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Abstract

This Thesis gives a brief introduction to Total Least Squares (TLS) comparing with the classical
LS, and its common solutions by singular value decomposition (SVD) approaches and the it-
eration, also following with the advantages and disadvantages of both methods. One method
named Converted Total Least Squares (CTLS) dealing with the errors-in-variables (EIV) model
can solve the problems of both. The basic idea of it is to take the stochastic design matrix el-
ements as virtual observations, and the TLS problem can be transformed into a LS problem.
The significance of CTLS lies not merely in attaining the optimal estimation of parameters and
more importantly in completing the theory of TLS with classical LS. As a comparison, another
estimation method based on Partial-EIV model will also be presented, which can deal with the
TLS problems with iterative algorithm. The coordinate transformation parameter estimation
formula of both algorithms are derived. By specifying the accuracy assessment formulas of
CTLS, this thesis identifies rigorously the degree of freedom of the EIV model in theory and
solves the bottleneck problem of TLS that restricts the application and development of TLS.

Key words Total Least Squares, singular value decomposition, errors-in-variables, virtual ob-
servation, Partial-EIV model, accuracy assessment.
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Chapter 1

Introduction

With the development of measurement means and continuous improvements in precision mea-
suring instruments, there are higher requests for rigor data processing theory. In 1794 Carl
Friedrich Gauss pointed out the Least Squares method (LS), and it could relatively solve the
problems of random errors by observation vector. After that Markov had systematic discoursed
on LS, and reached the famous Gauss-Markov Model. In the classical Least Squares estimation
process, for the linear model y = Ax + e , only the errors of observation vector y are consid-
ered, and the design matrix A is assumed to be accurate without any errors. In many cases, the
sample error, model error, instrument error, and other factors often cause the design matrix A
to become incompletely accurate. Which means the classical Least Squares method is no longer
reach the optimal solution in these cases. Further study based on Errors-in-Variables(EIV) are
wildly discussed. How to obtain the best parameter estimation values and give the statisti-
cal information of parameters in the EIV model is not ‘perfect‘ solved. Nevertheless, the EIV
model is still becoming increasingly widespread in remote sensing(Felus and Schaffrin 2005)
and geodetic datum processing(Schaffrin and Felus 2006,2008; Akyilmaz 2007; Michael K and
Mathias A 2007; Cai J and Grafarend EW 2009).
A data processing idea was rediscovered many times in a 2D linear fitting model and subse-
quently named Total Least Squares problem. The origin of this basic idea can be traced back to
the beginning of the last centry. In 1980, the mathematical structure of Total Least Squares(TLS)
was completed by Golub and Van Loan(1980), who gave the first numerically stable algorithm
based on matrix singular value decomposition. With the rapid development of the numeri-
cal method over the last decade, various approach for TLS emerged. These include singular
value decompositin (SVD), the completely orthogonal approach, the Cholesky decompositon
approach, the iterative approach, and so on(Ding 2007; Qiu 2008; Kong 2010; Golub 1980; Van
Huffel 1993,1997,2002; Schaffrin et al.2003; Markovsky et al.2006), the most representative of
which are the SVD and iterative solutions. However, there are some problems in the both
methods. In the SVD method, some elements of design matrix may be non-stochastic, or some
elements containing errors could appear more than once. To perform the minimum norm con-
straint without this consideration is inappropriate and may result in large deviations. By the
Iteration method, since the iteration is the gradual approximation of the true value of param-
eter, iteration solutions can be a problem if there is a high degree of nonlinearity. And this
method also has the problem by the repetition of parameters in design matrix.
Recent years, a further method reformed from EIV model called Partial-EIV has a relative good
solution to the problems which mentioned above. However almost all the Partial-EIV models
focus on the calculation with iteration. Which makes the mathematical algorithm very com-
plicate. According to the research results by Jianqing Cai, Nico Sneeuw, Yibin Yao and Jian
Kong, one method called Converted Total Least Squares (CTLS) was developed since 2010.
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This method has been culculated without iteration and at the same time solve the problem by
the repetition of elements and the non-stochastic elements containing errors in design matrix.
In this thesis the two transformation models (6-parameter affine transformation model and 7-
parameter Helmert transformation model) are firstly reviewed. They will be analyzed by using
131 BWREF points in Baden-Württemberg. Then the mathematic foundation of TLS method is
reviewed. Two different solutions SVD (Van Huffel, 1991) and iteration approach (Schaffrin,
2005) and the Partial-EIV model are introduced. And the representative experiments will be
implemented through the coordinate transformation in Baden-Württemberg. As a compari-
son, the transformation parameters estimated by LS, TLS (SVD), Partial-EIV model and CTLS
will be represented and discussed.



3

Chapter 2

Transformation models and data preparation

2.1 6-parameter affine transformation models(2D)

In the case of map coordinates, which result from the projection of the reference ellipsoid into
plane, a two-dimensional model is more useful. For example, when between the respective
reference systems (DHDN, Bessel and ETRS89, GRS80) no direct mathematical relationship
exists. Two-dimensional transformation models are used. As a result, the Gauss-Krüger
coordinates of the net points in DHDN can be transformed only over collocated points
into UTM coordinates related to ETR89. For the two dimensional transformation models,
there are three , four, five, or six transformation parameters, whose number depends on the
respective requirements. Because the models with three or five parameters can make for some
problems, e.g. non-linear equations problem, so they will not be considered here. In most
applications of the plane-transformation, the 6-parameter affine transformation model is used
and is recommended by the Surveying Authorities of the States of the Federal Republic of
Germany. Therefor, the 6-parameter affine model will be reviewed and applied in estimating
the parameters of the plane transformation parameters based on 131 collocated points in
Baden-Württemberg(Cai, 2006).

With the planar affine transformation, where six parameters are to be determined, both
coordinate directions are rotated with two different angles α and β. So that not only the
distances and the angles are distorted, but usually also the original orthogonality of the axes
of coordinates is lost. An affine transformation preserves collinearity and ratios of distances.
While an affine transformation preserves proportions on lines, it does not necessarily preserve
angles or lengths(Cai, 2006).

The 6-parameter affine transformation model between any two plane coordinates systems, e.g.
from Grauss-Krüger coordinate(H,R) in DHDN (G) directly to the UTM-Coordinate (N,E) in
ETRS89 can be written as [

N
E

]
=

[
λHcosα −λRsinβ
λHsinα λRcosβ

] [
H
R

]
+

[
tN
tE

]
(2.1)

Where tN and tE are translation parameters; α and β are rotation parameters; λH and λR are
scale corrections.
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2.2 7-parameter Helmert transformation models(3D)

In most applications of three-dimensional transformation three seven parameter similarity
transformation 3D Helmert model, also called after Bursa-Wolf (Bursa 1962, Wolf 1963),
Molodensky-Badekas (Molodensky et al., 1960; Badekas, 1969) and Veis(1960) models are
developed and used. Though the three seven parameter models are expressed in different
forms with different origin and parameters, their transformation results are completely
equialent. The description and the application of the Molodensky-Badekas models are referred
to Heck(1995) and Ihde et al.(1995).

• Bursa-Wolf model XG
YG
ZG

 = (1 + dλ)

 1 γ −β
−γ 1 α
β −α 1

XL
YL
ZL

+

TX
TY
TZ

 (2.2)

•Molodensky-Badekas modelXG
YG
ZG

 =

XL
YL
ZL

+

TX
TY
TZ

+

 0 ω −ψ
−ω 0 ε
ψ −ε 0

XL − XL0
YL − YL0
ZL − ZL0

+ dλ

XL − XL0
YL − YL0
ZL − ZL0

 (2.3)

• Veis modelXG
YG
ZG

 =

XL
YL
ZL

+

TX
TY
TZ

+ dλ

XL − XL0
YL − YL0
ZL − ZL0

+

 0 ZL0 − ZL YL − YL0
ZL − ZL0 0 XL0 − XL
YL0 − YL XL − XL0 0

−sinBL0cosLL0 −sinLL0 cosBL0cosLL0
−sinBL0sinLL0 cosLL0 cosBL0sinLL0

cosBL0 0 sinBL0

ωx
ωy
ωz

 (2.4)

The similarity of the transformation is particularly important since the conformal characteristic
of the coordinates after the transformation are maintained. They are applied particular for
the discrepancies between a local (e.g. DHDN related Bessel ellipsoid) and a global reference
system(e.g. ETRS89 related GRS80 Ellipsoid) which are due to the differences in the geodetic
datum. However, the three seven parameter models are expressed in different forms with
different origin and parameters, their transformation results are completely equivalent. So
7-parameter Helmert model is used most commonly(Cai, 2006).

