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Abstract

There are several areas of application for emotion detection systems, for example social
media analysis, for which it is important to reliably recognize expressed emotions. This
thesis takes negations, intensifiers and diminishers on emotion expressions in Tweets
into account, in order to study whether this can improve an emotion detection system.
It uses different emotion classifiers together with various modifier detection approaches
to evaluate the impact of modifiers on emotion expressions. The results show that an
emotion detection system can be slightly improved if negations are taken into account.
The thesis also studies the correlation between modified emotion words and basic
emotions to obtain a better understanding about modified emotions. The analysis of the
results shows correlations between modified and basic emotions, which enables us to
determine the expressed basic emotion of modified emotion words.
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Kurzfassung

Es existieren viele verschiedene Anwendungsgebiete für Systeme die Emotionen erken-
nen können, beispielsweise die Analyse von sozialen Medien, für die eine verlässliche
Erkennung von ausgedrückten Emotionen wichtig ist. In dieser Arbeit werden Wörter,
welche ausgedrückte Emotionen negieren, verstärken oder abschwächen anhand von
Tweets in Betracht gezogen, um zu untersuchen, ob dies ein System zur Emotionserken-
nung verbessern kann. Es werden verschiedene Methoden zur Emotionserkennung mit
unterschiedlichen Verfahren zur Erkennung solcher Modifikatoren verbunden, um den
Einfluss von Modifikationen auf ausgedrückte Emotionen zu evaluieren. Die Ergebnisse
zeigen, dass ein System zur Emotionserkennung leicht verbessert werden kann, wenn
Negationen mit in Betracht gezogen werden. In dieser Arbeit werden außerdem die
Zusammenhänge von modifizierten Emotionen und Basisemotionen untersucht, um
ein besseres Verständnis von modifizierten Emotionen zu erhalten. Die Analyse der
Ergebnisse zeigt Verbindungen zwischen modifizierten Emotionen und Basisemotionen,
was es ermöglicht, die Basisemotion von modifizierten Emotionen zu erkennen.
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1 Introduction

1.1 Motivation

In recent years, the domain of social media has grown rapidly. One of the most popular
social networks is the micro blogging platform Twitter. Twitter facilitates users to freely
express their emotions, opinions and ideas to anyone by publishing short messages.
Those messages, called Tweets, are limited to a maximum of 140 characters, which can
require users to truncate their texts and express their thoughts in a compact way. As
an example for the rapid growth of social media, we can consider some statistics about
Twitter. It took three years after the release in 2006 to reach one billion sent Tweets,
while in 2017 it does not even take two days for one billion tweets to be sent. The
amount of Tweets sent per day went from 5,000 in 2007 to 500,000,000 in 2013, which
is equal to nearly 1,000% gain in yearly volume of Tweets. Although this rapid grow
cooled down massively, it is still estimated that the volume of Tweets will grow by 30%
every year. [Pro17]

Regarding these statistics, we can conclude that the growth of social media also implies
growth in volume of generated data, mainly in the form of text. To be able to analyze
these large amounts of data, we need efficient and effective methods to extract informa-
tion from text. One of the most used methods for data mining is classification, where a
certain number of classes Y is defined and then each document gets assigned to a class
y ∈ Y . A very common use case is spam filtering in an e-mail system, where incoming
e-mails are classified either as y = spam or y = ham.

We apply one of the most common approaches for such classification tasks, called
machine learning algorithms, in order to automatically classify a large data set. We need
to provide sufficient training data for the machine learning algorithm to work reliably.
The training data consists of documents for which we already know the correct classes
and thus are able to train a model, which can then be used by our machine learning
classifier to predict the classes of unknown data. Creating sufficient training data may
be challenging, depending on the complexity of the task and on the cardinality of Y . We
will also face the problem of creating training data in this thesis, which will be discussed
later in Section 4.1.
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1 Introduction

Another example for classification is sentiment analysis, which is the task to assign a
polarity value y ∈ Y = {positive, negative, neutral} to a text fragment. Consider the
Tweet “I like criticism. It makes you strong! #happiness #PositiveVibes #team”1. This
Tweet has a positive polarity value because it contains more positive than negative
weighted words such as “like” and “happiness”. In contrast, the Tweet “That moment
when you run into someone you dislike. #life #badnews #hate”2 has a negative polarity
value because it contains negative weighted words like “hate” and “dislike”.

Sentiment analysis is a coarse classification and the informaton gained may not be
sufficient for certain tasks. Emotion analysis provides more information because it is a
more subdivided classification. It is the task to assign a basic emotion to a text fragment.
It is not rigidly defined what the basic emotions are. This thesis will follow Ekman’s
definition of basic emotions [Ekm92] which are “disgust”, “sadness”, “anger”, “joy”,
“fear” and “surprise”. Instead of just assigning positive and negative polarity values, the
emotions “joy” and “anger” would be assigned to the previous Tweets.

Emotion analysis can be useful in many different domains. The following list gives a few
examples:

• Companies can analyze their Twitter feed to gain information about how their
costumers react to announcements.

• Similarly, social media channels can be analyzed after a politician’s speech to gain
an impression about the medial reactions.

• There are customer service softwares like SmartSense™and NICE Perform™that rec-
ognize customer emotions and then perform prioritizing and routing of customers
based on emotional content [DA08].

• Emotional information about users can be used for more customized advertising.

• In Human-Computer-Interaction, a computer can interact with a user differently,
depending on the users emotional state.

• Text to speech systems can be improved by changing the voice depending on the
underlying emotion of the text.

• The information gained using emotion analysis can be valuable in different research
domains such as psychology.

1https://twitter.com/aislingameenan/status/772464390021013505
2https://twitter.com/AhmadSabri2/status/782973840179724288
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1.1 Motivation

A reliable classification of emotions is important for all these use cases and thus, re-
searchers try to achieve improvements in this domain. It has been shown that a sentiment
analysis system can be improved if intensifiers, diminishers and negations are taken into
account. However, this has not yet been studied for emotion analysis. An example for
each modifier type is shown in the following list of Tweets:

• Intensifier: “Wishing you a very happy day! #happiness #positivity”3

• Diminisher: “After a few months I finally get #xboxlive back. #happiness”4

• Negation: “I don’t want to lose you but I am not happy”5

Considering the Tweet in the negation example, the expression “not happy” could be
interpreted as “sadness”, whereas in the Tweet “There is an alarm going off outside
my window and I am not happy about it”6, “not happy” rather indicates the emotion
“anger”. In both cases it seems important to consider modifications because otherwise a
classifier would probably label both Tweets with the basic emotion “joy”. This example
also shows that classifying negated emotion words is not trivial and is dependent on its
context. Although the phrase “not happy” can have different meanings, it was possible
to determine the expressed basic emotion of both Tweets. Having said this, there are
Tweets for which it is not easily possible to determine the corresponding basic emotion
because of modified emotion words. Some example Tweets where this is the case are
given in the following list:

• “I can smell The persons breath behind me on the bus and it smells like he ate a
bag of fucking dog shit and onions #washyourmouthson...”7

This Tweet could express the emotion “disgust”, but due to the intensifier “fucking”,
it also expresses “anger”.

• “I am not sad because you don’t feel that way. I just feel aggrieved at how fast
people change.”8

This Tweet could mainly express the emotion “sadness”. With the use of the
negation “not”, it still expresses “sadness” but also “anger” and “surprise” because
the second sentence comes more into focus.

3https://twitter.com/createtheripple/status/791500891740377089
4https://twitter.com/BryanKidder/status/798076624457596928
5https://twitter.com/judy_puckett/status/817976949096202240
6https://twitter.com/ahundreddoghugs/status/818251050746527748
7https://twitter.com/gabemchl/status/806400382721212416
8https://twitter.com/nurraihaniman/status/859722763845615616
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1 Introduction

• “Just a bit happy to be back in Ibiza...”9

This Tweet could express the emotion “joy”. Since it is diminished by the word
“bit”, it also expresses “sadness”.

In this thesis, we implement and combine an emotion classification and modifier de-
tection system in order to study if this enhances an emotion analysis system and how
emotions change when they are modified. We attempt to provide a better understanding
of modified emotions and examine whether corresponding non-negated emotions exist.
For example, we want to be able to answer the question what the basic emotions of “not
happy” and “not sad” are.

1.2 Goals of this Thesis

Considering the motivation of this thesis we can specify two different problems that
need to be studied. We will conduct several experiments using different methods for
modifier detection and emotion classification in order to achieve these goals.

1. It has been shown that by taking modifiers on sentiments into account, the per-
formance of a sentiment analysis system can be improved. The hypothesis is, that
an emotion analysis system also can be improved if intensifiers, diminishers and
negations on emotion expressions are taken into account. The main goal of this
thesis is to prove or decline this hypothesis.

2. We showed example Tweets containing modified emotion words, for which it is not
straightforward to determine the basic emotions. The second goal of this thesis is
to understand if specific modified emotions correspond to specific basic emotions.

1.3 Outline of this Thesis

Chapter 2 - Background explains all fundamentals that are used in this thesis. This
includes classification, optimization and evaluation techniques. Furthermore, we present
previous work on emotion analysis and modifier detection systems.

Chapter 3 - Methodology firstly introduces three different methods for modifier scope
detection and then two approaches for emotion classification.

9https://twitter.com/bethholland0/status/755018165273391104
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1.3 Outline of this Thesis

Chapter 4 - Results starts with the introduction to our used corpora. It discusses
how the corpora are created and for what experiments they are used. Afterwards, the
hypotheses are listed and it is explained how they relate to the goals of this thesis.
Finally, the chapter shows and discusses the results of the experiments.

Chapter 5 - Summary summarizes the experiments and results of the thesis and shortly
discusses possible future work.
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2 Background

This chapter is divided into two sections. In Section 2.1, we explain the needed fun-
damentals for this thesis. Section 2.2 presents previous work in emotion analysis and
modifier detection.

2.1 Fundamentals

2.1.1 Classification

Classification is the task to assign a document to one or more predefined classes. Each
document is represented as a vector x⃗ defined as

x⃗ = (v1, v2, ..., vn) ∈ X, (2.1)

where X is the set of all document vectors, vi an explicit feature and n the number
of features. Features are information extracted from a document, for example, the
information whether specific words are present or absent in a given document. We
further define Y as the set of all classes and |Y | = k. The goal of a classification task is
to find the most accurate function

f : X → Y : x⃗ 7→ f(x⃗). (2.2)

We differentiate between two kinds of classification. Binary classification considers
only two possible classes (k = 2) like in the spam filter example, whereas multiclass
classification considers more than two classes. In this thesis, multiclass classification
is used with k = 6, defining each class as one basic emotion. Our input data splits
into training and test data. For the classifier to be able to find a good function f , it is
necessary to provide sufficient training data. The training data is a set of documents
whose correct classes are already known. This data can be used to train a model for the
classifier, which is then used to classify the test data. The training data S is defined as

S = ((x1, y1), ..., (xl, yl)) ⊆ (X × Y )l, (2.3)

with l being the amount of training data. The xi are called instances (our training
documents) and the yi are the results (classes) of the corresponding xi.
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2 Background

2.1.1.1 Support Vector Machine Classifier

The Support Vector Machine (SVM) is a very popular technique for data classification.
The SVM creates a hyperplane that separates our document vectors x⃗i in the training
data according to their class yi. We define a hyperplane as a pair (w, b) with w being
the orthogonal vector indicating the inclination of a line and b being the parallel shift
distance from the origin. We further define the distance γi from one training document
si ∈ S to a hyperplane as

γi = yi(⟨w · xi⟩+ b). (2.4)

The SVM now optimizes the parameters in order to find the hyperplane that separates the
training documents si according to their classes, while retaining the maximum margin
to each si. This optimal hyperplane is called “maximum margin hyperplane”. Figure 2.1
shows a hyperplane that separates the two classes “circle” and “square” perfectly while
retaining the maximum margin. The dotted lines indicate the support vectors that are
used to separate each class using the smallest margin to one class and the largest to the
other. The hyperplane with the same distance to each support vector is finally chosen
and can then be used to classify a test set.

