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Abstract

With the availability of affordable depth-camera-systems like the Microsoft Kinect, Depth
Imaging has seen a fast-growing number of applications in many different fields over
the last years. Such systems can however be based on different measurement principles
with widely differing parameters and hence are difficult to evaluate against a single
benchmark. While accuracy and precision of depth-camera-systems inherently vary
significantly with measuring distance and changing environments, and therefore impose
heavy constraints on real world applications, they even allow for automated quality as-
surance in controlled environments. Context aware assistive systems in manual assembly
environments push these boundaries by employing quality assurance in more open envi-
ronments, where distracting influences by the worker or the work-space environment
cannot be ruled out. The thesis concerns itself with the exploration and evaluation of dif-
ferent depth measuring approaches (e.g. Time of Flight, Structured Light, Stereo Vision)
for usage in semi-controlled assembly environments. The still underexplored effects of
material properties on measurements are experimentally evaluated and the resulting
limitations of each approach for usage in assembly environments are discussed.
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1 Introduction

Obtaining depth information for points in a 2D Image, also known as Depth Imaging,
is an increasingly important branch of Computer Vision, finding application in a vast
range of fields as various as geology, automation, interaction, robotics and microbiology.
Depth-camera-systems are able to capture depth images in a single shot, allowing to
measure whole objects and scenes in real-time.

(a) (b)

Figure 1.1: (a) Color image of a scene and (b) its corresponding depth image [Sze10]

First used mostly in scientific contexts and highly specialized applications, Depth Imag-
ing has become almost ubiquitous in recent years through the availability of compact
and affordable depth-camera-systems. Such systems can however be based on different
measurement principles with widely differing parameters and hence are difficult to
evaluate against a single benchmark. Due to the wide range of applications, require-
ments on depth-camera-systems can also be hugely different, depending on usage and
environment.
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1 Introduction

(a) (b)

Figure 1.2: (a) Workplace with assistive system (b) providing instructions to the worker
with in-situ projection [FBB+15]

1.1 Motivation

Accuracy and precision of depth-camera-systems inherently vary significantly with
measuring distance and changing environments, and therefore impose heavy constraints
on real world applications. On one hand Depth Imaging is used for quality assurance
and inspection in industrial manufacturing, where accurate measurements are very
important, but the measurement environment is usually strictly controlled to ensure
optimal conditions and avoid any disrupting factors. On the other hand Depth Imaging is
used in Robot Navigation and Interactive systems where accuracy is not the primary issue,
but instead largely different and uncontrolled environments have to be considered.

Recently Funk et al. introduced a context aware assistive system for manual assembly
environments [FS15]. The system consists of a projector and depth-camera-system
mounted above the workplace as shown in Figure 1.2(a). By comparing the actual depth
data to target states it can provide the worker automatically with the instructions for
the current working-step and give immediate feedback.

In order to reliably detect smaller parts or slight mistakes in the assembly, high accu-
racy and precision is required. While typical working environments however do not
necessarily provide optimal measurement conditions, they are still clearly constraint in
many aspects. Assistive systems in assembly environments can therefore provide a good
vantage point for pushing the boundaries of accurate depth measurement in open and
less controlled environments.
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1.2 Scenario

1.2 Scenario

To establish a working definition, the assembly scenario and its requirements on depth-
camera-systems can be narrowed down along five primary dimensions: measurement
area/volume, scene dynamic, environmental factors, material properties and system
placement.

Measurment volume – The area or volume to be covered can vary from whole outdoor
locations down to samples of microscopic size. While assembly workspaces can be of
larger roomsize, where the workers have to move around, here only workplaces for
assembling smaller parts are considered. So the volume is naturally restricted by the
workers’ arm lengths.

Scene dynamic – A scene can be completely static or it can change over time. Change
can again be differentiated into continuous change (motion) and spontaneous change,
that leaves time frames in which the scene can be considered static for measurements.
Assuming the workpieces can be placed within a working area during assembly, motion
can be excluded as a factor and the measurement time needs only be restricted in order
to keep the system’s response time acceptable.

Environmental factors – For outdoor applications systems have to cope with direct
sunlight, bigger temperature changes, rain and possibly other weather effects. Indoors
these factors are either not present or can be avoided. (By not puting a workspace at a
window with direct sunlight, using climate control, etc.) Still there are other factors to
consider, like indirect sunlight, artificial light sources, reflective surfaces, other active
sensors in proximity as well as room climate. It is assumed that avoidable environmental
factors are keept at a minimum for assembly workspaces and other factors are at least
ensured to lie within a specified range (as also required by law in some cases), so
that extreme cases do not have to be considered. Additionally assisitive systems might
themselves employ light sources (projectors) in order to provide in-situ instructions and
feedback to the worker.

Material properties – Another crucial factor are the material properties of the scenes
or objects to be measured, as some surface material can be more or less challenging
to measure depending on the used method. This is tightly related to the accuracy that
is aimed for. Individual and detailed material composition of objects becomes more
important, the higher the requirements for accuracy are. In the assembly scenario
the work-pieces and their material properties are usually well specified, but also very
diverse. The capability of measuring a wide range of surface material is therefore a key
requirement, especially when requiring millimeter accuracy as not unlikely in manual
assembly.
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1 Introduction

System placement – Last but not least are requirements concerning the possible place-
ment of depth-camera-systems, which also includes the question whether the sensor is
fixed to certain position or attached to a moving platform, which yields a whole different
class of applications. For the assembly scenario the placement should ideally not restrict
the worker in any way. In practice this results in a placement of at least a meter above
the workplace.

According to this categorization the target scenario can be roughly summed up as
following: Fixed Sensor placement above workplace with at least one meter distance
from assembly area. Accurate measurement of components made from many different
materials with about 1 millimeter tolerance. Measurement of scene possible in less than
a second in bright indoor environment without direct sunlight.

1.3 Objective / aims

One of the main challenges of the assembly scenario lies in the combination of greater
variety of possible materials with high accuracy requirements while providing less
optimal measurement conditions. Accuracy and precision of depth-camera-systems is
known to depend on material properties. Currently it is however still difficult to make
more concrete statements about limitations and capabilities of different systems.

This thesis concerns itself with the exploration and evaluation of different depth mea-
suring approaches (e.g. Time of Flight, Structured Light, Stereoscopy) for usage in
semi-controlled assembly environments. It therefore also aims to clarify prerequisites
and limitations of using depth-camera-systems for quality assurance in manual assembly
environments. The focus lies on the underexplored effects of material properties on
measurements, which are experimentally evaluated.
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1.4 Overview

1.4 Overview

The thesis is structured into seven chapters as follows:

Chapter 1 – Introduction: introduces Depth Imaging and describes the assembly sce-
nario providing the context for evaluation.

Chapter 2 – Background: provides a general overview of depth measuring methods
and theoretical background to current state of the art optical depth measurement
technologies.

Chapter 3 – Related work: investigates previous evaluations aiming at assessing the
capabilities and limitations of depth-camera-systems.

Chapter 4 – Current depth-camera-systems: describes the three depth-camera-systems
used for experimental evaluation in more detail and puts them into context with
other available systems on the market.

Chapter 5 – Experiments: reports setup and results of the conducted experimental
evaluations.

Chapter 6 – Discussion: discusses limitations of each depth measurement method on
the basis of the experimental results.

Chapter 7 – Conclusion: summarizes findings and presents further research opportu-
nities.
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2 Background

Given the requirements of the assembly scenario described in Section 1.2, it is clear that
only some depth measurement methods come into consideration. This chapter gives
a brief overview on depth measurement in general and then goes on to provide the
theoretical background for optical methods, which are investigated in this thesis.

2.1 Depth measurement

There are many different methods to determine the depth of objects. They can be
divided in contact based methods (which might even involve destroying the object in
question) and non-contact methods. Non-contact methods are either based on looking
at what is reflected from an object’s surface (reflective methods) or by looking at
what passes through it (transmissive methods). Though the later one requires using
x-rays and computer tomography, which is neither practical nor advisable in a working
environment with human interaction. This leaves methods based on the reflectance of
light, microwaves or ultrasound. While microwaves are suitable for measuring depth
of some types of objects, they easily pass through many different materials and are
therefore not suitable for measuring objects of a wide range of materials. Ultrasonic

Depth measurement

Contact Non-Contact

Reflective Transmissive

Computer 
Tomography

Microwave 
radar Sonar Optical

Figure 2.1: classification of depth measurement methods
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2 Background

waves on the other hand get reflected by most surfaces but are quite different from
electromagnetic waves and hard to use for accurate and precise measurements. They are
however interesting for helping in cases where optical measurements fail. This finally
leaves only optical methods, working either within the visible spectrum of light or close
to the lower end in the near infrared spectrum. The underlying basis for measurements
is therefore given by an object’s surface reflectance.

2.2 Surface reflectance

When light hits a surface it can be absorbed, transmitted or reflected. Reflective mea-
surement methods can only work with the portion of light that is reflected by the surface.
While absorbed light can be ignored, light that is transmitted may be reflected back to
the sensor from a different point causing disruption or false readings. When regarding
an opaque surface however only reflectance has to be considered. Generally the reflected
light can be scattered in all possible directions as shown in Figure 2.2(a). How exactly
the light is reflected depends on the surface’s microstructure and the wavelength of the
light. [NIK91]62 Computer Vision: Algorithms and Applications (September 3, 2010 draft)
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(a) (b)

Figure 2.15 (a) Light scatters when it hits a surface. (b) The bidirectional reflectance
distribution function (BRDF) f(✓i,�i, ✓r,�r) is parameterized by the angles that the inci-
dent, v̂i, and reflected, v̂r, light ray directions make with the local surface coordinate frame
(d̂x, d̂y, n̂).

2.2.2 Reflectance and shading

When light hits an object’s surface, it is scattered and reflected (Figure 2.15a). Many different
models have been developed to describe this interaction. In this section, we first describe the
most general form, the bidirectional reflectance distribution function, and then look at some
more specialized models, including the diffuse, specular, and Phong shading models. We also
discuss how these models can be used to compute the global illumination corresponding to a
scene.

