
Institute of Formal Methods in Computer Science

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit Nr. 76

The Simultaneous Maze Solving
Problems

André Nusser

Course of Study: Informatik

Examiner: Stefan Funke

Supervisor: Sabine Storandt,
Stefan Funke

Commenced: 3. December 2015

Completed: 3. June 2016

CR-Classification: G.2.1

Abstract

A grid maze is a binary matrix where fields containing a 0 are accessible while fields
containing a 1 are blocked. In such a maze there are four possible movements: up,
down, left, and right. We call a sequence of such movements a Solving Sequence if we
visit the lower-right corner starting in the upper-left corner. Finding a Solving Sequence
for a grid maze is a problem that has been thoroughly considered. However, finding
a single sequence such that all grid mazes in a given set are solved has not drawn
great attention. Especially the formulation as a minimization problem – i. e., finding
a shortest Solving Sequence for a set of mazes – is a challenging problem. We call
this minimization problem the Simultaneous Maze Solving Problem (SIMASOP). Beside
this general formulation, we also focus on a special case of SIMASOP called the All
Simultaneous Maze Solving Problem (ASIMASOP). Given n and m, this problem requires
us to find a shortest Solving Sequence for the set of all solvable grid mazes of size n × m.
In this thesis we analyze both problems theoretically as well as practically. Among other
theoretical results, we prove that SIMASOP is NP-complete, that ASIMASOP is in PSPACE,
and give a cubic upper bound for the length of a shortest Solving Sequence for ASIMASOP.
On the practical side, we present algorithms to compute shortest and approximately
shortest Solving Sequences. Additionally, we provide a non-naive algorithm for finding
an unsolved maze given a non-Solving Sequence and ways to compute instance-based
lower bounds. Finally, we evaluate the algorithms and compare the results of the
different approaches as well as provide lower bounds. Surprisingly, for ASIMASOP with
size 4 × 4, for which there exist 3828 solvable mazes, it is already difficult to find a
shortest Solving Sequence. We are able to compute a Solving Sequence of length 29 and
a lower bound of 26 for this instance.

3

Contents

1 Introduction 7

2 Basics 9
2.1 Definitions . 9
2.2 Notation and Conventions . 12
2.3 The Simultaneous Maze Solving Problem 12
2.4 The All Simultaneous Maze Solving Problem 13
2.5 Counting Solvable Mazes . 13
2.6 Markov Chains . 14

3 Related Problems 19
3.1 The Shortest Path Problem . 19
3.2 Synchronizing Sequence . 20
3.3 Universal Traversal Sequence . 21

4 Theoretical Analysis 23
4.1 SIMASOP is NP-complete . 23
4.2 ASIMASOP ∈ PSPACE . 26
4.3 Existence of a Solving Sequence . 27
4.4 Solving Order . 28
4.5 Existence of a Perfect Solving Sequence 31
4.6 Lower Bounds . 33
4.7 Number of Solvable Mazes . 34
4.8 Upper Bounds . 37

5 Practical Algorithms 41
5.1 Shortest Path Algorithms on Mazes . 41
5.2 Algorithms to Find Unsolved Mazes . 43
5.3 Exact Shortest Solving Sequence Algorithms 45
5.4 Approximate Shortest Solving Sequence Algorithms 48
5.5 Lower Bound Algorithms . 50

5

Contents

6 Practical Analysis 53
6.1 Shortest Path Algorithms on Mazes . 53
6.2 Algorithms to Find Unsolved Mazes . 55
6.3 Exact Shortest Solving Sequence Algorithms 58
6.4 Approximate Shortest Solving Sequence Algorithms 60
6.5 Lower Bound Algorithms . 64

7 Conclusion 67

A Deutsche Zusammenfassung 69

B Solving Sequences and Lower Bound Certificates 71

Bibliography 77

6

1 Introduction

Mazes regularly appear in popular culture and have also been investigated in math and
computer science. It is a common game to search for a path from start to goal in a maze.
One can also search for the shortest path instead of just any path. This has already been
investigated thoroughly and finding a shortest path in a two-dimensional maze can be
considered completely solved from the perspective of computer science. Consider the
first time we solve a certain grid maze. In this case we have to apply some algorithm
to get a solution. This solution can then be represented as a sequence of moves. If we
now give this sequence of moves to a person who has not solved the maze before, he or
she can simply follow these instructions and solve the maze. However, what if we do
not only have a single maze but multiple mazes? And what if, instead of solving them
separately, we want exactly one sequence of moves that solves all of the mazes? By
simply choosing a very long sequence of moves, one can create a Solving Sequence with
high probability. Therefore, the interesting problem is to find a short or even shortest
Solving Sequence. Surprisingly, this problem has never been thoroughly considered in
computer science to our knowledge. However, this topic has already been discussed on
two different websites: the XKCD forums [XKCa] and Stack Overflow [Staa]. While the
discussion on the former is aimed at proving the existence of Solving Sequences and
Perfect Solving Sequences (which we define in Section 2.1), the discussion on the latter
focuses on providing algorithms that compute short Solving Sequences. There, a Solving
Sequence of length 31 for all solvable mazes of size 4 × 4 is presented [Stab]. We use
some of the results presented there and reference them accordingly. While there also
already exist some tools in theoretical computer science to approach this problem, a
consideration of this exact problem can yield deeper insights than considering it simply
as a special case of more general problems.

Apart from the theoretical interest in this problem, it can also lay the foundations for
more practical problems. Consider for example exploration or repair robots. Those
robots are deployed in dangerous scenarios involving buildings which are not save to
enter for humans – e. g., think of the ruin of the Fukushima nuclear power plant. In this
setting it is a real possibility that sensors and communication fail during a mission. The
robots that were sent into Reactor 3 of the Fukushima power plant in the year 2016
were destroyed because of the high radiation [Sci]. Due to the high cost of such robots,
they should always be able to exit the building as long as self-powered movement is

7

1 Introduction

still possible. To evacuate them, an emergency protocol is needed that enables them
to escape. Here, the solution to our problem gives an abstract formulation of such an
emergency protocol. If we consider the building as a maze of a certain size, then using a
sequence that solves all the mazes of this size induces a high probability of escaping. As
often, in practice it is probably much harder. However, a rigorous theoretical formulation
helps to develop such a system in the end.

Structure

This thesis is structured in the following way:

Chapter 2 – Basics: In this chapter we introduce all the definitions that are later needed
in the thesis and already define the main problems that we want to investigate.

Chapter 3 – Related Problems: Instead of directly diving into solving our problems,
we first have a look at related problems and see in what sense they already give
a solution. While not implying perfect solving strategies for our problems, the
problems introduced in this chapter help us in the theoretical as well as the
practical analysis.

Chapter 4 – Theoretical Analysis: Before having a look at the algorithmic side of the
problem, we investigate the theoretical properties. Among other properties, com-
plexity bounds and existence of Solving Sequences are shown.

Chapter 5 – Practical Algorithms: In this chapter we present algorithms for solving
the problems formulated earlier.

Chapter 6 – Practical Analysis: Using the algorithms defined in the last chapter, we
analyze our problem in practice.

8

2 Basics

2.1 Definitions

In the following, we define the most important mathematical objects we will be working
with.

Definition (Maze). A maze is a matrix M ∈ {0, 1}n×m where 0s symbolize free fields while
1s symbolize blocked fields. The single elements of the maze are denoted by ρi,j.

If not noted otherwise, we use n as the size of the first dimension and m as the size of
the second dimension of the maze(s). Figure 2.1 shows a 4 × 5 maze (i. e., a matrix)
with its visualization. If not mentioned otherwise, we assume the start and goal position
to always be in the upper-left and lower-right, respectively.

Definition (Position). A position in a maze is given by a tuple (i, j) where 1 ≤ i ≤ n, 1 ≤
j ≤ m. This is the position of the element ρi,j of the maze. Thus, the origin of the indices is
the upper-left corner, i. e. the default starting position.

For example, in Figure 2.1 the position (1, 1) is marked red, the position (4, 5) is marked
green and the positions of the blocked fields are (1, 2), (1, 4), (2, 4), (2, 5), (3, 2) and
(4, 2).

Definition (Move). A move η is an element of the set of moves {u, d, l, r}.

0 1 0 1 0
0 0 0 1 1
0 1 0 0 0
0 1 0 0 0

Figure 2.1: A maze with its corresponding visualization. The white fields are accessible

while the gray ones are blocked. The red marked field is the start position
and the green marked field the goal position.

9

2 Basics

The symbols in {u, d, l, r} are abbreviations for "up", "down", "left" and "right". Those
directions are interpreted as relative to the viewer of the maze.

Definition (Sequence). A sequence is a string s ∈ {u, d, l, r}∗, i. e. a concatenation of
moves.

To be able to navigate through a maze, we define a step function:

stepM((i, j), η) =

(i − 1, j), if η = u ∧ i > 1 ∧ ρi−1,j = 0
(i + 1, j), if η = d ∧ i < n ∧ ρi+1,j = 0
(i, j − 1), if η = l ∧ j > 1 ∧ ρi,j−1 = 0
(i, j + 1), if η = r ∧ j < m ∧ ρi,j+1 = 0
(i, j), otherwise

The result of the step function is intuitive. If the adjacent field in movement direction is
free, we enter it. If we are at the edge of the maze or adjacent to a blocked field and
walk in this direction, then we stay on the current field. If it is obvious which maze we
are referring to, we omit the index (e. g., M in the definition). Also, if we start at the
upper-left, we omit the position (e. g., (i, j) in the definition) for sake of simplicity of
the notation. We also define the step function on a sequence s = s1 . . . sk as follows:

step((i, j), s) = step(step(. . . step(step((i, j), s1), s2), . . .), sk)

As an example, let us apply the step function to the maze shown in Figure 2.1:

step((1, 3), drll) = (2, 1)

We are now ready to define Solving Sequences.

Definition (Solving Sequence).

s = s1 . . . sk is a Solving Sequence of M ⇔ ∃i, 0 ≤ i ≤ k : stepM((1, 1), s1 . . . si) = (n, m)

In other words, a sequence s is called a Solving Sequence of a maze M if we visit the
position (n, m) during the traversal of M described by s starting from (1, 1). We call s a
Solving Sequence for a set of mazes M, if s is a Solving Sequence for each M ∈ M. If s

is a Solving Sequence of M (M), we also say that s solves M (M).

Definition (Perfect Solving Sequence).

s is a Perfect Solving Sequence of M ⇔ stepM((1, 1), s) = (n, m)

10

2.1 Definitions

Figure 2.2: First row: The four example mazes. Solving Sequence but not Perfect
Solving Sequence (second row, red): ddrddruu. Perfect Solving Sequence
and thus also Solving Sequence (third row, green): drddrr . Neither Solving
Sequence nor Perfect Solving Sequence (fourth row, blue): rrddr .

In other words, a Solving Sequence s of a maze M is called perfect if we end in position
(n, m) after executing s on M starting in position (1, 1). The definition also carries over
to sets of mazes. Additionally, if s is a Perfect Solving Sequence of M (M), we also say
that s perfectly solves M (M).

Consider Figure 2.2 for examples of Solving Sequences and Perfect Solving Sequences.

Definition (All Solving Sequence). A sequence s is an All Solving Sequence regarding the
maze size n × m iff it solves every solvable maze of this size.

For example, the sequence drddruurrdd is an All Solving Sequence regarding the size
3 × 3. You can conveniently check this using Figure 2.3.

11

2 Basics

2.2 Notation and Conventions

To facilitate the reading of this thesis, the following consistent notation is used:

• M, M1, M2, . . . are used for single mazes

• M, M1, M2, . . . are used for sets of mazes

• Mn,m is used for the set of all solvable n × m mazes

• η ∈ {u, d, l, r} is a move

• s ∈ {u, d, l, r}∗ is a sequence of moves

• σ(M) is the minimal length of a sequence solving all mazes in M

• σ(n, m) = σ(Mn,m)

We assume that sets of mazes contain mazes of the same size if not stated otherwise.
Many proofs also generalize to sets containing mazes of different sizes, but this would
often compromise readability.

In the course of this thesis we also use graph algorithms on mazes and sometimes
implicitly consider mazes as graphs. The graph corresponding to a certain maze is
created in a straight forward manner: every free and reachable field corresponds to a
node and all the different moves from a field (up, down, left and right) correspond to
an accordingly labeled edge, which has as target the node corresponding to the field
that is reached by the move.

2.3 The Simultaneous Maze Solving Problem

In the Simultaneous Maze Solving Problem (SIMASOP) we want to find the length of the
shortest Solving Sequence for a given set of mazes. More formally, given a set of mazes
M, find the smallest number k such that there exists a Solving Sequence s for M with
|s| = k. Note that s might not be unique but |s| is. The corresponding decision problem
to SIMASOP is defined as follows: Given a set of mazes M and an upper bound k, does a
Solving Sequence s with regard to M exist such that |s| ≤ k?

The result of the SIMASOP on the mazes in Figure 2.2 is 6, and a shortest Solving
Sequence is ddrddr .

12

2.4 The All Simultaneous Maze Solving Problem

2.4 The All Simultaneous Maze Solving Problem

The All Simultaneous Maze Solving Problem (ASIMASOP) is a special case of the Simulta-
neous Maze Solving Problem where only the dimensions of the maze n, m are the inputs
(given in unary encoding) and the set of mazes M of SIMASOP is set to Mi,j (i. e., all
solvable mazes of size n×m) – we then again search for the length of the shortest Solving
Sequence. The corresponding decision problem is equivalent to the one of SIMASOP,
i. e.: given a maze size n × m and an upper bound k, does a Solving Sequence s for the
set of all solvable mazes of size n × m exist such that |s| ≤ k?

For n = m = 3 the result of ASIMASOP is 11 and such a shortest Solving Sequence
is drddruurrdd. Manually verifying that there indeed does not exist a shorter Solving
Sequence is not trivial.

2.5 Counting Solvable Mazes

While not the central problem, it’s also natural to ask for the number of solvable mazes
of a certain size. Unfortunately, this doesn’t seem to be straight forward calculable, but
one can easily give some naive upper and lower bounds.

For the first naive upper bound note that neither the start nor the goal field can be
blocked, but all others might be free or blocked. Thus, we have nm − 2 fields to choose
(assuming n > 1 or m > 1), but not all choices imply a solvable maze. Therefore, a
naive upper bound is 2nm−2.

A little less naive upper bound is 9
162nm−2 for n, m > 2. We again consider all fields that

we can choose, but this time we check how many combinations of the neighboring fields
of the start and goal field can lead to a solvable maze. Both, the start and the goal
field have exactly two neighbors for n, m > 2. If both of the neighbors are blocked, the
maze cannot be solved. Therefore, we have 3 out of 4 choices for each pair of neighbors
such that the maze is not obviously unsolvable – i. e., 9 out of 16 choices in total, which
explains the factor of the upper bound.

Let us now derive a naive lower bound. If we fix a solving path that goes along the left
edge and then the bottom edge of the maze, we still have all fields in the upper right
that can be arbitrarily chosen without making the maze unsolvable. The number of
those fields is (n − 1)(m − 1). It follows that 2(n−1)(m−1) is a lower bound for the number
of solvable mazes of size n × m.