Figure 2.1: Example of the SVM hyperplane creation.

Not all classification problems are perfectly linearly separable so we introduce a penalty
parameter C, which indicates to what extend we want to avoid misclassifying training
examples. For large values of C, the SVM will create a hyperplane that separates the
training vectors better, with the drawback of having smaller margins. On the other hand,
for small values of C, it creates a hyperplane with a larger margin but will misclassify
more training examples.
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2.1 Fundamentals

In order to increase the accuracy of the optimization, we map the training data xi in
higher dimensional spaces using the function

φ : X ⊆ Rn 7→ F ⊆ RN , (2.5)

because then it may be linearly separable more easily. Figure 2.2 shows an example
where the training data becomes linearly separable after the mapping. The left side
shows linear inseparable elements of class “circle” and “square” in the domain X. After
the elements are mapped into the domain F by the function φ, a perfect separating
hyperplane can be found.

Figure 2.2: Visualization of a mapping function.

Furthermore, the so called kernel trick is used in order to avoid this explicit mapping of
the training data. For this, we define the kernel function K as

K(xi, xj) = ⟨φ(xi) · φ(xj)⟩. (2.6)

Several different kernel functions exist and one has to find the optimal kernel function
for a given classification problem. Three often used kernels are defined in the following
list.

• Linear kernel: K(xi, xj) = xT
i xj.

• Polynomial kernel: K(xi, xj) = (γxT
i xj + r)d, γ > 0.

• Radial basis function (RBF) kernel: K(xi, xj) = exp(−γ∥xT
i xj∥2), γ > 0)

After a kernel is selected, we have to find the best values for C and, if necessary, kernel
parameters (e.g. γ and r in the polynomial kernel). We describe the approach of finding
the best values exemplary for the parameter C. A naive approach is to try different
values of C and compare their performance. As suggested by Hsu et al. [CL08], we first
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2 Background

run a coarse “grid-search” using different powers of two (2−15 − 215, step size one) to
minimize the search space and then perform a finer search around the best performing
area. To evaluate the performance for each value of C, we have to split our training
data into training and validation data. We use the smaller training data to train a model
with a specific value of C and then test and evaluate the performance on the validation
data. If we use a static split of our training data, a problem called “overfitting” may
occur. Overfitting is a phenomenon, meaning our trained model is too adjusted to the
training data so that the model performs worse on other data.

Figure 2.3: Comparison of two hyperplanes created with and without cross validation.

2.1.1.2 Cross Validation

To reduce overfitting, we use a technique named cross validation. The most common
variant is called n-fold cross validation, where the training data is not split statically
into a smaller training and validation data, but into n subsets si ⊂ S of about equal size.
Afterwards we train a model on n−1 subsets and use the remaining one as the validation
set. This procedure is repeated n times, so that each subset si ∈ {s1, s2, ..., sn} = S is
used as a validation set while S \ si is used to train a model. After the procedure is
finished we have n results, which we average and use this result as a measurement for a
specific value of C. In Figure 2.3 we can see the comparison of an overfitted hyperplane
(left) and a more general hyperplane (right). As the figure shows, the hyperplane on the
right side missclassifies one si but has a much larger margin than the hyperplane on the
left and will therefore probably perform better on test data. The use of cross validation
helps to find values for the kernel parameters that lead to a more general hyperplane
and therefore reduces overfitting.
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2.1 Fundamentals

2.1.2 Hill Climbing

Hill climbing is an optimization technique that maximizes/minimizes a target function
f(x), with x being a vector of discrete and/or continuous values. The algorithm itera-
tively searches the neighborhood of f(x) by adjusting one element in the vector and
tries to find a better f(x′) to start searching from there again. The algorithm stops if no
better f(x′) can be found in the neighborhood of f(x). There are three main variants of
the hill climbing algorithm. The “simple hill climbing” chooses the first better successor
whereas the “steepest ascent hill climbing” checks all successors and chooses the best
one to proceed. The third variant is called “stochastic hill climbing”, which chooses a
random successor from all better successors. The probability of a selection varies with
the steepness of the successors.
All hill climbing variants have the problem that they may only find a local maximum/min-
imum if the function f is not convex. Figure 2.4 shows an example function with a local
and a global maximum. Depending on the start seed of the algorithm, it may reach the
local maximum during the optimization process. It can not find any better f(x′) in the
neighborhood of a maximum and therefore returns this as the optimal solution, but it is
not since there is a better solution, the global maximum.

Figure 2.4: Example function with a local and a global maximum.

To increase the probability of finding the global maximum/minimum, we use a meta-
algorithm on top of hill climbing, called random-restart hill climbing. The hill climbing
algorithm is performed several times using different, random generated seeds for x.
The current best performing x is kept until a better performing x′ is found. Applying
this meta-algorithm to the previous example function probably results in the optimal
solution after a few iterations.
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2 Background

2.1.3 Evaluation

In order to compare different emotion and modifier detection methods we have to
introduce evaluation techniques, which measure the performance of each approach.
After a classifier predicted the class of a document there are four possible cases, which
we count separably for each class yi:

• True Positive (TP): the gold standard and the predicted class are both yi.

• True Negative (TN): the gold standard and the predicted class are both not yi.

• False Positive (FP): the gold standard is not yi but the predicted one is.

• False Negative (FN): the gold standard is yi but the predicted one is not.

See also Figure 2.5 for a visual representation of the four cases. The left half of the
square contains documents of class yi (squares) and the right side of class yj (circles).
Documents inside the large circle are classified as yi. Green colored areas indicate that
the classifier predicted these documents correctly, whereas the opposite applies for the
red areas.

Figure 2.5: Visualization of TP, TN, FP and FN.

Using these four measured values, we can calculate the precision defined as
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2.1 Fundamentals

Precisioni = TPi

TPi + FPi

= documents correctly classified as yi

documents classified as yi

(2.7)

and the recall defined as

Recalli = TPi

TPi + FNi

= documents correctly classified as yi

documents with gold standard yi

(2.8)

for all classes yi ∈ Y . Precision or recall alone are no good indicators of how well our
classifier performs, as we can easily achieve 100% precision for a class yi if we classify
all documents as yj and 100% recall if we classify all documents as yi. Thus, we combine
these two measurements using the harmonic mean, called F-measure, which is defined
as

Fβi = (1 + β2) · precisioni · recalli
β2 · precisioni + recalli

(2.9)

with β indicating the weighting for recalli. Usually we want a balanced F-measure,
where recall and precision are considered equally important and therefore use β = 1.

If we are using a multiclass classifier, we generate multiple F1-measurements. In order
to compare the overall performance of a classifier we need to calculate an average
F1-measure. There are two methods of calculating the average F1-measure; one is called
micro-average defined as

Micro-average = 2 · precisionsum · recallsum

precisionsum + recallsum

(2.10)

with precisionsum and recallsum being calculated using

TP = ∑k
i=1 TPi

FP = ∑k
i=1 FPi

FN = ∑k
i=1 FNi

and the other is called macro-average, defined as

Macro-average = 1
k

k∑
i=1

Fi (2.11)

The difference between these two approaches is that the micro-average method weights
the different F1-measurements according to the amount of documents the corresponding
class contains, while the macro-average method treats each class equally. We use the
macro-average method in this thesis, since we want to weight each basic emotion
equally.
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2.2 Previous Work

2.2.1 Emotion Analysis

For emotion analysis it is necessary to define basic emotions which can be used for
classification. The most common definitions were proposed by Paul Ekman [Ekm92]
and Robert Plutchik [Plu01]. Ekman defines “disgust”, “sadness”, “anger”, “happiness”,
“fear” and “surprise” as the six basic emotions that all humans have in common. Plutchik
instead, describes in his work eight different basic emotions, including the six defined
by Ekman and additionally “anticipation” and “trust”. This eight basic emotions are
grouped into four bipolar pairs: “joy” vs. “sadness”, “anger” vs. “fear”, “trust” vs “disgust”
and “surprise” vs. “anticipation”. Many researchers use Ekmans defined basic emotions
and therefore, we also use them in this thesis because this enables us to compare our
results with previous work.

After the basic emotions are defined, the next step will be to develop a method to classify
the text fragments. The classification by Danisman and Alpkocak [DA08] is based on a
vector spaced model (VSM). They create a vector for each emotion set and for the to be
classified data. This data vector is then assigned to the emotion with the highest cosine
similarity. Their results show that VSM classification on short sentences achieve similar
results to naive Bayes or SVM classifier. They also studied the influence of stemming
on the emotion classification task and show that stemming results in a slightly better
performance.

Balabantaray et al. [BMS12] used a Tweet based corpus for emotion classification, that
was annotated by five different judges with an average annotator agreement of 71%.
They used a SVM classifier and compared the performance of many different features.
Some of their used features include: Unigrams, Bigrams, POS, POS-Bigrams, Emoticons
and more. The results show that the highest emotion classification accuracy is achieved
if all features are used.

Suttles and Ide [SI13] use the eight bipolar basic emotions defined by Plutchik for
emotion classification. This enables them to use four binary classifiers instead of a
multiclass classifier. They combine them to emulate a multiclass classifier and achieve
higher accuracies than in previous reported multiclass classification studies.

Most research focuses on explicit emotion detection like in the sentence “The outcome
of my exam makes me happy” whereas Udochukwu and He [UH15] created an emotion
analysis system based on different rules to detect implicit emotions like in the sentence
“I passed my exam” as well. Both of this sentences express the emotion “joy”, but the
second sentence does not use any emotion bearing words and therefore only implying
the emotion.
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Many of the best performing approaches for emotion classification use machine learning
classifier. The problem is that a very large amount of training data is needed for emotion
detection, since the classifier has to learn to distinguish between many different classes.
Manual labeling of such large data is very time consuming and therefore, researchers
use methods to automatically label a large amount of data. Wang et al. [WCTS12]
used the hashtags from Tweets to automatically label them with their expressed basic
emotion. For example, in a Tweet like “I hate when my mom compares me to my friends.
#annoying...”1, they use “#annoying” to label the Tweet as “anger”. Using this method,
they are able to create a training set containing millions of Tweets without any need of
manual labeling. They studied some randomly sampled Tweets and developed a set of
filtering heuristics to remove irrelevant Tweets and reduce the noisiness of the corpus.
Their results show, that the performance of an emotion classification system using SVMs
can be significantly improved for a very large amount of training data. By increasing the
amount of training data from 1.000 to 2 million Tweets, the accuracy of the classification
increased by about 22%.

Purver and Battersby [PB12] used a similar approach to create a large corpus of au-
tomatically annotated Tweets. They also used certain hashtags to automatically label
Tweets, but studied a different approach using emoticons as well. For example, the
emoticon “:)” was used to label Tweets as “joy”. They compared the emotion classifi-
cation performance of these two approaches. The results show, that both approaches
achieve similar results.