The Bidirectional Reflectance Distribution Function (BRDF)

The most general model of light scattering is the bidirectional reflectance distribution func-
tion (BRDF).5 Relative to some local coordinate frame on the surface, the BRDF is a four-
dimensional function that describes how much of each wavelength arriving at an incident
direction v̂i is emitted in a reflected direction v̂r (Figure 2.15b). The function can be written
in terms of the angles of the incident and reflected directions relative to the surface frame as

fr(✓i,�i, ✓r,�r;�). (2.81)

The BRDF is reciprocal, i.e., because of the physics of light transport, you can interchange
the roles of v̂i and v̂r and still get the same answer (this is sometimes called Helmholtz
reciprocity).

5 Actually, even more general models of light transport exist, including some that model spatial variation along
the surface, sub-surface scattering, and atmospheric effects—see Section 12.7.1—(Dorsey, Rushmeier, and Sillion
2007; Weyrich, Lawrence, Lensch et al. 2008).

(a)

62 Computer Vision: Algorithms and Applications (September 3, 2010 draft)
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Figure 2.15 (a) Light scatters when it hits a surface. (b) The bidirectional reflectance
distribution function (BRDF) f(✓i,�i, ✓r,�r) is parameterized by the angles that the inci-
dent, v̂i, and reflected, v̂r, light ray directions make with the local surface coordinate frame
(d̂x, d̂y, n̂).

2.2.2 Reflectance and shading

When light hits an object’s surface, it is scattered and reflected (Figure 2.15a). Many different
models have been developed to describe this interaction. In this section, we first describe the
most general form, the bidirectional reflectance distribution function, and then look at some
more specialized models, including the diffuse, specular, and Phong shading models. We also
discuss how these models can be used to compute the global illumination corresponding to a
scene.

The Bidirectional Reflectance Distribution Function (BRDF)

The most general model of light scattering is the bidirectional reflectance distribution func-
tion (BRDF).5 Relative to some local coordinate frame on the surface, the BRDF is a four-
dimensional function that describes how much of each wavelength arriving at an incident
direction v̂i is emitted in a reflected direction v̂r (Figure 2.15b). The function can be written
in terms of the angles of the incident and reflected directions relative to the surface frame as

fr(✓i,�i, ✓r,�r;�). (2.81)

The BRDF is reciprocal, i.e., because of the physics of light transport, you can interchange
the roles of v̂i and v̂r and still get the same answer (this is sometimes called Helmholtz
reciprocity).

5 Actually, even more general models of light transport exist, including some that model spatial variation along
the surface, sub-surface scattering, and atmospheric effects—see Section 12.7.1—(Dorsey, Rushmeier, and Sillion
2007; Weyrich, Lawrence, Lensch et al. 2008).

(b)

Figure 2.2: (a) Light Scattering on a surface and (b) its parametrization via the bidirec-
tional reflectance function (BRDF) [Sze10]

In theory a surface’s reflectance for a specific wavelength λ can be fully described by its
bidirectional reflectance distribution function BRDFλ(v̂i, v̂r), which defines the ratio
of light getting reflected into direction v̂r when light is hitting the surface from direction
v̂i. The directions can be specified by two angles θ and φ relative to the surface’s normal
vector n̂ as shown in Figure 2.2(b): BRDFλ(θi, φi, θr, φr) If the surface has isotropic
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2.2 Surface reflectance

reflectance i.e. if rotating the surface along the normal does not change the reflection as
it is the case with many surfaces, only the differences between the horizontal angles φi

and φr matters and its BRDF can thus be defined as follows:

(2.1) BRDFisotropic,λ(θi, φi, θr, φr) = BRDFλ(θi, 0, θr, φr − φi)

This simplest version of the BRDF which assumes an opaque, isotropic and uniform
surface therefore still possesses three degrees of freedom. Physically the BRDF is only
restricted by conservation of energy (2.2), i.e. in sum there cannot be more light reflected
than incoming, and Helmholtz reciprocity (2.3), i.e. switching incoming and outgoing
light direction does not change the reflectance-ratio.

(2.2) ∀v̂i

∫
v̂r∈Ω

BRDFλ(v̂i, v̂r)cosθrdv̂r ≤ 1

(2.3) BRDFλ(v̂i, v̂r) = BRDFλ(v̂r, v̂i)

While the BRDF can be almost arbitrarily complex, which enables applications as
holography, most ordinary surfaces exhibit more regular reflectance. Thus there have
been a lot of efforts of modeling the BRDF of certain types of surfaces through simpler
formulas, especially for usage in computer graphics. There are empirical models mainly
just trying to fit obtained reflectance measurements as close as possible and theoretical
models that are solely based on physical parameters that (at least in theory) can be
measured independently. [War92]

From the perspective of reflective measurement methods the ideal case would be a
perfect matte surface (2.4), i.e. a surface which equally diffuses incoming light into all
directions (also known as lambertian surface), so that a sensor is able to pick up the
reflections from any angle.

(2.4) BRDFλ(v̂i, v̂r) = c > 0

The worst case would be of course a surface that does not reflect any light, either by
absorbing all light or by being translucent and letting all light pass through. The contrast
of surfaces which diffuse light into all directions are those that basically reflect incoming
light only in one direction like a perfect mirror, whose BRDF would be 1 for all cases
where vi is vr rotated by 180° around the surface normal n̂ and 0 for all other cases. In
that case the sensor would only be able to pick up reflections coming from one specific
direction and therefore render all methods discussed in this thesis inapplicable.
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2 Background

Figure 2.3: Specular and diffuse reflection

Most surfaces however exhibit both diffuse and (mirror-like) specular reflection in
various degrees and for some types of surfaces the BRDF can be well approximated1 for
example by using the Ward-model [War92] given two constants ρd and ρs, corresponding
with general diffuse respectively specular reflectance of the surface.

2.3 Passive Stereo Vision

A popular and well researched way of Depth Imaging is basically imitating human
binocular vision. Our two eyes give us two slightly different views of a scene, which
our brain can combine to create depth perception. Similarly in Computer Vision two
camera images can be combined to calculate the distance from the camera-system. All
this requires is picking up already present light reflected from external light sources.
Hence this method can be classified as passive.

In more general terms we are trying to determine the position of a point p in 3D space
given corresponding images from two (or more) cameras at known location. This is
known as the problem of triangulation, which is illustrated in Figure 2.4. There we
have two camera images with a correspondence in the points x0 and x1. Given the
position in the images we can obtain two lines along the direction from which the light
entered the cameras. The position of p can then be approximated by finding the point
that minimizes the distance to each of the lines.

The main challenge of Stereo Vision hence reduces to finding the correspondences in the
two given images. For this however it is very important that the two cameras have the
same response. The ideal case would be having two perfect identical cameras aligned on
a horizontal axis facing in the exact same direction. The depth value of a point identified
in both images is then directly correlated and inversely proportional to the horizontal
difference in the image coordinates.

1How well certain BRDF models fit measured data has been analyzed in [NDM05]
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2.3 Passive Stereo Vision
346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p

x1x0

R0

c0 c1
R1

v0 v1

d0 d1
q0

^^

q1

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays cj + dj v̂j .

which has a minimum at dj = v̂j · (p� cj). Hence,

qj = cj + (v̂j v̂
T
j )(p� cj) = cj + (p� cj)k, (7.2)

in the notation of Equation (2.29), and the squared distance between p and qj is

r2
j = k(I � v̂j v̂

T
j )(p� cj)k2 = k(p� cj)?k2. (7.3)

The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r2

j and finding the optimal value of p,
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An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
to minimize the residual in the measurement equations
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where (xj , yj) are the measured 2D feature locations and {p
(j)
00 . . . p

(j)
23 } are the known entries

in camera matrix P j (Sutherland 1974).
As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted

into a linear least squares problem by multiplying both sides of the denominator. Note that if

Figure 2.4: Stereo Triangulation [Sze10]

In reality optical lenses usually cause distortions in the image and no pair of cameras is
exactly identical. To compensate for this the cameras have to be calibrated. For example
by taking several images of a known checkerboard pattern from different distances
and angles. This also allows to determine the relative position and orientation of the
cameras to each other. The calibration information can then be used to rectify the
camera images so that both images are displaced only on the horizontal axis, even if the
cameras are not aligned horizontally and orientated differently. [LZ99] This limits the
search for correspondences only to one dimension of the image instead of searching in
two dimensions.

Finding correspondences in stereo images is however not a trivial task. Due to the
different view angles, the pixel values of a point on a surface can be quite different
between the images, depending on the scene lighting and surface reflectance. (As can
also be seen in Figure 2.5) It might therefore be necessary to compare larger regions of
the images in order to find correct matches.

Accordingly, there are plenty of different stereo correspondence algorithms with widely
varying computational complexity. They can be divided into local (window based) and
global algorithms. [SS01] While local algorithms only regard a limited region for the
calculation of each pixel’s disparity value, global algorithms determine a single disparity
value in dependence of (potentially) all other values. The best choice of algorithm
depends on scene assumptions and computational time constraints. This gives room for
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(b)

Figure 2.5: A pair of stereo images (a) before and (b) after rectification [LZ99]

optimization, but if the system should be able to process several frames within a second,
the possibilities are ultimately limited.

Though even with an optimal correspondence algorithm, there are principle limitations
of Passive Stereo Vision. First the scene has to be sufficiently lit for the camera to
pick up surface texture. If a surface however has no visible texture there is no way to
identify a certain point on that surface and find its location in the second camera image.
The same problem arises if too much light is reflected from glossy surfaces into the
camera causing over-saturation of the sensor resulting in the loss of texture information.
Additionally a point has to be visible to both cameras to determine its depth, which
may be impossible to achieve for all relevant points due to occlusion of one scene object
through another. Though this can in principle be overcome by adding additional cameras
where necessary.
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2.4 Active Stereo Vision

2.4 Active Stereo Vision

A simple solution to include surfaces with little or no visible texture into the measurement
consists in actively projecting a light pattern onto these surfaces as shown in Figure 2.6.
Since the pattern only serves to adding texture it can be optimized just for that purpose.
(Fernandez et al. propose a random greyscale pattern [FFS12]) The resolution of the
pattern should match the resolution of the stereo cameras. (A lower resolution pattern
reduces accuracy, a higher resolution pattern might be completely useless) Since the
projected pattern has to be clearly visible at different ranges, a projection technique
with high depth of field like laser projection is preferred.