The further reasons for the choice of 7-parameter Helmert transformation model are:

• It is the only known method which allows a direct interpretation of origin shifts.

• The rotations around the ’Earth-Centered, Earth-Fixed(ECEF)’ Cartesian axes can have
physical interpretations in global reference frames.

• It perform a conformal transformation, where the ratios of distances and the angles pre-
serve invariantly.(Cai, 2006)
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It performs a conformal transformation, where the ratios of distances and the angles preserve
invariantly. A ’local’ non-geocentric XL,YL,ZL-system can be transformed into a ’global’
geocentric XG,YG,ZG-system with the help of a 7-parameter Helmert transformation model.XG

YG
ZG

 =

TX
TY
TZ

+ (1 + dλ)

 1 γ −β
−γ 1 α
β −α 1

XL
YL
ZL


∼=

TX
TY
TZ

+

 dλ γ −β
−γ dλ α
β −α dλ

XL
YL
ZL

+

XL
YL
ZL

 (2.5)

Where TX,TY,TZ are translate parameters; α , β and γ are differential rotation parameters; dλ is
scale correction.

2.3 Data preparation and the analysis with collocated points in
Baden-Württemberg

In preparation of local coordinate of collocated points the Gauss-Krüger coordinates of DHDN
will be transformed to Bessel ellipsoidal coordinates latitude (BL) and longitude (LL) through
inverse conformal mapping formulas and the conversion of ellipsoidal coordinates (BL,LL,HL)
to geodetic Cartesian coordinates (XL,YL,ZL) and the reverse conversion are accomplished
through the general formula. For the global coordinates can be also converted with the same
algorithms on the GRS80 ellipsoid. Then we can construct the quasi-observations with the 131
collocated points (131 BWREF points in Baden-Württemberg) and perform the estimation of
the transformation parameters of the 7-parameter Helmert transformation and the 6-parameter
affine transformation. The transformation parameter solutions using above two models are
listed in table I and the residuals are illustrated in figure 2.1 and figure 2.2.

From the distribution of horizontal residuals shown in figure 1 by 3-D 7-parameter Helmert
transformation and figure 2 by 2-D 6-Parameter affine transformation we can find that there
are two rotational trends of the direction of the horizontal residual vectors which arc clockwise
in the northern part and counter-clockwise in the southern part. The cause for it lies despite
the homogeneity of the network structure in the remaining distortions of the DHDN, which is
highly correlated over larger areas. The horizontal position residuals of these sites bordering
(he boundary of the state of Baden-Württemberg arc larger than these inner sites. The latest
residual occur in site 130 by 0.43 m. similar results can also be found in figure 2 by 2-D
6-parameter affine transformation (Cai, 2006).

After the transformation of DHDN/Gauss Krüger coordinates into ETRS89/UTM coordinates,
the inherent traditional network distortions of the DHDN in Baden- Württemberg (BWREF)
can be visually shown through the residuals in 131 collocated points. Since the special
characteristic of the main triangulation network in Baden- Württemberg (statewide variable
net scales, inhomogeneous point accuracies and network distortions in the decimeter level) a
statewide similarity or affine transformation parameter set cannot satisfy the requirement of
the transformation accuracy in Baden-Württemberg (Cai, 2006).
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Table 2.1: Transformation parameters and their standard deviation with 131 BWREF points

6-parameter affine transformation GK(DHDN)-UTM(ETRS89)
tN(m) tE(m) α(′′) β(′′) dλH(×10−4) dλR(×10−4) RMS∗(m) σ̂(m)

437.1946 119.7567 0.1654 -0.1965 -3.9968 -3.9884 0.1187 0.1199

7-parameter Helmert transformation GK(DHDN)-UTM(ETRS89)
TX(m) TY(m) TZ(m) α(′′) β(′′) γ(′′) dλ(×10−6) RMS∗(m) σ̂(m)

582.9017 112.1681 405.6031 -2.2550 -0.3350 2.0684 9.1172 0.1241 0.1026

( RMS∗: quadratic means of the horizontal residuals)

Figure 2.1: Horizontal residuals after 6-parameter affine transformation in Baden-Württemberg network
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Figure 2.2: Horizontal residuals after 7-parameter Helmert transformation in Baden-Württemberg network
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Chapter 3

Total Least Squares

3.1 Introduction

The total least squares method is one of several linear parameter estimation techniques that
have been devised to compensate for data errors. The basic motivation for total least squares
(TLS) is the following: Let a set of multidimensional data points (vectors) be given. How can
one obtain a linear model that explains these data? The idea is to modify all data points in
such a way that some norm of the modification is minimized subject to the constraint that the
modified vectors satisfy a linear relation. (Van Huffel, 1991)
The origin of this basic idea can be traced back to the beginning of last century. It was redis-
covered many times, often independently, mainly in the statistical and psychometric literature.
However, it is only in the 1980s and 1990s that the technique also found wide use in scientific
and engineering applications. One of the main reasons for its popularity is the availability of
efficient and numerical robust algorithms, in which the singular value decomposition plays a
prominent role. Another reason is the fact the TLS is an application oriented procedure. It is
ideally suited for situations in which all data are corrupted by noise, which is almost always
the case in engineering applications. In this sense, it is a powerful extension of the classical
least squares method, which corresponds only to a partial modification of the data.
The problem of linear parameter estimation arises in a broad class of scientific disciplines such
as signal processing, automatic control, system theory and in general engineering, statistics,
physics, economics, biology, medicine, etc... It starts from a model described by a linear
equation.

y = a1ξ1 + · · ·+ amξm (3.1)

Where a1, · · · , am and y denote the variables and ξ = [ξ1, · · · , ξm]
T ∈ Rm plays role of a

parameter vector that characterizes the specific system. The basic problem is then to determine
an estimate of the true but unknown parameters from certain measurements of the variables.
This gives rise to an overdetermined set of m linear equations(m > n):

y = Aξ + ey (3.2)

Where the i − th row of the data matrix A ∈ Rm and the vector of observations y ∈ Rn

contain the measurements of the variables a1, · · · , am and y, respectively. In the classical least
squares (LS) approach the measurements A of the variables ai (the right-hand side of (3.2)) are
assumed to be free of error and hence, all errors are confined to the observation vector y (the
left-hand side of (3.2)). However, this assumption is frequently unrealistic: sampling errors,
human errors, modelling errors and instrument errors may imply inaccuracies of the data
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matrix A as well. TLS is one method of fitting that is appropriate when there are errors in both
the observation vector y and the data matrix A. It amounts to fitting a ’best’ subspace to the
measurement data (AT

i , yi),i = 1, · · · , n, where AT
i is the i− th row of A. To illustrate the effect

of TLS in comparison with LS, we consider here a simple example of parameter estimation,
i.e., only one parameter (m = 1) is to be estimated. Hence, equation(3.1) reduces to

y = aξ (3.3)

An estimate for parameter ξ is to be found from n measurements of the variables a and y:

ai = a0
i + ∆ai

yi = y0
i + ∆yi i = 1, · · · , n

(3.4)

By solving the linear system (3.2) with A = [a1, · · · , an]T and b = [b1, · · · , bn]T. ∆ai and ∆yi
represent the random errors added to the true values a0

i and y0
i of the variables a and y. If a

can be observed exactly, i.e., ∆ai = 0, errors only occur in the measurements of y contained in
the right-hand side vector y. Hence, the use of LS for solving (3.2) is appropriate. This method
perturbs the observation vector y by a minimum amount e so that (y− e) can be predicted by
Aξ. This is done by minimizing the sum of squared and differences

n

∑
i=1

(yi − aiξ)
2 (3.5)

