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Abstract 

Superconductivity is an important physical phenomenon which has not yet been completely 

explained. There are two types of superconductors: conventional and unconventional (high 

temperature superconductors belong to the latter). The temperature at which electrical 

resistivity vanishes is called the critical temperature (T
) and it is a characteristic of each 

superconductor. A physical explanation of superconductivity in the conventional 

superconductors is given by the BCS theory, with which critical temperatures can be 

calculated. This theory is based on the Coulomb interaction between Fermi electrons (free 

electrons) and atoms in the crystal structure of the material. Through this interaction, two 

electrons can be paired, building a so-called Cooper pair.  

In this work, the finite element method has been used to simulate the BCS theory in 

conventional and unconventional superconductors (Al, Nb: conventional; Sr2RuO4, 

La1.85Sr0.15CuO4, Bi2Sr2CaCu2O8+δ, HgBa2Ca2Cu3O8+δ and YBa2Cu3O7-δ: unconventional). The 

corresponding Fermi velocity v# (velocity of a free electron), density of states D�E��, force 

constants between atoms in the unit cell, and the symmetry of the unit cell are required for each 

simulation. The force constants can be measured by Raman spectroscopy or calculated with the 

potential theory.  

With these parameters, the attractive potential energy V� caused by an electron moving through 

the unit cell can be simulated by the finite element method. This process has been carried out 

for the two conventional superconductors Al and Nb. 

According to the BCS theory, the binding energy ∆ of a Cooper pair depends on the density of 

states and the attractive potential energy according to the following equation: 

 

∆ ∝ exp L −2D�E��V�O  . 
 

Then, the critical temperature T
 can be found with the following equation where k� is 

Boltzmann constant: 

 

T
 = 2∆3.53k�  . 
 

The results show that the Fermi velocity and the density of states play an important role 

regarding superconductivity. The lower the Fermi velocity v#, the higher the attractive potential 
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energy V� and the lower the density of states D�E��. According to the first equation, this means 

that a reduction of the Fermi velocity yields an increase of the binding energy through 

increasing the attractive potential energy V�. On the other hand, a reduction in the Fermi 

velocity yields to a reduction in the binding energy through reducing density of states. Because 

of these two dependencies, an optimal Fermi velocity must be found for which the binding 

energy reaches its maximum. Accordingly, and using the second equation, a maximum value is 

found for the critical temperature T
. 

For conventional superconductors the Fermi velocity can be approximated as a constant. 

Therefore, according to the two equations above, only a critical temperature can be calculated 

for these superconductors. For high temperature superconductor cuprates (which belong to the 

unconventional superconductors and are doped with different concentrations of foreign atoms 

or oxygen vacancies), the Fermi velocity changes linearly with the doping amount δ. Thus, 

different critical temperatures exist for different doping amounts.  

The phase diagrams of high temperature superconductors (T
 vs. doping amount δ) show a 

dome with a maximum critical temperature at an optimal doping. Because the Fermi velocity 

depends linearly on the doping amount δ, the latter can be replaced in the phase diagram by the 

Fermi velocity and so an optimal Fermi velocity can be used instead of an optimal doping. 

A linear relationship of 2∆ = 2.865T
 for some unconventional and conventional 

superconductors has also been found in this work, which is in good agreement with the 

experimentally determined linear relationship of C. Panagopoulos and T. Xiang                      

(2∆ = 2.214T
). 
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Kurzfassung 

Die Supraleitung ist eins der wichtigen physikalischen Phänomene, die bis jetzt nicht 

vollständig physikalisch aufgeklärt wurden. Es gibt zwei Arten von Supraleitern: 

konventionelle und unkonventionelle Supraleiter (Hochtemperatursupraleiter gehören zu der 

letzteren Art). Die Temperatur, bei der der elektrische Widerstand verschwindet, wird kritische 

Temperatur (T
) genannt und ist eine charakteristische Größe von jedem Supraleiter. Die 

Supraleitung in den konventionellen Supraleitern kann durch die BCS-Theorie beschrieben 

werden. Mit Hilfe dieser Theorie kann die kritische Temperatur berechnet werden. Diese 

Theorie basiert auf der Coulomb-Wechselwirkung zwischen Fermi Elektronen und Atomen in 

der Kristallstruktur von Supraleitern. Durch diese Wechselwirkung werden zwei Elektronen 

miteinander gepaart; somit bilden diese ein sogenanntes Cooper-Paar. Bis jetzt wurde keine 

etablierte Theorie entwickelt, mit der die Supraleitung in Hochtemperatursupraleitern (HTSCs) 

entsprechend beschrieben werden kann. 

In dieser Arbeit wurde die finite Elemente Methode zur Simulation der BCS-Theorie in 

konventionellen und unkonventionellen Supraleitern (Al, Nb: konventionell; Sr2RuO4, 

La1.85Sr0.15CuO4, Bi2Sr2CaCu2O8+δ, HgBa2Ca2Cu3O8+δ und YBa2Cu3O7-δ: unkonventionell) 

verwendet. Dafür wird die Fermi-Geschwindigkeit v# (Geschwindigkeit eines freien 

Elektrons), die Zustandsdichte D�E��, die Kraftkonstanten zwischen Atomen in der 

Elementarzelle und die Symmetrie der Elementarzelle benötigt. Die Kraftkonstanten können 

entweder durch Ramanspektroskopie gemessen oder durch die Potentialtheorie berechnet 

werden. Mit diesen Parametern kann die attraktive potentielle Energie V�, die durch ein 

bewegliches Elektron in der Elementarzelle verursacht wird, durch die finite Elemente Methode 

simuliert werden. Dieses Verfahren wurde anhand der zwei konventionellen Supraleiter Al und 

Nb validiert.  

Die Bindungsenergie ∆ eines Cooper-Paars ist abhängig von der Zustandsdichte und der 

attraktiven potentiellen Energie. Diese Abhängigkeit wird durch folgende Gleichung 

beschrieben: 

 

∆ ∝ exp L −2D�E��V�O  . 
 

Danach kann die kritische Temperatur T
 durch folgende Gleichung berechnet werden, wobei k� die Boltzmann-Konstante ist: 
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T
 = 2∆3.53k�  . 
 

Die Ergebnisse zeigen, dass die Fermi-Geschwindigkeit und die Zustandsdichte eine sehr 

wichtige Rolle bezüglich der Supraleitung spielen. Einerseits, je kleiner die Fermi-

Geschwindigkeit ist, desto größer ist die attraktive potentielle Energie. Andererseits reduziert 

sich die Zustandsdichte mit der Abnahme der Fermi-Geschwindigkeit. Aufgrund dieser zwei 

Abhängigkeiten muss eine optimale Fermi-Geschwindigkeit existieren, bei der die 

Bindungsenergie maximal ist. Mit dieser maximalen Bindungsenergie und der zweiten 

Gleichung kann die maximale kritische Temperatur berechnet werden. 

Für die konventionellen Supraleiter ist die Fermi-Geschwindigkeit ungefähr konstant. Deshalb 

kann nur eine kritische Temperatur durch die zwei obigen Gleichungen ermittelt werden. Für 

Hochtemperatursupraleiter-Kuprate, die zu den unkonventionellen Supraleitern gehören, ändert 

sich die Fermi-Geschwindigkeit linear mit dem Dotierungsanteil, da diese Supraleiter mit 

unterschiedlichen Anteilen von fremden Atomen bzw. Sauerstoffleerstellen dotiert werden. Es 

gibt daher verschiedene kritische Temperaturen für die unterschiedliche Dotierungsanteile δ. 

Die Phasendiagrame von Hochtemperatursupraleitern (T
 vs. Dotierungsanteil δ) weisen eine 

Glockenkurve auf, mit einem Maximum für die kritische Temperatur bei einem optimalen 

Dotierungsanteil. Es ist physikalisch bekannt dass die Fermi-Geschwindigkeit vom 

Dotierungsanteil δ abhängt. Aufgrund dieser Abhängigkeit kann der Dotierungsanteil im 

Phasendiagram mit der Fermi-Geschwindigkeit ersetzt werden. Daher wird eine optimale 

Fermi-Geschwindigkeit statt des optimalen Dotierungsanteils verwendet. 

Eine lineare Beziehung von 2∆ = 2.865T
 für einige unkonventionelle und konventionelle 

Supraleiter wurde in dieser Arbeit gefunden, die nahe an der experimentell bestimmten linearen 

Beziehung von C. Panagopoulos und T. Xiang (2∆ = 2.214T
) liegt. 
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1 Introduction 

Superconductivity is a very important phenomenon in Physics due to the special electrical and 

magnetic properties associated with it. In 1911, the Dutch physicist Heike Kamerlingh Onnes 

discovered superconductivity in mercury while measuring its electrical resistance at low 

temperatures. Superconductivity appears in some materials below a certain temperature called 

the critical temperature T
; in this regime, the electrical resistivity disappears and external 

magnetic fields are expelled from the bulk of the superconducting material (Meissner-

Ochsenfeld effect). 

In conventional superconductors, superconductivity can be explained by the BCS theory which 

relies on a pairing of electrons into so-called Cooper pairs. With the discovery of 

superconductivity in doped La2CuO4, another group of superconductors has been found, called 

unconventional superconductors. The application of the BCS theory to unconventional 

superconductors has been investigated by some researchers. Many researchers believe that a 

second mechanism must be available for the electron pairing in these superconductors. 

In particle physics, a fermion is a particle with half-integer spin (1/2, 3/2 and so forth) and a 

boson one with integer spin (0, 1, 2 and so forth). Electrons are fermions due to their half-

integer spin (1/2 or -1/2). By considering the direction of an electron spin, paired electrons can 

have a total spin of 0 or 1 and, therefore, they are a boson. The momentum of a Cooper pair is 

equal to zero, because the momenta of its constituting electrons have the same magnitude but 

opposite directions.  

In the BCS theory, two electrons can be paired through the lattice deformation caused by 

Coulomb forces between moving electrons and the atoms in the lattice. In this work, the energy 

of this deformation is designated as the attractive potential energy V�.  

For the calculation of the electronic band structure of materials only electrons (fermions) are 

considered. When electron pairing occurs, an energy gap, called the superconducting gap, can 

be found in the electronic band structure of superconductors, because the electron pairs are 

bosons and are not used for the calculation of the electronic band structure. 

There are different experimental and theoretical ways to determine the superconducting gap. 

Using scanning tunneling microscope (STM), the width 2∆ (∆: binding energy) of the 

superconducting gap can be measured. Through the BCS theory, this width can be 

mathematically found using the attractive potential energy V�, the density of states D�E�� and 

the Debye frequency ωI of the material. The calculation of the superconducting gap width is 

complicated for superconductors with complex unit cells due to the difficulty involved in the 

calculation of their attractive potential energies. Finite element methods can be used to calculate 
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this energy for superconductors with complex unit cells. The influence of the electrical 

properties on the width of the superconducting gap can be investigated by these methods.  

 

1.1 Motivation 

At the Institute of Space Systems of the University of Stuttgart a lot of theoretical work for 

superconductors has been performed. The main subject of research concerns the development 

of a correlation between the critical temperature and some physical properties for 

unconventional superconductors. In 2007, Prof. Hans-Peter-Röser proposed a correlation 

between critical temperature and doping distance in high temperature superconductors 

(HTSCs). He assumed that the doping atoms or vacancies are distributed evenly in the crystal 

structure of superconductors. With this assumption the distance between the doping atoms can 

be mathematically determined. It has also been found that for A3C60 fullerides superconductors, 

the ionization energy is linearly correlated with critical temperature.  