13

2 Basics

From the previous bounds it follows that:

2(n−1)(m−1) ≤ |Mn,m| ≤ 9
162nm−2

In Section 4.7 we present a way to calculate the exact number of mazes without explicitly
enumerating them. Additionally, a more sophisticated lower bound calculation is shown.
Also, I could not refrain from including a figure that shows the 51 solvable mazes of size
3 × 3: see Figure 2.3.

2.6 Markov Chains

If we consider random walks on a maze, we can use Markov chains as a mathematical
model. As they have already been investigated thoroughly, we can use a lot of those
results. Let us begin with defining Markov chains. We use less general definitions here
for the sake of simplicity. See Section 6.2 in [MR10] as reference for more general
versions of the following definitions.

Definition (Markov chain). A Markov chain is a directed graph G = (V, E) of which the
edges are labeled with transition probabilities p : E → (0, 1] with

∀v ∈ V :
∑

e=(v,·)∈E

p(e) = 1

It may contain loop edges but not multiple edges.

We also call V the set of states and v ∈ V a state. A Markov chain is called time-
homogeneous if the transition probabilities don’t change over time. It is called finite if
|V | < ∞. For the rest of this thesis we assume that a Markov chain is time-homogeneous
and finite unless stated otherwise. There are several other terms and results relevant for
this thesis, namely: irreducible, (a)periodic and stationary distribution.

Definition (irreducible). A Markov chain is called irreducible iff the graph G defining the
Markov chain consists of exactly one strongly connected component, i. e., every node v ∈ V

can reach each other node w ∈ V .

Definition (periodic). A state v ∈ V of a Markov chain is called periodic iff for some
initial distribution π0 over the states, the probability of being in state v at time t is only
greater than zero iff t ∈ {a + Ti | i ≥ 0}, for some a, T ∈ N, a > 0, T > 1. Else, v is called
aperiodic.

A Markov chain is called aperiodic iff every state of it is aperiodic.

14

2.6 Markov Chains

Figure 2.3: All solvable mazes of size 3 × 3. Beautiful, isn’t it?

15

2 Basics

Probabilities of the edges: pl

pu

pd

pr

Figure 2.4: A maze with its corresponding Markov maze. Note that the graph of the
Markov maze is restricted to the (strongly) connected component of the
start and goal states. The edges are color-coded regarding their transition
probability, which is induced by their direction.

Definition (stationary distribution). A stationary distribution of a Markov chain is a
probability distribution πv ∈ [0, 1] over the states v ∈ V such that∑

v∈V

πv = 1 and ∀v ∈ V : πv =
∑

v′∈V

πv′p((v′, v))

The fundamental theorem of Markov chains states that any irreducible, finite, and
aperiodic Markov chain has the following properties [MR10]:

1. There is a unique stationary distribution π with πv > 0, ∀v ∈ V .

2. Every initial distribution π0 converges against the unique stationary distribution π

over time.

Given a maze and transition probabilities (for all non-blocked fields), it is straightforward
to derive the corresponding Markov chain. Simply convert the maze into a graph
(walking against a wall/block creates a loop edge) and then label the edges according
to the given probabilities. A formal description of the construction is left out, as it is
obvious. As we are only interested in random walks on solvable mazes, we restrict the
Markov chain in this case to the strongly connected component that contains the start
and goal state. We call the Markov chain of such a maze a Markov maze. You can see an
example of a maze and its corresponding Markov maze in Figure 2.4.

Claim. A Markov maze with probabilities pu, pd, pl, pr > 0, which are the probabilities of
moving up, down, left, and right respectively, has a unique stationary distribution every
initial distribution converges to.

16

2.6 Markov Chains

Proof. To prove the claim we only have to show that the Markov maze is irreducible,
finite and aperiodic. We can then apply the fundamental theorem of Markov chains.

As we reduce the Markov maze to the strongly connected component of the start and
goal state – which are in the same component due to the maze being solvable – it is
irreducible.

Furthermore, the Markov maze is also finite because a maze has a finite number of fields.

It remains to show that a Markov maze is always aperiodic. First note that in every
arbitrary maze we can reach a field adjacent to a wall (possibly of a blocked field)
in at most

⌊
min(n,m)

2

⌋
steps. Obviously, we can also return from that field in the same

number of steps. It follows that in every maze from every arbitrary position p there
always exists a path of length at most min(n, m), starting and ending in p, that touches
a wall. By repeatedly walking in direction of the wall while standing next to it, we
can lengthen the path by an arbitrary number of steps. Thus, for every number greater
than or equal to min(n, m) there exists a circle, starting and ending in p, with that
length. As all the probabilities pu, pd, pl, pr are greater than zero, also the probability
of taking such a path is greater than zero. Thus, Markov mazes are aperiodic as
{min(n, m) + i | i ≥ 0} ̸⊂ {a + Ti | i ≥ 0} for any a > 0, T > 1.

17

3 Related Problems

In this section we show the relation of SIMASOP and ASIMASOP to other problems of
theoretical computer science. Even though all of them have been thoroughly investigated,
none of them completely solves our problems. Still, they provide important components
for algorithms and proofs later in this thesis.

3.1 The Shortest Path Problem

Both problems, SIMASOP and ASIMASOP, can be seen as a shortest path search on the
Cartesian product of the graphs of all the mazes in M. This means that the state space
consists of tuples of positions in the single mazes:

(p1, . . . , p|M|)

As we start in position (1, 1) in every maze, the starting state of our search is:

((1, 1), . . . , (1, 1))︸ ︷︷ ︸
|M|

However, contrary to a Perfect Solving Sequence, we do not have to end up in the goal
state for every maze after executing a Solving Sequence. Thus, we have to somehow
modify our graph to be able to define a correct goal state for our search. By adding
a loop edge for every possible outgoing move from the goal state for every maze, we
ensure that we stay in the goal field after once visiting it in a maze. After performing
this change to the search graph, we can define the goal state as:

((n, m), . . . , (n, m))︸ ︷︷ ︸
|M|

Every shortest path in this graph from the defined start state to the defined goal state
induces a shortest Solving Sequence for M.

While the relation between the problems means we could use the standard machinery of
solving the shortest path problem, unfortunately the state space becomes too large very

19

3 Related Problems

q

Figure 3.1: Schema of the graph for that we want to find a Synchronizing Sequence.

quickly such that this is only feasible for a very small set of mazes. In Section 5.1 we
have a closer look at the relation between the topic of the thesis and the Shortest Path
Problem.

3.2 Synchronizing Sequence

We can also formulate SIMASOP and ASIMASOP as problems of finding a Synchronizing
Sequence [Hen64] for a large graph. A Synchronizing Sequence of a labeled graph
implies a traversal that ends up in one and the same state for every starting state.
That means, it synchronizes the state independent of the current state such that after
executing the sequence, we know exactly which state we are in. The graph for which
we want to find a Synchronizing Sequence is the union of all the mazes of M. Also, we
add one further state q with which all the goal states are connected with all labels. The
state q then also has a loop edge to itself; we therefore stay in this state if we enter it
once. See Figure 3.1 for a schematic representation. If we now find a Synchronizing
Sequence for this graph, we know that with this sequence we always end up in q as this
is the only state reachable from all the other states. One step before reaching q, we must
have entered the goal state of a maze. Therefore, this Synchronizing Sequence without
the last symbol is a Solving Sequence for the mazes in M as all states are considered as
starting states, in particular the upper-left corner of every maze. Note, thought, that a
shortest Synchronizing Sequence might be longer than a shortest Solving Sequence.

20

3.3 Universal Traversal Sequence

Property UTS Solving Sequence
start arbitrary upper-left
goal visit all nodes visit lower-right
graph structure arbitrary connected d-regular graph grid maze
d arbitrary 4
labeling arbitrary consistent with the grid

Table 3.1: This table shows how the problem of finding a UTS is more general than
finding a Solving Sequence.

Labeling of the edges: l

u

d

r

Figure 3.2: A maze with its corresponding UTS graph. The three red-circled nodes
correspond to the two blocked fields and the one field that is not in the
same component as start and goal (i. e., field (1, 3)).

3.3 Universal Traversal Sequence

Universal Traversal Sequences are a concept first researched in the context of the
reachability problem in graphs [AKL+79]. A Universal Traversal Sequence (UTS) is a
sequence of labels that implies a complete traversal of every connected and arbitrarily
labeled graph with a certain number of nodes and a certain fixed degree. More formally,
s is a UTS if we traverse every undirected, labeled, d-regular graph with n nodes from
every arbitrary starting node completely. A d-regular graph is called labeled if all adjacent
edges of a node v get assigned a unique label of the set {0, . . . , d − 1}. Note that this
labeling doesn’t have to be consistent, i. e., for the edge vw, the node v might label the
edge differently than the node w. The problem of finding a UTS is more general than
the problem of finding a Solving Sequence.

21

3 Related Problems

We can show that every UTS is also a Solving Sequence for certain parameters. In
Table 3.1 you can see a comparison of the two concepts. More concrete, every UTS for
graphs of size n · m and for fixed degree d = 4 is also a Solving Sequence for the set of
all solvable n × m mazes. To show this we just have to convert an arbitrary solvable
maze into a 4-regular graph with n · m nodes which is connected, such that a complete
traversal of the resulting graph would imply solving the initial maze. While the size
and the regularity of the converted graph are straight-forward (we just keep the nodes
and at walls we insert a loop edge which is only labeled from one side), we still have to
make sure that the converted graph is connected. Consider the node corresponding to a
blocked field: If we simply insert loop edges at all nodes that correspond to adjacent
fields, then it is not reachable anymore. Thus, we have to somehow connect it to the
graph without creating new paths in the maze (as this might change the possible Solving
Sequences). The same issue arises for fields that are not in the connected component
of the start and goal field. We solve this by simply appending all nodes corresponding
to blocked or non-reachable fields to a chain, which is then connected to the node that
corresponds to the goal field. For the up and down movements we insert loop edges for
all such nodes. The last node in the chain has an extra loop edge for the right move. See
Figure 3.2 for an example. Thus, we can only enter those nodes if we already (implicitly)
solved the maze and therefore a complete traversal of the graph also implies solving the
initial maze.

An important result shown in [AKL+79] is that there always exists a UTS of polynomial
length. The proof leverages the probabilistic method. As, to our knowledge, there
unfortunately does not exist a derandomization, the proof cannot be used to explicitly
construct such a sequence. However, they not only show that there exists a UTS of
length O

(
|V |3 log(|V |)

)
, but also that a random sequence of this length is a UTS with

high probability.

22

4 Theoretical Analysis

In this section we analyze different theoretical aspects of SIMASOP as well as ASIMASOP.
Results regarding solvability and complexity of the two problems are presented. Addi-
tionally, we show upper and lower bounds on the length of a shortest Solving Sequence.
While all the already mentioned results are w. r. t. Solving Sequences, we also show
different results on the number of solvable mazes.

4.1 SIMASOP is NP-complete

Recall that the decision problem of SIMASOP, as already stated in Section 2.3, is defined
as:

Given a tuple (M, k) where M is a set of mazes and k ∈ N. Then

(M, k) ∈ SIMASOP ⇔ ∃s, |s| ≤ k : s solves all M ∈ M

To show NP-completeness it has to be shown that the problem is contained in the
complexity class NP and that it is also NP-hard. Let us first consider SIMASOP ∈ NP. By
using the "guess and check" method, we can check if there exists a Solving Sequence
shorter than k nondeterministically in polynomial time: we simply guess a sequence
s, |s| ≤ k and then verify if it really is a Solving Sequence by naively checking this
property for every maze in M. Note that the mazes are part of the input and thus
contribute to the input size. This is not the case for ASIMASOP where the input is only n

and m, and therefore we cannot prove that ASIMASOP ∈ NP using the same argument.

Now it remains to show NP-hardness for SIMASOP. This is done by providing a polynomial
time reduction from CNFSAT.

Definition (CNFSAT). Given a Boolean formula F in conjunctive normal form (CNF),
i. e., F = ∧c

i=1
∨ci

j=1 Ai,j. The decision problem CNFSAT asks if there exists a satisfying
assignment for F .

23

4 Theoretical Analysis

(a) (b) (c) (d)

Figure 4.1: The different parts out of which we build the mazes created by the reduction
function.

Given a formula in CNF

F =
c∧

i=1

ci∨
j=1

Ai,j

we define the function f that realizes the reduction as

f(F) = ({M} ∪ {Mi|1 ≤ i ≤ c}, 9n − 6)

where n is the number of distinct variables X1, . . . , Xn in F and M and Mi are mazes as
described in the following.

First we describe the high-level idea of the reduction and then provide the details. The
maze M is a special maze that somewhat fixes the path that must be taken through
all the other mazes. The length of its shortest path from the upper-left corner to the
lower-right corner is k = 9n − 6. From the fields we visit during the traversal of M , we
deduce the assignment of the variables of F . Every clause Ci in F corresponds to one
maze Mi whose structure depends on the variables contained in Ci. The length of the
mazes only depends on n – the number of distinct variables in F . The idea of the Mi

is that we stay in the first row of the maze as long as we haven’t found a literal that
satisfies the clause Ci and switch to the last row as soon as we find one.

Let us now have a look at the details of the structure of the mazes M and Mi starting
with the former.

The maze M consist of an empty 3 × 2 block for every variable Xi in F ; see Figure 4.1a.
These blocks appear in order of the index of the variable and in between two of those
blocks is one 3 × 3 block as shown in Figure 4.1b. The mazes Mi have a similar structure.
They consist of a block like shown in Figure 4.1c for every variable Xj, where the green
field is not blocked if and only if Xj is contained in the clause Ci while the red field is
not blocked if and only if ¬Xj is contained in the clause Ci. In between those blocks
there is also a 3 × 3 block like the one shown in Figure 4.1d.

Consider for example the formula F = (A ∨ B) ∧ (¬B ∨ C) ∧ (A ∨ ¬A ∨ ¬C) ∧ (D). The
mazes contained in f(F) can be seen in Figure 4.2.

It remains to show that f is indeed a reduction.

24

4.1 SIMASOP is NP-complete

Figure 4.2: The mazes resulting from f((A ∨ B) ∧ (¬B ∨ C) ∧ (A ∨ ¬A ∨ ¬C) ∧ (D)).

Claim. F ∈ CNFSAT ⇔ f(F) ∈ SIMASOP.