2.2.2 Modifier Detection

The first modifier detection methods were used to detect findings and diseases in biomed-
ical texts more reliably. The most commonly used approach for modifier detection is
firstly to detect modifier cues and then secondly to detect the scope of the cues. Chapman
et al. [CBH+01] introduced the “NegEx” algorithm based on regular expressions. The
algorithm searches biomedical texts for phrases indicating negations (cues) and then
determines the scope of this phrases. The scope of a negating phrase is set to the next
punctuation mark or to the next adversative conjunction.

In recent times, the area of application for modifier detection shifted towards sentiment
analysis. At least for negations, it seems intuitive that they can affect the polarity of a
sentiment and shift it from positive to negative and vise versa. The role of negations
on sentiments is dependent on how fine-grained the classification task is. If the task is
to classify whole documents, Pang et al. [PLV02] showed that by additionally taking

1https://twitter.com/_xCalifornian/status/135820316063703040
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negations into account the improvement is negligible. If a document contains twenty
phrases with sentiments and only two of them are negated, then those few negated
sentiments hardly affect the results.

Councill et al. [CMV10] use a lexicon based approach for negation cue detection. They
trained a conditional random field (CRF) using multiple features, for example, part
of speech and dependency relations. They achieve a F1 score of 80% for the negation
scope detection on a product reviews corpus. Then, they implemented this negation
detection approach into a sentiment classification system. The results show a significant
improvement of the sentiment classification performance using negation detection.

Reitan et al. [RFGB15] use the same approach as Councill et al. [CMV10], but with a
few additions. Instead of a product review corpus, they use a Tweet corpus for training
and testing. Therefore, they added some Twitter specific modifier cues to the lexicon like
“dnt” or “cudnt”. The results for the sentiment classification task show an improvement
if the modifiers are taken into account.

Jia et al. [JYM09] use a parse tree, typed dependencies and special rules to determine
the scope of a negation cue. Firstly, they create a candidate scope using the parse
tree and a simple heuristic. They determine the lowest common ancestor (LCA) of the
modifier cue and the word immediately after the cue. The candidate scope consists of
all descendant leaf nodes of the LCA. Afterwards, they apply multiple heuristic rules on
the candidate scope to determine the final modifier scope. Again, the results show an
improvement for sentiment classification if modifiers are taken into account.

It is easy to implement a modifier detection system into a machine learning classifier, as
the features can simply be changed if they are within a modifier scope. For others, as
for example a word list classifier, modifier scopes can not easily be considered. In the
work of Polanyi and Zaenen [PZ06], they present a method to resolve this problem in a
sentiment classification task. To classify a document as either positive or negative, they
count the number of positive and negative words occurring in a document. If there are
more positive words in a document, it is classified as positive and vise versa. Now to
consider modifiers, they do not count the words, but sum up weightings for each word.
Positive words have a weighting of +2, while negative words have a weighting of -2. If a
word is negated, its sign is simply shifted. If a word is intensified, its weighting changes
to +3 or -3 respectively and if its diminished, it changes to +1 or -1 respectively. If the
final weighting is > 0, the sentence is classified as postive, and if it is < 0 as negative
sentiment. Kennedy and Inkpen [KI06] conducted experiments using this approach and
showed, that if negations, intensifiers and diminishers are taken into account this way, a
sentiment classification system can be improved.

30



3 Methodology

This chapter is divided into three sections. Section 3.1 describes the modifier cue
detection task and how it is done in this thesis using modifier lexicons. Section 3.2
explains the modifier scope detection task and presents three different approaches,
which we will compare in our experiments. Finally, Section 3.3 shows two different
emotion classification methods.

3.1 Modifier Cue Detection

Modifier detection splits into modifier cue and scope detection (MSD). Before the scope
of a modifier can be defined, the modifier token in a sentence has to be identified. We
differentiate between an explicit modification as in “I do not like this movie.”, where
the explicit negation cue “not” can be identified, and an implicit modification as in the
sentence “I like this movie as much as I like coffee, and I really hate coffee.”. Both
examples tell us that the person does not like the movie, but the implicit negation in the
second sentence is much more difficult to detect than the explicit negation in the first
one. We limit our work to explicit modifier cues, enabling us to use modifier lexicons for
a simple modifier cue detection.

3.1.1 Modifier Lexicons

Firstly, we create a lexicon for each modifier type containing explicit modifier cues
collected from different paper and websites12 [TM86] [Rom12] [BCP+07] [CMV10].
Table 3.1 shows a snipped of each modifier lexicon (see complete lists in Appendix B).

However, some modifiers in these lists are questionable for our purpose as they can
also be used in a non modifying context. For example the word “so” can be used as an
adverb of degree and is therefore an intensifier cue like in the Tweet “So cute that Alex

1https://en.wikipedia.org/wiki/Intensifier
2https://www.englishclub.com/vocabulary/adverbs-degree.htm
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Negation cues Intensifier cues Diminisher cues

cannot neither absolutely amazingly barely bit
never no completely entirely few hardly

nobody none especially extremely less nearly
nor not freaking incredibly negligibly partly

nothing nowhere lot really practically rarely
n‘t without super very some sparsely

Table 3.1: Lexicon snippets

got me chocolates for national girlfriend day #lucky”3, but also can be used for other
purposes, for example as an interjection like in the Tweet “So this is what rock bottom
looks like. #depress #sad #life”4. To analyze this problem we collect 100 random
Tweets for each questionable modifier and calculate the probability of how often it is
used in a non modifying context. Table 3.2 shows the results for some modifiers. The
first column shows the modifier cue, the second column its type and the third column
the percentage this cue is not used as modifier. If the percentage of a modifier is higher

Modifier Cue Modifier Type not-a-modifier percentage

awful intensifier 86%
dead intensifier 95%
holy intensifier 59%
mad intensifier 96%
much intensifier 20%
real intensifier 49%

really intensifier 33%
so intensifier 22%
too intensifier 50%
lack negation 12%
bit diminisher 20%

little diminisher 50%

Table 3.2: Investigation of some questionable modifier.

than a threshold of 50%, we delete it from the modifier cue lexicon, because this means

3https://twitter.com/skye_lilly_/status/760451487805890560
4https://twitter.com/ferliloo/status/783565601021104128
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it is predominantly not used as a modifier. According to Table 3.2, we delete the words
“awful”, “dead”, “holy” and “mad” from the modifier lexicons.

Once the lexicons are created, the modifier cue detection can begin as shown in Algo-
rithm 3.1. We define a modifier cue of type k as Ck. For each word of a sentence we
check if any lexicon lk contains this particular word and if so, it is flagged as a modifier
cue Ck. Considering the sentence “I am not happy”, the word “not” is flagged as a
negation cue Cneg, since it is included in the negation lexicon.

Algorithm 3.1 Modifier cue detection using lexicons.

1: procedure CUEDETECTION(sentence, modifierLexicons)
2: for each word in sentence do
3: if negationLexicon.contains(word) then
4: word.isNegator(true)
5: else if intensifierLexicon.contains(word) then
6: word.isIntensifier(true)
7: else if diminisherLexicon.contains(word) then
8: word.isDiminisher(true)
9: end if

10: end for
11: end procedure

3.2 Modifier Scope Detection

After all modifier cues are annotated, the modifier scope of each cue has to be determined.
The scope of a modifier cue tells which words are modified by this particular cue. Each
word in the scope of a modifier cue Ck is annotated by adding a prefix. Depending on the
modifier type we add the prefix “NOT_” for a negating scope, “INT_” for an intensifying
scope or “DIM_” for a diminishing scope. Looking at the previous example “I am not
happy”, “NOT_” is added to the word “happy”, because it is within the negation scope
of “not”, creating the new word “NOT_happy”. We do not modify a token twice, for
example, “NOT_INT_happy” because we would generate very specific features that may
only occur once in a corpora. The modifier cues itself are still used as features since
[PLV02] stated that removing negation cues after their scopes are determined has a
slightly harmful effect on the performance. We assume that a similar behavior occurs for
intensifier and diminisher cues.

As discussed in Section 2.2.2, several different approaches for modifier scope detection
exist. We will introduce three approaches for modifier scope detection in the next
sections.
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3.2.1 Next-n Heuristic

The next-n approach is based on the technique introduced by Pang et al. [PLV02], where
they set the modifier scope from the cue to the next punctuation mark. For example,
in the Tweet “Happiness is not a goal; it is a by-product.”5 the words “a” and “goal”
would be negated, but not the words following the semicolon, creating the new sentence
“Happiness is not NOT_a NOT_goal; it is a by-product.”.

We combine this technique with the NegEx algorithm from Chapman et al. [CBH+01].
In their algorithm, the scope does not only end after a punctuation mark but also after
adversative conjunctions. Considering the sentence “I do not love but hate you.”, we do
not negate every word after the negation cue “not”, which would be wrong since “hate”
is not negated, but only the word “love”. Table 3.3 shows the full list of used adversative
conjunctions according to Chapman et al. [CBH+01].

but however nevertheless
yet though although
still except

Table 3.3: Adversative conjunctions.

Our approach is further inspired by Hue et al. [HL04], where they use a parameter n

that indicates how many words after a negation cue are negated. Regarding the first
example “Happiness is not a goal; it is a by-product.”, the negation scope is identical
for values n > 1, but changes for n = 1 as then the word “goal” is no longer within the
scope. The resulting method is shown in Algorithm 3.2.

3.2.2 Dependency Tree Relations

The following approach is inspired by the approach of Jia et al. [JYM09]. They use
a dependency parser to retrieve the dependency tree of a sentence and then use this
tree to extract a candidate negation scope. Afterwards, they apply several rules on the
candidate scope to retrieve the final scope. We will also use the dependency tree of a
sentence but apply a different technique for modifier scope detection. We do not need
to determine the full scope of a cue and can therefore use a more simple approach,
since we consider in particular emotional words and their modification, which will be
motivated in Section 4.1.

5https://twitter.com/littleobsessian/status/864158607658582016
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Algorithm 3.2 Modifier scope detection using next-n heuristic.

1: procedure NEXTN(sentence, n)
2: modifierType← 0
3: modifyNextN← 0
4: for each word in sentence do
5: if modifyNextN > 0 then
6: if word.isAdversativeConjunction() or word.isPunctuation() then
7: modifierType← 0
8: modifyNextN← 0
9: else

10: word.setModified(modifierType)
11: modifyNextN← modifyNextN− 1
12: end if
13: end if
14: if word.isModifier then
15: modifierType← word.getModifierType()
16: modifyNextN← n

17: end if
18: end for
19: end procedure

The basic idea of the scope detection algorithm is to check for each node in the de-
pendency tree if any first order child is flagged as a modifier cue and if so, the current
considered node is modified. Figure 3.1 shows a dependency tree for the sentence “I do
not love or hate you.”, created by the Stanford CoreNLP library [MSB+14].

Figure 3.1: Dependency tree of the sentence “I do not love or hate you.”.

The node of the negation cue “not” is the first order child of the node “love” and thus,
“love” will be negated. However, Figure 3.1 also shows the first problem where this
approach fails. The node corresponding to “love” is not the only node within the negation
scope, but also the node related to “hate”. We can see that the node “love” is connected
to the node “hate” with a conjunction edge (“conj:or”). We use this information to
improve our algorithm by additionally modifying nodes that are connected to already
modified nodes via a conjunction edge. By doing so, the algorithm modifies the two
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emotional words in this example correctly but leads to misclassifications in other cases.
If we change the previous example to “I do not love but hate you.”, the Stanford parser
creates the same dependency tree as before, leading to a similar modifier scope. However,
this time the scope is incorrect since “hate” is not negated because of the adversative
conjunction “but”. To resolve this problem, we do not modify words that are connected
with conjunctions from the Table 3.3.