Figure 2.6: Stereo images of a cup with added texture by a projected pattern

Instead of visible light, invisible near infrared (IR) light (typically at around 800nm
wavelength) can be used to employ Active Stereo Vision in unobtrusive interactive
systems. This has an additional advantage: indoor environments with artificial lighting
usually have little or no active IR light sources, which could disturb the pattern projection
or cause additional unintended specular reflections.

Additionally the active projection opens up the possibility of increasing accuracy by
taking multiple measurements while moving or changing the pattern. [USMF93] (At the
expense of a lower frame-rate and increased motion blur)

Adding a projector to the stereo cameras does however not only increase complexity and
costs but also require that points to be measured are both visible to the cameras as well
as illuminated by the projector. Using multiple systems is usually not simply possible
with active measurements methods, but since the projected pattern can be random,
an overlapping of patterns from multiple projectors is unlikely to cause disruption.
Therefore Active Stereo Vision setups can easily be scaled up by adding additional
systems, which is a noteworthy trait when considering active measurement methods.
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2.5 Structured Light

Instead of using a setup with two cameras (and possibly an additional projector) it is
also possible to measure depth with just one camera and a projector. Since in optical
systems the path of the light is always the same in both directions (helmholtz reciprocity),
the principle of triangulation as shown in Figure 2.4 still works as long as both light
paths d0 and d1 can be determined.

The paths can be calculated given the relative position and orientation of the camera
and the projector and their optical parameters, which can be obtained by a calibration
procedure similar to the calibration of stereo cameras [Tro95] If the light path for each
point on the projected image and on the recorded camera image is known, the only
problem remaining is to find out the corresponding projector image coordinate for a
point on the camera image.

The most simple way of doing this is by illuminating only a single pixel or line of the
projected image, which eliminates the correspondence problem by giving it only one
possible solution. But this requires taking a lot of images in succession if the depth of
the whole scene should be measured. To decrease the number of necessary images to be
taken, the coordinates can be encoded into the projected images.

There are many different encoding strategies, they can however be categorized by a
three important properties as illustrated in Figure 2.7.
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for the capture of dynamic scenes, since they require the projection of a single pat-
tern. They have the advantage to be potentially able to deal with occlusions as well
as with projective distortion, and the disadvantage to be extremely sensitive to color
or gray-level distortion due to scene color distribution, reflectivity properties and ex-
ternal illumination. Furthermore they are also very sensitive to projector and camera
noise and non-idealities. Examples of these approaches are [6, 7].
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a binary set), in order to create arbitrarily different code-words for each pixel. Such
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and gray-level distortion due to scene color distribution, reflectivity properties and
external illumination. Their major disadvantage is that they require the projection of
a time sequence of T patterns for a single depth measurement, hence their applica-
tion is not suited to dynamic scenes. Examples of time-multiplexing approaches are
the ones based on binary coding [8] and gray coding with phase-shifting [9].
The spatial-multiplexing techniques are the most interesting for the acquisition of
dynamic scenes since they require the projection of a single pattern, like direct cod-
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(c) spatial encoding

Figure 2.7: Different encoding possibilities [DZC12]

The first is the number of different color or intensity levels used. The higher the number
the more information can be encoded into a single image, but the harder it is to correctly
extract the coding from the camera image. Especially when measuring objects with
widely varying surface reflectance, different color or intensity levels can be hard to
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Figure 2.8: Binary coded structured light patterns [Tro95]

distinguish. In such cases binary encoding may be the only option to obtain robust
results.

Second is the number of successive images that have to be taken for one complete mea-
surement. In order to use multiple images camera and projector have to be synchronized,
which requires expensive hardware to work at high frame-rates. If a static pattern is
used, the frame-rate is only limited by the camera alone.

Third is the number of pixels used to encode one coordinate. Instead of using different
color levels, the range of encoded values can as well be increased by spatially combining
multiple neighboring pixels to encode a single value. This comes at the expense of
reduced accuracy, but allows for fast and robust measurements.

While all these properties can be arbitrarily combined in one encoding strategy, most
strategies use either temporal or spatial encoding but not both at once. A very common
approach is to use multiple binary coded stripe patterns like shown in Figure 2.8. The
different sized stripe patterns are slightly displaced so that the coordinate of a pixel
is encoded by its unique sequence of either being illuminated or dark in the series of
projected patterns. A more detailed investigation of different codification strategies can
be found in [SPB04].
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2.6 Time of Flight

In theory measuring distance by the time of flight principle is very simple: A light pulse
is emitted on a surface and gets reflected back to the sensor. The time between emitting
the pulse and receiving its reflection is measured and, since the speed of light is known,
directly yields the distance covered by the light.

In practice however it is both difficult to emit a very brief and bright enough light
pulse and to measure the exact time of arrival of its reflection on the sensor. Especially
when aiming to get measurements of high accuracy at close distances, it would require
expensive highly accurate equipment. The commonly used alternative is to illuminate
the scene with a continuously modulated light source and determine the time of flight
from the phase differences. Typically the intensity of the light source is modulated by a
sinusoidal wave function, this approach is hence often called continuous wave intensity
modulation (CWIM) in literature.

18 2 CW Matricial Time-of-Flight Range Cameras

2.1 CW ToF sensors: operation principles

According to the scheme of Figure 1.2, continuous wave ToF cameras send towards
the scene an infra-red (IR) optical signal sE(t) of amplitude AE modulated by a
sinusoid of frequency fmod , namely

sE(t) = AE [1+ sin(2p fmodt)] (2.1)

Signal sE(t) is reflected back by the scene surface and travels back towards a re-
ceiver co-positioned with the emitter.
The signal reaching the receiver, because of the energy absorption generally associ-
ated to the reflection, because of free-path propagation attenuation (proportional to
the square of the distance) and because of the non-instantaneous propagation of IR
optical signals leading to a phase delay Df , can be written as

sR(t) = AR[1+ sin(2p fmodt +Df)]+BR (2.2)

where AR is the attenuated amplitude of the received signal and BR is the interfering
radiation at the IR wavelength of the emitted signal reaching the receiver. Figure 2.2
shows an example of emitted and received signals. Quantity AR (from now denoted
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Fig. 2.2 Example of emitted signal sE(t) (in blue) and received signal sR(t) (in red).

by A) is called amplitude, since it is the amplitude of the useful signal. Quantity
AR + BR (from now denoted by B) is called intensity or offset, and it is the aver-
age1 of the received signal (with a component AR due to the modulation carrier and

1 It is common to call A and B amplitude and intensity respectively, even though both A and B are
IR radiation amplitudes (measured in [V ]). A is also the amplitude of the received sinusoidal signal.

Figure 2.9: Continuously modulated signal emitted (blue) and received by the sensor
(red) [DZC12]

Correlating the received light on the sensor with the emitted signal (sR and sE in Figure
2.9) and hence determining the phase difference has some practical problems. Since
there is always some background illumination adding an offset (B) that is not known,
one measurement does not solve the equation. Also the reflected (maximal) amplitude
(A) can be any portion of the emitted amplitude (AE) depending on the surface
reflectivity. Therefore there are three unknowns, requiring at least three measurements.
Usually there are four measurements taken at fixed points along the modulation period.
Though in reality intensity cannot be measured at a single point of time, but only by
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2.7 Light field

integrating arriving photons over a period of time, which is called integration time and
is an important parameter for time of flight measurements.

Another important parameter is the modulation frequency, which directly determines
the maximum range. Since at a certain distance the time it takes for emitted light to
get back to the sensor is greater than the modulation period, light reflected beyond that
distance cannot be distinguished from light emitted one period later.

2.7 Light field

A light field describes the flow of light through space and thus contains information
for both direction and intensity of individual light rays. While a conventional camera
only captures the intensity of the incident light, a plenoptic camera as introduced by
Adelson and Wang [AW92] can also capture its direction. Through an additional array
of microlenses an incoming light ray gets refracted differently depending on its direction
and hence hits a different portion of the imaging sensor. Given that each microlense
covers multiple sensor pixels, the direction of the light ray, and hence the distance of the
point it was reflected from can be determined more or less accurately.

Gemeinsame Tagung 2014 der DGfK, der DGPF, der GfGI und des GiN (DGPF Tagungsband 23 / 2014) 

2 

Der Beitrag stellt zunächst das Grundprinzip der Lichtfeldtechnik vor, so wie es in der 
untersuchten Kamera realisiert ist. Anschließend werden Ergebnisse von Genauigkeitstests 
präsentiert, die das Messvolumen, die erreichbare Genauigkeit und die Voraussetzungen an die 
Objektoberfläche näher beleuchten. Die erreichbare Genauigkeit liegt bei ca. 3,5mm bei einer 
Messentfernung von 50cm, so dass das Aufnahmeprinzip derzeit nur für Anwendungen geringer 
Genauigkeitsanforderungen einsetzbar ist.  

2 Grundlagen  

2.1 Funktionsprinzip 
Eine plenoptische Kamera unterscheidet sich von einer herkömmlichen Kamera durch ein 
Mikrolinsenarray, welches sich nicht direkt auf der Sensoroberfläche befindet, sondern in einem 
definierten Abstand vor der Bildebene angebracht ist (Abbildung 1). Je nach 
Aufnahmeentfernung wird das Bild eines Objektpunkts von verschieden vielen Mikrolinsen 
aufgefangen und auf den Bildsensor abgebildet. Dort entsteht ein facettenhaftes Bild mit 
Mehrfachabbildungen, über die eine entfernungsabhängige Parallaxe bestimmt wird. Diese 
wiederum kann zur Berechnung des 3D-Punktes verwendet werden.  
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Abbildung 1: Prinzip der Lichtfeldkamera und beispielhaftes Facettenbild 
 

Abbildung 2 zeigt die Abbildung eines punktförmigen Musters in einer Lichtfeldkamera bei 
verschiedenen Aufnahmeentfernungen. Deutlich ist zu erkennen, dass ein weiter entfernt 
liegendes Objekt durch weniger Mikrolinsen abgebildet wird, was im Einklang mit der 
Prinzipskizze in Abbildung 1 steht. Prinzipiell kann das Mikrolinsenfeld in die Fokusebene eines 
Punktes (hier P' bzw. Q'), davor oder dahinter angebracht werden.  

