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Abstract

The main task of geodesy is providing geodetic networks with fixed points in order to create
a uniform geographical spatial reference frame as a fundament for the data collection by the
official geodesy survey institutes. A german geodesy survey institute called AdV (Arbeits-
gemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland)
declared in 1991 that the ETRS89 datum should be introduced in Germany as a reference
system.

In order to transform the already exiting coordinate informations in the Gauß-Krüger coordi-
nate system into the later introduced UTM coordinate system, different transformation models
have been developed and discussed. Besides the most commonly used 7-parameter Helmert
transformation and 6-parameter affine transformation models, polynomial transformation
models can also be applied. A method for improving the transformation results of a polyno-
mial model will be discussed, with which a significance test (T-test) for each parameter will
be done and the polynomial terms with lower significance to the model will be eliminated in
order to get the optimal polynomial model.

Here different transformation models are reviewed and the transformation results based on
these models with the Least Squares estimation method are compared and analysed.
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Chapter 1

Introduction

The Gauß-Krüger coordinate system is a Cartesian coordinate cystem, which is named after
Carl Friedrich Gauss and Johann Heinrich Louis Krüger. After publication the Gauß-Krüger
coordinate system has became a commonly used reference system in Germany.

The UTM coordinate cystem was developed in 1947 by the Armed Forces of the United
States(Markus Penzkofer 2017). It was originally used by the American military, but with the
development and popularization of the UTM coordinate cystem, it was finally also introduced
into Germany.

The Gauß-Krüger coordinate system is a transverse Mecator map projection. The cylinder
is longitudinal along a certain meridian. Because of such a map projection the Gauß-Krüger
coordinate system is known as a conformal projection that does not remain true directions.
The reference ellipsoid of the Gauß-Krüger coordinate system is the Bessel ellipsoid (1841). In
this system the earth is divided into 120 meridional zones. Each meridional zone is 3 degrees
wide and reaches from the North Pole to the South Pole parallel to its central meridian. The
origin of the Gauß-Krüger coordinate system is the intersection of the central meridian and the
equator. The x-coordinate is called Hochwert H, which counts positive from the origin parallel
to the north direction of the central meridian. And the y-coordinate is called Rechtswert R,
which is the modified value from the origin to east along the equator. Germany uses the
meridional zones with the central meridians 6◦, 9◦, 12◦, 15◦.

The UTM coordinate system is an universal transversal Mercator projection based on the
ETRS89 datum. It divides the earth into 60 zones, each spanning of lontitude and having its
own central meridian. The origin for each zone is the intersection of its central meridian and
the equator. To eliminate negative coordinates, the coordinate system alters the coordinate
values at the origin. The value given to the central meridian is the false easting, and the value
assigned to the equator is the false northing. A false easting of 500,000 meters is applied. A
north zone has a false northing of zero, while a south zone has a false northing of 10,000,000
meters.

In oder to introduce ETRS89 into Baden-Würtemberg the transformation from the Gauß-
Krüger coordinates in German geodetic reference system into UTM coordinates in the ETRS89
is necessary.

For the coordinate transformation different transformation models have been widely devel-
oped and discussed. Under the circumstance when the 6-parameter affine transformation and
7-parameter helmerttransformation can not achieve the required precision, the polynomial
models are usually applied. In oder to find the best polynomial combination, a significance
test of the transformation parameter is needed. For the estimation of the transformation



Chapter 1 Introduction 2

parameters the Least Squares method and Total Least-Squares method are usually used. There
are also other estimation methods, but here the Least Squares method will be applied as the
estimation method of the transformation parameters.

131 collocated points in both coordinate system (Gauß-Krüger Coordinate System and UTM
Coordinate System) participate in the transformation, among which 121 points are the collo-
cated points and 10 points are the interpolated points.

The transformation results of the 6-parameter affine transformation, 7-parameter helmerttrans-
formation, different polynomial models and the selected polynomial models with significance
test (T-test) will be analysed and compared. With the analysis the practicability and the
reliability of the polynomial models will be checked.
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Chapter 2

Transformation Models

2.1 2-D Transformation Models

2.1.1 6-Parameter Affine Transformation

Two-dimensional transformation models are directly based on the map coordinates, which
are resulted from the projection of the reference ellipsoid into plane. Here the coordinate
transformation from Gauß-Krüger coordinate system in DHDN into UTM coordinate system
in the ETRS89 datum in Baden-Würtemberg is discussed. The coordinates in both systems
are georeferenced plane coordinates and quite different from the non-georeferenced plane
coordinates such as Cartesian coordinates and polar coordinates, which can be easily trans-
formed from one coordinate system to the other with direct mathematical relationships, which
has the consequence that the Gauß-Krüger coordinates of the net points of the DHDN can
be transformed only over collocated points into UTM coordinates related to ETRS89. The
most commonly used two-dimensional transformation models are the 4-parameter similarity
transformation and 6-parameter affine transformation models. Here the 6-parameter affine
transformation model will be used for the plane coordinate transformation based on the 121
collocated points in Baden-Würtemberg.

With the 6-parameter affine transformation, both coordinate axis are not only rotated with
two different angles α and β, but also scaled with two different scale corrections mH and mR.
Besides, the origin also changes its position with two translation parameters in both coordinate
directions. The 6-parameter affine transformation results in a change of the original angles or
lengths. However, it preserves collinearity and ratios of distances.

The 6-parameter affine transformation model from Gauß-Krüger coordinates to UTM coordi-
nates can be written as

[
N
E

]
=

[
mHcosα −mRsinβ
mHsinα mRcosβ

] [
H
R

]
+

[
tN
tE

]
(2.1)

with:
tN and tE: translation parameters

α and β: rotation angles

mH and mR: scale corrections
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The 6-parameter affine transformation model can be simplified as

[
N
E

]
=

[
a b
g f

] [
H
R

]
+

[
tN
tE

]
(2.2)

with:
a = mHcosα

b = −mRsinβ

g = mHsinα

f = mRcosβ

2 translation parameters: tN and tE

2 rotation parameters: α = arctan( g
a ) and β = arctan( b

f )

2 scale corrections: mH =
√

a2 + g2 and mR =
√

b2 + f 2

When a · f − b · g 6= 0 and there are at least 3 collocated points, the 6 transformation parameters
tN , tE, α, β, mH, mH will have unique solution.

The final linearized model can be written as

[
E
N

]
=

[
1 0 R H 0 0
0 1 0 0 R H

]


tE
tN
f
g
b
a

 (2.3)

All the collocated points should be located in the same meridional zone of the Gauß-Krüger
coordinate system and in the same zone of the UTM coordinate system, otherwise a transfor-
mation between different zones is also necessary.

2.1.2 2D Multiple Linear Regression

Compared with the 4-parameter similarity transformation and 6-parameter affine transforma-
tion models, whose mainly task is to determine the physical relationship between different
datums, the coordinate transformation model with multiple linear regression in 2D coordinate
transformation is to find a series of best-fit equations, which provides the local shifts in latitude
and longitude as a function of position. While the equations might be physically meaningless,
it may extremely valuable for the coordinate transformation.

The main advantages of the multiple regression equation method over 6-parameter affine
transformation model is that a better fit over continental size land areas can be achieved.The
main disadvantage of this method is that the results outside area of the collocated points can
be extremely unreliable (Cai, 2009). As a consequence , the collocated points should cover the
boundaries of the area in which the transformation is to process.
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The two-dimensional multiple linear regression model can be defined as

∆φ = A0 + A1U + A2V + A3U2 + A4UV + A5V2 + ... + A99U9V9

∆λ = B0 + B1U + B2V + B3U2 + B4UV + B5V2 + ... + B99U9V9 (2.4)

where
A0, B0 = constant

A0,B0, A1,B1,..., Ann,Bnn = coefficients determined in the development

U = k(φ - φm ) = normalized geodetic latitude of the computation point

V = k(λ - λm ) = normalized geodetic longitude of the computation point

k = scale factor, and degree-to-radian conversion

φ, λ = local geodetic latitude and local geodetic longitude(in degrees), respectively, of the
computation point

φm, λm = mid-latitude and mid-longitude values, respectively, of the local geodetic datum
area(in degrees)

Conversion of the equation(2.4) in Gauß-Markov model l = Ax:


∆φG1
∆φG2

...
∆φG(n−1)

∆φGn

 =


1 UL1 VL1 U2

L1 UL1VL1 · · · U9
L1V9

L1
1 UL2 VL2 U2

L2 UL2VL2 · · · U9
L2V9

L2
...

...
...

...
...

. . .
...

1 UL(n−1) VL(n−1) U2
L(n−1) UL(n−1)VL(n−1) · · · U9

L(n−1)V
9
L(n−1)

1 ULn VLn U2
Ln ULnVL1 · · · U9

LnV9
Ln





A0
A1
A2
A3
A4
A5
...

A99


(2.5)


∆λG1
∆λG2

...
∆λG(n−1)

∆λGn

 =


1 UL1 VL1 U2

L1 UL1VL1 · · · U9
L1V9

L1
1 UL2 VL2 U2

L2 UL2VL2 · · · U9
L2V9

L2
...

...
...

...
...

. . .
...

1 UL(n−1) VL(n−1) U2
L(n−1) UL(n−1)VL(n−1) · · · U9

L(n−1)V
9
L(n−1)

1 ULn VLn U2
Ln ULnVL1 · · · U9

LnV9
Ln





B0
B1
B2
B3
B4
B5
...

B99


(2.6)

The polynomial parameters will be estimated with Least Squares Method.



Chapter 2 Transformation Models 6

2.2 3-D Transformation Models

2.2.1 7-Parameter- Helmerttransformation

When the collocated points are based in a 3-D Cartesian coordinate system, a three-dimensional
transformation model is then required instead of a 2D 6-parameter affine transformation
model. In most applications of three-dimensional transformation seven parameter similarity
transformation model, which is also usually named as 7-parameter Helmert transforma-
tion model, is suggested to be applied. Compared with 8-parameter Vanicek-Well model,
9-parameter Hotine model and 10-parameter Krakiwsky-Thomson model, the 7-parameter
Helmert transformation model has more advantages. It allows a direct physical interpretation
of the origin shifts and performs a conformal transformation, where the ratios of distances and
the angles preserve invariantly (Cai, 2009).

The 7-parameter Helmert transformation allows three-dimensional coordinates to be trans-
formed from one geodetic datum to another on the basis of transformation parameters
estimated from at least three common points. The common points should be selected in such a
way that they homogeneously cover the entire region which is to be transformed. The number,
distribution and coordinate quality of the common points determine the achievable accuracy
of the transformation.

With the 7-parameter Helmert transformation model, the orthogonality condition of three
coordinate axes remain unchanged. Threee axes rotate individually with three angles α, β, γ.
The origin of the coordinate system has a translation TX, TY, TZ in three axes direction. Besides,
three axes scale with the same scale correction λ.