The application of the BCS theory to explain the superconductivity in HTSCs has been 

performed by some researchers. Until now, there are no direct mathematical calculations of 

attractive potential energy V� for HTSCs due to their complex unit cells. The finite element 

method (FEM) could provide a good methodology to calculate this energy. This method is used 

in different engineering and scientific fields. Complex resonance problems of classical 

mechanical structures can be solved using this method. Another important application lies in 

solving the Schrödinger equation in quantum mechanics [1]: the time independent Schrödinger 

equation can be numerically solved by FEM using an explicit method, and the time-dependent 

Schrödinger equation can be discretized and also numerically solved [2]. This method is applied 

to quantum mechanical problems for superconductivity as well. Qiang Du has used a finite 

element code to solve the time-dependent Ginzburg-Landau equations of superconductivity. 

The code is based on the fully discrete backward Euler scheme of a two-dimensional square 

box [3]. 

The attractive potential energy caused by a moving Fermi electron through a two-dimensional 

single atomic unit cell can be calculated by analytical methods. But for the three-dimensional 

unit cell of superconductors this method cannot be used since the unit cell consists of different 

ions and force constants in different space directions. Using a finite element code, the value of 

this energy can be found and used to calculate the binding energy ∆ according to the BCS 

theory.  
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If the symmetry of the unit cell, force constants in the unit cell, Fermi velocity, density of states 

and Debye frequency of a superconductor were available, this code would help to determine 

the binding energy without any experiment performed by scanning tunneling microscopy. The 

code is able to determine which physical property has the major influence on superconductivity.  

There are superconductors that have different Fermi electrons and, therefore, different Fermi 

velocities. Using this code, it can be determined at which Fermi velocity the binding energy 

reaches its maximum value. 

High temperature superconductors that belong to the unconventional superconductors, are 

usually doped with oxygen vacancies or foreign atoms. The amount of doping is very important 

because only at a certain level (called the optimal doping amount) the critical temperature and 

the binding energy reach their maximum values.  

The Fermi velocity depends directly on the doping amount. Due to this dependence, the trend 

of the binding energy against the doping amount can be determined by performing a parameter 

study for the Fermi velocity. Furthermore, the optimal doping amount can be determined from 

the Fermi velocity at which the binding energy is maximal. 

 

1.2 Objective 

The attractive potential energy of some conventional and unconventional superconductors must 

be calculated. First of all, a two-dimensional model must be considered for the analytical 

calculation. The calculated attractive potential energy must be used to determine the binding 

energy ∆ according to the BCS theory. The diagram log ∆ vs. log T
 for the analytical results 

must be determined. 

In order to obtain more accurate results, a special finite element code has to be prepared and 

implemented. Using this code, the attractive potential energy for the three-dimensional unit cell 

of the considered superconductors can be simulated and the corresponding binding energy ∆ 

determined. At first, the code must be evaluated for the conventional superconductors, because 

it has been proven that the BCS theory is valid for these. The diagram 2∆ vs. T
 must be drawn 

and a line has to be fit to the results. The function of the line has to be compared with the 

experimentally determined function in [4].  

As it is known from BCS theory, the value of the binding energy depends on the attractive 

potential energy, the density of states and the Debye frequency. The Fermi velocity is also one 

of the important parameters which indirectly influences the value of the binding energy through 



4 

the attractive potential energy. The influence of these parameters on the binding energy must 

be investigated in this work.  

It must be determined for superconductors with different Fermi electrons at which Fermi 

velocity the maximum value of the binding energy appears. There are two binding energies for 

some superconductors; the appearance of two binding energies must be investigated by the 

code. 

The unit cell must be constructed. To perform this, the mass of the ions, the force constants 

between the ions within the unit cell and the symmetry of the unit cell are required. The force 

constants can be calculated by the potential theory, or determined using Raman spectroscopy 

through the eigenfrequencies of ionic pairs within the unit cell. The time-dependent Coulomb 

forces between the ions in the unit cell and the moving Fermi electron can be calculated by 

means of the Fermi velocity. By having all these parameters and available values, the finite 

element code can be applied to calculate the attractive potential energy and the corresponding 

binding energy. 

Here follows a brief explanation of the contents of this work. In chapter 2, the theory of 

superconductivity is explained; calculations of the binding energy and the critical temperature 

of superconductors are introduced; and two ways are discussed to determine the force constants 

between ions inside a unit cell. Chapter 3 explores the theory of the finite element method and 

the finite element model used in this work. Three different codes are prepared for the simulation 

described in chapter 4. The analytical method and results for the calculation of the attractive 

potential energy of some superconductors are discussed in chapter 5, which justify the 

motivation of this work for using finite element methods. The finite element results are 

discussed for the same superconductors in chapter 6. Finally, Chapter 7 gives a summary of the 

results obtained. 

 

 

 

 

 

 

 

 

 

 



5 

2 Theory 

2.1 Fundementals of Electron Theory 

2.1.1 Electron Model 

There are different models to describe the electron properties in an atom. In 1911, Rutherford 

proposed a model in which electrons orbit a core consisting entirely of neutrons and protons 

(figure 1). But according to classical mechanics and electromagnetic theory, if a charged 

particle (as is, for instance, an electron) moves on a curved path, it emits electromagnetic 

radiation. Therefore, the electron loses its energy and after some revolutions it falls into the 

core. Hence, this model is unstable. To remedy this instability, Bohr proposed a model in 1913 

according to which the electron moves in orbits with fixed radius and energy (figure 2). The 

energy of the electron depends directly on the radius of its orbit. The smaller the radius, the 

lower the energy. Radiation is only possible if the electron changes its orbit by jumping into 

another orbit.  

The Bohr model is not a final model with which the electron properties in an atom can be 

described. This model cannot explain the wave nature of the electron. Another limitation is that 

it predicts a definite momentum of an electron moving on an orbit with a definite radius, which 

is not possible according to the uncertainty principle. Due to the uncertainty principle, the 

position and momentum of a particle cannot be simultaneously determined.  

 

 

Figure 1: Rutherford model. 
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Figure 2: Bohr model. 

 

2.1.2 Wave-Particle Duality 

In the Bohr and Rutherford models, the electron is considered as a particle. But none of them 

can explain the wave nature of the electron as evidenced by the double slit experiment. The 

double slit experiment can be used to prove the wave behaviour of light. In this experiment, the 

light waves passing through two parallel slits on a screen interfere with each other, producing 

a light and dark pattern on the wall behind the slits (figure 3). In 1928 Davisson and Germer 

used this method for an electron beam directed at a crystal. The gaps between the atoms in the 

crystal act like the slits on the screen. They found a light and dark pattern on the other side of 

the crystal as well. This can only be explained by the wave behaviour of the electron. 

 

 

 

Figure 3: The double slit experiment. 

The screen with two parallel slips 

light and dark pattern 

Wall 
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In 1928, de Broglie proposed that all matter can exhibit wave-like behaviour. According to the 

de Broglie theory, the wavelength λ of an object can be calculated by 
  

λ = − ℎmv   , ( 2.1) 

 

where m is the mass, v the velocity of the object and ℎ the Planck constant. For objects of 

everyday experiences the calculated wavelength according to equation 2.1 is much smaller than 

that of atomic particles, so their wave properties have never been detected; these objects exhibit 

only particle behaviour. It is only for the subatomic scale that the wave-like behavior of a 

particle must be considered. Having the mass and the velocity of an electron, its wavelength 

can be calculated using the equation above.  

To describe the wave property of subatomic particles in quantum mechanics, the Schrödinger 

equation is required. This equation describes how the quantum state of a physical system 

changes in time. 

 

2.1.3 Schrödinger Equation 

In 1926, Erwin Schrödinger derived a partial differential equation with which the quantum 

mechanical behaviour of a system can be described. The Schrödinger equation has two forms, 

one of them is time-dependent and the other one is time-independent [5]. 

The time-independent Schrödinger equation is used to describe the properties of atomic systems 

in stationary conditions (stationary condition means that the properties of the system do not 

change with time), which is the case for most applications. The time-independent Schrödinger 

equation for an electron can be written as follows [5]: 

 

− ℏ+2m# ∇+Ψ − �E − V�Ψ = 0  , ( 2.2) 

 

where m# is the mass of the electron, ℏ the reduced Planck constant, ∇+ the Laplacian (a 

differential operator ∇+= WX
WYX + WX

W[X + WX
W\X), Ψ the wave function, E the energy of the electron 

and V the potential barrier. Assuming that the potential barrier V depends only on space, the 

time-independent Schrödinger equation is an equation for a vibration. Therefore, the wave 

function Ψ is a function of space and can be rewritten as [5]: 

 Ψ =  Ψ�x, y, z�  . ( 2.3) 
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The solution of the time-dependent Schrödinger equation is a wave function due to its 

dependence on time and space (Ψ�x, y, z, t�). The following equation is the time-dependent 

Schrödinger equation with i = √−1 [5]: 

 

− ℏ+2m# ∇+Ψ − i ∂Ψ∂t + VΨ = 0  . ( 2.4) 

 

2.2 Superconductors 

For superconducting materials, there is a critical temperature T
 below which the electrical 

resistance disappears. In a broad sense, these materials can be classified in two groups: 

conventional and unconventional superconductors. The first can be described by the BCS 

theory, which is based on bound pairs of electrons (Cooper pairs) that carry the electrical current 

below the critical temperature and cannot be scattered by the atoms in the crystal structure. For 

the second, which includes the high temperature superconductors (HTSCs), there is so far no 

generally accepted mathematical and physical description. The maximum critical temperature 

belongs to the high temperature superconductor HgBa2Ca2Cu3O8+δ with 134 K (in the case of a 

chemical formula, δ represents the doping amount). 

HTSCs comprise different material families, the main ones being cuprates (copper-oxygen 

compounds) and iron pnictides. Depending on their chemical formula, all cuprates possess at 

least one CuO2 plane (figure 4). To obtain the superconducting phase for cuprates, they must 

be doped either with foreign atoms or oxygen vacancies. The doped carriers are located in the 

CuO2 plane.  

 

 

Figure 4: The unit cell of the high temperature superconductor La1.85Sr0.15CuO4. It consists of two chemical 

formulas. The red atoms are oxygen, the blue copper and the green lanthanum. The pink plane represents a CuO2 

plane. 
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2.3 Cooper Pair 

Due to the change in the electrical conductivity and the magnetic properties after the appearance 

of superconductivity, one can guess that the superconducting property can be described by 

ordering processes of the conductive electrons. The energy of a conductive electron is, however, 

of the order of some eV (one eV corresponds to a thermal energy of 1100 K). The transition 

from the normal state to superconducting state takes place at very low temperatures [6]. 

There are different interactions between the conductive electrons in metals. The Coulomb 

interaction could be a reason for the three-dimensional order of electrons in the crystal lattice. 

Another interaction could be the magnetic field built by the motion of the electrons with 

energies near the Fermi level. These interactions alone are not sufficient to explain the 

superconductivity phenomenon, until the formulation of a new interaction between the 

electrons through the lattice deformation. Using this interaction, Bardeen, Cooper and 

Schrieffer were able to propose a microscopic theory: the BCS theory of superconductivity [6]. 

To understand this interaction one can imagine an elastic membrane with a ball on each of its 

two corers (figure 5). The membrane represents the ion lattice of the superconductor, and the 

balls, its conduction electrons. Due to the weight of the balls, the membrane is deformed                

(figure 5 (a)). To reduce the total energy (reducing the potential energy) of the complete system, 

both balls tend to move towards each other until they get together in the middle of the membrane 

(figure 5 (b) and (c)). In this case, the elasticity deformation of the membrane represents the 

attraction interaction between both balls, which results in a new state for both balls and bonds 

them together in the middle of the membrane (figure 5 (c)) [6]. 