 
Abbildung 2: Abbildung eines Punktes (mittleres Bild) in 35 cm (links) und 25 cm Abstand (rechts) 
 

Anhand der Abtastung dieses Lichtfeldes mit Hilfe einer plenoptischen Kamera ist es möglich 
eine Reihe von Anwendungen zu realisieren. Hierzu gehören beispielsweise die virtuelle 

Figure 2.10: Functional principle of a plenoptic camera [LJH14]

Since this basic design limits the effective image resolution to the size of the microlense
array and also requires much higher sensor resolution, a different design was proposed
by Lumsdaine and Georgiev [LG09]. By focusing the microlense array differently, a
higher (lateral) image resolution can be achieved with the same number of microlenses
at the cost of reduced directional resolution. Figure 2.10 shows the general configuration
of a plenoptic camera with two points at different distances given as an example. Light
from closer points is directed to more microlenses and therefore spread out over a larger
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2 Background

portion of the sensor, as can also be seen in Figure 2.11 showing the images of a point
seen through a microlense array from two different distances.

(a) (b) (c)

Figure 2.11: A point (a) seen through a microlense array from far (b) and closer (c)
distances [LJH14]

As with Stereo Vision, it has first to be determined which points on the sensor image
correspond with each other, in order to calculate a depth value. Due to the much higher
sensor resolution and added complexity, the necessary correspondence algorithms are
however even more demanding. This is one reason why commercial plenoptic cameras
only showed up recently. Also like Stereo Vision, a depth value can only be determined,
if there are sufficient visible differences in the image. Untextured surfaces can therefore
not be measured, unless an active pattern projection is used.

Since only a single camera is needed the light field technology allows for much more
compact design and can easily combined with additional optical systems. Given the
potential for usage in Computational Photography and other areas, it can be expected
that this technology will receive much more attention in the near future. Since the
essential principle of determining depth is very similar to Stereo Vision, many aspects
regarding limitations can however be assumed to be comparable.

2.8 Combination of multiple approaches (Fusion)

A combination of multiple measurements into a single result, also called Fusion, can
help to improve accuracy, robustness or measuring range.

The term "Fusion" is used to describe either the combination of multiple samples of a
single camera system from different perspectives or the combination of measurements
from multiple camera systems using different measurement methods. While the former
is an important issue especially for mobile setups, its application is limited for static
setups, where measurements from multiple perspectives can only be achieved by adding
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2.8 Combination of multiple approaches (Fusion)

additional camera systems at fixed positions. In such cases a combination of different
measurement approaches is therefore much more promising.

Combining passive stereo with an active method operating at infrared light is an obvious
candidate. Passive stereo usually can provide higher resolution while it does not interfere
with the active measurement, which can be used to overcome its shortcomings. Fusion
of passive Stereo and Time-of-flight measurement has first been proposed in 2006
[KS06] and is since then thoroughly investigated [NRL+13] As the ToF-data can be
used to reduce the search space and eliminate ambiguities in stereo-matching, the
Fusion-approach asks for a whole new class of correspondence algorithms, which allow
for more accurate results at less execution time. [EHH15]

A combination of to active methods operating within the same frequency range is rather
difficult due to interference, it is however possible to use structured light patterns
simultaneously for active stereo vision. [JJSL13]

Fusion also allows for including measurement methods, which are unsuitable to de-
termine depth when used alone, but can help reconstructing surface details. An en-
hancement of ToF-data by measuring the polarization of the light reflected from surface,
has been recently demonstrated. [KTS+15] Assuming that in most environments the
ambient light is not polarized in any specific way, the polarization can be captured
passively by taking multiple photos with a standard camera using a polarization filter.
Projectors used for providing in-situ feedback however usually emit polarized light which
may cause interference or even render this approach inapplicable.

In order to deal with the obvious inability of the discussed methods to measure transpar-
ent surfaces, adding another type of sensor might even be the only solution in such cases.
The inclusion of ultrasonic sensors can help to overcame this limitation. [YZYM15] Due
to the lack of higher resolution arrays of ultrasonic sensors, this approach is however of
limited use in static setups.
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3 Related work

Due to the long history of 3D vision and the recent boom through the availability of cheap
depth-sensors1, there is an enormous amount of work investigating the usage of depth-
sensors in all kinds of different scenarios. (From robotics [SLAL11] over archaeology
[MGH09] to Plant Phenotyping [PBM+14]) There are however only relatively few
works aimed at evaluating depth-sensors in a more systematic manner and even less
that include a side-by-side comparison of different measurement methods. This chapter
investigates a range of evaluations aiming at assessing the capabilities and limitations of
depth-camera-systems.

Most of the works evaluating depth sensors try to obtain general values for effective
accuracy and resolution of a sensor. This is usually either done by measuring a simple
target with known geometry like a planar surface from a fixed distance [BBK07] or by
comparing the sensors measurements of a scene with one or more arbitrary objects to a
very accurate measurement (ground truth) of that same scene, usually obtained by using
a laser scanner. [GRV+13] Due to its high availability there are several evaluations of
the first Microsoft Kinect sensor (KinectSL), which uses a Structured Light (SL) approach
and its successor (KinectToF), which employs the Time of Flight (ToF) principle. Both
sensors are also described more detailed in chapter 4. Other ToF-Sensors often used in
evaluations are the SwissRanger SR4000 from Mesa Imaging2 and the 3k-S or CamCube
from PMDtec3.

Since accuracy and precision of depth measurements are highly dependent on the mea-
sured scene as well as the environment, a simple quantitative comparison can however
only be given in respect to a specified scene and environment or regarding "ideal"
measurement conditions. In order to get a more complete picture of the limitations, the
effects of different sources for errors should be investigated as independently as possible.
In the remainder of this chapter each of the relevant error sources is discussed along
with the related work investigating their effects on the measurement. The categorization
of error sources is partially adopted from [SLK15]

1The release of the Microsoft Kinect alone has resulted in over 3000 related publications just within 3
years [BMNK13]

2Recently acquired by Heptagon: www.hptg.com/industrial/
3www.pmdtec.com (Both mentioned products have been discontinued)
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3.1 Systematic (non-environmental) errors

Even in the most simple cases with optimal conditions (high-reflective diffuse planar
surface in a disturbance-free environment) there can be non-linear errors in the depth
measurement, due to the imperfection of the sensor components. Distortion of optical
lenses for example may cause varying depth offsets at different measured points. Errors
of this kind which are persistent when the measurement is repeated are called systematic
errors.

Many works make a distinction between systematic (predictable) and random (less
predictable) errors. There are however broader [FA11] and narrower [SLK15] definitions
of systematic error. Here a narrow definition is used by only regarding errors, which are
independent of scene and environmental factors and therefore intrinsically systematic.

For triangulation-based methods like Structured Light (SL) and Stereo Vision (Stereo)
systematic errors are mainly due to limited pixel resolution and non-linear response of
the camera sensors as well as optical distortions. While pixel resolution is an inevitable
limitation, the other two can be compensated by photometric calibration used commonly
in Computer Vision [Sze10].

Systematic errors can be modeled as a function of the hardware specifications (see
[BH87] for Stereo and [Tro95] for SL) in order to optimize sensor design and calibration
methods.

Sensors using the Time of Flight (ToF) principle exhibit additional systematic errors
due to the more complex measurement procedure necessary when using continuous
wave intensity modulation (CWIM) [LNL+13]. Since the light source cannot generate
the intended modulation function precisely, a systematic offset changing over distance
("wiggling") can be observed. Foix and Aleny also identified systematic errors caused by
different integration times and irregularities in the image sensor [FA11].

3.2 Temperature Drift

Due to inevitable deformations of hardware components by temperature change mea-
surements are also drifting with temperature change. Temperature drift is still relevant
in environments with constant temperature, since the light sources in active sensors
emit significant amounts of heat as well and therefore heat up the sensor components

30



3.3 External Light Sources

when turned on.4 Most sensors reach a stable state after some period (warm-up time).
The KinectSL has been shown to stablize after 60 minutes [CALT12]. As Sarbolandi et al.
point out, ToF sensors generally need higher illumination-power to cover same area and
range, which results in greater heat dissipation and therefore requires better cooling.
[SLK15] Which is why the KinectToF (having a compact housing) uses active cooling
which helps to achieve stable measurements after 60 minutes as well.

3.3 External Light Sources

Ambient background light can cause interference by over-saturating the sensor or
outshining the signal or pattern projected by the sensor.

Indoor illumination does usually only emit light in the visible spectrum and therefore
causes little or no interference for sensors operating in the invisible NIR-range as also
reported by [CALT12]

Daylight or other strong sources of IR-light however are problematic. ToF sensors
have been shown to be still operating with strong ambient IR-light, while comercial
SL-Sensors like the KinectSL already show errors with considerably lower amounts of
ambient light [LHL12] and cease to work where ToF-sensors still yields measurements
[SLK15] (Though drastic errors appear at higher levels of ambient light)

Another type of interference may caused by light sources emitting pulsating light pro-
jecting patterns onto the measured scene. This especially an issue when using multiple
active sensors in parallel. Since these cases not only add additional ambient light put
may also distort the projected signal, inteference can be much more intense.

The parallel usage of multiple KinectSL or KinectToF has been shown to be rather error-
prone [SLK15] There are however methods to use multiple ToF sensors together, but
they require a special setup and deeper access to the sensor hardware. [HLC+12] In
contrast AS and SL can be easily used together when only the SL pattern is projected.
[JJSL13]

4The drift caused by self-heating could also be considered as a systematic error. Temperature is however
an independent environmental factor in any case.
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3.4 Depth Inhomogeneity

Since a single pixel of sensor data does not correspond to a single point on a surface
but a small area, its associated depth values can be inhomogenous at object edges
(depth discontinuities). This may lead to noisy edges or even completey different depth
values.

implement and more accurate than direct estimation of the
step response. The standard deviation (STD) of lateral noise
is simply the STD of the edge distance distribution.

2.1. Experimental setup

Figure 2 summarizes our setup for measuring lateral and
axial noise probability distribution functions (PDFs) for
a Kinect sensor. We used a planar target rotating freely
around a vertical axis in front of a fixed Kinect (Figure
2a). All experiments in this paper used a Kinect for Win-
dows sensor set to run in “near-mode” with depth sensing
between 0.4m to 3.0m.