Figure 3.2: Dependency tree of the Tweet “I put a lot of faith in Bernie’s judgement. ...”.

Another case where this approach fails can be seen in Figure 3.2. It shows the dependency
tree of the Tweet “I put a lot of faith in Bernie’s judgement. ...”6. We can identify that
the word “faith” is intensified by the cue “lot”. The problem is that “lot” is not a child of
“faith” but the opposite is the case. If we modify a word with a modifier as a parent as
well, we would create more new false positives than we would eliminate and therefore
do not consider this case. The resulting approach is shown in Algorithm 3.3

3.2.3 Binary SVM

The shared task at *SEM 2012 [MB12] focused on negation scope detection. Many of
the best performing submissions use supervised machine learning approaches, which is
the reason why we also introduce a machine learing approach for scope detection using
SVMs. For our purposes we use the popular SVM library called LIBLINEAR [FCH+08]
provided by Fan et al..

For each modifier type we train a binary SVM that decides if a token is modified or not.
Hence, the SVMs do not detect an explicit modifier scope since we do not know by which
cue a token is modified if there are multiple cues. As discussed previously in Section 3.2,
we do not modify tokens twice and thus, we have to use a modifier policy. We expect
negations to have the highest impact on the performance, so we first use the SVM for
negation scope detection and mark negated tokens. Then the SVM for intensifier scope
detection is used but ignores tokens that are already negated. Finally, the SVM for

6https://twitter.com/Highcentered/status/766094329416855552
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Algorithm 3.3 Modifier scope detection using the DepTree approach.

procedure DEPTREE(sentence)
dependencyTree← createDepTree(sentence)
for each node in dependencyTree do

children← getChildren(node)
for each child in children do

if child.isModifier then
modifierType← child.getModifierType()
node.setModified(modifierType)

end if
end for
if node.isModified then

outEdges← getOutgoingEdges(node)
for each edge in outEdges do

if edge.isNonAdversativeConjunction() then
modifierType← node.getModifierType()
node← getDestinationNode(edge)
node.setModified(modifierType)

end if
end for

end if
end for

end procedure

diminisher scope detection is applied ignoring negated and intensified tokens. Using
this policy prevents multiple modifications of a token taken into consideration.

Councill et al. [CMV10] apply a supervised machine learning approach for negation
scope detection using Conditional Random Fields (CRFs). We adopt the features they
use and in addition, the feature called “Dep Dist.”. See Table 3.4 for the full list of
used features and their description. As Table 3.4 shows, we need the part of speech
(POS) annotations of each token and the dependency tree of the corresponding sen-
tence. For this, we again use the Stanford CoreNLP library [MSB+14]. To demonstrate
the features we give a small example in the following list for the word “hate” using
the sentence “I do not love or hate you.” and its dependency tree seen in Figure 3.1 again.

• Word = hate

• POS = VB (verb)

• Right Dist. = 0 (no modifier cue to the right)
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Feature Description

Word Normalized string of a token.

POS Part of speech of a token.

Right Dist. Token distance to the nearest explicit mod-
ifier cue in the sentence to the right of a
token.

Left Dist. Token distance to the nearest explicit modi-
fier cue in the sentence to the left of a token.

Dep Dist. Minimum number of edges that must be tra-
versed in the dependency tree from a token
to an explicit modifier cue.

Dep1 POS Part of speech of the the first order parent of
a token.

Dep1 Dist. Minimum number of edges that must be tra-
versed in the dependency tree from the first
order parent of a token to an explicit modi-
fier cue.

Dep2 POS Part of speech of the second order parent of
a token.

Dep2 Dist. Minimum number of edges that must be tra-
versed in the dependency tree from the sec-
ond order parent of a token to an explicit
modifier cue.

Table 3.4: Features used for SVM modifier scope detection.

• Left Dist. = 3

• Dep Dist. = 0 (is leaf node)

• Dep1 POS = VB (verb)

• Dep1 Dist. = 1

• Dep2 POS = null (first order parent is already root node)

• Dep2 Dist. = 0
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We use the linear kernel function because it is the fastest kernel [CL08], which is
favorable since we are using a very large amount of Tweets in our experiments. As the
linear kernel contains no further kernel parameters that have to be optimized, we only
need to find the best performing values C for each SVM. In order to find the best values
for C, we perform a grid search with 10-fold cross-validation on the training data for
each of the three SVMs.

3.3 Emotion Classification

The main task of our program is to determine the basic emotion of an input Tweet. We
already specified that we are using the basic emotions defined by Ekman and therefore
define the classes as Y = {joy, anger, fear, sadness, surprise, disgust}. Table 3.5 shows
an example Tweet for each of our defined basic emotion. The program should be
capable of distinguishing between these basic emotions and labeling each Tweet as one
of them. In the following sections we present two different classifiers, which we use in
the experiments.

Emotion Example Tweet

Joy “Wishing you a very happy day! #happiness
#positivity”7

Anger “That moment when you run into someone
you dislike. #life #badnews #hate”

Fear “I am going to present myself as a woman
for the 1st time at a friend’s Halloween party.
#scaredtodeath #trans #LGBT”8

Sadness “Bored of living this live, all I just see around
me is just #sadness :(”9

Surprise “My sisters boyfriend walked in and I’m sit-
ting in the kitchen eating a piece of cheese
with no pants on #surprise”10

Disgust “Walking in from last night smelling like a
hookah bar #disgust”11

Table 3.5: Example Tweet for each basic emotion.
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3.3.1 Emotion Lexicon

The first emotion classification approach uses an emotion lexicon that contains emotion
bearing words together with an annotation that indicates which basic emotions they are
corresponding to. In this thesis, we choose the NRC emotion lexicon by Mohammad and
Turney [MT13]. Table 3.6 shows an example annotation for the emotion word “happy”.
Each emotion bearing word is annotated with each of the eight basic emotions defined
by Plutchik (including Ekmans six basic emotions) and positive/negative sentiment.
The first column in the table shows the emotion word, the second column the basic
emotion/sentiment and the third column indicates if the emotion word correlates to the
basic emotion/sentiment.

Word Emotion/Sentiment Correlation

happy anger 0
happy anticipation 1
happy disgust 0
happy fear 0
happy joy 1
happy negative 0
happy positive 1
happy sadness 0
happy surprise 0
happy trust 1

Table 3.6: NRC Emotion Lexicon example.

The classifier iterates over an input Tweet and then checks for each word if the lexicon
contains it. If the lexicon contains a word of the Tweet, the classifier checks if it correlates
to a basic emotion. For each correlating basic emotion the algorithm adds up weightings
{w1, ..., w6} = w⃗. Each of these weightings reflects one basic emotion. After all words in
a Tweet are processed this way, the classifier classifies the Tweet as the basic emotion
reflected by the highest weighting wi. The different weightings for each basic emotion
are stored in a 6 × 6 matrix where the nth row and column corresponds to one basic
emotion. For example, if a Tweet contains the word “happy”, Table 3.6 shows that

7https://twitter.com/createtheripple/status/791500891740377089
8https://twitter.com/TransCartoonist/status/792503229326254080
9https://twitter.com/netman007/status/747860322464239616

10https://twitter.com/Kelsey_Storlien/status/783077613598347264
11https://twitter.com/kimberly_faaaye/status/762330001119117312
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this correlates to the basic emotion “joy”. The classifier now looks up the row in the
weighting matrix corresponding to “joy” and adds the six values in this row to the
weightings w⃗.

More formal, the emotion of the to be classified Tweet is determined by the index i of
the highest weighting in w⃗ defined as

arg max
i=1,...,6

(wi), (3.1)

with w⃗ being defined as

w⃗ =
n∑

j=0
MT × b⃗j. (3.2)

MT is the transposed weighting matrix and n the number of words in the Tweet. The
vector b⃗j is a boolean vector that represents the correlations between the jth word and
the basic emotions according to the emotion lexicon.

To consider modifiers we use a method inspired by Polanyi and Zaenen [PZ06]. In their
work, they change the weighting of a word depending on whether it is modified or not.
For this, we use three additional weighting matrices, one for each modifier type. After
the classifier has checked if the emotion lexicon contains a word from an input Tweet, it
also checks if this word is flagged as intensified, diminished or negated and then chooses
the corresponding weighting matrix. The matrix which is used for non flagged words is
called “neutral weighting matrix” and the other three are called “negation”, “intensifier”
and “diminisher weighting matrix”. For example, if the word “happy” occurs and it is
flagged as negated, the classifier adds the values to w⃗ that are stored in the negation
weighting matrix in the row corresponding to “joy”.

Before we can classify Tweets using this approach, the classifier has to find the optimal
values for each weighting matrix. For this, we apply the meta-algorithm “random-restart
hill climbing” as discussed in Section 2.1.2 to each of the four weighting matrices. The
function f takes the 36 cells of a matrix as an input and returns a F1 score. The algorithm
optimizes the value for each cell so that the resulting F1 score is maximized. The function
f is realized by the word list classifier, which uses the current to be optimized matrix to
classify a training set and returns the F1 score of this classification. The meta-algorithm
stops after m iterations, giving us each m neutral, negation, intensifier and diminisher
weighting matrices, which were all maximized in F1 score and started at different seeds.
Unlike normally, we do not proceed with the best performing matrices but calculate the
average weighting matrices and proceed with them. This has the advantage that we can
calculate the standard deviation for each cell of the four matrices, helping us to study
the significance of each cell and therefore prevent wrong conclusions.
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3.3.2 Multiclass SVM

A popular approach for document classification is supervised machine learning. Three of
the most common methods are maximum entropy, naive Bayes and SVM classification.
Pang et al. [PLV02] compare these three methods in the domain of sentiment analysis
and show that the SVM approach achieves the best results. Similarly, Danisman and
Alpkocak [DA08] compare the three methods in the task of emotion classification and
also show that the SVM approach leads to the best results. For this reason we also
use a SVM based emotion classifier in this thesis. We implement a multiclass SVM by
using the LIBLINEAR [FCH+08] library again. The SVM has to decide to what basic
emotion y ∈ Y an input Tweet belongs to. We generally use unigram features only for
this SVM because if we would use n-grams with n > 1, the SVM may learn modifier
detection implicitly. Consider the Tweet “Just had a kid dump water on me.... I am
not happy #angry”12 annotated with the basic emotion “anger”. If we use unigrams,
the SVM considers each word independent from each other, but if we use bigrams,
it would learn that the phrase “not happy” corresponds to the basic emotion “anger”.
We want to prevent this implicit modifier detection because we can not measure its
impact. However, we will conduct an emotion classification experiment using uni-, bi-
and trigrams in order to study wether this makes the use of additional modifier detection
systems unnecessary. Since the use of unigrams leads to a large amount of features,
we use the linear kernel again because it also performs very well with a large feature
space [CL08]. Therefore, we only have to find the best value for the parameter C by
performing a grid search and 10-fold cross-validation.

12https://twitter.com/beefcakezombie/status/578348799518621698
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This chapter presents the different corpora in Section 4.1. We differentiate between
automatically annotated corpora used for emotion classification and hand-annotated
corpora used for the modifier scope detection. In Section 4.2 we present our hypotheses
and the experiments we conduct in order to prove them. Finally, Section 4.3 shows and
discusses the results of our experiments.