In a conclusion, the 7-parameter Helmert transformation model between two Cartesian system
can be written as

XG
YG
ZG

 = λR3(γ)R2(β)R1(α)

XL
YL
ZL

+

TX
TY
TZ

 (2.7)

with

R1(α) =

1 0 0
0 cosα sinα
0 −sinα cosα


R2(β) =

cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ


R3(γ) =

 cosγ sinγ 0
−sinγ cosγ 0

0 0 1


XG, YG, ZG: coordinates of the common points in global system

XL, YL, ZL: coordinates of the common points in global system

7 parameters in the transormation model:
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TX, TY, TZ: translation parameters

α, β, γ: rotation parameters of three coordinate axes

λ : scale correction

In order to simplify the product of three rotation matrices, some characters of the matrices and
rotation angles should be considered.
The three rotation matrices are orthogonal matrices, so there is R−1 = RT

Generally, the rotation angles α, β, γ are small, so

α = δα, β = δβ, γ = δγ

sinα = α, sinβ = β, sinγ = γ

cosα = cosβ = cosγ = 1

δαδβ = δβδγ = δαδγ = 0

With the above conditions the product of three rotation matrices can be approximated as

R3(γ)R2(β)R1(α) ≈

 1 γ −β
−γ 1 α
β −α 1


And the scale correction is written as λ = 1 + δλ The transformation model (2.7) can be con-
verted as XG

YG
ZG

 = (1 + δλ)

 1 δγ −δβ
−δγ 1 δα
δβ −δα 1

XL
YL
ZL

+

TX
TY
TZ

 (2.8)

In order to determine the 7 parameter, the transformation model (2.8) still needs to be con-
verted in Gauß-Markov model l = Ax:

XG
YG
ZG

 =

TX
TY
TZ

+

1 + δλ δγ −δβ
−δγ 1 + δλ δα
δβ −δα 1 + δλ

XL
YL
ZL


=

TX
TY
TZ

+

XL
YL
ZL

+

 δλ δγ −δβ
−δγ δλ δα
δβ −δα δλ

XL
YL
ZL



The final form of the 7-parameter transformation model can be written as

XG
YG
ZG

−
XL

YL
ZL

 =

1 0 0 0 −ZL YL XL
0 1 0 ZL 0 −XL YL
0 0 1 −YL XL 0 ZL




TX
TY
TZ
δα
δβ
δγ
δλ


(2.9)
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2.2.2 Quadratic Polynomial Transformation Model

The concept of modelling the 3D network distortions with 7-parameter transformation has
been explained. Mikhail developed simultaneous three dimensional transformation with poly-
nomial of higher degree and the general polynomial in three-dimensions for the coordinate
transformation.

Similar with 2D multiple linear regression, quadratic polynomial model is based on the
directly expression of changes in the curvilinear coordinates between two datums. Here the
transformation with the quadratic polynomial model from one Cartesian coordinate system to
another is discussed.
The quadratic polynomial model can be written as

XG =βX0 + βX1XL + βX2YL + βX3ZL + βX4X2
L + βX5Y2

L + βX6Z2
L+

βX7(XLYL) + βX8(XLZL) + βX9(YLZL)
(2.10)

YG =βY0 + βY1XL + βY2YL + βY3ZL + βY4X2
L + βY5Y2

L + βY6Z2
L+

βY7(XLYL) + βY8(XLZL) + βY9(YLZL)
(2.11)

ZG =βZ0 + βZ1XL + βZ2YL + βZ3ZL + βZ4X2
L + βZ5Y2

L + βZ6Z2
L+

βZ7(XLYL) + βZ8(XLZL) + βZ9(YLZL)
(2.12)

The transformation model(2.10), (2.11), (2.12) can also be written in Gauß-Markov model l =
Ax


XG1
XG2
XG3

...
XGn

 =


1 XL1 YL1 ZL1 X2

L1 Y2
L1 Z2

L1 XL1YL1 XL1ZL1 YL1ZL1
1 XL2 YL2 ZL2 X2

L2 Y2
L2 Z2

L2 XL2YL2 XL2ZL2 YL2ZL2
1 XL3 YL3 ZL3 X2

L3 Y2
L3 Z2

L3 XL3YL3 XL3ZL3 YL3ZL3
...

...
...

...
...

...
...

...
...

...
1 XLn YLn ZLn X2

Ln Y2
Ln Z2

Ln XLnYLn XLnZLn YLnZLn





βX0
βX1
βX2
βX3
βX4
βX5
βX6
βX7
βX8
βX9


(2.13)
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YG1
YG2
YG3

...
YGn

 =


1 XL1 YL1 ZL1 X2

L1 Y2
L1 Z2

L1 XL1YL1 XL1ZL1 YL1ZL1
1 XL2 YL2 ZL2 X2

L2 Y2
L2 Z2

L2 XL2YL2 XL2ZL2 YL2ZL2
1 XL3 YL3 ZL3 X2

L3 Y2
L3 Z2

L3 XL3YL3 XL3ZL3 YL3ZL3
...

...
...

...
...

...
...

...
...

...
1 XLn YLn ZLn X2

Ln Y2
Ln Z2

Ln XLnYLn XLnZLn YLnZLn





βY0
βY1
βY2
βY3
βY4
βY5
βY6
βY7
βY8
βY9


(2.14)


ZG1
ZG2
ZG3

...
ZGn

 =


1 XL1 YL1 ZL1 X2

L1 Y2
L1 Z2

L1 XL1YL1 XL1ZL1 YL1ZL1
1 XL2 YL2 ZL2 X2

L2 Y2
L2 Z2

L2 XL2YL2 XL2ZL2 YL2ZL2
1 XL3 YL3 ZL3 X2

L3 Y2
L3 Z2

L3 XL3YL3 XL3ZL3 YL3ZL3
...

...
...

...
...

...
...

...
...

...
1 XLn YLn ZLn X2

Ln Y2
Ln Z2

Ln XLnYLn XLnZLn YLnZLn





βZ0
βZ1
βZ2
βZ3
βZ4
βZ5
βZ6
βZ7
βZ8
βZ9


(2.15)

With the converted transformation models (2,12), (2,13), (2,14) and at least 10 collocated
points(n > 10) in both Cartesian systems, the 30 polynomial parameters can be individually
estimated.

2.2.3 Cubic Polynomial Transformation Model

After the discussion of the quadratic polynomial model in the previous subsection, a ques-
tion appears spontaneously, if polynomial models with higher degrees can achieve a better
accuracy? In this subsection the cubic polynomial model will be discussed so as to solve this
question.
The structure of a cubic polynomial model is similar to the structure of a quadratic polynomial
model, except that the highest degree of a cubic polynomial model is 3 instead of 2. As a
consequence, a cubic polynomial model consists of 60 terms instead of 30. 60 polynomial
parameters need to be estimated in a cubic polynomial model instead of 30.

XG =βX0 + βX1XL + βX2YL + βX3ZL + βX4X2
L + βX5Y2

L + βX6Z2
L + βX7(XLYL) + βX8(XLZL)+

βX9(YLZL) + βX10X3
L + βX11Y3

L + βX12Z3
L + βX14(XLYLZL) + βX14(X2

LYL)+

βX15(X2
LZL) + βX16(XLY2

L) + βX17(Y2
L ZL) + βX18(XLZ2

L) + βX19(YLZ2
L)

(2.16)
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YG =βY0 + βY1XL + βY2YL + βY3ZL + βY4X2
L + βY5Y2

L + βY6Z2
L + βY7(XLYL) + βY8(XLZL)+

βY9(YLZL) + βY10X3
L + βY11Y3

L + βY12Z3
L + βY13(XLYLZL) + βY14(X2

LYL)+

βY15(X2
LZL) + βY16(XLY2

L) + βY17(Y2
L ZL) + βY18(XLZ2

L) + βY19(YLZ2
L)

(2.17)

ZG =βZ0 + βZ1XL + βZ2YL + βZ3ZL + βZ4X2
L + βZ5Y2

L + βZ6Z2
L + βZ7(XLYL) + βZ8(XLZL)+

βZ9(YLZL) + βZ10X3
L + βZ11Y3

L + βZ12Z3
L + βZ13(XLYLZL) + βZ14(X2

LYL)+

βZ15(X2
LZL) + βZ16(XLY2

L) + βZ17(Y2
L ZL) + βZ18(XLZ2

L) + βZ19(YLZ2
L)

(2.18)

The transformation model(2.16), (2.17), (2.18) can also be written in Gauß-Markov model l =
Ax


XG1
XG2
XG3

...
XGn

 =


1 XL1 YL1 ZL1 X2

L1 Y2
L1 · · · Y2

L1ZL1 XL1Z2
L1 YL1Z2

L1
1 XL2 YL2 ZL2 X2

L2 Y2
L2 · · · Y2

L2ZL2 XL2Z2
L2 YL2Z2

L2
1 XL3 YL3 ZL3 X2

L3 Y2
L3 · · · Y2

L3ZL3 XL3Z2
L3 YL3Z2

L3
...

...
...

...
...

...
. . .

...
...

...
1 XLn YLn ZLn X2

Ln Y2
Ln · · · Y2

LnZLn XLnZ2
Ln YLnZ2

Ln





βX0
βX1
βX2
βX3
βX4

...
βX16
βX17
βX18
βX19


(2.19)


YG1
YG2
YG3

...
YGn

 =


1 XL1 YL1 ZL1 X2

L1 Y2
L1 · · · Y2

L1ZL1 XL1Z2
L1 YL1Z2

L1
1 XL2 YL2 ZL2 X2

L2 Y2
L2 · · · Y2

L2ZL2 XL2Z2
L2 YL2Z2

L2
1 XL3 YL3 ZL3 X2

L3 Y2
L3 · · · Y2

L3ZL3 XL3Z2
L3 YL3Z2

L3
...

...
...

...
...

...
. . .

...
...

...
1 XLn YLn ZLn X2

Ln Y2
Ln · · · Y2

LnZLn XLnZ2
Ln YLnZ2

Ln





βY0
βY1
βY2
βY3
βY4

...
βY16
βY17
βY18
βY19


(2.20)
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ZG1
ZG2
ZG3

...
ZGn

 =


1 XL1 YL1 ZL1 X2

L1 Y2
L1 · · · Y2

L1ZL1 XL1Z2
L1 YL1Z2

L1
1 XL2 YL2 ZL2 X2

L2 Y2
L2 · · · Y2

L2ZL2 XL2Z2
L2 YL2Z2

L2
1 XL3 YL3 ZL3 X2

L3 Y2
L3 · · · Y2

L3ZL3 XL3Z2
L3 YL3Z2

L3
...

...
...

...
...

...
. . .

...
...

...
1 XLn YLn ZLn X2

Ln Y2
Ln · · · Y2

LnZLn XLnZ2
Ln YLnZ2

Ln





βZ0
βZ1
βZ2
βZ3
βZ4

...
βZ16
βZ17
βZ18
βZ19


(2.21)

With the converted transformation models (2,19), (2,20), (2,21) and at least 20 collocated
points(n > 20) in both Cartesian systems, the 60 polynomial parameters can be individually
estimated.