The best estimate ξ̂y of ξ follows then immediately:

ξ̂y = (AT A)−1ATy =
∑n

i=1 aiyi

∑n
i=1 a2

i
(3.6)

If y can be measured without error, i.e., ∆yi = 0, the use of LS is again appropriate. Indeed we
can rewrite as

y
ξ
= a (3.7)

And confine all errors to the measurements of α contained in the right-hand side vector A of
the corresponding set of equations A ≈ yξ−1. By minimizing the sum of squared differences
between the measured values ai and the predicted values yi/ξ, the best estimate ξ̂A of ξ is given
by

ξ̂y = (yTy)−1yT A =
∑n

i=1 a2
i

∑n
i=1 aiyi

(3.8)

In many application, however, both variables are measured with errors, i.e., ∆ai 6= 0 and
∆yi 6= 0. If the errors are independently and identically distributed with zero mean and
common variance σ2

v , the best estimate ξ̂ is obtained by minimizing the sum of squared
distances of the observed points from the fitted line, i.e.,

n

∑
i=1

(yi − aiξ)
2/(1 + ξ2) (3.9)

This is in fact the solution ξ̂TLS we obtain by solving (3.2) with the TLS method for m = 1.



Chapter 3 Total Least Squares 10

3.2 Total Least Squares with singular value decomposition(SVD)

The singular value decomposition(SVD) is of great theoretical and practical importance for
the LS and TLS problems. Not only does it provide elegant geometrical and algebraic insights
into many numerical linear algebra problems, but also at the same time, a numerically reliable
algorithm can be devised.

If C ∈ Rn×m then there exist orthonormal matrices U = [u1, · · · , un] ∈ Rn×m and
V = [v1, · · · , vn] ∈ Rn×m such that (Van Huffel, 1991)

UTCV = ∑ = diag(σ1, · · · , σp), σ1 ≥ · · · ≥ σp ≥ 0 and p = min(n, m) (3.10)

The σi are are the singular values of C and they are collectively known as the singular value
spectrum. The vectors ui and vi are the i− th left singular vector and the i− th right singular
vector, respectively. The triplet ui, sigmai, vi is called a singular triplet. It is easy to verify by
comparing columns in the equations CV = U ∑ and CTU = ∑T V that

Cvi = σiui and CTui = σivi i = 1, · · · , p (3.11)

The SVD reveals many interesting structures of a matrix. If the SVD of C is given by Theorem
1, and we define r by

σ1 ≥ · · · ≥ σr ≥ σr+1 = · · · = σp = 0

the number of positive singular values, then

rank(C) = r,
R(C) = R([u1, · · · , ur]),
N(C) = R([vr+1, · · · , vm]),

Rr(C) = R(CT) = R([v1, · · · , vr]),

Nr(C) = N(CT) = R([ur+1, · · · , un]).

(3.12)

Moreover, if Ur = [u1, · · · , ur], ∑r = diag(σ1, · · · , σp) and Vr = [v1, · · · , vr], then we have the
SVD expansion

C = Ur ∑
r

V T
r =

r

∑
i=1

σiuivT
i (3.13)

Above equation, which is also called the dyadic decomposition, decomposes the matrix C of
rank r in a sum of r matrices of rank one. Also, the 2-norm an the Frobenius norm are neatly
characterized in terms of the SVD:

‖C‖2
F =

n

∑
i=1

m

∑
j=1

c2
ij = σ2

1 + · · ·+ σ2
p , p = min(n, m)

‖C‖2 = sup
y 6=0

‖Cy‖2
‖y‖2

= σ1
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With Eckart-Young-Mirsky matrix approximation theorem, let the SVD of C ∈ Rn × m be
given by C = ∑r

i=1 σiuivT
i with r = rank(C). If k < r and Ck = ∑k

i=1 σiuivT
i , then

min
rank(D)=k

‖C− D‖2 = ‖C− Ck‖2 = σk+1

min
rank(D)=k

‖C− D‖F = ‖C− Ck‖F =

√√√√ p

∑
i=k+1

σ2
i , p = min(n, m)

(3.14)

Eckart and Young originally proved the theorem for the Frobenius norm in 1936. In 1960,
Mirsky proved the theorem for the 2-norm. Therefore, Theorem 2 is called the Eckart-Young-
Mirsky Theorem (Van Huffel, 1991).

On the basis of the above mathematical theorems, convert model Ax = b to
[
A b

] [ x
−1

]
= 0.

If it performs SVD on matrix
[
A b

]
, using the above theorem, following formulas can be

derived under the criteria
∥∥[Â; b̂

]
−
[
A; b

]∥∥
2 = min.

x̂ = − 1
vt+1,t+1

[v1,t+1 · · · vt+1,t+1]
T

[
∆A ∆b

]
=
[
Â b̂

]
−
[
A b

]
= σt+1ut+1vT

t+1

(3.15)

Where t is the number of parameters. Although this algorithm is based on established math-
ematical theorems, it has a weakness. Golub and Van Loan presumed that A, b are stochastic
elements and performed SVD directly on the matrix

[
Â b̂

]
. However, some elements of A

may be non-stochastic, or some elements containing errors could appear more than once. To
perform the minimum norm constraint without this consideration is inappropriate and may
result in large deviations.

3.3 Total Least Squares with the Euler-Lagrange approach

Another solution for TLS is the iterative method(Schaffrin, 2006). The most important feature
of the iterative method is it’s straightforward algorithm. Schaffrin and Felus(2003) have intro-
duced a multivariate version of Total Least Squares (TLS) adjustment in order to determine the
optimal parameters of an affine coordinate transformation empirically.

The following model, with full-rank matrix A, is assumed (Schaffrin, 2003):

(A− EA)ξ − (y− e) = 0
E {[EA, e]} = 0
C {[EA, e]} = 0

D {vec [EA, e]} = Σ0 ⊗ In

(3.16)
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Where e and EA denote a random error vector, resp. matrix. Σ0 = σ2
0 Im+1 is a (m+ 1)× (m+ 1)

matrix with an unknown variance component σ2
0 and given identity matrix Im+1. The symbol

⊗ denotes the ’Kronecker-Zehfuss product’ of matrices, defined by:

M ⊗ N :=
[
mij · N

]
For M = mij and N arbitrary.

The ’vec’ operator stacks one column of a matrix under the other, moving from left to right. In
contrast to the Least-Squares(LS) method, this is based on the minimization of

eTe = (y− Aξ)T(y− Aξ) (3.17)

Under the condition EA = 0, the(equally weighted) TLS principle is based on minimizing the
objective function (Schaffrin, 2003):

eTe + (vecEA)
T(vecEA) = min(ξ) (3.18)

When performing an adjustment, it is sometimes necessary to fix some parameters to spe-
cific values. Here, a total least squares solution will be presented, along with an iteration
scheme(Schaffrin, 2003).

