

Abstract

As an important part of solving the lockbox problem, this thesis deals with the problem
of identifying kinematic devices based on data generated using an Active Learning
strategy. We model the belief over different device types and parameters using a discrete
multinomial distribution. We discretize directions as a Geodesic sphere. This allows
an isotropic distribution without being biased towards certain directions. The belief
update is based on experience using a Bayes Filter. This allows to localize the correct
states, even if an action fails to generate movement. Our action selection strategy aims
to minimize the number of actions necessary to identify devices by considering the
expected future belief. We evaluate the effectiveness of different information measures
and compare them with a random strategy within a simulation. Our experiments show
that the use of the MaxCE strategy creates the best results. We were able to correctly
identify prismatic, revolute, and fixed devices in 3D space.

3

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Limitations and Future Goals . 18
1.3 Contributions . 19
1.4 Structure . 20

2 Related Work 21

3 Background 25
3.1 Notations . 25
3.2 Hidden Markov Model . 25
3.3 Quaternion . 27

4 Problem Formulation 31
4.1 Probabilistic Model . 31
4.2 Belief Update . 33
4.3 Active Learning . 34

5 Implementation 37
5.1 Actions and Observation Model . 38
5.2 Discretization of the State Space . 38
5.3 Transition Model . 42
5.4 Belief Update . 45
5.5 Active Learning . 46

6 Evaluation 51
6.1 Belief Update . 51
6.2 Active Learning strategies . 53

7 Discussion 57
7.1 Results . 57
7.2 Alternatives . 57
7.3 Insights . 61

5

7.4 Conclusion . 62

A Zusammenfassung 65

Bibliography 67

6

List of Figures

1.1 Lockbox . 15
1.2 PR2 Robot . 17

5.1 Geodesic Sphere . 41
5.2 Example Belief Update . 48

6.1 Example Belief Update For Axis Direction 52
6.2 Action Directions . 52
6.3 Experiments on Prismatic Device . 54
6.4 Experiments on Static Device . 55
6.5 Experiments on Revolute Device . 56

7

List of Tables

5.1 Kinematic Device State Space . 38
5.2 Information Measure Comparison . 49

6.1 Applied Actions . 51
6.2 Device Ground Truth . 53

9

List of Listings

5.1 Source code for simulating a prismatic lock 43
5.2 Source code for simulating a revolute lock 44

11

List of Algorithms

5.1 SubDivide Algorithm . 40
5.2 Belief Update Algorithm . 45
5.3 Active Learning Algorithm . 47

13

1 Introduction

1.1 Motivation

Problem solving is the process of finding solutions to issues of a certain complexity
[Oxf16]. It is a form of intelligent acting. Its aim is to transform a given state into a
goal state. Not only for human beings this involves a cognitive process, animals possess
these capabilities as well. Auersperg, Kacelnik, and von Bayern [AKB13] showed this by
demonstrating that Goffin’s cockatoos (Cacatua goffini) are able to solve means-means-
end problems. These problems require a sequence of actions (means) in order to reach
the desired goal state (end) [SRS+05]. The birds were confronted with a box that
contains a reward in form of food. The box is locked by five inter-locking devices. In
order to open it, they have to be unlocked in the correct order. Figure 1.1 shows a
lockbox of increased size.

Figure 1.1: The lockbox with increased size and different locks to fit the needs for the
PR2 robot. The left picture shows the box in a closed state, whereas on the
right the box is opened and reveals a power outlet.

15

1 Introduction

Although some of them are physically similar in nature, it is necessary to operate them
differently. The first lock is a simple pin. It has to be pulled out of a hole to enable
the movement of the next lock. This second lock, a screw, has to be rotated in order
to obtain a translational movement. The third lock, a bolt, has to be pushed through
a fixation ring. The fourth lock is a wheel. It has to be rotated around its axis to the
correct position, before it can be entirely removed. A bar is the last device. In order to
open the door, it has to be pushed in the correct direction. Each lock can be operated by
the bird using beak or claw.

The experiment was conducted with different settings. One subject was able to solve the
problem with all five locks present and without previous knowledge about individual
locks or dependencies. Others were able to imitate this after social demonstration. Inter-
estingly, once a bird managed to solve a specific setting, it seldom failed on subsequent
trials. Additionally, they were able to react flexibly towards alteration of the settings.

The birds proof that they have a variety of skills:

1. Knowing how different locks have to be operated in order to open them

2. The necessary movement skills to actually open a lock

3. Understanding interactions between locks

4. Transferring knowledge between different settings

The goal is to enable a PR2 robot, as seen in Figure 1.2, to open the lockbox. This can
be achieved using different approaches.

For example, it is quite possible to open the box using teleoperation. A human operator
can perform movements that are mimicked by the robot. He can dictate the robot’s
movements to open the locks in the correct order. Knowledge about the lockbox however
resides only on the human operator. A naive operator may have to learn the locks and
dependencies similar to the birds, the robot on the other hand is only used as a tool.

Another approach is to guide the robot to open the box by demonstrating it to him. A
teacher can guide the robot by manipulating its joints to perform movements that lead
to the opening of locks and finally to solving the lockbox. In fact, the manipulation can
be executed using teleoperation. With this supervised learning technique, a robot can
learn the necessary movement skills to operate the lockbox given a specific setting. Addi-
tionally, the robot can optimize the trajectories towards particular goals, like minimizing
joint accelerations. Applied to a lower level, the robot can learn to operate single locks,
too. However, this technique still doesn’t allow the robot to actually understand lock
interaction. In order to go from the ability to open locks towards learning dependen-
cies, another step is necessary. This method is similar to the social learning the birds

16

1.1 Motivation

Figure 1.2: The PR2 robot.

apply. Instead of learning everything from scratch, a supervisor provides the necessary
knowledge.

There was however a subject that was able to accomplish the goal without external
help or prior knowledge. To develop this behavior, the robot has to actively explore the
whole environment. The skill to reason about dependencies and how actions influence
the environment are important as well. To solve this problem, it can be subdivided into
multiple smaller problems that build on each other.

1. On the highest level, the parameters of individual locks are well known. This
includes the knowledge of key points in the joint configuration space which lock or
unlock a device. The level deals with the dependencies between different devices.
Which requirements have to be fulfilled to disengage a specific lock and ultimately
open the lockbox’s door? This level can be described as a symbolic problem.

2. Given the general parameter of a device, the goal for this level is to determine
under which circumstances it can be described as open or closed. Here a device
can be considered individually.

3. On this level, the general parameters of a device have to be learned. This includes
its location, joints and possible limits. The nature of the lockbox problem however

17

1 Introduction

doesn’t allow to simply learn parameters of individual locks and then assume
they are fixed. Since a lock may only be unlocked later on in the process, its
general parameters, especially its limits, may change depending on other devices.
Therefore, it may be necessary to constantly reevaluate and update the parameters
and describe them as depending on other locks.

4. Before a device can be operated and learned, it has to be identified. Given pictures,
videos or other sensor data, potential spots of interest have to be found. This
problem is part of the area of Computer Vision.

5. A problem that occurs throughout nearly all levels is the question of how to
actually manipulate an object. This motion problem is of relevance when learning
how individual devices work, but is also necessary for the implementation of the
symbolic action of opening a specific lock within the first level.

Actual solutions for the problems may approach multiple levels at once. For example, it
is inconvenient to find out how to lock or unlock a device, if other locks are not taken
into account. Kulick, Otte, and Toussaint [KOT15a] assume that locks give feedback to
signal key point in the joint configuration space. In the end however, one can only be
certain of the status, if the locked object is now actually free. Additionally, a device may
function in such a way that it can lock multiple other devices or only a subset depending
on its configuration. In this case a binary decision between locked and unlocked is only
possible towards other devices, not in general. Hence, it may be necessary to solve the
first two levels combined.

1.2 Limitations and Future Goals

An important demand for robots is to model and learn the environment they operate
in. One way is describing it as a set of rigid parts linked by joints. Afterwards, a robot
is able to learn to manipulate the environment’s degrees of freedom [KOT15a]. This
involves simpler tasks like accessing a drawer by pulling or more sophisticated actions
like opening a door by turning a key, pulling the handle, and pushing it open. The
latter problem further requires modeling of dependencies between joints. Certain joints
may only be accessible, if others are set correctly. In a way, this is exactly the same as
understanding how locks work and how they inter-lock each other. Ultimately enabling
a robot to solve the lockbox by understanding its degrees of freedom can be transferred
to other real world problems, if it is possible to generalize the essential skills.

There is already previous work regarding the lockbox problem. On a higher level Kulick,
Otte, and Toussaint [KOT15b] show that the problem can be solved using Monte-Carlo
tree search (MCTS) in the belief space. They assume that the individual joints are already

18

1.3 Contributions

well known. The goal is to discover the dependency between joints. This structure is
modeled as a probability distribution based on the work of Kulick, Otte, and Toussaint
[KOT15a]. Actions correspond to moving the mechanism to a position. Instead of
considering all possible actions, the MCTS algorithm considers only three actions per
joint. One that most likely locks the joint, one that most likely opens it and the one
with the maximum expected cross entropy over the belief before and after the action is
taken. Using the cross entropy as intrinsic reward alongside the reward for opening the
lockbox, this approach shows promising results. However, it relies on the knowledge
about all joints and the corresponding parameters.