2.2.4 Quadratic Polynomial Transformation Model with Orthogonal Polynomial

As discussed in the previous subsection, there is a huge possibility that the A matrix is
an ill-posed matrix and the determined polynomial parameters can not be precise enough
with the Least Squares method. Therefore the orthogonal polynomial will be introduced
in the polynomial transformation model, in order to test if the introduction of orthogonal
polynomials has a positive effect on the transformation result.
Orthogonal polynomials are classes of polynomials Pn(x) defined over a range [a,b] that obey
an orthogonality relation

< Pm, Pn >=
∫ b

a
Pm(x)Pn(x)ω(x)dx (2.22)

or

< Pm, Pn >=
n

∑
i=1

Pm(xi)Pn(xi)ω(xi) (2.23)

Where ω(x) is a positive function, which can be also called a weighting function. The form
(2.23) is to be used when the function Pn(x) and Pn(x) is discontinuous. The two functions
Pn(x) and Pn(x) are orthogonal if

< Pm, Pn >=

{
0, m 6= n

Ak, m = n (2.24)

For coordinate transformation the Legendre polynomials, which belong to the orthogonal
polynomials, will be applied in the quadratic polynomial transformation model.
The Legendre polynomials are defined with

Pn(x) =
1

2n · n!
· dn

dxn [(x2 − 1)n] (2.25)
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where x is continious in the interval [-1, 1]

Because the highest degree of the quadratic polynomial transformation is 2, so we only need
the Legendre polynomials with n = 0, 1, 2

P0 = 1 (2.26)

P1 = x (2.27)

P2 =
1
2
(3x2 − 1) (2.28)

The quadratic polynomial model with Legendre polynomials can be written as

XG =βX0 + βX1XL + βX2YL + βX3ZL + βX4(
1
2
(3X2

L − 1)) + βX5(
1
2
(3Y2

L − 1))+

βX6(
1
2
(3Z2

L − 1)) + βX7(XLYL) + βX8(XLZL) + βX9(YLZL)

(2.29)

YG =βY0 + βY1XL + βY2YL + βY3ZL + βY4(
1
2
(3X2

L − 1)) + βY5(
1
2
(3Y2

L − 1))+

βY6(
1
2
(3Z2

L − 1)) + βY7(XLYL) + βY8(XLZL) + βY9(YLZL)

(2.30)

ZG =βZ0 + βZ1XL + βZ2YL + βZ3ZL + βZ4
1
2
(3X2

L − 1) + βZ5
1
2
(3Y2

L − 1)+

βZ6
1
2
(3Z2

L − 1) + βZ7(XLYL) + βZ8(XLZL) + βZ9(YLZL)

(2.31)

The transformation model(2.29), (2.30), (2.31) can also be written in Gauß-Markov model l =
Ax


XG1
XG2
XG3

...
XGn

 =


1 · · · 1

2 (3X2
L1 − 1) 1

2 (3Y2
L1 − 1) 1

2 (3Z2
L1 − 1) · · · YL1ZL1

1 · · · 1
2 (3X2

L2 − 1) 1
2 (3Y2

L2 − 1) 1
2 (3Z2

L2 − 1) · · · YL2ZL2
1 · · · 1

2 (3X2
L3 − 1) 1

2 (3Y2
L3 − 1) 1

2 (3Z2
L3 − 1) · · · YL3ZL3

...
. . .

...
...

...
. . .

...
1 · · · 1

2 (3X2
Ln − 1) 1

2 (3Y2
Ln − 1) 1

2 (3Z2
Ln − 1) · · · YLnZLn





βX0
βX1
βX2
βX3
βX4
βX5
βX6
βX7
βX8
βX9


(2.32)
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YG1
YG2
YG3

...
YGn

 =


1 · · · 1

2 (3X2
L1 − 1) 1

2 (3Y2
L1 − 1) 1

2 (3Z2
L1 − 1) · · · YL1ZL1

1 · · · 1
2 (3X2

L2 − 1) 1
2 (3Y2

L2 − 1) 1
2 (3Z2

L2 − 1) · · · YL2ZL2
1 · · · 1

2 (3X2
L3 − 1) 1

2 (3Y2
L3 − 1) 1

2 (3Z2
L3 − 1) · · · YL3ZL3

...
. . .

...
...

...
. . .

...
1 · · · 1

2 (3X2
Ln − 1) 1

2 (3Y2
Ln − 1) 1

2 (3Z2
Ln − 1) · · · YLnZLn





βY0
βY1
βY2
βY3
βY4
βY5
βY6
βY7
βY8
βY9


(2.33)


ZG1
ZG2
ZG3

...
ZGn

 =


1 · · · 1

2 (3X2
L1 − 1) 1

2 (3Y2
L1 − 1) 1

2 (3Z2
L1 − 1) · · · YL1ZL1

1 · · · 1
2 (3X2

L2 − 1) 1
2 (3Y2

L2 − 1) 1
2 (3Z2

L2 − 1) · · · YL2ZL2
1 · · · 1

2 (3X2
L3 − 1) 1

2 (3Y2
L3 − 1) 1

2 (3Z2
L3 − 1) · · · YL3ZL3

...
. . .

...
...

...
. . .

...
1 · · · 1

2 (3X2
Ln − 1) 1

2 (3Y2
Ln − 1) 1

2 (3Z2
Ln − 1) · · · YLnZLn





βZ0
βZ1
βZ2
βZ3
βZ4
βZ5
βZ6
βZ7
βZ8
βZ9


(2.34)

With the converted transformation models (2,32), (2,33), (2,34) and at least 10 collocated
points(n > 10) in both Cartesian systems, the 30 polynomial parameters can be individually
estimated.
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Chapter 3

Paramter Estimation with Least Squares
Method

3.1 Data Pre-processing

For the coordinate transformation there are 131 available common points in Baden-
Würtemberg, among which 121 points are selected as collocated points for the estimation of
transformation parameters and 10 points as interpolated points. Their coordinates are based in
UTM and Gau-Krüger coordinate systems. The UTM coordinate system is regarded as global
coordinate System while the Gau-Krüger coordinate systems as local coordinate system.

Firstly, the UTM and Gau-Krüger coordinates should be transformed to elliptical coordinates
latitude (B) and longitude (L), which will be used in the two dimensional Multiple Linear
Regression.

Secondly, the transformed elliptical coordinates should be further transformed to three
dimensional Cartesian coordinate X, Y, Z with the following equationX

Y
Z

 =

 (N + H)cosBcosL
(N + H)cosBsinL

[N(1− e2) + H]sinB

 (3.1)

where
B, L, H: ellipsoidal coordinates
N: normal curvature
e2; eccentricity
H: ellipsoid height
H = hs + NNN : hs is the normal-orthometric height and NNN is Normal-Null surface undula-
tion

All the data Pre-processing is prepared with the above operations for the following transfor-
mation models.

3.2 The Least Squares Method

The method of least squares is a standard approach in regression analysis to the approximate
solution of overdetermined systems, which means in sets of equations there are more equations
than unknowns. "Least squares" means that the overall solution minimizes the sum of the
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squares of the residuals made in the results of every single equation.(wiki) When an equation
in the form of Gauß-Markov model l(n×1) = A(n×u)x(u×1) already exists, the parameters x will
be estimated as follows:

n: number of the variables in the target system

u: number of transformation parameters in the transformation model

l: vector of the observed values of the response variable in the target system

A: matrix of the observed values in the start system

P: weight matrix of the observed values in the start system

x: vector of the transformation parameters

estimated parameters x̂: x̂ = (ATPA)−1ATPl

the residual v̂ after a transformation: v̂ = l − Ax̂

the standard deviation σ̂: σ̂ =
√

1
n−u (v̂

T · v̂)

3.3 2-D Coordinate Transformation

3.3.1 6-Parameter Affine Transformation

As discussed in the previous chapter, the 6-parameter affine transformation model(2.1) is
finally converted into a transformation model(2.3) in Gauß-Markov model l=Ax

[
E
N

]
=

[
1 0 R H 0 0
0 1 0 0 R H

]


tE
tN
f
g
b
a


l = Ax

where
E, N: the UTM coordinates of 121 collocated points
R, H: the Gauß-Krüger coordinates
l: vector of the observed values of the response variable in the UTM coordinate system
A: matrix of the observed values in the Gau Krüger coordinate system
x: vector of the transformation parameters

Before the estimation of transformation parameters, E, N, R, H should be centralized:

Nc = N −mean(N)

Ec = E−mean(E)
Hc = H −mean(H)

Rc = R−mean(R)

(3.2)
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The original coordinates N, E, H, R in the equation(2.3) will be substituted with the centralized
coordinates Nc, Ec, Hc, Rc

The transformation parameters will be estimated with Least Squares Method.
The 6 estimated transformation parameters and their standard derivation with 121 collocated
points are listed as follows

6-parameter affine transformation GK to UTM
tN(m) tE(m) α(′′) β(′′) m1 m2 QMR(m) σ̂(m)

437.3896 119.889076 0.1598 -0.2074 0.9996 0.9996 0.1192 0.1208

Table 3.1: Transformation parameters of 6-parameter affine transformation and the deviation

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points are showed in the figure bellow:

Figure 3.1: Horizontal residuals of 121 collocated points and 10 interpolated points with 6-parameter affine
transformation

3.3.2 2D Multiple Linear Regression of 9th Order

The US Defense Mapping Agency (DMA) published a series of multiple regression equations
(MREs) for transforming some local datums to the World Geodetic System 1984 in Appendix
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D of its Technical Report 8350.2, the third edition of which is NIMA (2004). Among the MREs
provided by NIMA, the following MREs are used for transforming the European Datum 1950
to WGS 84 in Western Europe.

The following MREs come from the full range 9th-order MREs (2.4) and the selection of
variables UiV j used in the following MREs is based on the statistical significance of their
contribution to the known datum shifts at control points. The method used is normally the
’stepwise’ multiple regression procedure. This is described in Section 7.2.4.3.3 of DMA (1987a)
and by Appelbaum (1982). The full range of multiple regression procedures can be found in
Draper and Smith (1966). (A. C. Ruffhead)

∆φ =− 2.65261 + 2.06392U + 0.77921V + 0.26743U2 + 0.10706UV + 0.76407U3 − 0.95430U2V+

0.17197U4 + 1.04974U4V − 0.22899U5V2 − 0.05401V8 − 0.78909U9 − 0.10572U2V7+

0.05283UV9 + 0.02445U3V9

(3.3)

∆λ =− 4.13447− 1.50572U + 1.94075V − 1.37600U2 + 1.98425UV + 0.30068V2 − 2.31939U3−
1.70401U4 − 5.48711UV3 + 7.41956U5 − 1.61351U2V3 + 5.92923UV4 − 1.97974V5+

1.57701U6 − 6.52522U3V3 + 16.85976U2V4 − 1.79701UV5 − 3.08344U7 − 14.32516U6V+

4.49096U4V4 + 9.98750U8V + 7.80215U7V2 − 2.26917U2V7 + 0.16438V9 − 17.45428U4V6−
8.25844U9V2 + 5.28734U8V3 + 8.87141U5V7 − 3.48015U9V4 + 0.71041U4V9

(3.4)

Where:

K = 0.05235988

U = K[φL - 52◦]

V = K[λL - 10◦]

∆φ = φG − φL

∆λ = λG − λL

φL, λL: the elliptical coordinates in European Datum 1950

φG, λG: the elliptical coordinates in WGS84

For the datum transformation from Bessel ellipsoid 1841 to ETRS 89 in Baden-Würtemberg,
we can apply the above-mentioned MREs, which is suitable for Western Europe. The transfor-
mation parameter should be recalculated with 121 collocated points in Baden-Würtemberg.
The Multiple Linear Regression model is written as follows

∆φ =A00 + A10U + A01V + A20U2 + A11UV + A30U3 + A21U2V + A40U4 + A41U4V+

A52U5V2 + A08V8 + A90U9 + A27U2V7 + A19UV9 + A39U3V9 (3.5)
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∆λ =B00 + B10U + B01V + B20U2 + B11UV + B02V2 + B30U3 + B40U4 + B13UV3 + B50U5+

B23U2V3 + B14UV4 + B05V5 + B60U6 + B33U3V3 + B24U2V4 + B15UV5 + B70U7+

B61U6V + B44U4V4 + B81U8V + B72U7V2 + B27U2V7 + B09V9 + B46U4V6+

B92U9V2 + B83U8V3 + B57U5V7 + B94U9V4 + B49U4V9

(3.6)

Where U and V should be centralized:

K = 0.05235988

U = K[φL - (mean)φL]

V = K[λL - (mean)λL]

∆φ = φG − φL in [rad]

∆λ = λG − λL in [rad]

φL, λL: the elliptical coordinates of 121 collocated points converted from the Gauß-Krüger
coordinates

φG, λG: the elliptical coordinates of 121 collocated points converted from the UTM coordinates

The equations (3.3), (3.4) will be then converted in Gauß-Markov model l = Ax and the
transformation parameters will be estimated with Least Squares Method.