In order to solve the TLS problem as presented in (3.18) and minimize the respective objective
function in view of the model (3.16), we define the Lagrange target function as follows where

eA : = vec(EA) ∼ (0, σ2
0 Im ⊗ In)

Φ(e, eA, λ, ξ) = eTe + eT
AeA + 2λT [y− e− Aξ + EAξ]

(3.19)

Where λ denotes the n× 1 vector of Lagrange multipliers; note that

EAξ = (ξT ⊗ In)eA (3.20)

thus the Euler-Lagrange necessary conditions are (Schaffrin, 2003):

1
2

∂Φ

∂e
= ê− λ̂ = 0

1
2

∂Φ

∂eA
= êA − (ξ̂ ⊗ In)λ̂ = 0

1
2

∂Φ

∂λ
= y− Aξ̂ − ê + ÊAξ̂ = 0

1
2

∂Φ

∂ξ
= −ATλ̂ + ÊT

Aλ̂ = 0

This system is simplified into:

(AT A)ξ̂ = ATy + ξ̂(λ̂Tλ̂)(1 + ξ̂T ξ̂)

λ̂ = (ê− ÊAξ̂)(1 + ξ̂T ξ̂)−1 = (y− Aξ̂)(1 + ξ̂T ξ̂)−1 (3.21)

Note that

v̂ =
(y− Aξ̂)T(y− Aξ̂)

(1 + ξ̂T ξ̂)
= (λ̂Tλ̂)(1 + ξ̂T ξ̂) = êT ê + ÊT

AÊAξ̃ = min(ξ) (3.22)



Chapter 3 Total Least Squares 13

is Rayleigh’s quotient for the matrix [
AT A ATy
yT A yTy

]
(3.23)

with
[
ξ̂T,−1

]T
as the vector argument. Rayleigh’s quotient defines the minimum eigen-

value of the augmented matrix, based on the corresponding eigenvector(see, e.g.,G. Strang,
1988)(Schaffrin, 2003).
Using these equations the following algorithm had been developed by Schaffrin (2003) to solve
the TLS problem (Schaffrin, 2003):

1) Compute the LS solution:

ξ̂1 = (AT A)−1ATy ( f or v̂0 := 0)

2) Insert the solution of step 1) as the innitial value for the following iterative process:

ξ̂i+1 = (AT A)−1[ATy +
(y− Aξ̂i)T(y− Aξ̂i)

(1 + (ξ̂i)T ξ̂i)
]

3) End when
∥∥∥ξ̂i+1 − ξ̂i

∥∥∥ < ε. Then

σ̂2
0 =

v̂
(n−m)

The algorithm seems to converge to the TLS solution in most cases although it’s efficiency
(convergence rate, convergence radius, etc.) still needs to be further investigated. However,
since the iterative method is the gradual approximation of the true value of parameter, iterative
solutions can be a problem if there is a high degree of nonlinearity.

3.4 Total Least Squares based on Partial-EIV model

Total Least Squares has attracted a widely spread attention since Golub and van Loan (1980)
coined the terminology of Total Least Squares and demonstrated that the TLS solution can be
readily obtained algorithmically by singular value decomposition about 30 years ago. The
Total Least squares method has been developed to deal with observation equations, which
are functions of both unknown parameters of interest and other measured data contaminated
with random errors. Such an observation model is well known as an errors-in-variables (EIV)
model and almost always solved as a nonlinear equality-constrained adjustment problem. Xu,
Liu and Shi (2012) reformulate it as a nonlinear adjustment model without constraints and
further extend it to a Partial-EIV model, in which not all the elements of the design matrix
are random. As a result, the total number of unknowns in the normal equations has been
significantly reduced.

The EIV observation model is defined as:

y− ey = (A− EA)ξ (3.24)
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Where y denotes the m × 1 observation vector, A represents the the m × n coefficient matrix
with rank(A) = n < m. ξ represents the n × 1 unknown parameter vector. Moreover, ey
denotes the random error vector of y, and EA denotes the random error matrix of A. ey is often
supposed to be of zero mean and a variance-covariance matrix σ2

0 Qy , with Qy being a given
positive definite cofactor matrix and σ2

0 an variance of unit weight. eA = vecEA, in which ’vec’
denotes the operator which stacks one column of the matrix underneath the previous one, eA
is also assumed to be zero mean and the variance-covariance matrix is defined as σ2

0 Qy , with
QA being the cofactor matrix of eA, QA is singular when the matrix A contains non-random
elements. ey and eA is uncorrelated.

Xu etal.(2012) transformed the EIV model into a partial-EIV model by extracting functionally
independent random variables within the coefficient matrix:

y− ey = (ξT ⊗ Im) [h + B(a− ea)] (3.25)

where Im is the m − th order identity matrix, a is a t × 1 vector of functionally independent
variables within A, ea denotes the random error vector of a, h is a deterministic constant
vector whose elements correspond to the non-random elements of A, B is a given deterministic
matrix with a dimension of mn× t. Obviously, A can be expressed as:

A = ivec(h + Ba) (3.26)

where ’ivec’ represents the inverse operator of ’vec’ , which recovers the mn× 1 vector to the
original matrix with a dimension of m× n.
The corresponding stochastic model of the partial EIV model is:[

ey
ea

]
∼
([

0
0

]
σ2

0

[
Qy 0
0 Qa

])
(3.27)

where Qa denotes a given positive definite cofactor matrix of ea.
We assume that the obtained parameter estimator vector after i − th iteration is ξ(i), and the
predictive residual vector of a is ea(i). The right-hand member of (3.25) is expressed through

Taylor series expansion at
(

X(i), ea(i)

)
:

y− ey =
(

XT
(i) ⊗ Im

)
(h + Ba)−

(
XT
(i) ⊗ Im

)
Bea + ivec(h + B(a− ea(i)))δξ

= Aξ(i) + A(i)δξ − (ξT
(i) ⊗ Im)Bea

(3.28)

where
A(i) = ivec(h + B(a− ea(i))) = A− ivec(Bea(i)) (3.29)

In (3.28), the terms of the second and higher orders are omitted, whereas only the first order
terms are maintained. δξ denotes the small corrected values of ξ.
The Lagrange objective function of TLS is constructed as:

Φ(ey, ea, ξ, λ) =

eT
y Q−1

L ey + eT
a Q−1

a ea + 2λT(y− ey − Aξ(i) − A(i)δξ + (ξT
(i) ⊗ Im)Bea)

(3.30)
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where λ is the m× 1 vector of ’Lagrange multipliers’, the solution of this target function can be
derived via the Euler-Lagrange necessary conditions:

1
2

∂Φ

∂ey
= Q−1

L ê− λ̂ = 0

1
2

∂Φ

∂ea
= Q−1

a êa + BT(ξ(i) ⊗ Im)λ̂ = 0

1
2

∂Φ

∂ξ
= −AT

(i)λ̂ = 0

1
2

∂Φ

∂λ
= y− Aξ(i) − êy + (ξT

(i) ⊗ Im)Bêa = 0

(3.31)

The following equations are derived though solving (3.31):

δξ̂(i+1) = (AT
(i)Q

−1
c(i)A(i))

−1AT
(i)Q

−1
c(i)(y− Aξ(i)) (3.32)

with
ξ̂(i+1) = δξ̂(i+1) + ξ(i)

then we get the new ξ̂(i+1)

δξ̂(i+1) = (AT
(i)Q

−1
c(i)A(i))

−1AT
(i)Q

−1
c(i)(y− (ξT

(i) ⊗ Im)Bea(i)) (3.33)

êy(i+1) = QyQ−1
c(i)(y− Aξ(i) − A(i)δξ̂(i+1)) (3.34)

êa(i+1) = QaBT(ξ(i) ⊗ Im)Q−1
c(i)(y− Aξ(i) − A(i)δξ̂(i+1)) (3.35)

In equations (3.35-3.38),

Qc(i) = Qy + (ξT
(i) ⊗ Im)BQaBT(ξ(i) ⊗ Im) (3.36)

The iterative process described in equations (3.32-3.35) can be implemented from LS solution.
A small positive number threshold ε should be primarily presented to terminate iteration until∥∥∥δ ˆξ(i+1)

∥∥∥ < ε , where ‖·‖ represents l2-norm of a vector. This algorithm reduced the number of
unknowns and directly deal with the positive cofactor matrix Qa instead of QA. However, we
can see from the equations above that, the mathematical algorithm is very complicate. Which
makes it quite difficult to grasp.
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Chapter 4

Converted Total Leat Squares

4.1 Introduction and mathematical foundation

The Converted Total Least Squares (CTLS) is proposed for dealing with the errors-in-variables
(EIV) model. Firstly take classic Gauss-Markov model of LS as basis equation.

y = Aξ + ey (4.1)