In the case of a crystal structure, the lattice with all ions has a certain elasticity that can be 

described by springs between ions in the lattice. The ions are not stiffly bound to their sites in 

the lattice but they vibrate around their equilibrium positions. The average vibration amplitude 

and frequency vary according to the temperature.  

The electrons deform the lattice due to the Coulomb interaction with ions and create a 

deformation area around each of ions (figure 6 (a)) The deformation due to an electron can be 

felt by another electron giving rise to a net attractive interaction between the two. Both electrons 

tend to pair to reduce the total energy of the system despite the repulsive Coulomb interaction 

between them, just as the balls do on the elastic membrane. In other words, an electron moving 

through the lattice leaves a polarization wake behind itself (figure 6 (b)). This polarization wake 

can be spread out over the entire lattice in the form of a so-called phonon wave and can interact 

with a second electron, effectively creating an attractive interaction between both electrons. 

This is called electron pairing through the electron-phonon interaction [6]. 
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Figure 5: (a) a ball on an elastic membrane, (b) the unstable situation for two balls moving towards each other 

on the elastic membrane and (c) the stable situation for the two balls on the elastic membrane. 

 

 

Figure 6: (a) deformation of the lattice due to Coulomb forces between an electron and the ions and (b) 

polarization wake behind an electron with Fermi velocity ve. 

 

The polarization strength depends on the velocity of the electron, the mass of the ions and the 

force constants between ions. For example, in the case of different isotopes (isotopes are 

variants of a chemical element with different neutron number), the heavier the isotope, the 

smaller the polarization strength and also the attractive interaction for the electron pairing [6]. 

Regarding momentum, there are two possibilities for electron pairing. The first is that the 

absolute value of the momentum and the propagation direction of both electrons are the same, 

p��� = p��+ = ℏk�� (k�� is the wave vector of an electron). The second is that the absolute value is the 

same but the propagation direction is inverted, p��� = ℏk�� and p��+ = −ℏk��. The total momentum 

of the pair in this second case is equal to zero. The pair with zero total momentum is called a 

Cooper-pair, since Cooper was the first who proved that this mechanism leads to a reduction of 

the total energy of the system [6]. 

 

(a) (b) 

(a) (b) (c) 

ve 
ve 
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2.3.1 Normal Conductivity 

In quantum mechanics, the density of states is the number of states per energy interval for a 

certain energy. Due to Pauli’s principle each state can normally be occupied with only two 

electrons, one spin up and the other spin down. The electrical conductivity in metals can be 

explained by free electrons in the conductive band. In figure 7, the dependence of the density 

of states on the energy within a partially occupied conductive band for a metal can be seen. 

According to quantum mechanics, the electrical conductivity is caused by the electrons with 

energies close to the Fermi level (Fermi level is the level with energy E�), because these 

electrons are the first to fill the unoccupied energy states when enough voltage is applied (figure 

7). These electron are called Fermi electrons. If voltage is applied on a metal, electrons will be 

accelerated and scattered by the lattice atoms or among themselves and, therefore, electrical 

resistance will appear. The electrical resistance R can be calculated by Ohm’s law (equation 

2.5), where V is the voltage and I the electrical current. 

 

R = VI   . ( 2.5) 

 

 

 

Figure 7: Energy E vs. density of states D(E) within a partially filled conduction band of a metal. Ef is the Fermi 

energy, D(Ef) is the density of states at the Fermi energy and e are the Fermi electrons.    shows Fermi electron 

jumps into unoccupied energy level. 

 

 

 

Occupied energy level 

Unoccupied energy level 

Conductive band 

E 

D(E) D(Ef) 

Ef 
e e e e e e e e e e e e e  



12 

2.3.2 Superconductivity 

The formation of Cooper pairs occurs, according to the BCS theory, at a very low temperature 

(called the critical temperature T
). The binding energy ∆ of a Cooper pair is very small (meV). 

Therefore, if the temperature is higher than the critical temperature (T > T
), the thermal 

fluctuations will be enough to break the Cooper pairs and so superconductivity disappears.  

For bosons (particles with integer spin) Pauli’s principle doesn’t apply, therefore, the same 

energy state can be occupied by any number of bosons. Because the spin of the Cooper pair for 

the conventional superconductors is an integer number (the spin of an electron is 1/2 and the 

other one is -1/2 and, therefore, the total spin of a Cooper pair is zero which is an integer 

number), a Cooper pair is considered a boson. Therefore, a large number of Cooper pairs can 

occupy the same energy state at the same time and so a collective state can be built. 

In superconductors, the electrical current is carried by Cooper pairs below the critical 

temperature. According to quantum mechanics, scattering of a particle by the lattice atoms 

induces a change in its energy state. Due to the fact that all Cooper pairs build a collective and 

occupy the same state, it is not energetically favorable to scatter all of them at once. The 

electrical resistance is then zero as long as the temperature is lower than the critical temperature. 

 

2.3.3 Mathematical Description of Cooper Pairing 

To calculate the deformation of the lattice due to the motion of a Fermi electron, a lattice 

structure with a simple cubic unit cell has been considered. This lattice structure can be built 

from two-dimensional planes of positive ions (figure 8) [7]. If a Fermi electron passes through 

this two-dimensional lattice, the Coulomb interaction between the electron and the positive ions 

causes the ions to be attracted to the electron. This attraction moves the positive ions closer to 

each other in some areas and so a local deformation of the lattice appears (figure 9). Equation 

2.6 gives the Coulomb force between a positive ion and a Fermi electron [7]: 

 

F�r� = − ne+4πε�r+   , ( 2.6) 
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Figure 8: Two-dimensional lattice structure of the positive ions. 

 

 

Figure 9: The deformation of the lattice due to the Coulomb interaction between the Fermi electron and positive 

ions. 

 

where e is the elementary charge, n is an integer number for the charge of an ion, ε� is the 

permittivity in vacuum, r is the distance between the electron and the nearest ion and the minus 

sign is to indicate that the force is attractive. It is assumed that the Coulomb force is just active 

over a distance equal to the lattice constant d. For paths with lengths larger than d, the Coulomb 

force is very small because of its inverse square dependence on the distance r. Because the 

velocity of the Fermi electron is very high, the time during which the Coulomb forces act on 

the positive ions is very small. Therefore, the displacement of an ion δ in the y direction     

(figure 10) is very small relative to the lattice constant d (δ = 10-3-10-2 Å and d = 1-5 Å). Due 

to the small displacement δ, the distance r between the ion and the Fermi electron can be 

approximated by equation 2.7 (figure 10) [7]: 

e 
ve 
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r = fLd2 − δO+ + Ld2 − xO+        ghhijkkl       r ≈ fLd2O+ + Ld2 − xO+   ∙ ( 2.7) 

  

Here, d is the lattice constant, δ is the small displacement of the ion in the y direction, and x is 

the coordinate of the Fermi electron relative to the middle of the neighbour cell (figure 10).  

The change in the attractive potential energy of an ion ∂V� caused by the movement of a Fermi 

electron through the lattice can be approximated using the Coulomb potential energy as follows 

[7]: 

 

U = − ne+4πε�r   , ( 2.8) 

∂V� = dUdr ∂r  . ( 2.9) 

 

The Coulomb force in the x direction before the electron surpasses the ion is compensated by 

the same force afterwards. Because of this, and using the small change approximation, the 

displacement ∂r can be approximated by the displacement in the y direction ∂r[ = δ [7]. Here 

both displaced ions (upper and lower in figure 10) are considered. By setting ∂r = p and the 

derivative of equation 2.8 in equation 2.9, the attractive potential energy of an ion V� can be 

found [7]:  

 

V� = ne+2πε�r+ δ  , ( 2.10) 

 

 

Figure 10: The lattice distortion due to the movement of a Fermi electron. 

d2 − δ 

d2 − x 

r 

x 

y 
ve 
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Figure 11: Fermi electron path of length d for calculations. 

 

The displacement δ must then be calculated in order to find the value of the attractive potential 

energy V�. The acting time of the Coulomb forces on the ions when the Fermi electron moves 

over a distance d (figure 11) can be calculated approximately by equation 2.11 where v# is the 

Fermi velocity [7]. The Fermi velocity can be obtained from the Fermi energy E� and the 

electron mass m# (equation 2.12). The Coulomb force itself is given by equation 2.6.  

 

t = dv#  , ( 2.11) 

v# = f2 E�m#  . ( 2.12) 

 

The momentum can be calculated by integrating the Coulomb force with respect to time 

(equation 2.13). By plugging equation 2.7 into equation 2.6 and replacing x by v#t, the time-

dependent Coulomb force can be found by equation 2.14. By integrating the Coulomb force 

with respect to time, equation 2.15 is obtained, which gives the momentum transferred to the 

ion [7]. 

 

p�t� = − q F�r�dt�
� = q ne+4πε�r+ dt�

�  , ( 2.13) 

F�r� = − ne+
4πε� rsd2t+ + sd2 − v#tt+u  , 

( 2.14 ) 

p = − ne+8πε�d π v#  . ( 2.15 ) 

 

ve 
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The vibration of the ions after the electron passes is approximated as simple harmonic due to 

their small displacements. For a simple harmonic vibration the maximum velocity of an ion is 

reached at half of its vibration period T/2. This can be calculated by the following equation [7]: 

 v3 = Aω = δω  , ( 2.16) 
 

where A is the amplitude of the vibration (corresponding to the small displacement δ) and ω is 

its frequency. Furthermore, the maximum vibration velocity can also be found from the 

momentum p, dividing by the ionic mass M [7]: 

 

v3 = pM  . ( 2.17) 

 

For a unit cell consisting of different ions, there are different frequencies. The frequency for the 

ion i in the unit cell can be determined from the force constant belonging to the ion k� and the 

mass of the ion m� (equation 2.18). The required frequency for a single atomic crystal structure 

is the Debye frequency ω = ωI, which can be calculated by equation 2.19 [7]: 

 

ω� = f k�m�   , ( 2.18) 

ωI = r6N π+v�yV u�/y  . ( 2.19) 

 

Here, N is the number of ions belonging to the unit cell, v� is the speed of sound and V is the 

volume of the unit cell. By equating equations 2.17 and 2.16, the displacement δ can be derived 

[7] as follows: 

 

δ = pM ω  . ( 2.20) 

 

Setting equation 2.15 for the momentum and the Debye frequency of the single atomic structure 

into equation 2.20, the following equation for the displacement δ can be determined:  

 

δ = − ne+8πε�d πv# 1M 1ωI  . ( 2.21) 
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By plugging equation 2.21 of the displacement into equation 2.10, the attractive potential 

energy V� can be found [7]: 

 

V� = ne+2πε�d+ r− ne+8πε�d πv# 1M 1ωIu  . ( 2.22) 

 

The ions will go back through their starting position after a time equal to half the period of the 

simple harmonic vibration [7]: 

 

T = 12 2πωI = πωI  . ( 2.23) 

 

During this time the Fermi electron covers a distance l given by  

 

l = v#T = v#πωI   , ( 2.24) 

 

which is assumed to be roughly the length of the deformation trail that the electron leaves in its 

wake (figure 12) [7]. This deformation region can attract another Fermi electron moving in the 

opposite direction to the first one if the distance r� between the paths of the two electrons 

satisfies the condition r� < l (figure 13) [7]. Therefore, the attractive potential energy of two 

paired electrons is then defined by the following equation, where r� is the distance between 

both electrons [7]: 

 

V�r� = { −V�       r� < l     0         r� > l   ∙ ( 2.25) 

 

 

Figure 12: The length l of the polarization region in the electron’s wake. 