The problem of finding and learning this joints is called kinematic identification. This is
the purpose of this work, to identify certain types of joints and learn their parameters.
We assume that information about the environment is available in form of translations
and rotations for a given object. Additionally, we assume that points of interest are
already identified and we only need to learn, whether it is actually a joint or rigid. In
Chapter 2 we present previous work done in this area of research. Most of the work is
focused on identifying joints based on given movement. Without previous knowledge,
manipulating the objects in the first place to generate the required movement, is a
complex problem. Barragán, Kaelbling, and Lozano-Pérez [BKL14] solve this problem
by introducing an effective Active Learning strategy. However, they consider only 2D
devices.

By combining these approaches, the robot will hopefully be able to autonomously open
the lockbox, without previous knowledge. Then, we are able to generalize our method
to let the robot learn new environments of all sorts.

1.3 Contributions

This work implements the kinematic identification method as described by Barragán,
Kaelbling, and Lozano-Pérez [BKL14] in order to identify the types, parameters, and
variables of locks without previous motion. We enhance this work by the following
contributions:

1. Implementation for the 3D space, instead of a 2D setting.

2. Introduction of a new discretization strategy based on the geodesic sphere.

3. Introducing the cross-entropy as new measure for information gain which doesn’t
support wrongly biased beliefs.

4. Building simple transition models for the prismatic and revolute devices.

19

1 Introduction

1.4 Structure

Chapter 2 is an overview of the work done in the area of kinematic identification.
The approaches differ in how they model the problem and how the necessary data is
generated, by demonstration, given trajectories or autonomously letting the robot select
actions. In section 3, we introduce the background, which may be necessary in order
to understand this work. Chapter 4 describes our problem in a mathematical way, the
actual implementation is given in section 5. In Chapter 6, we present the results of
conducted experiments to evaluate our approach. Finally in 7, we discuss the results of
our work, present alternative approaches and insights, and draw a conclusion.

20

2 Related Work

The lockbox problem itself is already approached on a higher level by [KOT15b]. In
order to actually apply the proposed strategies, the kinematic devices locking the box
have to be known and understood in a way that allows for exact manipulations. One
part is therefore to identify the devices and distinguish them based on their functionality.
This problem is known under the term kinematic identification and previous work reveals
multiple strategies to tackle the problem.

Katz and Brock [KB08] use a vision-based approach and build feature clusters with
respect to their relative motion. Based on this, the underlying joint type, revolute or
prismatic, can be identified, connecting the respective parts of the mechanism. While
this approach uses the robot and performs predefined motions, Pillai, Walter, and Teller
[PWT15] use human demonstration to generate movement.

Sturm, Stachniss, and Burgard [SSB11] present a framework for the creation of a
probabilistic, kinematic model of articulated objects. Joints are modeled as rigid,
prismatic, revolute or Gaussian process and in combination form a kinematic graph. The
data-driven Gaussian process model allows to identify joints that can not explicitly be
modeled by the other three types. They are identified from object trajectories. Using the
Bayesian Information Criterion we can identify the best model for each joint without
favoring more complex types. Given the model its parameters are calculated using the
maximum mean-estimator.

Martín and Brock [MB14] use a Bayes Filter to perform model estimation online and
reason about uncertainty. In contrast to [SSB11], it detects moving rigid bodies and does
not require to know them beforehand. Using three interconnected levels of recursive
estimation, the problem is simplified into easier to solve subproblems. At the lowest
level, sensor data are used as measurement to detect feature movement. This in turn
allows to estimate rigid body motion and finally the kinematic state. In this holistic
approach, feedback is given to the lower levels in form of state predictions. All these
approaches have in common that they rely on visual data and require existing motion.
Their success depends largely on the quality of this information. If certain joints are not
manipulated, they can not be identified.

An alternative is to use the end-effector position of a robot’s manipulating the object.
Sturm et al. [SJS+10] use the equilibrium point control (EPC) to command the robots

21

2 Related Work

manipulator to a certain point. This point is the Cartesian-space equilibrium point (CEP).
In case of absence of externally applied forces, other than gravity, the robot’s manipulator
will end up at the CEP. Keeping the handle of the considered object attached to the
manipulator, the position difference between the CEP and the actual position can be
used to update the probabilities over different joint types. This process is repeated for a
trajectory of CEPs. While this approach is a form of action selection, it still relies on the
initial trajectory. There is no need for the agent to plan its actions.

Katz, Pyuro, and Brock [KPB09] model the world as a relational state representation.
Using the three predicates R(·), P (·) and D(·), for a revolute, prismatic, or disconnected
joints, the relation between rigid bodies can be described. Relational reinforcement
learning, in form of Q-Learning, is used to find policies that map actions to such relational
state descriptions. As a reward, the number of newly discovered joints has been used.
For the actual identification of joint relations, a vision based approach is used [KB08].
Their results show that this learning-based action selection strategy significantly reduces
the number of actions necessary to correctly identify kinematic devices.

Narayanan and Likhachev [NL15] used the kinematic graph introduced by [SSB11].
They extend the graph to allow joint types being represented as a function of their pose,
which allows to model lock-like devices. For example, depending on the pose of a door
handle, the joint between a door and a frame can be described as rigid or revolute. In
contrast to other works, they explicitly formulate a goal state and try to reach it while
simultaneously identifying the device. The proposed planning algorithm assumes a
deterministic transition model for a known mechanism and a completely observable
object state and allows for real-time execution. However, they initialize their belief
based on a visual system that limits the number of possible mechanism types.

Barragán, Kaelbling, and Lozano-Pérez [BKL14] use a Bayes Filter to identify kinematic
devices. In contrast to other approaches, it does not rely on visual information in order to
identify joints. Information like force feedback or sounds can be used alternatively or in
addition. The type of a device is determined without directly identifying individual joints
using a black box approach. Additionally, they incorporate serial mechanisms, which
allows for different behaviors under different configuration states similar to [NL15].
The authors also introduce an Active Learning technique that allows to calculate actions
that are expected to maximize information in form of entropy. As opposed to previously
described techniques, the action selection does not only depend on the mean estimator
over the devices, but actually considers the whole belief range. This selection allows
to find significant actions, even if there is no initial information available. This work
uses the proposed strategy from Barragán, Kaelbling, and Lozano-Pérez [BKL14] and
applies the same Bayes Filter. It extends the possible configurations of the kinematic
devices to the 3D space and introduces a new information measure from Kulick, Lieck,
and Toussaint [KLT14].

22

Hausman et al. [HNOS15] use the work of Sturm, Stachniss, and Burgard [SSB11]
and combine it with a Bayesian Filter similar to Barragán, Kaelbling, and Lozano-Pérez
[BKL14]. They use the same Active Learning strategy, however, they do not represent
the belief by discretizing the variables and parameters, but by introducing a particle
filter, which allows for state spaces with higher dimensionality.

23

3 Background

3.1 Notations

We will refer to variables with upper case letters, like X, and to its realization using
lower case letters, like x. The probability P (X = x) of X taking on the value x is
shortened to P (x) for simplicity.

3.2 Hidden Markov Model

A hidden Markov Model (HMM) [CB03] models a system, which is assumed to be a
Markov process with unobserved (hidden) states. The states are represented by a set
of random variables Q1:T = {Q1, . . . , QT}, with realizations from the state space q ∈ S.
Only the realization of the set of random variables Y1:T = {Y1, . . . , YT} is observable, we
refer the these variables as observations. Let O be the space of possible observations. For
the states the Markov property holds true, which means that the conditional probability
distribution of future states of the process only depend upon the current state and are
independent of the current time t:

(3.1) P (qt|q1:t−1) = P (qt|qt−1).

The observations are only dependent on the current state

(3.2) P (yt|q1:t, y1:t−1) = P (qt|qt−1)

and are independent towards other observations:

(3.3) P (yt:t+h|qt:t+h) =
t+h∏
i=t

P (yi|qi).

25

3 Background

We define

(3.4) πi = P (Q1 = i)

to be our initial state distribution, where i ∈ S. The transition model gives the probabili-
ties for changing states:

(3.5) P (Qt = i|Qt−1 = j),

where i, j ∈ S. The observation model gives the probability of an observation, given the
current state:

(3.6) P (Yt = i|Qt = j),

where i ∈ O and j ∈ S.

We can extend the HMM model to an Input-Output Hidden Markov Model (IOHMM), by
conditioning our states and observations on input variables X1:T = {X1, . . . , XT}:

(3.7) P (qt|q1:t−1, x1:t) = P (qt|qt−1, xt),

and

(3.8) P (yt|q1:t, y1:t−1, x1:t) = P (qt|qt−1, xt).

The initial state distribution is changed accordingly to

(3.9) πi = P (Q1 = i|x1),

the transition model to

(3.10) P (Qt = i|Qt−1 = j, xt),

26

3.3 Quaternion

and the observation model to

(3.11) P (Yt = i|Qt = j, xt).

The general form of the HMM assumes a discrete state space S. We omit this generaliza-
tion, because we want to allow continuous variables in S.

3.3 Quaternion

Let Q be a quaternion [Vin11] of the form

(3.12) Q = w + ix + jy + kz,

where the constituents w, x, y, z ∈ R and i, j, k are imaginary units for which the following
equations hold true:

(3.13) i2 = j2 = k2 = ijk = −1

and

(3.14) ij = k jk = i ki = j ji = −k kj = −i ik = −j

We can rewrite the quaternion Q as an ordered pair, a combination of a scalar w and
vector part v⃗,

(3.15) Q = (w, v⃗),

where w ∈ R and v⃗ =

x

y

z

 ∈ R3.