The estimated transformation parameters in λ, φ components and their standard derivation
with 121 collocated points are listed as follows:
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2D 9th Order Multiple Linear Regression Transformation Parameters
A00 −1.8087× 10−5 B00 −1.7968× 10−5

A10 −3.7331× 10−5 B10 −5.6167× 10−6

A01 2.6368× 10−6 B01 −4.6961× 10−5

A20 2.2821× 10−6 B20 1.4008× 10−5

A11 −1.2915× 10−5 B11 −7.8630× 10−6

A30 −2.2690× 10−5 B02 −9.8752× 10−6

A21 1.1512× 10−4 B30 −4.8613× 10−4

A40 -0.0019 B40 -0.0017
A41 0.0024 B13 0.0030
A52 -6.7821 B50 0.2987
A08 9.5410 B23 0.0469
A90 -353.1089 B14 −1.8087× 10−5

A27 −2301.8230 B05 -0.0367
A19 -496.7397 B60 3.2684
A39 −5.744× 10−6 B33 -1.6149

B24 -0.9816
B15 -0.7890
B70 -3.0316
B61 15.2678
B44 -2.1722
B81 -958.5143
B72 -6755.9401
B27 -6158.7628
B09 1979.0664
B46 140923.4686
B92 1257980.5270
B83 -1419456.7285
B57 13308805.9393
B94 318467433.6728
B49 363882024.4378

QMR(m) 0.0402
σ̂(m) 0.0445

Table 3.2: Transformation parameters of 2D 9th order multiple linear regression and the deviation

The coefficients A0 and B0 are actually two translation parameters and the unit of their value
in the above table is radian. We can convert their value into meter in north and east directions
in order to see the translations more clearly.
Translation in north direction:
A0 = −1.8087× 10−5 × 6378137 = −115.3614m
Translation in east direction:
B0 = −1.7968× 10−5 × 6378137 = −114.6024m

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points are showed in the figure bellow:
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Figure 3.2: Horizontal residuals of 121 collocated points and 10 interpolated points with 9th order multiple linear
regression

3.3.3 2D Multiple Linear Regression of 5th Order

In the previous section we used the 9th-order MREs (3.5) and (3.6) for the transformation.
In the 9th-order MREs, there are 45 polynomial terms in total, in which 15 terms are in the
φ-component and 30 terms are in the λ-component. The huge number of polynomial terms
increases not only the computation complexity but also the number of needed collocated
points comparing with MREs of lower order.

So in this section the 9th-order MREs will be cut to a 5th-order MREs, which means the
polynomial terms in 9th-order MREs lower than or equal to 5th-order will be reserved,
but the polynomial terms higher than 5th-order will be removed, in order to check if the
transformation accuracy with 5th-order is good enough to replace the complicated 9th-order
MREs.
The 5th-order MREs are written as follows:

∆φ =A00 + A10U + A01V + A20U2 + A11UV + A30U3 + A21U2V + A40U4 + A41U4V (3.7)

∆λ =B00 + B10U + B01V + B20U2 + B11UV + B02V2 + B30U3 + B40U4 + B13UV3 + B50U5+

B23U2V3 + B14UV4 + B05V5

(3.8)
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Where U and V should be centralized:

K = 0.05235988

U = K[φL - (mean)φL]

V = K[λL - (mean)λL]

∆φ = φG − φL in [rad]

∆λ = λG − λL in [rad]

φL, λL: the elliptical coordinates of 121 collocated points converted from the Gauß-Krüger
coordinates

φG, λG: the elliptical coordinates of 121 collocated points converted from the UTM coordinates

The equations (3.5), (3.6) will be then converted in Gauß-Markov model l = Ax and the
transformation parameters will be estimated with Least Squares Method.

The estimated transformation parameters in λ, φ components and their standard derivation
with 121 collocated points are listed as follows:

2D 5th Order Multiple Linear Regression Transformation Parameters
A00 −1.8086× 10−5 B00 −1.7966× 10−5

A10 −3.7429× 10−5 B10 −5.8875× 10−6

A01 2.6469× 10−6 B01 −4.7107× 10−5

A20 −1.0428× 10−6 B20 1.0634× 10−5

A11 −1.2773× 10−5 B11 −2.1376× 10−5

A30 9.3580× 10−5 B02 −1.2413× 10−5

A21 7.2003× 10−5 B30 1.2534× 10−4

A40 0.0016 B40 0.0059
A41 -0.0070 B13 0.0058

B50 0.0495
B23 0.0618
B14 -0.0060
B05 0.0151

QMR(m) 0.0554
σ̂(m) 0.0581

Table 3.3: Transformation parameters of 2D 5th order multiple linear regression and the deviation

The coefficients A0 and B0 are actually two translation parameters and the unit of their value
in the above table is radian. We can convert their value into meter in north and east directions
in order to see the translations more clearly.
Translation in north direction:
A0 = −1.8087× 10−5 × 6378137 = −115.3550m
Translation in east direction:
B0 = −1.7968× 10−5 × 6378137 = −114.5896m
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The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points are showed in the figure bellow:

Figure 3.3: Horizontal residuals of 121 collocated points and 10 interpolated points with 5th order multiple linear
regression

3.4 3-D Coordinate Transformation

3.4.1 7-Parameter- Helmerttransformation

As already derivated in the chapter 2, the equation (2.8) in the form of Gauß-Markov model
can be used for the estimation of the transformation parameters.

XG
YG
ZG

−
XL

YL
ZL

 =

1 0 0 0 −ZL YL XL
0 1 0 ZL 0 −XL YL
0 0 1 −YL XL 0 ZL




TX
TY
TZ
δα
δβ
δγ
δλ


l = Ax

where
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XL, YL, ZL: Cartesian coordinates converted from the Gau Krüger coordinates

XG, YG, ZG: Cartesian coordinates converted from the UTM coordinates

Both coordinates should be scaled into interval [-1,1] in order to compare the transformation
results of 7 parameter Helmert transformation and quadratic polynomial transformation with
Legendre polynomials. (The domain of Legendre polynomials is [-1,1])

The transformation parameters will be estimated with Least Squares Method: x̂ =
(ATPA)−1ATPl
P is an identity matrix in the formula above, because here every observation is equal weighted.

The transformation parameters and their deviation estimated with 121 collocated points are
listed bellow:

7-parameter helmert transformation GK to UTM
TX(m) TY(m) TZ(m) δα(′′) δβ(′′) δγ(′′) δλ QMR(m) σ̂(m)

582.9539 112.2600 405.7222 -2.2607 -0.336845 2.065813 9.0963× 10−6 0.1253 0.1036

Table 3.4: Transformation parameters of 7-parameter Helmert transformation and the deviation

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points are showed in the figure bellow:
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Figure 3.4: Horizontal residuals of 121 collocated points and 10 interpolated points with 7-parameter Helmert
transformation

3.4.2 Quadratic Polynomial Transformation

The quadratic polynomial transformation model in Gauß-Markov model is the in chapter 2
derivated equations (2.12), (2.13) and (2.14)


XG1
XG2
XG3

...
XGn

 =


1 XL1 YL1 ZL1 X2

L1 Y2
L1 Z2

L1 XL1YL1 XL1ZL1 YL1ZL1
1 XL2 YL2 ZL2 X2

L2 Y2
L2 Z2

L2 XL2YL2 XL2ZL2 YL2ZL2
1 XL3 YL3 ZL3 X2

L3 Y2
L3 Z2

L3 XL3YL3 XL3ZL3 YL3ZL3
...

...
...

...
...

...
...

...
...

...
1 XLn YLn ZLn X2

Ln Y2
Ln Z2

Ln XLnYLn XLnZLn YLnZLn





βX0
βX1
βX2
βX3
βX4
βX5
βX6
βX7
βX8
βX9


lx = Axx
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YG1
YG2
YG3

...
YGn

 =


1 XL1 YL1 ZL1 X2

L1 Y2
L1 Z2

L1 XL1YL1 XL1ZL1 YL1ZL1
1 XL2 YL2 ZL2 X2

L2 Y2
L2 Z2

L2 XL2YL2 XL2ZL2 YL2ZL2
1 XL3 YL3 ZL3 X2

L3 Y2
L3 Z2

L3 XL3YL3 XL3ZL3 YL3ZL3
...

...
...

...
...

...
...

...
...

...
1 XLn YLn ZLn X2

Ln Y2
Ln Z2

Ln XLnYLn XLnZLn YLnZLn





βY0
βY1
βY2
βY3
βY4
βY5
βY6
βY7
βY8
βY9


ly = Axy


ZG1
ZG2
ZG3

...
ZGn

 =


1 XL1 YL1 ZL1 X2

L1 Y2
L1 Z2

L1 XL1YL1 XL1ZL1 YL1ZL1
1 XL2 YL2 ZL2 X2

L2 Y2
L2 Z2
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L3 Y2
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...
...

...
...

...
...

...
...

...
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Ln Y2
Ln Z2

Ln XLnYLn XLnZLn YLnZLn





βZ0
βZ1
βZ2
βZ3
βZ4
βZ5
βZ6
βZ7
βZ8
βZ9


lz = Axz

In order to compare the transformation results of the quadratic polynomial and quadratic poly-
nomial model with Legendre polynomials, the original Cartesian coordinates in both systems
should be scaled into the interval [-1,1].

Besides, all the scaled global coordinate in the Gauß-Markov model will be substituted with
the difference values of the scaled global coordinates and local coordinates:

XGc = XG − XL

YGc = YG −YL

ZGc = ZG − ZL

After the above mentioned process with the coordinates in both systems, the 30 transformation
parameters can be then separately estimated with Least Squares method.
The estimated transformation parameters in λ, φ components and their standard derivation
with 121 collocated points are listed as follows:
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3D quadratic polynomial transformation
βX0 635.2211 βY0 24.3160 βZ0 449.4206
βX1 7.0016 βY1 -7.9253 βZ1 1.5622
βX2 1.8300 βY2 -0.1883 βZ2 1.2965
βX3 5.8459. βY3 -7.3017 βZ3 2.3141
βX4 -390.8437 βY4 91.5024 βZ4 255.0302
βX5 -9.0002 βY5 0.8947 βZ5 5.9370
βX6 -336.0679 βY6 77.3813 βZ6 221.7853
βX7 -119.3618 βY7 21.6543 βZ7 77.8467
βX8 -724.9722 βY8 128.2169 βZ8 475.6438
βX9 -110.3723 βY9 19.8538 βZ9 72.3052

QMR(m) 0.0478
σ̂(m) 0.0412

Table 3.5: Transformation parameters of the 3D quadratic polynomial and the deviation

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points are showed in the figure bellow:

Figure 3.5: Horizontal residuals of 121 collocated points and 10 interpolated points with quadratic polynomial
model
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3.4.3 Cubic Polynomial Transformation

The parameter estimation in the cubic polynomial transformation is similar with that in the
quadratic polynomial transformation.