 

ve 
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Figure 13: The attraction of the second Fermi electron due to the lattice deformation caused by the first Fermi 

electron. 

 

2.3.4 Schrödinger Equation for an Electron Pair 

To describe the quantum mechanical phenomenon of electron pairing, one has to write the 

Schrödinger equation for two particles (here two electrons) interacting via the potential energy V�r� − r+� [8]: 

 

|− ℏ+2m# �∇�+ + ∇++� + V�r� − r+�} Ψ�r�, r+� = EΨ�r�, r+�  , ( 2.26) 

 

where ℏ is the reduced Planck constant, m# the mass of an electron, V the interacting potential 

energy, E the energy, Ψ the symmetric wave function of the two electrons, ∇ the Laplacian 

operator and r� and r+ are the local coordinate of the electrons. Since the conducting electrons 

are located near the Fermi level (Fermi level is the level with energy E�), the value of the energy E in the Schrödinger equation should be close to the Fermi energy. To simplify the Schrödinger 

equation, the center of mass R�, the relative coordinate of both electrons r*, the reduced mass μ and the wave number K must be defined as follows [8]: 

 

R� = 12 �r� + r+�  , ( 2.27) 

r* = r� − r+  , ( 2.28) 

μ = m#m#m# + m# = m#2   , ( 2.29) 

K = k� + k+  . ( 2.30) 

 

The wave number of an electron k can be related to the momentum of the electron p by the 

following equation: 

ve 
ve 
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k = pℏ       ⇒     k� = p�ℏ  , k+ = p+ℏ   .  ( 2.31) 

 

Due to the fact that the momentum of the two electrons have the same magnitude but opposite 

sign, the total momentum of the pair P is equal to zero and, therefore, the wave number of the 

pair K is zero as well [8]. 

 

p� = − p+     ⇒      P =   p� + p+ = 0        #,6���5� +.y� 6�g +.y� jkkkkkkkkkkkkkkkkl        K = 0  . ( 2.32) 

  

Using these new coordinates R� and r*, the reduced mass μ and ∇�+ + ∇++= �∇��+ /4 + ∇8�+ � the 

Schrödinger equation can be rewritten as follows [8]: 

 

− ℏ+2μ r∇��+
4 + ∇8�+ u Ψ�R�, r*� + V�r*�Ψ�R�, r*� = EΨ�R�, r*�  . ( 2.33) 

 

The wave function can be separated and be described by the following equation [8]: 

 Ψ�R�, r*� = Φ�R��ψ�r*�  . ( 2.34) 
 Φ�R�� is simply a plane wave function which is defined as [8]: 

 Φ�R�� = e����   . ( 2.35) 
 

By setting equation 2.34 into equation 2.33 and using the reduced mass μ = m#/2 and K = 0, 

the Schrödinger equation can be further simplified [8]: 

 

|− ℏ+m# ∇8�+ + V�r*�} ψ�r*� = Eψ�r*�  . ( 2.36) 

 

One can try a solution in the form of a sum of sinus functions for ψ�r*�:  

 

ψ�r*� = � a��sin�k�r*���
 , ( 2.37) 

  

where a�� are unknown constants and k� is the wave number. The prime symbol for the wave 

number k� stands for the new state of the electron after the electron pairing. It is well known 

equation 2.30 and 2.31 
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that k and k� are quantized values by solving the Schrödinger equation for the electrons in 

metals. Due to the spherical symmetry in this case, a sphere of radius R must be used. The 

relation between the quantized wave number k and R are given as [7, 8]: 

 

k = nπR   . ( 2.38) 

 

After the substitution of equation 2.37 into equation 2.36, the Schrödinger equation can be 

rewritten as follows [7]: 

 

� a���ℏ+k�+
m# − E�sin�k�r*���

= −V�r*� � a�� sin�k�r�
��

  . ( 2.39) 

 

Taking into account that  

 

q sin�kr��
� sin�k�r� dr = �  R2        for k = k�

0        otherwise  , ( 2.40) 

 

multiplying equation 2.39 with sin�kr*� and integrate 

 

� a���ℏ+k�+
m# − E� q sin�k�r*�sin �kr*�dr*

�
���

= − � a�� q V�r*� sin�k�r� sin�kr*� dr*
�

���
  . ( 2.41) 

 

Using equation 2.40, the left integral of above equation will be zero for k ≠ k� and equal to R/2 for k = k�. Using equation 2.25 for the value of V�r*�, the integral on the right side of 

equation 2.41 can be rewritten as follows: 

 

� V� q sin�k�r�sin �kr*�dr*
�

�    r* < l
   0                                               r* > l  . ( 2.42) 

 

Because the value of this equation for r* > l is zero, the upper limit of the integral has to be set 

to l. The following equation can then be defined: 

 

V��� = V� q sin�kr*� sin�k�r*�dr*
*

�   . ( 2.43) 
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If |k − k�| < π/l, and k and k� are nearly equal, then l ≈ R. Therefore, the integral in equation 

2.43 is approximately equal to V�R/2; otherwise it is equal to zero. Using l = πv#/ωI in  |k − k�| < π/l, a new function for the interaction potential energy V��� can be calculated as 

follows [7]: 

 

V��� = �  R2 V�       for |k − k�| < ωI/v#0            for |k − k�| > ωI/v#
  . ( 2.44) 

 

Using equation 2.43 and the value of R/2 for the left integral calculated by equation 2.40, 

equation 2.41 can be simplified as follows:  

 R2 a� rℏ+k+m# − Eu = − � a��V���
��

  . ( 2.45) 

 

With the following definitions for ε and ∆ [7]: 

 

ε = ℏ+k+2m# − E�  , ( 2.46) 

∆= E� − E2   , ( 2.47) 

 

equations 2.44 and 2.45 can then be rewritten for |k − k�| < ωI/v# as follows [7]: 

 R2 a��2ε + 2∆� = − R2 V� � a��  ��
 . ( 2.48) 

 

A new integral for ∑ a����  must be defined. To do that, the density of states at Fermi energy D�E�� is needed. Then the new integral can be defined with ε� as integration variable [7]: 

 

� a��
��

≈ q a�� D�E��dε�  . ( 2.49) 

 

Because only the electrons close to the Fermi level can build Cooper pairs, therefore, the lower 

limit of this integral is equal to the Fermi energy. If all energies are taken relative to E�, one can 

set E� = 0 and, therefore, the lower limit of the integral in equation 2.49 is also zero. To define 
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the upper limit of the integral one recalls equation 2.44 which indicates that V��� is not zero if |k − k�| < ωI/v# or ∂k < ωI/v# [7]. By differentiation of equation 2.46 with respect to k: 

 

∂ε = 2ℏ+k ∂k2m# = ℏv# ∂k  , ( 2.50) 

∂k < ωIv#           ⇒          ∂ε < ℏωI  . ( 2.51) 

 

According to ∂ε = |ε − ε�| and ∂ε < ℏωI, if ε = 0, then ε� < ℏωI. Then, the upper limit of 

the integral is ℏωI, the upper limit must be approximated as ℏωI. Because the D�E�� is always 

a constant value, the equation 2.48 can be simplified as follows: 

 

a��2ε + 2∆� = −D�E���V� � q a�� dε�ℏ��
�  . ( 2.52) 

 

The right side of equation 2.52 is constant. Therefore, this equation can be rewritten as follows:  

 

a� = C�2ε + 2∆�   , ( 2.53) 

 

where C is a constant. Using equation 2.53 in equation 2.52 and integrate [7]:  

 

C = −D�E��V� q C�2ε� + 2∆� dε�  ,ℏ��
�  ( 2.54) 

1 = − 12 D�E��V�ln 2�ε� + ∆�|�ℏ��   , ( 2.55) 

1 = − 12 D�E��V�ln LℏωI + ∆∆ O  . ( 2.56) 

 

Because ℏωI is 100 times larger than ∆ then: 

 

∆= ℏωI exp L −2D�E��V�O  . ( 2.57) 
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If the superconductor has different types of Fermi electrons (with different Fermi velocities and 

different densities of states), the influence of each type i for the binding energy ∆ must be 

calculated. Therefore, a sum is needed for the calculation over all types: 

 

� D��E��V��
�
�                ⇒            ∆= ℏωI exp r −2∑ D��E��V���� u  , ( 2.58) 

 

where n is the number of the Fermi electron types. At temperatures above the critical 

temperature T
, the thermal energy is large enough to break the Cooper pairs. A mathematical 

relationship between the thermal energy and the binding energy at T
 has been found (equation 

2.59). The constant c has a theoretical value of 3.53 and it’s called the “superconducting 

constant”. In practice, it varies depending on the superconductor according to experimental 

results [8]: 

 ck�T
 = 2∆  . ( 2.59) 
 

Cooper pairs, which are bosons, form after the pairing of electrons (fermions) near the Fermi 

level. Because bosons are not considered in the calculation of the electronic band structure and 

the electrons near the Fermi level, which are paired together, have vanished from the electronic 

band structure, a gap will appear in the latter. This gap is called the “superconducting gap” and 

has a width of 2∆. The number 2 behind the binding energy ∆ is due to the two electrons. 

2.4 Potential Theory 

2.4.1 Shell Model 

To calculate the force constant for an ionic pair using the shell model, it has been assumed that 

each ion consists of a core and a shell which are connected by a spring with the constant k 

(figure 14). The total charge of an ion is the sum of the charges of these two components                 

(Z = q�)#**+q
58#). There are different interactions between these, due to which an equilibrium 

with a given distance between each two components can be achieved. The shell and the core of 

an ion are displaced relative to each other, causing a polarization of the ion arises. Shell and 

core want to go back to their initial positions. To account for this, a spring of constant k for an 

ion is considered (kA for ion A and kB for ion B). The spring of constant K has been assumed 
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between two whole ions of an ionic pair. The equilibrium is represented in figure 14 by these 

three spring constants kA, kB and K. 

The interactions for an ionic pair can be described by four potentials: the Coulomb interaction 

between the shells and the cores V
56*, the van der Waals interaction V
9, the short-range 

repulsive interaction V�)58� and the potential energy of the inner springs (polarization energy) V75*. 
 

 

 

Figure 14: Shells and cores of two ions A, B, the springs with constants K, kA and kB, and the relative 

displacements between shell and core of the ions A and B (drcs,A and drcs,B). 
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The Coulomb interaction between the shells and the cores is given by equation 2.60, where q 

stands for the charge of a component of the ionic pair (the shells and the cores), and r�	 is the 

distance between component i and component j. 
 

V
56* = 12 � � q�q	4πε�r�	
�

���
�

	��       i ≠ j  , ( 2.60) 

i, j = 1: The core of the ion A  ,    i, j = 2: The shell of the ion A  ,    i, j = 3: The core of the ion B  ,    i, j = 4: The shell of the ion B  .    
 

The van der Waals interaction and the short-range repulsive interaction can be calculated 

respectively by the following equations, where C, A and ρ are potential parameters for the ionic 

pair: 

 

V
9 = 12 � � −Cr�	���
���

�
	��       i ≠ j  , ( 2.61) 

V�)58� = 12 � � A exp L− r�	ρ O�
���

�
	��       i ≠ j  . ( 2.62) 

 

Due to the relative displacements dr
�,� and dr
�,� between core and shell of the ion A and B 

(polarization), the potential energy of the inner springs with constants k� and k� must also be 

considered: 

 

V75* = 12 k�dr
�,�+ + 12 k�dr
�,�+   . ( 2.63) 

 

The total potential interaction for an ionic pair is the sum of the four preceding potentials: 

 V�5� = V
56* + V
9 + V�)58� + V75*  . ( 2.64) 

 

As it is known, the second derivative of the total potential interaction at the equilibrium 

distances r�	,#, and the equilibrium displacement dr
�,� and dr
�,� is equal to the force constant 

between the two ions: 
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K = � ∂+V�5�∂+r�	 �r�	,#,, dr
�,�, dr
�,��  , ( 2.65) 

r�	,#, = �r�+,#,, r�y,#,, r��,#,, r+y,#,, r+�,#,, ry�,#,�  .    