27

3 Background

There are three operations on the set of quaternions. The sum of two quaternions is the
sum of their elements in R4.

(3.16) Q1 + Q2 = (w1, v⃗1) + (w2, v⃗2) = (w1 + w2, v⃗1 + v⃗2)

The multiplication of two quaternions is given by:

(3.17) Q1Q2 = (w1, v⃗1)(w2, v⃗2) = (w1w2 − v⃗1 · v⃗2, w1v⃗2 + w2v⃗1 + v⃗1 × v⃗1),

where · is the dot product and × the cross product. The multiplication is associative, but
not commutative.

The scalar multiplication can be interpreted as a quaternion multiplication, where the
scalar factor λ corresponds to a real quaternion. A real quaternion has a vector part 0⃗.

(3.18) λQ = (λ, 0⃗)(w, v⃗) = (λw, λv⃗)

The inverse Q−1, norm |Q| and conjugate Q∗ of Q are given by:

(3.19) Q∗ = (w, v⃗)∗ = (w,−v⃗)

(3.20) |Q| = |(w, v⃗)| =
√

w2 + v⃗2

(3.21) Q−1 = Q∗

|Q|2

We can use quaternions as an efficient way to rotate a point p in 3D-space. We represent
p as a pure quaternion P . A pure quaternion has a scalar part which is equal to zero.

(3.22) P = (0, p)

28

3.3 Quaternion

We construct Q to be a rotation quaternion that allows to rotate p by an angle θ around
an arbitrary axis v̂:

(3.23) Q = (cos 1
2θ, sin 1

2θv̂)

The rotated point p′ is obtained by multiplying Q with P and the inverse Q−1:

(3.24) P ′ = (0, p′) = QPQ−1

Another operator we use in this thesis is the inner product of two quaternions:

(3.25) Q1 ·Q2 = (w1, v⃗1) · (w2, v⃗2) = w1w2 + v⃗1 · v⃗2 ∈ R

29

4 Problem Formulation

The objective it to identify the correct type and parameter of a kinematic device. Section
4.1 describes how a probabilistic model over the parameter and variable space of the
considered device types are build. Actions are chosen using Active Learning techniques
in Section 4.3. The resulting device behavior is then used to update the probabilistic
model as described in section 4.2.

4.1 Probabilistic Model

Barragán, Kaelbling, and Lozano-Pérez [BKL14] formulate the problem as a discrete-
state, Input-Output Hidden Markov Model (IOHMM). The hidden states are the possible
states of a kinematic device. Inputs are actions performed on the device and outputs are
sensed observations.

A state is a triple s = (m, θ, x) ∈ S.

• m is the type of the device. In principal, those types can be associated with arbitrary
classes.

• θ is a vector of parameters. The number and meaning of parameters depend on
the considered type. It characterizes the properties of a device.

• x is a vector of variables. Similar to θ it depends on m. It describes the current
configuration of the device.

An action can be anything the robot can do in order to get information about a device.
They have to be executable independently of the device state in general and in particular
its type and within finite time. It is assumed that actions always terminate and run to
completion. Actions may not only be limited to actually manipulating the device by
pushing or pulling, but can include looking from different angles.

Observations can be different measures of the environment through sensors. This may
include vision, tactile, force, position, vibration, and sound sensors.

31

4 Problem Formulation

Under the assumption of a discrete-time model, the transition model models the relation-
ship between state and action as a conditional probability distribution over state values
at time t + 1, given the state and action at time t.

(4.1)
P (st+1|st, at) = P (mt+1, θt+1, xt+1|mt, θt, xt, at)

= P (mt+1, θt+1|mt, θt, xt, at) · P (xt+1|mt+1, θt+1t, xt, at)

The model describes two different behaviors. Type and parameter changes are modeled
using Eq. (4.2).

(4.2) P (mt+1, θt+1|mt, θt, xt, at)

Since this model assumes changes of the underlying characteristics of a device, the
likelihood for an actual change should be very small. In this work, we assume that such
behavior does not occur. It would imply damaging the device or altering it in a way,
which is not within our scope. Therefore, we assume the probability of changing the type
or parameter is zero. For exploring inter-lock dependencies however, this behavior is
common and desired, since its goal is to remove restrictions imposed from other locks.

Eq. (4.3) models the expected behavior of a device. It describes the change of variables
of a device of type m and parameters θ after executing action a.

(4.3) P (xt+1|mt+1, θt+1, xt, at)

The observation model is given in Eq. (4.4). It determines the likelihood for an observa-
tion vector, given the current state and previous action.

(4.4) P (ot+1|mt+1, θt+1, xt+1, at)

32

4.2 Belief Update

4.2 Belief Update

Given a posterior belief in the state space, P (s0), an action sequence, a0:T −1 =
a0, . . . , aT −1, and the resulting observations, o1:T = o1, . . . , oT , the objective is to calculate
the posterior belief over type and parameter of the device at time T , P (mT , θT |a0:T −1, o1:T).
Eq. (4.5) can be obtained by marginalizing out the variables at time T and marginalizing
over the states from all time steps:

(4.5)

P (mT , θT |a0:T −1, o1:T) =
∑
xT

P (mT , θT , xT |a0:T −1, o1:T)

=
∑
xT

P (sT |a0:T −1, o1:T)

=
∑
xT

∑
s0:T −1

P (s0:T |a0:T −1, o1:T)

Using the conditional independence relationship from the IOHMM, one can factor out
the individual probabilities for the state changes at different time steps:

(4.6) P (mT , θT |a0:T −1, o1:T) =
∑
xT

∑
s0:T −1

P (s0)
T −1∏
t=0

P (st+1|st, at, ot+1)

The observation model only describes the probability of making an observation given
the state and not vice versa. Therefore, Bayes’ rule is applied:

(4.7) P (mT , θT |a0:T −1, o1:T) ∝
∑
xT

∑
s0:T −1

P (s0)
T −1∏
t=0

P (ot+1|st+1, at) · P (st+1|st, at)

For the one-step update with T = 1, the equation can be simplified:

(4.8) P (m1, θ1|a0, o1) ∝
∑
x1

∑
s0

P (s0) · P (o1|s1, a0) · P (s1|s0, a0)

33

4 Problem Formulation

4.3 Active Learning

There is a variety of different strategies that deal with the problem of selecting appropri-
ate actions. In order to compare them, we need to define a notion of a desired outcome
in terms of the probability distribution.

We can interpret our current belief as a random experiment, where our state space
corresponds to a random variable S. Drawing a sample s from the belief results in a
device with given type, parameters and variables. This corresponds to an event. The
information of the event s can be defined to the base d as:

(4.9) i(s) = − logd P (s)

The entropy is the expected information and is a measure of disorder. In the discrete
case it is defined as [Sha01]:

(4.10) H(S) = E[i(S)] =
∑

s

P (s)i(s) = −
∑

s

P (s) logd P (s)

Barragán, Kaelbling, and Lozano-Pérez [BKL14] propose the conditional entropy over
type and parameters, H(mT , θT |a0:T −1, o1:T), as a measure of how well a device is
known.

While a random action selection is easy to implement and understand, it has the
drawback of not aiming to minimize this measure. The number of actions necessary in
order to reduce the conditional entropy below a certain threshold may be very large.

Planning actions to reduce the entropy is beneficial. The optimal strategy is to minimize
the expected conditional entropy after the whole sequence of actions. This, however, is
a very complex problem. Instead, we focus on one-step heuristics that only takes the
next action into account.

Barragán, Kaelbling, and Lozano-Pérez [BKL14] use such a one-step strategy. Consider
a possible action a at time T . Based on the current belief b, the transition model, and
the observation model, it is possible to calculate the expected belief b′ over all possible
observations o after executing this action. The action a∗ which leads to the belief with
the lowest entropy is chosen:

(4.11) a∗
T = argmin

a
Eo|b,aH(sT +1|a0:T , o1:T , a, o)

34

4.3 Active Learning

In Section 5.5.1 we describe a problem that may emerge depending on the implementa-
tion of the discretization. In such cases, the attempt to minimize the entropy myopic,
may cause undesired effects. They manifest in selecting actions that aim to preserve
the current belief, rather than gaining additional information. Therefore, an additional
one-step criterion is introduced: the maximum cross-entropy (MaxCE) [KLT14]:

(4.12)
a∗

T = argmax
a

Eo|b,aH[P (sT |a0:T , o1:T); P (sT +1|a0:T , o1:T , a, o)]

= argmax
a

Eo|b,aDKL(P (sT |a0:T , o1:T) || P (sT +1|a0:T , o1:T , a, o))

H[P (Z), Q(Z)] is the Kullback-Leibler divergence (KLD) and quantifies the additional
information captured in the posterior P (sT +1|a0:T , o1:T , a, o) to the prior P (sT |a0:T , o1:T).
Again, the equation is given for the discrete case:

(4.13) H[P (Z), Q(Z)] = −
∑

z

P (z) log Q(z)

This criterion allows to select actions leading to higher entropy in the expected posterior.
Even though this may seem counter-intuitive, we will show in Section 6.2, that this
criterion is superior and outperforms the plain entropy in our scenario.