The principal axis of the depth camera is defined as the
z-axis and the target rotation axis is approximately perpen-
dicular. Lateral noise is extracted from the pixels along the
vertical edges of the depth map (Figure 2b, front view). Ax-
ial noise is obtained from the differences between raw depth
and a fitted plane (Figure 2c, top view).
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Figure 2. Experimental setup to measure noise distributions of
Kinect sensor. a) Photo and schematic representation of experi-
mental setup, with Kinect capturing depth maps of a rotating tar-
get. b) The 2D projected depth map of the planar target with lateral
noise along one edge highlighted. c) A top-down cross-section of
the depth map revealing noise distribution along z-axis and normal
to the target plane.

2.2. How to extract axial and lateral noise

Figure 3 shows how to extract lateral noise (top row) and
axial noise (bottom row) from a depth map as function of
plane angle ✓. Figure 3a-c show how to isolate the verti-
cal edges of the observed target and obtain the edge-pixel

distance distribution to calculate the lateral noise STD �L.
Detected edge pixels are shown as thick lines.
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Figure 3. Processing of depth map to extract noise components.
a) Crop horizontal edges b) extract edge pixels and fit straight lines
to vertical edges. c) Extract distance from edge pixels to the fitted
lines to calculate �L. d) Crop vertical edges by 3�L. e) Fit plane
to remaining rectangle depth map. f) extract the rotation angle ✓
and �z .

For axial noise measurement, the vertical edges of the
depth map are trimmed 3�L to remove all lateral noise as
shown in Figure 3d. The remaining depth map region is
fitted to a plane to estimate the plane angle and depth noise
along the z-axis as shown in Figure 3e-f. Plane fitting can
be performed using orthogonal distance regression.

Figure 4 shows examples of the depth maps at different
z positions and plane angles. Detected edges and bounding
box are highlighted for illustrative purposes to indicate how
�L and �z are computed.
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Figure 4. Detected edges (solid red lines) to measure lateral noise
and bounding box (white dashed line) to crop the depth map be-
fore plane fitting at different angles (a) and different distances (b).
Invalid depth measurements shown in black.

2.3. Results and models of noise distributions

Experimental results were obtained using A2–A5-sized
targets of same surface material and thickness. Targets

525

Figure 3.1: lateral noise at edges (in red) of a rectangular shape measured from different
angles with the KinectSL [NIL12]

Nguyen et al. measured axial and lateral noise on edges for the KinectSL from different
angles. [NIL12] They used the data to derive a noise model that can be used to improve
Fusion-algorithms combining multiple measurements from different perspectives.

For ToF-sensors errors caused by depth inhomogeneity can take any value within the
sensor’s measuring range leading to enormous outliers [LNL+13] and are therefore
also called “flying pixels”. Reynolds et al. investigated these errors in more detail and
introduced a method for filtering them. [RDP+11]

A comparison of the KinectSL and KinectToF however shows that the amount of errors
related to depth inhomogenity is similar for both methods. [SLK15]

3.5 Multipath interference

The ToF principle assumes that light emitted from the sensor is reflected back exclusively
on the most direct way. The emitted light can however also be reflected from another
surface on the scene or in the environment before it gets reflected off the surface point
to be measured and therefore taking multiple paths as visualized in Figure 3.2.

Multipath interference is major issue for ToF-sensors and is extensively researched.
[God12] For SL multipath reflections are only a problem, if parts of the coded light
pattern get directly reflected on other surfaces. Accordingly the KinectSL shows very
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Abstract—Multipath interference (MPI) is one of the major
sources of both depth and amplitude measurement errors in
Time–of–Flight (ToF) cameras. This problem has seen a lot of
attention recently. In this work, we discuss the MPI problem
within the framework spectral estimation theory and multi–
frequency measurements. As compared to previous approaches
that consider up to two interfering paths, our model considers the
general case of K–interfering paths. In the theoretical setting,
we show that for the case of K–interfering paths of light,
2K + 1 frequency measurements suffice to recover the depth
and amplitude values corresponding to each of the K optical
paths. What singles out our method is the that our algorithm
is non–iterative in implementation. This leads to a closed–form
solution which is computationally attractive. Also, for the first
time, we demonstrate the effectiveness of our model on an off–
the–shelf Microsoft Kinect for the X–Box one.

I. INTRODUCTION

Amplitude modulated continuous wave (AMCW) Time–of–
flight (ToF) imaging cameras [1], [2] measure at each pixel
both amplitude and optical travel time (depth), thus capturing
three dimensional scene information. Fig. 3(e) and 3(f) show
an example of such intensity and depth images as produced by
a ToF camera. These cameras work on the principle of emitting
a coded light signal (generally a sine wave) by amplitude
modulating a light source. They then measure the time delay
between the transmission and the reflection arriving back from
the scene (Fig. 1(a)), similar in principle to LIDAR.

A. Multipath Interference in ToF Cameras

All of the existing ToF cameras work under the hypothesis
that each given pixel observes one optical path. Another way to
state this, the assumption is that the scene is only illuminated
directly with no inter reflections (known in the optics and
geophysics domains as the Born approximation [3]). This
however is not the case in many practical cases of interest
such as inter reflections in the scene due to multiple objects
or corners, in the presence of transparencies such as windows,
or sub surface scattering. Some of these cases are presented
in Fig. 1.

When multiple optical paths combine at a given pixel,
the depth measurements are corrupted. This is known as the
multipath interference problem or the mixed pixel problem
(MPI). This is one of the major sources of errors in ToF
sensors [4]–[15] To that end, almost all existing solutions
consider up to two interfering paths of light [8]–[10]. The case
of K–interfering paths was first discussed in [4] and later in
[5]. Both of these papers rely on a sparsity formulation which

(a) (b)

(c) (d)

Fig. 1: (a) The ToF camera emits a reference signal. Delay
in time of arrival of the reflection encodes the depth d. (b)
Specular or mirror like and, (c) Semi–transparent reflections
cause multiple light paths to mix at the sensor which leads to
multipath interference or the mixed–pixel problem (MPP). (d)
Case of continuous multipath reflections.

leads to computationally intensive and iterative algorithms.

B. Contribution and Organization of this Paper

In this work, we report a model for the case of K–path
interference for which the solution is non–iterative in im-
plementation which makes it computationally attractive when
compared to the sparsity based, iterative schemes discussed in
[4], [5].

In Section II, we provide a general description of the ToF
image formation model. Within our inverse–problem frame-
work, we set–up the mathematical model for the multipath
interference problem. As will be seen, our reformulation of
this problem shows that the MPI is intrinsically linked with
parametric spectral estimation theory [16], [17]. We leverage
on previous ideas [6], [16] to solve this problem in closed–
form. In Section III, we discuss some first results linked
with MPI cancellation in Microsoft Kinect One. Finally, we
conclude with some future directions.
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however is not the case in many practical cases of interest
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B. Contribution and Organization of this Paper

In this work, we report a model for the case of K–path
interference for which the solution is non–iterative in im-
plementation which makes it computationally attractive when
compared to the sparsity based, iterative schemes discussed in
[4], [5].

In Section II, we provide a general description of the ToF
image formation model. Within our inverse–problem frame-
work, we set–up the mathematical model for the multipath
interference problem. As will be seen, our reformulation of
this problem shows that the MPI is intrinsically linked with
parametric spectral estimation theory [16], [17]. We leverage
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Figure 3.2: Multipath interference (a) from external reflection (b) from semitransparent
surface (c) from internal reflections [BFI+14]

little errors in a multi-path test, where the KinectToF has problems getting any valid
measurements [SLK15].

3.6 Dynamic Scenery

If an object moves during measurement it might cause motion blur. How much a
measurement is affected depends on the exposure time respectively the duration of
the whole measurement cycle for ToF. The effects of motion blur for depth images
do however not just result in blurred depth images, as with normal color images, but
instead may cause significant distortions. The effect also depends on the used method.
For ToF motion blur can result in depth values much higher or lower than the actual
values, but may also be detected and marked as invalid. This is investigated in more
detail in [HLC+12].

For the KinectSL it has been found that motion blur causes a clear bias towards closer
values, while the KinectToF delivers more reliable values and marks invalid measurements.
[SLK15]

3.7 Surface Properties

Due to their great variety the effects of surface properties on depth measurements are
difficult to evaluate. The most complete survey of different surface properties has been
done by Hansard et al. by measuring arbitrary objects with various surface properties
with the KinectSL and the SR4000 ToF-Sensor. [HLC+12] They coarsely classified the
objects based on surface roughness and specularity and presented the root mean square
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error (RMSE) for each complete measurement, resulting in much higher RMSE-values
for specular surfaces due to many invalid pixels from specular highlights.

Additionally they measured semitransparent surfaces for which they took a more sys-
tematic sample set by applying a matte spray to a translucent cylinder in order to obtain
a whole range of different degrees of translucency. A more refined version of this
experiment has been done by Sarbolandi et al. showing similar results. [SLK15]

Another important property is surface albedo, though it has not been in the focus of
any of the discussed evaluations. It has been included in an evaluation of the KinectSL

by Chow et al., but they only compared measurements of two (unspecified) black and
white surfaces and found no significant differences. [CALT12] A later evaluation of the
KinectToF shows significant differences when comparing measurements of a white and
black surfaces with 99% and 5% albedo. [SLC+15]

3.8 Incident Angle

Last but not least an object’s geometry influences measurement accuracy as well. Ac-
cording to Hansard et al. however “accuracy is not so much dependent on the geometric
complexity”, but rather on the deviation of the surface normal to the optical axis of the
sensor [HLC+12] unless the geometric structures are smaller than the sensor resolution
or having concave shapes causing multipath interferences.

Effects of measuring a surface from different angles have been investigated in many
evaluations, usually by rotating a white planar target in front of the sensor [CALT12]
or moving the whole camera system [LHL12]. The KinectSL has been shown to obtain
measurements at angles of 75° and below while the KinectToF also yields depth values at
over 80° but only with larger errors.

It remains however an open question how other error sources and especially different
material properties effect the performance of measurements from different angles.
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While the discussed Active Stereo (AS), Structured Light (SL) and Time of Flight (ToF)
principles have been used for depth measurement for a few decades already [Bla04],
affordable mass-produced depth-camera-systems have only shown up recently with the
release of the first Kinect (using SL) by Microsoft in 2010. Since then several consumer-
grade systems appeared, either using ToF or a SL-approach similar to the Kinect. With
the second Kinect Microsoft however pushed the market again in 2013 by providing a
ToF-system with much higher resolution than other ToF-systems at that time.