Taking into account the design matrix’s errors in model (4.1) will lead to difficulties for
parameter estimation and accuracy assessment. Particularly, one cannot apply the traditional
error propagation law directly, since die law is established on the basis of linear relations.
The basic idea of CTLS is to take the stochastic design matrix elements as virtual observation.
On the basis of the original error equation, the number of observation equation is increased by
taking the design matrix elements as the observation vector, and some of the design matrix
elements are estimated as parameters in the new algorithm. The advantage of such strategy
is the ability to obtain the adjusted value of required parameters, the design matrix is formed
by the initial value of design matrix parameters, which no longer has random properties. The
parameters obtained are the linear functions of the observation vector. After this treatment,
(4.1) is combined with the classical LS adjustment theory.
Augmenting the observation equations that take design matrix elements as virtual observation
on the basis of the original error equation.

ya = ξa + ea (4.2)
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Figure 4.1: Illustrate the basic idea of the algorithm

Where ya is comprised of the design matrix elements that contain errors, and ξa is comprised
of the new parameters. If (4.1)is combine with (4.2), a mathematical model under the new
algorithm can be obtained.

y = Aξ + ey

ya = ξa + ea
(4.3)

It should be clear that ya contains only the observations of design matrix. To distinguish the
design matrix in the original model, the symbol Aξ is used to denote the design matrix in (4.1),
which is formed by the initial value of parameters ξa and some elements without errors.
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Based on the above model, we can get the following error equations

ey = (A0
ξ + EA)(ξ0 + ∆ξ)− y

= A0
ξ∆ξ + EAξ0 + A0

ξξ0− y + ∆A∆ξ → EA∆ξ ≈ 0

= A0
ξ∆ξ + B∆a + A0

ξξ0− y

ea = a− ya

(4.4)

Where EA is composed of ∆a, the corrections to the new parameters, and B∆a is the rewritten
form of EAξ0. In converting EAξ0 to B∆a , which is the key step for the approach. A0

ξ is
composed of non-stochastic elements in the design matrix and the initial value a.

Define η =

[
y− A0

ξξ0

a− ya

]
, Aη =

[
A0

ξ B
0 E

]
, ∆η =

[
∆ξ
∆a

]
, eη =

[
ey
ea

]
, (4.5) can be reduced to:

η = Aη∆η+ eη (4.5)

Where eη is the residual vector of all observations, Aη is formed by the initial values of the
parameters, and ∆η is comprised of the corrections to all parameters. The estimation criterion
is still eT

η eη → min, which is the same as eT
y ey + eT

η eη → min. Since the TLS problem is
transformed into the classical LS problem, the adjustment can be completed by following the

classical LS principle. The new weight matrix is Pη =

[
Py 0
0 Pa

]
. And the TLS problem can be

solved considering the weight of observations and stochastic design matrix by:

∆η̂ = (AT
η PηAη)

−1AT
η Pηη (4.6)

4.2 Estimation formula of unit weight variance

The estimation formula of unit weight variance of the TLS is difficult to determine. In
considering the design matrix errors, the question of whether or not the degree of freedom for
adjustment model changes arises. The TLS problem is converted into a classical LS problem
using the new algorithm. With model (4.6), after adjustment by the LS principle, and V as
the correct ion of observations, accuracy assessment is straightforward from the adjustment
theory. (4.8) is the resulting formula of unit weight variance for TLS.

σ2
0 =

AT
η PηAη

tr(PηQVV)
=

AT
η PηAη

(n + u)− (t + u)
=

AT
η PηAη

n− t
(4.7)

where n is the number of observations that the observation vector y contains, u is the number
of stochastic elements in the design matrix A. t is the number of parameters, here only the
number of original parameters in model (4.1). u ≤ n× t and tr(PηQVV) = (n + u)− (t + u) is
the conclusion of the Gauss-Markov theorem.
Compared with LS, the degree of freedom for TLS does not change, that is, TLS and LS have
the same degrees of freedom.
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4.3 Co-factor matrix of parameters

Giving the error description of parameters is a basic object of adjustment. The TLS accuracy
assessment problem is difficult to resolve in TLS adjustment theory. For decades, many
scholars have proposed different methods to do so. However, these methods vary in terms
of degrees of approximation, such that real statistical information of parameters cannot be
obtained. CTLS allows TLS accuracy assessment through the theory of classical LS accuracy
assessment.
After the adjustment based on model (4.6), the design matrix is formed by the initial value of
design matrix parameters since it no longer has random properties, and accuracy assessment
can continue based on the principle of error propagation The co-factor of parameters may be
taken as an example below:

Q∆η̂′∆η̂′ = (AT
η PηAη)

−1AT
η PηQηPηB(BT PηB)−1 = (AT

η PηAη)
−1 (4.8)

Solving TLS problems by CTLS does not only solve the TLS accuracy assessment problem,
which limit the expanded use of TLS, but also achieves integration of the TLS theory with the
classical LS approach.

Appendix Vectorization of the matrix product equation

Vec(ABC) = (CT ⊗ A)Vec(B)

ABX = Vec(ABX) = Vec(XT BT AT)

ABX = (XT ⊗ A)Vec(B)

If A
n·n

= I, B
n·t

, then

I
n·n

B
n·t

X = (XT ⊗ I)
t·1

Vec(B)

And

B
n·t

X
t·1

= (XT ⊗ I)
n⊗np

Vec(B)
np·1
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Chapter 5

Application of the coordinate transformation in
Baden-Württenberg with different Estimation
methods

5.1 Transformation in two-dimensional(2D)

Before we transform the coordinate, we need to centralize the 6-parameter affine transforma-
tion model in order to vanish the translation parameters.[

N
E

]
=

[
λHcosα −λRsinβ
λHsinα λRcosβ

] [
H
R

]
+

[
tN
tE

]

=:
[

ξ11 ξ21
ξ12 ξ22

] [
H
R

]
+

[
ξ31
ξ32

]
=

[
H R 0 0 1 0
0 0 H R 0 1

]


ξ11
ξ21
ξ12
ξ22
ξ31
ξ32


(5.1)

Because the element ’1’ and ’0’ have no error, the translation parameters shall disappear
by centering this equation. Thus, after the centering the coordinates in the mid point, the
translation parameters tN and tE will be automatically vanished. Then the observation and old
coordinates are centered on their average values in the form:[

N
E

]
=:
[

ξ11 ξ21
ξ12 ξ22

] [
H
R

]
(5.2)

with

N = N −mean(N), E = E−mean(E)
H = H −mean(H), R = R−mean(R)
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Figure 5.1: Illustrate the process for 6p-affine transformation

5.1.1 Transformation with Total Least Squares(SVD)

For the n couple of coordinates we have the transformation model, which is suited for the
application of TLS solution.

E





N1
...

Nn
E1
...

En




= E





H1 R1 0 0
...

...
...

...
Hn Rn 0 0
0 0 H1 R1
...

...
...

...
0 0 Hn Rn






ξ11
ξ21
ξ12
ξ22



y− e = (A− EA)ξ (5.3)

eT e + ET
AEA = min(e, EA, ξ) (5.4)

Solution of the TLS problem by using the singular value decomposition(SVD).

ξTLS = (AT A− σ2
m+1I)−1AT y (5.5)

with σm+1 the smallest singular value of the augmented design matrix [A; y]:

[A; y] = UΣV T =
m+1

∑∑∑
i=0

σiuivT
i , σ1 ≥ · · · ≥ σm+1 ≥ 0

The best TLS approximation [Â; ŷ] of [A; y] is give by

[Â; ŷ] = UΣV T , with Σ̂ = diag(σ1, · · ·, σm, 0)

and with corresponding TLS correction matrix

[ÊA; ê] = [A; y]− [Â; ŷ] = σm+1um+1vT
m+1

With MATLAB function [U,S,V]=svd(X) these procedures can be implemented easily.
We can see from the design matrix A that, the elements H i and Ri appeared twice, which means
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their corrections have been calculated twice. Additionally, the element 0 also have correction
when we perform SVD method. 0 is a non-stochastic element and theoretically has no correc-
tion. This means that SVD has a theoretical weakness in that it can not be applied directly when
only part of the design matrix contains errors.