35

5 Implementation

The lockbox problem includes different kinds of kinematic devices. If inter-locking
is ignored, each device can be characterized as one of five movement constraining
mechanisms. They can be modeled and distinguished by device parameters and variables.
Parameters describe the lock and are independent from its current status. In this work,
we assume that parameters are constant. Variables describe the current state of the
lock.

1. The free model enforces no constraints and therefore has no parameters. Its
variables are the position and pose in the 3D space.

2. The fixed or static model allows no motion. It is rigid towards the world frame
and its parameters are location and pose. There are no variables.

3. The prismatic model allows 1-DOF motion along a given axis. The movement
is limited to certain range along this axis. Parameters of the model are the 3D
coordinates of one of the two limits and the axis. An additional parameter is the
maximum displacement from the first limit along the axis. This indirectly gives the
coordinates of the second limit. The only variable is the current displacement. The
prismatic model does not allow for any kind of rotation.

4. The revolute model allows 1-DOF rotation around a given axis. Parameters are
the coordinates of the center, the rotation axis, and the radius. The only variable is
the rotation angle.

5. The screw model is a combination of the prismatic and revolute model. By
rotating the disk around the axis, it is translated along this axis. Parameters are
the rotation axis, 3D coordinates of both limits, and a constant that describes
the relation towards rotation and translation. The only variable is the current
prismatic displacement.

This thesis discusses a method for distinguishing between three kinds of devices: The
prismatic, static, and revolute models. Table 5.2 summarizes variables and parameters
for these models. However, the presented methods can be applied to additional types
accordingly.

37

5 Implementation

model parameter θ variables x

prismatic xlimit, ylimit, zlimit, xaxis, yaxis, zaxis, dmax d (displacement)
static xpos, ypos, zpos -
revolute xcenter, ycenter, zcenter, xaxis, yaxis, zaxis, r α (rotation angle)

Table 5.1: State space of kinematic devices

5.1 Actions and Observation Model

In our context, actions are a constant force vector v that is constantly applied to a specific
position p on the device for a short time period. This corresponds to the robot using its
end effector to push the object. In order to apply the constant force, a PD-controller can
be used. The time period is assumed to be short enough that the robot can maintain the
force direction.

Observations are the translation in form of a vector and the rotation given as a quaternion
applied to the considered point after the action is executed. When executed on the robot,
the observations will come from a vision module that additionally provides uncertainty
of the measurements in form of standard deviation. For the simulations we perform in
this work, the transition model is used for estimating device behaviors is also used to
estimate observation.

5.2 Discretization of the State Space

A device is represented by a model for each device type. For each type a different
discretized state space is used, which in return depends on its parameters and variables.
The belief is therefore a multinomial distribution. Since the prismatic and revolute
model both share the axis as a common property, it is described separately. The goal of
this section is to describe the considered state space for each model type m. A state can
be described using m and a sub-state that depends on m: s = (m, sm) ∈ S. The belief is
initialized uniformly over m, s.t. the summed probabilities over sub-states are equal.

5.2.1 Axis

The axis is only an indicator for a direction in 3D-space. Modeling it in the same space
is therefore unnecessary. Instead, the belief can be build and discretized over a sphere.
The sphere is modeled using a geodesic grid [WKO92]. This is a more complex strategy

38

5.2 Discretization of the State Space

Figure 5.1: The pictures show the Geodesic sphere with different resolutions. From
left to right: Icosahedron, Geodesic sphere after one two and after three
subdivisions.

than sampling rectangular grids along the latitude and longitude like it is commonly
done for the Earth’s surface. But since there are no preferred directions, the points of
the discretized sphere should be distributed isotropically. Additionally, it is simple to
increase the resolution of the discretization using binary division.

The 12 vertices of the convex regular icosahedron, which is circumscribed by the unit
sphere around the origin, are calculated. This way the vertices have a length of one
and can be considered as normalized direction vectors. The 20 triangular faces are
obtained by combining three neighboring vertices. In order to increase the resolution,
subdivisions can be performed, where each face is divided into four smaller triangles.
The new vertices are projected onto the unit sphere. The process is described in
Algorithm 5.1. Figure 5.1 shows the results.

39

5 Implementation

Algorithmus 5.1 SubDivide Algorithm

1: function SUBDIVIDE(V ,T) // V is a set of vertices, T is a set of triangular faces
2: V ∗ ← V

3: T ∗ ← ∅
4: for all t ∈ T do
5: (a, b, c)← getVerticesFromTriangle(t, T)
6: d← a+b

2
7: e← a+c

2
8: f ← b+c

2
9: d← projectOntoUnitSphere(d)

10: e← projectOntoUnitSphere(e)
11: f ← projectOntoUnitSphere(f)
12: t1← triangle(a, d, e)
13: t2← triangle(b, d, f)
14: t3← triangle(c, e, f)
15: t4← triangle(d, e, f)
16: V ∗ ← V ∗ ∪ (d, e, f)
17: T ∗ ← T ∗ ∪ (t1, t2, t3, t4)
18: end for
19: return (V ∗, T ∗)
20: end function
21:

22: function GEODESIC(resolution)
23: (V, T)← setIcosahedron()
24: i← 1
25: while i ≤ resolution do
26: i← i + 1
27: (V, T)← SubDivide(V, T)
28: end while
29: return (V, T)
30: end function

40

5.2 Discretization of the State Space

5.2.2 Prismatic Device

Actions are performed on a single point on a kinematic device. However, there is no need
to actually fix parameters and variables of the device to specific points. If, for instance,
the prismatic device is at its first limit, the position of said limit can be any part of the
actual object, e.g. the lowest or highest part. This is consistent as long as always the
same part is chosen in order to identify critical points. However, it is sufficient to identify
device properties relative to the point, where the action is performed. In case of the
prismatic device, this allows us to drop the parameter limit altogether when considering
discretization.

The remaining parameters are the translation axis (xaxis, yaxis, zaxis) and the maximum
displacement dmax. The axis is dealt with according to Section 5.2.1. dmax and the only
variable, the current displacement d, are scalars. For both, the same limit and number of
partitions n is chosen.

Let Sprism be the set of discrete states for the prismatic device, then sprism =
(xaxis, yaxis, zaxis, dmax, d) ∈ Sprism is a corresponding state value. The size of the state
space is n × n × an, where an is the number of vertices from the discretized sphere.
States with d > dmax can be ignored and their probability is set to zero. Other state
probabilities are initialized uniformly.

5.2.3 Static Device

The only parameter of the static device is the position (xpos, ypos, zpos). The position has
no influence on the device’s behavior and can be dropped. The same argument as for
the prismatic device holds true here. This results in a zero-dimensional state space and
only the type itself is assigned a probability.

5.2.4 Revolute Device

Let us assume that the revolute device is round, disk-like and symmetric in such a way
that there is no need to distinguish between different rotation angles α. Since the radius
r is again only depending on the current point the action is applied to, it can be dropped,
too. The remaining parameters are the location of the center c = (xcenter, ycenter, zcenter)
and the rotation axis a = (xaxis, yaxis, zaxis).

For the axis see Section 5.2.1. The center is a 3D-coordinate. The belief is formed over a
box and can be discretized by considering the three dimensions as individual parameters.

41

5 Implementation

For each of them, the limits and number of partition n are equal and together form a
grid.

Let Srevolute be the set of discrete states for the prismatic device, then srevolute =
(xaxis, yaxis, zaxis, xcenter, ycenter, zcenter) ∈ Srevolute is a corresponding state value. The
state space is n× n× n× an, where an is again the number of vertices from the sphere.
State probabilities are initialized uniformly.

5.3 Transition Model

The following sections explain how kinematic devices react to a given action. This
section basically describes the transition model used in this work. The objective is not to
exactly simulate the behavior, but to approximate it efficiently. Each device is modeled
by a function that returns a vector, which represents the translation in 3D space and a
quaternion to indicate its rotation.

5.3.1 Prismatic Device

Listing 5.1 shows the source code for simulating a prismatic kinematic device. The lock’s
parameters are given by the vectors limit1, limit2, and direction. They correspond to the
parameters mentioned in Chapter 5. The direction vector is actually redundant, since
it can be calculated using the two limits. The only device variable, the displacement,
corresponds to the vector shift.

We assume that only the amount of force in lock direction is important. Therefore, the
actual point where the force vector is applied can be ignored. The force in lock direction
is calculated by projecting the force vector onto the direction. If its magnitude is smaller
than the given stiction, no movement occurs. Otherwise, the force directly leads to a
translation along the axis, which is restricted by the two limits. If a limit is reached, the
movement is reduced accordingly.

Since the prismatic lock only allows for translational movement, the rotation is set to
zero.

42

5.3 Transition Model

Listing 5.1 Source code for simulating a prismatic lock
std::pair<arr,ors::Quaternion> prismatic_simulate(arr force, arr limit1, arr

limit2, arr shift, double stiction, arr direction){

arr translationt(3);

arr forceInLockDirection(3);

forceInLockDirection = double(~force * direction) * direction;

double appliedForce = sqrt(~forceInLockDirection * forceInLockDirection);

if (appliedForce > stiction){

translation = 1.0 * forceInLockDirection;

int i = 0; //dimension index

for (int j=1;j<3;j++){

if(direction(j)>direction(i)){

i = j;

}

}

if(shift(i) + translation(i) > limit2(i) - limit1(i)){

//limit2 reached

translation = limit2 - limit1 - shift;

} else if((shift(i) + translation(i) < 0 && limit1(i) < limit2(i)) ||

(shift(i) + translation(i) > 0 && limit1(i) > limit2(i))) {

//limit1 reached

translation = -shift;

}

} else {

movement = {.0,.0,.0};

}

ors::Quaternion rotation;

rotation.setZero();

return std::make_pair(movement,rotation);

}

5.3.2 Revolute Device

Listing 5.2 shows the source code for the simulation of a revolute lock. The lock
parameters from Chapter 5 are the rotation axis and the center as vectors. In contrast to
the prismatic lock, the actual point, onto where the force vector is applied, is necessary.