Proof. Let us first show that F ∈ CNFSAT ⇒ f(F) ∈ SIMASOP. Assume F ∈ CNFSAT. It
follows that there exists an assignment A under which F evaluates to true. From the
assignment A we construct a Solving Sequence s as shown in Algorithm 4.1. Firstly,
no matter how the if-statements evaluate, the returned sequence is a shortest Solving
Sequence for the "path-forming" maze M of the reduction. That means, if we can show
that the algorithm produces a Solving Sequence, we also know that it is a shortest
Solving Sequence for all the mazes in M. Now, note that the up movements in s never
have an effect on the position in one of the Mi. Thus, we can only consider the right
and down movements for the traversals of the Mi. As we never hit a wall during such a
traversal (we are either in the first or last row where there are no obstacles when we
move right), we are always in the same column in M and the Mi. Consider now the
variable Xj – which might be negated – with the smallest index j that make the clause
Ck evaluate to true. Let s′ be the sequence that we construct until the loop variable in

25

4 Theoretical Analysis

Algorithm 4.1 is set to j. When executing s′ in Mk we still reside in the first row of the
maze. When now executing the moves that are appended when i = j in the loop, we
make a transition from the first row to the third row in the maze. That is because, if
Xj occurs as a positive literal in Ck, there is an unblocked field in the second row right
under the position we are currently residing at; when then executing the moves ddr we
are not blocked. A similar argument holds if Xj occurs as a negative literal. As we are
always in the same column in M and Mi and M is solved, we end up in the lower-right
corner in all the Mi. Therefore, the s computed in Algorithm 4.1 is a Solving Sequence.

For the second half of the proof we have to show that f(F) ∈ SIMASOP ⇒ F ∈ CNFSAT.
For this assume f(F) ∈ SIMASOP and let (M, k) := f(F). Let n × m be size of the mazes
in M. Furthermore, let s, |s| ≤ k be the sequence that solves M. By construction of the
reduction |s| = k. Thus, s is a shortest Solving Sequence of M and therefore the number
of right moves in s equals m, i. e., |s|r = m. As s solves all the mazes in M, this implies
that we never walk against a wall or a blocked field in any of the traversals of M and Mi.
Therefore, it again holds that the up moves in s only change the position in M but in
none of the Mi as we always are in the same column in all the mazes. Now, as s solves
all the mazes in M, we have to cross the second row at some point of the traversal. The
crossings of the middle row imply an assignment that satisfies F . Reconsider Figure
4.1c which shows one of the maze blocks that is inserted for every variable in every
maze Mi. We have to cross the middle row in one of those blocks. Let this block be
the one corresponding to variable Xj. If we enter both blocks, then every clause has to
either contain Xj not at all or in positive and negative form; else the traversal would be
blocked on one right movement. Thus, we can assume that the same field is entered for
all Mi that cross the middle row at this columns. If it is the green field of Figure 4.1c,
then we set Xj = 1, else we set Xj = 0. Thus, all the clauses corresponding to the mazes
that cross the middle row in those moves evaluate to true. As all the traversals of the
mazes Mi cross the middle row, all clauses are satisfied. Therefore, F is satisfied by the
derived assignment.

4.2 ASIMASOP ∈ PSPACE

As we already showed in Section 3.3, a Universal Traversal Sequence (UTS) is a more
general concept of a Solving Sequence for ASIMASOP. We showed that a UTS for graphs
with n · m nodes which all have degree 4 is always a Solving Sequence for all mazes of
size n × m. In [AKL+79] the authors prove that there always exists a UTS with length
polynomial in the number of nodes. It follows that the shortest Solving Sequence is
also always of polynomial length in n and m. Simply calculating the shortest Solving

26

4.3 Existence of a Solving Sequence

Algorithm 4.1 Construct a Solving Sequence from a satisfying assignment A
Input: A = satisfying assignment for F

Output: s = Solving Sequence for M
1: if A(X1) = 1 then
2: s = ddr
3: else
4: s = rdd
5: end if
6:

7: for i ∈ {2, . . . , |Vars(F)|} do
8: s = s · rruurr
9: if A(Xi) = 1 then

10: s = s · ddr
11: else
12: s = s · rdd
13: end if
14: end for
15: return s

Sequence by brute-force is therefore possible in polynomial space. We only have to hold
the current sequence and the maze we are currently checking in memory. This implies
ASIMASOP ∈ PSPACE.

In Section 4.8 we additionally show that the bound given in [AKL+79] can be improved
by adapting the proof to our setting.

4.3 Existence of a Solving Sequence

While the existence of a Solving Sequence for every set of solvable mazes follows directly
from the existence of a Universal Traversal Sequence, it unfortunately does not provide
an algorithm to construct such a sequence. Also, to our knowledge, the proof has not
been derandomized until now as already stated in Section 3.3. Because of this, we
present a deterministic algorithm to construct a Solving Sequence for an arbitrary set of
solvable mazes. The same algorithm already exists as the solution to similarly formulated
riddles from [XKCa], [Puz], and other sources.

More formally described we now show the following: for any finite set of solvable mazes
M, there exists a sequence of moves s such that this sequence solves all mazes in M.
We give a proof in the form of an algorithm. The trick is to simply solve the mazes of

27

4 Theoretical Analysis

Algorithm 4.2 Find a Solving Sequence for a set of mazes M
Input: M = set of mazes we want to solve
Output: ssol = Solving Sequence for M

1: s = empty sequence
2: while M ≠ ∅ do
3: M = arbitrary element of M
4: M = M \ {M}
5:

6: pos = position in M after executing s

7: s′ = shortest path from pos to the goal field of M

8: s = s · s′

9: end while
10: return s

M in order. That means, we solve the first maze, then execute the Solving Sequence in
the second maze and append moves to create a Solving Sequence for the second maze,
then execute this sequence in the third maze, and so on. Note, we always append to the
sequence. This preserves the Solving Sequence property. Therefore, by sweeping over
the mazes in the set and solving them like that, we are guaranteed to have a Solving
Sequence in the end. For pseudocode of the just described algorithm see Algorithm
4.2.

Let us apply the presented algorithm to a small example, which is shown in Figure 4.3.
There, we solve four mazes of size 3 × 3 in order from left to right.

In Figure 4.4 three mazes are depicted. When constructing a Solving Sequence for those
mazes using Algorithm 4.2, processing the mazes from left to right as depicted in the
figure, we get the Solving Sequence rrdrddurrrdulllddrdrr with length 21. The shortest
Solving Sequence for those mazes has length 12 (ddruurrdrddr). This example shows
that Solving Sequences constructed with Algorithm 4.2 might become much longer than
the shortest Solving Sequence. The best theoretical upper bound on the length of the
Solving Sequence produced by this algorithm is O(|M| · nm); for every maze in the set
we might have to traverse almost the whole maze when it is solved.

4.4 Solving Order

The proof of the existence of a Solving Sequence is constructive and contains an algo-
rithm to find such a sequence. As there are a lot of different solvable mazes for a certain
size, one might assume that there even always exists and ordering of the mazes such

28

4.4 Solving Order

Figure 4.3: An example of the execution of Algorithm 4.2. Every row represents one
pass through the while loop. The red-marked maze is the current M of the
loop. The trajectories of the newly assigned s (at the end of the loop) are
depicted in blue.

Figure 4.4: An example where the constructed Solving Sequence becomes very long
when using Algorithm 4.2. In blue we show the trajectories of the shortest
Solving Sequence and in red the trajectories of the sequence produced by
Algorithm 4.2. Steps that are made after visiting the goal field are not shown
due to clarity of the figure.

29

4 Theoretical Analysis

Figure 4.5: The two mazes used in the proof that there is not always an order of mazes
that induces a shortest Solving Sequence. The red trajectories result from
executing ddrr or drrd. The blue ones from executing drdr .

that solving them in this order results in a shortest Solving Sequence. Unfortunately, this
is not the case in general as we show in the remainder of this section.

Claim. There does not always exist a permutation Mπ(1), . . . , Mπ(k) of the mazes M =
M1, . . . , Mk such that solving in this order (i. e., according to Algorithm 4.2) results in a
shortest Solving Sequence.

Proof. We will show the claim for M = M3,3,. It follows that the claim holds for
SIMASOP as well as ASIMASOP. The high-level idea of the proof is to show that the prefix
of a shortest Solving Sequence is never a shortest Solving Sequence of a maze; and thus,
no maze in M3,3 can be Mπ(1) in the ordering.

All solvable mazes of size 3 × 3 only have shortest Solving Sequences s of the form:

|s| = 4, |s|d = 2, |s|r = 2

That means, they consist of exactly two down and two right moves. Therefore, all the
possible prefixes of a sequence calculated with Algorithm 4.2 are:

ddrr , drdr , drrd, rddr , rdrd, rrdd

For now, let us only consider the three sequences starting with a down move. When we
execute those sequences on the mazes depicted in Figure 4.5, we end up in the positions
marked red for ddrr and drrd, and those marked blue for drdr . The shortest Solving
Sequence starting at the red positions has length 9, while for the blue positions it has
length 8. This can easily be verified by a shortest path query or even by hand. Because

4 + 9 > 11 and 4 + 8 > 11

and 11 is the length of the shortest Solving Sequence for M3,3, which is shown in Chapter
6, none of those three sequences can be the start of a shortest Solving Sequence of M3,3.
By transposing the mazes in Figure 4.5 (remember, a maze is simply a matrix), we get
the same result for the sequences beginning with a right move.

30

4.5 Existence of a Perfect Solving Sequence

4.5 Existence of a Perfect Solving Sequence

Claim. There exists a Perfect Solving Sequence for every set of solvable mazes M.

To my knowledge, the following beautiful proof has first appeared in the XKCD forums
[XKCb], but has never been published in an academic context. We reworked the
proof and present it here with significantly more details and also make the calculated
results tighter. The proof leverages the probabilistic method. The probabilistic method
randomizes the creation of an object to then show that the probability of an object with
the desired property is larger than zero. This implies the existence of such an object
as there exists a series of decision in the random process with that outcome – else, the
probability wouldn’t be larger than zero.

Proof. Let the set of mazes M be given; all of the contained mazes M ∈ M have size
n × m, n, m ≥ 2. For n < 2 or m < 2 the claim is obviously true. The idea of the proof is
to create a random sequence according to the probabilities pu, pd, pl, pr which are the
probabilities of moving up, down, left, and right, respectively. This can be seen as a
simultaneous traversal of all the Markov mazes corresponding to the mazes in M, as
defined in Section 2.6. By choosing the length of the random sequence large enough, we
can show – because of convergence to the stationary distribution – that the probability
of being in the goal state in all mazes M ∈ M is larger than 3

4 . Thus, there exists a
sequence with the property of being a Perfect Solving Sequence. Let us now conduct the
proof in all formal details.

Let the probabilities be given as pu = pl = e, pd = pr = 1
2 − e, e =

(
1
4

)nm
≤ 1

4 . We claim
that the stationary distribution of every Markov maze corresponding to a maze in M is
given by

pi,j ∝
(1

2 − e

e

)i+j

where pi,j denotes the probability of being in position (i, j) if the field is reachable from
the starting field. Note that this distribution does not depend on any structure of the
maze except the reachability of the fields from the starting state – which is incorporated
in the proportionality.

Let us now show that this distribution is indeed the stationary distribution. We have
to show that it fulfills the two properties in Definition 2.6. The first one – that the
probabilities sum up to 1 – is trivially fulfilled due to the proportionality. For the second
property – that the probabilities stay the same after one step – we have to show two
things. Firstly, that it does not matter for the calculation that a field is next to a wall or a
free field. And secondly, that the sum evaluates to the claimed value.

31

4 Theoretical Analysis

1. The first equation shows that the sum’s value does not change if there is a wall
or a free field above or to the left. The second equation shows the same for fields
below and to the left.

pi,j−1 ·pr = pi−1,j ·pd =
(1

2 − e

e

)i+j−1

·
(1

2 − e
)

=
(1

2 − e

e

)i+j

·e = pi,j ·pu = pi,j ·pl

pi,j+1 ·pl = pi+1,j ·pu =
(1

2 − e

e

)i+j+1

·e =
(1

2 − e

e

)i+j

·
(1

2 − e
)

= pi,j ·pd = pi,j ·pr

2. Now show the stationarity. We use vi,j to denote the node of the Markov maze
corresponding to position (i, j) of the maze.

∑
vk,l∈V

pk,lp((vk,l, vi,j)) = 2
(1

2 − e

e

)i+j

· e + 2
(1

2 − e

e

)i+j

·
(1

2 − e
)

=
(

2e + 2
(1

2 − e
))

·
(1

2 − e

e

)i+j

= pi,j

From the fact that the probability of being in the goal state is not equal to 1, we can
derive that: in the stationary distribution the (non-proportional) probability to be in a
certain state that is not the goal state is less than 4e:(1

2 − e

e

)n+m

< 1 ⇔
(1

2 − e

e

)n+m−1

<
e

1
2 − e

and
e

1
2 − e

≤ e
1
2 − 1

4
≤ 4e

As shown in Section 2.6, every initial distribution will converge to the stationary distri-
bution. Thus, for a long enough sequence it holds for every maze that

P (not in goal state) < 4e(nm − 1) = 4
(1

4

)nm

(nm − 1)

where (nm − 1) is the maximal number of reachable fields other than the goal. The
equality results from plugging in e. It then follows with Boole’s inequality:

P (not all in goal state) ≤
∑

M∈M
4
(1

4

)nm

(nm − 1)

≤ 2nm−2 · 4
(1

4

)nm

(nm − 1)

=
(1

2

)nm

(nm − 1)

≤ 1
4

32

4.6 Lower Bounds

Figure 4.6: A zigzag maze with a long shortest Solving Sequence.

The second inequality holds as there are less than 2nm−2 solvable mazes of size n × m. It
follows that

P (all in goal state) = 1 − P (not all in goal state) ≥ 1 − 1
4 = 3

4 > 0

4.6 Lower Bounds

It seems surprisingly hard to find non-naive lower bounds for the length of the shortest
Solving Sequence for a given set of mazes M – also for Mn,m.

For ASIMASOP we can easily see that the length of Solving Sequences for smaller sizes
are lower bounds for the length of Solving Sequences for larger sizes, i. e. σ(n, m) <

σ(n + 1, m) and σ(n, m) < σ(n, m + 1). This holds as the smaller mazes are contained
as sub-mazes in the larger mazes and so already a subset of the larger mazes implies
this lower bound. The relation is strict as we have to take at least one additional step to
reach the new goal field.

Another rather naive lower bound is the length of the longest shortest path of a maze
in M. If M is individually given as in SIMASOP, this number depends on the specific
instance. However, if we consider ASIMASOP, then we can easily give a lower bound on
that number. By blocking the right fields we can always create a zigzag path as shortest
Solving Sequence which goes all to the bottom, two steps to the right, all to the top, two
steps to the right, and so on. The exact length of such a zigzag path is(

2
⌊

m − 1
4

⌋
+ 1

)
(n + 1) + ((m − 1 mod 4) − 2)

which can be verified easily; so, approximately nm
2 . See Figure 4.6 for an example of

such a zigzag maze.

33

4 Theoretical Analysis

Figure 4.7: Two example mazes that imply a lower bound of length 6 for the shortest
Solving Sequence of all solvable mazes of size 3 × 3.

n 1 2 3 4 5 6 7
#solvable mazes 1 3 51 3828 1225194 1636193228 9009490924794

Table 4.1: Number of solvable mazes of size n × n according to [The].

A set of mazes M1 for which the shortest Solving Sequence s is known can also be
used to give a lower bound on the length of the shortest Solving Sequence for a set of
mazes M2 with M1 ⊆ M2. This is because additional mazes will only make the Solving
Sequence longer as more constraints are added to the minimization problem.

