to test is
the topmost interface of the System, for example a Graphical User Interface (GUI).
The intention of this step is to analyse if request put to the system are delegated to the right
module. In addition, it is tested if the module is accessing services and functions, provided
by other parts of the system, as expected.
When the module building the root of the call tree successfully completed all tests the
dummies are exchanged by the real modules invoked, which are tested in a similar way as
the modules above, as shown in Figure 2.13.

System

System Test Tool

R

R

Dummies for

Services of

Module 1

Dummies for

Services of

Module 2

R R

Module 0

Figure 2.12.: Testing Highest Invoking Module, Adapted From [Lig09]

We consider the integrated modules in this step as interfaces of components to stay in the
metaphor from the previous subsection and handle in this description as much scenarios
as possible. Since the correctness of the invoking module and the required behaviour of all
dummies is verified failure location can be restricted to the test candidates. Eventually in the
last step of this integration approach the modules providing rudimentary functionality and
services are integrated into the overall system and the work specific for top down integration
is completed.

25

2. Fundamentals

System

Component 2Component 1

System Test Tool

R

R

Dummies for

Services of

Module 3

Dummies for

Services of

Module 4

R R

Module 0

Module 2

Dummies for

Services of

Module 5

Module 1

R R R

Figure 2.13.: Testing Components’ Highest Invoking Module, Adapted From [Lig09]

As well as, the structure is alike the one shown in Figure 2.11 in the earlier subsection, the
open tasks are similar. Before deploying the entire system must be tested to assure that
all integrated parts are working correctly in synergy with each other. The fundamental
distinction to bottom-up integrated systems is that the parts invoked last in the call hierarchy
are inspected implicitly within the system test. As these are the only element of whole system,
whose quality is not evaluated, they are also regarded the only possible malfunction source
in this state.

2.4.3. Conclusion

The strategies introduced previously in Sections 2.4.1 and 2.4.2 come in handy for software
within the development process. Having an already deployed or running system can benefit
from both attempts if an additional module is needed to be integrated for whatever reason.
The newly developed module can be tested isolated by using test drivers with test data as
input to detect malfunctions before they can have an effect on the whole system.
Once the module is classified as stable and usable it can be integrated in the overall system.
As the final step the entire system with the newly integrated module should be tested against
the specified requirements.
Such an approach is appropriate for critical systems in respect to downtime. Furthermore
it delivers the ability to prove the inner qualities of the module without being influenced
by possible side effects of its runtime environment. That again eases error searching and
causes of it. In our work we will use an existing system which we extend by components
from different concurrent versions. Hence, we will use both strategies for this purpose in

26

2.5. Java Extension Mechanism

dependency to which layer an integrated component belongs. Besides we will develop some
components in this work as well. We will integrate them by using the top-down approach.

2.5. Java Extension Mechanism

Many software products provide the possibility to extend their functionality without changing
their previous source code. The term to offer such functionality is add-on. These software
components can be loaded while runtime to the core system which functionality should be
extend. In this section we introduce the principals of a mechanism one can use to enable
extensibility by components in order to extend its functionality.
Since the business logic of the Web application CDMT is implemented in Java we will restrict
the content of this section to the most common way to offer extensibility via add-ons in Java.
We gained our knowledge of this topic from Java’s documentation [Cor] which is provided by
Oracle8. For a better comprehension of this technique you must know how the Java Runtime
Engine (JRE) loads classes in general, which we introduce in Section 2.5.1. The next step is to
leverage this mechanism to load classes, or components, while runtime, which we explain in
Section 2.5.2.

2.5.1. Class Loading

The basic idea of Java platform is that every class loader has a "parent" class loader except of
the Bootstrap class loader, as depicted in Figure 2.14.

Class path:

(classes from: java.class.path

Installed extensions.: Lib/ext

(classes from : java.ext.dirs

Class path: java.lang

(of format: java.*, javax.*)
Bootstrap

Extension

System

Figure 2.14.: JRE Class Loader Hierarchy, Adapted From [Yim]

The Bootstrap class loader is responsible for loading the runtime classes. Afterwards the
Extension class loader is in charge to get classes in JAR files from the lib/ext directory of
the JRE. The last one is the System class loader which is responsible for the classes on paths
specified by the system property java.class.path.

8http://www.oracle.com/index.html

27

2. Fundamentals

Furthermore "the Java platform uses a delegation model for loading class"9. When a class
loader has to load a new class it first delegates the request to its parent loader to find
out if this class is already loaded. In case the parent does not return the required class it
attempts to find the required class itself. If the class could not be found by any class loader a
ClassNotFoundException is returned.

2.5.2. Extension Loading

It is always beneficial to keep a software product customisable for the user. One common
way to provide this possibility to load extensions, further referenced as add-ons or plug-ins,
after deploying the software. In this section we present the principal how to enable such
extensibility for Java applications. One major requirement is to be able to load add-ons
dynamically as Figure 2.15 depicts.

Java Runtime Environment

Application

Class Loader Extension

Figure 2.15.: Schematic Functionality of a Class Loader

As we explained there are basically three types of class loader (see Sect. 2.5.1).
But the disadvantage is that components to be load have to be declared in advance, to be
used in an application. To be able developing add-ons we first have to define a service
which interfaces are later implemented by the extensions. For the sake of simplicity, we
assume just to need one kind of add-on, which only claims to implement only one interface.
Listing 2.3 shows a suggestion of an interface definition, which is needed to be able to use the
functionality of the add-ons once they are provided. Listing 2.4 outlines the skeleton of an
add-on implementation that uses the provided interface.

1 public interface PlugIn {
2 public String getPluginID();
3 }

Listing 2.3: Fragment of Interface Definition

9http://docs.oracle.com/javase/tutorial/ext/basics/load.html

28

http://docs.oracle.com/javase/tutorial/ext/basics/load.html

2.5. Java Extension Mechanism

1 public class connectorPlugIn implements PlugIn{
2 @Override
3 public String getPluginID() {...}
4 }

Listing 2.4: Fragment of Add-on Implementation

Finally, as the application is prepared to use add-ons and some of them are deployed we can
access it by using one of Java’s provided class loaders. We give a short example by using
URLClassLoader10, to show the entire scope of work when attempting to load components
dynamically. As Listing 2.5 we first have to extend the systems URLClassLoader for the sake
of security, since that way it is not accessed directly. In this example we skipped a detailed
explanation of how to implement a class loader, since every one can decide which security
mechanism and additionally methods should be included.

1 public class PluginLoader extends URLClassLoader{...}

Listing 2.5: Extend Class Loader Snippet

As we have provided our implementation of a class loader we can now load add-ons dynami-
cally as illustrated in Listing 2.6. We have to give the directory where our archive with the
add-ons is located and add it to the system’s class loader. Afterwards we can load a specific
plug-in as shown in Line 5 of Listing 2.6. After this step we can use the add-on’s functionality
by invoking the methods from the connector object.

1 URLClassLoader sysLoader =
2 (URLClassLoader)ClassLoader.getSystemClassLoader();
3 PlugInLoader loader = new MyClassLoader(sysLoader.getURLs());
4 loader.addURL(new URL("file:<pathToThePlugins>/connectorPlugIns.jar"))
5 Class <Plugin> connector = loader.load("pluginPackage.pluginName");

Listing 2.6: Snippet to Load a Plug-in

Java provides several class loaders in its basic libraries. Hence, it is recommended to do
research which is the most appropriate class loader to use for a certain goal.

10http://docs.oracle.com/javase/8/docs/api/java/net/URLClassLoader.html

29

http://docs.oracle.com/javase/8/docs/api/java/net/URLClassLoader.html

2. Fundamentals

30

3. Related Work

This chapter gives an overview of related work. We divide this chapter into two major
subjects. As it is important and time reducing to know about the weaknesses of the system
and is useful to know about already identified improvement suggestions, we we introduce
already finished work on CDMT in Section 3.1. In Section 3.2, we introduce ESBMT, a research
result, which an multi-tenant aware Enterprise Service Bus. Although, it is a quite another
topic we can use some of the concepts for this work.

3.1. Previous Results

This section presents results issued to the topic of migration and delivering a foundation
for our work. All publications depict within this section are based on the Bachmann’s
Methodology and Tool for Migration of the DBL to a cloud [Bac12] developed with in his
diploma thesis.

3.1.1. Migration Scenario: RDBMS to NoSQL

The focus of this thesis was the migration scenario of data from RDBMS to NoSQL stores. It
is not possible to create a general model to handle this task, since NoSQL embraces different
store types, Lamllari discusses in her thesis [Lam13] difference between the mentioned types.
Tables of "Application Use Cases" for several NoSQL DBMS in that work give an overview of
reasonable possibilities to use the respective DBMS, and not suitable use cases to minimize
wrong decision towards the usage of a specific DBMS. Within the scope of this work an
extension of the CDHS taxonomy was provided to widen the use of the whole CDMT. There
are now two different migration strategies depending on if it is desired to move Data from a
RDBMS to a NoSQL store or not. The scenario in the focus of this work has a varying migration
strategy to the others, as depicted in Figure 3.1. The methodology for migration is based on
the original one, which we introduced in Section 2.3.2 but has been customized. For example
the phase Describe Source Data Layer is moved chronologically before the Describe CDHS,
which was originally in Bachmann’s definition Step 4a. It was added another phase Identify
Trade-Offs which is incorporated into the second phase, but is illustrated as separate within a
work group for a better recognition. Furthermore it is suggested to move the needed adaption,
for example to add a a new NoSQL store to the list of Cloud Data stores, at the DAL and the
BLL, when a mapping of relational to NoSQL DB-schemas is considered.
Additionally locking of values that do not apply to the migration scenario are preventing
conflicts by later users’ choice changes. By such restrictions the CDMT migration process is
cleaner and offers a clearer presentation of the UI. Besides those changes an implicit selection
of possible source data stores is suggested to reduce unnecessary considerations.

31

3. Related Work

Select

Migration

Scenario

Identify

Trade-Offs

Describe

Source Data

Layer

Describe

CDHS

Select

Cloud Data

Store

Identify

Conflicts

Adapt BLL

and DAL

Migrate

Data

Suggest default values

Suggest default values

TCP-H

Sample Data

Figure 3.1.: Extended Methodology for Scenario RDBMS to NoSQL, adapted from [Lam13]

But otherwise some for NoSQL stores not applicable categories in the taxonomy were re-
moved. Further extensions with in the CDMT are three new DB-adapters. One source adapter
for PostgreSQL and two target adapters for Cassandra and MongoDB. The main changes
compared to the initial version of the CDMT were in the part responsible for the "Dessision
Support" of the migration with the main goal to facilitate the scenario with a RDBMS as source
and a NoSQL system as target.

Even if in the focus was just one migration scenario this work delivered a broad under-
standing of the NoSQL stores. Even more important it gave a practical point of view on
the subject of data migration especially with respect to the scenario for migrating data from
RDBMS to a NoSQL store.

3.1.2. Evaluation of Methodology for DBL Migration: Industry

An evaluation of Bachmann’s Tool [Bac12] based on an case study from the industry was done
by Nachev in his thesis [Nac13]. The migration scenarios of this work used a tool developed
by "NovaTec Holdin GmbH1" and consists basically of three components. One of them is a web
application and the other two are DBs. We cannot deliver a more detailed description since
the permission for that was not gained.
The process model for the evaluation was used ITIL CSI [MMB09]. The evaluation consists
of two iterations which use different scenarios and can be subdivided into further more fine
grained steps. Within his work he identified three basic scenarios being relevant for his
attempt:

1. Migration of both DBs

2. Migration of the Web app

3. Migration of the entire Application

Since the focus of Nachev’s thesis was Bachmann’s methodology, which just covers data
migration, he omitted the second scenario.

1http://www.novatec-gmbh.de/en

32

http://www.novatec-gmbh.de/en

3.1. Previous Results

The steps of the first iteration are quite similar to each other (see Table 3.1). In this iteration
Bachmann’s tools and methodology was used to migrate the local PostgreSQL stores to a
"Virtual Machine" (VM) hosted on the on-premise Cloud of NovaTec.