XG1
XG2
XG3

...
XGn

 =


1 XL1 YL1 ZL1 X2

L1 Y2
L1 · · · Y2
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...
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...
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. . .

...
...

...
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ZG1
ZG2
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 =
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...
βZ16
βZ17
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βZ19


The coordinates in both systems should also be processed as in the quadratic polynomial trans-
formation before they are used for the parameter estimation: The original Cartesian coordinates
in both systems should be scaled into the interval [-1,1]. Besides, all the scaled global coordi-
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nates in the Gauß-Markov model will be substituted with the difference values of the scaled
global coordinates and local coordinates:

XGc = XG − XL

YGc = YG −YL

ZGc = ZG − ZL

After the above mentioned process with the coordinates in both systems, the 60 transformation
parameters can be then separately estimated with Least Squares Method.
The transformation parameters of the cubic polynomial and their deviation are listed bellow:

3D cubic polynomial transformation
βX0 635.2568 βY0 24.2847 βZ0 449.4108
βX1 -6.7250 βY1 -1.6466 βZ1 10.2579
βX2 -0.2529 βY2 0.7842 βZ2 2.6461
βX3 -6.9949 βY3 -1.4914 βZ3 10.5275
βX4 652.4432 βY4 -301.0340 βZ4 -548.3575
βX5 14.5154 βY5 -8.1300 βZ5 -12.4114
βX6 577.8018 βY6 -259.7650 βZ6 -498.5000
βX7 194.2975 βY7 -97.7464 βZ7 -165.1389
βX8 1227.9815 βY8 -559.4723 βZ8 -1036.2760
βX9 183.2154 βY9 -90.8292 βZ9 -156.3493
βX10 -25126.0230 βY10 -294.3041 βZ10 21104.4602
βX11 -77.7067 βY11 -7.9296 βZ11 66.2855
βX12 -19820.5606 βY12 -439.4980 βZ12 16650.2692
βX13 -20569.4211 βY13 -812.6765 βZ13 17346.4087
βX14 -11128.0518 βY14 -399.5948 βZ14 9383.7360
βX15 -69679.2754 βY15 -1052.0950 βZ15 58530.5954
βX16 -1622.5569 βY16 -105.6164 βZ16 1375.4449
βX17 -1499.1791 βY17 -103.3560 βZ17 1270.8404
βX18 -64382.8524 βY18 -1196.5861 βZ18 54084.0128
βX19 -9501.1087 βY19 -410.6011 βZ19 8012.6912

QMR(m) 0.0404
σ̂(m) 0.0372

Table 3.6: Transformation parameters of the 3D cubic polynomial and the deviation with scaled coordinates

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points are showed in the figure bellow:
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Figure 3.6: Horizontal residuals of 121 collocated points and 10 interpolated points with cubic polynomial model

Another interesting result appeared when non-scaled coordinates were used in the 3D cubic
polynomial transformation. The following table shows the new transformation parameters
estimated with the non-scaled coordinates:
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3D cubic polynomial transformation
βX0 635.3826 βY0 24.3473 βZ0 449.4603
βX1 -33.4044 βY1 -68.3393 βZ1 80.0037
βX2 2.8350 βY2 -0.7801 βZ2 24.4557
βX3 -46.6997 βY3 -78.6524 βZ3 103.1593
βX4 10716.9027 βY4 -32938.7845 βZ4 -8716.6676
βX5 358.8223 βY5 -1034.8678 βZ5 -303.2434
βX6 16379.8228 βY6 -43860.1669 βZ6 -13969.9047
βX7 3818.6145 βY7 -11550.1617 βZ7 -3230.7390
βX8 26539.3318 βY8 -76037.4778 βZ8 -22158.5807
βX9 4738.0467 βY9 -13325.9157 βZ9 -4092.0364
βX10 -29059385.0660 βY10 -349034.6701 βZ10 24406028.2524
βX11 -99021.9057 βY11 -9895.8614 βZ11 84425.5585
βX12 -43405675.6628 βY12 -964189.7655 βZ12 36459456.1321
βX13 -30387801.9862 βY13 -1188508.3346 βZ13 25621884.1114
βX14 -13288487.5582 βY14 -473110.6336 βZ14 11203577.7869
βX15 -99696691.9877 βY15 -1526729.6104 βZ15 83739052.5578
βX16 -2001175.7613 βY16 -128121.6451 βZ16 1695840.4059
βX17 -2287481.8353 βY17 -155020.5551 βZ17 1938479.1111
βX18 -113965485.4097 βY18 -2132774.6134 βZ18 95726697.2639
βX19 -17364982.2879 βY19 -741888.4958 βZ19 14642167.6910

QMR(m) 0.0613
σ̂(m) 0.1627

Table 3.7: Transformation parameters of the 3D cubic polynomial and the deviation before scaling the input
coordinates

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points are showed in the figure bellow:
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Figure 3.7: Horizontal residuals of 121 collocated points and 10 interpolated points with cubic polynomial model

Comparing the figures (3.6) and (3.7) we can see that the horizontal residuals of most points
using the cubic polynomial transformation with non-scaled coordinates are bigger than using
the cubic polynomial transforamtion with scaled coordinates. The horizontal residuals of the
collocated points near the boundary of Baden-Wütemberg after coordinate transformation are
especially huge.

Here a more clear numerical comparison of the 3D cubic polynomial transformation results
with scaled and non-scaled collocated coordinates is presented in the table below:

Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

QMR
(m)

Standard
deviation σ̂ (m)

[VN ] [VE] [VN ] [VE]

with scaled coordinates 0.0318 0.0321 0.0820 0.1553 0.0404 0.0372
with non-scaled coordinates 0.0526 0.0369 0.2419 0.1621 0.0613 0.1627

Table 3.8: Numerical comparison of cubic polynomial transformation results with 121 scaled and non-scaled
coordinates

This interesting result shows that the cubic polynomial coordinate transformation can get a
better result with scaled collocated coordinates. In the next chapter a significance test for
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each polynomial term in the cubic polynomial transformation model with non-scaled collo-
cated coordinates will be processed in order to check if the transformation results can be im-
proved, when some polynomial terms with lower contributions to the transformation model
are deleted.

3.4.4 Quadratic Polynomial Transformation with Legendre Polynomial

The transformation model with quadratic orthogonal polynomial is also similar with the
quadratic polynomial model, except that the local coordinates XL, YL, ZL should be replaced
with local coordinates in the form of Legendre polynomials.
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In order to use the orthogonality of the Legendre polynomials in the transformation models,
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the local coordinates in A matrix should be scaled in the interval [-1,1].
The global coordinates should be substituted with the difference of global coordinates and local
coordinates.
With the above mentioned two steps the transformation parameters can be then estimated with
Least Squares Method.
The estimated transformation parameters in λ, φ components and their standard derivation
with 121 collocated points are listed as follows:

transformation parameters of 3D quadratic polynomial with legendre polynomials
βX0 389.9172 βY0 80.9088 βZ0 610.3381
βX1 7.0016 βY1 -7.9253 βZ1 1.5622
βX2 1.8300 βY2 -0.1883 βZ2 1.2965
βX3 5.8459 βY3 -7.3017 βZ3 2.3141
βX4 -260.5624 βY4 61.0016 βZ4 170.0201
βX5 -6.0001 βY5 0.5965 βZ5 3.9580
βX6 -224.0452 βY6 51.5875 βZ6 147.8569
βX7 -119.3618 βY7 21.6543 βZ7 77.8467
βX8 -724.9742 βY8 168.2169 βZ8 475.6438
βX9 -110.3723 βY9 19.8538 βZ9 72.3052

QMR(m) 0.047751
σ̂(m) 0.0412146

Table 3.9: Transformation parameters of quadratic polynomial with legendre polynomials and the deviation

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points are showed in the figure bellow:
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Figure 3.8: Horizontal residuals of 121 collocated points and 10 interpolated points with orthogonal polynomial
model

3.5 Analysis of the Transformation Results

3.5.1 Analysis of the Results with 2D Transformation Models

The transformation results of the 6-parameter affine transformation and multiple linear regres-
sion with 121 collocated points are listed in the table bellow:

Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

QMR
(m)

Standard
deviation σ̂(m)

[VN ] [VE] [VN ] [VE]

6-Para Transformation 0.1053 0.0801 0.3348 0.3203 0.1192 0.1208
9th-order MREs 0.0342 0.0302 0.1122 0.1138 0.0402 0.0445
5th-order MREs 0.0477 0.0368 0.1942 0.1532 0.0554 0.0581

Table 3.10: Numerical comparison of the 6-parameter affine transformation and multiple linear regression with
121 control points

The transformation results of the 6-parameter affine transformation and multiple linear regres-
sion with 10 interpolated points are also showed in the table bellow:
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Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

QMR
(m)

[VN ] [VE] [VN ] [VE]

6-Parameter transformation 0.0998 0.0842 0.1544 0.1983 0.1093
9th-order MREs 0.0384 0.0437 0.0944 0.1162 0.0534
5th-order MREs 0.0504 0.0431 0.1572 0.0984 0.0648

Table 3.11: Numerical comparison of the 6-parameter affine transformation and multiple linear regression with
10 interpolated points

From the table (3.10) and (3.11) we can see, the distortion and the deformation are well mod-
elized with the multiple linear regression of 9th order and the quadratic mean of the residuals
(QMR) of 121 collocated points are reduced from 11.92cm to 4.02cm while the QMR of 10 inter-
polated points are reduced from 10.93cm to 5.34cm, which are the significant improvements.

With the 5th order linear regression model the standard deviation (σ̂) and the quadratic mean
of the residuals (QMR) of 131 points are only 1cm-1.5cm worse than that with the 9th order
linear regression model, and using the 5th order linear regression for a coordinate transforma-
tion is much more efficient than using the 9th order linear regression, because there are much
less regression terms in the 5th order multiple regression model, which means we need less
collocated points for the transformation.

Figure 3.9: Horizontal residuals of 121 collocated points and 10 interpolated points with 6-parameter
transformation
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Figure 3.10: Horizontal residuals of 121 collocated points and 10 interpolated points with 9th order multiple
regression

Figure 3.11: Horizontal residuals of 121 collocated points and 10 interpolated points with 5th order multiple linear
regression

The mean and maximal value of the absolute residuals in northing and easting directions of
131 points are also listed in the table, in which 121 points are collocated points and 10 points are
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interpolated points. From the figure we can see that the horizontal residuals of 121 collocated
points have been decreased for 8.67 cm and the horizontal residuals of 10 interpolated points
have been reduced for 7.24 cm in average by using the 9th order multiple linear regression
model instead of the 6-parameter transformation model. We can see the improvement in the
figure (3.10) obviously.