Consider, for example, the two mazes in Figure 4.7. Their shortest Solving Sequence
has length 6 (one of the shortest Solving Sequences is rrddrr). This implies that any All
Solving Sequence for size 3 × 3 mazes has at least length 6.

4.7 Number of Solvable Mazes

We calculate the number of solvable mazes by enumerating them. Because the number
of solvable mazes of size n × n grows exponentially in n, as shown in Section 2.5, we
have to enumerate mazes implicitly for our method to work on larger n. This, however,
does not seem to be an easy task. We will describe two algorithms in the remainder
of this section: an algorithm that calculates the exact number of solvable mazes, and
an algorithm that calculates a lower bound for this number. An algorithm calculating
a lower bound is necessary because of the exponential runtime of the algorithm that
calculates the exact number of mazes. The exact number of solvable mazes has already
been calculated before and is part of the On-Line Encyclopedia of Integer Sequences
[The]. See Figure 4.1 for the sequence of the number of solvable n × n mazes. While
the numbers are listed there, no explicit formula or algorithm to calculate them is given
and they are also only calculated until n = 7. This suggests that the author did not find
an efficient algorithm. We found an algorithm of similar efficiency and could verify the
number of solvable mazes until 6×6 with a python implementation. A more efficient C++
implementation would have most probably allowed for the calculation of the number of
solvable mazes up to size 7 × 7.

34

4.7 Number of Solvable Mazes

Exact Number of Solvable Mazes

To calculate the exact number of solvable mazes we enumerate the mazes via their
solving right-hand path. The solving right-hand path of a maze is the path we get when
solving the maze while always keeping a wall at our right-hand side, starting in the
upper-left corner. This technique is guaranteed to produce a Solving Sequence for a
maze as long as the maze is solvable. In Figure 4.8 the blue trajectories are all solving
right-hand paths.

Note that every solvable maze has exactly one solving right-hand path. However, some
solvable mazes have the same solving right-hand path. So, instead of enumerating the
mazes themselves, we enumerate all the possible solving right-hand paths. Then we
calculate the number of solvable mazes for every solving right-hand path and add them
up. This obviously calculates the correct number of solvable mazes as we consider every
solvable maze exactly once.

We still need to specify the details of the algorithm. We calculate all possible solving
right-hand paths using a simple tree search. Every node of the tree contains a maze and
a position in this maze. The root of the tree contains an empty maze with the current
position being the start field. For every possible move in the maze of the parent node a
child node node is created. A child is pruned if the move contradicts a solving right-hand
path. Note that by performing the moves, we might have to set fields to be blocked
or free for the right-hand path property to be preserved. A solving right-hand path is
found when the goal field is reached. How do we now calculate the number of mazes
for a given solving right-hand path? This is done by counting the fields in the maze
which can still be arbitrarily set. There are two types of fields which cannot be arbitrarily
set: the fields on the solving right-hand path (they have to be free) and the fields that
define the solving right-hand path (they have to be blocked). A blocked field is said
to define a solving right-hand path if the solving right-hand path changes if the field
is not blocked. Let the number of fields that can still be arbitrarily set be a. Then the
number of different mazes with a certain solving right-hand path is 2a, i. e. all possible
assignments of those fields. See Figure 4.8 for an example.

Lower Bound on the Number of Solvable Mazes

To compute a lower bound on the number of solvable mazes, we restrict ourselves
to specifically shaped solving right-hand paths: those only containing right and down
movements. Additionally, we assume all the fields below the path to be blocked, not
only those that define the solving right-hand path. This means, we partition the maze
into three components: a path, blocked fields which are below the path, and fields above

35

4 Theoretical Analysis

Figure 4.8: All the possible right hand paths in a 3 × 3 maze. The red-marked fields can
be set arbitrarily as they do not change the right hand path and are not on
it either. Thus, the number of solvable 3 × 3 mazes is: 22 + 22 + 22 + 22 +
21 + 22 + 23 + 20 + 22 + 24 = 51. Every of the above mazes contributes one
summand.

the path that can be arbitrarily set. We then calculate the lower bound in the same
manner as we calculate the exact number of solvable mazes, i. e., by summing up all the
possibilities.

Let zs be the number of mazes that have s fields that can be arbitrarily set. If we can
compute zs efficiently, then we can calculate the lower bound via:

(n−1)(m−1)∑
s=0

zs · 2s

But how do we calculate zs efficiently? This is done using the following recursive
function (which is similar to the recursive function of the partition numbers):

S(t, r, k) =

0, if (t > 0 and r = 0) or t < 0 or r < 0 or k < 0
1, if t = 0 and r = 0∑r

i=0 S(t − r, i, k − 1), otherwise

with t, r, k ∈ Z. We claim that

zs = S(s + n − 1, n − 1, m)

36

4.8 Upper Bounds

In the remainder of this section we argue why this is the case. The interpretation of S

is:

S(t, r, k) =
∣∣∣∣∣
{

{s1, . . . , sr}
∣∣∣∣∣

r∑
i=1

si = t and ∀i ∈ {1, . . . , r} : 0 < si ≤ k

}∣∣∣∣∣
That means, it is the number of (unordered) sums equaling t with r summands that are
greater than zero and less than or equal to k each. The interpretation of the summands
is the number of fields in the respective rows that can be arbitrarily assigned. The
number of fields that can be arbitrarily assigned for row i is always less than or equal
to the same number for the rows 1, . . . , i − 1. This is due to the step-like structure of
the path that uses only down and right moves. From this, it follows that we only need
to consider unordered sums as the summands can be interpreted as being "implicitly
sorted". Now, consider again the definition of zs. We have n − 1 summands as we have
n − 1 rows that can contain fields that can be arbitrarily assigned (all but the last row).
One would assume k to be m instead of m − 1 as the maximal number of fields that can
be arbitrarily assigned is m − 1 per row. However, a row might contain no field that can
be arbitrarily assigned, but we only considered summands greater than zero. Therefore,
we want to decrease every summand by one such that we can also have zeros in our sum.
Consequently, we have to increase the maximal summand (i. e., k) by one. Using this
interpretation, we are now also searching for a larger sum as we (implicitly) decreased
every summand by one; thus, we have to add n − 1 (i. e., the number of summands) to
the sum (i. e., t). It follows the definition of zs.

4.8 Upper Bounds

An upper bound on the length of the Solving Sequence of SIMASOP is already given in
Section 4.3:

O(|M| · nm)

This upper bound can be improved for ASIMASOP. In the remainder of this section
we prove a polynomial upper bound on the length of the shortest Solving Sequence of
ASIMASOP.

Claim. For every maze size n × m there exists a sequence of length O((nm)3) that is a
Solving Sequence of ASIMASOP.

37

4 Theoretical Analysis

To prove this we modify a proof that gives an upper bound on the length of a Universal
Traversal Sequence. The relationship between ASIMASOP and UTS has already been
explained in Section 3.3. The proof that we will use as a basis is Theorem 8 from
[AKL+79].

Before we conduct the main proof, we state an important result about random walks that
is needed for the proof. The proof of this claim is included in [AKL+79] as Theorem 4
and in [MR10] as Theorem 6.8. We therefore omit it here.

Claim. Let G = (V, E), |V | = n, |E| = m be an undirected, connected graph and let T (v, ·)
be the cover time of G starting from v ∈ V , i. e., the expected number of edge traversals by a
random walk starting in v until all vertices in G have been visited. Then T (v, ·) ≤ 2e(n − 1).

Now we can begin with the proof of the upper bound.

Proof. Let s be a random sequence with |s| = 2 ·4nm(nm−1)(nm+1) ∈ O ((nm)3). The
moves of s – which can be interpreted as random variables – are chosen independently
and identically distributed with all moves being equally likely. Furthermore, let XM , M ∈
Mn,m be a random variable such that:

XM =

0, if s is a Solving Sequence of M

1, otherwise

Additionally, let Y be defined as:

Y =
∑

M∈Mn,m

XM

The sequence s is a Solving Sequence for Mn,m iff Y = 0. Therefore, if we can show
that E[Y] < 1, it follows that there exists an assignment of the random variables XM

such that Y = 0. Which in turn means that there exists a Solving Sequence of length |s|.
In the remainder of this proof we focus on showing that indeed E[Y] < 1.

Due to the linearity of the expected value we have:

E[Y] = E

 ∑
M∈Mn,m

XM

 =
∑

M∈Mn,m

E[XM]

We claim that E[XM] ≤ 2−(nm+1). With |Mn,m| ≤ 2nm it follows that

E[Y] =
∑

M∈Mn,m

E[XM] ≤ 2nm · 2−(nm+1) = 2nm−nm−1 = 2−1 < 1

Therefore, it only remains to show that indeed E[XM] ≤ 2−(nm+1). For this, let us
consider s as a concatenation of nm + 1 random sequences s1, . . . , snm+1, each being of

38

4.8 Upper Bounds

length 2 ·4nm(nm−1). Let Z be a random variable that equals the number of transitions
we need to visit all reachable fields in the maze, starting from an arbitrary field, when
executing a random sequence. Using the second claim in this section, we know that:

E[Z] ≤ 2 · 2nm(nm − 1)

With Markov’s inequality we then get:

P (Z ≥ 2 · 4nm(nm − 1)) ≤ E[Z]
2 · 4nm(nm − 1) ≤ 2 · 2nm(nm − 1)

2 · 4nm(nm − 1) ≤ 1
2

In other words, the probability that during the execution of si, 1 ≤ i ≤ nm + 1 we do
not visit the goal field – starting on an arbitrary field – is at most 1

2 . Therefore, the
probability that we do not visit the goal field when executing s = s1 . . . snm+1 is:

P (XM = 1) ≤
(1

2

)nm+1
= 2−(nm+1)

By plugging in the definition of the expected value we get:

E[XM] = 0 · P (XM = 0) + 1 · P (XM = 1) = P (XM = 1) ≤ 2−(nm+1)

This result also applies to SIMASOP. Even if M contains mazes of different sizes, we
can apply the proof using the size n × m of the maze in M that maximizes n · m. The
number of mazes in such a set is ≤ (nm)2 · 2nm. Using those values in the proof results
in a Solving Sequence that has a length which is still in O((nm)3).

39

5 Practical Algorithms

In this chapter we present different algorithms for solving the problems we defined
earlier. The algorithms presented in the first two section are mainly used as building
blocks for the algorithms presented in later sections. In those later sections we focus on
algorithms for SIMASOP, ASIMASOP, and lower bounds.

5.1 Shortest Path Algorithms on Mazes

Finding a shortest Solving Sequence of a grid maze is a problem that has been thoroughly
researched. It is a shortest path problem on a graph where state of the art techniques can
handle large numbers of nodes [Sto13] [HKRS97]. However, finding a shortest Solving
Sequence for a large set of grid mazes is a problem that seems to be significantly harder.
The state space for this problem is exponential in the number of mazes. Thus, even for a
small number of mazes the state space is normally too large to fit into RAM. It follows
that we cannot store the distance to every state explicitly and especially exploring the
whole state space is probably infeasible.

In the remainder of this section we have a look at different algorithms that find a shortest
Solving Sequence on a set of mazes. As this problem seems difficult for a large number
of mazes, we also present an approximation algorithm that is faster but might not return
an optimal result.

Brute Force1

The naive way to calculate a shortest Solving Sequence is to try for every possible
sequence, in ascending order of their length, if it is a Solving Sequence for the given
set of mazes. The first Solving Sequence we find is also a shortest Solving Sequence

1Not to be confused with Brute Force by The Algorithm: https://youtu.be/CDS9gmdHtB8.

41

https://youtu.be/CDS9gmdHtB8

5 Practical Algorithms

because of the order in which we checked them. You might have already guessed it; the
runtime is huge: it is in

O
(
4σ(M) · |M|

)
where σ(M) is the length of the shortest Solving Sequence of M. We have 4 different
moves to choose from for all sequences up to the length of σ(M), and for every sequence
we have to check if it solves all the mazes in M. Note that if M is not explicitly given as
in ASIMASOP and the implicitly used M is too large to compute explicitly, we have to use
some algorithm to find an unsolved maze. Obviously, this approach is computationally
infeasible already for short shortest Solving Sequences and a small set of mazes.

Dijkstra’s Algorithm

Using Dijkstra’s algorithm [Dij59] to find a shortest Solving Sequence is a little less
naive. Instead of just trying out every possible sequence, Dijkstra’s algorithm prunes all
sequences with a prefix that is not a shortest sequence to the resulting target state. For
example, let us consider the sequence s = u (i. e., one single up move). The node in the
search tree of Dijkstra’s algorithm corresponding to s will be pruned as we are still in
the starting state (of all mazes) after executing s. Because there is a trivial sequence
of length 0 that leads to the starting state, s is not a shortest sequence. This, on the
other hand, means that Dijkstra’s algorithm will consider no sequence s′ = u . . . , i. e.,
one starting with an up move, as it cannot be a shortest Solving Sequence. The runtime
of Dijkstra’s algorithm on a set of mazes M of size n × m is in

O
(
(nm)|M| · |M| log(nm)

)

A∗

The A∗ algorithm [HNR68] adds a goal-directed component to Dijkstra’s algorithm.
While this might2 help in practice, it does not improve the theoretical worst-case runtime.
The goal direction results from the usage of a heuristic that estimates the distance to the
goal. We use the longest path of all mazes to the goal state as heuristic. This heuristic
is also suggested on [Stac] but without arguing why it is correct. For A∗ to be correct
(in the version of A∗ where every node is at most inserted once into the priority queue),

2Depending on the graph, metric, and heuristic the A∗ algorithm might even be slower than Dijkstra’s
algorithm in practice (e. g., on road networks with travel time as metric and euclidean distance as
heuristic [GH05]).

42

5.2 Algorithms to Find Unsolved Mazes

the heuristic has to be consistent. A heuristic h is consistent iff h(v) ≤ c(v, w) + h(w)
and h(goal state) = 0, where c is the cost function for the transitions. These conditions
imply that we never overestimate the distance to a certain state, which in turn means
that we never settle the distance of a state twice. Why is the heuristic we use consistent?
From the intuition of never overestimating the distance to a state, it is directly clear that
our heuristic is consistent. Let us check the formal conditions anyway. If we are in the
goal state, then the longest shortest path is 0, i. e., h(goal state) = 0. If c(v, w) = 0, we
stay in the same state (v = w) and the inequality holds. If c(v, w) = 1, we know that we
took one step and the heuristic can decrease at most by one. Thus, the inequality holds
again. As c(v, w) ∈ {0, 1}, it follows that our heuristic is consistent.

Greedy Lookahead Algorithm

As all algorithms we previously mentioned in this section have an infeasible runtime
already on a small set of mazes, we present another algorithm that only approximates
the shortest Solving Sequence. This algorithm greedily makes the best local decision
and therefore has a very small memory footprint. Still, to determine the best local
decision, we have to iterate over all the (unsolved) mazes. The states are evaluated by a
cost function c, which has as input the current position p in all mazes. A natural cost
function uses the shortest path distance to the goal of every single maze and penalizes
large distances to the goal. Additional to the cost function, we use a list of lookahead
sequences L from which we greedily choose the best one in every step, i. e., the one
that minimizes the cost function. We then append this sequence to the already created
sequence. The complete algorithm is shown in Algorithm 5.1. Note that the algorithm
highly depends on its parametrization. This is especially important because the algorithm
is in general not even guaranteed to terminate as we might get stuck in a local minimum.
However, we can easily detect if we are stuck in a local minimum. For this, we check
if the value of min_cost decreased in comparison to the last pass of the loop in line 3.
When this is the case we do not use the best sequence from L. Instead, we solve a
random maze from the set of mazes and append this sequence to s (instead of min_cost)
in line 14. This algorithm is also described on [Stad], but without a general lookahead
set and avoidance of infinite loops.