4.1 Corpora

In order to conduct experiments, we have to create corpora to train and test our different
emotion classification and modifier detection methods. Creating large training and test
corpora by hand is very time-consuming and therefore, we use an approach based on
the paper by Wang et al. [WCTS12], that automatically annotates a large amount of
Tweets in short time. We use Twitters streaming API which allows us to receive random
Tweets from Twitter and then apply filters to store Tweets containing specific hashtags
only. For this, we create a filter list for each basic emotion which contains multiple
hashtags that indicate the corresponding basic emotion. If we apply this filters to the
Tweet input stream, we can use the hashtags to label the Tweets with basic emotions
automatically. Furthermore, we only use Tweets written in English. Table 4.1 shows all
the filter hashtags for each basic emotions.

joy anger fear sadness surprise disgust

#glad #anger #afraid #bitter #surprise #disgust
#happiness #hate #angst #grief #surprised

#happy #hatred #fear #misery
#joy #rage #panic #sad

#lucky #scare #sadness
#luck #worry #sorrow

#pleasure #unhappy

Table 4.1: Filter hashtags for each basic emotion.
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Considering the Tweet “After a few months I finally get #xboxlive back. #happiness”1,
we use the word #happiness to label this Tweet as “joy” because the filter list for the
basic emotion “joy” contains the word #happiness.

This method generates a large amount of annotated Tweets but also leads to the problem
that the data is noisy. Using this approach, we assumed that each author labeled his
Tweet correctly according to the expressed emotion, but, of course, this is not the case
for all Tweets. The following list shows some examples of Tweets that are labeled
wrongly.

• “Before her meltdown in 2007, Britney already dropped hints and warned us about
her struggles through her song #Lucky, yet no one listened.”2.

Labeled emotion: “joy”. Actual emotion: “sadness”.

• “Not to jump on the bandwagon, but in a shop window I saw four candles that
grew out of actual fork handles. I giggled for ten minutes. #Sad”3.

Labeled emotion: “sadness”. Actual emotion: “joy”.

• “I got 2 horror movies from the library that i am going to enjoy right when i get
home #horror”4.

Labeled emotion: “fear”. Actual emotion: “joy”.

Further disadvantages of corpora consisting of Tweets is that they often contain internet
slang, for example as in the Tweet “A person #hates u for 1 of 3 reasons. They 1) want
2b U; 2) #hate themselves. 3) C U as a #threat. ...”5, and also spelling mistakes, which
would be very costly to auto-correct. Both problems result in very specific features that
do not contribute much information for our classifiers.

Before we create our different corpora, we preprocess the gathered Tweets. We do
not use hashtags as features for our emotion classifier, because we already used them
to determine the gold standard emotions of the Tweets. Therefore, we change all
words preceding with a “#” to the new word “XHASHTAGX” because this improves
the performance of our classifier since we do not have to check each word whether it
starts with a hashtag or not. This also improves the correctness of dependency trees if
there are multiple succeeding hashtags at the end of a Tweet, like in “More love - less
hate #PrayForOrlando #sadness #horrifying #pride #loveconquershate” and therefore

1https://twitter.com/BryanKidder/status/798076624457596928
2https://twitter.com/_reezyrae/status/773138426732228609
3https://twitter.com/IanMacGilp/status/715565041077133313
4https://twitter.com/officiallykari/status/458721953025503232
5https://twitter.com/JokeUntranslatd/status/752927796062593028
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also slightly increases the performance for the modifier scope detection approach using
dependency tree relations. Furthermore, we reduce all URLs to the word “XURLX” and
all user references (“@USERNAME”) to “XUSERX” since they often occur only once in a
corpus and contain no emotional information. This increases the performance of the
SVM classifier because the dimension of the feature space is decreased.

4.1.1 Automatically Annotated Corpora

We use the automatically annotated Tweets to create several training and test corpora.
Table 4.2 shows the different created corpora which we use in our experiments. For
each corpus it shows how many Tweets of each basic emotions it contains and the total
amount of Tweets.

emotion trainAll testAll trainEmoMod testEmoMod trainEmoModEqual

joy 597.992 299.028 155.125 76.953 1.000
anger 59.591 29.501 29.491 14.024 1.000
fear 68.886 34.504 32.312 16.586 1.000
sadness 207.026 103.607 96.308 48.897 1.000
surprise 24.582 12.483 5.858 3.185 1.000
disgust 1.923 877 906 355 1.000

total 960.000 480.000 320.000 160.000 6.000

Table 4.2: Emotion classification corpora.

The corpora “trainAll” and “testAll” contain random selected Tweets. We use these two
corpora to train our emotion classifier and to evaluate the “real world” performance and
modifier impact. The corpora “trainEmoMod” and “testEmoMod” only include Tweets
containing at least one word from the emotion lexicon and at least one modifier cue.
Since our goal is to study the impact of modifiers on emotion expressions, we use these
corpora to create a special environment. It is possible that the results using the “trainAll”
and “testAll” corpora do not show any improvements if modifiers are taken into account,
even if they improve the emotion classification. This is the case if the number of Tweets
containing emotion and modifier words are a lot less in the real world environment than
the Tweets containing no emotion and modifier words. To prevent wrong conclusions,
we use the “trainEmoMod” and “testEmoMod” corpora to study the modifier impact on
emotion expressions independently from the real word performance.

The previous corpora contain an unevenly balanced amount of Tweets for each basic
emotion. We need an evenly balanced corpus for the word list classifier to train the
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weighting matrices with the same importance for each basic emotion. We want the basic
emotions considered equally important because we will use the weighting matrices to
study how modified emotion words correspond to basic emotions, which is our second
goal of this thesis. For this purpose, we create the “trainEmoModEqual” corpus that
contains an equal amount of Tweets per basic emotion. Similar to the “trainEmoMod”
and “testEmoMod” corpora, this corpus also includes Tweets containing at least one
emotion and modifier word only. The number of Tweets in this corpus is low compared
to the others because the amount of Tweets relating to the basic emotion “disgust” is
very low. As we want to create a corpus containing an evenly distributed amount of
Tweets, we have to use a small amount of Tweets for each emotion. Another reason is
that the algorithm has to classify and evaluate this corpus a few thousand times during
the weighting matrices training and therefore have to compensate the large amount of
time needed for the training.

4.1.2 Hand-Annotated Corpora

We have to be able to evaluate the performance of our modifier scope detection methods
because we want to compare them in order to choose the best performing approach,
which we will then use for the emotion classification experiments. Another reason why
we need to know how well the modifier detection performs, is the fact that we can draw
reliable conclusions only for a good performing system. For this purpose we need a
corpus of Tweets containing modifier cues annotated with their scope. We can use this
corpus to apply our modifier detection methods and calculate the F1 score by comparing
the results with the gold standard annotation. Furthermore, the modifier scope detection
approach using SVMs also needs a corpus to train the hyperplanes. Since no such corpus
exist for our purpose, we have to create and annotate a new corpus by hand.

The determination of full modifier scopes can be difficult and since the corpora is only
annotated once, we would expect fuzzy annotations. To prevent this, we do not annotate
the full scope of a cue but only emotion bearing words contained in the emotion lexicon
because we assume that these words are the most important ones for emotion detection
in Tweets. We create an annotation for each emotion-modifier word combination of
a Tweet and flag them either as correlating (emotion word is within the scope of the
cue) or not correlating. For example, Figure 4.1 visualizes the annotation scheme of
the sentence “I do not love but hate you very much.”. The word “not” is a negation cue
and “very” an intensifier cue while “love” and “hate” are emotion bearing words. As
can be seen in the figure, this creates four emotion-modifier combinations but only two
combinations correlate to each other.

To prevent typing errors and to check the annotations for consistency, we use a small
annotation program. The program shows a Tweet containing at least one modifier cue
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Figure 4.1: Annotations for the sentence “I do not love but hate you very much.”.

and one word from the emotion lexicon and adds an index to each word. The user then
types in the indices for the modifier cue and for the emotion word and decides if they
are correlating or not. Since we can not assume our lexicons to be complete, we use
three different sampling methods. We not only show Tweets in the annotation program
containing both, a modifier cue and a emotion word, but also Tweets containing only one
of the two. The annotator then checks if the displayed Tweet also contains undetected
modifier cues or emotion words. This allows us to find emotion words and modifier cues
that may not be included in the lexicons. For example, by using this method we found
several Tweets containing the words “soo” or “sooo” used as intensifiers and therefore
added these to our intensifier cue lexicon. We annotated 1.000 Tweets resulting in a
total of 1.913 modifier-emotion word pair annotations. We split these annotations to
create four corpora. Table 4.3 shows the amount of annotations per modifier type in
each corpus.

modifier type modEval trainNegSVM trainIntSVM trainDimSVM

negation 315 630 0 0
intensifier 249 0 497 0
diminisher 74 0 0 148

total 638 630 497 148

Table 4.3: Modifier detection corpora.

The corpus “modEval” contains 1/3 of the annotations from each modifier type. We
use this corpora to evaluate the performance of the different modifier scope detection
approaches. Furthermore, we create the three corpora “trainNegSVM”, “trainIntSVM”
and “trainDimSVM” containing the remaining 2/3 annotations. The SVM scope detection
approach uses this corpora to train the three hyperplanes. Table 4.3 also shows that of
all detected modifiers, diminisher are by far the least common ones.

47



4 Experiments

4.2 Experimental Setup

Now that we created all necessary corpora we can specify our hypotheses and the
experiments we want to conduct in order to prove the hypotheses. We define the
following null hypotheses relating to our goals outlined in Section 1.2:

H1 : If negations and their scopes are considered, the performance of an emotion
classification system can not be improved.

H2 : If intensifier and their scopes are considered, the performance of an emotion
classification system can not be improved.

H3 : If diminisher and their scopes are considered, the performance of an emotion
classification system can not be improved.

H4 : If emotion bearing words are modified, their basic emotion can not be determined.

The hypotheses H1 - H3 relate to our first goal, namely to study whether an emotion
classification system can be improved if modifiers are taken into account. We defined a
hypothesis for each modifier type separately because they may not all have an impact
on the classification task. We conduct several experiments using our emotion classifiers
as defined in Section 3.3 and the previous described corpora. For the SVM emotion
classifier we define the models “Model-Unigram” and “Model-Trigram”. Model-Unigram
contains unigram features only and is used to study the impact of modifiers on emotion
expressions, while Model-Trigram contains uni-, bi- and trigram features and is used to
examine if the implicit modifier detection makes the usage of explicit modifier detection
systems unnecessary. We define the Model “Model-EmoDict” for the word list classifier,
which uses the features contained in the NRC emotion lexicon by Mohammad and
Turney [MT13]. We study the performance of the emotion classification systems without
modifiers, for each modifier type individually and for all modifiers simultaneously taken
into account.

Hypothesis H4 relates to our second goal, that is to understand the correlation between
modified emotion words and basic emotions. We study the different weighting matrices
of the word list classifier and observe the basic emotion change of a Tweet when
modifiers are taken into account. This provides information about the correlation
between modified and non-modified emotions, which we use to prove or decline this
hypothesis.
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4.3 Results & Discussion

In this section we will conduct several experiments using the previous defined methods,
corpora and models and discuss the results in order to prove or decline our hypotheses
and to reach our thesis goals. Before we run the experiments on emotion classification,
we have to evaluate and compare the different modifier detection methods so that we
can use the best performing approach in our emotion classification experiments. At
first, we will determine the best value of n for the next-n method as mentioned in
Section 3.2.1. We apply the next-n heuristic on the corpus “modEval” several times for
different values n > 0 and calculate the resulting macro-average F1-score of the scope
detection, demonstrated in Figure 4.2.
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Figure 4.2: Different values of n for next-n modifier detection.