Step 1 Step 2
Migrated Component DB 1 DB 2
Methodology Bachmann Bachmann
Used Tools Bachmann’s tools Bachmann’s tools
Source DBS PostgreSQL PostgreSQL
Target DBS PostgreSQL PostgreSQL
Source Environment Local System Local System
Target Environment NovaTec Cloud NovaTec Cloud

Table 3.1.: First Iteration of Evaluation by Nachev, Extrated From [Nac13]

The second iteration of this work is segmented into two steps as well. Whereas the first step
compromises the whole first iteration with a different target environment.
Table 3.2 shows the structure of the second iteration with its key aspects. We will pass on
describing the first step as it is analogously to the whole first iteration.
The target platform of the second iteration is Amazon2 Cloud. Since in the second step of
this iteration the entire application is migrated the methodology of AWS and Bachmann are
combined as depicted in Figure 3.2.
An other point to mention is that Nachev did not perform the last two steps, "Leverage the
Cloud" and "Optimization", because it was not within the scope of his work.
After the both iteration he compared durations of test runs of the hosted solutions with the
one measured with the ones when the NovaTec application is executed entirely local.

Step 1 Step 2
Migrated Component DB 1 & DB 2 Entire Application
Methodology Bachmann AWS, Bachmann
Used Tools Bachmann AWS, Bachmann
Source DBS PostgreSQL PostgreSQL
Target DBS PostgreSQL PostgreSQL
Source Environment Local System Local System
Target Environment Amazon Cloud Amazon Cloud

Table 3.2.: Second Iteration of Evaluation by Nachev, Extracted from [Nac13]

While performing the evaluation steps several problems and errors occurred. Each error
was documented in detail including a classification of severity and priority. Additionally an
description, suggestion for error handling and solution were given to improve Bachmann’s
tool and methodology.
Besides of the evaluation Nachev extended the CDMT by implementing a source adapter and
a target adapter for PostgreSQL to be able to execute his specified scenarios. Furthermore
he already resolved some of the documented errors permanently by refactoring or other

2http://aws.amazon.com

33

http://aws.amazon.com

3. Related Work

Figure 3.2.: Methodology of AWS and Bachmann Combined, Based on [Nac13]

programming activities.

The knowledge acquired in this thesis revealed the combination between the CDMT and
the methodology of Amazon. This use case is facilitated different tools and methodology to
enable the opportunity to achieve an aim which exceeds the functionality of the CDMT. Even
handier is that there was no need to perform a huge amount of work within the CDMT.

3.1.3. Evaluation of Methodology for DBL Migration: eScience

This subsection describes briefly the work of Guo [Guo13] in witch he evaluated the CDMT
by migrating a scientific work flow simulator. The scope of the examined scenario is the mi-
gration to an instance of Amazon Cloud. Nevertheless the focus of this work is the migration
to the comparison of Bachmann’s attempt and tool to the one of Amazon Web Service3 (AWS).
It is also mentioned that two services of AWS, Amazon Rational Database Service4 (RDS) and
Amazon Elastic Compute Cloud5 (EC2) should be used. To get more precisely the evaluation
consists of two iteration. In each iteration the BLL and the DLL are migrated in respect to the
used methodology. Since Bachman’s methodology and tools just focus on migration of the
DBL, the BLL has to be migrated manually. A brief summary of the iterations is shown in
Table 3.3.

Iteration 1 Iteration 2
Methodology Bachmann Amazon
Used Tools Bachmann’s tools, rsync Bachmann’s tools, Amazon tools, rsync
BLL Migration manually manually
BLL Target Platform Amazon EC2 Amazon EC2
DBL Migration Bachmann’s Tools Bachmann’s Tools
DBL Target Platform Amazon RDS Amazon RDS

Table 3.3.: Envaluation Iterations by Guo, Extracted From [Guo13]

3https://aws.amazon.com
4https://aws.amazon.com/rds
5https://aws.amazon.com/ec2

34

https://aws.amazon.com
https://aws.amazon.com/rds
https://aws.amazon.com/ec2

3.2. Multi-tenant Open-Source Enterprise Service Bus

Each iteration of the evaluation process is mapped to the ITIL CSI [MMB09] process. Basically
his thesis delivers a quite detailed description for the usage of Bachmann’s tool and method-
ology. Furthermore several errors emerged during the execution of both iterations. Each error
is described in a sufficient way including strategies to handle a particular error and solutions
to correct or to avoid it. This facts lead to a better comprehension of Bachmann’s attempt in
a more practical way. No persistence changes to the CDMT were made, since many of the
occurred as part of the discussed scenario in conjunction with the used configuration and
environments.

3.1.4. Positioning and Distinguishes

The introduced results do not match our needs, since the focus of this work is integration.
Hence our attempt has not much in common with the already published work. Nevertheless
this work is based on Bachmann’s CDMT and methodology, so we can benefit from the gained
knowledge and results of the concluded publications.
We will use the insight of the thesis introduced in Section 3.1.3 to reduce the effort in case of
emerging misbehavior while the usage of the tool.
The attempt of this paper is to increase the stability and possible usage of the CDMT. On that
account we will take results and implementations of the work introduced in the Sections 3.1.1
and 3.1.2 and join them to one more powerful result.
A further distinction to Nachev is, that we won’t use the toll and methodology as part of an
overall migration. Solely some DBL migration to different types of storages will take place as
part of the validation (see Sect. 7). Furthermore we will resolve some outstanding issues to
provide a more pleasant use of the CDMT.

3.2. Multi-tenant Open-Source Enterprise Service Bus

A core concept to integrate application is the Enterprise Service Bus (ESB) technology, whereby
it is acting as the messaging hub between applications. It is used as a core component of each
Service-Oriented Architecture (SOA).
In this section we take a look on ESBMT which is introduced by Strauch et. al in [SALM12].
One major task of that work was to enable multi-tenancy of the ESB benefit from Cloud
computing paradigm in an business environment. A further important aspect of ESBMT is the
extensibility for the needs of every user by integrating external services to without having to
change the original source code. ESBMT extends the open source Apache ServiceMix solution.
However, we will just take a look on aspects of this work which can be reused within this
thesis. As Figure 3.3 shows every ESB instance is able to use services of external providers
and offer them to external service consumers.

35

3. Related Work

Runtime Environment

Normalized Message Router

Standardized Interfaces for Messaging Adapters

Message
Adapter

Message
Adapter

Message
Adapter

Standardized Interfaces for Messaging Processors

Message
Processor

Message
Processor

Message
Processor

External

Servic

Consumers

External

Servic

Providers

Figure 3.3.: Architecture of an ESB Instance, Based on [SAGSL13]

Since not each user needs to use every available service that is accessed by an ESB it ben-
efits from properties of multi-tenancy. Every ESBMT instance is executed in a Java Business
Integration (JBI) environment and belongs to a JBI Container Instance Cluster. The extensions
are integrated by the mechanism of bindings. We will reuse the concept of extensions while
runtime and the multi-tenancy concepts in a some different way since the set-up of the
ESBMT is quite different from the one of the CDMT. Since the CDMT does not extend Apache
ServiceMix and does not use JBI libraries we must consider an other mechanism to provide
extensibility. Furthermore, the concept of multi-tenancy properties cannot be implemented
in the same extend as introduced in context of ESBMT, since the the CDMT only supports
different user, but does not subdivide it by tenants or similar groups.
However, we will reuse the idea that not every user should have the access to every sin-
gle component the CDMT provides, rather it is important that not all dynamically loaded
components should not be provided to all users.

36

4. Concept and Specification

In the following chapter, we will specify the changes of the CDMT (see Sect. 2.3.2), as well
as their requirements. Since the work is ongoing we will reuse some results from previous
work to avoid redundant labour. First of all, the implementation is separated in two iterations
to reduce the risk of failure. In Section 4.1 we will introduce the implementations ought to
be combined to benefit of the respective progress, which is the first iteration. Mainly we
will use draw on the achievements of Lamllari [Lam13] (see Sect. 3.1.1) and Nachev [Nac13]
(see Sect. 3.1.2).
Furthermore it will give an overview over open points, like misbehaviour of the UI. Addi-
tionally, some functions of the CDMT, which are still behaving insufficiently, will be specified.
The descriptions will be as detailed as necessary and brief as possible to avoid repetitions,
since we already introduced these in Section 3.1 .
Afterwards, we introduce requirements for the behaviour of the add-on mechanism, which
extends the functionality of CDMT, in Section 4.2. We based define this part of the speci-
fication with Use Cases. Finally, we explain the specified non-functional requirements in
Section 4.3. Since they are generally valid and will be considered during all following tasks,
we formulated them in a separate section. Here after we will reference the achievements of
the authors as follows:

B: Adaptations, implementation and suggestions done by Bachmann.
L: Adaptations, implementation and suggestions done by Lamllari.
N: Adaptations, implementation and suggestions done by Nachev.

In this way we avoid to take credit for work that was not done by ourselves. Also it enables
the reader to identify the source and the originator of suggestions and the work used in this
thesis.
In Section 4.2 we specify the add-on extension mechanism and requirements towards it.

4.1. Integration and Adaption

In this section will the tasks specified do be done as part of the integration. In Section 4.1.1
we will give an overview of the DB adaptors to unite within our prototype. Section 4.1.2
will specify functional requirements the software shall meet after the integration. For this
phase we will use the prototype implemented by Bachmann and adapted by Nachev es
our base-version. Each introduced section is to consider as a separate step of the overall
integration process.

Since Lamllari [Lam13] and Nachev [Nac13] implemented their improvements concurrently
and without any exchange now there are two different parallel versions ot the CDMT. As

37

4. Concept and Specification

both made their own and distinguishable adaptation as part of their theses the respective
focus was quit different.

4.1.1. Adapters

This section will introduce the adapters are existing in the different versions of the CDMT
and might strictly be considered as separate and exchangeable components.
The different provided adapters are summarised in Table 4.1 and ordered by their respective
type and author.

Bachmann Lamllari Nachev
Source Adapter MySQL PostgreSQL PostgreSQL

Target Atapter

Google Cloud SQL 1 Cassandra PostgreSQL
Azure SQL 2 MongoDB
EC2 MySQL
Local MySQL

Table 4.1.: Overview of Provided Adapters

It is obvious that the source adapter for PostrgreSQL is implemented twice. For our approach
we will use the one with which which proves itself having a cleaner implementation in a code
review. We will skip the validation of functionality before the integration, since it already
was provided by fact that each of the adapters already was tested by the respective author
within his work. After the integration process the source and target adapters ought to work
in the implemented way. Therefore we will inspect the capability of the integrated adapters
implicitly in an system test, since changes of the whole system could have side-effects on
components which were not changed themselves. Respectively the source adapters shall
connect to the specified store types and readout data. On the other hand the target adapter
have to connect to the the specified target store types and write data in the store.

4.1.2. Functional Requirements

This section contains functional requirements, which were specified by the previous work, or
emerged while the usage of one of the prototypes. However Table 4.2 includes the identified
requirements ordered by their ID with a brief Description.
Whereas the ID type is specified as follows:

ID = Type− Nr(Author) | Type ∈ {FR, NFR} ∧ Nr ∈N \ 0∧ Author ∈ {B, L, N} ∪ {}

1https://cloud.google.com/sql
2https://azure.microsoft.com/en-us/services/sql-database

38

https://cloud.google.com/sql
https://azure.microsoft.com/en-us/services/sql-database

4.1. Integration and Adaption

ID Requirement Description

FR-1(L) Add properties to the category
Select Querying Features

The following properties are to implement:
-SQL-like query language
-Aggregate queries support
-RegExp queries support
-Full-text search
-Secondary indexes
-Geo-spacial indexes

FR-2(L) Delete redundant option in
Step 1a: Select Migration Scenario

The option Data Usage from the Cloud is a sub-
scenario of Plain Outsourcing. It will be re-
moved from the CDMT.

FR-3(L) Step2:Identify Trate-Offs In case the scenario "RDMBS to NoSQL" is se-
lected a step to identify trade-offs of different
NoSQL store types is shown.

FR-4(L) Show always Steps 1a, 1b and 1c Steps 1a, 1b, 1c have always be selectable inde-
pendently of the selected migration scenario.

FR-5(L) Adapt work flow of the method-
ology

The step Describe Local Data Layer has to in
the work flow in any case be before the step
Describe Desired CDHS.

FR-6(L) Adapt category Data Constraints
in Step2: Describe Desired CDHS

Property Max Index Size should be added.

FR-7(L) Extend Data Constraints in Step2:
Describe Desired CDHS by cate-
gory Caching

Category Caching should be extended by
adding the properties Direct Caching Support
(options: Yes/No) Caching Layer (options:
Built-in/ Support for integrating Caching
Layer on top of data store).

FR-8(L) Accomplish category Manage-
ment and Maintanance effort in
Step2: Describe Desired CDHS

Property Communigy Support should be
added.