5.2 Algorithms to Find Unsolved Mazes

There are several reasons why we need algorithms that find unsolved mazes given a
sequence s. First, we can use those algorithms to check if s is a Solving Sequence.
That is obviously the case if we do not find any unsolved maze, and the algorithms we

43

5 Practical Algorithms

Algorithm 5.1 Heuristic algorithm for finding a short Solving Sequence
Input: c = cost function, L = lookahead sequences
Output: s = Solving Sequence

1: s = ϵ

2: p = starting position
3: while p is not the goal position do
4: min_seq = ϵ

5: min_cost = ∞
6: for s′ ∈ L do
7: p′ = step(p, s′)
8: if c(p′) < min_cost then
9: min_seq = s′

10: min_cost = c(p′)
11: end if
12: end for
13: p = step(p, min_seq)
14: s = s · min_seq
15: end while
16: return s

present indeed always finds an unsolved maze if one exists. Secondly, we can construct
a Solving Sequence using a routine that finds a yet unsolved maze – see 5.4 and 5.3 for
the details.

We only consider the problem of finding an unsolved maze for ASIMASOP, as for SIMASOP

the mazes are given in a set. For SIMASOP, we can then simply iterate over the mazes
and test if they are solved by s. This is naively done in O(|s| |M|).

If it is feasible to compute all mazes for ASIMASOP, then we can also use the naive way
of finding an unsolved maze there. Otherwise, we have to think of a more sophisticated
way. We present such an algorithm in the remainder of this section.

Recall that the input to the algorithm is a sequence s. The general idea is to perform a
depth first search, where the depth of the tree corresponds to the position in s (i. e., the
root node’s level corresponds to the empty sequence, the next level to s1, the next to
s1s2, e. t. c.). The children of a node are according to the following two cases: are we
blocked in this step or not. Thus, in every node we have a position and a maze that has
fields which are blocked, free or unknown. The maze of the root node has two free fields
– start and goal – and all the others are unknown. The position is (1, 1), i. e., the default
starting position. Note that often a child node will not be created because it contradicts
the maze of its parent or because it is not solvable. This is important as it prunes the

44

5.3 Exact Shortest Solving Sequence Algorithms

tree and therefore greatly reduces the runtime of the search. If now, for example, the
first move in s is a right move, we have two cases:

1. the field (1, 2) is free

2. the field (1, 2) is blocked

For the first case, we create a child node with position (1, 2) and a maze like the one
of the root node only with (1, 2) being free instead of unknown. For the second case,
we create a child node with position (1, 1) and a maze like the one of the root node
only with (1, 2) being blocked instead of unknown. As soon as we find a node on level
|s| (where the level of the root is 0), and none of its parents has the goal position as
position, we found a maze that is not solved by s. The unsolved maze is the maze of this
node where the unknown fields can be arbitrarily set.

In Algorithm 5.2 you can see the pseudocode.

Lines 1 to 13 are a standard depth-first search. The only modification being that we
cut branches when we reach the goal position (l. 6), and return an unsolved maze if
we found one (l. 7-9). In the procedure EXPAND(e) (l. 15-39) we push the children of e

to the stack. There, we handle the two cases if the move is executed (l. 21-25) or if it
is blocked (l. 27-38). Only if the neighboring field is yet unknown, both children are
created.

The correctness of the algorithm follows directly from its construction. We create all
mazes that might be traversed differently by the input sequence s. Thus, we find an
unsolved maze if and only if there exists one.

In Figure 5.1 you can see an example of the execution of Algorithm 5.2.

5.3 Exact Shortest Solving Sequence Algorithms

We show in Section 4.1 that SIMASOP is NP-complete. This unfortunately means that
we cannot hope for an efficient algorithm to find a shortest Solving Sequence for an
arbitrary set of mazes. While a search for such an algorithm for ASIMASOP has been
conducted, we also could not find an efficient algorithm in that case.

As finding a shortest Solving Sequence is a shortest path problem, we can directly use the
algorithms presented in Section 5.1. Those methods, however, quickly become infeasible
when the size or the number of mazes increases. The main issue with finding another
algorithm that computes the shortest Solving Sequence is to assure correctness of the
solution, i. e., how can we make sure that there is no unsolved maze left and, also, that

45

5 Practical Algorithms

Algorithm 5.2 Find an unsolved maze if one exists
Input: s = sequence for which we want to find an unsolved maze
Output: M = maze that is not solved by s. Or message that there is no unsolved maze.

1: Stack = ∅
2: first_element = (maze = initial_maze, pos = (1, 1))
3: Stack.push(first_element)
4: while Stack ̸= ∅ do
5: e = Stack.pop()
6: if e has not been expanded and e.pos ̸= (n, m) then
7: if depth of e = |s| then
8: return e.maze
9: end if

10: EXPAND(e)
11: end if
12: end while
13: return there is no unsolved maze
14:

15: procedure EXPAND(e)
16: M = e.maze
17: posold = e.pos
18: d = depth of e

19: posnew = stepM(posold , sd+1)
20:

21: if posnew ̸= posold ∨ posnew is unknown then
22: new_maze = M with posnew being free
23: new_element = (maze = new_maze, pos = posnew)
24: Stack.push(new_element)
25: end if
26:

27: if posnew = posold ∨ posnew is unknown then
28: if posnew is unknown then
29: new_maze = M with posnew being blocked
30: if new_maze is not solvable then
31: return
32: end if
33: else
34: new_maze = M

35: end if
36: new_element = (maze = new_maze, pos = posold)
37: Stack.push(new_element)
38: end if
39: end procedure

46

5.3 Exact Shortest Solving Sequence Algorithms

r r d r

Figure 5.1: This figure shows the tree that results from the execution of Algorithm 5.2
for 2 × 3 mazes and s = rrdr . There are two different types of children in
the tree. First, the ones connected with a red edge, which are those where
the move is blocked. Secondly, the children connected with a green edge
are the ones where the move is not blocked. The position is marked with a
red square. The blocked fields are the ones that have to be blocked. The
mandatory free fields are marked with blue color. The tree is constructed
by a depth first search where we first explore the "green children". In two
of the leaves we stop exploring because we found a solved maze; in three
of the leaves we stop because the maze is not solvable anymore; and in
the upper leaf we find an unsolved maze, which is then returned by the
algorithm.

47

5 Practical Algorithms

Algorithm 5.3 Calculates a shortest Solving Sequence
Input: Mall = set of mazes that should be solved
Output: s = shortest Solving Sequence for Mall

1: M = ∅
2: s = ϵ

3: while U = FIND_UNSOLVED_MAZE(s, Mall) do
4: M = M ∪ {U}
5: s = FIND_SHORTEST_SOLVING_SEQUENCE(M)
6: end while
7: return s

there is no shorter Solving Sequence? Those questions lead directly to the design of
Algorithm 5.3.

The main idea of Algorithm 5.3 is to iteratively calculate a shortest Solving Sequence
of a subset of all the mazes as long as there is an unsolved maze left. Note that this
formulation "answers" both of our questions: because we calculate a shortest Solving
Sequence of a subset of all mazes, we know it is minimal w. r. t. all mazes; and as we
continue as long as there is an unsolved maze left, we assure that the result is indeed
a Solving Sequence for all mazes. We can use the algorithms presented in Section 5.1
as the function FIND_SHORTEST_SOLVING_SEQUENCE, and we can use the algorithms
presented in Section 5.2 as the FIND_UNSOLVED_MAZE function.

Note that for the algorithm to be more efficient than a naive shortest path search, there
has to exist a small subset of mazes that captures the difficulty of solving the complete
set of mazes. In Chapter 6, where we conduct practical experiments, we show that this
assumption is true for ASIMASOP but might not be for small sets of randomly generated
mazes.

5.4 Approximate Shortest Solving Sequence Algorithms

In the last section we had a look on how to calculate a shortest Solving Sequence. Due to
the NP-completeness of SIMASOP, we cannot hope that this is always possible efficiently.
Naturally, we now present algorithms that approximate the shortest Solving Sequence.
Often it is much easier to calculate a minimal solution (locally optimal) than a minimum
solution (globally optimal). This is also the case for the two main problems of this
thesis. By just iterating over a Solving Sequence and deleting moves that don’t effect
the solving property, we can create a minimal Solving Sequence out of some Solving
Sequence. This method can be applied to any sequence that is a result of the following

48

5.4 Approximate Shortest Solving Sequence Algorithms

approximation algorithms. Also note that the length of the sequences are an upper
bound on the length of the shortest Solving Sequence. We now present four different
approximation algorithms.

Random Sequence

A completely naive way of finding a Solving Sequence is to create a long random
sequence and then check if it solves all mazes. As the length of a random sequence
increases, also the probability of it being a Solving Sequence increases; see Section 4.8.
By minimizing the sequence, we can also reduce its length after checking that it indeed
is a Solving Sequence. Even though one might think that this method does not work
well in practice, it interestingly does produce good results as we show in Chapter 6.

Solve in Order

In Section 4.3 we constructively prove that there always exists a Solving Sequence.
While we prove in Section 4.4 that there does not always exist an ordering of the
mazes such that the algorithm returns a shortest Solving Sequence, it still does return
a Solving Sequence. Therefore, we can simply use Algorithm 4.2 as an approximation
algorithm for the shortest Solving Sequence. For a detailed explanation of the algorithm,
see the corresponding section. By choosing different orderings, we can improve the
approximation in pratice. This method requires that it is feasible w. r. t. runtime to
iterate through all the mazes. That is, however, not necessary for the next algorithm we
present.

Iteratively Append to Sequence

In the just presented algorithm we solve the mazes in order. However, if we are not
interested in specifying the order in which the mazes are solved, we only need some
unsolved maze in every iteration. This idea directly leads to the formulation of Algorithm
5.4. In this algorithm we iteratively compute an unsolved maze and then append moves
to the already existing sequence to also make it a Solving Sequence for this maze. On
the one hand, always appending to a sequence most probably makes it longer than
necessary. On the other hand, by simply appending to the sequence, the only runtime
intensive subroutine of this algorithm is finding an unsolved maze.

49

5 Practical Algorithms

Algorithm 5.4 Approximate the shortest Solving Sequence
Input: M = set of mazes that should be solved
Output: s = Solving Sequence for M

1: s = ϵ

2: while U = FIND_UNSOLVED_MAZE(s, M) do
3: pos = position in U after executing s

4: s′ = shortest path from pos to the goal in U

5: s = s · s′

6: end while
7: return s

Use Greedy Lookahead in Algorithm 5.3

In the last section we presented algorithms that compute exact shortest Solv-
ing Sequences. The main algorithm, Algorithm 5.3, uses a function called
FIND_SHORTEST_SOLVING_SEQUENCE to compute a shortest Solving Sequence for a
subset of mazes. Instead of computing an exact shortest Solving Sequence with this
function, we can also just use an approximation, e. g., the Greedy Lookahead algorithm
presented in Section 5.1. This change should accelerate the algorithm significantly while
compromising the length of the returned Solving Sequence.

5.5 Lower Bound Algorithms

In the previous section we considered approximation algorithms for shortest Solving
Sequences. The length of the resulting sequences constitute an upper bound on the
length of the shortest Solving Sequence. In this section we have a look at lower bounds
on the length of the shortest Solving Sequence.

Using a Shortest Solving Sequence Algorithm

In most of the algorithms that compute a shortest Solving Sequence, we have intermedi-
ate results that can be used as a lower bound:

• Brute Force: As we iterate over all the sequences in increasing order, we can stop
at any point in the algorithm and know that the length of the current sequence is
a lower bound.

50

5.5 Lower Bound Algorithms

• Dijkstra’s Algorithm: Here we can, as well, stop at any point in the algorithm
and then the length of the sequence of the first element in the priority queue gives
us a lower bound.

• A∗: The argument regarding Dijkstra’s algorithm carries over to A∗. This is due to
the heuristic being consistent.

• Algorithm 5.3: The intermediate result of this algorithm is a set of mazes (a subset
of all mazes) and a corresponding shortest Solving Sequence. The shortest Solving
Sequence of all mazes has to be at least as long as those of arbitrary subsets of
mazes. Therefore, the length of the sequence of the intermediate result is a lower
bound.

Refined Algorithms

The algorithms that compute exact shortest Solving Sequences can be further refined to
suit the problem of computing a lower bound better. For example, instead of choosing
an arbitrary unsolved maze in Algorithm 5.3, we can always choose the maze that
maximizes the shortest Solving Sequence computed in line 5. This means, we try to
maximize the length of the shortest Solving Sequence of the mazes in M greedily.

Another way of choosing the unsolved maze in Algorithm 5.3 is by partitioning the
mazes, using an already existing Solving Sequence. For this, we take the sequence
and partition the mazes according to in which move of the sequence they are solved.
Then, we iteratively choose the worst case maze of the next partition (i. e., the one
that produces the longest Solving Sequence of M) and put it into M. The idea of this
algorithm is that the mazes of a partition are somewhat similar in structure, and that
including one of them in M represents the difficulty of solving the whole partition.
Unfortunately, this assumption does not seem to hold in practice.

51

6 Practical Analysis

In this chapter we test the algorithms presented in the previous chapter regarding their
runtime and quality of their results. The focus of our implementation is to compare the
different approaches and to get a rough idea which sizes of sets of mazes and sizes of
mazes are feasible to handle. Therefore, we did the implementation using python. This
allowed for a quick implementation of different algorithms. The obvious downside of
this choice is the bad runtime in comparison to low-level languages like C++. Some parts
were also implemented in C++. However, because of comparability, we only use python
for the practical analysis. Additionally, due to the combinatorial explosion that occurs
in (almost) all algorithms regarding this topic, an implementation with better runtimes
would not enable us to solve (significantly) larger instances using the same algorithms.
Also, note that practical algorithm engineering (i. e., minimizing the practical runtime of
an algorithm given in theory) is not the main focus of this thesis. All tests are conducted
on an Asus Zenbook UX303LN with an Intel Core i7-4510U CPU and 12GB of RAM
(SODIMM DDR3, Synchronous, 1600 MHz). No parallelization was used, even though
for several algorithms it would have been possible.