 

2.5 Raman and Infrared Spectroscopy 

2.5.1 Infrared Spectroscopy 

If a diatomic molecule or a crystal lattice composed of two kinds of atoms is irradiated by 

infrared light, the atoms are excited from the ground vibration state v = 0 to the next state,    v = 1. The energy of a vibration state v can be found by equation 2.66 according to quantum 

mechanics, where k is the force constant between the atoms, μ is the reduced mass of atoms 

with masses m� and m+, and v is the vibration quantum number [9]. 

 

E� = ℏ Lv + 12O fkμ   , ( 2.66) 

μ = m� + m+m�m+   . ( 2.67) 

 

In the measured infrared spectrum, the frequency of each peak corresponds to a vibration mode. 

By getting the peak frequency, the force constant between two atoms for the vibration mode 

can be calculated by the following equation, where c is the speed of light and f the frequency 

[9]. 

 

f = 12πc fkμ  . ( 2.68) 

 

2.5.2 Raman Spectroscopy 

If a molecule or a crystal lattice is exposed to monochromatic light, the atoms would be excited 

by a photon from the ground state to a virtual energy state. The atoms can relax and return back 

to the ground state by emission of a photon. Depending on the frequency of the scattered photon, 

there are three different scattering types. If the scattered frequency is equal to the frequency of 

the incident radiation, it is called as Rayleigh scattering, if it is lower, it is called Stockes shift. 
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Otherwise it is named anti-Stockes-shift (figure 15). As described for the infrared spectrum, the 

force constant can be calculated from the peak frequency in Raman spectra for a vibration mode 

by equation 2.68 [9]. 

 

 

 

Figure 15: Energy level diagram for the atom vibrations [9]. 
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3 Finite Element Method 

The finite element method (FEM) is a numerical method for solving problems in engineering 

and mathematical physics which are described mathematically by partial differential equations. 

This method is useful e.g. for structural problems with complicated geometries, loads and 

material properties, where analytical methods cannot be applied to obtain a solution. It can also 

be used especially to solve problems in solid mechanics, fluid mechanics, heat transfer and 

vibrations. For this method, a structure is divided into several finite elements. These elements 

are connected at nodes. As such, a discretized finite element problem with unknown nodal 

values describes a continuous physical problem. Considering a static linear problem, a system 

of linear algebraic equations should be solved and the nodal values of each element can be 

determined. The main steps of the finite element solution procedure are: 

1. Discretization of continuum. In this first step the domain is divided into a finite number 

of elements. This is called the meshing process which is performed by a preprocessor 

program. There are different types of finite elements: one-dimensional (spring, beam, 

pipe, truss, etc.), two-dimensional (membrane, shell, plate, etc.), and three-dimensional.  

2. Selection of interpolation functions. A field quantity is interpolated by a polynomial 

over an element. The degree of the polynomial depends on the number of nodes assigned 

to the element. 

3. Determination of element properties. The matrix equation for the finite element should 

be established. This relates the nodal values of the unknown function to other 

parameters. 

4. Assemble the element equations. All element equations must be assembled to find the 

global equation system for the whole solution region. The boundary conditions must be 

defined before solving. 

5.  Solving the global equation system. The finite element global equation system can be 

sparse, symmetric and positive definite. Direct and iterative methods can be applied for 

solving the problem. As a result of the solution the nodal values are determined.  

6. Computation of additional results. In many cases additional parameters are needed to 

evaluate the results. For example, strains and stresses are of interest in addition to 

displacements, which are calculated after the solution of the global equation system. 

[10] 
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3.1 Pre-Processing, Processing and Post-Processing 

The attractive potential energy (the deformation energy), caused by the Coulomb forces 

between a moving Fermi electron and the ions in the crystal structure, is required to calculate 

the critical temperature using the BCS theory. Due to the complex unit cell structure of high 

temperature superconductors, the finite element method must be applied to calculate this 

energy.  

A finite element simulation consists of three different stages; pre-processing, processing, and 

post-processing. In the pre-processing stage, the finite element mesh is prepared, material 

properties are assigned and boundary conditions in the form of restraints and loads are applied. 

In the processing or solution stage, the differential equations are converted into matrix form 

and are solved numerically. The processing depends on the type of analysis (static or dynamic), 

and element types and properties, material properties and boundary conditions. In the post-

processing stage, the results are prepared. Typically, the deformation, mode shapes, 

temperature, energy, strain and stress distribution are shown at this stage. In the following 

paragraphs, the pre- and post-processing of the simulation are explained. In this work, ANSYS 

is used as a finite element program for the three stages. [10] 

3.2 Pre-Processing 

3.2.1 Finite Element Domain 

The unit cell must be defined as a finite element domain for the simulation. The equilibrium 

coordinates of each ion can be determined from the symmetry of the unit cell and the lattice 

parameters. By treating the ions as nodes and using the coordinates of each ion in the global 

coordinate system, a three-dimensional arrangement of nodes can be generated. For the 

simulation, one-dimensional elements - spring and point mass elements - can be used: the ions 

belonging to the unit cell are considered as nodes with mass; the bonds between them are spring 

elements connecting two nodes. This provides a three-dimensional finite element domain. The 

real constants for the elements (the values of mass and spring constants) must be defined for 

the simulation. The mass of each ion can be found in the periodic table and the value of spring 

constants (force constants) can be taken from published results of Raman spectroscopy or 

determined by the potential theory. [10] 
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3.2.2 Boundary Condition  

Since a structural node holds at most six degrees of freedom (three translations and three 

rotations), every single movement can be fixed separately, i.e. set to zero. All degrees of 

freedom of the nodes representing the ions inside the neighbouring unit cells are fixed. Due to 

the time-dependent Coulomb forces the simulation must be transient. Therefore, a time-

dependent step must be defined. The calculated time-dependent Coulomb forces are applied on 

the nodes which represent the ions belonging to the unit cell under consideration. [11] 

3.2.2.1 Mass Element 

For the simulation in ANSYS, the mass element MASS21 is added to the all nodes. This is a 

one-dimensional point element that has six degrees of freedom: three translation and three 

rotations. Different masses and rotational inertias can be assigned to each coordinate direction. 

Due to the linear motion of the ions in the crystal structure, the rotational inertia has been 

excluded from the simulation. If a three-dimensional mass without rotational inertia is added to 

a node, then only one value for the mass is needed for the simulation. [11] 

3.2.2.2 Spring Element 

For the simulation in ANSYS, the spring element COMBIN14 is considered between two nodes 

that represents a bond between two ions in the unit cell. This element has longitudinal or 

torsional properties and no mass. The mass of this element can be considered by the mass 

element MASS21. The longitudinal spring-damper is a uniaxial tension-compression element 

with three translational degrees of freedom at its belonging nodes. In this case no bending or 

torsion is considered. To simplify, it is assumed that the spring-damper element is longitudinal 

and no damping effect exists between ions in an ionic pair. Therefore, the damping constant is 

set to zero for the simulation. [11] 

3.3 Post-Processing 

After reaching a solution, the kinetic and the potential energies of all masses and spring 

elements belonging to the unit cell under consideration must be summed up to determine the 

attractive potential energy of the unit cell.  
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4 Codes 

Three different codes must be prepared to simulate the attractive potential energies and the 

binding energy of superconductors. 

4.1 First Code 

A code (called first code) has to be prepared to construct the unit cell. The mass and coordinates 

of the ions of the unit cell are required to construct it. Because two neighbour ions in the unit 

cell are elastically tied, a spring between both ions can be used to consider this behaviour. 

Therefore, for the construction of the unit cell, springs between the ions are needed as well; the 

spring constant (force constant) can be calculated by Raman spectroscopy or the potential 

theory. 

It is important to keep in mind that only certain neighbour ions within the unit cell are bound. 

Two bound ions together build together an ionic pair. Each ionic pair can be designated by the 

distance between its ions. The springs can only be used for the ionic pairs, because their ions 

are bound. The distance for each ionic pair is an additional input for the first code. As such, the 

code only considers a spring between the two bound ions of each ionic pair. 

The code takes the coordinates of ions and assumes a node with the same coordinates for each 

ion. A mass element (MASS21) is defined for each node and its value is equal to the given mass 

of the corresponding ion. A linear spring element (COMBIN14) can be considered between two 

nodes (two ions of an ionic pair), because the displacement of ions (10-3-10-2Å) due to the 

Coulomb forces are very small compared to the distance between ions of an ionic pair (1-5Å).  

The pertinent spring constants for the ionic pairs in a unit cell of a superconductor have been 

determined using Raman spectroscopy or the potential theory. The code must define the linear 

spring elements between bound nodes (each two nodes with a spring element represents an 

ionic pair). To find out which nodes are bound (according to the information available from 

Raman spectroscopy or the potential theory), the code calculates the distances between all 

neighbour nodes and compares these with all distances between the ions of the ionic pairs for 

which the spring constants are known. If the code finds two neighbour nodes whose distance is 

exactly the same as the distance between two ions of an ionic pair, then it assumes a linear 

spring element for the corresponding two neighbour nodes; if not, then the two nodes are not 

bound and, therefore, no spring element is considered for those nodes. The code performs this 

process for all neighbour nodes, until all bound nodes are found and so that all spring elements 

can be defined (figure 16).  
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Figure 16: The FE-Model of the unit cell of aluminium. 

 

4.2 Second Code 

The Fermi velocity and the coordinates of the ions within the unit cell are required for the 

calculation of the time-dependent Coulomb forces between the ions and the moving Fermi 

electron. The coordinates of the ions are taken from the first code; the Fermi velocity is taken 

from different references given in (table 2, 3 and 4) or calculated and must be given by the user 

before running this code. The direction of the electron movement depends on superconductors. 

It is assumed that the Fermi electron starts its movement 30 unit cells away from the one being 

considered and travels through 60 unit cells. The time required for the Fermi electron to move 

on this path is calculated from the Fermi velocity and the corresponding distance involved. 

After that, this time is discretized. With the help of the Fermi velocity v#, the time-dependent 

coordinate r�t� of the Fermi electron relative to the unit cell under consideration can be 

calculated at each discretized time t� with r�t� = v#t�. 
From this coordinate and the coordinates of each ion, the time-dependent distance between the 

electron and each ion is determined. Using this distance and the charge of each ion, the time-

dependent Coulomb force acting on each ion is calculated and saved as a table in a text file 

containing two columns: one for the discretized time and one for the calculated Coulomb forces 

acting on the corresponding ion. 