FR-9(L) Tool tip for category Data Com-
pression in Step2: Describe Desired
CDHS

The currently empty tool tip shall show help-
ful information on data compression to sup-
port users choice.

FR-10(L) Tool tip for category Querying in
Step2: Describe Desired CDHS

The currently empty tool tip shall show help-
ful information on querying to support users
choice.

FR-11(L) Changes in category Consistency,
Availability, Partition tolerance
(CAP) in Step2: Describe Desired
CDHS

Renaming of property Availability in case of
Partitioning to In case of Partitioning. Changing
the options "Available" and "Not available" to
"Consistent", "Available" and "Turnable"

39

4. Concept and Specification

FR-12(L) Adapting colour of properties’
captions in Step2: Trade-Offs

The background colour of the properties’ cap-
tions shall be changed from yellow to a light
blue, that fits in the context of the entire
application.

FR-13() Change of the colour scheme of
the entire application

Instead of the dominating colours black,
white and grey to shadows of blue.

FR-14() Integration of existing example
projects

Projects that exist within the prototypes of
previous work shall be also included in the
integrated version.

FR-15() Change of copyright The copyright after the integration process
shall be Apache License Version 2.0.

FR-16(L) Integration of tab-mechanism for
Adapt Data Access Layer and Up-
per Application Layers

The tabs with the advices for adaptations of
migrated application’s upper layers shall be
in the integrated version.

FR-17 () Establish a tab-mechanism for
the entire migration support.

Every migration step shall be in its own tab. If
a step, like step 1, has several tasks to perform
that tasks shall be subdivided as well.

FR-18 () Implement feedback loops. If any conflicts are identified in step 5 the user
must have an easy way to switch to their pos-
sible causes.

Table 4.2.: Functional Requirements for CDMT After Integration

40

4.2. Add-on Extension Mechanism

4.2. Add-on Extension Mechanism

In this section we specify the functional requirements of the add-on loading mechanism.
To the contrary of the previous section (see Sect. 4.1) we have to develop this functionality
from scratch. Hence, we will go more into detail to give a deeper understanding of this
functionality. We describe the desired behaviour by Use Cases.
We subdivided this section by the major functions of the mechanism to provide a better
overview. In the following we will refer to an add-on as adapter since adapter for database
connectivity is the only type which will be provided by this mechanism.
In general we have to provide interfaces for the source and target adapters, which shall be
included during runtime in CDMT. We also must extend the data model of CDMT since user
shall be enabled to decide whether the adapter they provide might be used by others. Figure
4.1 illustrates use cases of CDMT. We provided the highlighted functionalities as part of this
work.

User

Sign Up Sign In Sign Out

Add new

Cloud Data Store

Add New

Project

Add New

Adapter

Delete Adapter

Assign Adapter

Dismiss Adapter

Existing
Functions

Developed
in this thesis

Modify

Project

Migrate

DBL
<<include>>

<<include>>

Figure 4.1.: Use Cases Overview

41

4. Concept and Specification

4.2.1. Add Adapter

Name: Add Adapter

Goal: The user wants to add a new database connectivity adapter to the
list of available adapters.

Actors: User, CDMT

Pre-Condition: The user is registered, has signed in with his credentials, and
selected the menu Adapters.

Post-Condition: The selected adapter is stored in the data base. It is shown in
the adapters list and is available. The archive file containing the
adapter is copied to CDMT’s adapter directory.

Exceptional
Post-Condition:

The selected adapter is not stored in the data base and is not
shown in the list of available connectivity adapters.

Regular Case: 1. The user clicks on the Add Adapter Button.
2. The CDMT opens the New Adapter View.
3. The user fills in the required properties of the adapter.
4. The user uploads the archive of the adapter.
5. CDMT copies the archive of the adapter to

its plug-in directory.
6. The user acknowledges it by clicking on the Confirm Button.
7. The CDMT writes an entry into the database

with adapter’s id and properties.
8. The adapter is in the list of available connectivity adapters.

Exceptional Cases: 4a. The adapter has not the file *.JAR.
a) The upload function is disabled
b) The user can either provide a proper file or aboard.

5a. The adapter cannot be accessed.
a) The user gets an error message about the failure.

7a. The database cannot be accessed.
a) The user gets an error message about the existing adapter.
b) CDMT aborts the operation.

7b. An adapter with similar properties is already added.
a) The user gets a message about the existing adapter.
b) The user must acknowledge this message.

Table 4.3.: Use Case Add Adapter

42

4.2. Add-on Extension Mechanism

4.2.2. Delete Adapter

Name: Delete Adapter

Goal: The user wants to remove a connectivity adapter from the list of
available adapters.

Actors: User, CDMT

Pre-Condition: The user is registered, has signed in with his credentials and
selected the menu Adapters. An adapter was added previously to
the list, is visible, and accessible.

Post-Condition: The deleted adapter is not shown in the list of available connec-
tivity adapters or is accessible in any other way. The archive file
of the adapter was deleted from CDMT’s directory for adapters.

Exceptional
Post-Condition:

The adapter is still accessible and is shown in the list of available
connectivity adapters.

Regular Case: 1. The user selects the adapter he/she wants to delete.
2. The system requires a confirmation,

if the action should be taken.
3. The user confirms the action.
4. CDMT removes adapter’s specific entry from the database.
5. CDMT deletes adapter from its plug-in directory.
6. The added adapter is removed from the list of available

connectivity adapters.

Exceptional Cases: 4a The selected adapter cannot be deleted since it is still assigned.
a) The system shows an error message.

5a The selected adapter does not exist.
a) The system shows a message.
b) Continuing with regular procedure.

5b Adapter’s file cannot be accessed.
a) CDMT shows an error message.

Table 4.4.: Use Case Delete Adapter

43

4. Concept and Specification

4.2.3. Assign Adapter

Name: Assign Adapter

Goal: The user wants to use an available connectivity adapter.

Actors: User, CDMT

Pre-Condition: The user is registered, has signed in with his credentials and
selected the menu Adapters. An adapter was added in the list
of available connectivity adapters previously. It is visible and
accessible.

Post-Condition: The highlighting of adapter’s Assign-Button is changed from green
to purple, its label shows the entry Dismiss instead of Assign. The
Adapter is usable to establish connections.

Exceptional
Post-Condition:

The state of adapters button is not changed and the adapter can-
not be used to establish connections.

Regular Case: 1. The User clicks on the Assign-Button of the desired adapter
from the list of available connectivity adapters.

2. CDMT reads out the properties of the selected adapter.
3. CDMT adds the adapter to system’s class loader.
4. CDMT adds the user assignment of the adapter to the database.
5. The Assign-Button of assigned adapter changes the colour

to purple and shows the label Dismiss.

Exceptional Cases: 2a. The user does not have the permission for
that adapter anymore.
a) CDMT shows an error message.
b) CDMT removes the respective adapter from the list

of available connectivity adapters.
3a. The database cannot be accessed.

a) CDMT shows an error message.
b) CDMT removes the adapter from system’s class loader.

5a. The adapter does is not implemented correctly.
a) CDMT shows an error message.
b) CDMT removes adapter specific entries from the database.
c) CDMT removes adapter from its plug-in directory.

Table 4.5.: Use Case Assign Adapter

44

4.2. Add-on Extension Mechanism

4.2.4. Dismiss Adapter

Name: Dismiss Adapter

Goal: The user does not want to use an connectivity adapter anymore.

Actors: User, CDMT

Pre-Condition: The user is registered, has signed in with his credentials and
selected the menu Adapters. An adapter was previously assigned
from the list of available connectivity adapters. It is visible and
accessible.

Post-Condition: The Assign-Button of the adapter changes its colour from purple
to green, and the its label is changed to Assign. User’s assignment
is removed from the database.

Exceptional
Post-Condition:

The adapter stays assigned and visible in the list of user’s avail-
able adapters. The Assign-Button remains purple and its label was
not changed.

Regular Case: 1. User clicks on the purple Assign-Button of the adapter which he
wants to dismiss.

2. CDMT removes the assignment entry from the database.
3. CDMT removes the adapter from system’s class loader.
4. The Assignment-Button of the adapter is changes its colour

to green and its label displays Assign.

Exceptional Cases: 2a. The database cannot be accessed.
a) CDMT shows an error message.
b) CDMT aborts the operation.

3a. The adapter cannot be removed from system’s class loader.
a) CDMT shows an error message.
b) CDMT aborts the operation.

Table 4.6.: Use Case Dismiss Adapter

45

4. Concept and Specification

4.3. Non-Functional Requirements

In this section we describe the most important non-functional requirements towards our
implementation. We exclude applications, whose DBL is migrated with our application, from
meeting this requirements, since every developer on his own is responsible for his work.

4.3.1. Extensability

Nowadays there are plenty of data hosting solutions, but in quite short periods more provider
appear on the market. To ensure utility of the CDMT we have to provide an opportunity
extending it to be able migrating data to such new providers.

4.3.2. Usability

An important aspect is to afford a understandable and intuitive way to use the CDMT. It has
to guide the user through the migration scenario in an understandable and reconstructing
manner. The UI has to be recognizable to ensure that new users, or users who haven’t been
using it for a certain period of time, can manage the usage without unpleasant obstacles or an
extensive effort to learn the concept of the tool.

4.3.3. Reuseability

The source code of the CDMT has to be accessible to developers beyond the period of our
implementation. We attempt to deliver an architecture which allows to be adapted to further
use. To eliminate legal concerns a license which allows an ongoing development of the CDMT
shall be used.

4.3.4. Integratability

The CDMT has to provide a utility without having exorbitant and unnecessary impact on
the application which DBL is to migrate. Furthermore, it has to be integrable in migration
projects without the demand of changing the strategy of the process or the functionality of
the environment.

4.3.5. Maintainability

Providing a high degree of maintainability has to be reached by an understandable implemen-
tation. For further comprehension of the source code implemented methods and modules
have to be documented by comments explaining the purpose of the respective parts.

46

4.3. Non-Functional Requirements

4.3.6. Backward Compatibility

The implementation of the functional requirements specified in Section 4.1 and in Section 4.2
must not have any impact on the projects which were created in the previous versions of the
CDMT. Furthermore, they must stay usable and configurable at the end of the integration
process, as well as after the implementation of further functionality.

4.3.7. Security

The data belonging to a certain user must be protected in the way that no others without
permission are able to access it. Furthermore changes in the source code of CDMT shall be
done in a way that prevents malicious manipulations.

4.3.8. Portability

The system shall be independent from the environment. Furthermore, as little as possible the
system shall be dependent on installations an additional products in the runtime environment
after it is build an distributed.

47

4. Concept and Specification

48

5. Design

In this chapter we introduce the architectural solution and improvements we designed to fulfil
the requirements presented in Chapter 4. We explain the redesigned workflow for the decision
support of CDMT in Section 5.1, as well as the changes we made in the implementation, after
the first iteration. Followed by Section 5.2 in which we present the major innovations of the
architecture.

5.1. Adaptations

In this section we present the necessary adaptations to fulfil requirements from Chapter 4. It
is subdivided in two main sections. We introduce changes we made in the presentation layer
as part of the integration process in Section 5.1.1. As result of this changes it was possible to
adapt the workflow of the decision support to new requirements which we present in Section
5.1.2.

5.1.1. Presentation Layer

To provide a high degree of maintainability (see Sect. 4.3.5) and extensibility (see Sect. 4.3.1)
we redesigned the structure of the presentation layer. We split the presentation of the decision
support in multiple components as depicted in Figure 5.1. This design allows to exchange
or manipulate the view of every step separately and easily to extend the Web UI of the
CDMT. All the components are in the same folder, hence we illustrated it as a Fundamental
Modeling Conceps (FMC) block diagram to be able to explain the connections between respective
components implemented as JSPs. Every single JSP contains an HTML definition to generate
the content and method calls of the respective CDMT’s Web UI. All the pages are embedded
within the migration-settings.jsp which loads the respective page for user’s selection.
Pages surrounded by a dashed boarder with round corners are varying content, which is
loaded in dependence on the selected migration scenario. The page get_project-settings-
overview.jsp gives an overview of set properties in the consecutive steps of the decision
support.
Furthermore, it allows to call the needed page directly if properties selected in one of the steps
shall be changed. Pages which allow an active selection are characterised with a prefixed set_.
Some pages, as adapt-upper-app-layer.jsp, contain advices for the user how he has to
adapt his application to be able using the migrated DBL. Another important page which does
not provide direct settings is identify-solution-patterns.jsp. Its purpose is to identify
possible conflicts of properties set for the migration and to suggest patterns to resolve these
by changing properties in the linked steps which are responsible for the target store definition
(see Fig. 5.1).