In order to obtain the angle α on which to rotate along the axis, the system is shifted by
the center and the point is projected onto the plane which can be defined by using the
axis as normal. The length of the distance from the center towards the point is the radius.
The force vector is projected onto the same plane and the components orthogonal to the

43

5 Implementation

Listing 5.2 Source code for simulating a revolute lock
std::pair<arr,ors::Quaternion> revolute_simulate(const arr& force, const arr&

point, const arr& axis, const arr& center, double stiction){

arr translation(3);

ors::Quaternion rotation;

arr point_ = point - center; //center point towards origin

double projection_length = scalarProduct(point_, axis); //calc radius (point

to center) on projection plane

arr radius_vec = axis;

radius_vec *= projection_length;

radius_vec -= point_;

double radius = length(radius_vec);

double sign = -1.0; //rotation angle should be in direction of force,

independent of (negative) axis direction.

if(projection_length < 0.0){

sign = 1.0;

}

if(radius < 0.001){

translation = 0.;

rotation.setZero();

return std::make_pair(translation,rotation);

}

arr force_direction = crossProduct(axis,radius_vec);

force_direction /= length(force_direction);

arr force_applied = scalarProduct(force, force_direction) * force_direction;

double force_value =length(force_applied);

if(force_value > stiction){

double alpha = sign * (MLR_2PI/8) * force_value / radius;

arr point_rotated(3);

rotation.setRad(alpha,axis(0),axis(1),axis(2));

point_vec = rotation * point_vec; //rotate

point_rotated(0) = point_vec.x;

point_rotated(1) = point_vec.y;

point_rotated(2) = point_vec.z;*/

point_rotated = rotation.getArr() * point_;

translation = point_rotated - point_;

return std::make_pair(translation,rotation);

}

translation = 0.;

rotation.setZero();

return std::make_pair(translation,rotation);

}

44

5.4 Belief Update

Algorithmus 5.2 Belief Update Algorithm

1: function BELIEFUPDATE(b,a,o)
2: b∗ ← Zeros(b)
3: for all s ∈ S do
4: s∗ ← TransitionModel(s, a)
5: for all s′ ∈ S do
6: b∗[s′]← b∗[s′] + b[s] ·N(s∗ − s′, σtrans)
7: end for
8: end for
9: for all s ∈ S do

10: o∗ ← ObservationModel(s, a)
11: b∗[s′]← b∗[s′] ·N(o∗ − o, σobs)
12: end for
13: return Normalize(b∗)
14: end function

projected point are considered. The length of the force vector force_value along with the
radius determine the angle in force direction:

(5.1) α = 2π

8
force_value

radius

After rotating the point by α around the axis, the resulting translation vector and the
rotation quaternion are calculated. If however, the force_value is smaller than the stiction,
they are set to zero. The same is true, if the considered point is in direct proximity to
the axis.

5.4 Belief Update

The belief update is performed according to Equation (4.8). The old belief b is updated
in Algorithm 5.2 using the last action a and observation o [BKL14].

Line 2 initializes the new belief b∗ with the same state size as b. In lines 3-4 for each
possible state s, the expected next state s∗ is calculated by using the transition model.
Lines 5-6 updates b∗. The transition probability to go from s to s′ is proportional to the
density of a Gaussian distribution with standard deviation σtrans at the distance s∗ − s′

between the considered state s′ and the expected state s∗. In lines 9-11 o is compared
to the expected observation o∗ from the observation model. This influences b∗ using the

45

5 Implementation

density of a Gaussian distribution with standard deviation σobs at the distance o∗ − o.
Line 13 normalizes the belief so that the summed probability over the state space is
one.

We defined an observation o to be a combination of a translation vector t and a quaternion
Q for the rotation. Let the following equation be our measure for the observation
distance:

(5.2) o∗ − o = ωr · ∥t∗ − t∥+ (1− ωr) · (1− |Q∗ ·Q|),

where ωr ∈ [0, 1] is the rotation weight, ∥ · ∥ denotes the Euclidean norm (or 2-norm).
(1− |Q∗ ·Q|) ∈ [0, 1] is a distance measure for quaternion rotation [Huy09]. Q∗ ·Q is the
quaternion inner product. For a rotation of 180◦ the measure returns one, for a rotation
of 0◦ zero.

In line 5 the algorithm iterates over every possible state. Since we assume only variables
x change if actions are applied, it is sufficient to iterate over states that share the type m

and parameters θ. This additionally allows to efficiently calculate the distance s∗ − s′ as
distance between variables x∗ − x′. The only variable comes from the prismatic device
and is the scalar current displacement d, which can be translated into a corresponding
displacement vector by multiplying it with the rotation axis a. By combining this with a
quaternion with zero-rotation, we can apply the distance measure from Equation (5.2)
as for the observations.

5.5 Active Learning

In Section 4.3, we introduced two different action selecting equations, the maximization
of expected entropy (4.11) and of the expected cross entropy (MaxCE) (4.12). Both
strategies require to calculate for every action an expected value over the possible
observations, given the current belief. The Monte-Carlo method has been used to solve
this problem in Algorithm 5.3[BKL14].

In line 2 we iterate over all possible actions. We defined actions to be continuous over
positions p and force vectors v. The simulation is not combined with any real object with
a surface, therefore the positions can be an arbitrary element of the Euclidean space
p ∈ R3. We discretize p the same way as the center c in Section 5.3.2. Let us fix the
magnitude m of v, such that the space of v becomes a sphere. We can then apply the
strategy from Section 5.2.1.

46

5.5 Active Learning

Algorithmus 5.3 Active Learning Algorithm

1: function ACTIVELEARNING(b,k)
2: for all a ∈ A do
3: Hsum[a]← 0
4: for all i ∈ [1, k] do
5: s ∼ b

6: s′ ∼ Gaussian(TransitionModel(s, a), σtrans)
7: o ∼ Gaussian(ObservationModel(s′, a), σobs)
8: b′ ← BeliefUpdate(b, a, o)
9: Hsum[a]← Hsum[a] + H(b, b′)

10: end for
11: end for
12: return argmina Hsum

13: end function

For each action k samples are drawn from the observation space. Line 5-8 describe
how a new belief is sampled, by first sampling a state s from the current belief b. The
next state s′ is obtained by invoking the transition model and adding Gaussian noise
with standard deviation σtrans. The observation model gives the observation o. Again
Gaussian noise with σobs is applied. Given b, o, and a a new belief b′ is calculated.
From this, we calculate H(b, b′), which is the information measure. For the entropy case
H(b, b′) = H(b′) holds true, where H(b′) is calculated according to Equation (4.10). In
the MaxCE case H(b, b′) = −H[b, b′] is calculated according to Equation (4.13). In Line 9
the information measures for each of the k samples are summed. Line 12 returns the
most informative action according to the used measure.

5.5.1 Comparison Between Minimizing Entropy and Maximizing Cross
Entropy

Minimizing the Entropy only considers the information of the augmented posterior. In
case of a wrongly biased belief, this may lead to situations where in terms of entropy, it
may be beneficial to actually strengthen this belief instead of discarding it. Maximizing
Cross Entropy on the other hand favors changes of the model posterior in any direction,
regardless of the entropy [KLT14].

Figure 5.2 shows an initial, posterior belief and the expected posteriors after taking
three different actions. The state space consists of five states, where the last four states
share a common type, while the first one differs. This setup is a simplification of our
actual system. Instead of the three device types, we use two. Type one corresponds to

47

5 Implementation

Figure 5.2: Example for possible belief updates.

the static device, type two to the state space reduced prismatic device. The prior belief is
the actual initialization, where each type has the same probability. The three actions are
arbitrary, while the augmented posterior beliefs are the important part. For action one,
the belief in type one is increased. Action two decreases the belief in type one, while
equally strengthening it for every state of type two. Action three decreases the belief in
type one and strengthens a specific state of type two.

Table 5.2 is a comparison for the two information measures given the same system. This
simple example shows, how drastically the choice of measure can change the selected
action. In our actual case, the bias towards the static model is even greater, since the
state space of both other devices is significantly higher. So the incentive to strengthen
the belief in the static model should be even higher for the entropy based selection.

48

5.5 Active Learning

Belief Entropy Cross-Entropy

Prior 2.0 -
after executing action 1 1.77 2.03
after executing action 2 2.32 2.32
after executing action 3 1.96 2.53

Table 5.2: Comparison of Entropy and Cross Entropy based Active Learning techniques.
The action that is chosen according to a given measure is marked red.

49

6 Evaluation

6.1 Belief Update

This experiment aims to show how the belief update works. Most importantly, it will
indicate that even though no movement is detected, the belief is updated correctly and
reduces the state space we have to consider.