In this thesis three different depth-camera-systems are used for experimental evaluation
of each measurement principle: The AS-based Ensenso N10 from IDS Imaging as well
as the first (KinectSL) and the second Kinect (KinectToF) from Microsoft. This chapter
describes the three systems in more detail and puts them into context with other available
systems on the market.

Since there are neither active systems using light field technology, nor suitable fully
integrated Fusion systems available as products, only systems using exclusively either
AS, SL or ToF are considered.

4.1 Active Stereo

Passive stereo systems are readily available, given that they only consist of standard
cameras and software. Active stereo systems however are rather rare and not to be
found in consumer products. Their main advantage over other active systems, the
simultaneous usage of multiple systems, is usually not a requirement or option for
simpler and consumer-oriented applications.

In theory a passive system could be used for AS by simply adding a pattern projector,
but making the system to operate exclusively in the invisible near-infrared-range (NIR)
for unobtrusive measurements is more difficult. Also because the projected pattern has
to fit the stereo cameras, a fully integrated solution is preferred.
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(a) (b)

Figure 4.1: (a) Ensenso N10 Stereo camera from IDS Imaging [IDS] (b) Pattern pro-
jected on a flat surface with a cup

IDS Imaging provides such a solution with their Ensenso-series, which is meant for
industrial usage in rough environments. The models differ in sensor resolution and focal
length resulting in various effective accuracy.

For this thesis the Ensenso N10-802-18 (Shown in Figure 4.1) was used, which has
a specified operation range from 0.65m to 2m. The N10-Series uses stereo cameras
with a resolution of 720 x 480 pixels. With a focal length of 8mm however the used
model offers a rather small Field of View, providing similar effective accuracy as models
with higher resolution and bigger Field of View. At a distance of 0.75m the pixel size
is about half a millimeter, allowing for a theoretical depth-accuracy of one millimeter.
While the cameras are able to deliver 30 frames per second, the effective performance
for depth measurement also depends on the available processing power, as the used
correspondence algorithm is computationally expensive.

All models feature a LED-based pattern projector, which is synchronized to the camera
shutters and only illuminates the scene with a binary pattern as shown in Figure 4.1(b)
during exposure time. (Therefore having a lower power consumption, generating less
heat and possibly causing less interference)

The Usage of standard optical components theoretically allows for using imaging sensors
with much higher resolution. Compact stereo cameras with high resolution are already
available (For example the ZED from Stereolabs [Ste]) But stereo matching algorithms
are computationally expensive and therefore limit framerate at higher resolutions or
require specialized hardware solutions. This is especially an issue when multiple systems
are used to capture depth images from different perspectives.
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4.2 Structured Light

Structured Light technology is already used in professional products for a longer time,
the Microsoft Kinect (KinectSL) developed in cooperation with PrimeSense however was
the first affordable consumer-grade SL-system. It was originally intended to be a gaming
interface for the Microsoft Xbox 360, but later also released independently along with a
software development kit as “Kinect for Windows”. In addition to the IR camera and
pattern projector used to measure depth, the system features a RGB camera to also
provide a color picture as as shown in Figure 4.2. Such systems are therefore also called
RGB-D cameras in literature.

(a) (b)

Figure 4.2: (a) The KinectSL and (b) a schematics of its components [Mica]

The exact specifications and operation details are not made available by Microsoft and
the firmware does not allow full access to the system. According to Koshelham et al.
the resolution of both cameras is 1280x1024 pixels though only 640x480 pixels are
streamed due to bandwith limitations. [KE12] The KinectSL uses a static spatially coded
pattern (shown in Figure 4.3), which allows to deliver depth images of 640x480 pixels
at 30fps.

The operation range is specified from 0.8m to 4m distance, although the depth errors
are well above 1cm for all but the closest distances. Additionally the KinectSL uses quan-
tization of the depth values with a step size of already 1.8mm at 0.8m distance [SJP11].
More details about the operation of the KinectSL can also be found in [DZC12].

While more products using the same technique as the KinectSL have since been re-
leased, advancements were made mainly in miniaturization for better usage in mobile
applications. (See Structure Sensor from Occipital1)

1www.structure.io
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Figure 4.3: Pattern projected by the KinectSL on a flat surface with a cup

The Structured Light method in general however can be easily scaled to allow for
measuring small structures at high resolution. Usually though commercial solutions are
not aimed to be used in interactive environments and therefore use visible light and
temporal coded patterns, either requiring expensive high-speed components or resulting
in longer measuring times.

4.3 Time of Flight

The Time of Flight principle is commonly used for optical distance measuring. Depth-
camera-systems using ToF able to capture whole depth images in one shot are however
a more recent development. Such systems cannot be build completely from standard
components and their development is thus tied to the availability of the necessary
specialized imaging sensors. Since the development of new imaging sensors is only
economically viable when aimed for mass production, ToF-systems have long been
restricted to lower resolutions. Due to the high production volume it was therefore
possible to equip the second Kinect (KinectToF) with a sensor of much higher resolution
than other ToF-systems at that time.

Like previous ToF-Systems the KinectToF shown in Figure 4.4 uses continuous wave
intensity modulation (CWIM), but is able to deliver a depth image with 512x424 pixels
at 30 fps. And like its predecessor it also features a RGB camera with 1920x1080
pixels. According to Pagliari and Pinto [PP15] the KinectToF uses multiple modulation
frequencies (120Mhz, 80Mhz and 16Mhz) in order to achieve high depth accuracy over
a longer range, which is specified from 0.5m to 4.5m. In contrast to triangulation based
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4.3 Time of Flight

(a) (b)

Figure 4.4: (a) Kinect for Windows v2 Sensor (KinectToF) [Micb] and (b) opened casing
revealing the IR-camera and light source sitting next to each other in the
center of the device [iFi]

methods, depth accuracy is not inherently tied to measurement distance for ToF-systems.
While the KinectToF has been shown to have similar depth accuracy to the KinectSL at
close distance, it still keeps that level of accuracy even at higher distances where the
KinectSL shows errors of more than 1cm. [PP15]

ToF-systems are also better to miniaturize as no base line for triangulation is needed.
The Light source and Image sensor could theoretically be in the same spot. This allows
for very compact design and integration into mobile devices. Such small ToF-systems are
for example available from PMD2.

Meanwhile professional ToF-systems aimed for industrial use with similar capabilities as
the KinectToF are also available from other manufactures like Basler.3

2www.pmdtec.com
3www.baslerweb.com/en/produkte/kameras/3d-kameras/time-of-flight-kamera
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5 Experiments

In order to assess the effects of different surface material on depth-measurements in
practice, an experimental evaluation is needed. Due to the huge variety of surface
properties, an extensive evaluation would require hundreds of different samples. To
limit the scope of the evaluation only smooth surfaces with varying albedo and gloss
were considered. This chapter describes the experiments, that have been conducted in
the context of this thesis.

The experiments are not aimed at obtaining absolute accuracy values allowing for
direct comparison, as many other evaluations do. Instead the focus is on revealing how
different surface material relatively impacts measurements. The different systems can
then be compared in respect to the magnitude of relative differences. Therefore it is not
necessary to perform an intrinsic or extrinsic calibration of the systems. Furthermore
comparing based on relative differences essentially rules out systematic errors including
calibration errors.

5.1 General Setup

The experimental setup is based on the assistive system prototype from Funk et al. [FS15]
in order to provide conditions similar to those in actual application. For comparison
the Ensenso N10, the Microsoft KinectSL and KinectToF (described in Chapter 4) have
been mounted on a carrier at about 1.6m above the floor as shown in Figure 5.1. The
setup has been placed in the lab next to other workspaces, like in a typical working
environment.

All measurements were taken indoors with no daylight at constant room temperature
of about 22°C. Also interferences by infrared light from any other source have been
ruled out by checking the raw output of the IR-Cameras with the pattern projector
turned off. Additionally, effects of illumination from the room lighting and other non-IR
light sources on the depth-measurements have been tested and found to be essentially
non-existent. Some light could be picked up when aiming a non-IR light source directly
or via a mirroring surface at the IR-Cameras. Mirroring surfaces are however much more
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5 Experiments

(a) View from below (b) Side view

Figure 5.1: Experimental setup with three different depth-camera-systems mounted
side by side

problematic for other reasons (see chapter 2) and having to measure parts containing
active light sources seems unlikely or at least avoidable.

To capture depth-data all three sensors were connected to a Windows-PC using the
official drivers and SDKs provided by the manufactures. (Ensenso SDK 1.3.1671, Kinect
for Windows SDK v1.82 and Kinect for Windows SDK 2.03) To facilitate recording depth-
data and quickly switching between the systems, a software tool was written in C#.4

1www.ensenso.com/support/sdk-download/
2www.microsoft.com/en-us/download/details.aspx?id=40278
3developer.microsoft.com/en-us/windows/kinect/tools
4Since the two different versions of the Kinect for Windows SDK (1.8 for the KinectSL and 2.0 for the

KinectToF) cannot be used in a single application, the depth-data recording tool has been conceived
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5.2 Warm-up Test

Raw depth images, as provided by the SDKs, were saved directly as a bit-stream with
16bits per pixel. The depth-data was then evaluated without any further pre-processing
using MATLAB.

To exclude differences caused by sensor noise, all depth-values are obtained by temporal
averaging over 20 consecutive frames. Comparing averaging of up to 200 frames showed,
that averaging more than 20 frames has only little effect on measurements. But also are
20 frames a sensible limit to stay well within one second of response time, if temporal
filtering is to be applied in assistive systems.

5.2 Warm-up Test

Even at constant room temperature all of the systems are affected by temperature drift
(see section 3.2) due to internal heat-up caused by the active components. To rule out
temperature drift as a factor for differences in measurements it has to be known how
much the measurements fluctuate during the warm-up phase and after what time the
system becomes sufficiently stabilized.

5.2.1 Setup

To asses temperature drift during the warm-up phase a planar surface on a table at
a distance of about 0.85m (as shown in Figure 5.1(b)) was measured for two hours
in intervals of 10 seconds. All the systems were already connected and powered long
before the measurement started. This test therefore specifically assesses drift caused
by warm-up of the active light emitting components, which are only turned on during
measurements.