3.5.2 Analysis of the Results with 3D Transformation Models

Comparison of 4 three dimensional transformations with 121 collocated points in the table
bellow:

Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

QMR
(m)

Standard
deviation σ̂ (m)

[VN ] [VE] [VN ] [VE]

7-Parameter transformation 0.1063 0.0841 0.4164 0.3595 0.1253 0.1036
Quadratic polynomial 0.0387 0.0359 0.1207 0.1298 0.0478 0.0412

Cubic polynomial 0.0318 0.0321 0.0820 0.1553 0.0404 0.0372
Orthogonal polynomial 0.0387 0.0359 0.1207 0.1298 0.0477 0.0412

Table 3.12: Numerical comparison of 4 three dimensional transformations with 121 control points

The transformation results of 4 three dimensional transformations with 10 interpolated points
are also showed in the table bellow:

Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

QMR
(m)

[VN ] [VE] [VN ] [VE]

7-Parameter transformation 0.0860 0.0949 0.1432 0.2473 0.1087
Quadratic polynomial 0.0477 0.0413 0.1865 0.1124 0.0657

Cubic polynomial 0.0425 0.0344 0.1733 0.1107 0.0594
orthogonal polynomial 0.0477 0.0413 0.1865 0.1124 0.0657

Table 3.13: Numerical comparison of 4 three dimensional transformations with 10 interpolated points

From the table(3.12) we can see that under the same input coordinates condition the best
transformation result comes from the cubic polynomial transformation model. Theoretically
the cubic polynomial transformation should indeed get the best transformation results,
because the distortion and the deformation will be better fitted with higher polynomial degree
and more terms.

When comparing the quadratic polynomial transformation results with and without orthog-
onal polynomials, we see that the standard deviations and quadratic means of the residuals
of 121 collocated points with these two transformation models are almost the same. This
shows that the Legendre polynomials make no big differences in the quadratic polynomial
transformation model and in the determination of its inverse matrix of the design matrix. The
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reason for it can be that, the coordinates of 121 collocated points are not continuous in the
interval [-1,1], therefore the condition for the orthogonality of the Legendre polynomials can
not be satisfied.

Figure 3.12: Horizontal residuals of 121 collocated points and 10 interpolated points with 7-parameter
transformation
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Figure 3.13: Horizontal residuals of 121 collocated points and 10 interpolated points with quadratic polynomial
model

Figure 3.14: Horizontal residuals of 121 collocated points and 10 interpolated points with cubic polynomial
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Figure 3.15: Horizontal residuals of 121 collocated points and 10 interpolated points with orthogonal polynomial
model

And we can also directly see from the figure (3.12) and (3.14) that the horizontal residuals in
northern and east directions at each collocated point are obviously decreased using 3D cubic
polynomial transformation with scaled collocated coordinates compared with the 7-parameter
transformation. Besides, the horizontal residuals of the points which lies in the boundary of
Baden-Würtemberg are greater than those in the inner area.
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Chapter 4

Selecting the Best Combination of the
Polynomial Terms

4.1 Introduction

When fitting a multiple linear regression model, it is necessary to make a significance test for
all the regression parameters.
For a basic regression model:

ω = β0 + β1u1 + β2u2 + · · ·+ βmum

can be also written as:

ω(n×1) = U(n×m)β(m×1)

Although the regression model consists of m+1 polynomial terms, but not every term is of the
same importance in predicting the dependent variable ω. After eliminating the unimportant
terms in the polynomial model with the significance test the variance of the noise can be
reduced. In this chapter the polynomial models will be processed with the significance test(t
test) to find the equation with a least number of polynomial terms and a minimum variance of
the noise.

The process for selecting the best polynomial model can be realized as follows:

• determination of the estimated parameters β̂: β̂ = (UTPU)−1UTPl with P is the identity
matrix

• determination of the residual ê: ê = ω−U β̂

• determination of the variance of the noise σ2: σ2 = 1
n−m (êT · ê)

• estimation of the variance of β̂m: vâr(β̂m) = C2
mσ̂2, where C2

m is the mth element on the
diagonal of (UTU)−1

• determination of the t test value: tm = β̂m√
vâr(β̂m)

• find out the transformation parameter βm with the minimum tm
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• deletion of the parameter βm from the complete polynomial model and repetition of the
process above until a polynomial model with the minimum variance of the noise σ2 is
found.

4.2 Processing with 2D Multiple Linear Regression of 9th Order

The in the section 3.3.2 performed 9th-order MREs are actually derived by NIMA for the trans-
formation from European Datum 1950 to WGS 84, but here they are used for the transformation
from Bessel ellipsoid 1841 to ETRS 89, so it is possible that the polynomial combination in the
9th-order MREs is not perfect for the transformation from Gaus̈s-krüger coordinates to UTM
coordinates. A significance test is now necessary for all the polynomial terms to obtain the best
combined 9th-order MREs.

There are 15 terms in φ component while 30 terms in λ component in the original 9th-order
multiple linear regression. Because of the huge number the completely selecting processes
with the t test value for each parameter in both components of the regression model will not be
listed in a table here. Instead, a simple process of the elimination of parameters will be showed.

Eliminated parameters of the regression model in φ component in sequence:

A19 → A30 → A41 → A20 → A08

Eliminated parameters of the regression model in λ component in sequence:

B14 → B44 → B70 → B81 → B40 → B15 → B57 → B13 → B23
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New 2D multiple linear regression transformation parameters
A00 −1.8086× 10−5 B00 −1.7968× 10−5

A10 −3.7371× 10−5 B10 −5.6365× 10−6

A01 2.6414× 10−6 B01 −4.6941× 10−5

A20 - B20 1.3210× 10−5

A11 −1.2521× 10−5 B11 −6.1845× 10−6

A30 - B02 −9.7972× 10−6

A21 1.3331× 10−4 B30 −4.3601× 10−4

A40 −9.7157× 10−4 B40 -
A41 - B13 -
A52 -6.7494 B50 0.3106
A08 - B23 -
A90 -179.2922 B14 -
A27 −2839.3710 B05 -0.0381
A19 - B60 3.4649
A39 −6.8583× 10−6 B33 -2.0298

B24 -1.0057
B15 -
B70 -
B61 12.8413
B44 -
B81 -
B72 -6114.4954
B27 -3225.4982
B09 2037.9727
B46 14818.4654
B92 1127920.6456
B83 -1802231.9764
B57 -
B94 320630360.4146
B49 191640450.9034

σ̂(m) 0.0445

Table 4.1: New transformation parameters of 2D multiple linear regression and the deviation

From the table we can see that, 5 parameters in φ component are eliminated while 9 parameters
in λ component are eliminated. The standard deviation decreases from 0.0445 m to 0.0433 m
after polynomial selection.
The best 9th-order MREs is then:

∆φ =A00 + A10U + A01V + A11UV + A21U2V + A40U4 + A52U5V2+

A90U9 + A27U2V7 + A39U3V9 (4.1)
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∆λ =B00 + B10U + B01V + B20U2 + B11UV + B02V2 + B30U3 + B50U5 + B05V5+

B60U6 + B33U3V3 + B24U2V4 + B61U6V + B72U7V2 + B27U2V7 + B09V9+

B46U4V6 + B92U9V2 + B83U8V3 + B94U9V4 + B49U4V9

(4.2)

The transformation results of the 9th-order MREs before and after polynomial selection with
121 collocated points are listed in the table bellow:

Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

Standard
deviation σ̂(m)

[VN ] [VE] [VN ] [VE]

before polynomial selection 0.0342 0.0302 0.1122 0.1138 0.0445
after polynomial selection 0.0344 0.0299 0.1120 0.1141 0.0433

Table 4.2: Numerical comparison of the 9th-order MREs before and after polynomial selection with 121 control
points

The transformation results of the 9th-order MREs before and after polynomial selection with
10 interpolated points are also showed in the table bellow:

Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

QMR
(m)

[VN ] [VE] [VN ] [VE]

before polynomial selection 0.0384 0.0437 0.0944 0.1162 0.0534
after polynomial selection 0.0381 0.0418 0.0901 0.1051 0.0516

Table 4.3: Numerical comparison of the 9th-order MREs before and after polynomial selection with 10 interpolated
points

From table (4.2) and (4.3) we can see that the standard deviation of 121 collocated points de-
creases from 0.0445 m to 0.0433 m after polynomial selection. The absolute mean of residuals
of 10 interpolates points in north and east direction reduce by about a few millimeters, and the
QMR of 10 interpolated points also decreases from 0.0534 m to 0.0516 m.

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points before and after selecting the best polynomial degree and terms are showed in
the figure as follows:
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Figure 4.1: Horizontal residuals of 121 collocated points and 10 interpolated points before selecting the best
polynomial

Figure 4.2: Horizontal residuals of 121 collocated points and 10 interpolated points after selecting the best
polynomial
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4.3 Processing with 3D Quadratic Polynomial transformation

Here the 3D quadratic polynomial model with scaled input coordinates is tested. The process
of selecting the best 3D quadratic polynomial is implemented in 3 components. The processes
in X-,Y-,Z-component are showed seperately in 3 table bellow:

t test value for each parameter in each turn
1. Turn 2. Turn

βX0 40103.8644 84331.8675
βX1 4.4344 76.7415
βX2 7.6656 100.2980
βX3 3.9577 -
βX4 -5.9722 -4.5893
βX5 -6.0808 -4.8228
βX6 -5.9830 -4.6157
βX7 -6.0573 -4.7211
βX8 -5.9780 -4.6023
βX9 -6.0468 -4.7180

[vv](m)2 0.1699 0.1939
σ̂X(m) 0.03913 0.0461

Table 4.4: selecting the best quadratic polynomial in X-component

From the table we can see, when no parameters are eliminated, the quadratic polynomial in
X-component gets the minimum σ̂X.
The best quadratic polynomial in X-component is then:

XG =βX0 + βX1XL + βX2YL + βX3ZL + βX4X2
L + βX5Y2

L + βX6Z2
L+

βX7(XLYL) + βX8(XLZL) + βX9(YLZL)
(4.3)

Similar processes are implemented in Y- and Z-components.
The process of selecting the best polynomial in Y-component:



Chapter 4 Selecting the Best Combination of the Polynomial Terms 47

t test value for each parameter in each turn
1. Turn 2. Turn 3. Turn 4.Turn

βY0 1254.3460 1275.6417 2888.5443 2571.1504
βY1 -4.1013 -4.1582 -107.4954 -96.5810
βY2 -0.6446 -0.5247 - -
βY3 -4.0391 -4.0929 -100.9582 -91.1689
βY4 1.1424 5.6855 6.4458 4.3840
βY5 0.4939 - - -
βY6 1.1256 5.7828 5.9015 -
βY7 0.8979 6.5413 7.8454 12.2027
βY8 1.1334 5.5238 6.1083 4.2764
βY9 0.8887 6.2030 7.0253 11.5938

[vv](m)2 0.2546 0.2551 0.2557 0.3314
σ̂Y(m) 0.0479 0.0477 0.0476 0.0539

Table 4.5: selecting the best quadratic polynomial in Y-component

From the table we can see, when only the parameter βY2 and βY5 is eliminated, which means
that the quadratic polynomial in Y-component gets the minimum σ̂Y when the two terms YL
and Y2

L are eliminated.
The best quadratic polynomial in Y-component is then:

YG =βY0 + βY1XL + βY3ZL + βY4X2
L + βY6Z2

L + βY7(XLYL)+

βY8(XLZL) + βY9(YLZL)
(4.4)

The process of selecting the best polynomial in Z-component:

t test value for each parameter in each turn
1. Turn 2. Turn

βZ0 31133.3334 69585.1610
βZ1 1.0856 -
βZ2 5.9589 146.2114
βZ3 1.7190 108.3340
βZ4 4.2760 4.9888
βZ5 4.4014 4.9519
βZ6 4.3225 5.0260
βZ7 4.3347 4.9834
βZ8 4.3036 5.0076
βZ9 4.3466 4.9860

[vv](m)2 0.1412 0.1426
σ̂Z(m) 0.03565 0.037569

Table 4.6: selecting the best quadratic polynomial in Z-component



Chapter 4 Selecting the Best Combination of the Polynomial Terms 48

The quadratic polynomial in Z-component gets the minimum σ̂Z only when the original poly-
nomial model in Z-component is completely kept.
The best quadratic polynomial in Z-component is then:

ZG =βZ0 + βZ1XL + βZ2YL + βZ3ZL + βZ4X2
L + βZ5Y2

L + βZ6Z2
L+

βZ7(XLYL) + βZ8(XLZL) + βZ9(YLZL)
(4.5)

The transformation parameters should be recalculated with the best selected polynomial
model, which consists of the equations (4.3), (4.4) and (4.5).