49

5. Design

migration-settings.jsp

set_source-RDBMS.jsp

set_source-DBL.jsp

set_cdh-solution-hs.jsp

set_cdh-solution.jsp

set_migration-trade-

offs.jsp

set_cloud-data-store.jsp

identify-solution-patterns.jsp

adapt-upper-app-layers.jsp

get_project-settings-overview.jsp

migration-use-cases.jsp

set_step1.jsp

set_migration_scenario.jsp

set_migration_strategy.jsp

Figure 5.1.: Component Connection of the Presentation Layer

5.1.2. Workflow

In this sections we will introduce the workflow of a migration process with the CDMT. We
depicted it as a simplified flow chart in Figure 5.2. Every process in this diagram represents
a major step of the migration process. The worflow also correlates with the structure of
the presentation layer’s components we explained in Section 5.1.1. In the first step Set up
Migration Scenario the User selects the desired scenario and refines it. If this scenario has
the purpose to migrate from a RDBMS to a NoSQL store the user has to Identify Trade-Offs
regarding his migration in the second step, else he continues with the description of his source
data store in the the third step Describe Source Store. Independently of the scenario choice step
two will be displayed in the Web UI, but is not configurable for scenarios other than RDBMS
to NoSQL. The difference between the steps Describe Source RDBMS and Describe Source Store
is that the first one mentioned is more restrictive since the scenario prescribes the source store

50

5.1. Adaptations

as a RDBMS. After accomplishing the third step between the scenarios distinguishes do not
matter and the workflow continues with the same consecutive steps for every scenario. In
the fourth step Describe Desired Target Store the user has the choice to set various properties
which his target desired store should support. Afterwards the user eventually selects one
of the predefined data hosting solutions in the fifth step Select Target Store. At this point the
definition of the data migration is almost finished in the sixth step Identify possible Conflicts a
list along the respective conflicts might occur between the previous selections is given. If that
should be the case one can get to the steps where the properties of the target store and the
selected data hosting solution are set. This mechanism supports a feedback loop to minimize
side effects on the data due to the migration process. Hopefully as all conflicts are resolved
the user gets in the seventh step Adapt Upper Application Layer multiple advices to adapt his
application for a proper data access in the environment where the data is migrated. Once all
the preparation is done the DBL finally will be migrated to the desired environment in the
last step Migrate Data. After this step is executed the migration process terminates.

51

5. Design

Start

Set up Migration

Scenario

Identify Trade-Offs

RDBMS to

NoSQL?

Are there

Conflicts?

Target

Store

Describe Source StoreDescribe Source RDBMS

Describe Desired Target

Store

Select Target Store

Identify possible

Conflicts

Adapt Upper

Application Layers

Migrate Data

End

Yes No

YesYes

No

Figure 5.2.: Workflow for the Decision Support

52

5.2. Extension Mechanism Architectural Overview

5.2. Extension Mechanism Architectural Overview

In this section we present our design to meet the requirements in respect to provide extensions
(see Sect. 4.2). In Section 5.2.1 we introduce the design and architecture which enables loading
add-ons during runtime. Further extensions were made in the schema of used MySQL DB
which we highlight in Section 5.2.2.
We also considered the non-functional requirements while designing the new functionali-
ties.

5.2.1. Architecture of the Extension Mechanism

In this section we explain how the designed extension mechanism for the add-on functionality
works. We introduce that mechanism isolated from the existing software environment for the
sake of simplicity and a better comprehension.
The extension mechanism requires several new software components for a proper functional-
ity. Furthermore, we stick to the layered architecture, originally initiated by Bachmann [Bac12]
(see Sect. 2.3.2), to have a consistent architecture and a certain degree of maintainability. The
components are embedded in the respective layer as Figure 5.3 depicts. We provide a certain
degree of security (see Sect. 4.3.7) by copying the archive files that contain a selected adapter
to CDMT’s adapter directory. That way we cumber malicious manipulation of data which
might lead to a severe exception.

CDMT

BLL

Web-UI

Data Layer

DAL

cloudDataMigration DB

newAdapter

fileManager

adapterLoader adapterInstance

adapterRegistry

Plugin Directory

Plugin_cp

adapterOverview

adapterManager

Plugin

Source Directory

Figure 5.3.: Add-on Mechanism Overview

53

5. Design

We introduce the components and their scope layer by layer to reveal their functionality in
the same chronological order as their invocation during usage below. Moreover, we explain
for every component which other components it accesses to provide a better comprehension
of Figure 5.3. The anchor point of all operations, which this mechanism delivers, is the
component manageAdapter.

We begin with the most upper layer, Web UI. Its purpose is to provide a graphical interface to
trigger provided operations. The following list gives an overview of components which we
used to extend:

• manageAdapter:
This component contains a view where the user is able to assign, dismiss, or delete
adapters. It also contains the possibility to add a new adapter, whereas for this the
component addAdapter is responsible.
In any other case the component adapterManager.

• addAdapter
This component is invoked, if the user started the operation Add Adapter in the view of
manageAdapter. It contains a view with a form where the user enters information that is
mandatory to load a connectivity adapter. It accesses the component adapterManager

The next layer is the BLL which purpose is to communicate between the presentation layer
and the resources which in this case are commonly supported by the Data Layer. We extend
the BLL by the following components:

• adapterManager:
The purpose of this component is to direct operation requests from the component
manageAdapter to components in the DAL and further components in the BLL itself. It
depends on the executed operation which components are involved. If a new Adapter
is added or removed the components adapterRegistry is involved and the fileManager.
If the operation assign or dismiss are triggered, the components adapterRegistry and
adapterLoader will be used for further processing.

• adapterLoader:
The focus of this component are two functions. The first is to add adapters to system’s
class loader that shall be used. The second one is to remove adapters from system’s class
loader which are not required anymore. It accesses the component adapterInstance. After
an adapter is successfully added this component provides input to create an instance of
the component adapterInstance.

• adapterInstance This component enables to create an instance of adapters which are
added to system’s class loader during runtime. It enables access to the methods and
functionality of instantiated adapters.

The lowest layer is the Data Layer, which basically contains two sub-layers, the DAL and the
DBL. The adaptations of the DBL that we make are explained in Section 5.2.2. The list below
shows components that we add to the DAL:

54

5.2. Extension Mechanism Architectural Overview

• adapterRegistry: The responsibility of this component is to administrate adapters
which are added. Furthermore, it updates the DB with information of every single
adapter and if, and in which way a certain adapter is used. It accesses the resources
from the DB and delivers their content to adapterManager.

• fileManager This component manages the physical files of CDMT’s connectivity adapters.
If an adapter is added this component copies the specified file into CDMT’s adapter
directory. As soon as an adapter is not longer required its file is deleted in the Adapter
Directory.

5.2.2. DB Schema Extension

In this section we introduce the adaptations of the DB Schema we make to provide the
extension mechanism for CDMT. Since the DB connectivity is still provided by adapters
which are included in CDMT’s source code there was no necessity to manage their properties
additionally in a persistent manner. We extend the DB Schema by two additional tables which
are highlighted in Figure 5.4.

User

id CHAR(32)PK

username VARCHAR(256)

AdaperRegistry

user_id CHAR(32)PK

adapter_id CHAR(32) PK

Adapter

id CHAR(32) PK

location VARCHAR(256)

owner CHAR(32)

store_type VARCHAR(256

restriction CHAR(10)

adapter_type

VARCHAR(256)

adapter_name

VARCHAR(256

passwordHash

VARCHAR(256)

email VARCHAR(256)

Verified INT

sessionExpiryDate DATETIME

sessionTocken CHAR(32)

created DATETIME

updated DATETIME

Project

id CHAR(32) PK

name VARCHAR(256)

description TEXT

department VARCHAR(256)

url VARCHAR(256)

user_id CHAR(32)

created DATETIME

updated DATETIME

lastModifiaction DATETIME

Legend

Entity

PK

Attribute

Entity

PK

Attribute

Existing entities

Added entities

Project User

Figure 5.4.: Snipped of Extended DB Schema

The table AdapterRegistry contains the user and the adapters which they are using. The id of
an adapter is added in a row with the id of the user who assigned it. The more complex table

55

5. Design

Adapter contains all information of adapters which are mandatory to enable the usage of an
adapter in the specified way. For example we have the attribute owner, which contains the
id of the user who added a respective adapter. This attribute is required due to the possible
restriction of private usage only. If this restriction is set only the user who added that adapter
is able to assign and use it.

56

6. Implementation

In this chapter we present how we realized the requirements from Chapter 4 with the design
from Chapter 5. We divide this chapter into several sections in order to separate each stage
of the implementation. We distinguish the content by the criteria if we extend the BLL or
are able to accomplish tasks without changing the base model of CDMT. In Section 6.1 we
explain how we accomplished the integration phase. In this section we do not change the
BLL or the data model of CDMT. Afterwards we migrated the entire project into a new
environment, we reveal the necessity and benefit of this approach in Section 6.2. Accordingly
we leverage the benefits of the migration to adapt CDMT towards new the requirements and
introduce the innovations in Section 6.3. In Section 6.4 we give an overview of new features
we implement, that increase the usage of CDMT and required an extension of the data model.
Eventually we finish this chapter with Section 6.5 in which we outline a source and a target
adapter for the sake of completeness. Furthermore, we require theses adapters to validate our
implementation (see Sect. 7).

6.1. Implementation of the Integration

In this section we describe the implementation of the integration phase. We subdivide this
topic in two further sections. First of all we introduce the tools and libraries we used for this
iteration in Section 6.1.1. Section 6.1.2 gives an overview of the components we integrated in
the base version and the tools we used that supported this process. Additionally we explain
how we reused and rearranged some fragments of the previous implementations.

6.1.1. Tools and Libraries Used for Integration

In this section we give an overview of the tools we used during the integration process. A
brief description of the respective tools help to identify its scope.

Apache Tomcat1 (Version: 7.0.26)
Servlet container to publish and run CDMT.

1http://tomcat.apache.org

57

http://tomcat.apache.org

6. Implementation

Eclipse2 (Version: 3.7 "indigo")
The Itegrated Development Environment (IDE) where CDMT was initially created and edited.
Its plug-in based concept allows to extend its functionality.

Java (Version: 1.6.0_24)
Java is a programming language and compiler which are used for the development of CDMT’s
business logic and data access layer.

JQuery3 (Version: 1.9.1)
JQuery is a library for JavaScript4 (JS) that enables building and inspecting a Domain Object
Model (DOM) of a HTML page. Furthermore, it provides various methods to access and
manipulate specific objects in the DOM, which are represented as HTML nodes.

JQuery UI5 (Version: 1.10.3)
JQury UI is build on top of JQuery JS Library. It contains a set of Cascading Style Sheets (CSS)
to design Web pages, and adapted JQury functionality to provide a defined user interaction
with Web-UI elements.

Meld6 (Version: 1.5.3)
Editor to compare content of directories and files of the concurrently
developed versions of CDMT.

Oracle MySQL Workbench7 (Version: 5.2.38 rev. 8753)
Graphical tool to access and adapt the DBL of CDMT.

Oracle VM VirtualBox8 (Version: 5.0.14 rev. 105127)
VirtualBox is a virtual machine manager to host the system which contains the development
and execution environment as well es the source code of CDMT. It is used to keep an image
of a stable configuration and encapsulate the development in a save environment.

2https://eclipse.org
3https://jquery.com
4https://www.javascript.com
5https://jqueryui.com
6http://meldmerge.org
7https://dev.mysql.com/downloads/workbench
8https://www.virtualbox.org

58

https://eclipse.org
https://jquery.com
https://www.javascript.com
https://jqueryui.com
http://meldmerge.org
https://dev.mysql.com/downloads/workbench
https://www.virtualbox.org

6.1. Implementation of the Integration

6.1.2. Integration Strategy

In this section we explain our approach to integrate components of the previous implementa-
tion that were missing in our base version. Furthermore, we give an introduction of the steps
we had to complete and the included actions we performed as part of every step. That after
we give an overview of the components which were contained in only one of the versions we
integrated.