6.1 Shortest Path Algorithms on Mazes

In this section we compare the different algorithms that directly compute a shortest
path for a set of mazes. Among those algorithms are three that give an exact result
(brute force, Dijkstra’s algorithm, A∗) and one that only approximates the shortest
path (Algorithm 5.1, called the Greedy Lookahead algorithm). To put the results into
perspective, we also include Algorithm 4.2 (called Solve in Order) in our tests as it
can be seen as a very naive version of the Greedy Lookahead algorithm – where the
cost function c is constant and we therefore solve a random maze in every iteration
because of the avoidance of local minima. We compare the runtime of all algorithms as
well as the quality of the approximated results by the Greedy Lookahead algorithm. As
the set of lookahead sequences L used in the Greedy Lookahead algorithm, we use all
possible sequences of length 3 in our experiments. This choice is a compromise between
runtime and quality of the solution. If the lookahead is increased by one, the length of
the resulting sequence is reduced in most cases and thus also the number of steps the

53

6 Practical Analysis

algorithm has to take. However, the number of lookahead sequences we need to check
in each step quadruples and thus the runtime increases significantly. With additional
algorithm engineering by choosing a better set of lookahead sequences L, the overall
performance of the algorithm can certainly be further improved.

Comparison of Runtime

As the runtime of the brute force algorithm already explodes for small sizes of mazes
and number of mazes, we do not include it in the tests. We do not provide any data
because this behavior can already be derived from the theoretical runtime.

In the first test we want to see how the runtimes of the algorithms behave when we
increase the number of mazes in the set. For this we create 100 random sets containing
k mazes of size 4 × 4, and then measure the time a shortest path computation takes
for each algorithm on average. This is done from k = 1 to k = 10. You can see the
results in Figure 6.1; note that the y-axis uses a logarithmic scale. Clearly Dijkstra’s
algorithm has a much worse runtime than all the other algorithms. Interestingly, A∗ is
not much slower than the Greedy Lookahead algorithm. However, as already mentioned
in Section 5.1, the runtime of the Greedy Lookahead algorithm heavily depends on
the choice of parameters. Therefore, the performance of that algorithm might still be
improved significantly. The implementation of Algorithm 4.2 (i. e., the one that solves
the mazes one after another) easily outperforms all the others, but also produces the
longest Solving Sequences as we see later in this section.

In the second test we increase the size of the mazes instead of the number of mazes.
For this we create 100 random sets containing 3 mazes of size n × n. This is done from
n = 1 to n = 10. The results are shown in Figure 6.2; again we use a logarithmic scale
and the runtime is the average per set. The situation is very similar to the previous test.
Dijkstra’s algorithm is the slowest by far; A∗ and the Greedy Lookahead algorithm are
very similar w. r. t. runtime; and Algorithm 4.2 outperforms all the other algorithms
(again, with the drawback of producing a longer Solving Sequence).

Greedy Lookahead Sequence Lengths

We now test the quality (i. e., length) of the Solving Sequences that are produces by the
Greedy Lookahead algorithm. To put the length of the Solving Sequence into perspective,
we compare it with the length of the shortest Solving Sequence (computed using A∗)
and the naive way of creating a Solving Sequence using Algorithm 4.2.

54

6.2 Algorithms to Find Unsolved Mazes

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

10.00000

100.00000

 1 2 3 4 5 6 7 8 9 10

S
e
co

n
d

s

Number of mazes

Dijkstra
A*

Greedy Lookahead
Solve in Order

Figure 6.1: The runtime of the shortest
path algorithms when the num-
ber of mazes increases.

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

10.00000

100.00000

 1 2 3 4 5 6 7 8 9 10
S

e
co

n
d

s
n (Maze Size)

Dijkstra
A*

Greedy Lookahead
Solve in Order

Figure 6.2: The runtime of the shortest
path algorithms when the size
of the mazes increases.

In the third experiment of this section we want to see how the length of the Solving
Sequence behaves when increasing the number of mazes in the set. For this, we create
100 random sets containing k mazes of size 4 × 4, where k ranges from k = 1 to k = 15.
You can see the results in Figure 6.3. As expected, the length of the Solving Sequence
produced by the Greedy Lookahead algorithm is somewhere in between the length of
the sequence produced by the other two algorithms. The difference between the naive
way of creating a Solving Sequence and the Greedy Lookahead algorithm is significant
and therefore justifies its worse performance w. r. t. runtime.

The next test paints a similar picture. There we increase the size of the mazes instead of
the number of mazes. For this, we create 100 random sets containing 4 mazes of size
n × n and let n go from n = 1 to n = 10. The results are shown in Figure 6.4. As always,
we measure the runtime on average per set. Again, the performance w. r. t. quality of
the Greedy Lookahead algorithm is closer to A∗ than Algorithm 4.2.

6.2 Algorithms to Find Unsolved Mazes

In this section we analyze Algorithm 5.2 – the algorithm to find an unsolved maze of a
certain size given a sequence s. We call this algorithm the Unsolved Maze Finder (UMF)
in the following. A baseline is given by the naive way of finding an unsolved maze:

55

6 Practical Analysis

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

S
o
lv

in
g

 S
e
q

u
e
n

ce
 L

e
n

g
th

Number of mazes

A*
Greedy Lookahead

Solve in Order

Figure 6.3: Development of the Solving Se-
quence length produced by the
Greedy Lookahead algorithm
when the number of mazes in-
creases. The results of A∗ and
the naive method (Solve in Or-
der) are shown for compari-
son.

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

S
o
lv

in
g

 S
e
q

u
e
n

ce
 L

e
n

g
th

n (Maze Size)

A*
Greedy Lookahead

Solve in Order

Figure 6.4: Development of the Solving Se-
quence length produced by the
Greedy Lookahead algorithm
when the size of the mazes in-
creases. The results of A∗ and
the naive method (Solve in Or-
der) are shown for compari-
son.

iterate through the set of all solvable mazes of this size and check one after another if
they are solved by s. Note that all mazes of the specific size have to be created first. In
the experiments this time is not measured, but only the time to find the first unsolved
maze. However, as the mazes have to be created, the baseline algorithm becomes
infeasible quickly when increasing the size.

Naive vs. UMF

Let us first compare our more sophisticated algorithm with the baseline algorithm. For
this, we create random sequences of different lengths (from 1 to 49) and then measure
the time it takes to find an unsolved maze of size 4 × 4. For every length we perform this
test 1000 times and use the same sequences for both algorithms. The results are shown
in Figure 6.5. Clearly, UMF outperforms the naive method.

56

6.2 Algorithms to Find Unsolved Mazes

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 5 10 15 20 25 30 35 40 45 50

S
e
co

n
d

s

Sequence Length

Naive
UMF

Figure 6.5: Comparison of the performance of the naive maze finding algorithm with
the performance of UMF when the sequence length increases.

UMF

Let us now test which sizes and number of mazes UMF is capable of handling. First,
we want to see how UMF behaves when the length of the sequence (for which we
want to find an unsolved maze) is increased. We again create random sequences of
different lengths (from 1 to 199) and then measure the time it takes to find an unsolved
maze of size 10 × 10. For every length we perform this test 100 times. The results are
shown in Figure 6.6. The runtime appears to be growing linearly in the length of the
sequence. However, there are some spikes that can be explained by difficult instances,
i. e., sequences that are almost Solving Sequences and where it takes a long time to find
an unsolved maze.

In the second test of the sophisticated algorithm, we want to know how it behaves when
the size of the mazes is increasing. For this, we create 100 random sequences of length
250 and then measure the time it takes to find an unsolved maze of size n × n. We did
this from n = 1 to n = 19. You can see the results in Figure 6.7. How can the local
maximum at n = 5 be explained? It is probable that some of the random sequences
solve most of the mazes of size 5 × 5. Thus, finding an unsolved maze requires us to
explore a large part of the tree. After n = 5 the runtime declines again as the random
sequences solve much less mazes of those sizes. However, as n increases further the
runtime again increases – apparently in an almost linear fashion.

57

6 Practical Analysis

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 20 40 60 80 100 120 140 160 180 200

S
e
co

n
d

s

Sequence Length

UMF

Figure 6.6: The runtime of UMF when the
sequence length is increasing.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14 16 18 20

S
e
co

n
d

s

n (Maze Size)

UMF

Figure 6.7: The runtime of UMF when the
maze size is increasing.

n

m 1 2 3 4

1 (0) r (1) rr (2) rrr (3)
2 d (1) rdr (3) rrdrr (5) rrrdrrr (7)
3 dd (2) ddrdd (5) rdrrdllddrr (11) rrdrrrdlllddrddrr (17)
4 ddd (3) dddrddd (7) ddrdddruuurrdrrdd (17) –

Table 6.1: Shortest Solving Sequences calculated by A∗ for ASIMASOP with size n × m.
The length of the sequences is denoted in brackets.

6.3 Exact Shortest Solving Sequence Algorithms

In this section we test the performance and show the results of the exact shortest Solving
Sequence algorithms. First, we check what results we can obtain using A∗. As this has
already been done for SIMASOP in Section 6.1, we only consider using A∗ for ASIMASOP

in this section. In the second part of this section we conduct experiments regarding
the runtime of Algorithm 5.3 – called the Exact Solving Sequence algorithm (ESS)
subsequently – for SIMASOP as well as ASIMASOP. To put the runtime of ESS into
perspective we compare it with plain A∗ on the set of mazes.

58

6.3 Exact Shortest Solving Sequence Algorithms

n

m 1 2 3 4

1 0.000062 0.000125 0.000165 0.000213
2 0.000113 0.000462 0.001409 0.005914
3 0.000118 0.001167 0.091550 98.592423
4 0.000071 0.002280 99.169318 –

Table 6.2: Runtime (in seconds and real-time) of computing shortest Solving Sequences
with A∗ for ASIMASOP with size n × m.

n

m 1 2 3 4

1 0.000058 0.000296 0.000495 0.000652
2 0.000250 0.001684 0.003717 0.007201
3 0.000241 0.002443 0.032254 6.880254
4 0.000174 0.003242 3.221218 –

Table 6.3: Runtime (in seconds and real-time) of computing shortest Solving Sequences
with ESS for ASIMASOP with size n × m.

Shortest Path Algorithms

In Section 6.1 we test A∗ on a set of mazes, which resembles the SIMASOP setting. We
now want to test how A∗ performs in the ASIMASOP setting. For this we let A∗ run on
the set of mazes Mn,m for 1 ≤ n, m ≤ 4. Unfortunately, the runtime for n = m = 4 is
infeasible for our implementation; maybe even in general on desktop computers. You
can see the computed shortest Solving Sequences in Table 6.1 and the time it took to
compute them using A∗ in Table 6.2. Even though the algorithm is deterministic, we
executed it 3 times and took the average runtime to compensate for small noise. Note
the increase of the runtime by three orders of magnitude from the 3 × 3 to the 4 × 3
instance. The unusually low runtime for 4 × 1 (but not 1 × 4) is probably due to internal
python or platform mechanisms as it cannot be explained from a theoretical standpoint
or by our implementation.

ESS

Let us now analyze ESS. For the FIND_UNSOLVED_MAZE function we simply it-
erate over the set for SIMASOP but use Algorithm 5.2 for ASIMASOP. For the
FIND_SHORTEST_SOLVING_SEQUENCE function we use A∗ in both settings – SIMASOP as

59

6 Practical Analysis

well as ASIMASOP. First, we test the performance of ESS for the SIMASOP setting. As
a baseline we use the performance of A∗ on the same sets of mazes. For this test, we
choose 100 sets that contain k random mazes of size 4 × 4, with k going from k = 1
to k = 20. Then the average runtime for those 100 sets is computed. The results are
shown in Figure 6.8. Interestingly, ESS has the same runtime as A∗ in this setting. This
suggests that there does not exist a small subset of mazes that captures the difficulty of
solving the whole set. Thus, we still have to execute A∗ on the complete set of mazes
when using ESS.

Let us now test if there is an advantage of using ESS for ASIMASOP. For this, we let
the algorithm run on Mn,m for 1 ≤ n, m ≤ 4. Again, the runtime was infeasible1 for
4 × 4 and we therefore do not report it. The experiment was repeated 5 times (even
though the algorithm is deterministic) and then the runtime averaged. See Table 6.3
for the results. Compared with the entries of 3 × 4 and 4 × 3 in Table 6.2 there is a
clear advantage of using ESS as it is more than one order of magnitude faster. Another
interesting result is the asymmetry of the values for a × b and b × a. If a > b, then
consistently a better runtime is reported for a × b than b × a. This behavior results
from the asymmetry of our implementation of the A∗ algorithm. The down edge is
relaxed before the right edge. Therefore the computed shortest path in a maze might
not be symmetric to the computed shortest path of its transposed maze. Apparently, the
behavior of first exploring in the direction of the larger dimension is favorable for the
general runtime of ESS.

6.4 Approximate Shortest Solving Sequence Algorithms

We can see in the last sections that solving SIMASOP as well as ASIMASOP becomes
infeasible quickly as we increase the number of mazes or the size of the mazes. Because
of this, we now analyze the approximation algorithms that are presented in Section 5.4.
Those are (with abbreviations in brackets):

• Random Sequence with minimization (RS)

• Solve in Order (SO)

• Iteratively Append to Sequence (IAS)

1We let ESS run for several days on a server on the 4 × 4 instance and it did not terminate. However, we
believe it is possible to calculate a shortest Solving Sequence using ESS with significant additional
algorithm engineering on the implementation and the theoretical algorithm.

60

6.4 Approximate Shortest Solving Sequence Algorithms

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

10.00000

100.00000

 0 2 4 6 8 10 12 14 16 18 20

S
e
co

n
d

s

Number of mazes

A*
ESS

Figure 6.8: Comparison of the runtime of A∗ and ESS with an increasing number of
mazes.

• Use Greedy Lookahead algorithm as FIND_SHORTEST_SOLVING_SEQUENCE function
in the ESS algorithm (GL)

Note that SO and IAS produce the same results, as explained in Section 5.4. The
difference is that SO is faster for SIMASOP but infeasible for ASIMASOP (for larger
n, m), which in turn IAS is feasible for. Therefore, we use SO for the SIMASOP and
smaller ASIMASOP tests and IAS for all ASIMASOP tests. Furthermore, we used a random
sequence of length 250 for RS for all tests.

SIMASOP

In the first two experiments we want to test the behavior of RS, SO, and GL when the
number of mazes increases. For this, we create 100 sets of k random mazes of size 4 × 4,
where k ranges from k = 1 to k = 50. See Figure 6.9 for the average runtimes and
Figure 6.10 for the average sequence length. Those values are averaged over the 100
created sets. The measurements show a much better runtime for SO than for RS and
GL; the runtimes of the latter are in the same order of magnitude. However, while SO
has a good runtime, it is significantly worse w. r. t. the length of the Solving Sequence.
Again, RS’s and GL’s values are very similar.

61

6 Practical Analysis

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

10.00000

 0 5 10 15 20 25 30 35 40 45 50

S
e
co

n
d

s

Number of Mazes

RS
SO
GL

Figure 6.9: Runtime of the different al-
gorithms to compute an ap-
proximate shortest Solving Se-
quence for SIMASOP with in-
creasing number of mazes.

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35 40 45 50

S
e
q

u
e
n

ce
 L

e
n

g
th

Number of Mazes

RS
SO
GL

Figure 6.10: Length of the approximate
shortest Solving Sequence
of the different algorithms
for SIMASOP with increasing
number of mazes.