The figure shows that the highest F1-score is achieved for n = 2 and the graph is strictly
monotonically decreasing for values n > 2. The recall increases for values n > 2 but
the precision decreases at a higher rate, leading to lower F1-scores. Thus, we use n = 2
for all further experiments using the next-n method. This value for n is against our
expectations because Reitan et al. [RFGB15] evaluated an average of n = 3.8 tokens in a
negation scope using a Twitter corpus as well. A reason for this could be that intensifier
and diminisher have a smaller scope. To analyze this we search the best value of n for
each modifier type individually. However, n = 2 still results in the highest F1-score for
each modifier type. Another reason for the lower value of n might be the fact that we do
not consider the full scope of a cue but only whether emotion words are inside or not.
This would mean that emotion words are often closer to the modifier cue than other
words in a scope.

49



4 Experiments

Since we determined the best value for the next-n approach, we can compare our three
modifier scope detection methods. We use the corpora “trainNegSVM”, “trainIntSVM”
and “trainDimSVM” to train three SVMs for the modifier scope detection. We apply all
three modifier scope detection approaches to the corpus “modEval” and evaluate the
results, as can be seen in Table 4.4.

Modifier detection evaluation using modEval corpus

Next-2 heuristic DepTree SVM

Modifier P R F1 P R F1 P R F1

Negator 93.6 87.9 90.7 93.0 80.4 86.2 78.7 89.4 83.7
Intensifier 91.7 93.7 92.7 90.7 83.0 86.7 91.4 89.4 90.4
Diminisher 72.8 88.9 80.0 75.0 50.0 60.0 66.7 55.6 60.7

Macro-avg. 86.0 90.2 87.8 86.3 71.1 77.7 78.9 78.2 78.3

Table 4.4: Comparison of modifier detection methods.

The table shows the precision (P), recall (R) and F1-score (F1) for each of the three
methods and for each modifier type. We can see that the next-2 heuristic achieves by far
the best results with an about 10% higher F1 score compared to the other approaches.
Compared to the similar method by [RFGB15], our next-2 approach achieves a 14.5%
higher F1 score. They achieve a higher recall because they modify all words after a
cue to the next punctuation mark, but achieve a much lower precision. The reason for
the good performing next-2 approach is probably because Tweets are mostly short and
simple sentences. Obviously, this approach yields false negatives if an actual modified
word is > 2 words to the right from a modifier cue away or if it is to the left of a cue like
in the Tweet “Enjoying Amsterdam just a bit...”6. The actual modified emotion word
“Enjoying” is to the left of the modifier cue “bit” and therefore the algorithm does not flag
“Enjoying” as diminished. Furthermore, false positives occur if an actual not modified
word is <= 2 words to the right from a modifier cue away. The SVM method achieves
comparable results to the approach by Councill et al. [CMV10]. They achieve a F1 score
of 80% for negation scope detection on a product review corpus. Our SVM approach may
outperform the next-2 heuristic if we use much larger training corpora. The major reason
why the DepTree approach fails to detect modifier scopes is because of wrongly created
dependency trees. For example in the Tweet “More love - less hate #PrayForOrlando...”7,
the generated dependency tree is incorrect due to missing punctuation. The diminisher
“less” is not a child of “hate” and therefore, the modifier scope is wrong. If the Tweet

6https://twitter.com/RachelChudley/status/774685932339486720
7https://twitter.com/Mionic/status/742057483586408448
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had a period after the word “hate”, the dependency tree would be generated correctly
with “less” being a child of “hate”.

Furthermore, the table shows that all three approaches perform comparably bad on
detecting diminisher scopes. For the next-2 approach, this is probably the case because
diminisher cues appear more often after their scope than negation and intensifier cues,
for example as in the Tweet “Live, love and laugh a little! ...”8 and therefore, this method
does not detect these scopes. For the DepTree approach, we observe that diminisher cues
are more often not a direct child of correlating emotion words compared to negation
and intensifier cues. Regarding the SVM approach, there are two main reasons for the
bad performance. The first reason is our modifier policy described in Section 3.2.2,
where we apply the SVM for diminisher scope detection after the other two SVMs. The
second reason is due to the fact that we have the smallest training data available for the
diminisher scope SVM.

Now that we determined the next-2 heuristic to be the best performing modifier scope
detection method, we use this approach for the emotion classification experiments. We
do not use stemming in our further experiments because test show that stemming leads
to a negligible decrease in F1 score. A reason for this is that we can lose information
trough stemming. For example the word “loved” appears in more Tweets labeled as “sad”
than in Tweets labeled as “joy” and the opposite is the case for the word “love”. If we
apply stemming, we stem the word “loved” to “love” and thus changing its emotional
information. Nevertheless, this finding is against our expectations, because the results
of Danisman and Alpkocak [DA08] show a slight performance increase if stemming is
applied. Since the impact of stemming is negligible in both works, we assume that the
shifting influence of stemming occurs because of very different used corpora.

Our first emotion classification experiment uses the SVM classifier together with the
model “Model-Unigram”. We train the classifier with the corpus “trainAll” and test
the performance on the corpus “testAll”. We repeat this experiment four times; firstly
without modifier detection and then considering each modifier type individually using
the next-2 heuristic. Table 4.5 shows the precision, recall and the F1 score of this four
tests and highlights the best F1 scores for each basic emotion.

As we can see in this table, the classifier performs very good for the emotion “joy” but
fails to detect “disgust”. A reason for this may be due to the fact that the used corpora
contain much more Tweets labeled as “joy” than as “disgust”. Another reason is probably
that “joy” is the only pure positive basic emotion and is therefore easier for the classifier
to detect, while there are multiple negative emotions. Since there are only a few disgust
Tweets in our corpora, the classifier can not learn to distinguish between the different

8https://twitter.com/21DaysOf/status/730528657664434176
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SVM + Model-Unigram using trainAll and testAll

no modifier detection next-2 (negations only)

emotion P R F1 P R F1

joy 82.0 94.6 87.9 82.5 94.6 88.1
anger 68.3 32.2 43.7 67.2 33.4 44.6
fear 77.4 50.7 61.3 76.6 52.8 62.5
sadness 74.1 66.6 70.1 74.5 66.9 70.5
surprise 75.3 32.3 45.2 74.9 32.4 45.2
disgust 18.8 03.5 05.8 18.6 03.4 05.7

Macro- Avg. 66.0 46.6 52.3 65.7 47.2 52.8

next-2 (intensifier only) next-2 (diminisher only)

emotion P R F1 P R F1

joy 82.1 94.6 87.9 82.2 94.6 87.9
anger 67.9 32.5 44.0 68.0 33.0 44.4
fear 77.5 51.2 61.7 77.4 50.9 61.4
sadness 74.0 66.5 70.0 74.0 66.6 70.1
surprise 74.1 32.3 45.0 74.6 32.3 45.1
disgust 16.1 02.4 04.2 18.4 03.2 05.5

Macro- Avg. 65.3 46.6 52.1 65.7 46.8 52.4

Table 4.5: Support Vector Machine with unigram features using trainAll and testAll
corpora.

negative emotions. It is also possible that “disgust” strongly correlates with other basic
emotions, which we study in the later experiments.

Furthermore, the table shows that negation detection increases the F1 score for almost
every basic emotion except “disgust” but since the classifier generally fails to detect
disgust, this result is questionable. Considering intensifier and diminisher shows a
slight improvement for the emotions “anger” and “fear” but the overall classification
performance does not change significantly.

We conduct the same experiment again, but this time using the corpora “trainEmoMod”
for training and “testEmoMod” for testing. The results are similar to the previous
experiments with a slightly higher impact of negation detection, which seems reasonable
as the corpora contain more negations. We expected a higher impact of the modifier
detection in this experiment since, unlike in the previous experiment, the used corpora
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only contain Tweets with at least one modifier. See Table A.1 in Appendix A for detailed
results.

SVM + Model-Trigram using trainEmoMod and testEmoMod

no modifier detection next-2 (negations only)

emotion P R F1 P R F1

joy 82.7 89.0 85.7 82.9 89.3 86.0
anger 63.9 45.4 53.1 64.6 45.2 53.2
fear 80.6 65.4 72.2 81.3 65.9 72.8
sadness 74.0 79.3 76.6 74.2 79.6 76.8
surprise 52.8 20.5 29.5 53.0 20.8 29.9
disgust 09.1 02.0 03.3 12.5 02.6 04.3

Macro- Avg. 60.5 50.3 53.4 61.4 50.6 53.8

next-2 (intensifier only) next-2 (diminisher only)

emotion P R F1 P R F1

joy 82.7 89.1 85.8 82.7 89.0 85.8
anger 64.0 45.0 52.9 64.3 45.5 53.3
fear 80.7 65.4 72.2 80.6 65.4 72.2
sadness 74.0 79.5 76.6 74.0 79.4 76.6
surprise 54.2 20.9 30.2 53.8 20.9 30.1
disgust 11.8 02.3 03.8 09.6 02.0 03.3

Macro- Avg. 61.3 50.4 53.6 60.8 50.4 53.5

Table 4.6: Support Vector Machine with trigram features using trainEmoMod and testE-
moMod corpora.

The last experiment with the SVM classier is similar to the previous one but uses the
model “Model-Trigram” this time and again the corpora “trainEmoMod” and “testE-
moMod”. We conduct this experiment in order to study whether the usage of higher
n−gram features makes the use of explicit modifier detection unnecessary. Table 4.6
shows the results of this experiment.

Since we determined that the next-2 heuristic achieves the highest F1 score, we expected
that the usage of trigram features implicitly models that modifier scope detection but as
Table 4.6 shows this is not the case. We can notice that the classifier overall performs
better using the model “Model-Trigram” but the average F1 score still increases if we
apply modifier detection. The table shows an increase of 0.4% in F1 score which is
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slightly less than the increase achieved with the model “Model-Unigram”. This indicates
some implicit modifier detection but the effect is negligible.

WL + Model-EmoDict using trainEmoModEqual and testEmoMod

no modifier detection next-2 (negations only)

emotion P R F1 P R F1

joy 73.7 45.6 56.3 74.3 44.9 56.0
anger 24.7 33.4 28.4 23.6 35.0 28.2
fear 29.4 52.4 37.6 29.7 50.4 37.4
sadness 47.9 18.9 27.1 45.9 19.8 27.7
surprise 05.2 40.7 09.2 05.1 41.2 09.1
disgust 00.5 24.6 01.0 00.5 21.5 00.9

Macro- Avg. 30.2 35.9 26.6 29.9 35.5 26.5

next-2 (intensifier only) next-2 (diminisher only)

emotion P R F1 P R F1

joy 71.9 37.1 49.0 74.3 44.9 56.0
anger 25.1 30.7 27.6 23.6 35.0 28.2
fear 29.5 52.3 37.8 29.7 50.4 37.4
sadness 49.2 20.4 28.8 45.9 19.8 27.7
surprise 04.4 45.6 07.9 05.1 41.2 09.1
disgust 00.5 25.4 01.0 00.5 21.5 00.9

Macro- Avg. 30.1 35.3 26.3 29.9 35.5 26.5

Table 4.7: Word list classifier using trainEmoModEqual and testEmoMod corpora.

The next experiment we conduct uses the word list classifier together with the model
“Model-EmoDict”. We train the weighting matrices using the corpus “trainEmoModEqual”
and test the performance using the corpora “testEmoMod”. We do not apply the word
list classifier to the corpus “testAll” since it includes Tweets that do not necessarily
contain emotion words and therefore can not be classified by the word list classifier.
Again, we test the performance without modifier detection and for each modifier taken
into account individually. The results for this experiment can be seen in Table 4.7. As
the table shows, applying modifier detection does not increase the performance of the
classification. The only basic emotion for which a noticeable higher F1 score can be
achieved is “sadness”. The overall performance of the word list classifier is rather poor
with F1 scores about 26-27% and therefore we do not consider these results to be really
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meaningful. We primarily used the word list classifier to create the weighting matrices,
which we will study later to achieve the second goal of this thesis.