4.3 Major FE-Code 

A major FE-code (finite element code) has been prepared, which calculates the attractive 

potential energy, the binding energy and the superconducting constant of superconductors. This 

code takes the results of the first and second codes as input, since the unit cell as a finite element 

Mass element (MASS21) 
  

Spring element (COMBIN14) 
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domain and the time-dependent Coulomb forces as loads are required for the calculation of the 

attractive potential energy. A transient simulation is considered and two steps are defined for 

it. In both the first and second steps all degrees of freedom of the nodes belonging to 

neighbouring unit cells are fixed. In the second step, the time-dependent Coulomb forces saved 

in a text file by the second code, are loaded and made to act on the nodes, which belong to the 

unit cell under consideration. The time for the second step must be set for the simulation. The 

formula for this time is given in chapter 4.2. After reaching a solution, the kinetic and the 

potential energies of all masses and spring elements belonging to the unit cell under 

consideration are summed up to determine the attractive potential energy. Using equations 2.58 

and 2.59, this code calculates the binding energy and the superconducting constant of 

superconductors. 
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5 Analytical Method and Results 

The equation 2.22 can be used only for monoatomic unit cells. The unit cells of HTSC cuprates 

and the unconventional superconductor Sr2RuO4 are very complex. Therefore, it is not possible 

to use this equation to calculate the attractive potential energy V� of the unit cell for these 

superconductors. Furthermore, it has been shown that the superconductivity in HTSC cuprates 

comes from the doped charged carriers in the CuO2 plane, whereas for Sr2RuO4, it has been 

assumed that the movement of the charged carrier on the RuO2 plane causes the 

superconductivity [8]. Therefore, to calculate the attractive potential energy, the Fermi 

electrons are assumed to move on these planes. The first difference between the two types of 

planes is that the charge of Ru ions is 4+ and the charge of Cu ions 2+. The second one is that 

the masses of Ru and Cu ions are different. 

The distance between a moving Fermi electron and ions in the CuO2 or RuO2 planes is much 

smaller than that of other planes in the unit cell. Therefore, the corresponding Coulomb forces 

are much larger than those in other planes in the unit cell, which causes a larger attractive 

potential energy. So it can be assumed that the attractive potential energy of the unit cell can be 

approximated by the attractive potential energy of the CuO2 or RuO2 plane, the calculation of 

which can be performed as described mathematically in the preceding chapters, the difference 

being that it must be calculated for O, Cu and Ru ions separately. Therefore, the frequency of 

each ion must be calculated, which is not equal to the Debye frequency. 

To calculate the frequency ω� of every ion in equation 2.18, the force constants between ions 

in the two planes are required. It has been assumed that there are two force constants between 

the ions: k� for the Cu-O / Ru-O bond and k+ for the O-O bond (figure 17). These force 

constants can be calculated with the potential theory or measured by Raman spectroscopy.  

Here, the total force constant in the y direction is needed, because for the calculation of the 

attractive potential energy of an ion in both planes, the small displacement δ used is a 

displacement in this direction. Due to the angle of 45°, one can take the effective amount of the 

force constant k+ in y direction as �√2/2�k+. Now from figure 17, the total force constant for 

oxygen, cupper and ruthenium ion in y direction can be calculated as follows: 

 

O1:  k¡�,[ = 4 r√22 u k+ + 2k�  , ( 5.1) 

O2:  k¡+,[ = 4 r√22 u k+  , ( 5.2) 
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O3: k¡y,[ = 4 r√22 u k+ + 2k�  , ( 5.3) 

Cu/Ru: k£6/�6,[ = 2k�  . ( 5.4) 

 

Now, the frequency ω� can be calculated by equation 2.18. The oxygen ions must be treated 

separately, not only because of the different frequencies but also because in this case the charge 

carrier must move between the Cu or Ru and the O1 ion (figure 17). There are thus different 

distances between the carrier and each ion, r5�, r5+, r5y and r£6/�6, which yields the different 

Coulomb forces for the ions. If x is the horizontal coordinate of the Fermi electron, then: 

 

r5� = fsa4t+ + sa2 − xt+  , ( 5.5) 

r5+ = ¤�a4�+ + �a2 − x�+  , ( 5.6) 

r5y = f�3a4 �+ + �a2 − x�+  , ( 5.7) 

r£6/�6 = ¤�a4�+ + �a2 − x�+  . ( 5.8) 

 

Equation 2.22 can be rewritten for each ion as follows: 

 

V�,� = n¥e+2πε�r¥+ r− n¥e+8πε�r¥
πv# 1M¥  1ωI,�u  , ( 5.9) 

 

where e is the elementary charge, n¥ is an integer number for the charge of ion i, ε� is the 

permittivity in vacuum, r¥ is the distance between the electron and the nearest ion, v# is the 

Fermi velocity, M¥ is the mass of ion and ωI,� is the Debye frequency related to ion i. Using the 

equation 5.9, the equation of the attractive potential energy for each ion in both planes can be 

determined as follows: 
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V�,¡� = −  n5+e�ayε�+v#
0.0897M¡ω¡�  , ( 5.10 ) 

V�,¡+ = −  n5+e�ayε�+v#
0.0897M¡ω¡+  , ( 5.11 ) 

V�,¡y = −  n5+e�ayε�+v#
0.00061M¡ω¡y   , ( 5.12 ) 

V�,£6/�6 = −  n£6/�6+ e�
ayε�+v#

0.0897M£6ω£6/�6  . ( 5.13 ) 

 

 

 

Figure 17: Force constants and different ions in the CuO2 plane and path of the electron. The dashed square 

presents CuO2 or RuO2 Plane. The distance a is a lattice parameter.  
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It can be seen from figure 17 that for the calculation of the total attractive potential energy only 

half of the attractive potential energy of the O1 and O3 ions must be considered, because half 

of them belongs to CuO2 or RuO2 plane. Due to the fact that there are in total one O2 ion and 

one Cu/Ru ion in the plane, their attractive potential energies of O2 and Cu/Ru enter whole in 

the calculation of the total attractive potential energy of the plane. 

 V� = 0.5 V�,¡� + 0.5 V�,¡y + V�,¡+ + V�,£6/�6  . ( 5.14) 

    

5.1 Conventional, Unconventional and High Temperature Superconductors 

The calculation of the attractive potential energy has been performed for the two conventional 

superconductors Al and Nb, four different high temperature superconductors (cuprates) and the 

unconventional superconductor Sr2RuO4 (table 1). Their unit cell structures can be seen in 

figure 18 and 19. 

 

 
 

 

Al Nb Sr2RuO4 

  Sr: Green 

  O: Red 

  Ru: Light Braun 

Figure 18: Unit cells of Al, Nb and Sr2RuO4. 
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La1.85Sr0.15CuO4 Bi2Sr2CaCu2O8+δ YBa2Cu3O6.9 HgBa2Ca2Cu3O8+δ 

La: Green Bi: Violet Y: Dark Green Hg: Light Violet 

Cu: Blue Sr: Green Ba: Green Ca: Dark Green 

O: Red Ca: Light Blue Cu: Blue Ba: Green 

 Cu: Blue O: Red Cu: Blue 

 O: Red  O: Red 

Figure 19: Unit cells of La1.85Sr0.15CuO4, Bi2Sr2CaCu2O8+δ, YBa2Cu3O6.9 and HgBa2Ca2Cu3O8+δ. 

 

5.2 Calculation of the Debye Frequency for the Single Atomic 

Superconductors Al and Nb 

According to equation 2.22 and 2.57, the Debye frequency ωI is required to calculate the 

attractive potential energy V� and the binding energy ∆ of the Cooper pairs. For single atomic 

superconductors (Al and Nb), the Debye frequency can be calculated by the following equation, 

where k� is the Boltzmann constant and TI is the Debye temperature [5] 

 

ωI = k�TIℏ   . ( 5.15) 

    

5.3 Calculation of the Debye Temperature for the High Temperature 

Superconductor HgBa2Ca2Cu3O8+δ 

The Debye temperature for HgBa2Ca2Cu3O8+δ must be calculated from the heat capacity C
 at 

a given temperature by [5]  
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C
�T� = 16 12π�5 L TTIO k� . ( 5.16) 

 

The heat capacity C
�T� can either be determined by a quantum mechanical calculation with 

the program Gulp [12] (C
(134) = 0.002762 J/K) or taken from Ref. [8] (C
(134) = 0.00367 J/K). Now, using equation 5.16, the Debye temperature can be calculated from the heat 

capacity. These calculated values for the Debye temperature are given in table 1. Debye 

temperatures for other superconductors have been taken from different references. According 

to equation 5.15, the Debye frequencies for all superconductors can be calculated with Debye 

temperatures from table 1. 

 

5.4 Calculation of Two Dimensional Density of States D2D and Fermi 

Velocities ve for Different Types of Fermi Electrons in Sr2RuO4 

There are three different types of Fermi electrons (α, β and γ) with different Fermi velocities 

and densities of states in the unconventional superconductor Sr2RuO4. Due to its quasi-two- 

dimensional band structure, the two-dimensional density of states D+I must be used. The two-

dimensional density of states D+I and the Fermi velocity v# for each type of Fermi electron 

must be calculated from the wave number k� (wave number for the Fermi electron wave) and 

the effective electron mass m#�� (the effective electron mass is usually stated in units of the true 

mass of an electron, m# = 9.11 × 10�y�kg) in the following equations. The values for the wave 

numbers, the effective electron masses, the volume fractions, the calculated Fermi velocities 

and the calculated two-dimensional density of states of each type of Femi electrons are given 

in table 2. For other superconductors, D�E�� and v# are directly taken from published data (table 

3 and 4).  

 

D+I = m#��πℏ+ a+  , ( 5.17) 

v# = ℏk�m#��  . ( 5.18) 
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Superconductors T
 [K] TI [K] Symmetry a �Å) b �Å) c (Å) n 

Al 1.18 423 [8] fcc 4.05 [8] 4.05 [8] 4.05 [8] Al3+ 

Sr2RuO4 1.15 312 [13] I4/m m m 3.87 [14] 3.87 [14] 12.7 [14] Ru4+/O2- 

Nb 9.26 277 [8] bcc 3.30 [8] 3.30 [8] 3.30 [8] Nb1+ 

La1.85Sr0.15CuO4 38 360 [8] I4/m m m 3.78 [15] 3.78 [15] 13.2 [15] Cu4+/O2- 

Bi2Sr2CaCu2O8+δ 83 250 [8] I4/m m m 3.81 [16] 3.81 [16] 30.5 [16] Cu4+/O2- 

YBa2Cu3O6.9 93 437 [17]  3.83 [8] 3.88 [8] 11.68 [8] Cu4+/O2- 

HgBa2Ca2Cu3O8+δ  134 

592 calc. 

from [8] 

654 calc. 

by Gulp 

[12] 

P 4/m m m 3.85 [18] 3.85 [18] 16.1 [18] Cu4+/O2- 

Table 1: Electrical properties and lattice parameters. The numbers in square brackets give the corresponding 

references. 

 

Sr2RuO4 k��Å��� m#��/m# Vol�8�
 v# °ms ± /10� D+I�E��[ 1eV] 
α-type 0.302 1.1 0.108 0.318 0.69 

β-type 0.621 2 0.457 0.359 1.24 

γ-type 0.75 2.9 0.667 0.299 1.80 

Table 2: Three types of the Fermi electrons α, β and γ and their electrical properties in Sr2RuO4 [26]. 

 

Superconductors v# °ms ± /10� D�E��[ 1eV] m#��/m# Ref. 

Al 1.097 1.64 1.4 [8], [19] 

Nb 0.273 6.62  [20] 

La1.85Sr0.15CuO4 0.314 2.09  [21] 

Bi2Sr2CaCu2O8+δ 0.274 2.63  [22], [23] 

YBa2Cu3O6.9 0.250 4.19  [24], [25] 

Table 3: Fermi velocity, density of states and effective electron mass. 
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HgBa2Ca2Cu3O8+δ v# °ms ± /10� D�E��[ 1eV] 
1-type 0.198 0.75 

2-type 0.189 0.84 

3-type 0.177 1.75 

Table 4: Three types of the Fermi electrons and their electrical properties in HgBa2Ca2Cu3O8+δ [27]. 