ASIMASOP

For the test of the algorithms on ASIMASOP, we compute the approximate shortest
Solving Sequence on n × n, 1 ≤ n ≤ 4. Due to the bad runtime of RS in this setting, we
only repeat the test 10 times and average the results. They are shown in Table 6.4 for the
runtime and in Table 6.5 for the sequence length. Note that RS always minimizes the
sequences while the other algorithms do not by default. To allow for a better comparison,
we give the times and sequence lengths including minimization in brackets. Additionally,
as there are only 3828 solvable mazes of size 4 × 4, we can also use SO for this instance
and the smaller instances. However, instead of just solving the mazes in a fixed order, we
randomly permute them for every run. This obviously might change the result. Though,
because of the similarity to IAS, no runtimes are reported. Also, we ran SO much more
often than 10 times to get better results. As (almost) no randomization is used in IAS
and GL, increasing the number of tests to get better results does not make sense for
those two algorithms.

Without minimization, clearly IAS is much faster than GL, which in turn is much faster
than RS. Considering the shortness of the computed Solving Sequences, the order
is exactly the opposite. So, unfortunately there is a trade-off between runtime and

62

6.4 Approximate Shortest Solving Sequence Algorithms

n

Alg
RS IAS GL

1 0.004778 0.000015 (0.000104) 0.000012 (0.000097)
2 0.083224 0.000152 (0.001332) 0.000383 (0.002099)
3 2.732247 0.003703 (0.164220) 0.018921 (0.129637)
4 170.701078 0.269189 (97.665786) 8.697402 (61.317300)

Table 6.4: Runtime (in seconds and real-time) of the different algorithms to compute
an approximate shortest Solving Sequence for ASIMASOP with size n × n. In
brackets we note the runtime including minimization of the sequence.

n

Alg
RS IAS GL SO

1 0.0 0 (0) 0.0 (0) 0 (0)
2 3.0 3 (3) 3.0 (3) 3 (3)
3 14.1 20 (17) 15.0 (14) 12 (11)
4 51.7 109 (53) 74.5 (53) 50 (29)
5 – 551 – –
6 – 3728 – –

Table 6.5: Approximate shortest Solving Sequence length of the different algorithms for
ASIMASOP with size n × n. In brackets we note the length of the minimized
sequence.

quality of the Solving Sequence. Although, GL has the best runtime with subsequent
minimization because of the initially computed short sequences which are minimized
faster. The length of the computed Solving Sequence with minimization is roughly the
same for all but SO. Because of the randomized approach and the good runtime, we
can compute much shorter sequences with this algorithm. Note, though, that for those
results we have to execute SO many times and then take the best result. The same holds
for SO without minimization. The sequence lengths for 5 × 5 and 6 × 6 are reported
without the length of a minimized sequence as the runtime of the minimization is too
high for those instances. Due to the long runtime they were computed on a server.
Even without minimization the runtime of GL is too high for the larger instances. See
Appendix B for the best Solving Sequences we found for 4 × 4, 5 × 5, and 6 × 6.

63

6 Practical Analysis

6.5 Lower Bound Algorithms

In this section we test the quality of the lower bound algorithms described in Section
5.5 for the ASIMASOP setting. We do not provide any runtimes as the main goal of the
lower bound algorithms is to find a large lower bound. We will compare the results of
four algorithms (abbreviations in brackets):

• A∗

• Algorithm 5.3 (ESS)

• A greedy version of Algorithm 5.3 (GESS)

• Partition and iteratively choose the best maze from a set (PIC)

Let us first describe how exactly we use each of the algorithms to produce a lower
bound. For A∗ we simply let it run on the set of all mazes. We cannot compute those for
larger n, m but it is still feasible for 4 × 4. Note that already for 4 × 4 the A∗ algorithm
does not finish in reasonable time. Therefore, instead of waiting for the final result,
we use intermediate results to get a lower bound. Those intermediate results are the
heuristic distances of the top elements of the priority queue as they never overestimate
the distance to the goal state.

We always calculate intermediate results when running the standard ESS algorithm.
Those are the current set of mazes and the corresponding shortest Solving Sequence.
This sequence is a lower bound for the set of all mazes. Thus, we simply execute ESS
and report the intermediate results during execution.

The GESS algorithm uses the structure of the ESS algorithm with one modification.
Instead of calculating an unsolved maze in every iteration, we create k random mazes
and choose the one that produces the longest shortest Solving Sequence with the mazes
already in the set M. The shortest Solving Sequence that is computed inside the loop
is then used as the lower bound. This algorithm is an alternative to the first algorithm
described in the Refined Algorithms part of Section 5.5. There, we choose the maze that
increases the length of the shortest Solving Sequence the most in every round – which
unfortunately has a huge runtime.

The PIC algorithm is already completely described at the end of Section 5.5. We use the
minimized Solving Sequence computed by SO for 4 × 4 as input for PIC.

In the following experiments we do not calculate lower bounds for n × n with 1 ≤ n ≤ 3
because we already know the shortest Solving Sequence for those sizes. See Table 6.6 for
the results of the lower bound computations for 4 ≤ n ≤ 6. Instead of using the machine
described at the beginning of this chapter, we used a server for those computations.
Especially the increased amount of RAM (∼ 386 GB) enabled us to run A∗ on larger sets

64

6.5 Lower Bound Algorithms

n

Alg
A∗ ESS GESS PIC u.b.

4 21 26 23 20 29
5 – 29 24 – 551
6 – 31 27 – 3728

Table 6.6: Lower bounds on the length of the shortest Solving Sequence computed by
the different algorithms for ASIMASOP with size n × n. In the upper bound
(u.b.) column we show the best upper bound (i. e., the length of the shortest
Solving Sequence) we found in the previous sections.

of mazes. Those are the best results that we could compute using a reasonable amount
of time. See Appendix B for the sets of mazes that induce the reported lower bounds of
ESS for 4 × 4, 5 × 5, and 6 × 6.

65

7 Conclusion

In this thesis we analyzed the problems of finding a shortest Solving Sequence for a set
of mazes (SIMASOP) and for the set of all solvable mazes of a certain size (ASIMASOP),
which is a special case of the first problem. Additionally, we were interested in enu-
merating the solvable mazes of a certain size or at least know their number. While one
might initially assume that those problems are easy to solve for small sizes, this does not
seem to be the case.

On the theoretical side we showed that there always exists a Solving Sequence and even
a Perfect Solving Sequence – where all mazes end up in the goal field at the end of
executing the sequence (as opposed to only visiting it). Additionally, we could prove that
SIMASOP is NP-complete by reduction from CNFSAT and that ASIMASOP is contained
in PSPACE by using a result concerning Universal Traversal Sequences. Furthermore,
we showed theoretical lower and upper bounds for shortest Solving Sequences. An
algorithm for computing the exact number of solvable mazes much faster than naively is
also given.

On the practical side, we first presented several algorithms and then evaluated their
performance regarding solution quality and runtime. Some algorithms we presented
were mainly introduced to use them as parts of more sophisticated algorithms in later
sections. Those are the algorithms for the computation of a shortest path of a small set
of mazes and the algorithm to find an unsolved maze of a certain size given a sequence.
These algorithms are then used in the algorithms that compute exact or approximate
shortest Solving Sequences for SIMASOP and ASIMASOP. Additionally, we presented
algorithms that compute a lower bound on the length of the shortest Solving Sequence
for both problems. Combined with the approximation algorithms, this can also be used
to find exact shortest Solving Sequences. In the practical analysis we first showed that
A∗ is superior to Dijkstra’s algorithm in this setting and surprisingly close to one of the
approximation algorithms we presented regarding runtime. We additionally showed the
clear advantage of using the sophisticated unsolved maze finding algorithm (UMF) in
comparison to using the naive way. Furthermore, a comparison of the runtime showed
that our main algorithm for finding a shortest Solving Sequence is much faster for
ASIMASOP while for SIMASOP on a small number of random mazes the performance
is similar to A∗. The best algorithm we found for approximating a shortest Solving

67

7 Conclusion

Sequence is the Solve in Order algorithm (SO) with subsequent minimization and a
random order. As it is randomized, we get different results and can then choose the
best one. Using this algorithm we found a Solving Sequence of length 29 for ASIMASOP

with size 4 × 4. However, the SO algorithm relies on the enumeration of the mazes.
For larger sizes (up to 6 × 6) the Iteratively Append to Sequence algorithm (IAS) can
be used. Finally, the practical analysis identifies the Exact Solving Sequence algorithm
(ESS) to be best suited to compute lower bounds for the length of Solving Sequences for
ASIMASOP. With this algorithm we computed a lower bound of 26 for ASIMASOP with
size 4 × 4.

There are still several problems to solve in future work. First, while we could calculate
a Solving Sequence of length 29 for ASIMASOP with size 4 × 4, we were only able to
show a lower bound of 26. Therefore, it still remains open what the exact length of
the shortest Solving Sequence is. A natural area of research for future work is thus the
search for better algorithms to compute shortest Solving Sequences as well as lower
bounds. On the theoretical side, we are still lacking a lower bound for the runtime
of ASIMASOP. As we know that ASIMASOP is in PSPACE, the natural questions are if
ASIMASOP is PSPACE-hard or if one can show that it is not in NP. Maybe the problems is
even much easier to solve and we just could not find such an algorithm. Another issue is
that, while we could compute instance based lower bounds on the length of the Solving
Sequence, our approximation algorithms lack a priori bounds. Our search for such an
algorithm was not successful. Finally, a more efficient algorithm to calculate the number
of solvable mazes of a certain size would be of interest or, alternatively, a proof of the
hardness of computing those numbers.

68

A Deutsche Zusammenfassung

Ein Grid Maze ist eine binäre Matrix deren 1er Felder wir betreten können während die
0er Felder blockiert sind. Es gibt vier verschiedene Züge in solch einem Grid Maze: hoch,
runter, links und rechts. Wir nennen eine solche Sequenz von Zügen eine Lösungssequenz,
wenn wir in der linken oberen Ecke beginnend die Sequenz auszuführen und die rechte
untere Ecke während der Ausführung besuchen. Eine solche Lösungssequenz für ein
einzelnes Grid Maze zu ermitteln wurde schon ausgiebig erforscht. Im Gegensatz dazu
wurde das Problem eine einzige Lösungssequenz zu finden, die alle Elemente einer
Menge von Grid Mazes löst, noch kaum betrachtet. Besonders die Formulierung dieses
Problems als Minimierungsproblem (finde eine kürzeste Lösungssequenz für eine Menge
von Grid Mazes) ist ein schwieriges Problem. Wir nennen dieses Minimierungsproblem
das Simultaneous Maze Solving Problem, kurz SIMASOP. Neben dieser allgemeinen
Formulierung betrachten wir auch einen Spezialfall davon, den wir All Simultaneous
Maze Solving Problem, kurz ASIMASOP, nennen. Dieses Problem ist definiert wie
folgt: Gegeben n und m, finde eine kürzeste Lösungssequenz für die Menge aller
lösbaren Grid Mazes der Größe n × m. In dieser Abschlussarbeit analysieren wir die
beiden Probleme theoretisch sowie praktisch. Neben anderen theoretischen Resultaten
wird bewiesen, dass SIMASOP NP-vollständig ist, dass ASIMASOP in PSPACE ist und
dass eine kubische obere Schranke für die Länge der kürzesten Lösungssequenz für
ASIMASOP existiert. An praktischen Ergebnissen werden Algorithmen zur Berechnung
der kürzesten oder approximiert kürzesten Lösungssequenz vorgestellt. Zusätzlich
präsentieren wir einen Algorithmus der zu einer Sequenz, welche keine Lösungssequenz
ist, ein ungelöstes Grid Maze findet, sowie verschiedene Algorithmen zur Berechnung
von unteren Schranken. Schlussendlich evaluieren wir alle vorgestellten Algorithmen
und vergleichen die Ergebnisse der verschiedenen Ansätze. Überraschenderweise ist
es bereits schwer für ASIMASOP mit der Größe 4 × 4 eine kürzeste Lösungssequenz
zu finden. Für diese Instanz können wir eine Lösungssequenz der Länge 29 mit einer
entsprechenden unteren Schranke von 26 berechnen.

69

B Solving Sequences and Lower Bound
Certificates

4 × 4

The shortest Solving Sequence we found for ASIMASOP with size 4 × 4 has length 29:

ddrddrdrurrluruurrdrrldrddrdd

In Figure B.1 you can see the set of mazes that induces a lower bound of 26 for ASIMASOP

with size 4 × 4.

5 × 5

The shortest Solving Sequence we found for ASIMASOP with size 5 × 5 has length 551:

ddddrrrrurrduurrdduuurrddduuuurrdddduuluurrdrdddduulluurrrdrddddulluururrdrddd
drddddlluuururrdrddddrddddlddrddrdddururrddddluururrdddurrddddullddrdrddurrdddll
uururrddrdddurrddddlddrlddrullldddrrdrlddrrdrurrdrllddrdruulldddrdrullldddrrdrululld
ddrrdrurrrduurrddrdluurrdrdrllllddrrrrddurrdduulllldddrrdrrulullldddrrdrrurrdrrldllddr
drruulldlddrdrrluulldddrdrrullldddrrdrrullulldddrrdrrlululldddrrdrrururrddrddrullllddrd
rrrllullddrdrrrlluulldddrdrrrurrdrrdlllddrrrlddrrrurrdllldddrrrdrruulllddlddrrrrdldlllddrrr
rllddrrrrluullddlddrrrrlullddlddrrrruururrddd

In Figure B.2 you can see the set of mazes that induces a lower bound of 29 for ASIMASOP

with size 5 × 5.