Classifier comparison using testEmoMod corpus

No modifier detection

SVM + Model-Unigram SVM + Model-Trigram WL + Model-EmoDict

emotion P R F1 P R F1 P R F1

joy 79.9 88.9 84.2 82.7 89.0 85.7 73.7 45.6 56.3
anger 63.0 40.1 49.0 63.9 45.4 53.1 24.7 33.4 28.4
fear 78.1 60.4 68.2 80.6 65.4 72.2 29.4 52.4 37.6
sadness 71.7 75.7 73.7 74.0 79.3 76.6 47.9 18.9 27.1
surprise 53.9 17.0 25.9 52.8 20.5 29.5 05.2 40.7 09.2
disgust 06.6 01.5 02.4 09.1 02.0 03.3 00.5 24.6 01.0

Macro- Avg. 58.9 47.3 50.5 60.5 50.3 53.4 30.2 35.9 26.6

Full modifier detection with next-2

SVM + Model-Unigram SVM + Model-Trigram WL Model-EmoDict

emotion P R F1 P R F1 P R F1

joy 81.1 89.3 85.0 83.0 89.4 86.1 72.5 36.7 48.7
anger 61.8 41.2 49.4 65.1 44.8 53.1 24.1 32.1 27.5
fear 76.0 63.8 69.4 81.3 65.5 72.5 30.1 50.0 37.6
sadness 73.1 75.7 74.4 73.9 79.8 76.7 47.8 21.3 29.4
surprise 50.2 18.7 27.2 54.8 21.2 30.5 04.3 47.2 07.9
disgust 02.7 00.9 01.3 14.1 02.6 04.3 00.5 22.6 01.0

Macro- Avg. 57.5 48.3 51.1 62.0 50.5 53.9 29.9 35.0 25.3

Table 4.8: Full versus no modifier detection comparison.

The last emotion classification experiment compares the performance without modifier
detection and with all modifiers taken into account simultaneously. We use the SVM
classifier with the model “Model-Unigram” and with “Model-Trigram” and also use
the word list classifier with the model “Model-EmoDict”. The SVMs are trained on
the corpus “trainEmoMod” and the word list classifier is trained using the corpus
“trainEmoModEqual”. Then we evaluate the performance of all classifiers using the
corpus “testEmoMod”. We conduct this experiment because the modifier types may
interact with each other leading to a better performance when we consider all together.
Table 4.8 shows the results for this experiment. The upper half of the table shows
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the results for each classifier without modifier detection and the bottom half with
all modifiers considered simultaneously. The highest F1 scores for each classifier are
highlighted.

As can be seen in the table, the F1 score increases for both SVM classifier experiments.
The results for the word list classifier show a harmful effect through the modifier
detection. This may be due to the fact that the weighting matrices were trained separably.
Again, we do not consider the results as really meaningful. Furthermore, we can see
that the detection of all modifiers simultaneously do not or negligibly improve the SVM
classifier performance compared to the results achieved using only negation detection.
The SVM classifier with the model “Model-Unigram” and negation detection achieves also
a F1 score of 51.1% and with the model “Model-Trigram” a score of 53.8% compared
to 53.9%. We can conclude that the different modifier types do not really interact
with each other and that intensifier and diminisher do not improve the classification
performance.

All conducted experiments using the SVM classifier show a noticeable increase in F1
score when negation detection is applied. We therefore reject the null hypothesis H1
and accept its alternative hypothesis: if negations and their scopes are considered, the
performance of an emotion classification system can be improved. Since the detection
of intensifier and diminisher shows no consistent nor significant improvements, we do
not reject the null hypotheses H2 and H3. This does of course not mean that they are
approved.

Now we will analyze the weighting matrices used in the word list classifier experiments.
The neutral weighting matrix was created by averaging a total of 28 separate optimized
matrices using the random-restart hill climbing algorithm. The hill climbing algorithm
performed on average 2720 optimization steps for each of this 28 matrices. The resulting
averaged matrix can be seen in Table 4.9. The rows represent the basic emotions of
the recognized words and the columns indicate the to be classified basic emotions. We
define ci,j as the cell in row i and column j with 1 ≤ i, j ≤ 6. For example, the cell c1,5
shows the weighting of the class “surprise” for a Tweet containing a word relating to
“joy”. Besides the weighting, each cell also shows the standard deviation in brackets. We
discuss the different weightings and show example Tweets to explain how the associated
results come to be. The relevant emotion words in each Tweet are highlighted.

We can see that each basic emotion has the highest weighting to itself (ci=j), which
of course makes perfect sense. We can further see that “joy” has a slight correlation
with “surprise” (c1,5) and vice versa (c5,1). The reason for this is a large amount of
Tweets expressing a positive surprise like “Still can’t believe my cute baby shower
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Neutral weighting matrix

emotion jo
y

an
ge

r

fe
ar

sa
dn

es
s

su
rp

ri
se

di
sg

us
t

joy 1.1
(0.9)

-0.5
(1.0)

0.1
(1.2)

0.2
(0.9)

0.5
(0.7)

-0.6
(1.1)

anger -1.3
(1.0)

0.8
(0.7)

0.1
(0.5)

-0.1
(1.0)

-3.0
(1.7)

0.1
(0.8)

fear -1.1
(1.5)

-0.1
(0.8)

1.5
(1.2)

-0.3
(1.9)

0.1
(0.5)

-0.1
(0.9)

sadness -1.1
(1.1)

0.5
(1.0)

-0.2
(1.3)

1.1
(1.2)

-0.5
(0.8)

0.0
(1.1)

surprise 0.4
(1.1)

-2.6
(1.9)

-1.2
(1.9)

0.3
(1.4)

1.6
(1.3)

0.5
(1.2)

disgust 0.0
(1.2)

0.7
(0.8)

-0.7
(1.0)

-0.5
(1.3)

-1.9
(1.3)

1.5
(1.1)

Table 4.9: Word list neutral weighting matrix.

#afternoontea #surprise #ourgirl”9. Further, the emotion “sadness” shows a slight
correlation with “anger” (c4,2). As an example for this we can consider the Tweet “I feel
real bad when they use #religion as a reason to #hate ... Doesn’t religion stand for
the opposite?”, which is labeled as “anger” but contains the word “bad” indicating the
emotion “sadness”. Also, “surprise” shows slight correlations with “joy” (c5,1), “sadness”
(c5,4) and “disgust” (c5,6). Some researches divide the emotion “surprise” into positive
and negative surprise. Our results somewhat reflect this approach with “joy” indicating
positive “surprise” and the other indicating negative “surprise” but since the weightings
are low with a relatively high standard deviation, we hesitate to draw such conclusions.
Lastly, “disgust” shows a correlation with “anger” (c6,2). A reason for this might be that
they share many words in the emotion lexicon, like the word “pathetic” contained in
the Tweet “They are ’terrorists’ not ’Islamists’, you pathetic excuse for a journalist !!!!
#hate...”10.

Now we analyze the three weighting matrices used for modified emotions, starting
with the negation matrix. A total of 49 matrices were created with an average of 1391
optimization steps. We average this matrices, creating the final negation weighting
matrix shown in Table 4.10.

We can see that the negation of “joy” cancels out the weighing to itself completely (c1,1).
Instead it now strongly correlates with “sadness” (c1,4), which seems intuitive. This

9https://twitter.com/jen_hankin/status/842373931403214848
10https://twitter.com/EzDimz/status/754433229923508224
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Negation weighting matrix

emotion jo
y

an
ge

r

fe
ar

sa
dn

es
s

su
rp

ri
se

di
sg

us
t

joy -0.1
(0.9)

0.2
(0.9)

-1.4
(1.2)

1.4
(1.0)

0.1
(0.8)

0.3
(0.8)

anger -0.5
(1.1)

0.8
(1.1)

-0.1
(0.8)

-0.5
(1.4)

-0.6
(1.2)

0.2
(1.0)

fear -0.3
(1.2)

0.1
(0.8)

1.5
(1.2)

0.1
(1.1)

0.1
(0.8)

-0.4
(1.2)

sadness 0.8
(1.0)

0.3
(0.8)

-0.3
(0.8)

0.1
(1.0)

-0.1
(0.8)

-0.3
(1.1)

surprise -0.1
(1.1)

-0.6
(1.4)

0.1
(1.3)

-0.9
(1.5)

1.8
(1.3)

0.7
(1.1)

disgust 0.7
(1.4)

0.8
(1.0)

-0.5
(1.1)

-0.7
(1.3)

0.1
(1.3)

0.3
(0.9)

Table 4.10: Word list negation weighting matrix.

weighting can be explained with Tweets like “Not sure how this happened but in two
days I’ve somehow gained 5 lbs...so not happy about this. #ugly #fatty #depressed
#sad”11. Furthermore, “joy” indicates a correlation with “anger” (c1,2) and “disgust”
(c1,6). The correlation to “anger” seems reasonable since we discussed an example Tweet
in the introduction that contained negated “joy” and was labeled as “anger” but the
standard deviation of these two values is much higher than the weightings itself so
that these values are not reliable. Negated “anger” and “fear” still have a significant
weighting to themselves only (c2,2 and c3,3). For negated “anger” there are two main
reasons:

1. Tweets containing negated words correlating to “anger” and that are labeled as
“anger” often contain sarcasm, like in the Tweet “As if things weren’t bad enough..
Please.. Go ahead and raise my rent 320$ more.. I don’t mind at all.. #hate
#cantwaittomove”12.

2. Another reason is that such Tweets often use comparisons like the phrase “no hate
like” in the Tweet “There is no hate like #White #Christian #hate meriKKKha
And this was not just ’students’ this was parents and teachers as well”13.

11https://twitter.com/HotDish85/status/810145108062588932
12https://twitter.com/catsmeowish/status/736322671684784128
13https://twitter.com/WldRvrFshr/status/8101924920501862420
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The reason why negated “fear” still correlates to itself is because most of these Tweets
want to encourage people not to have fear but still use fear related hashtags. This leads
to noisy data as described in Section 4.1. The following list shows the problem with two
example Tweets:

• “Don’t worry, let God take control. #worry”14.

• “"No fear is stronger than you are." - Mark David Gerson #fear #quote #spiritual-
ity”15.

It seems that negated “joy” not only correlates to “sadness” but also the other way round
since negated “sadness” also shows a correlation with “joy” (c4,1). Again, this weighting
seems intuitive and can be explained with Tweets like “Yes! I’m about to eat this piece of
cheesecake and I don’t feel guilty about it. #indulgingalittle #cheesecake #happy”16.
Negated “surprise” also has the highest weighting to itself (c5,5) due to linguistic devices
such as questions and comparisons demonstrated in the following examples:

• Comparison: “Ain’t no party like a birthday party when @LJ_Rader shows up
#surprise”17.

• Question: “Isn’t this lovely? A #surprise birthday cake ordered by a #Lagos based
client for her man...”18.