5.1.2 Transformation with Total Least Squares based on Partial-EIV model

For the n couple of coordinates we have the same transformation model, which is suited for
the application of TLS solution.

E





N1
...

Nn
E1
...

En




= E





H1 R1 0 0
...

...
...

...
Hn Rn 0 0
0 0 H1 R1
...

...
...

...
0 0 Hn Rn






ξ11
ξ21
ξ12
ξ22



Reform the EIV observation model from

y− ey = (A− EA)ξ

to

y− ey = (ξT ⊗ Im) [h + B(a− ea)] (5.6)

Create the vector a, h and the deterministic matrix B

a
(2n×1)

=



H1
...

Hn
R1
...

Rn


h = 0

B
(8n×2n)

=



In 0
0 0
0 In
0 0
0 0
In 0
0 0
0 In


with In =

1 0 0

0
. . . 0

0 0 1


 = n, 0 =

0 0 0

0
. . . 0

0 0 0


 = n

The iterative process will implemented with the following steps.

1) The initial values of parameters ξ can be taken from the LS solution.

ξ(1) = (AT Py A)−1AT Pyy
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2) Get the correspond cofactor matrix of y

Qc(i) = Qy + (ξT
(i)⊗ Im)BQaBT(ξ(i)⊗ Im)

3) Calculate the value differences δξ̂ and get the new value ξ

δξ̂(i+1) = (AT
(i)Q−1

c(i)A(i))
−1AT

(i)Q−1
c(i)(y− Aξ(i))

ξ̂(i+1) = δξ̂(i+1) + ξ(i)

4) Calculate the correction of y and a

êy(i+1) = QyQ−1
c(i)(y− Aξ(i)− A(i)δξ̂(i+1))

êa(i+1) = QaBT(ξ(i)⊗ Im)Q−1
c(i)(y− Aξ(i)− A(i)δξ̂(i+1))

5) Repeat steps 2)-4), until
∥∥∥δ ˆξ(i+1)

∥∥∥ < ε for a given ε > 0. The detail calculations are written
as MATLAB code, which can be found in the Appendix.

5.1.3 Transformation with Converted Total Least Squares

In Converted Total Least Squares for the n couple of coordinates with the same transformation
model, which is suited for the application of TLS solution.

E





N1
...

Nn
E1
...

En




= E





H1 R1 0 0
...

...
...

...
Hn Rn 0 0
0 0 H1 R1
...

...
...

...
0 0 Hn Rn






ξ11
ξ21
ξ12
ξ22



Reform the EIV observation model from

y− ey = (A− EA)ξ

to

η = Aη∆η+ eη (5.7)

Where η =

[
y− A0

ξξ0

a− ya

]
, Aη =

[
A0

ξ B
0 E

]
, ∆η =

[
∆ξ
∆a

]
, eη =

[
ey
ea

]

ey = (A0
ξ + EA)(ξ0 + ∆ξ)− y

= A0
ξ∆ξ + EAξ0 + A0

ξξ0− y + ∆A∆ξ → EA∆ξ ≈ 0

= A0
ξ∆ξ + B∆a + A0

ξξ0− y

ea = a− ya
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The key step here is converting EAξ0 to B∆a.
Create the correspond matrixs

EA
(2n×4)

=



∆H1 ∆R1 0 0
...

...
...

...
∆Hn ∆Rn 0 0

0 0 ∆H1 ∆R1
...

...
...

...
0 0 ∆Hn ∆Rn


, ξ0

(4×1)
=


ξ0

11
ξ0

21
ξ0

12
ξ0

22

 , ∆a
(2n×1)

=



∆H1
...

∆Hn
∆R1

...
∆Rn



EAξ0 = B∆a = (

[
ξ0

11 ξ0
21

ξ0
12 ξ0

22

]
⊗ In)∆a

B
(2n×2n)

=

[
ξ0

11 ξ0
21

ξ0
12 ξ0

22

]
⊗ In =



ξ0
11 0 0

0
. . . 0

0 0 ξ0
11

ξ0
21 0 0

0
. . . 0

0 0 ξ0
21

ξ0
12 0 0

0
. . . 0

0 0 ξ0
12

ξ0
22 0 0

0
. . . 0

0 0 ξ0
22


The solution of CTLS is

∆η̂ = (AT
η PηAη)

−1AT
η Pηη

The solution ∆η̂ is a (2n + 4)× 1 vector. The first 4 elements of ∆η are the corrections of ξ and
the following 2n elements are the corrections of ya, which are the corrections for the initial
design matrix A. The final transformation parameters are ξ̂ = ∆ξ + ξ0, with ξ0 calculated
from the LS solution.
The detail calculations are written as MATLAB code, which can be found in the Appendix.

5.1.4 Presentation and Comparison of the results

Statistical data by the quadratics sums of the residuals for 4 estimators. The ê is the residuals
of observation and Ê is the residuals of design matrix.
LS:

êT
LS êLS = 3.678308 (m2)

TLS:

êT
TLS êTLS = 0.409136 (m2)

ÊT
TLSÊTLS = 0.817619 (m2)

êT
TLS êTLS + ÊT

TLSÊTLS = 1.226756 (m2)
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TLSP:

êT
TLSP êTLSP = 0.920311 (m2)

ÊT
TLSPÊTLSP = 0.919577 (m2)

êT
TLSP êTLSP + ÊT

TLSPÊTLSP = 1.839889 (m2)

CTLS:

êT
CTLS êCTLS = 0.920311 (m2)

ÊT
CTLSÊCTLS = 0.919577 (m2)

êT
CTLS êCTLS + ÊT

CTLSÊCTLS = 1.839889 (m2)

Table 5.1: Comparison of 6-parameter affine transformation parameters with 4 estimators

Transformation 6-parameter affine transformation GK(DHDN)-UTM(ETRS89)
models tN(m) tE(m) α(′′) β(′′) dλH(×10−4) dλR(×10−4)

LS 437.194567 119.756709 0.165368 -0.196455 -3.996797 -3.988430
TLS 437.194554 119.756712 0.165368 -0.196455 -3.996797 -3.988430

Partial-EIV 437.194556 119.756709 0.165375 -0.196445 -3.996797 -3.988430
CTLS 437.194556 119.756709 0.165375 -0.196445 -3.996797 -3.988430

Table 5.2: Numerical deviation of 6-parameter affine transformation with 4 estimators

Transformation
model

Collocated
sites

Absolute mean of
Residuals (m)

Max.absolute mean
of Residuals(m)

RMS
(m)

Standard deviation
of unit weight (m)

[VN ] [VE] [VN ] [VE]

LS B-W 131 0.1049 0.0804 0.3288 0.3226 0.1187 0.1199
TLS B-W 131 0.0350 0.0268 0.1097 0.1076 0.0396 0.0400

Partial-EIV B-W 131 0.0525 0.0402 0.1645 0.1614 0.0594 0.0848
CTLS B-W 131 0.0525 0.0402 0.1645 0.1614 0.0594 0.0848
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Figure 5.2: Horizontal residuals after 6-parameter affine transformation in Baden-Württemberg network

Figure 5.3: Horizontal residuals after 6-parameter affine transformation in Baden-Württemberg network
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Figure 5.4: Horizontal residuals after 6-parameter affine transformation in Baden-Württemberg network

Figure 5.5: Horizontal residuals after 6-parameter affine transformation in Baden-Württemberg network
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From the results above, we can see that the SVD, Partial-EIV and CTLS all have better estima-
tions than the LS, which is obvious and reasonable. It should be pointed out that, it seems that
SVD has a better results than Partial-EIV and CTLS. Which is not correct, because the SVD is a
method taking the whole elements in design matrix into consideration. Under the same weight
conditions, the deviation is systematically distributed to every element in the design matrix,
even those non-stochastic elements included. As a consequence, the residuals calculated with
SVD are not that dispersion. For the Partial-EIV and CTLS, they have almost the same results in
every part of estimation data. That means CTLS can calculate the 2 dimensional transformation
parameters without iteration and has the same level of accuracy with Partial-EIV.