1. Identification
The first task was to identify intersection of components and functionality between the
versions, which we have done by respective comparing the project directories. For this
purpose we used Meld. Afterwards all distinguishing components were extracted into a
separate folder. Following this, it was necessary to get all differences between files and
components which once had the same implementations but were adapted as part of the
respective work. This task required a manual inspection of the supplementary source code
parts to decide which dependencies and impact it would have after the integrations. As soon
as these tasks were finished we went on with the step Inclusion.

2. Inclusion
This step required a raw integration of the distinguishing components. We used the import
function of the IDE Eclipse to include the additional components in our development base.
Afterwards we had to include external Java libraries which were used by some classes.
Support for the identification of such libraries was provided by the syntax analysis of Eclipse.
After we had included the necessary files we continued with the step Adaptation.

3. Adaptation
To provide a proper use of the added component some source code files had to be adjusted.
For this task we used the information gained in the step Identification to localize the files.
Further aid was given by Eclipse since all components that were not used were highlighted
in the project structure. For example we had to create a new instance of the included data
store adaptors within the class CloudDataMigrationContextListener.java to be able to
use them.
Furthermore, we hat to change the chronological order of steps which are performed while
a migration with the CDMT. We customised the file project.jsp to fulfil FR-3(L), FR-3(L),
FR-5(L) and FR-16(L) (see Sect. 4.1.2).
We had to execute certain SQL statements with Oracle MySQL Workbench to adapt the data
model in the DBL. We extended the methodology by additional entries to accomplish re-
quirements from FR-4(L) to FR-11(L) as well as FR-1(L), FR-2(L) and FR-14(). After we had
solved all conflicts and provided the necessary dependencies we could proceed with the step
Validation.

59

6. Implementation

4. Validation of Basic Functions
This step has just few requirements. The approval of a correct system behaviour is part of
Chapter 7. In this step we inspected the following criteria of the CDMT:

• Bootability:
Does Apache Tomcat publish the application after the
performed integration tasks?

• Previous DB Entries:
Are previous entries in the DB like user credentials
or created projects visible and accessible?

• Adapted Workflow:
Are the steps of migration displayed and executable in
the changed order?

• Extended Methodology:
Are added categories and properties visible and selectable?

• Behaviour of the Web UI:
Are the Web pages presented in the same order as before the
the integration tasks were performed?

After we ensured the all requirements listed above were satisfied we considered this part of
the integration as successful.

6.2. Migration and Reconstruction

In this section we describe the migration of the CDMT project into a new environment as
well as the new project configuration and build process. We subdivide this section into
further subsections to emphasis the benefits of the respective changes. In Section 6.2.1 we
explain the motivation which lead us to migrate and reconstruct the entire development
project. Following this, we briefly introduce the new tools we use for the different stages of
the software life cycle in Section 6.2.2. Afterwards, we present the improved build cycle in
Section 6.2.3. Finally, we cover the deployment of CDMT and its the significant changes in
Section 6.2.4.

60

6.2. Migration and Reconstruction

6.2.1. Motivation

We were forced to perform this task by the state of CDMT’s development project. After we
finished the integration we have to install several new development tools in order to extend
CDMT with appropriate technologies and practices, since the development environment that
was used before is outdated and provides barely support. The first attempt is to create a
repository with Github9 to clone the project in an environment with suitable equipment. This
leads to a dead end since several dependencies were neither documented nor obvious. To
enable better development support in order to reduce potential failures and workarounds, the
entire project was reconstructed. A part of this reconstruction was to clarify which external
libraries are used in which phase of the build cycle and which are not necessary or obsolete.
Furthermore, a major concern is to provide extensibility (see Sect. 4.3.1), so that future changes
can be done without obstacles for developers and reduce dependence on software products.
Additionally we improve the maintainability (see Sect. 4.3.5) since libraries can be exchanged
without having to research the entire source code.

6.2.2. Extended Toolset

As a result we are able to include further tools to accomplish the implementation more
efficiently. Below we introduce the tools we used to improve the development process.

Apache Maven10 (Version: 3.3.3)
We use Maven as build servers. It supports and encourages usage of best practices. Since the
whole project dependencies are declared in a Project Object Model (POM) file the dependencies
are transparent. Furthermore, it provides a repository with plenty of Java libraries and plug-
ins to use for a build project. Additionally we will leverage the fact that unit test are a part of
the build process, so that we are able to perform an integration process easily.

Docker Engine11 (Version: 1.11.1)
Docker is a open source project on Github. The Docker Engine provides a lightweight runtime
engine. An in-host daemon communicates with the Docker client to support functionalities
as building, shipping, and running a Docker container. A great benefit of containers is
the encapsulation of an application and its dependencies. Since it shares the kernel with
the host system an efficient recourse management is the result and by running as process
in separate userspace the host system can be prevented from endangerments caused by
application failures. Additionally container do not require a specific infrastructure and might
be deployed on various environments.

9https://github.com
10https://maven.apache.org
11https://www.docker.com/products/docker-engine

61

https://github.com
https://maven.apache.org
https://www.docker.com/products/docker-engine

6. Implementation

Jetbrains IntelliJ IDEA Community Edition12 (Version 2016.1.1)
IntelliJ IDEA is an IDE for Java projects with a great amount of built-in tools and frame-
works. Primarily we decided to use it as IDE since it provides a performant debugger with
remote functionality. Furthermore, we did not had to research required plug-ins to resume
development of our project, since everything is included.

Microsoft Visual Studio Code13 (Version: 0.10.11)
Visual Studio (VS) Code is a lightweight editor for various programming languages. It provides
Git integration as default. We choose that tool as it has a large possibility to integrate plug-ins
for Web-UI development such as Bootstrap14 (BS). We use it to adapt and develop all Web-UI
related components of CDMT.

6.2.3. Build Cycle

In this subsection we outline the build phases of Maven’s build life cycle we configure and the
plug-ins we use for our purpose. We do not explain the functionality of Maven or its build
life cycles, for those who want to know more about this topics we suggest [apc] and [jav]
to obtain required information. We describe each build phase, including the plug-ins used
for the respective phase as well as its purposes and coherence for our attempt below. It is
important to mention that the build phases depend consecutively on each other. Besides the
goals that are defined for every execution in a phase are functionalities which are provided
by referenced the respective plug-ins referenced in a phase.

Process-Classes
In this phase we use the Datanucleus15 Maven Plug-In which goal is enhance. We have to use
this functionality in order to enable Tomcat to use CDMT’s classes. Otherwise, we get errors
in context of persistent Java objects.

Process-Test-Sources
In this phase we use the Surefire16 Maven Plugin in order to execute JUnit17 tests with each
build. The goal of this phase is test. We need this build phase to ease the integration of new
components.

12https://www.jetbrains.com/idea
13https://code.visualstudio.com
14http://getbootstrap.com
15http://www.datanucleus.org
16http://maven.apache.org/components/surefire
17http://junit.org

62

https://www.jetbrains.com/idea
https://code.visualstudio.com
http://getbootstrap.com
http://www.datanucleus.org
http://maven.apache.org/components/surefire
http://junit.org

6.2. Migration and Reconstruction

Pre-Integration-Test
In this phase we use the fabric818 Maven Plug-in. Its goals are build, start, and stop docker
containers from a specified image, which is provided by Docker. We use this approach to
provide an isolated user-space for CDMT.

Generate-Resouses
We use Maven Resources Plugin in this phase, which copies the resources from a specified
source directory to a defined output directory. This configuration is necessary due to different
resources were already created in CDMT’s development project. We use them as profiles of
which each provides a configuration with example connection parameters for CDMT’s DB.

6.2.4. Deployment

It is important to know how a software is deployed in order to be able to run it correctly.
Additionally it is for maintenance engineers important to know in which way a productive
system is deployed to include this phase in their projects. Figure 6.1 depicts the structure
of deployed CDMT. Whereby the application and the DB have their own container each.
The App Container is the environment of CDMT and contains all required dependencies to
run it as well. Furthermore, it has installed Apache Tomcat to publish the application. The
DB Container has installed Oracle MySQL in it and provides resources from the CDMT DB
which is basically data, like user information, to run CDMT. The communication between the
containers is managed by Docker Engine via virtual networks.

Host System

App Container

Apache

Tomcat

CDMT

DB Container

Oracle

MySQL

Docker Engine

CDMT

DB

Host Operating System

R R

Figure 6.1.: Structure of Deployed System, inspired by [doc]

18http://fabric8.io

63

http://fabric8.io

6. Implementation

We deploy CDMT in containers to protect the host machine, where development takes place,
from errors caused by failures of CDMT. Furthermore, we benefit from the fact that we have a
stable build with a defined DB state, which is provided by a configured dump file. However,
if the DB should be corrupted by failures in the source code of the components which access
the DB we are able to start from a stable state by executing the build life cycle once again.
Additionally we supply a more realistic scenario for test by logically separating the application
server, which publishes CDMT, and the client, which can be a browser on the development
machine.

6.3. Adaptation of Migrated Project

Not only technical progress during with passing time is a major aspect of software, but new
perceptions in the field of UI as well. To keep up with recent requirements we adapted
the UI by implementing approved concepts of user control. We give an overview of newly
introduced,or updated libraries in Subsection 6.3.1. In Subsection 6.3.2 we deliver a brief
explanation of the improved user control.

6.3.1. Libraries

To enable contemporary some updates are necessary. We list the external resources with the
used version and a brief description below.

JQuery (Version: 1.12.3)
We a newer version of JQuery for our implementation since it has been extended and provides
a support by the Web-community.

Bootstrap (Version: 3.0.3)
Bootstrap provides an comprehensive definition for Web-UI elements which have a consistent
design and are easy to use. Since it has many users and a detailed documentation it supplies
a good support for developers and inspires to use appropriate UI controls.

Bootswatch Paper19

Bootswatch Paper is an custom theme with consistent design. It contains CSS, which provides
the design, and an additional JS file, to have several design related functionalities such as a
fully developed tab-mechanism. We use this component to design the entire Web-UI of CDMT.
We chose this Bootswatch Paper since it fits well in the metaphor of forms to set properties of
a migration project in CDMT. Furthermore, a clean and tidy look does not distract the user
from the major task and eases obtaining of information supported by the Web-UI.

19https://bootswatch.com/paper

64

https://bootswatch.com/paper

6.3. Adaptation of Migrated Project

6.3.2. User Control

In this section we present implemented improvement suggestions. Especially we will explain
the implementation of the tab-mechanism quite detailed, since it has a great impact on the
usage of the CDMT. Figure 6.2 shows the view after creating a new project, or opening an
existed in CDMT. We adapted the operating concept to provide a better user guidance, which
leads to a improved usability (see Sect. 4.3.2) in general. Furthermore, this concept fulfils
FR-17(N). This concept was a result of rearranging items within the presentation layer, as
introduced in Section 5.1.1.

1

3

2

Figure 6.2.: Initiative View After Creating a new Project

Bellow we explain the concept of implemented changes. The points in the list below are
referencing the numbered arrows in Figure 6.2.

1. Navigation Tab Bar:
Each step of the migration methodology is divided in a separate tab. This way the
user can always see in which stage of the migration he or she is and estimate the
progress. Furthermore, it allows a comfortable switching between each step, if for
example something should be changed.

2. Task Bar:
As some steps in the methodology require more than one task. We subdivided such
steps in tabs as well. The benefit is similar as the one of the Navigation Tab Bar but also
gives a comprehensive order of the tasks and an overview what is to be done in such
steps in advance.

3. Bottom Bar:
Since some sheets of the migration methodology are quite long but have not necessarily

65

6. Implementation

be viewed or filled completely we fixed the action buttons at page’s bottom. For an
example of this view, see Figure 6.2. The problem is that you can see not really much
more than one scenario at the same time; so if you chose the first one it can be boring
and cumbersome to scroll all the way down to the bottom of the sheet. By using our
new and improved design you can progress your migration process immediately after
selecting the desired option by clicking on the Button Save.

By the changes explained above we provided a more efficient Web UI. This way we reduced
time consumption of mandatory operations without losing any information or skipping
essential options.

6.4. Extension of CDMT

In this section we outline the implementation of the extension mechanism we designed in
Section 5.2. We had to extend the data model in order to provide additional functionality.
More precisely, we provide by accomplishing this task the possibility to upload and integrate
connectivity adapters for every desired store during runtime. We begin with Subsection
6.4.1 to give an overview of the new structure of the Web-UI. In Subsection 6.4.2 we briefly
introduce the "Dashboard" we integrated to CDMT. Afterwards we explain the implemented
"Adapter Overview" in Subsection 6.4.3. Following this, we present the "New Adapter Page"
in Subsection 6.4.4. We finish this section by providing a description of the concept we use
to prove the correctness of our implementation and integration of the new components into
CDMT in Subsection 6.4.5.
Generally we use AJAX messages to send request from the browser to the server and responses
in the opposite direction, as shown in Figure 6.3. Since that is a common method to transfer
messages. We will not further explain its functionality but recommend [w3s] for detailed
explanation. This messages are responsible to obtain data for CDMT’s Web-UI and initialize
server operations by the client.