The parameters for this experiments are the following: The stiction is set to 0.1. We
assume σtrans and σobs to have the same value: σtrans = σobs = 0.01. The rotation weight
for the distance measure is defined as ωr = 0.5.

Two dimensions of the discretized prismatic state space, d and dmax, have 15 bins each
and a range form zero to one. For the axis, the resolution after two subdivisions is used,
which equals the geodesic sphere with 312 vertices. For the revolute state space, the axis
is the same. The center parameter is divided into 15 bins for each dimension. Limits are
from −1 one to 1.

The five executed actions are shown in Table 6.1 and the force direction in Figure 6.2.
The resulting Belief State is demonstrated by Figure 6.1. Its axis are the same as in
Figure 6.2.

The forces for the first and the second action are directed in opposite directions. Since
both test the same axis, the difference between the beliefs is only marginal. The third
force applied tests another direction. Since for none of them movement is detected,

action number force vector force amount

1. (−0.036,−0.111,−0.058) 0.13
2. (0.036, 0.111, 0.0581) 0.13
3. (−0.094, 0.068, 0.0581) 0.13
4. (0.0, 0.5, 0.0) 0.5
5. (−0.116, 0.0,−0.0581) 0.13

Table 6.1: Actions used to demonstrate the Belief Update.

51

6 Evaluation

Figure 6.1: The spheres show the Belief in a given axis by integrating over all other
parameters and variables. The colors are scaled in such a way, that the
highest value is assigned a constant green, regardless of its actual value.
Since the spheres are nearly symmetric, it is sufficient to show one side only.
The beliefs show the updates from left to right and from top to bottom.

Figure 6.2: Direction of the force applied as actions for the belief update. In order to
give a better impression on the actual direction in 3D space, the length of
the force vector is normalized to one. The axis are located as in Figure 6.1

52

6.2 Active Learning strategies

model parameter θ variables x

prismatic (xaxis, yaxis, zaxis) = (0.8944, 0.0, 0.4472) d = 0.0316
dmax = 0.3162

static - -
revolute (xcenter, ycenter, zcenter) = (0.2,−0.1, 0.6) -

(xaxis, yaxis, zaxis) = (0.0, 0.8944, 0.4472)

Table 6.2: Experimental parameters and variable initialization for the three device types.

only the belief in direct neighborhood is reduced. The fourth action uses a higher
force amount, therefore, even though again no movement is detected, the effected
neighborhood is increased. For the fifth action, movement is detected. This leads to a
very specific belief in the axis, which corresponds to the locks ground truth.

6.2 Active Learning strategies

We evaluated the different action selecting strategies by conducting multiple experiments.
For each type, the prismatic, static and revolute device, we tested the three strategies,
random, entropy-based, and MaxCE. For each combination of type and strategy, we
conducted 50 trials with five action selections each and measured the probability of each
type by summing over its variables and parameters.

The devices’ parameter and variable initializations are listed in Table 6.2. The stiction is
set to 0.1. The magnitude of the force m is set to m = 0.15. We assume σtrans and σobs to
have the same value: σtrans = σobs = 0.01. The rotation weight for the distance measure
is defined as ωr = 0.5.

d and dmax have five bins each and a range form 0 to 1. For the axis, the lowest resolution
which equals the Icosahedron with 12 vertices, is chosen for the prisamtic and revolute
model. The center parameter is divided into five bins for each dimension. Limits are
from −1 to 1.

The random strategy chooses an action by sampling from a uniform probability distribu-
tion over the discrete set of actions.

Figure 6.3 shows the results for the prismatic device, Figure 6.4 includes results for the
static device, and Figure 6.5 for the revolute device.

53

6 Evaluation

Figure 6.3: Results of the simulation experiments on the prismatic device. The graphs
show the mean probability for a certain device type. Error bars reflect a
95% confidence interval of the mean estimator.

The top left graph in Figure 6.3 shows the probability over the number of actions for
the prismatic device for the three different action selecting strategies. While the entropy-
based strategy barley outperforms the random strategy, MaxCE is clearly superior to
both of them. Comparing the belief in the static model, we notice that the entropy-based
approach is preserving it the most. This is likely due to the problem mentioned in
Section 5.5.1.

Figure 6.4 shows that for the static device, the entropy-based and the MaxCE approach
slightly outperform the random strategy. The latter strategy fails to efficiently reduce the
belief in the prismatic device. This is even more important, since the belief in the revolute
model is lowered quite fast, regardless of the exploration strategy. The reason is, that in
order to disprove the belief in the prismatic lock, the force has to be applied in a very
specific direction. Both planned strategies are able to do that. Since the initialization

54

6.2 Active Learning strategies

Figure 6.4: Results of the simulation experiments on the static device. The graphs show
the mean probability for a certain device type. Error bars reflect a 95%
confidence interval of the mean estimator.

does not wrongly bias the belief, but actually does so correctly, the difference between
those strategies is only marginal.

Figure 6.5 shows the results for the revolute device. Again, there is no significant
difference between the MaxCE and Entropy-based approach. Both outperform the
random strategy in terms of increasing the correct belief faster. However, after executing
the fifth action, the belief is almost equal for all three approaches, since the planned
strategies stagnate in increasing the correct belief. The reason for this is simple: The
ground truth of the simulated device is not part of the discrete state space of the revolute
device. For the same reason, after the fourth action, the correct belief at the entropy-
based strategy, is actually decreased. For a few trials, a behavior is observed that actually
can be better explained by the prismatic model. Therefore, this problem is due to the
low resolution of the discrete state space.

55

6 Evaluation

Figure 6.5: Results of the simulation experiments on the revolute device. The graphs
show the mean probability for a certain device type. Error bars reflect a
95% confidence interval of the mean estimator.

The experiments clearly state, that the MaxCE approach is best suited for this scenario.
For two locks it is equally good as the original entropy based strategy, but clearly
outperforms it in case of the prismatic device. Both planned strategies are superior to
the random strategy.

Calculating the best action takes about 34 seconds. The experiments were conducted on
a machine with an Intel(R) Core(TM) i7-3770 CPU @ 3.40G runnning Ubuntu.

56

7 Discussion

7.1 Results

In the evaluation, we have shown that our approach is capable of identifying the correct
device type and parameters located arbitrarily in the 3D space. Independent of the
sequence of actions, the belief update was accurate. Even in cases where no movement
was observed, we were able to limit the belief to specific states, where the used actions
would have lead to the observed effect. The belief update itself is performed quite fast
and even for very high state spaces with a high resolution in terms of discretization the
update takes merely seconds. We were able to successfully take the general approach
from Barragán, Kaelbling, and Lozano-Pérez [BKL14] from the 2D to the 3D space by
introducing novel discretization strategies.

Additionally, we implemented two different Active Learning strategies. We showed that
the entropy-based approach from Barragán, Kaelbling, and Lozano-Pérez [BKL14] is
outperformed by the better strategy introduced by Kulick, Lieck, and Toussaint [KLT14].
This is especially true for scenarios where different device types have large differences
regarding the state-space size. Both strategies however share a common problem. The
computation time drastically increases with the state-space. In fact, choosing a single
action given a current belief on the resolution level of Section 6.2 takes about 34
seconds independent of the chosen strategy, which is not real-time. One solution could
be to run the problem on a more powerful platform. The problem that an increased
state-space size leads to much higher computation times will persist however. This
is especially significant in the 3D space, where the number of parameters is naturally
higher, compared to the more simple alternative in the 2D space. In Section 7.2 we
discuss some ideas that may solve this problem.

7.2 Alternatives

There are many things which could have been done differently in this work, from the
choice of parameters to considering a whole new strategy. In this section, a few of the
choices are questioned and alternatives are presented.

57

7 Discussion

7.2.1 Optimizing the current Approach

We assume our strategy is in general a good choice. Since it achieves most of the
objectives, it very well might be. One thing to notice is the fact that for the revolute
device, the parameter state space is actually too large. In fact, several states are
essentially the same and are therefore redundant. The two parameters are the center
and the axis. Consider two different states with the same axis and centers lying on the
same line parameterized by the axis. Their behavior is identical, therefore they can be
considered equal. The same is true for two different states with the same center, but
opposite axis direction. For the revolute device, it is actually sufficient to consider only a
half sphere.

The first insight however is harder to exploit. In our current model, we discretized the
state space. There is no way to simply cut out a whole dimension and calculating for
every combination of center and axis, whether they are identical is cumbersome and the
improvement probably insignificant. An easy way to make its simulation more efficient is
to discard the limits. The state space would be significantly reduced by two dimensions:
The parameter for the maximum displacement and the variable for the current shift. This
would leave us with the axis as the only parameter and additionally allows us to consider
only half of the sphere. Since the sphere is already discretized in a very efficient way,
this would significantly improve the overall performance. However, the device would
lose most of its characteristics. The simplification of the problem makes the simulation
more unrealistic and not consistent with the real world. Instead of modeling limits,
we would have to consider behaviors like a bar falling out of its mechanics in order to
approach the real problem again.

Theoretically, even the complex model of the prismatic device might have states that
actually model the same thing. This would be the case, if the limit, the current displace-
ment, the maximum displacement, and the axis are aligned for two states in such a way
that the axis are opposed and the two actual limits of each device interchange, while the
current displacements lead to the same position of the device. Since one would probably
need to construct a specific discretization in order to enable this scenario, there is no
need to further investigate this opportunity.