5.2 Transformation in three-dimensional(3D)

The following formula has been used for the estimation of the parameters in seven-parameter
Helmert transformation.XG

YG
ZG

 = (1 + dλ)

 1 γ −β
−γ 1 α
β −α 1

XL
YL
ZL

+

TX
TY
TZ


XG = λ

 1 γ −β
−γ 1 α
β −α 1

XL + TL

(5.8)

Where λ is scale factor, α, β, γ are rotation angles. The translation terms TX, TY, TZ are the
coordinates of the origin of the 3-D network.
After the linearization, the formula is rewritten:

XG
YG
ZG

 =

1 0 0 0 −ZL YL XL
0 1 0 ZL 0 −XL YL
0 0 1 −YL XL 0 ZL




TX
TY
TZ
δα
δβ
δγ
λ


(5.9)

After centering the coordinates in the midpoints, the translation parameter TX, TY, TZ will
disappear, and then the observations and old coordinates are centered on their average values.
This will be assumed in the following:

xg
yg
zg

 =

 0 −zl yl xl
zl 0 −xl yl
−yl xl 0 zl




δα
δβ
δγ
λ

 (5.10)

with xg
yg
zg

 =

XG
YG
ZG

−mean

XG
YG
ZG

 ,

xl
yl
zl

 =

XL
YL
ZL

−mean

XL
YL
ZL

 (5.11)
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Figure 5.6: Illustrate the process for 7p-Helmert transformation

5.2.1 Transformation with Total Least Squares(SVD)

In 3D coordinate transformation we have the similar solution with 2D in the SVD method.

e





xg1
...

xgn
yg1

...
ygn
zg1

...
zgn





=: E





0 −zl1 yl1 xl1
...

...
...

...
0 −zln yln xln

zl1 0 −xl1 yl1
...

...
...

...
zln 0 −xln yln
−yl1 xl1 0 zl1

...
...

...
...

−yln xln 0 zln






δα
δβ
δγ
λ



y− e = (A− EA)ξ (5.12)

eT e + ET
AEA = min(e, EA, ξ) (5.13)

Solution of the TLS problem by using the singular value decomposition(SVD).

ξTLS = (AT A− σ2
m+1I)−1AT y (5.14)
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with σm+1 the smallest singular value of the augmented design matrix [A; y]:

[A; y] = UΣV T =
m+1

∑∑∑
i=0

σiuivT
i , σ1 ≥ · · · ≥ σm+1 ≥ 0

The best TLS approximation [Â; ŷ] of [A; y] is give by

[Â; ŷ = UΣV T , with Σ̂ = diag(σ1, · · ·, σm, 0)

and with corresponding TLS correction matrix

[ÊA; ê] = [A; y]− [Â; ŷ] = σm+1um+1vT
m+1

5.2.2 Transformation with Total Least Squares based on Partial-EIV model

For the n couple of coordinates we have the transformation model, which is suited for the
application of TLS solution.

E





xg1
...

xgn
yg1

...
ygn
zg1

...
zgn





=: E





0 −zl1 yl1 xl1
...

...
...

...
0 −zln yln xln

zl1 0 −xl1 yl1
...

...
...

...
zln 0 −xln yln
−yl1 xl1 0 zl1

...
...

...
...

−yln xln 0 zln






δα
δβ
δγ
λ



Reform the EIV observation model from

y− ey = (A− EA)ξ

to

y− ey = (ξT ⊗ Im) [h + B(a− ea)] (5.15)

Create the vector a, h and the deterministic matrix B

a
(3n×1)

=



xl1
...

xln
yl1
...

yln
zl1
...

zln


h = 0
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B
(12n×3n)

=



0 0 0
0 0 In
0 −In 0
0 0 −In
0 0 0
In 0 0
0 In 0
−In 0 0

0 0 0
In 0 0
0 In 0
0 0 In



with In =

1 0 0

0
. . . 0

0 0 1


 = n, 0 =

0 0 0

0
. . . 0

0 0 0


 = n

The iterative process will implemented with the following steps.

1) The initial values of parameters ξ can be taken from the LS solution.

ξ(1) = (AT Py A)−1AT Pyy

2) Get the correspond cofactor matrix of y

Qc(i) = Qy + (ξT
(i)⊗ Im)BQaBT(ξ(i)⊗ Im)

3) Calculate the value differences δξ̂ and get the new value ξ

δξ̂(i+1) = (AT
(i)Q−1

c(i)A(i))
−1AT

(i)Q−1
c(i)(y− Aξ(i))

ξ̂(i+1) = δξ̂(i+1) + ξ(i)

4) Calculate the correction of y and a

êy(i+1) = QyQ−1
c(i)(y− Aξ(i)− A(i)δξ̂(i+1))

êa(i+1) = QaBT(ξ(i)⊗ Im)Q−1
c(i)(y− Aξ(i)− A(i)δξ̂(i+1))

5) Repeat steps 2)-4), until
∥∥∥δ ˆξ(i+1)

∥∥∥ < ε for a given ε > 0. The detail calculations are written
as MATLAB code, which can be found in the Appendix.
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5.2.3 Transformation with Converted Total Least Squares

In Converted Total Least Squares for the n couple of coordinates with the same transformation
model, which is suited for the application of TLS solution.

E





xg1
...

xgn
yg1

...
ygn
zg1

...
zgn





=: E





0 −zl1 yl1 xl1
...

...
...

...
0 −zln yln xln

zl1 0 −xl1 yl1
...

...
...

...
zln 0 −xln yln
−yl1 xl1 0 zl1

...
...

...
...

−yln xln 0 zln






δα
δβ
δγ
λ



Reform the EIV observation model from

y− ey = (A− EA)ξ

to

η = Aη∆η+ eη (5.16)

Where η =

[
y− A0

ξξ0

a− ya

]
, Aη =

[
A0

ξ B
0 E

]
, ∆η =

[
∆ξ
∆a

]
, eη =

[
ey
ea

]

ey = (A0
ξ + EA)(ξ0 + ∆ξ)− y

= A0
ξ∆ξ + EAξ0 + A0

ξξ0− y + ∆A∆ξ → EA∆ξ ≈ 0

= A0
ξ∆ξ + B∆a + A0

ξξ0− y

ea = a− ya

The key step here is converting EAξ0 to B∆a.
Create the correspond matrixs

EA
(3n×4)

=



0 −∆zl1 ∆yl1 ∆xl1
...

...
...

...
0 −∆zln ∆yln ∆xln

∆zl1 0 −∆xl1 ∆yl1
...

...
...

...
∆zln 0 −∆xln ∆yln
−∆yl1 ∆xl1 0 ∆zl1

...
...

...
...

−∆yln ∆xln 0 ∆zln


, ξ0

(4×1)
=


ξ0

11
ξ0

21
ξ0

12
ξ0

22

 , ∆a
(3n×1)

=



∆xl1
...

∆xln
∆yl1

...
∆yln
∆zl1

...
∆zln


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EAξ0 = B∆a = (
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The solution of CTLS is

∆η̂ = (AT
η PηAη)

−1AT
η Pηη

The solution ∆η̂ is a (3n + 4)× 1 vector. The first 4 elements of ∆η are the corrections of ξ and
the following 3n elements are the corrections of ya, which are the corrections for the initial
design matrix A. The final transformation parameters are ξ̂ = ∆ξ + ξ0, with ξ0 calculated
from the LS solution.
The detail calculations are written as MATLAB code, which can be found in the Appendix.