 

5.5 Force Constants within the CuO2 and RuO2 Planes and for the Single 

Atomic Superconductors Al and Nb 

The force constants k� and k+ within the CuO2 plane for the cuprates are taken from Ref. [8]. 

The calculation of all force constants in the unit cell of Sr2RuO4 will be shown in chapter 6.3.1, 

which contains the force constants in RuO2. For the calculation of the frequency by equation 

2.18, the effective amount of the force constants in the y direction is required, which is 

calculated from equations 5.1, 5.2, 5.3 and 5.4. The force constants and the effective amount of 

the force constants in the y direction are given in table 5 and the calculated frequencies are 

listed in table 6. For Al and Nb, due to their single atomic structure, the calculation of the force 

constants is not required, because the Debye frequency can be directly used to calculate the 

attractive potential energy using equation 2.22.  

 

Superconductors k� (Cu-O/Ru-O) k+ (O-O) k¡�,[ k¡+,[ k¡y,[ k£6,[ / k�6,[ 

Sr2RuO4 
172 calc.  
with PT 

57 calc.  
with PT 

505 161 505 344 

La1.85Sr0.15CuO4 85 Ref. [28] 
20 Ref. 

[28] 
226 56 226 170 

Bi2Sr2CaCu2O8+δ 85 Ref. [29] 
20 Ref. 

[29] 
226 56 226 170 

YBa2Cu3O6.9 152 Ref. [8] 
20 Ref. 

[8] 
360 56 360 304 

HgBa2Ca2Cu3O8+δ 
111 calc.  
with PT 

20 calc.  
with PT 

278 56 278 222 

Table 5: Force constants for oxygen, copper and ruthenium-ion in [N/m]. PT: Potential theory. 
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Superconductors ωI  ω¡�,[ ω¡+,[ ω¡y,[ ω£6,[/ω�6,[ 

Al 5.54     

Sr2RuO4  13.4 7.79 13.4 4.53 

Nb 3.63     

La1.85Sr0.15CuO4  9.23 4.61 9.23 4.01 

Bi2Sr2CaCu2O8+δ  9.23 4.61 9.23 4.01 

YBa2Cu3O6.9  11.6 4.61 11.6 5.37 

HgBa2Ca2Cu3O8+δ  10.2 4.61 10.2 4.59 

Table 6: Frequencies for each ion calculated from equation 2.18 and the Debye frequency for the single atomic 

superconductors Al and Nb calculated from Debye temperature by equation 5.15. All values in 1/s and divided 

by 103. 

 

5.6 Calculation of the Attractive potential Energy V0 and the Binding 

Energy Δ 

Using equations 5.9, 5.10, 5.11 and 5.12, the attractive potential energy of each ion V�,�5� 

belonging to CuO2–plane for cuprates (or RuO2–plane for Sr2RuO4) can be calculated. The 

corresponding total attractive potential V� is determined by equation 5.14. For Al and Nb, only 

equation 2.22 is required for calculation of V�.  

The binding energy ∆ of Al, Nb, La1.85Sr0.15CuO4, Bi2Sr2CaCu2O8+δ and YBa2Cu3O6.9 can be 

calculated by equation 2.57. For each of the two superconductors Sr2RuO4 and 

HgBa2Ca2Cu3O8+δ, three types of Fermi electrons have been found [26, 27]. Therefore,  

equation 2.58 must be applied to determine the binding energy of these two superconductors.  

For Sr2RuO4, the volume fractions of the three types are also found in the literature. This 

fraction must be multiplied with the attractive potential energy for each ion V�,� to calculate its 

contribution to the total attractive potential energy V�. In Ref. [27] the fraction of each Fermi 

electron in the unit cell of HgBa2Ca2Cu3O8+δ has been assumed to be equal to 1 to calculate 

density of states and Fermi velocity. In the following tables 7 to 12, the calculated values of V�, D�E��V�, ∑ D�E��V� and ∆ are given for these two superconductors (HgBa2Ca2Cu3O8+δ, 

Sr2RuO4). 
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Superconductor V�,�5�   

Sr2RuO4 V�,¡�[eV] V�,¡+[eV] V�,¡y[eV] V�,�6[eV] Vol�8�
 V�[eV] 
α-type 0.003 0.006 0.004 0.028 0.108 0.041 

β-type 0.006 0.012 0.008 0.024 0.457 0.051 

γ-type 0.007 0.015 0.010 0.029 0.667 0.061 

Table 7: The attractive potential energy of each ion within the RuO2 plane for each type of Fermi electron α, β 

and γ in Sr2RuO4. 

 

Sr2RuO4 Vol�8�
V�[eV] D+I�E��[ 1eV] D+I�E��V� � D+I�E��V� ∆ [meV] 
α-type 0.004 0.69 0.003 

0.105 2.44×10-7 β-type 0.023 1.24 0.029 

γ-type 0.041 1.80 0.073 

Table 8: The total attractive potential energy for each type of Fermi electron α, β and γ used for the calculation 

of the binding energy Δ of the Cooper pairs in Sr2RuO4. 

Superconductor V�,�5� [eV] 
HgBa2Ca2Cu3O8+δ V�,¡�[eV] V�,¡+[eV] V�,¡y[eV] V�,£6[eV] V�[eV] 

1-type 0.032 0.063 0.022 0.036 0.041 

2-type 0.032 0.064 0.022 0.036 0.051 

3-type 0.034 0.068 0.023 0.038 0.061 

Table 9: The attractive potential energy of each ion within the RuO2 plane for each sheet (type) of Fermi 

electrons in HgBa2Ca2Cu3O8+δ. 

 

HgBa2Ca2Cu3O8+δ D�E��[ 1eV] D�E��V� � D�E��V� ∆ [meV] 
1-type 0.75 0.114 

0.530 2.66 2-type 0.84 0.129 

3-type 1.75 0.288 

Table 10: The total potential energy for each sheet (type) of Fermi electrons used for the calculation of the 

binding energy Δ of the Cooper pairs in HgBa2Ca2Cu3O8+δ. 
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 V�,�5� [eV]    

Superconductors V�,¡�[eV] V�,¡+[eV] V�,¡y[eV] V�,£6/�6[eV] V�[eV] D�E��[ 1eV] ∆ [meV] 
Al     0.052 1.64 4.69×10-9 

Nb     0.030 6.62 1.83×10-3 

La1.85Sr0.15CuO4 0.022 0.045 0.015 0.026 0.108 2.09 8.61×10-3 

Bi2Sr2CaCu2O8+δ 0.025 0.050 0.017 0.029 0.122 2.63 8.65×10-3 

YBa2Cu3O6.9 0.021 0.042 0.014 0.023 0.101 4.19 4.52×10-1 

Table 11: The attractive potential energy of each ion within the CuO2 plane for other cuprates and the single 

atomic superconductors Al and Nb and their calculated binding energy Δ.  

 

Superconductors ∆ [meV] 
Al 4.69×10-9 

Sr2RuO4 2.44×10-7 

Nb 1.83×10-3 

La1.85Sr0.15CuO4 8.61×10-3 

Bi2Sr2CaCu2O8+δ 8.65×10-3 

YBa2Cu3O6.9 4.52×10-1 

HgBa2Ca2Cu3O8+δ 2.66 

Table 12: The calculated binding energy Δ. 

 

5.7 Results 

There are some simplifications underlying the calculation of the binding energy ∆. Therefore, 

the calculated values of the binding energy ∆ are different from the experimental data. For 

cuprates and Sr2RuO4, it has been assumed that the total attractive potential energy in the unit 

cell comes only from the CuO2 and RuO2 planes which cannot be the case for a large unit cell.  

It has also been assumed that the ions in the neighbouring cells are fixed; but in reality they are 

not fixed and, therefore, the attractive potential energy should be different. Furthermore, only 

the effective force constants in the y direction have been used (equations 5.1, 5.2, 5.3 and 5.4) 

to determine the frequency of each ion in the planes, by which the attractive potential energy is 

achieved. In reality, however, the force constants in the x and z direction must also be 
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considered to determine the exact value of the attractive potential energy and these haven’t been 

taken into account in this simplification.  

Consequently, a plot of log�∆� vs. log�T
� has been made to show the current trend. From     

table 12 and figure 20, it can be seen that the larger ∆ is, the larger T
. This trend is what one 

would expect. This is, then, a motivation to calculate the attractive potential energy by finite 

element methods, which do not require the simplifications of the theoretical method and, 

therefore, are more exact. 

 

 

Figure 20: log(Tc) vs. log(Δ) for all superconductors studied. 
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6 Finite Element Results 

As described in the previous chapter, the calculation of the attractive potential energy must be 

done by another method to find more exact values of the binding energy ∆. To reach this goal, 

the major FE-code is used to simulate the attractive potential energy V� (chapter 4.3). Using the 

first code, the unit cell of superconductors can be constructed for the simulation (chapter 4.1). 

This requires knowing the force constants, the mass of the ions in the chemical formula and the 

coordinates of the ions within the unit cell for each superconductor. The force constants can be 

calculated with the potential theory or measured by Raman spectroscopy. As described 

previously, Raman spectroscopy is based on the frequency of the ions in a pair that vibrates 

about their equilibrium position, whereas in the potential theory the force constants can be 

calculated from the interactions between the ions in a pair.  

The distance between an ion and the Fermi electron changes with time because the Fermi 

electron moves toward the unit cell. This time-dependent distance can be calculated using the 

Fermi velocity. Due to the dependence of the Coulomb force on this distance, the Coulomb 

force depends on the Fermi velocity as well and it is also time-dependent. Furthermore, it is 

dependent on the charge of the ions. If the Coulomb force between the Fermi electron and an 

ion is plotted against time, a peak can be seen; the faster the electron, the narrower the peak. 

The time-dependent Coulomb forces between the Fermi electron and each ion can be calculated 

with the second code (chapter 4.2).  

For validation, it is needed to simulate the attractive potential energy V� and calculate the 

binding energy ∆ for the two conventional superconductors Al and Nb because, as it is known, 

these two superconductors are very well explained by the BCS theory. If the results of the 

simulation coincide with the experimental results, then the simulation can be used for other 

superconductors. To calculate these values, the major FE-code must be used, which needs the 

first and second code.  

6.1 Aluminium 

Aluminium is a metal element from group 3 in the periodic table, with electron configuration 

[Ne]3s23p1. Its atomic mass is 26.98u �u = 1.66×10-27 kg� and it has three Fermi electrons per 

atom in its unit cell. The crystal structure of aluminium is fcc (four atoms in the unit cell, figure 

18), with the lattice parameter a = 4.05 Å (Ref. [8]). Because there are four aluminium atoms 

in the unit cell and three Fermi electrons exist for each atom in the unit cell, there are twelve 

Fermi electrons in the unit cell. Aluminium becomes superconducting at T
 =1.18 K.  
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6.1.1 Calculation of Force Constants 

There are three main directions in the unit cell of the fcc structure: [100], [110] and [111]. The 

force constants for the three directions can be calculated from Ref. [30]. In this reference, the 

calculated x, y and z contributions of the force constants for the different directions in the unit 

cell are given: 

 

Force constant [N/m] 
k��� 2.452  

k���,Y and k���,[ 10.107  

k���,Y[ 11.444  

k���,Y, k���,[ and k���,\ 0.142  

Table 13: Force constants for aluminium [30].  

 

Figure 21: Spring elements of aluminium in different directions. 
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For the calculation of the total force constant in [110] direction, the values of k���,Y and k���,[ 

must be projected onto the [110] direction. This is accomplished by multiplying with √2/2. 