The new parameters are listed bellow:

3D quadratic polynomial transformation with the best selected polynomial model
βX0 635.2211 βY0 24.3055 βZ0 449.4206
βX1 7.0016 βY1 -6.67755 βZ1 1.5622
βX2 1.8300 βY2 - βZ2 1.2965
βX3 5.8459 βY3 -6.1324 βZ3 2.3141
βX4 -390.8437 βY4 49.5957 βZ4 255.0302
βX5 -9.0002 βY5 - βZ5 5.9370
βX6 -336.0679 βY6 41.6983 βZ6 221.7853
βX7 -119.3618 βY7 9.2911 βZ7 77.8467
βX8 -724.9722 βY8 90.8435 βZ8 475.6438
βX9 -110.3723 βY9 8.4437 βZ9 72.3052

σ̂(m) 0.0411

Table 4.7: New transformation parameters of the 3D quadratic polynomial and the deviation

The transformation results of the quadratic polynomial before and after polynomial selection
with 121 collocated points are listed in the table bellow:

Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

Standard
deviation σ̂(m)

[VN ] [VE] [VN ] [VE]

before polynomial selection 0.0387 0.0359 0.1207 0.1298 0.0412
after polynomial selection 0.0386 0.0359 0.1205 0.1251 0.0411

Table 4.8: Numerical comparison of the quadratic polynomial before and after polynomial selection with 121 con-
trol points

The transformation results of the quadratic polynomial before and after polynomial selection
with 10 interpolated points are also showed in the table bellow:
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Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

QMR
(m)

[VN ] [VE] [VN ] [VE]

before polynomial selection 0.0477 0.0413 0.1865 0.1124 0.0657
after polynomial selection 0.0478 0.0420 0.1880 0.1152 0.0659

Table 4.9: Numerical comparison of the quadratic polynomial before and after polynomial selection with 10 inter-
polated points

Compared with the old quadratic polynomial model, the standard deviation of 121 collocated
points decreases from 4.12 cm to 4.11 cm. In contrast, the QMR of 10 interpolated points
increases from 0.0657 m to 0.0659 m. Although a obvious reduce of the standard deviation does
not appear after the selection of the best polynomial model, it provides an idea to improve the
quality of the polynomial model.

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points before and after selecting the best polynomial degree and terms are showed in
the figure as follows:

Figure 4.3: Horizontal residuals of 121 collocated points and 10 interpolated points before selecting the best
polynomial
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Figure 4.4: Horizontal residuals of 121 collocated points and 10 interpolated points after selecting the best
polynomial

4.4 Processing with 3D Cubic Polynomial Transformation Model

Here the 3D cubic polynomial model with non-scaled input coordinates is tested. The process
of selecting the best combination of the cubic polynomial terms is also implemented in X-, Y-
, Z-components separately. As proceed in the quadratic polynomial, the selecting results are
shown in the following tables stepwise.
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t test value for each parameter in each turn
1. Turn 2. Turn 3. Turn

βX0 9.6353× 103 3.7598× 103 3.9467× 103

βX1 -0.2472 -1.0181 -20.2141
βX2 0.1319 0.4767 -
βX3 -0.3003 -1.2277 -22.3191
βX4 0.0572 - -
βX5 0.0755 0.8520 0.7026
βX6 0.0666 2.0078 1.9363
βX7 0.0640 0.6537 0.4791
βX8 0.0618 1.9919 1.9217
βX9 0.0693 1.1167 1.0032
βX10 -0.4305 -2.0675 -2.0442
βX11 -0.3921 -1.9718 -1.9644
βX12 -0.4262 -2.0548 -2.0317
βX13 -0.4216 -2.0507 -2.0329
βX14 -0.4229 -2.0545 -2.0366
βX15 -0.4292 -2.0636 -2.0404
βX16 -0.4103 -2.0231 -2.0106
βX17 -0.4089 -2.0195 -2.0070
βX18 -0.4278 -2.0594 -2.0362
βX19 -0.4201 -2.0466 -2.0289

[vv](m)2 5.2058 0.3509 0.3621
σ̂X(m) 0.2270 0.0587 0.0593

Table 4.10: selecting the best cubic polynomial in X-component

From the selecting result in X-component, we can see obviously that a minimum σ̂X can be
achieved only when the transformation parameter βX4 (term X2

L) is deleted. The best combina-
tion of the cubic polynomial in X-component is then:

XG =βX0 + βX1XL + βX2YL + βX3ZL + βX5Y2
L + βX6Z2

L + βX7(XLYL) + βX8(XLZL)+

βX9(YLZL) + βX10X3
L + βX11Y3

L + βX12Z3
L + βX14(XLYLZL) + βX14(X2

LYL)+

βX15(X2
LZL) + βX16(XLY2

L) + βX17(Y2
L ZL) + βX18(XLZ2

L) + βX19(YLZ2
L)

(4.6)

The process of selecting the best combination of the cubic polynomial in Y-component is shown
in the following table:
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t test value for each parameter in each turn
1. Turn 2. Turn 3. Turn · · · 7. Turn 8. Turn

βY0 1.7665× 103 1.8634× 103 2.0321× 103 · · · 2.4672× 103 2.4633× 103

βY1 -2.4200 -2.4780 -32.1361 · · · -38.0724 -69.8960
βY2 -0.1737 -0.1756 - · · · - -
βY3 -2.4195 -2.4774 -31.0992 · · · -37.5293 -67.0638
βY4 -0.8418 -0.9832 -0.9721 · · · - -
βY5 -1.0411 -1.1978 -1.1933 · · · -3.2716 -3.7302
βY6 -0.8527 -0.9921 -0.9811 · · · - -
βY7 -0.9265 -1.0745 -1.0655 · · · -2.6406 -2.6172
βY8 -0.8475 -0.9880 -0.9769 · · · -3.3462 -3.4069
βY9 -0.9323 -1.0793 -1.0704 · · · - -
βY10 -0.0247 - - · · · -2.6450 -2.6233
βY11 -0.1785 -1.2978 -1.3046 · · · -1.3565 -
βY12 -0.0453 -1.2396 -1.2372 · · · -1.8268 -1.7445
βY13 -0.0789 -1.3634 -1.3811 · · · - -
βY14 -0.0720 -1.1542 -1.1574 · · · -1.9202 -1.8248
βY15 -0.0314 -1.2319 -1.2301 · · · -1.8478 -1.7663
βY16 -0.1257 -1.2192 -1.2238 · · · - -
βY17 -0.1326 -1.3260 -1.3376 · · · -1.9793 -1.8745
βY18 -0.0383 -1.2362 -1.2341 · · · -1.8376 -1.7557
βY19 -0.0859 -1.5558 -1.5881 · · · -1.9095 -1.8118

[vv](m)2 0.2274 0.2207 0.2208 · · · 0.2266 0.2305
σ̂Y(m) 0.0475 0.0465 0.0463 · · · 0.0460 0.0462

Table 4.11: selecting the best cubic polynomial in Y-component

There are totally 8 turns for selecting the best polynomial combination in Y-component. The
4th, 5th and 6th turns in the table above are omitted. The final result shows that βY2 (term YL),
βY4 (term X2

L), βY6 (term Z2
L), βY9 (term YLZL), βY13 (term XLYLZL) and βY16 (term XLY2

L) should
be removed from the polynomial in Y-component, so that the new polynomial combination
can get the most accurate transformation result.

The final polynomial model in Y-component is then:

YG =βY0 + βY1XL + βY3ZL + βY5Y2
L + βY7(XLYL) + βY8(XLZL) + βY10X3

L + βY11Y3
L+

βY12Z3
L + βY14(X2

LYL) + βY15(X2
LZL) + βY17(Y2

L ZL) + βY18(XLZ2
L) + βY19(YLZ2

L)
(4.7)

The process of selecting the best combination of the cubic polynomial in Z-component is shown
in the following table:
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t test value for each parameter in each turn
1. Turn 2. Turn 3. Turn · · · 6. Turn 7. Turn

βZ0 9.6682× 103 1.9202× 103 3.9027× 104 · · · 9.3832× 103 9.3383× 103

βZ1 0.8399 1.7333 3.7617 · · · 5.5146 5.9166
βZ2 1.6142 3.2922 6.8875 · · · 10.5998 11.1021
βZ3 0.9408 1.9369 4.1815 · · · 6.1770 6.6117
βZ4 -0.0660 - - · · · - -
βZ5 -0.0904 0.5643 - · · · - -
βZ6 -0.0805 0.2230 2.9836 · · · 3.2933 3.0373
βZ7 -0.0868 0.6106 3.2574 · · · 3.9153 3.8245
βZ8 -0.0732 0.3963 2.9836 · · · 3.2701 3.0066
βZ9 -0.0849 0.2457 0.7890 · · · - -
βZ10 0.5129 1.2429 2.2662 · · · 1.5173 -
βZ11 0.4742 1.2047 2.1871 · · · - -
βZ12 0.5078 1.2355 2.2532 · · · - -
βZ13 0.5042 1.2378 2.2558 · · · 5.0577 6.1575
βZ14 0.5058 1.2400 2.2596 · · · 3.5467 6.1504
βZ15 0.5114 1.2407 2.2623 · · · 1.5573 4.2157
βZ16 0.4932 1.2277 2.2342 · · · 5.2668 6.4353
βZ17 0.4916 1.2255 2.2303 · · · 5.6873 6.1249
βZ18 0.5097 1.2382 2.2580 · · · 1.5999 4.3181
βZ19 0.5025 1.2354 2.2516 · · · 5.5242 5.9775

[vv](m)2 2.5873 0.6812 0.2501 · · · 0.0905 0.0924
σ̂Z(m) 0.1601 0.0817 0.0446 · · · 0.0292 0.0294

Table 4.12: selecting the best cubic polynomial in Z-component

There are totally 7 turns for selecting the best polynomial combination in Z-component. The
5th and 6th turns in the table above are omitted. The final result shows that βZ4 (term X2

L),
βZ5 (term Y2

L), βZ9 (term YLZL), βZ11 (term Y3
L) and βZ12 (term Z3

L)should be removed from
the polynomial in Y-component, so that the new polynomial combination can get the most
accurate transformation result.