Also, negated “surprise” shows slight correlations with “disgust” (c5,6), which can be
explained with Tweets like “It probably shouldn’t be shocking, but I’m always stunned
by the level of pure hate that comes from some #leftists, just #disgusting ppl”19. This
Tweet is labeled as “disgust” and contains the negated emotion word “shocking”, which
corresponds to the basic emotion “surprise”. Negated “disgust” shows a slight correlation
with “joy” (c6,1) and “anger” (c6,2). A closer look on the values shows that the correlation
between negated “disgust” and “joy” (c6,1) is almost as high as the one between negated
“sadness” and “joy” (c4,1). This parallel is not surprising as almost the half of the “disgust”
emotion words overlaps with the ones corresponding to “sadness”. So in Tweets like
“Be proud of who you are and not ashamed of how someone else sees you!!! #smile
#happy“20, the phrase “not ashamed” has an impact on the weightings corresponding to
“joy” for both, negated “sadness” (c4,1) and negated “disgust” (c6,1). For a similar reason
the correlation between negated “disgust” and “anger” (c6,2) can be explained. As we

14https://twitter.com/goandshare/status/770074417787469824
15https://twitter.com/LS_IA_AD/status/829915608624013312
16https://twitter.com/_Angelic_Heart/status/818262321852256257
17https://twitter.com/caroline_p_s/status/713902920610095104
18https://twitter.com/Cynhamscakes1/status/755774733355016193
19https://twitter.com/ct_liberators/status/843163279828664321
20https://twitter.com/_NirayMars_/status/758686057227546624
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can see, the weighting for negated “anger” to “anger” (c2,2) is equal to the weighting
for negated “disgust” to “anger” (c6,2). This is because more than half of the emotion
words correlating to “disgust” also correlate to “anger” and therefore affect both of these
weightings.

Now that we analyzed the negation weighting matrix, we proceed with intensifier weight-
ing matrix. The intensifier matrix was created by averaging 53 matrices, which were
optimized in 1248 steps on average. The resulting matrix can be seen in Table 4.11.

Intensifier weighting matrix

emotion jo
y

an
ge

r

fe
ar

sa
dn

es
s

su
rp

ri
se

di
sg

us
t

joy 1.0
(0.9)

-1.0
(1.3)

0.1
(1.2)

0.0
(1.1)

1.0
(1.3)

-0.7
(1.3)

anger -0.5
(1.1)

1.2
(1.0)

0.2
(0.9)

0.6
(1.0)

-0.6
(1.3)

0.2
(0.8)

fear -0.6
(1.1)

0.1
(1.1)

1.3
(1.1)

-0.4
(1.2)

0.3
(0.8)

0.2
(1.0)

sadness -0.6
(1.1)

-0.1
(0.9)

-0.3
(0.9)

1.1
(1.2)

0.1
(1.1)

0.5
(1.1)

surprise -0.4
(1.2)

0.6
(1.8)

-0.4
(1.4)

0.3
(1.6)

2.1
(1.5)

-0.8
(1.4)

disgust -0.3
(1.0)

0.1
(1.3)

-0.2
(1.1)

0.7
(1.0)

-0.9
(1.5)

1.5
(1.3)

Table 4.11: Word list intensifier weighting matrix.

The table shows that, again, each emotion has the highest weighting to itself, which
also seems plausible. The weightings for intensified “joy” are similar to the weightings
in the neutral weighting matrix but with a noticeable higher weighting for “surprise”
(c1,5). The reason for this is that the authors often use intensified emotions to express
their positive surprise, like in the Tweet “Got this in the mail from work! So cute!
#birthday #birthdaycard #birthdaysurprise #surprise”21. We can further see that a
slight correlation to “sadness” exist for intensified “anger” (c2,4). This correlation was
not present in the neutral weighting matrix because if authors use emotion words that
represent “anger” in a Tweet labeled as “sad”, they usually intensify them as in the Tweet
“So much anger & hate from the #left. What they dislike in everyone else is exactly
whats inside themselves. #colbert #TheResistance #sad”22. Intensified “sadness” shows
no more a correlation with “anger” (c4,2) but now with “disgust” (c4,6) because of Tweets

21https://twitter.com/MousyGirlAuthor/status/766040801046650885
22https://twitter.com/rural_new/status/860829778487783424
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like “Wow, I was so wrong about u. Your HYPOCRISY, EVIL MINDED ARROGANT SELF
finally came out! #DISGUST“23. Intensified “disgust” shows no more a correlation with
“anger” (c6,2) but with “sadness” (c6,4). This correlation shows similarities with intesified
“sadness“ (c4,6) due to the overlaps of emotions words.

Lastly, we will investigate the diminisher weighting matrix. This matrix was created by
averaging 64 matrices, which again were separately optimized with an average of 990
steps. Table 4.12 shows the resulting diminisher matrix.

Diminisher weighting matrix

emotion jo
y

an
ge

r

fe
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sa
dn

es
s

su
rp
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se

di
sg
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t

joy 1.3
(1.3)

0.1
(1.0)

0.2
(0.8)

-0.2
(1.0)

0.8
(1.3)

0.1
(0.8)

anger -0.1
(1.0)

0.6
(1.2)

0.2
(1.1)

0.3
(1.2)

0.3
(1.0)

-0.1
(0.8)

fear -0.6
(1.4)

0.2
(1.1)

0.7
(1.0)

-0.3
(1.2)

1.3
(1.2)

0.2
(0.9)

sadness 0.8
(1.1)

0.1
(1.3)

0.0
(1.0)

1.0
(1.1)

-0.5
(1.5)

-0.7
(1.4)

surprise 0.1
(1.0)

-0.4
(1.3)

0.1
(1.0)

0.0
(1.0)

1.7
(1.2)

-0.2
(0.9)

disgust -0.2
(1.0)

-0.1
(1.0)

-0.1
(0.7)

0.1
(1.0)

-0.4
(1.3)

1.1
(1.2)

Table 4.12: Word list diminisher weighting matrix.

As the table shows, each emotion has again a high weighting to itself. The correlation
with “surprise” for the diminished emotion “joy” (c1,5) is similar to the neutral weighting
matrix. Diminished anger shows some correlations to “fear” (c2,3), “sadness” (c2,4)
and “surprise” (c2,5) but since these values are low and have a much higher standard
deviation, we do not interpret too much in these weightings. Furthermore, we can see
that diminished “fear” has a higher weighting to “surprise” (c3,5) than to itself (c3,3). The
investigation of the corpus “trainEmoModEqual”, which was used to create this matrix
shows, that it contains only very few Tweets containing diminished words that express
“fear” and that are labeled as “surprise”. Most of these Tweets contain a phrase similar
to “little surprise” and according to the emotion lexicon the word “surprise” also relates
to the basic emotion “fear”. Therefore the value of the cell c3,5 is not reliable. Finally,

23https://twitter.com/lezlie_9198/status/837153018013437952
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diminished “sadness” shows slight correlations with “joy” (c4,1) because of Tweets like
“pray more and worry less #pray #faith #love #peace #happiness...”24.

As we can determine the correlation of modified emotion words and basic emotions,
we can reject the null hypothesis H4 and accept the alternative hypothesis: if emotion
bearing words are modified, their basic emotion can be determined.

24https://twitter.com/daintydame502/status/794310491480829952
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This thesis studies the correlation between basic and modified emotions. Furthermore, it
examines the impact of modifiers on emotion expressions by measuring the performance
with and without modifier detection on a corpus containing real Tweets.

To measure the impact we implemented a modifier detection system. This system splits
into modifier cue and modifier scope detection. For the cue detection, we used a simple
lexicon approach. The modifier scope detection is realized in three different ways. One
approach is called next-n heuristic, which modifies all words that are < n words away
to the right of the cue but stops after punctuation marks and adversative conjunctions.
The DepTree approach checks for each node of a dependency tree if it has a modifier as
a child and if so, it modifies this node. It also modifies nodes when they are connected
to an already modified node via a non-adversative conjunction edge. Finally, the SVM
approach trains a SVM for each modifier type, that decide if a word in a Tweet is
modified or not.

We created a corpus by hand in order to train the SVMs and to evaluate the performance
of each approach. We annotated the scope of modifiers in a total of 1000 Tweets. Using
this corpus to evaluated the performance of each method, we found out that the next-2
heuristic performs best.

We implemented two emotion classification system, one using a SVM and the other using
an emotion lexicon. We combined this with the next-2 modifier detection approach
to study the impact modifiers. The results show a noticeable improvement of the
performance if negations are taken into account. We could not observe an improvement
when intensifier and diminisher are considered.

Further, we studied the weighting matrices of the word list classifier to gain a better
understanding about modified emotions. Using this matrices, we show correlations
between basic emotions and are able to determine the basic emotion of Tweets containing
modified emotion words.

In the introduction we asked what the basic emotions of “not happy” and “not sad” are.
We can now answer this questions: “not happy” almost solely correlates to “sadness” and
with a few exceptions to “anger” and “disgust”, while “not sad” predominantly correlates
to “joy” and a little bit to “anger”.
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5 Summary

Future work could focus on intensifier and diminisher scopes to show whether these
can also increase the performance of an emotion classification system. A modifier scope
detection system that determines the full scope of a modifier cue could be implemented
using a more sophisticated approach.
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A Additional Results

SVM + Model-Unigram using trainEmoMod and testEmoMod corpora

no modifier detection next-2 (negations only)

emotion P R F1 P R F1

joy 79.9 88.9 84.2 81.1 89.1 84.9
anger 63.0 40.1 49.0 63.2 40.2 49.1
fear 78.1 60.4 68.2 75.8 63.8 69.3
sadness 71.7 75.7 73.7 72.6 76.2 74.3
surprise 53.9 17.0 25.9 51.4 18.3 27.0
disgust 06.6 01.5 02.4 04.6 01.2 01.9

Macro- Avg. 58.9 47.3 50.5 58.1 48.1 51.1

next-2 (intensifier only) next-2 (diminisher only)

emotion P R F1 P R F1

joy 79.7 89.4 84.3 80.3 88.7 84.3
anger 63.8 40.0 49.1 66.0 38.3 48.5
fear 78.0 60.1 67.9 73.9 62.4 67.7
sadness 72.2 75.1 73.7 71.8 75.8 73.7
surprise 51.8 17.9 26.6 51.7 17.3 26.0
disgust 03.9 00.9 01.4 06.5 01.5 02.4

Macro- Avg. 58.2 47.2 50.5 58.4 47.3 50.4

Table A.1: Support Vector Machine with unigram features using trainEmoMod and
testEmoMod corpora.
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B Modifier Lexicons

List of all negation cues

aint cannot cant darent denied
denies didnt doesnt dont hadnt
hasnt havent havnt isnt lack

lacking lacks mightnt mustnt neednt
neither never no nobody none
noone nor not nothing nowhere

n´t n’t n‘t oughtnt shant
shouldnt wasnt without wouldnt

Table B.1: Negation lexicon.

List of all diminisher cues

almost barely bit exiguous faintly
fairly few fewer hardly insignificantly
kinda less little marginally moderately

modicum mostly nearly negligibly partly
partially practically quite rather rarely
relatively reasonably scanty scarcely slightly

some somewhat sparsely tolerably triflingly
virtually

Table B.2: Diminisher lexicon.
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B Modifier Lexicons

List of all intensifier cues

-ass absolutely altogether amazingly astoundingly
awfully badly decidedly bitterly bloody

colossally completely damn deeply drastically
dreadfully entirely enormously especially exceptionally
excessively extraordinarily extremely fantastically freaking
frightfully fucking fully greatly hella

highly incredibly insanely intensely immensely
largely literally lot lots massive

mightily more outrageously particularly perfectly
phenomenally pretty radically real really

remarkably purely so soo sooo
super supremely surpassingly strikingly strongly

terribly terrifically totally thoroughly truly
unusually utterly very wicked

Table B.3: Intensifier lexicon.
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