5.2.2 Results

For each point of time the depth values were averaged both temporally (20 frames)
and spatially. For comparison the average value during the second hour was taken as
a stabilized reference value. Figure 5.2 shows deviation from this average over time.
While the Ensenso N10 is only slightly affected by temperature drift and the KinectSL

stabilizes quickly, the KinectToF exhibits a significant drift before the value stabilizes.

as a set of client-server applications with a central control (server) for the individual clients, each
controlling one of the systems.
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5 Experiments

Figure 5.2: Deviation of average depth value [mm] during warm-up over 60 minutes
Blue: Ensenso N10, Green: KinectSL, Red: KinectToF

After less than 10 minutes the value for the KinectSL changes only by less than 0.25mm.
Due to active cooling the KinectToF exhibits a non-monotonic curve. The cooling shows
effect after 6 minutes and allows the depth value to stay within a range of 0.5mm after
30 minutes.

Consequently for the following experiments the depth-camera-systems were turned on
at least one hour prior to taking measurements.

5.3 Samples

Given the experimental setup it was very important to have samples of same shape and
size. For this purpose different spray paints were applied to 20 x 20cm wooden boards
with 1.5cm thickness. (Normal ink printed on paper has shown not to be opaque enough
to completely cover the material beneath.) Several gray colors were taken from the
industrial RAL color standard. Since impact on measurements was expected to be most
noticeable with low-reflective shades, multiple darker colors were chosen along with
high reflective white and lighter gray for reference. (See Table 5.1) Additionally, some
of the colors were applied in different degrees of gloss. The glossiness is specified by
the manufacturer as 80 gloss units for the glossy paint, 30-35 gloss units for the satin
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5.3 Samples

Number CIELAB
Lightness

Color name Used gloss levels

RAL 9016 ~95 Traffic white glossy, matte
RAL 7035 ~81 Light grey glossy, satin matte, matte
RAL 7043 ~40 Traffic grey B glossy
RAL 7016 ~34 Anthracite grey glossy, matte
RAL 7021 ~31 Black grey glossy, matte
RAL 9005 ~25 Jet black glossy, satin matte, matte

Table 5.1: Colors from the RAL color standard used for creating the samples

(a) (b)

Figure 5.3: Some of the samples used: (a) matte and glossy samples sorted by lightness
(b) light grey samples in different degrees of gloss: glossy, satin matte and
matte

matte paint and 5-10 gloss units for the matte paint. (measured at 60° according to DIN
67530) [MOT]

One unpainted wooden board was also included into the measurement for comparison.
The unpainted surface is white matte and should therefore show similar measurements
as the sample with the white matte spray paint applied.

Each color can be correlated with a certain lightness value in the CIELAB color space. This
specification is however of limited use since these values are given in respect to human
color perception and have no validity regarding reflectivity in the invisble NIR-range.
But at least for grayscale colors the lightness value seems to be roughly transferable, as
can be confirmed by comparing the brightness of the samples in a image taken by one of
the IR-Cameras. Though the colors are standardized, commercially available paint has
been shown to deviate from the standard [HM09]. Unfortunately it was not possible
to have the samples measured directly within the given time. Nevertheless the sample
set can still provide evidence for wider ranges of darker material, even if the bounds of
these ranges are not known precisely.
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5 Experiments

5.4 Distance test

It is evident that surfaces with low albedo and higher portions of specular reflections
pose a problem for reflective depth measurement, but to what extend does this restrict
the measurement of parts with such properties? Since this can be expected to be also
depending on the measurement conditions, a first step is to investigate the restrictions
in best possible conditions in respect to possible setups in assembly environments.

Fully optimal measuring conditions would for example also include taking the mea-
surements in an isolated environment completely free of any other reflective surfaces.
Getting anywhere close to such conditions is not only completely impractical in any
working environment, but would also violate regulations in many countries. While it
has been made sure that there are no larger highly reflective or mirroring surfaces close
by, the measurement environment has knowingly be chosen to be less optimal in that
respect. Exploring these environmental factors is subject of further research.

In this case optimal conditions are assumed to be given by excluding external IR-light-
sources, measuring only a flat surface from a straight angle avoiding highlights caused
by specular reflections and reducing the measuring distance to a minimum. But even
though the irradiance on the measured surface is greater at shorter distances, the closest
possible distance might not be the most optimal depending on the system. Therefore
multiple distances should be tested.

5.4.1 Setup

The complete set of samples was measured from three different distances at about
0.85m (close), 1.1m (mid) and 1.5m (far). Closer distances were not considered, since
the minimum measurement distance of the KinectSL is at 0.8m. But also because any
considerable closer distance would restrict the available workspace and therefore be
impractical in many cases. In order to avoid specular highlights, the samples were
placed slightly off the optical axis of the systems. For each distance all samples were
measured individually by successively placing them at the exact same location. This
guarantees exact same environmental conditions for every sample and also allows for a
direct comparison of the depth-values.

5.4.2 Results

For each sample the depth values were averaged both temporally (20 frames) and
spatially (partial area of the sample surface). The difference of this averaged value to
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5.4 Distance test

that of the reference measurement (white matte sample) can be seen as the relative
offset or additional error caused by the difference in surface reflectance. While larger
offsets clearly indicate a problem, smaller offsets are not necessarily without problems,
as they could be hidden by the averaging.

Another important factor is the amount of noise. Temporal averaging can deal with
lower levels of noise, but it becomes ineffective when noise levels are too high. As a
second measure the standard deviation for each individual pixel of the depth image over
20 frames was determined. The average standard deviation can be seen as an overall
measurement of noise in a measurement.

Figure 5.4 shows the average depth differences to the reference measurement and the
average standard deviations for each sample by system. While the Ensenso N10 and
the KinectSL show little differences in the average depth value, the KinectToF exhibits
considerable offsets for all the darker samples. Measuring close to the minimum depth
range seems to be a problem for both the KinectSL and KinectToF as the differences are
higher at close distance than at mid distance. Surprisingly the KinectToF already shows
clear differences for the bright glossy samples.

A closer look at the depth difference for each individual pixel as shown in Figure 5.6(a)
also reveals a much bigger local discrepancy for the glossy samples. The regions further
away from the optical axis of the system are showing bigger differences than the closer
regions, which are receiving more light in a more direct angle from the IR-emitter of the
KinectToF.

Though the Ensenso N10 does show little differences for all samples at close and mid
distance, a look on the standard deviations clearly shows a strong effect for the dark
samples. The increase in noise at far distance is quite drastic and already seems to
mark a maximum distance at which darker surfaces can still be measured. Though the
KinectSL seems to perform best, its low standard deviation is not the result of actual
low noise levels at the sensor, but rather due to quantization of the depth values. The
quantization step size is about 3mm at 1m distance [SJP11]. Therefore only differences
of at least 3mm can be considered. This is visible in Figure 5.5. Larger regions with
a single value are the result of this quantization, which is not visible in the difference
images of the other systems. It also explains why the KinectSL shows so similar offsets of
about 2mm at close distance (Figure 5.4(a)), since 2mm is the quantization step size at
that distance.
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(a) Depth difference (close)
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(b) Standard Deviation (close)
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(c) Depth difference (mid)
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(d) Standard Deviation (mid)
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(e) Depth difference (far)
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(f) Standard Deviation (far)

Figure 5.4: Difference to averaged depth value [mm] and average standard deviation
[mm] of pixels between frames measured from different distances. Blue:
Ensenso N10, Green: KinectSL, Red: KinectToF

48
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Figure 5.5: Difference images for KinectSL at mid distance showing effects of quantiza-
tion.

lg
g

tg
g

ag
m

ag
g

bg
m

bg
g

jb
m

jb
s

jb
g

-15

-10

-5

0

5

10

15

(a)

lg
g

tg
g

ag
m

ag
g

bg
m

bg
g

jb
m

jb
s

jb
g

-15

-10

-5

0

5

10

15

(b)

Figure 5.6: Difference images for KinectToF (a) and Ensenso N10 (b) at mid distance
(Bottom left is closer to depth image center)
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5.5 Angle test

One of the main problems when measuring objects with arbitrary geometry is the fact,
that surfaces have to be measured from sharper angles. This is a challenge for reflective
depth measurement as projected patterns get distorted and the light received per area
decreases. For matte surfaces with high albedo this is usually only a problem at very
sharp angles higher than 70°. Given the results of the previous test, this can be expected
to be a very different case for darker and glossier surface material.

5.5.1 Setup

In order to conduct the angle test in the same manner as the distance test, a contraption
was used to hold the samples in place at different angles. First the angle was adjusted
then each sample was placed on the holder at the exact same position for measurement.

(a) (b)

Figure 5.7: Angle test setup. (a) contraption to hold the samples in place at different
angles. (b) Side view of test setup
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5.5 Angle test

The holder was placed in 1m distance to the camera-systems and again slightly off the
optical axis to avoid specular highlights. For this reason the actual measurement angle
differs from the stated angle, which was determined by using a spirit level. Also since not
a single point but an area is measured, there are actually multiple measurement angles
involved at the same time. Generally the results should be considered as concerning an
angle slightly less sharp than the stated angle.

Measurements were taken at 0°, 15°, 30°, 45°, 60°, 75°, 80° and 85°. The actual surface
area considered for evaluation was kept roughly the same at all angles, resulting in less
depth pixels for the sharper angles. This mainly has an effect on measurements with
many invalid pixels where a bigger evaluation area may still yield some more depth
values. The alternative, using the same section of the depth image at all angles, has
been tested to show little difference in the results otherwise.

5.5.2 Results

As for the distance test the depth values were averaged and compared to the reference
measurement of the white matte sample. (As described in Section 5.4.2) Likewise the
standard deviation was determined.

The resulting values in both measures are shown in Figures 5.8, 5.9 and 5.10. Since
especially at sharper angles it was not always possible to obtain a depth value for each
pixel, the ratio of invalid pixels at each measurement is shown in dashed lines. The
results at 0° were included for reference, and can also be seen as another result for the
distance test. (Showing how much the offsets of the KinectToF can already change with a
slight change in distance/position)

The axis limits have been kept the same as for the distance test. All values have been
shown to either lie within the bounds or being completely off. (At higher angles the
KinectToF shows offsets up to 800mm.)