Server

CDMT

Servlet

Client

Browser

CDMT

Page

R

AJAX

messge

Figure 6.3.: Message Exchange Schema

66

6.4. Extension of CDMT

6.4.1. Web-UI Navigation Controls

We begin with the entry point of the Web Application, the Welcome Page which is illustrated
in Figure 6.4. Our motivation is to deliver a UI which has a clean appearance and intuitive
design to allow the user focussing on the functionality without having to learn the controls.

Figure 6.4.: Welcome Page

The most important thing to know about this page is, that the Home Button is in the upper left
corner in the navigation bar. It will always call that page independently on which one you
are in the public area. For further explanation on this page we move on to the general concept,
since it clarifies the purpose of the Welcome Page as well. Figure 6.5 depicts the coherencies
between respective Web pages.

The blue arrows in this illustration symbolize the connections between the pages and the
direction from which page you are able to navigate to which other. Whereby the arrowhead
points at the target, moreover the one with two arrow heads represent a bidirectional naviga-
tion.
The rectangles represent HTML pages, further referenced as "pages", that are contained in
the Web-UI of CDMT. Furthermore, this picture categorises in three major types of pages,
information pages, Public interaction pages, and Private interaction pages. Information pages provide
information on different aspects of CDMT, such as supported Stores, an explanation of the
Decision Support and so on. This pages can be viewed by any visitor and do not require

67

6. Implementation

Welcom Page

Dashboard

Stores

Decision Support

About

Sign Up

Scenarios

Sign In

Category

Item of Category

Legend

Public interaction pages

Information pages

Private interaction pages

Figure 6.5.: Navigation Concept of CDMT

any credentials. The next category is public interaction pages which allow users to register
themselves, or already registered users to enter the private interaction pages.
That pages enclose the functionality of CDMT. Also, it should be noted that the rectangles
Category and Item of Category are a summary of different pages. Since these categories have
the same generic concept and possibility of navigation we do not depict them explicitly for
the sake of a clear illustration of the concept. Though, it is important to know that CDMT has
three different categories, namely Adapters, Projects, and Stores. We will cover Adapters in the
following subsections, but for more information on Stores and Projects we recommend to read
[Bac12].

6.4.2. Dashboard

The main page for registered users who are signed in is the Dashboard. In this section we
explain the major elements and the their functionality of that page depicted in Figure 6.6.
We marked the areas by rectangles. The upper one, marked with the number "1" in a circle,
contains the Navigation Bar, the lower one contains the Shorthand Tables.

Navigation Bar
The Navigation Bar have all private interaction pages in common. In the list bellow we explain
their functionalities beginning with the most left.

1. Home Button: From every page it navigates to Dashboard.

68

6.4. Extension of CDMT

2
1

Figure 6.6.: Dashboard of CDMT

2. Adapters Page: Navigates to the Adapter Overview Page, which delivers an detailed
overview connectivity adapters and certain functions, that are available for the respec-
tive user.

3. Projects Page: Opens the Projects Overview Page which provides a detailed information
of projects of the specific user.

4. Stores Page: Navigates to the Stores Overview Page that were created by users and are
supported by CDMT.

5. Sign Out Button: Signs out the user and shows the Welcome Page. Besides, it ends the
user session.

Shorthand Tables
The main benefit of the Dashboard are Shorthand Tables. They provide summarized overview
of the items a specific user can access. By clicking on an item in the table the user will be
redirected to its detailed page respectively. In the blue area above table content is the name of
items’ category with a count of entries in the respective table. The tables are listed below with
the order from left to right.

1. Adapter Shorthand Table

2. Project Shorthand Table

3. Store Shorthand Table

69

6. Implementation

6.4.3. Adapter Overview Page

Adapter Overview Page is the Web-UI belonging to the new function of adding new connec-
tivity adapters during runtime. Figure 6.7 depicts the default view for available adapters.

The blue button above the table on the left side opens a dropdownmenu witch provides
actions to Add Adapter or to Delete Selected. The columns of the table are explained in the the
list below beginning with the most left.

Figure 6.7.: Adapters Overview

1. Checkbox: Allows to select adapters which should be deleted. If the "checkbox" in
table’s head is checked all entered adapters are selected.

2. Name: Contains the name of respective adapters. By clicking on the name the user
is redirected to a detailed page of the selected adapter which shows all its entered
properties.

3. Type: This column defines if an adapter is for connecting to a target, or to a source
store for data migration.

4. Store: Entries in this column define the store type to which a specific adapter is able to
connect.

5. Version: This column defines the version of the store which to for which a certain
adapter is implemented.

6. Availability: Basically we distinguish between two availabilities, Private and Public.
Private adapters can only be used and viewed by the user who added them. Other
users do not see this adapters in their table. Public adapters are available for every
user. By classifying these two availabilities we support Security to a certain extend
(see Sect. 4.3.7).

7. Last Modification: Last modification shows the date on which the respective adapter
was modified the last time.

8. Assignment Buttons: In this column a user is able to decide which of the available
adapters he wants to use. By clicking on an Assignment Button which is highlighted
by green colour and contains the value Assign the adapter will be added to CDMT’s
"classloader" and is considered as assigned by the user. The assignment state is saved
persistently until it is changed by the user. If an adapter is not longer required it can be

70

6.4. Extension of CDMT

dismissed by the user by clicking on the violet highlighted Assignment Button with the
label Dismiss.

A further new feature is the Delete Dialog. It is the yellow rectangle with two buttons, which
have the values No and Yes, and is depicted in Figure 6.8.

Figure 6.8.: Available Actions

The Delete Dialogue fades in if the user has selected one ore more adapters and clicked on the
Delete Selected action. By using this method we increase Usability (see Sect. 4.3.2) and prevent
an unwanted behaviour. The motivation to use this approach was that the actions Add Adapter
and Delete Selected are quite narrow. Hence, we wanted prevent deletions by accident. If the
user clicks on the button No nothing will happen but the fading out of the dialogue and the
default state, as depicted in Figure 6.7, will be restored.
Just if the button Yes is clicked a request will be send to the server, which initiates deletion
of adapters properties from the DB and of the adapter’s binaries from the hard disk drive.
This action is irreversible. Selecting the action Add Adapter will redirect the New Adapter Page
(see Sect. 6.4.4).
Another feature is user feedback when assigning or dismissing an adapter. If the desired action
is executed successfully an information panel on at the location the Delete Dialogue is displayed
in Figure 6.8 an information fades in. After three seconds it fades out automatically.

6.4.4. New Adapter Page

An essential Web-UI component to use Adapters is the New Adapter Page. Figure 6.9 depicts
this page which consist of a form. At the top left corner is a Back Arrow Symbol which provides
the possibility to cancel the operation and to return to the Adapter Overview Page. We give
an explanation of the fields in th form in the list below, whereas the order is from the top to
the bottom field, see Figure 6.9. Generally we designed it lean by giving a field’s purpose
within itself to avoid a overloaded design. This entry disappears as soon as the user starts
entering another value. The content of New Adapter Page is used, if detailed information on
an available adapter shall be shown after it is added as well.

71

6. Implementation

Figure 6.9.: Page for Adding a new Adapter

1. Adapter Name: The user has to enter a name for the adapter as text.

2. Database Type: The user should enter a database type. This information is useful for
other users, since it defines the database type to which the adapter is able to connect.

3. Store Version: The entry in this field allows the user to enter the version of the store
for which the adapter is implemented.

4. Description Area: Provides the possibility to give further and detailed information
about the adapter. This area is restricted to alphanumerical entries only.

5. Select Adapter Type: By clicking on this field a drop-down-menu appears below
which has two options Source and Target. This information selecting one of these options

72

6.4. Extension of CDMT

is mandatory, since for the data model it is necessary to know in order to load any
adapter to the "classloader".

6. Select Accessibility: By clicking on this field a drop-down-menu appears which
provides the options Private and Public. It is obligatory to select one of these options,
since it decides if the adapter can be used by every registered user or by the owner only.

7. File Upload Area: To add an adapter to CDMT a binary file must be uploaded to the
server first. This area provides two different possibilities to upload an adapter. The user
can either just drag the file and drop it to the area containing the information "Drag
& drop files here ...", or to click on the Browse Button, highlighted by a folder symbol.
Clicking on this button opens a file Browser which is used to navigate to the directory of
the desired file and selecting it. In both cases the File Upload Area shows the selected file
and additional buttons as depicted in Figure 6.10. The buttons are Remove and Upload,
their functionality is obvious by their names. Clicking on Upload the user gets feedback
on the operation’s outcome, if it was successful the file is stored in the directory for
adapters on the sever and the Add Adapter Button will be enabled. In other cases an error
description will appear. The upload functionality is restricted to one file per adapter
and to JAR-files only.

8. Add Adapter Button: The Add Adapter Button is disabled as default, and will be
enabled if a file is successfully uploaded. When it is enabled the entered values in the
fields above are validated. If a mandatory required value is not given the respective
field is highlighted and an information to fill that field. However, if the form is filled
correctly the all entries for the adapter are stored in the db, the user is redirected to the
Adapter Overview Page, the added adapter is shown in the Adapter Table, and can be used.

Figure 6.10.: File Upload Area in Detail

73

6. Implementation

6.4.5. Approval of Implementation and Integration

To integrate the extensions into CDMT we use the top-down approach (see Sect. 2.4.2). We
outline the tasks we performed and the order in which the components are added in this
subsection. The validation of the entire system is the subject of Chapter 7. Thus, at this point
we will cover the approval of the components. The Java components are tested with each
build of CDMT in an isolated manner by Unit Tests. However, it enabled the possibility to
test CDMT semi-automatically.

Web-UI Components
Since our Web-UI Components are just to visualise the content and do not have any processing
logic we had to prove their behaviour and links between each other. Additionally we used
some dummy data to ensure a correct depiction of the information and design. We added
these components first since we stick to the integration process, to have control in each state
and be able to identify causes for misbehaviour more precisely.

Servlets
Servlets are responsible for the communication between client and server. They do not access
any resources wherefore they were integrated after the Web-UI Components. By using empty
messages we are able to test if the connection is established correctly. Afterwards we used
static values to ensure correct message format.

Classes for Persistent Java Objects
The lowest components in our architecture of the top-down perspective are Classes for Per-
sistent Java Objects which are responsible for data access and manipulation. Hence, failures
at this place are quite critical. We minimized the risks since we isolate CDMT execution
environment and can reproduce a clean state of resource data at any time (see Sect. 6.2.4)
These are components we added last during the integration.

The overall system test is part of the validation (see Chap. 7). This final test is important to
exclude side effects on the CDMT’s components that were already integrated.

6.5. Exemplary Adapters

In this section, we will outline the implemented adapters. We provide a MySQL source
adapter that is introduced in Subsection 6.5.1 to obtain the data. In Subsection 6.5.2, we briefly
present the PostgreSQL target adapter which is responsible for writing data to the target store.
For both adapters we use JDBC to reduce dependencies for the installation and configuration
of the runtime environment and its installations. We do not explain the functionality or
features of JDBC, yet we suggest to read [Ora] for more information on this topic. The
JDBC driver and its version, that we use, are declared as a dependency in the POM file

74

6.5. Exemplary Adapters

of every adapter. Moreover, for every adapter we create a separate project. Furthermore,
we take the already existing adapters of CDMT, which are part of the source code, as an
example to provide adapters which are as consistent as possible to CDMT’s design and
implementation. Hence, we facilitate the usage of the provided interfaces for both types of
adapters (see Appendix A).

6.5.1. MySQL Source Adapter

We describe shortly what is important to consider in an implementation of a source adapter
and what differs from the previous implementations. Since we use JDBC to connect to
a source store, we need to create a connectivity object at the beginning of a session. Since
such connection objects can be used for various SQL store types, it is important to specify
"jdbc:mysql:" at the beginning of the connection string to load the right driver. Afterwards,
we open a connection with properties, which we obtain from the user. Transactions between
CDMT and the respective store are handled by this object. Additionally, we have to specify
and create a directory which we use to store the content of a source store. After we transfer
the data to that directory we consider all transactions finished. It is essential to close every
connection for the sake of security, regardless of whether the data was transferred successfully
or not.