71

B Solving Sequences and Lower Bound Certificates

6 × 6

The shortest Solving Sequence we found for ASIMASOP with size 6 × 6 has length 3728:

dddddrrrrrurrduurrdduuurrddduuuurrdddduuuuurrddddduuuluurrdrddddduuulluurrrdr
ddddduuullluurrrrdrddddduullluururrrdrdddddrdddddullluuururrrdrdddddrdddddllluuu
ururrrdrdddddrdddddururrdrdddddulluuururrdrdddddlddrddduuluuurrddrddddduuluuur
rddrdddddrddddrdddlddrrurrdrddddurrdddddullluurrurrdrddddurrddddduurrddrdddddlll
uurururrdrddddurrddddduurrddrdddddlddrddduluuuurrdrdddddldlluuurrrrdrdddddlddll
uuuurrrrdrdddddldddlluuuururrrdrdddddrdddddldddrdddullddrdrdddulllddrrdrdddullluu
rruurrdrdddddullllddrrrdrdddrdddlluururrrdrddrdddllluururrrdrddrddulllllddrrrrdrdddu
rrdddduururrdrdddllddrrdrddlluluuurrdrrdrdduuuurrdrrdrdddlddrrdrddlddrrurrrdddllul
uuuurrddrrdrdduuuuurrddrrdrdddlldddrrurrrddduurrddrddddurrdddddllluurrurrrddduu
uuurrddrdddddlllddrrddrdluuuururrdddddlddrdllddrrddrdddluuurrddrddduulldddrdrduu
lllddrdrdrdulullddrdrdrdduullllddrrdrdrdululllddrrdrdrddlulluurruurrdrddddduulllllddrrr
drdrdulullllddrrrdrdrddllluuuuurrrdddrdrdduruurrdrdddddlllddrdrdrdrdllluuurruurrdrd
dddduulldlddrrdrddluluuurrddrrdrddlddrrddrduullllddrdrrdrdullullddrdrrdrdllullddrdrrd
rddlulllddrrdrrdrddurrdrldldddrdrlullllddddrrrrdrrurrdrululllddddrrrdrdruulllllddddrrrrd
rrurrdrulullllddddrrrrdrrurrdrlllldddrrrdrdrllldddrrrdrdrullulllddddrrrrdrrurrdrllullldddd
rrrrdrrurrdrulllullddddrrrrdrrurrdrlllullddddrrrrdrrurrdruuullddddrdrlllddddrrdrdrdruul
lllddddrrrdrdrurrddrdruuulllllddddrrrrdrrurrdrullldldddrrrdrululldldddrrrdrlldddrrrrdru
ulullddddrrdruluullddddrrdrlulllddddrrrdrdrurrdrululullddddrrrdrdrurrdrlulldldddrrrrdr
rurrdruullulldldddrrrrdrrurrdruullulllddddrrrrdrlululllddddrrrrdruluullllddddrrrrdrurrdr
urrdrulullullddddrrrrdrururrddurrddrduuurrdddrduuuurrddddrduluurrdrddrlluururrdrd
drllddrrdrrdurrddluuluurrdrddrdrurrrddlddrdrluuluuurrddrddrdrldlddrdrdluluuururrrdd
lddrdrrdrdrldlddrrdrlllllddrrrrrddlluuuururrrddlddrdrddlddrdrdluuullddddrdrrulullddddr
rdrrdrdrrllulllddddrrrdrrlullllddddrrrdrrluuullllddddrrrdrrluluullddddrrdrrulluullddddrr
drrlulllddddrrrdrrluululllddddrrrdrrurrdrrdllulullddddrrrdrrllulullddddrrrdrrullululldddd
rrrdrrllllldddrrrdrrurrdrrurrddrlddruuruurrddddrdurrdlddrrduuurrdrddruluurrdrddrruu
luluurrdrdrddddurrdddddrddduululluurrrdrdrddddurrdddddrdddulllddrddrrdlddrrdululu
uurrdrddrddddululluurrrurrddddduuulldldddrrdrlddrrdrluurrruuurrddddduuullllddrrddd
rrdrddrrdrurrduuuluurrdrdddddldldddrruuulllllddrrrdddrrdrluururrdddrrurrduuuluurrd
rddddduuuurrdddrdrrldlluurururrdrdddddurrdrdddddllllldddrrdrrrlulluururrdrrdddurrd
ddduurrdddddrdddlddrdddullddrddrdddlluuullddddrdrrrllllddddrrdrrrllululldddrrdrrrurr
drrrlluuulllddddrrdrrrlluluullddddrrdrrrlulluullddddrrdrrrllluullddddrrdrrruuurrruurrdd
ddduurrdddduurrddddurrdddrddullddrdrrddrdrdrddurrdddrdlddrdlulluuurrdrdrrddrduu
urrdddddrdulllllddrrddrrrluuulldlddrddrrrdrrllddrrdrduuurrddrrdrdlulluuuurrrdrdddrdd
ddurrdddddlddrdduurrdddddlddrdddrddddlddrdrddlllddrdrdrdrdullddrdrdduuurrdddddu
ulllddrdrdrdulullddrdrdrddrdlddrdllllddrrrrdrrrrurrdlluluurrdrrdrddlulluurrrdrdrddddur
rdddddrdddrduluullllddddrdrrrrluululllddddrdrrrrllluuullddddrdrrrruruulllddddrdrrrrllul
uuurrddrrdrduluuuurrdddrrdrdurrddrduulllullddddrdrrrrulllullddddrdrrrrlldddrrrdlddrr

72

ruurrdddrrrurrrdrlldllddrrrrlllllddrddrrrrurrdlldlddrrurrdululluuurrrdrddrddrddurrdddd
duurrdddddlddruuulldlllddrddrrrrluuuluurrdrddrrddurrddrdrddluluuluurrrdddrdrdduuul
uurrrdddrdrddlddrdllddddrdrdurrddulldddrddrluuluuurrdrddrrddlululuuurrrdddrdrddllu
uluuurrrdddrdrddurrddlldddrrddlllddrdrdrdrduuullddllddrrdrrllddrrdrrlddrrdrrdurrrrdlu
lldlddrrrrdluulldlddrrdrrurrurrdduulullddldddrrrrluuullddldddrrrrllulllddrdddrrrrurrrrd
uluulllddddrdrrrlluuuluurrrdddrdrddlddrrrrrullddlddrrrrrurrdrluuulldlddddrrrrurrdrrulu
ulldlddrrddrrdrurrddrrdrulldlllddrrrrrlddrrrrurrdrrlluulldldddrrrrrdrrrrlldllddrrrdrurrru
rrdduurrdddrruulldllddrrdrrllullddldddrrrrr

In Figure B.3 you can see the set of mazes that induces a lower bound of 31 for ASIMASOP

with size 6 × 6.

73

B Solving Sequences and Lower Bound Certificates

Figure B.1: Lower bound certificate for ASIMASOP with size 4 × 4. The shortest Solving
Sequence of this set of mazes is 26.

74

Figure B.2: Lower bound certificate for ASIMASOP with size 5 × 5. The shortest Solving
Sequence of this set of mazes is 29.

75

B Solving Sequences and Lower Bound Certificates

Figure B.3: Lower bound certificate for ASIMASOP with size 6 × 6. The shortest Solving
Sequence of this set of mazes is 31.

76

Bibliography

[AKL+79] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, C. Rackoff. “Random walks,
universal traversal sequences, and the complexity of maze problems.” In:
Foundations of Computer Science, 1979., 20th Annual Symposium on. Oct.
1979, pp. 218–223 (cit. on pp. 21, 22, 26, 27, 38).

[Dij59] E. Dijkstra. “A Note on Two Problems in Connexion with Graphs.” ger. In:
Numerische Mathematik 1 (1959), pp. 269–271. URL: http://eudml.org/
doc/131436 (cit. on p. 42).

[GH05] A. V. Goldberg, C. Harrelson. “Computing the shortest path: A search meets
graph theory.” In: Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms. Society for Industrial and Applied Mathematics.
2005, pp. 156–165 (cit. on p. 42).

[Hen64] F. C. Hennine. “Fault detecting experiments for sequential circuits.” In:
Switching Circuit Theory and Logical Design, 1964 Proceedings of the Fifth
Annual Symposium on. Nov. 1964, pp. 95–110 (cit. on p. 20).

[HKRS97] M. R. Henzinger, P. Klein, S. Rao, S. Subramanian. “Faster shortest-path
algorithms for planar graphs.” In: journal of computer and system sciences
55.1 (1997), pp. 3–23 (cit. on p. 41).

[HNR68] P. E. Hart, N. J. Nilsson, B. Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths.” In: IEEE Transactions on Systems
Science and Cybernetics 4.2 (July 1968), pp. 100–107 (cit. on p. 42).

[MR10] R. Motwani, P. Raghavan. Randomized algorithms. Chapman & Hall/CRC,
2010 (cit. on pp. 14, 16, 38).

[Puz] Puzzling Stack Exchange (users: Mike Earnest, xnor). Maze Solving Robot.
Original URL: http://puzzling.stackexchange.com/questions/18009/
maze - solving - robot. Snapshot URL: http : / / web . archive . org / web /
20160530205519/http://puzzling.stackexchange.com/questions/18009/
maze-solving-robot. (cit. on p. 27).

77

http://eudml.org/doc/131436
http://eudml.org/doc/131436
http://puzzling.stackexchange.com/questions/18009/maze-solving-robot
http://puzzling.stackexchange.com/questions/18009/maze-solving-robot
http://web.archive.org/web/20160530205519/http://puzzling.stackexchange.com/questions/18009/maze-solving-robot
http://web.archive.org/web/20160530205519/http://puzzling.stackexchange.com/questions/18009/maze-solving-robot
http://web.archive.org/web/20160530205519/http://puzzling.stackexchange.com/questions/18009/maze-solving-robot

Bibliography

[Sci] Science Alert (author: BEC CREW). The robots sent into Fukushima have
’died’. Original URL: http://www.sciencealert.com/the-robots-sent-into-
fukushima- have - died. Snapshot URL: http : //web .archive .org/web/
20160530211428/http://www.sciencealert.com/the-robots-sent- into-
fukushima-have-died. (cit. on p. 7).

[Staa] Stack Overflow (user: Olavi Mustanoja). Solve all 4×4 mazes simultaneously
with least moves. Original URL: http :// stackoverflow.com/questions/
26910401/solve-all-4x4-mazes-simultaneously-with-least-moves. Snapshot
URL: http://web.archive.org/web/20160530211403/http://stackoverflow.
com/questions/26910401/solve- all- 4x4-mazes- simultaneously-with-
least-moves. (cit. on p. 7).

[Stab] Stack Overflow (user: schnaader). Solve all 4 × 4 mazes simultaneously with
least moves. Original URL: http://stackoverflow.com/a/27231225. Snapshot
URL: http://web.archive.org/web/20160530211635/http://stackoverflow.
com/questions/26910401/solve- all- 4x4-mazes- simultaneously-with-
least-moves/27231225. (cit. on p. 7).

[Stac] Stack Overflow (user: templatetypedef). Solve all 4×4 mazes simultaneously
with least moves. Original URL: http://stackoverflow.com/a/26914767.
Snapshot URL: http://web.archive.org/web/20160530211649/http:
/ / stackoverflow. com / questions / 26910401 / solve - all - 4x4 - mazes -
simultaneously-with-least-moves/26914767. (cit. on p. 42).

[Stad] Stack Overflow (user: Vincent van der Weele). Solve all 4 × 4 mazes simul-
taneously with least moves. Original URL: http://stackoverflow.com/a/
26920984. Snapshot URL: http://web.archive.org/web/20160530211655/
http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-
simultaneously-with-least-moves/26920984. (cit. on p. 43).

[Sto13] S. Storandt. “Contraction hierarchies on grid graphs.” In: KI 2013: Advances
in Artificial Intelligence. Springer, 2013, pp. 236–247 (cit. on p. 41).

[The] The On-Line Encyclopedia of Integer Sequences (user: R. H. Hardin). Num-
ber of n × n binary arrays with path of adjacent 1’s from upper right corner
to lower left corner. Original URL: https://oeis.org/A069343. Snapshot
URL: http://web.archive.org/web/20160530211705/https://oeis.org/
A069343. (cit. on p. 34).

[XKCa] XKCD Forums (user: Lopsidation). Solve ALL of the Mazes [solutions]. Orig-
inal URL: http : / / forums . xkcd . com / viewtopic . php ? f = 3 & t = 99534.
Snapshot URL: http://web.archive.org/web/20160530211714/http:
//forums.xkcd.com/viewtopic.php?f=3&t=99534. (cit. on pp. 7, 27).

78

http://www.sciencealert.com/the-robots-sent-into-fukushima-have-died
http://www.sciencealert.com/the-robots-sent-into-fukushima-have-died
http://web.archive.org/web/20160530211428/http://www.sciencealert.com/the-robots-sent-into-fukushima-have-died
http://web.archive.org/web/20160530211428/http://www.sciencealert.com/the-robots-sent-into-fukushima-have-died
http://web.archive.org/web/20160530211428/http://www.sciencealert.com/the-robots-sent-into-fukushima-have-died
http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves
http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves
http://web.archive.org/web/20160530211403/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves
http://web.archive.org/web/20160530211403/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves
http://web.archive.org/web/20160530211403/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves
http://stackoverflow.com/a/27231225
http://web.archive.org/web/20160530211635/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves/27231225
http://web.archive.org/web/20160530211635/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves/27231225
http://web.archive.org/web/20160530211635/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves/27231225
http://stackoverflow.com/a/26914767
http://web.archive.org/web/20160530211649/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves/26914767
http://web.archive.org/web/20160530211649/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves/26914767
http://web.archive.org/web/20160530211649/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves/26914767
http://stackoverflow.com/a/26920984
http://stackoverflow.com/a/26920984
http://web.archive.org/web/20160530211655/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves/26920984
http://web.archive.org/web/20160530211655/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves/26920984
http://web.archive.org/web/20160530211655/http://stackoverflow.com/questions/26910401/solve-all-4x4-mazes-simultaneously-with-least-moves/26920984
https://oeis.org/A069343
http://web.archive.org/web/20160530211705/https://oeis.org/A069343
http://web.archive.org/web/20160530211705/https://oeis.org/A069343
http://forums.xkcd.com/viewtopic.php?f=3&t=99534
http://web.archive.org/web/20160530211714/http://forums.xkcd.com/viewtopic.php?f=3&t=99534
http://web.archive.org/web/20160530211714/http://forums.xkcd.com/viewtopic.php?f=3&t=99534

[XKCb] XKCD Forums (user: notzeb). Solve ALL of the Mazes [solutions]. Original
URL: http://forums.xkcd.com/viewtopic.php?f=3&t=99534#p3249295.
Snapshot URL: http://web.archive.org/web/20160530211714/http:
//forums.xkcd.com/viewtopic.php?f=3&t=99534. (cit. on p. 31).

All links were last followed on May 30, 2016.

http://forums.xkcd.com/viewtopic.php?f=3&t=99534#p3249295
http://web.archive.org/web/20160530211714/http://forums.xkcd.com/viewtopic.php?f=3&t=99534
http://web.archive.org/web/20160530211714/http://forums.xkcd.com/viewtopic.php?f=3&t=99534

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Basics
	2.1 Definitions
	2.2 Notation and Conventions
	2.3 The Simultaneous Maze Solving Problem
	2.4 The All Simultaneous Maze Solving Problem
	2.5 Counting Solvable Mazes
	2.6 Markov Chains

	3 Related Problems
	3.1 The Shortest Path Problem
	3.2 Synchronizing Sequence
	3.3 Universal Traversal Sequence

	4 Theoretical Analysis
	4.1 Simasop is NP-complete
	4.2 ASimasop PSPACE
	4.3 Existence of a Solving Sequence
	4.4 Solving Order
	4.5 Existence of a Perfect Solving Sequence
	4.6 Lower Bounds
	4.7 Number of Solvable Mazes
	4.8 Upper Bounds

	5 Practical Algorithms
	5.1 Shortest Path Algorithms on Mazes
	5.2 Algorithms to Find Unsolved Mazes
	5.3 Exact Shortest Solving Sequence Algorithms
	5.4 Approximate Shortest Solving Sequence Algorithms
	5.5 Lower Bound Algorithms

	6 Practical Analysis
	6.1 Shortest Path Algorithms on Mazes
	6.2 Algorithms to Find Unsolved Mazes
	6.3 Exact Shortest Solving Sequence Algorithms
	6.4 Approximate Shortest Solving Sequence Algorithms
	6.5 Lower Bound Algorithms

	7 Conclusion
	A Deutsche Zusammenfassung
	B Solving Sequences and Lower Bound Certificates
	Bibliography