The KinectToF shows clear offsets already at a straight angle, but for non-straight angles
the effects are even more striking. Already at 45° the offsets for all the darker samples
are at 10mm or more, which is way too much to expect any usable measurement. At
rather straight angles the effects of gloss are clearly visible in the considerable higher
noise levels, which shows that glossy surfaces are problematic not only because of their
lower diffuse reflectance and specular highlights. With the exception of an outlier at
60° for the brightest glossy sample, it can also be observed that at less straight angles
starting from 30°, the effects of gloss generally are reduced and the measurements are
similar to the next darker matte sample.
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(a) Depth difference (0°)
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(b) Standard Deviation (0°)
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(c) Depth difference (15°)
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(d) Standard Deviation (15°)
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(e) Depth difference (30°)
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(f) Standard Deviation (30°)

Figure 5.8: Difference to averaged depth value [mm] and average standard deviation
[mm] of pixels between frames measured from 1m distance at 0°, 15° and
30°. The ratio of invalid pixels is shown by the dashed lines. Blue: Ensenso
N10, Green: KinectSL, Red: KinectToF
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(a) Depth difference (45°)
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(b) Standard Deviation (45°)
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(c) Depth difference (60°)
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(d) Standard Deviation (60°)
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(e) Depth difference (75°)
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(f) Standard Deviation (75°)

Figure 5.9: Difference to averaged depth value [mm] and average standard deviation
[mm] of pixels between frames measured from 1m distance at 45°, 60° and
75°. The ratio of invalid pixels is shown by the dashed lines. Blue: Ensenso
N10, Green: KinectSL, Red: KinectToF
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(a) Depth difference (80°)
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(b) Standard Deviation (80°)
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(c) Depth difference (85°)
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(d) Standard Deviation (85°)

Figure 5.10: Difference to averaged depth value [mm] and average standard deviation
[mm] of pixels between frames measured from 1m distance at 80° and 85°.
The ratio of invalid pixels is shown by the dashed lines. Blue: Ensenso
N10, Green: KinectSL, Red: KinectToF

The KinectSL and Ensenso N10 show rather robust measurements up to 60°, though
the Ensenso N10 shows considerable more noise for the darker samples. In contrast
to the KinectToF both systems seem to have a clear threshold at which samples are too
dark or glossy to be measured. This threshold is shifted from the black satin matte
sample at 30° to the glossy anthracite grey sample at 80° for the Ensenso N10. Finally,
at 85° measurements from all systems are becoming equally unusable for all of the
darker samples. Although the enormous outlier for the glossy light grey sample by the
Ensenso N10 at 85° is caused by an error in measurement, likely to be caused by the
interference from one of the other systems that have not been turned off in time to take
the measurement.
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5.5 Angle test

It is worth noting that the KinectSL and the Ensenso N10 much rather indicate invalid
measurements, where the KinectToF instead delivers completely wrong values. This is an
important quality, especially when the data may be combined with measurements from
another system.
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6 Discussion

Though the experiments described in the previous chapter are showing rather clear
results, it is important to keep in mind that all the results are relative to a system’s
general measurement qualities and cannot simply be used for direct comparison. Both
the distance and angle test provide no information on how good the measurement of
a system at a certain distance or angle are, but only how much they are affected by
different surface material. Therefore conclusions have to be drawn carefully. It is only
because the results are showing substantial differences, that they allow to draw more
far-reaching conclusions.

This chapter discusses limitations of each of the depth measurement methods on basis
of the new experimental results and previous findings with the aim of clarifying impli-
cations for applications in assembly environments. Table 6.1 at the end of this chapter
provides a brief summary on how the different methods compare in respect to different
environmental factors.

6.1 Active Stereo

The test conditions completely ignore one advantage of the Stereo Vision approach by
using surfaces with no texture at all. So it might be seen as an edge case, although
untextured surfaces are not that uncommon in assembly. But moreover the critical
low-albedo surfaces are unlikely to have a clearly visible texture.

The evaluated Ensenso N10 shows considerable effects only for very dark surfaces or
at sharper angles. While showing little depth-offset in average, the measurements are
noticeable noisier for darker surfaces. A more luminous pattern projector may be able
to lessen these effects and achieve results more similar to those of the KinectSL. The
generally much stronger increase in noise however, suggests a more general weakness of
the stereo vision approach. Since the correspondence algorithms are looking for any kind
of match, a possible explanation for this is the higher chance of false correspondences
caused by random noise.
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6 Discussion

It might seem that limitations for measuring low-albedo surfaces could be overcome by
simply increasing output power of the projector. The Distance test however suggests,
that projectors would have to be much stronger to measure darker surfaces from longer
distances. Also the the output power can only be increased up to a certain point, since
imaging sensors have a limited bandwidth. Too strong projection would easily over-
saturate the sensor and therefore prevent the pattern to be picked up from higher-albedo
surfaces. This could be mitigated by taking multiple measurements with different light
powers, but comes at the cost of increased complexity and measurement times.

A factor that cannot be changed however, is the inherent susceptibility of Active Stereo
for occlusion and shadowing by an object’s geometry, which is especially a problem in the
assembly scenario, where smaller details of an object can be relevant. Though through
the possibility of easily using multiple systems, Active Stereo still has an considerable
advantage.

6.2 Structured Light

The quantization of depth values used by the KinectSL may cover smaller differences
and let noise levels appear even lower than they are. But since the fluctuations in the
depth values are well beyond the rather small quantization step size of about 3mm at
1m, the results are still useful for comparison, especially for darker surfaces where the
other systems show considerable noisier measurements.

Overall the KinectSL appears to be least affected when measuring darker and glossy
surfaces. Effects are only noticable for very dark surfaces or at sharp angles higher than
60°. Even though the projector of the KinectSL is stronger than that of the Ensenso N10,
the Structured light approach may also have an systematic advantage. It is less likely to
produce false values at higher noise, as it looks for a known pattern instead of possibly
corresponding noisy values.

Occlusion and shadowing is also a problem for the Structured Light approach, but in
contrast to Active Stereo it is not possible to simply use multiple systems at same time
without special measures.

6.3 Time of Flight

It is likely that the KinectToF would show substantially different results, if tested isolated
with less reflective surfaces in the environment. It is however hardly practical to avoid
reflective surfaces in working environments, which are usually also required to have
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6.3 Time of Flight

brighter surfaces for ergonomic reasons. Even if the test environment can be considered
less optimal, it hardly poses an unlikely case for many working environments. Moreover
the large depth offsets for darker surfaces in almost all tested conditions, do not suggest
that a slight change in the environmental conditions could mitigate the problem.

What exactly causes the offsets is not clear. A possible explanation is to see it as an
extreme case of multipath interference. Since little light is reflected off the direct path,
it might be hard to distinguish this signal from that, which comes combined from many
other paths and the general noise of the imaging sensor. If multipath effects are involved,
then it presumably is an intrinsic problem of the ToF method and cannot be fixed without
changing the whole measurement process.

In any case a more powerful light source would clearly not be a solution. On the
one hand the light source of the KinectToF is already strong and needs cooling to keep
temperature. And on the other hand already measurements of less dark surfaces at close
distance are affected, suggesting that a change of higher magnitude is needed. In the
case of involved multipath effects it would also be clear, that increasing light output
would likewise increase these multipath effects.

Main advantages of ToF like higher ranges, compactness and less interference from
other IR-sources are of less importance in the assembly scenario. Since light source
and IR-camera can be put close together, occlusion and shadowing are a much smaller
problem for ToF. This is however is a comparatively slight advantage.

AS SL ToF
Long Range – – ++

High Ambient IR-light / Sunlight – – – ++
Depth Inhomogenity ◦ – –

Multipath interference ++ + – –
Occlusion / Shadowing – – – +

Dynamic Scenery + – ◦
Multi-system interference ++ – – –

Low-albedo Surfaces + ++ – –

Table 6.1: Overview of relative strengths and weaknesses of Active Stereo (AS), Struc-
tured Light (SL) and Time of Flight (ToF)
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7 Conclusion

This thesis explored and evaluated different Depth Imaging technology for suitability and
limitations of usage in semi-controlled assembly environments. The Active Stereo (AS),
Structured Light (SL) and Time of Flight (ToF) methods have been further investigated,
by experimentally evaluating three current depth-camera-systems: The Ensenso N10
(AS) from IDS Imaging, the first Kinect (SL) and second Kinect (ToF) from Microsoft.
The effects of surface albedo and gloss on measurements from different angles were
investigated with a systematic sample set.

7.1 Implications for usage in Assembly Scenario

While the ToF method has several advantages over the triangulation based methods, it
appears obviously unsuitable for the measurement of darker surface material (CIELAB
Lightness ≤ ~40) in assembly environments. This might already be a criterion for
exclusion in many application scenarios, unless the requirements clearly exclude the
need for measuring darker surfaces. For glossy surfaces the effects have been shown to
be weaker or stronger depending on the measurement angle, though the noise levels
were found to consistently equal or higher than those of matte surfaces. Furthermore
due to the difficulty of recognizing invalid measurements in such cases, a combination
of ToF with another method cannot simply be used for compensation.

The restrictions regarding darker surface material are much less pronounced for both AS
and SL. It should be possible to further reduce these restrictions by using more luminous
pattern projectors and if necessary combine multiple measurements with different
luminosity values. Though SL seems to have an advantage, AS may be preferred for its
easy use of multiple systems at the same time.

7.2 Further Research

This thesis presented experiments to asses effects of two different material properties
(albedo and gloss) and demonstrated that there are considerable limitations especially
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7 Conclusion

for ToF-systems. In order to identify the boundaries of these limitation more precisely,
the sample set could be extended to be more fine grained. Given exact reflectance and
gloss levels of the samples for the NIR-range, the results could then be used to model a
system’s relationship between the material properties and error magnitude respectively
noise level.

The sample set could also be extended to other material properties by including less
smooth surfaces with different micro-texture. Tough it is more difficult to produce
systematic samples in this case, a wider range of commonly used material could be
tested to provide a more realistic cross section than only smooth samples do.

Another direction to turn into is to investigate whether and how different material prop-
erties influence effects from other error sources like ambient IR light, depth disparities
and multipath interference.

An evaluation of different environments could help to shed more light on the huge
variations found in the ToF-measurements for low-albedo surfaces and clarify the role
of multipath interference. This could be done systematically by measuring in a low-
reflection and adding increasingly more reflective surfaces at varying distances.

Additonally the effects of multipath interference from internal reflections could be
investigated by using concave shaped samples.
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