6.5.2. PostgreSQL Target Adapter

In addition to the connection handling we have described in section 6.5.1, we introduce
characteristics which differ from the source adapter. A major one is to implement a method
to read the data transferred from the source store. Another is to convert the data into a
convenient format for the target store. After CDMT terminates migration, the directory for
data to export to and its content must be removed in any case.

75

6. Implementation

76

7. Validation

Every change to a system might have unforeseeable side effects and misbehaviour. Hence, we
always have to prove the concepts which we used in this work and the implementation. In
this chapter, we present the tools, data, and method we used to validate our implementation.
In Section 7.1, we give an overview of the tools we use for our validation. To run our test, we
generate data which we outline in Section 7.2. We explain in Section 7.3 the use cases which
we used for validation. Finally, we present the validation and the insights we gained from it
in Section 7.4.

7.1. Tool and Services

In this section, we give an overview of additional tools that are required for our validation.
Furthermore, we have to use services that provide a Cloud Computing environment. We also
explain for which purposes we use each tool or service.

Amazon RDS
Amazon RDS provides the possibility to scale a relational DB in a Cloud environment. It
supports various RDBMS per default. We leverage this property to create an instance of
PostgreSQL which we use as target store for our validation.

Apache JMeter1 (Version: 2.13)
Apache JMeter has the ability to test different kinds of resources. Since it can be configured to
send requests with predefined queries to a specified DB, we use it to prove the consistency
between source and target data. Furthermore, it enables to run such tests very frequently.
Thus, we are able to rerun the tests in case of changes in a short time once it is set up.

pgAdmin2 (Version: 1.20.0 Beta 2)
pgAdmin is an open source tool with a GUI which provides functionalities to manage and
develop PostgreSQL DBs. We use it to examine the target store if our automated requests do
not deliver the desired results. Additionally, it is useful for troubleshooting if we observe
misbehaviours, such as connectivity problems or unavailability of the target store.

1http://jmeter.apache.org
2http://www.pgadmin.org

77

http://jmeter.apache.org
http://www.pgadmin.org

7. Validation

TPC-H3 (Version: 2.15)
"TPC-H is decision support benchmark. It consists of a suite of business oriented ad-hoc quiries and
concurrent data modifications." [Tra14]. We use it to generate our test data which is stored in the
test DB. Since we do not use further functionalities, we will not give a detailed introduction,
but refer to [Tra14] for further information.

7.2. Test Data

In this section, we present the data we use for our validation. Figure 7.1 depicts the crowfoot
diagram of the MySQL DB with an overall size of one gigabyte. We generate the data with TPC-
H and chose this schema on purpose, because it has a certain complexity to approximate a
real-live scenario. We use as similar schema and data as it is used in [Lam13]. Furthermore, it
was important to examine how CDMT handles different data types and relations of a certain
DB. Additionally, we are able to review information on restrictions in a DB, such as columns
for PK, FK, or fields which must not be empty.

3http://www.tpc.org/tpch

78

http://www.tpc.org/tpch

7.2. Test Data

customer

C_CUSTKEY INT(11)

C_NAME VARCHAR(25)

C_ADDRESS VARCHAR(40)

C_NATIONKEY INT(11)

C_PHONE CHAR(15)

C_ACCTBAL DECIMAL(15,2)

C_MKTSEGMENT CHAR(10)

C_COMMENT VARCHAR(117)

Indexes

lineitem

L_ORDERKEY INT(11)

L_PARTKEY INT(11)

L_SUPPKEY INT(11)

L_LINENUMBER INT(11)

L_QUANTITY DECIMAL(15,2)

L_EXTENDEDPRICE DECIMAL(15,2)

L_DISCOUNT DECIMAL(15,2)

L_TAX DECIMAL(15,2)

L_RETURNFLAG CHAR(1)

L_LINESTATUS CHAR(1)

L_SHIPDATE DATE

L_COMMITDATE DATE

L_RECEIPTDATE DATE

L_SHIPINSTRUCT CHAR(25)

L_SHIPMODE CHAR(10)

L_COMMENT VARCHAR(44)

Indexes

nation

N_NATIONKEY INT(11)

N_NAME CHAR(25)

N_REGIONKEY INT(11)

N_COMMENT VARCHAR(152)

Indexes

orders

O_ORDERKEY INT(11)

O_CUSTKEY INT(11)

O_ORDERSTATUS CHAR(1)

O_TOTALPRICE DECIMAL(15,2)

O_ORDERDATE DATE

O_ORDERPRIORITY CHAR(15)

O_CLERK CHAR(15)

O_SHIPPRIORITY INT(11)

O_COMMENT VARCHAR(79)

Indexes

part

P_PARTKEY INT(11)

P_NAME VARCHAR(55)

P_MFGR CHAR(25)

P_BRAND CHAR(10)

P_TYPE VARCHAR(25)

P_SIZE INT(11)

P_CONTAINER CHAR(10)

P_RETAILPRICE DECIMAL(15,2)

P_COMMENT VARCHAR(23)

Indexes

partsupp

PS_PARTKEY INT(11)

PS_SUPPKEY INT(11)

PS_AVAILQTY INT(11)

PS_SUPPLYCOST DECIMAL(15,2)

PS_COMMENT VARCHAR(199)

Indexes

region

R_REGIONKEY INT(11)

R_NAME CHAR(25)

R_COMMENT VARCHAR(152)

Indexes

supplier

S_SUPPKEY INT(11)

S_NAME CHAR(25)

S_ADDRESS VARCHAR(40)

S_NATIONKEY INT(11)

S_PHONE CHAR(15)

S_ACCTBAL DECIMAL(15,2)

S_COMMENT VARCHAR(101)

Indexes

Figure 7.1.: Crowfoot Diagram of the Test DB, Generated With MySQL Workbench

79

7. Validation

7.3. Test Cases

We have to define which aspects of CDMT we want to validate and which mechanisms
are suitable. In this section, we introduce the test cases which we used for our validation.
Generally, we use two kinds of test cases. In Section 7.3.1, we explain the connection between
use cases we defined in Section 4.2 and how we leverage that for validation. Afterwards
we describe how we use previous results (see Sect. 3.1) to extend the validation in Section 7.3.2.

7.3.1. Use Case Based

Use cases specify expected behaviour of an entire system or components. Hence, they can
be used to derive test cases directly. Furthermore, we utilise them to validate the functions
which we implemented and their behaviour in the context of the overall system. Additionally,
they complete the process of integration (see Sect. 6.4.5). We consider the specified regular
cases as the expected results for successfully accomplished test cases.
In the event of unexpected behaviour , or the specified exceptional cases we use the following
method to correct it:

1. Identify the cause of misbehaviour.

2. Eliminate what is responsible for the error(s).

3. Execute all operations of the test case again.

We iterate this method until errors and failures that appear during the execution of the
respective test cases are resolved.

7.3.2. Based on Previous Results

We use the validation from [Lam13] as well as the evaluations from [Guo13], and [Nac13]
to define a configuration for this test case. Moreover, we prove the functionality of our test
adapters (see Sect. 6.5). We define a detailed set-up for the test case migration in Table 7.1.

Name: Migrate Data (manual interaction required)

Goal: Migrate test data (see Sect. 7.2) without loss.

Source Adapter: MysSQL (JDBC version: 5.1.38.JDBC4) (see Sect. 6.5.1)

Target Adapter: PostgreSQL (JDBC version: 9.3.-1100-JDBC41) (see Sect. 6.5.2)

Source Store: Local MySQL (version: 5.6.30)

Target Store: Hosted by Amazon RDS PostgreSQL (version: 9.3)

80

7.4. Validation Result

Migration Scenario: Plain Outsourcing

Required Input: 1. Properties to connect to the source store
(Host, Port, DB-name, User-name, Password).

2. Properties to connect to the target store
(Host, Port, DB-name, User-name, Password).

Pre-Conditions: Accomplish use case based tests (see Sect. 7.3.1) successfully.

Post-Conditions: 1. The data is available in the source and the target store.
2. The export directory is removed.

Successfull Result: The content of the source DB and its data model is migrated
successfully.

Failed Results: 1. The data is migrated without its model.
2. The data is not migrated, but the model is.
3. No migration at all.
4. Connection to the source store cannot be established.
5. Connection to the target store cannot be established.

Table 7.1.: Test Case Migration

We chose Plain Outsourcing (see Table 2.2) as scenario since it is validated in [Lam13]. Al-
though, we use RDBMS of different vendors to extend the validated configurations. Further-
more, it is essential that before this test case is examined all use case based tests complete
successfully since it ensures that the adapters, which we implemented as plug-ins can be
used by CDMT.
Neither do we describe the execution of this in detail, nor do we describe our selected options
defined by the methodology (see Sect. 2.3.2) since it does not have impacts on the outcome of
the validation. For detailed information on this topics we recommend [Bac12] and [Lam13].
Moreover, successfully completing this test ends the validation and integration.

7.4. Validation Result

In this section, we present the results of the validation. In Section 7.4.1, we outline the outcome
and problems we had during performing tests based on use cases. Finally, we explain the
outcome of the tests based on previous results in Section 7.4.2.

7.4.1. Outcome of Use Case Based Tests

The first test run delivered a server side error. We were able to localise it in the servlets.
The cause was an inconsistent message format between client and server. We corrected the
message processing and moved on. The second run was unsuccessful as well. Due to a syntax

81

7. Validation

error in the queries that are responsible for DB entries we got an SQL_Exception. We adapted
the queries and rebuilt the entire system. Finally the third run was successful and all test
cases were accomplished as expected.

7.4.2. Outcome of Tests Based on Previous Results

The execution of this phase of the validation was critical. Although, we were able to load our
adapters and connect to the stores, we could not migrate the test DB at all. We had to inspect
the source code of our adapters and components which interact with them in detail.
After cumbersome debugging, we are led to the conclusion that the implementation of our
connectivity adapters was not sophisticated enough to handle the data migration. We found
out that it was not possible to write fully operational adapters as part of this work since the
default functionality of JDBC-Drivers does not cover all possibilities of the previously used
proprietary products. On the one hand, we were able to obtain data from the source store
and store it in files in simple formats. On the other hand, JDBC-Drivers have no build-in
functions to obtain the schema nor the relation definition between the different entities. All
this functionality has to be implemented additionally. Hence, we have a negative result for
our attempt to exchange the source and target adapters of CDMT entirely by JDBC based
solutions.

82

8. Conclusion and Future Work

In this final chapter, we summarize our efforts and the conclusion we gained during this
work. We outline recommendations for further improvements of CDMT and ideas for future
work.

After we introduced the concepts, we conducted an analysis on how to include them in the
prototype and specified its requirements. We reused previously implemented prototypes
to reduce redundant labour. Additionally, we specified new functionalities to enable not
only a broader use of CDMT prototype but also to prepare it for extensibility so it can be
extended more easily. After our initial analysis we redesigned and extended the architecture
of CDMT. We decided which components could be reused, which would have to be exchanged
for integrating them into the final prototype and enable extensibility. After the integration
phase, we gained the insights on obsolete technologies that we used, as well as their impact
on the development process, from a software-engineering perspective. During the imple-
mentation encountered problems which could not be resolved by design. We provided an
efficient and defined build cycle which increased productivity and transparency for this phase.
Furthermore, we prepared our prototype to be used in several different environments.

Afterwards, we provided a modern design for a better user experience and appropriate ap-
pearance. We were able to implement a plug-in mechanism for a high degree of customisation
and extensibility. Moreover, this property enables the support for future types of stores or
new implementations of existing stores.
We were able to identify possibilities to increase the potential of CDMT left for future work.

For future work, we suggest to provide extended interfaces for connectivity adapters. We
have to mention that a more complex implementation of such adapters is still outstanding.
Hence, it is recommended to provide methods which implement, or even outclass, functional-
ities of proprietary solutions. An other interesting investigation in this context is to distribute
the data of a source store on multiple stores of a different kind.
Although, this attempt requires further research on topics like information densities of certain
tables in a schema of a RDBMS, and which impact it has if the data is migrated to another
store type. Yet another considerable task is to identify equivalences in models and implement
different store types to transformation patterns for DB-designs during a migration to another
data model.

83

8. Conclusion and Future Work

84

Appendix A.