7.2.2 Altering the current Approach

An alternative to the discretization is to use continuous probability functions for the
belief. It would be desirable to have such a function for each device type. This could
enable an analytical solution for the belief update problem. However, it requires for
each type to find probability distributions for the prior belief that are conjugate prior

58

7.2 Alternatives

for the likelihood function. Since type beliefs are significantly different, it is a difficult
problem. One solution would be to use a multidimensional Gaussian distribution as
prior. Instead of a specialized belief over a sphere for the direction, this approach would
use the whole euclidean space. The Von Mises-Fisher distribution even allows to model
a probability function directly on a sphere [Fis53]. Since both probability distributions
allow only one maximum, they will not be sufficient to model the belief. Another idea is
to combine the advantages of a continuous distribution and the discrete alternatives.
Some parts of the belief can be modeled continuously, if a sufficient function is found.

The current transition model is based on a simulation which is only approximating
the real world. These simulations may therefore be inaccurate and if our approach is
tested on the PR2, the belief update and the Active Learning strategies may fail for this
reason. Barragán, Kaelbling, and Lozano-Pérez [BKL14] used a physic simulation library
(Bullet Physics Library). Appropriate models have to be constructed in order to use it.
The advantage is that the resulting behavior is more accurate. Another approach is to
parametrize the simulation functions. These parameters can then again be learned from
data, resulting in a very accurate prediction. For this, a new optimization problem needs
to be solved.

One of said parameters would be the device’s stiction. Currently we assume that its
value is known. By testing we can actually measure it. Alternatively, we can add the
stiction as a parameter to the belief. This however increases the state space further.
Given the computational problems already present, this seems like a bad idea.

Simulating the device using a proper physic simulator has an additional effect of allowing
to easily define new types of actions. Currently, pushing is the only way of manipulation.
Given a proper model of the device, it is possible to add more sophisticated actions
like grasping and pulling, without having to deal with the problem of writing a specific
simulator by hand.

One of the significant differences between this work and the work of Barragán, Kaelbling,
and Lozano-Pérez [BKL14] is the considered space. While the latter considers the
problem in the 2D space, we work in the 3D space. The disadvantage of this approach is
higher number of parameters and variables, leading to a more complex computation
and longer calculation times. Given a good model of the considered device, it is possible
to reduce the size of the state space. Certain states can be marked as incorrect due to
the knowledge of the device. It is for example unreasonable to assume the center of a
revolute device to be in the air. As long as the device is not extraordinary, it is save to
assume that the center is in fact located within the body. An especially useful opportunity
the model would grant is the possibility to assume that a device is operated on a surface.
If one could find a corresponding 2D plane, the assumptions from Barragán, Kaelbling,
and Lozano-Pérez [BKL14] hold true. We could discard the 3D strategy and reduce the
state space significantly.

59

7 Discussion

Another benefit of the model is related to the Active Learning strategies. It is possible
to limit the number of considered actions. Since performing actions like pushing is
only feasible on the surface of an actual object, actions which do not meet this obvious
requirement can be ignored. Additionally, using tools like KOMO [Tou14] that allow to
plan and calculate movements, we can filter out unreachable or unfeasible actions as
well. For each action, we can plan and check whether the PR2 robot will be able to reach
the desired position. If, for instance, the path to a position is blocked or the desired
force vector can not be applied due to motion restrictions, there is no need to consider
the action. We can discard it before calculating the action’s outcomes. Another way to
reduce the number of actions is to simply sample them in such a way that their direction
and expected results differ. In doing so, the number of considered actions could be
reduced to such a small amount that an analytical solution, instead of a Monte-Carlo
simulation, becomes feasible. Instead of sampling locks from the current belief, every
discrete state can be considered. The actual expected entropy or cross-entropy can be
calculated.

Having a functional model of the lockbox and its devices, which preferably allows to
simulate interactions with the PR2, would greatly benefit this work. It would allow us
to limit the number of feasible actions, while increasing their variety. Potentially this
would allow us to reduce the state space for certain beliefs. Additionally, the transition
model would be more accurate and easily applicable to the real world.

7.2.3 Alternative approaches

Sturm, Stachniss, and Burgard [SSB11] propose a strategy that is fundamentally different
compared to our work. Instead of considering a set of given devices and learning
how to manipulate them, the work interprets the world as a kinematic graph. Object
correspond to vertices, edges model their kinematic relationship. This allows to describe
more complex relationships. Objects are not limited devices but can stand in arbitrary
relationship to one another. The graph is learned using a probabilistic framework. It
relies on observations to learn how objects restrict each other and through which joints
they are related.

Additionally, the learned models can be generalized and transfered to other, similar
problems. The advantage of this work is the flexibility it has in describing different
possible scenarios. It can not explain, how to actually generate observations that leads
to information gain. Combining this with an Active Learning strategy would make
this approach comparable. This work could be combined with ours in a meaningful
way. Using the model and Active Learning strategies presented, we could generate the
observations and data which are necessary for building the kinematic graph. We can
than use the graph as a starting point for more complex tasks.

60

7.3 Insights

Similar to [SSB11], the work of Martín and Brock [MB14] or Katz and Brock [KB08]
could be used to learn joints. Most of the work presented in Chapter 2 identifies
kinematic devices only if motion is preexistent. One significant problem is to actually
generate this movement. The solution from Barragán, Kaelbling, and Lozano-Pérez
[BKL14] allows to gather information regardless. The absence of movement can be used
to update the belief.

Narayanan and Likhachev [NL15] introduce an action selection strategy that incorporates
a goal state. This approach seems useful if we want to learn device parameters while
simultaneously learning joint dependencies. In Section 1.2, we describe how our
work serves as a basis for joint dependency learning. The goal state for the joint
identification part could be the desired action from the joint dependency discovery with
the objective to lock or unlock the joint. For this however, the higher level would need
to cope with uncertainty over joint parameters, which is not the case at the moment.
Additional problems are that Narayanan and Likhachev [NL15] assume every part of the
mechanism to be observable, a deterministic transition model for a given device, and
initial movement to reduce the number of candidates for the belief planner.

Katz, Pyuro, and Brock [KPB09] use Reinforcement Learning to learn actions for a given
relational state representation. The learned knowledge can be transfered to previously
unseen objects. If we would consider mechanisms with multiple joints, this work could
help to reduce the number of necessary actions. Currently, we consider kinematic
devices that only have one joint. Therefore, learning actions based on a relational state
representation is unnecessary.

Hausman et al. [HNOS15] use a different model for the belief. Instead of a discrete state
space, they use a particle filter. This approach is better suited for the larger state space
of kinematic devices in 3D space. In retrospective, it could have been more effective
to use this approach. They were able to successfully conduct experiments and identify
different joint types using the PR2.

7.3 Insights

Originally, the idea of this work was to use KOMO [Tou14], a constraint optimization
framework, to calculate feasibility and costs for certain actions on the lock box. We
would use this information to create an additional reward function for the approach
presented in [KOT15b] to solve the lockbox problem while taking into account cost
for motion. During the course of this work, it became clear that in order to achieve
this, we first need to find a way to reliably identify joints and learn their parameters,

61

7 Discussion

before we could apply the strategy. As a result, the focus of the work shifted to kinematic
identification.

At first, ideas involved learning this information from trajectories, similar to the work of
Sturm, Stachniss, and Burgard [SSB11]. The main problem is, that actual motion needs
to be generated first. Instead of identifying joints based on motion, the objective became
to execute actions on mechanisms and update a belief over its types and parameters,
even if no motion could be detected. One of the parameters we wanted to find was the
direction of the prismatic joint or the rotation axis for the revolute joint. A belief over
an axis or direction is basically a belief over a sphere in 3D space. One way to model
this belief is to use a multidimensional Gaussian distribution over the euclidean space
with its mean fixed at the origin and only consider the cut with the unit sphere. Due
to symmetry, we would then be able to execute a push action on the mechanism. If no
movement was detected, we would then tilt the Gaussian away from the force direction.
The way we have to manipulate the covariance matrix in order to correctly update the
belief, which is the Gaussians cut with the sphere, is however unclear. The cut with the
unit sphere would allow to model a uniform distribution or two symmetrical maxima.
With a single Gaussian distribution, it is not possible to model more maxima, which is
insufficient for our belief. The same is true for the Von Mises-Fisher distribution [Fis53].
Instead, we would have to use multiple Gaussians in order to get the desired flexibility,
making the update process even more complicated. The approach presented in this
thesis simply discretized the belief. This allows additionally to combine the belief over
the sphere with other parameters like the location. Finding a distribution over a sphere
that allows for the same flexibility as the discrete version would potentially allow a
continuous solution of the problem. As mentioned in Section 7.2.2, finding a conjugate
prior to this function would even allow for an analytical update and would simplify the
whole problem further.

7.4 Conclusion

We implemented a method that is able to correctly identify the types and parameters of
kinematic devices in 3D space. It involves an efficient way to discretize the belief space,
which is updated using a Bayes Filter, that allows to extract useful information, even if
actions yield no movement. An Active Learning action selection is used to reduce the
number of actions necessary for the identification. We showed that using plain entropy
as information measures is outperformed by the MaxCE strategy.