The final polynomial model in Z-component is then:

ZG =βZ0 + βZ1XL + βZ2YL + βZ3ZL + βZ6Z2
L + βZ7(XLYL) + βZ8(XLZL) + βZ10X3

L + βZ13(XLYLZL)+

βZ14(X2
LYL) + βZ15(X2

LZL) + βZ16(XLY2
L) + βZ17(Y2

L ZL) + βZ18(XLZ2
L) + βZ19(YLZ2

L)

(4.8)

The transformation parameters should be recalculated with the selected polynomial models in
X-, Y- and Z, which mean the equations (4.6),(4.7) and (4.8).

The new parameters after selections are listed below:
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new 3D cubic polynomial transformation parameters after selection
βX0 635.3832 βY0 24.3398 βZ0 449.4476
βX1 -34.8828 βY1 -64.5069 βZ1 80.3611
βX2 2.5973 βY2 - βZ2 24.6409
βX3 -48.4141 βY3 -74.2448 βZ3 103.6351
βX4 - βY4 - βZ4 -
βX5 87.4352 βY5 -154.8895 βZ5 -
βX6 2292.6708 βY6 - βZ6 1228.8510
βX7 406.2981 βY7 -795.2031 βZ7 234.0361
βX8 1965.7152 βY8 -22.8728 βZ8 1408.9624
βX9 825.6772 βY9 - βZ9 -
βX10 -30995292.8737 βY10 -919.7570 βZ10 1788594.5460
βX11 -106928.1274 βY11 -94.7880 βZ11 -
βX12 -46351257.5207 βY12 -417702.7167 βZ12 -
βX13 -323512504.5345 βY13 - βZ13 230418.9193
βX14 -14212313.6566 βY14 -102979.2492 βZ14 127553.8801
βX15 -106375962.0016 βY15 -321058.2675 βZ15 421827.5601
βX16 -2148821.1662 βY16 - βZ16 16335.1952
βX17 -2457235.1536 βY17 -8140.2991 βZ17 13572.2065
βX18 -121646610.2750 βY18 -732703.3418 βZ18 249349.1309
βX19 -18586785.4765 βY19 -117457.3961 βZ19 94400.2077

σ̂(m) 0.0460

Table 4.13: New transformation parameters of the 3D cubic polynomial and the deviation

In chapter 3 we have discussed the transformation results of the quadratic polynomial model,
the orthogonal quadratic polynomial model and the cubic polynomial model. The transfor-
mation accuracy of the cubic polynomial model is much worse than that of the quadratic
polynomial model and the orthogonal quadratic polynomial model. The standard deviation
of the two quadratic polynomial models is 4.12 cm, while the cubic polynomial model has a
standard deviation of 16.27 cm.

From the table we can see that, the transformation accuracy of the cubic polynomial model has
a great improvement after selecting the polynomial terms. Compared with the original cubic
polynomial model, the standard deviation decreases from 16.27 cm to 4.60 cm after deleting 1
term in X-component, 6 terms in Y-component and 5 terms in Z-component. Compared with
the quadratic polynomial and the orthogonal polynomial model after selecting the polynomial
terms, which both have a standard deviation of 4.11 cm, we are able to say that the accuracy of
the new cubic polynomial model is now at the same level.

The transformation results of the cubic polynomial before and after polynomial selection with
121 collocated points are listed in the table bellow:
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Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

Standard
deviation σ̂(m)

[VN ] [VE] [VN ] [VE]

before polynomial selection 0.0526 0.0369 0.2419 0.1621 0.1627
after polynomial selection 0.0405 0.0331 0.1454 0.1585 0.0460

Table 4.14: Numerical comparison of the cubic polynomial before and after polynomial selection with 121 control
points

The transformation results of the cubic polynomial before and after polynomial selection with
10 interpolated points are also showed in the table bellow:

Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

QMR
(m)

[VN ] [VE] [VN ] [VE]

before polynomial selection 0.0637 0.0471 0.2085 0.1176 0.0722
after polynomial selection 0.0296 0.0327 0.1664 0.1053 0.0511

Table 4.15: Numerical comparison of the cubic polynomial before and after polynomial selection with 10 interpo-
lated points

Compared with the old quadratic polynomial model, the absolute mean of residuals of 10
interpolates points in north and east directions both decreases by several centimeter and
the QMR of 10 interpolated points also decreases from 7.22 cm to 5.11 cm. As a result, the
transformation accuracy of the cubic polynomial model has a great improvement after the
polynomial selection.

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points before and after selecting the best polynomial degree and terms are showed in
the figure as follows:
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Figure 4.5: Horizontal residuals of 121 collocated points and 10 interpolated points before selecting the best
polynomial

Figure 4.6: Horizontal residuals of 121 collocated points and 10 interpolated points after selecting the best
polynomial



Chapter 4 Selecting the Best Combination of the Polynomial Terms 57

4.5 Processing with 3D Orthogonal Polynomial Transformation
Model

With the reference of the previous section, the selecting process in orthogonal polynomial can
be simply completed.
The final selecting result of the orthogonal polynomial terms s is showed as follows:

new transformation parameters of 3D quadratic polynomial with legendre polynomials
βX0 389.9172 βY0 54.7368 βZ0 610.3381
βX1 7.0016 βY1 -6.6755 βZ1 1.5622
βX2 1.8300 βY2 - βZ2 1.2965
βX3 5.8459 βY3 -6.1324 βZ3 2.3141
βX4 -260.5624 βY4 33.0638 βZ4 170.0201
βX5 -6.0001 βY5 - βZ5 3.9580
βX6 -224.0452 βY6 27.7988 βZ6 147.8569
βX7 -119.3618 βY7 9.2911 βZ7 77.8467
βX8 -724.9742 βY8 90.8435 βZ8 475.6438
βX9 -110.3723 βY9 8.4437 βZ9 72.3052

σ̂(m) 0.04113

Table 4.16: New transformation parameters of quadratic polynomial with legendre polynomials and the deviation

The table shows that there are no eliminations in the polynomial models in X- and Z- com-
ponents. In Y-component two parameters βY2 and βY5 are eliminated.Compared with the old
orthogonal polynomial model, the standard deviation decreases from 4.12 cm to 4.11 cm.
The new polynomial model in Y-component is:

YG =βY0 + βY1XL + βY3ZL + βY4(
1
2
(3X2

L − 1)) + βY6(
1
2
(3Z2

L − 1))+

βY7(XLYL) + βY8(XLZL) + βY9(YLZL)
(4.9)

The transformation results of the orthogonal polynomial before and after polynomial selection
with 121 collocated points are listed in the table bellow:

Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

Standard
deviation σ̂(m)

[VN ] [VE] [VN ] [VE]

before polynomial selection 0.0387 0.0359 0.1207 0.1298 0.0412
after polynomial selection 0.0386 0.0420 0.1205 0.1251 0.0411

Table 4.17: Numerical comparison of the orthogonal polynomial before and after polynomial selection with 121
control points

The transformation results of the orthogonal polynomial before and after polynomial selection
with 10 interpolated points are also showed in the table bellow:
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Transformation model Absolute mean
of Residuals (m)

Max. absolute
Residuals(m)

QMR
(m)

[VN ] [VE] [VN ] [VE]

before polynomial selection 0.0477 0.0413 0.1865 0.1124 0.0657
after polynomial selection 0.0474 0.0421 0.1865 0.1138 0.0659

Table 4.18: Numerical comparison of the orthogonal polynomial before and after polynomial selection with 10
interpolated points

We can see from table (4.17) and (4.18), the standard deviation of 121 collocated points
decreases from 4.12 cm to 4.11 cm. In contrast, the QMR of 10 interpolated points increases
from 6.57 cm to 6.59 cm, and the absolute mean of residuals of 10 interpolates points in east
direction also increases, which means the polynomial selection does not have an obvious effect
on the orthogonal polynomial model.

The horizontal residuals vE and vN and their directions of 121 collocated points and 10 inter-
polated points before and after selecting the best polynomial degree and terms are showed in
the figure as follows:

Figure 4.7: Horizontal residuals of 121 collocated points and 10 interpolated points before selecting the best
polynomial
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Figure 4.8: Horizontal residuals of 121 collocated points and 10 interpolated points after selecting the best
polynomial
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Chapter 5

Conclusion

In order to transform the coordinates from Gauß-Krüger coordinate system into UTM coordi-
nate system 7 different transformation models are performed.

In the 2-D coordinate transformation the 6-parameter affine transformation model, the
9th-order multiple regression equations and the 5th-order multiple regressions have been
performed and their transformation results have been discussed. From the comparison of their
transformation results in Baden-Wütermberg we come to a conclusion that the 9th-order and
the 5th-order multiple regression equations reached better accuracy than the 6-parameter affine
transformation model. The transformation accuracy of the 6-parameter affine transformation
model can reach the decimeter level, while the 9th-order and the 5th-order multiple regression
equations can reach a centimeter level. When we compare the 9th-order with the 5th-order
multiple regression equations, we can make a conclusion that although the transformation
accuracy of the 9th-order multiple regression equations is about 1cm better than the 5th-order
multiple regression equations, the computation complexity of 5th-order multiple regression
equations is much lower than the 9th-order multiple regression equations.

As for the 3-D coordinate transformation using the Least Squares method, the 7-parameter
Helmert transformation model, the quadratic polynomial model, the cubic polynomial model
and the quadratic model with Legendre polynomial have been performed and discussed.
From the comparison of their transformation results we can draw a conclusion that the 7-
parameter Helmert transformation model get the worst transformation results while the cubic
polynomial model using scaled collocated coordinates get the best transformation results.
With the cubic polynomial model the transformation accuracy can reach the centimeter level,
while the 7-parameter Helmert transformation model can only get a accuracy in decimeter
level. By comparing the transformation results of the quadratic polynomial model and the
quadratic model with Legendre polynomial we can conclude that the Legendre polynomial
in the quadratic polynomial does not have a positive effect on the transformation accuracy,
because the condition of independent variables for the orthogonal property of the Legendre
polynomials is not met. The coordinates are not continuous in the interval [-1,1]. When com-
paring the transformation results of the quadratic polynomial model and the cubic polynomial
model using scaled coordinates we can make a conclusion that the cubic polynomial model
can achieve a better accuracy, because the distortion and the deformation will be better fitted
with higher polynomial degree and more terms, but only under the condition that the cubic
polynomial transformation model use scaled coordinates.

The method to select the best polynomial terms are also performed here. The main task of
this method is to decrease the number of the polynomial terms, besides, the accuracy of the
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transformation result should be improved or at least remain unchanged. The process of select-
ing the best combination of the polynomial terms is meaningful because when the number of
terms are decreased, the dimensions of the design matrix and the number of transformation
parameters are also reduced. Although the application of this method in the 9th-order multiple
regression equations, the quadratic polynomial model and the quadratic model with Legendre
polynomial does not make great improvements to the transformation accuracy, but it has
a great improvement to the transformation accuracy of the cubic polynomial model using
non-scaled coordinates, which has been improved for about 2 cm. As a consequence, the the
method to select the best polynomial terms is of great significance when a polynomial is full
range or it has overmany polynomial terms.
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