Interfaces

A.1. Source Adapter Interface

1 package com.clouddatamigration.migration.model;
2

3 public interface SourceSystem {
4

5 String getId();
6

7 ArrayList<String> getConnectionParameters();
8

9 boolean connect(HashMap<String, String> connectionProperties,
10 ServletOutputStream out);
11

12 String getInstructions();
13

14 /**
15 * Returns SQL commands to recreate the tables and their data in a
16 * relational database
17 *
18 * @param out
19 * @return
20 */
21 String getSqlCommands(ServletOutputStream out);
22

23 /**
24 * Returns a map of tables with their exported data as CSV
25 *
26 * @param out
27 * @return key = table name, value = CSV with headers in first line, values
28 * in following lines
29 */
30 HashMap<String, String> getTablesAsCSV(ServletOutputStream out);
31 }

Listing A.1: Source System Interface, Part of [Bac12]

85

Appendix A. Interfaces

A.2. Target Adapter Interface

1 package com.clouddatamigration.migration.model;
2

3 public interface TargetSystem {
4

5 /**
6 * Returns a unique ID that also describes the adapter, e.g.
7 * AWS_RDS_MYSQL_TARGET
8 *
9 * @return

10 */
11 String getId();
12

13 /**
14 * Returns true if SQL commands are supported and false if a CSV data import
15 * is required
16 *
17 * @return
18 */
19 boolean supportsSql();
20

21 /**
22 * Returns a list of required or optional connection parameters, the meaning
23 * of each parameter and whether it is required or not is described in the
24 * instructions.
25 *
26 * @return
27 */
28 ArrayList<String> getConnectionParameters();
29

30 /**
31 * Tries to connect to the data store and makes sure that not only the
32 * credentials (connection properties) are valid, but also that some kind of
33 * action can be called that does not change anything.
34 *
35 * @param connectionProperties
36 * @param out
37 * @return true if successful, false if not
38 */
39 boolean connect(HashMap<String, String> connectionProperties,
40 ServletOutputStream out);
41

86

A.2. Target Adapter Interface

42 /**
43 * Migration using SQL commands, tries to preserve constraints
44 *
45 * @param sqlCommands
46 * @param resp
47 * {@link HttpServletResponse} with the possibility to write to
48 * the output stream, send files or redirect the user
49 * @return true if successful, false if not
50 */
51 boolean migrate(String sqlCommands, HttpServletResponse resp);
52

53 /*
54 * Returns printable (html) instructions what the connection parameters
55 * mean, what the import adapter does and what it is capable of.
56 *
57 * @return
58 */
59 String getInstructions();
60

61 /**
62 * Migration using CSV format, ignores constraints
63 *
64 * @param csvTables
65 * @param resp
66 * {@link HttpServletResponse} with the possibility to write to
67 * the output stream, send files or redirect the user
68 * @return true if successful, false if not
69 */
70 boolean migrate(HashMap<String, String> csvTables, HttpServletResponse resp)

;
71

72 String getTargetStoreType();
73 String getTargetId();
74 }

Listing A.2: Target System Interface, Part of [Bac12]

87

Appendix A. Interfaces

88

Bibliography

[ABLS13] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch. How to Adapt Applica-
tions for the Cloud Environment. Computing, 95:493–535, 2013.

[apc] apche.org. Apache Maven Project. https://maven.apache.org/index.html.

[Bac12] T. Bachmann. Entwicklung einer Methodik für die Migration der Daten-
bankschicht in die Cloud. Diploma thesis, University of Stuttgart, Faculty of
Computer Science, Electrical Engineering, and Information Technology, Ger-
many, September 2012. No. 3360, http://www2.informatik.uni-stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=DIP-3360&mod=0&engl=0&inst=IAAS.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun.
ACM, 13(6):377–387, June 1970.

[Cor] O. Corporation. Lesson: Creating and Using Extensions. https://docs.oracle.
com/javase/tutorial/ext/basics/index.html.

[doc] docker.com. Docker Engine. http://www.docker.com/products/
docker-engine.

[Far13] S. Faroult. SQL Success:. Roughsea Limited, 2013.

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter. Cloud Computing
Patterns. Springer Wien, Januar 2014.

[Gro09] T. Group. PostgreSQL 8.4 Official Documentation - Volume II. Server Administration.
Fultus Corporation, 2009.

[Guo13] X. Guo. Evaluation of a Methodology for Migration of the Database Layer to
the Cloud based on an eScience Case Study. Diploma thesis, University of
Stuttgart, Faculty of Computer Science, Electrical Engineering, and Information
Technology, Germany, December 2013. No. 3512, http://www2.informatik.uni-
stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3512&engl=1.

[jav] java2s.com. Maven Tutorial. http://www.java2s.com/Tutorials/Java/
Maven_Tutorial.

[Lam13] R. Lamllari. Extending a Methodology for Migration of the Database
Layer to the Cloud Considering Relational Database Schema Migration
to NoSQL. Master’s thesis, University of Stuttgart, Faculty of Com-
puter Science, Electrical Engineering, and Information Technology, Germany,
June 2013. No. 3460, http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=MSTR-3460&mod=0&engl=0&inst=IAAS.

89

https://maven.apache.org/index.html
https://docs.oracle.com/javase/tutorial/ext/basics/index.html
https://docs.oracle.com/javase/tutorial/ext/basics/index.html
http://www.docker.com/products/docker-engine
http://www.docker.com/products/docker-engine
http://www.java2s.com/Tutorials/Java/Maven_Tutorial
http://www.java2s.com/Tutorials/Java/Maven_Tutorial
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3460&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=MSTR-3460&mod=0&engl=0&inst=IAAS

Bibliography

[Lig09] P. Liggesmeyer. Software-Qualität : Testen, Analysieren und Verifizieren von Software.
Heidelberg : Spektrum, Akad. Verl., 2009.

[LL10] J. Ludewig and H. Lichter. Software Engineering : Grundlagen, Menschen, Prozesse,
Techniken. Heidelberg : dpunkt-Verl., 2010.

[MG11] P. Mell and T. Grance. The NIST Definition of Cloud Computing. Technical Report
800-145, National Institute of Standards and Technology (NIST), Gaithersburg,
MD, September 2011.

[MMB09] T. Malone, I. Menken, and G. Blokdijk. Itil V3 Foundation Complete Certification
Kit: Study Guide Book and Online Course. Art of service. 2009.

[Mor12] J. Morris. Practical Data Migration - Second edition. British Informatics Society
Limited, 2012.

[Nac13] N. Nachev. Evaluierung einer Methodik für die Migration der Daten-
bankschicht in die Cloud basierend auf einer Fallstudie aus der Indus-
trie. Diploma thesis, University of Stuttgart, Faculty of Computer Sci-
ence, Electrical Engineering, and Information Technology, Germany, Au-
gust 2013. No. 3469, http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=DIP-3469&mod=0&engl=0&inst=IAAS.

[O’N14] P. O’Neil. Database: Principles Programming Performance. Elsevier Science, 2014.

[Ora] Oracle. Java JDBC API. http://docs.oracle.com/javase/7/docs/technotes/
guides/jdbc.

[SAB+13] S. Strauch, V. Andrikopoulos, T. Bachmann, D. Karastoyanova, S. Passow, and
K. Vukojevic-Haupt. Decision Support for the Migration of the Application
Database Layer to the Cloud. In Proceedings of the 5th IEEE International Conference
on Cloud Computing Technology and Science (CloudCom’13), pages 639–646. IEEE
Computer Society Press, December 2013.

[SAGSL13] S. Strauch, V. Andrikopoulos, S. Gómez Sáez, and F. Leymann. ESBMT: A Multi-
tenant Aware Enterprise Service Bus. International Journal of Next-Generation
Computing, 4(3):230–249, 2013.

[SAK+14] S. Strauch, V. Andrikopoulos, D. Karastoynova, F. Leymann, N. Nachev, and
A. Staebler. Migrating Enterprise Applications to the Cloud: Methodology and
Evaluation. International Journal of Big Data Intelligence, pages 1–20, 2014.

[SALM12] S. Strauch, V. Andrikopoulos, F. Leymann, and D. Muhler. ESBMT: Enabling Multi-
Tenancy in Enterprise Service Buses. In Proceedings of the 4th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom’12), pages 456–
463. IEEE Computer Society Press, December 2012.

[SF12] P. J. Sadalage and M. Fowler. NoSQL Distilled: a Brief Guide to the Emerging World
of Polyglot Persistence. Pearson Education, 2012.

90

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3469&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3469&mod=0&engl=0&inst=IAAS
http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc
http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc

Bibliography

[Tra14] Transaction Processing Performance Council (TPC). TPC BENCHMARKTMH -
Standard Specification, 11 2014. Rev. 2.17.1.

[Vai13] G. Vaish. Getting Started with NoSQL. Packt Publishing, 2013.

[VMZ+10] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A Comparison
of a Graph Database and a Relational Database: A Data Provenance Perspective.
In Proceedings of the 48th Annual Southeast Regional Conference, ACM SE ’10, pages
42:1–42:6, 2010.

[w3s] w3schools.com. AJAX Tutorial. http://www.w3schools.com/ajax/ajax_intro.
asp.

[Yim] T. Yim. Java Class Loading and Distributed Data Pro-
cessing Frameworks. http://blog.cask.co/2015/08/
java-class-loading-and-distributed-data-processing-frameworks/.

All links were last followed on May 18, 2016.

91

http://www.w3schools.com/ajax/ajax_intro.asp
http://www.w3schools.com/ajax/ajax_intro.asp
http://blog.cask.co/2015/08/java-class-loading-and-distributed-data-processing-frameworks/
http://blog.cask.co/2015/08/java-class-loading-and-distributed-data-processing-frameworks/

Acknowledgement

I am heartily thankful to my supervisor Steve Strauch from the
University of Stuttgart for his encouragement, guidance and
support in all the phases of this diploma thesis. I am also grateful
to Dr. Vasilios Andrikopoulos for his advices and useful tips.
Special thanks to my family and friends for their moral support.

Andreas Rempel

Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any sources and references other than those
listed. I have marked all direct or indirect statements from other
sources contained therein as quotations. Neither this work nor
significant parts of it were part of another examination procedure.
I have not published this work in whole or in part before. The
electronic copy is consistent with all submitted copies.

Stuttgart, 20th May 2016 ——————————–
(Andreas Rempel)

	Introduction
	Motivating Scenario
	Problem Statement and Scope
	Definitions and Conventions
	Terms
	Abbreviations

	Outline

	Fundamentals
	Cloud Computing
	Differences of Databases
	Relational Databases
	Object Relational Databases
	Column-Family Stores
	Document Databases
	Key-Value Stores
	Graph Databases

	Data Migration
	Challenge
	Migration Tool and Methodology - Bachmann

	Software Integration Strategies
	Bottom-up Integration
	Top Down Integration
	Conclusion

	Java Extension Mechanism
	Class Loading
	Extension Loading

	Related Work
	Previous Results
	Migration Scenario: RDBMS to NoSQL
	Evaluation of Methodology for DBL Migration: Industry
	Evaluation of Methodology for DBL Migration: eScience
	Positioning and Distinguishes

	Multi-tenant Open-Source Enterprise Service Bus

	Concept and Specification
	Integration and Adaption
	Adapters
	Functional Requirements

	Add-on Extension Mechanism
	Add Adapter
	Delete Adapter
	Assign Adapter
	Dismiss Adapter

	Non-Functional Requirements
	Extensability
	Usability
	Reuseability
	Integratability
	Maintainability
	Backward Compatibility
	Security
	Portability

	Design
	Adaptations
	Presentation Layer
	Workflow

	Extension Mechanism Architectural Overview
	Architecture of the Extension Mechanism
	DB Schema Extension

	Implementation
	Implementation of the Integration
	Tools and Libraries Used for Integration
	Integration Strategy

	Migration and Reconstruction
	Motivation
	Extended Toolset
	Build Cycle
	Deployment

	Adaptation of Migrated Project
	Libraries
	User Control

	Extension of CDMT
	Web-UI Navigation Controls
	Dashboard
	Adapter Overview Page
	New Adapter Page
	Approval of Implementation and Integration

	Exemplary Adapters
	MySQL Source Adapter
	PostgreSQL Target Adapter

	Validation
	Tool and Services
	Test Data
	Test Cases
	Use Case Based
	Based on Previous Results

	Validation Result
	Outcome of Use Case Based Tests
	Outcome of Tests Based on Previous Results

	Conclusion and Future Work
	Interfaces
	Source Adapter Interface
	Target Adapter Interface

	Bibliography