What we weren’t able to achieve is a real-time calculation for the action selection. We
want to enable the PR2 to autonomously work on the lockbox. A calculation that takes
more than we few seconds is unsatisfactory. If we can solve this problem, we can test

62

7.4 Conclusion

our method outside of simulations. This will tell us, how sophisticated our transition
model actually is. Finding the correct parameters for this model is another challenge we
have to tackle.

63

A Zusammenfassung

Diese Arbeit handelt von der Identifizierung kinematischer Objekte als Teil des Lockbox
Problems. Dabei handelt es sich um die Herausforderung, einen Roboter in die Lage zu
versetzen, eine Box zu öffnen, die durch mehrere in Reihe geschaltete Schlösser verriegelt
ist. Um mit diesen Schlössern umzugehen, muss der Roboter die zugrundeliegenden
Typen und Parameter ermitteln. Wir lösen dieses Problem, indem wir unseren Glauben
(Belief) an diese als diskrete Wahrscheinlichkeitsverteilung modellieren. Dabei wird
die Richtungsinformation als Geodätische Spähre diskretisiert, was den Vorteil hat
Richtungen isotrop zu verteilen und diese somit nicht zu verzerren. Die Verbesserung
des Beliefs wird aufgrund von Erfahrungen, mittels eines Bayes Filters durchgeführt.
Dieser erlaubt es, die korrekten Parameter einzugrenzen, auch wenn eine Aktion des
Roboters zu keiner sichtbaren Bewegung führt. Die Auswahl dieser Aktionen erfolgt
unter Betrachtung des erwarteten, zukünftigen Beliefs und zielt darauf ab, die Anzahl
Aktionen die benötigt werden um den Mechanismus erfolgreich zu identifizieren, zu
minimieren. Dafür testen wir verschiedene Maße für die Informationen, indem wir sie
mit einer zufälligen Aktionsauswahl in einer Simulation vergleichen. Dabei stellt sich
heraus, dass das auf der Kreuzentropie basierende Maß, das effektivste ist. Insgesamt
waren wir in der Lage, korrekt zwischen prismatischen, statischen und Geräten mit
Drehgelenk im Dreidimensionalem Raum zu unterscheiden.

65

Bibliography

[AKB13] A. M. Auersperg, A. Kacelnik, A. M. von Bayern. “Explorative learning and
functional inferences on a five-step means-means-end problem in Goffin’s
cockatoos (Cacatua goffini).” In: PloS one 8.7 (2013), e68979 (cit. on
p. 15).

[BKL14] P. R. Barragán, L. P. Kaelbling, T. Lozano-Pérez. “Interactive Bayesian Iden-
tification of Kinematic Mechanisms.” In: IEEE Conference on Robotics and
Automation (ICRA). 2014. URL: http://lis.csail.mit.edu/pubs/barragan-
icra14.pdf (cit. on pp. 19, 22, 23, 31, 34, 45, 46, 57, 59, 61).

[CB03] S. Chiappa, S. Bengio. HMM and IOHMM modeling of EEG rhythms for
asynchronous BCI systems. Tech. rep. IDIAP, 2003 (cit. on p. 25).

[Fis53] R. Fisher. “Dispersion on a Sphere.” In: Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences 217.1130
(1953), pp. 295–305. eprint: http :// rspa . royalsocietypublishing .org/
content/217/1130/295.full.pdf. URL: http://rspa.royalsocietypublishing.
org/content/217/1130/295 (cit. on pp. 59, 62).

[HNOS15] K. Hausman, S. Niekum, S. Osentoski, G. S. Sukhatme. “Active articula-
tion model estimation through interactive perception.” In: Robotics and
Automation (ICRA), 2015 IEEE International Conference on. IEEE. 2015,
pp. 3305–3312 (cit. on pp. 23, 61).

[Huy09] D. Q. Huynh. “Metrics for 3D Rotations: Comparison and Analysis.” In: J.
Math. Imaging Vis. 35.2 (Oct. 2009), pp. 155–164. URL: http://dx.doi.org/
10.1007/s10851-009-0161-2 (cit. on p. 46).

[KB08] D. Katz, O. Brock. “Manipulating articulated objects with interactive per-
ception.” In: Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on. IEEE. 2008, pp. 272–277 (cit. on pp. 21, 22, 61).

[KLT14] J. Kulick, R. Lieck, M. Toussaint. Active Learning of Hyperparameters:
An Expected Cross Entropy Criterion for Active Model Selection. e-Print
arXiv:1409.7552. 2014 (cit. on pp. 22, 35, 47, 57).

[KOT15a] J. Kulick, S. Otte, M. Toussaint. “Active Exploration of Joint Dependency
Structures.” In: (ICRA 2015). 2015 (cit. on pp. 18, 19).

67

http://lis.csail.mit.edu/pubs/barragan-icra14.pdf
http://lis.csail.mit.edu/pubs/barragan-icra14.pdf
http://rspa.royalsocietypublishing.org/content/217/1130/295.full.pdf
http://rspa.royalsocietypublishing.org/content/217/1130/295.full.pdf
http://rspa.royalsocietypublishing.org/content/217/1130/295
http://rspa.royalsocietypublishing.org/content/217/1130/295
http://dx.doi.org/10.1007/s10851-009-0161-2
http://dx.doi.org/10.1007/s10851-009-0161-2

Bibliography

[KOT15b] J. Kulick, S. Otte, M. Toussaint. Robots Solving Serial Means-Means-End
Problems. RSS Workshop on Combining AI Reasoning and Cognitive Science.
2015 (cit. on pp. 18, 21, 61).

[KPB09] D. Katz, Y. Pyuro, O. Brock. “Learning to manipulate articulated objects in
unstructured environments using a grounded relational representation.”
In: Robotics: Science and Systems IV (2009), p. 254 (cit. on pp. 22, 61).

[MB14] R. M. Martín, O. Brock. “Online interactive perception of articulated objects
with multi-level recursive estimation based on task-specific priors.” In: 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems. Sept.
2014, pp. 2494–2501 (cit. on pp. 21, 61).

[NL15] V. Narayanan, M. Likhachev. “Task-oriented planning for manipulating
articulated mechanisms under model uncertainty.” In: Robotics and Automa-
tion (ICRA), 2015 IEEE International Conference on. IEEE. 2015, pp. 3095–
3101 (cit. on pp. 22, 61).

[Oxf16] Oxford University Press. problem-solving. Oxford Dictionaries. online. Mar.
2016. URL: http://www.oxforddictionaries.com/de/definition/englisch/
problem-solving (cit. on p. 15).

[PWT15] S. Pillai, M. R. Walter, S. Teller. “Learning articulated motions from visual
demonstration.” In: arXiv preprint arXiv:1502.01659 (2015) (cit. on p. 21).

[Sha01] C. E. Shannon. “A Mathematical Theory of Communication.” In: SIGMOBILE
Mob. Comput. Commun. Rev. 5.1 (Jan. 2001), pp. 3–55. URL: http://doi.
acm.org/10.1145/584091.584093 (cit. on p. 34).

[SJS+10] J. Sturm, A. Jain, C. Stachniss, C. C. Kemp, W. Burgard. “Operating ar-
ticulated objects based on experience.” In: Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on. Oct. 2010, pp. 2739–
2744 (cit. on p. 21).

[SRS+05] L. R. Santos, A. Rosati, C. Sproul, B. Spaulding, M. D. Hauser. “Means-
means-end tool choice in cotton-top tamarins (Saguinus oedipus): finding
the limits on primates’ knowledge of tools.” In: Animal cognition 8.4 (2005),
pp. 236–246 (cit. on p. 15).

[SSB11] J. Sturm, C. Stachniss, W. Burgard. “A Probabilistic Framework for Learning
Kinematic Models of Articulated Objects.” In: J. Artif. Int. Res. 41.2 (May
2011), pp. 477–526. URL: http://dl.acm.org/citation.cfm?id=2051237.
2051252 (cit. on pp. 21–23, 60–62).

[Tou14] M. Toussaint. KOMO: Newton methods for k-order Markov Constrained
Motion Problems. e-Print arXiv:1407.0414. 2014 (cit. on pp. 60, 61).

[Vin11] J. Vince. Quaternions for computer graphics. Springer Science & Business
Media, 2011 (cit. on p. 27).

68

http://www.oxforddictionaries.com/de/definition/englisch/problem-solving
http://www.oxforddictionaries.com/de/definition/englisch/problem-solving
http://doi.acm.org/10.1145/584091.584093
http://doi.acm.org/10.1145/584091.584093
http://dl.acm.org/citation.cfm?id=2051237.2051252
http://dl.acm.org/citation.cfm?id=2051237.2051252

[WKO92] D. White, J. A. Kimerling, S. W. Overton. “Cartographic and Geometric
Components of a Global Sampling Design for Environmental Monitor-
ing.” In: Cartography and Geographic Information Systems 19.1 (1992),
pp. 5–22. eprint: http : / / www. tandfonline . com / doi / pdf / 10 . 1559 /
152304092783786636. URL: http://www.tandfonline.com/doi/abs/10.
1559/152304092783786636 (cit. on p. 39).

All links were last followed on May 09, 2016.

http://www.tandfonline.com/doi/pdf/10.1559/152304092783786636
http://www.tandfonline.com/doi/pdf/10.1559/152304092783786636
http://www.tandfonline.com/doi/abs/10.1559/152304092783786636
http://www.tandfonline.com/doi/abs/10.1559/152304092783786636

	title_page_vorlage
	2_cut_thesisthesis_engl
	decleration_vorlage