5.2.4 Presentation and Comparison of the results

Statistical data by the quadratics sums of the residuals for 4 estimators. The ê is the residual of
observation and Ê is the residual of design matrix.
LS:

êT
LS êLS = 4.063234 (m2)

TLS:

êT
TLS êTLS = 1.015790 (m2)

ÊT
TLSÊTLS = 1.015808 (m2)

êT
TLS êTLS + ÊT

TLSÊTLS = 2.031598 (m2)
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TLSP:

êT
TLSP êTLSP = 1.015790 (m2)

ÊT
TLSPÊTLSP = 1.015808 (m2)

êT
TLSP êTLSP + ÊT

TLSPÊTLSP = 2.031598 (m2)

CTLS:

êT
CTLS êCTLS = 1.015790 (m2)

ÊT
CTLSÊCTLS = 1.015808 (m2)

êT
CTLS êCTLS + ÊT

CTLSÊCTLS = 2.031598 (m2)

Table 5.3: Comparison of 7-parameter Helmert transformation parameters with 4 estimators

Transformation 7-parameter Helmert transformation GK(DHDN)-UTM(ETRS89)
models TX(m) TY(m) TZ(m) α(′′) β(′′) γ(′′) dλ(×10−6)

LS 582.901711 112.168080 405.603061 -2.255032 -0.335003 2.068369 9.117208
TLS 582.901702 112.168078 405.603051 -2.255032 -0.335003 2.068369 9.117210

Partial-EIV 582.901701 112.168078 405.603051 -2.255032 -0.335003 2.068369 9.117210
CTLS 582.901711 112.168080 405.603061 -2.255032 -0.335003 2.068369 9.117208

Table 5.4: Numerical deviation of 7-parameter Helmert transformation with 4 estimators
Transformation

model
Collocated

sites
Absolute mean of

Residuals (m)
Max.absolute mean

of Residuals(m)
RMS
(m)

Standard deviation
of unit weight (m)

[VN ] [VE] [VN ] [VE]

LS B-W 131 0.1051 0.0843 0.4212 0.3112 0.1240 0.1026
TLS B-W 131 0.0526 0.0421 0.2106 0.1556 0.0620 0.0513

Partial-EIV B-W 131 0.0526 0.0421 0.2106 0.1556 0.0620 0.0513
CTLS B-W 131 0.0526 0.0421 0.2106 0.1556 0.0620 0.0513
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Figure 5.7: Horizontal residuals after 7-parameter Helmert transformation in Baden-Württemberg network

Figure 5.8: Horizontal residuals after 7-parameter Helmert transformation in Baden-Württemberg network
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Figure 5.9: Horizontal residuals after 7-parameter Helmert transformation in Baden-Württemberg network

Figure 5.10: Horizontal residuals after 7-parameter Helmert transformation in Baden-Württemberg network
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From the results above, we can see that, the same with 2D coordinate transformation, the SVD
,Partial-EIV and CTLS all have better estimations than the LS. However,it is important to note
here, that the quadratics sums of the residuals of SVD, Partial-EIV and CTLS are the same with
each other. As a matter of fact the differences of them exist after 7 decimal places, which is no
meaning to discuss about it. So why they have almost the same residuals.
After study into the transformation models, it is found that, unlike the design matrix in affine
transformation model, the elements by Helmert transformation in design matrix are calculated
3 times. However, the weights and influences of these elements are different with that in affine
transformation. To be more specific we can see from the base transformation models and part
of the residuals of the design matrix.

E





N1
...

Nn
E1
...

En




= E





H1 R1 0 0
...

...
...

...
Hn Rn 0 0
0 0 H1 R1
...

...
...

...
0 0 Hn Rn






ξ11
ξ21
ξ12
ξ22



E
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
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
δα
δβ
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λ



In the affine transformation, the transformation parameters after centering are ξ11, ξ12, ξ21 and
ξ22. The correspond data are λHcosα,−λRsinβ,λHsinα and λRcosβ, in which the rotation pa-
rameters α and β are really small. So λHcosα and λRcosβ (ξ11,ξ22)have much bigger influences
on the design matrix. And after the calculate by SVD method, the absolute value of the first and
fourth column of the residuals by design matrix are much bigger than second and third column.
In the Helmert transformation, the transformation parameters after centering are δα,δβ,δγ and
λ. The rotation parameters are very small too and the scale has relative bigger influence. So
after the calculate by SVD method, the absolute value of the fourth column of the residuals by
design matrix are much bigger than others.
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Table 5.5: First 10 rows of the residuals by design matrix with 2D affine transformation

0.033378 3.179106×10−8 2.6760356×10−8 0.033378

0.068186 6.494339×10−8 5.466658×10−8 0.068186

-0.096281 -9.170245×10−8 -7.719122×10−8 -0.096281

0.005882 5.601823×10−9 4.715376×10−9 0.005882

0.040717 3.878038×10−8 3.264367×10−8 0.040717

0.041302 3.933744×10−8 3.311258×10−8 0.041302

-0.109623 -1.044095×10−7 -8.788746×10−8 -0.109623

-0.031937 -3.041849×10−8 -2.560499×10−8 -0.031937

-0.029446 -2.804580×10−8 -2.360776×10−8 -0.029446

0.001235 1.175897×10−9 9.898197×10−10 0.001235

Table 5.6: First 10 rows of the residuals by design matrix with 3D Helmert transformation

2.261038×10−7 3.358953×10−8 -2.073878×10−7 -0.020682

5.867438×10−7 8.716551×10−8 -5.381755×10−8 -0.053669

-9.169869×10−7 -1.362258×10−7 8.410823×10−7 0.083876

1.253344×10−7 1.861943×10−8 -1.149597×10−7 -0.011464

4.069860×10−7 6.046104×10−8 -3.732973×10−7 -0.037227

3.329597×10−7 4.946384×10−7 -3.053987×10−7 -0.030456

-8.796520×10−7 -1.306794×10−7 8.068378×10−7 0.080461

-1.221220×10−7 -1.814221×10−8 1.120133×10−7 0.011170

-2.906775×10−7 -4.318247×10−8 2.666163×10−7 0.026588

3.301255×10−7 4.904279×10−9 -3.027990×10−8 -0.003020

From the table we can see that, in the 3D Helmert transformation, there is only one column
in the residuals of design matrix has effective data. Which means in this case, although the
coordinates in design matrix have been calculated 3 times, 2 of them have very small residuals.
Only one, the fourth column has effectively calculated. As a result, the final quadratics sums
of the residuals of SVD are almost the same with Partial-EIV and CTLS. But it can not prove
that, SVD is as good as Partial-EIV and CTLS. Because it still has some systematical problems,
like it has the residuals for 0. We could see that, SVD might be acceptable in 3D Helmert
transformation.



39

Chapter 6

Conclusion

The tradition techniques used for solving the linear estimation problems are based on classical
LS. However, only the errors of observation vector are considered, and the design matrix is
assumed to be accurate without any errors. Which makes LS not valid for most cases. Further
study based on Errors-in-Variables(EIV), Total Least Squares method considers the errors
in design matrix as well. The problem of which is, the repetition of parameters in design
matrix has a deviation influence on the minimum norm constraint. Reform from EIV-model to
Partial-EIV model and the Converted Total Least Squares could solve the Problem. Compared
with Partial-EIV model, the solution of Converted Total Least Squares does not need the
iteration.

For the concrete ’Introduction of ETRS89 into Baden-Württemberg’ has an alternative transfor-
mation procedure with the different estimation methods been applied in the transformation
with the models of the 7-parameter Helmert transformation and 6-parameter affine transfor-
mation using the 131 collocated points, and the results have been tested and discussed here.
Based on these analyses and comparisons with different estimation methods the following
points can be concluded (Cai, 2006):

• The traditional SVD method of TLS has a theoretical weakness in that it can not be applied
directly when only part of the design matrix contains errors.

• The Converted Total Least Squares may be used to to deal with stochastic design matrix
in LS solutions. In this approach, the TLS problem can be transformed into a LS problem,
and the non-linear problem can be transformed into a linear problem.

• The Converted Total Least Squares can be easily used to consider the weight of observa-
tions and stochastic design matrix.

• Although the estimated transformation parameters of Partial-EIV model and Converted
Total Least Squares are almost identical, the CTLS has its advantage without complicated
iteration processing.

• This thesis completes the theory of TLS accuracy assessment, gives statistical informa-
tion of parameters under the TLS method, improves the TLS algorithm, and solves the
bottleneck restricting the application of TLS.

Generally, it is hoped that this thesis can help the reader to have a better understanding about
the TLS theory and the application.
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