After the projection, the two new force constants are connected in series with each other; the 

resulting force constant can then be calculated as follows: 

 

k���,Y projected in [110] direction  → √2k���,Y2   , ( 6.1 ) 

k���,[ projected in [110] direction  → √2k���,[2   , ( 6.2 ) 

k���∗ = ´r√2k���,Y2 u�� +  r√2k���,[2 u��µ��  . ( 6.3 ) 

 

This has to be added with the given k���,Y[ from table 13, since together they build a parallel 

system: 

 k���,�5��* = k���∗ + k���,Y[  . ( 6.4 ) 
 

The total force constant for the [111] direction can be calculated by the projection of the three 

force constants k���,Y, k���,[ and k���,\ onto the [111] direction. The three resulting force 

constants are connected in series. The total force constant can, therefore, be calculated as 

follows:  

 

k���,Y projected in [111] direction  → √3k���,Y3   , ( 6.5 ) 

k���,[ projected in [111] direction  → √3k���,[3   , ( 6.6 ) 

k���,\ projected in [111] direction  → √3k���,\3   , ( 6.7 ) 

k��� = ´r√3k���,Y3 u�� +  r√3k���,[3 u�� +  r√3k���,\3 u��µ�� . ( 6.8 ) 

 

The calculated force constants are given in the following table. 
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Force constant [N/m] 
k��� 2.452  

k��� 15.017 

k��� 0.027 

Table 14: The calculated force constants for aluminium. 

6.1.2 Calculation of Coulomb Forces 

The Coulomb force acting on the aluminium ions in the unit cell must be calculated. Thus, it is 

important to choose a direction for the movement of the electron. For the purpose of the 

simulations performed in this work, the [100] direction is taken (equivalent to [010] and [001]). 

The paths for the movement of four electrons in the (001) plane in the unit cell of aluminium 

are shown in figure 22. For the calculation of Coulomb forces, it is assumed that all electrons 

start 30 units cells away from the one being analyzed. For example, for two electrons e� and e+ 

moving on the plane (001) in the [100] direction in figure 22, the coordinates ¶·,¸�t� and ¶·,¹�t� 

of both electrons can be calculated using equations 6.9 and 6.10 below, where v# is the Fermi 

velocity, t is the time and a is the lattice parameter. There are four paths for every four electrons 

in each plane of the unit cell (figure 22). Because the unit cell consists of 6 planes and there are 

4 electrons on each plane, there are 24 electrons in all planes of the unit cell. But because only 

half of all electrons on each plane belongs to the unit cell, there are in total twelve electrons in 

the unit cell (figure 22), which come from the four Al ions in the cell. Table 15 lists the 

coordinates of all electrons in the different planes and directions. 

 

 

Figure 22: Paths of electrons moving in the (100) plane in the unit cell of aluminium (movement in the [100] 

and [010] directions). 
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¶·,¸�t� = s30a − tv# , a4 , 0t  , ( 6.9 ) 

¶·,¹�t� = L30a − tv# , 3a4 , 0O  . ( 6.10) 

    

¶·,º�t� Coordinate 
plane  

direction 
¶·,º�t� Coordinate 

plane  

direction 

¶·,¸�t� �30a − tv# , a4 , 0� 
(001)  

 [100] 
¶·,¸»�t� �30a − tv#, a, a4� 

 (020)  

 [100] 

¶·,¹�t� �30a − tv# , 3a4  , 0� 
(001)  

 [100] 
¶·,¸¼�t� �30a − tv#, a, 3a4 � 

(020)  

 [100] 

¶·,»�t� �a4 , 30a − tv# , 0� 
(001)  

 [010] 
¶·,¸½�t� �a4 , a, 30a − tv#� 

 (020)  

 [001] 

¶·,¼�t� �3a4  ,30a − tv# , 0� 
(001)  

 [010] 
¶·,¸¾�t� �3a4 , a, 30a − tv#� 

(020)  

 [001] 

¶·,½�t� �30a − tv# , a4 , a� 
(002)  

 [100] 
¶·,¸¿�t� �0, a4 , 30a − tv#� 

(100) 

[001] 

¶·,¾�t� �30a − tv# , 3a4  , a� 
(002)  

 [100] 
¶·,¸À�t� �0, 3a4 , 30a − tv#� 

(100) 

[001] 

¶·,¿�t� �a4 , 30a − tv# , a� 
(002)  

 [010] 
¶·,¸Á�t� �0,30a − tv#, a4� 

(100) 

[001] 

¶·,À�t� �3a4  ,30a − tv# , a� 
(002)  

 [010] 
¶·,¹Â�t� �0,30a − tv#, 3a4 � 

(100) 

[001] 

¶·,Á�t� �30a − tv#, 0, a4� 
 (010)  

 [100] 
¶·,¹¸�t� �a, a4 , 30a − tv#� 

(200) 

[001] 

¶·,¸Â�t� �30a − tv#, 0, 3a4 � 
(010)  

 [100] 
¶·,¹¹�t� �a, 3a4 , 30a − tv#� 

(200) 

[001] 

¶·,¸¸�t� �a4 , 0, 30a − tv#� 
 (010)  

 [001] 
¶·,¹»�t� �a, 30a − tv#, a4� 

(200) 

[001] 

¶·,¸¹�t� �3a4 , 0, 30a − tv#� 
(010)  

 [001] 
¶·,¹¼�t� �a, 30a − tv#, 3a4 � 

(200) 

[001] 

Table 15: Coordinates of electrons in the different planes and directions for aluminium. 
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The distance between the ion i in the unit cell and the electron j can be determined by the 

following equation, where ¶Ã is the coordinate of the ion i. 
 

Ä¶Ã − ¶·,ºÄ�t� = ¤�x� − x#,	�+ + �y� − y#,	�+ + �z� − z#,	�+ . ( 6.11) 

 

Now, the Coulomb force between the ion i and the electron j can be calculated with           

equation 6.12. To calculate the total Coulomb force exerted by all electrons acting on the ion i, 
a sum must be used (equation 6.13). This mathematically complex process of finding the 

Coulomb forces for each ion has been performed with the second code described in chapter 4.2. 

Figure 23 shows the curve of the calculated Coulomb force as a function of time for a certain 

aluminium ion. As seen from figure 23, the Coulomb force is only effective when the electron 

is located very close to the unit cell. This is because of the inverse dependence of the Coulomb 

force on Ä¶Ã − ¶·,ºÄ+
. The Coulomb force in figure 23 is not symmetric because it comes from 

24 electrons moving on different electron paths.  

 

F�,	 = 3e+
4πε�Ä¶Ã − ¶·,ºÄ+  , ( 6.12) 

F� = � F�,	
+�

	��   . ( 6.13) 

 

 

Figure 23: The Coulomb force between an aluminium ion and all considered moving electrons in the unit cell 

for the time it takes for an electron to move through 60 unit cells with the Fermi velocity. 

F
1 

[N
] 

time [s] 
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6.1.3 Simulation of the Attractive Potential Energy V0 and the Binding 

Energy Δ 

Once the force constants for aluminium have been calculated, the unit cell is constructed by 

first code (chapter 4.1) according to the crystal symmetry, the mass of the ions and the force 

constants. After calculating the Coulomb forces by the second code, the major FE-code can be 

used to calculate the attractive potential energy. The attractive potential energy V�,� for each ion 

is the sum of the simulated kinetic energy K� and the simulated potential energy P� of each ion 

at each time (equation 6.14). For the ions located on the corners of the unit cell, 1/8 amount of 

their attractive potential energy must be considered because only 1/8 of each of these ions 

belongs to the unit cell. For the ions which are located in the planes of the unit cell, only 1/2 

ion belongs to the unit cell, therefore, 1/2 amount of their attractive potential energy must be 

considered for the total attractive potential energy V� in the unit cell. There are eight ions in the 

corner and six ions in the middle of the planes of the unit cell. Therefore, the total attractive 

potential energy can be calculated with equation 6.15, where a� stands for the amount of each 

ion belonging to the unit cell. 

V�,� = P� + K�  , ( 6.14) 

V� = � a�V�,� ��
���                     a� = 12  or 18  . ( 6.15) 

 

As the electron moves through the unit cell, the ions in the unit cell begin to vibrate; since 

damping is not being considered in the simulation, this vibration doesn’t stop. The total 

vibration energy of all the ions involved in the simulation is, thus, a constant once the electron 

has left the area of interest. But only the energy of those ions belonging to the unit cell has been 

considered to calculate the total attractive potential energy V� (equation 6.15). This is not a 

constant value, since there is a transfer of energy between the ions in the considered cell and 

the ones surrounding it in neighboring unit cell and this amount of transfer energy has not been 

considered for the total attractive potential energy. For the following calculation, therefore, the 

mean value of the total attractive potential energy for all ions in the unit cell under consideration 

is used. 

The obtained simulated potential energy P, kinetic energy K and total attractive potential energy V� of the unit cell are shown in figure 24 as a function of time. The mean value of the total 

attractive potential energy can be found by extrapolating the fitted dotted line in figure 24 until 



53 

it intersects the axis and is V� = 5.093 eV. The slight slope of the line is attributed to numerical 

error. An example for the displacement of the ions at a given time can be seen in figure 25. 

 

 

Figure 24: Energy of the ions belonging to the considered unit cell. Blue curve: attractive potential energy V0; 

red curve: kinetic energy K; dashed curve: potential energy P. The dotted line shows the mean value.  

 

 

Figure 25: Vector plot of the displacement of the ions in the unit cell at a given time. • stands for aluminium 

ions.  
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As previously explained, there are 24 electrons in the unit cell of aluminium. For the calculation 

of the binding energy ∆ with equation 2.57, the attractive potential energy caused by only one 

electron must be used. Therefore, the total attractive potential energy V� = 5.093 eV must be 

divided by 24 which yields a value of 0.2121 eV because, for the calculation of the binding 

energy ∆, only the total attractive potential energy V� per one electron is required. The 

superconducting constant c can then be calculated with equation 2.59. The results are given in 

table 16.  

The calculated values for the binding energy ∆ and the superconducting constant c are about 

half of those given in Ref. [8]. This can be partly attributed to the simplified model used for the 

simulation, but also to the fact that the simulation of the attractive potential energy V� is based 

on theoretical values of the force constants. Their real values can be different, therefore, 

introducing additional inaccuracies when comparing calculated results with the real, measured 

ones. 

 

   calculated Ref. [8] 

Superconductor D�E��[ 1eV] V�[eV] ∆ [meV] c ∆ [meV] c 

Al 1.64 0.2121 0.09 1.695 0.35 3.4  

Table 16: Density of states D(Ef), attractive potential energy V0, binding energy Δ and superconducting constant 

c for aluminium. The density of states is taken from Ref. [19]. 
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6.2 Niobium 

Niobium is a transition metal from group VA in the periodic table with electronic configuration 

[Kr]4d45p1 and atomic mass 92.91u. According to the orbital theory, it has one Fermi electron 

per atom in the unit cell. The crystal structure of niobium has a bcc structure with lattice 

parameter a = 3.30 Å (Ref. [8]), with two niobium atoms belonging to the unit cell (figure 18). 

Because there are in total two atoms in the unit cell and each of them possesses only one Fermi 

electron, there are two Fermi electrons in the unit cell in total. For niobium there are different 

references giving different types of Fermi electrons with different values of the Fermi velocities 

and the density of states (table 17 and 18). Niobium becomes superconducting at 9.26 K. [8] 

 

Ref. [20] v# °ms ± /10� D�E��[ 1eV] 
avg. 0.273 6.62 

Table 17: Average Fermi velocity and density of states of the Fermi electrons in niobium. 

 

Ref. [31] v# °ms ± /10� D�E��[ 1eV] 
ELL 0.35 2.5 

OCT 0.81 1.09 

Jung 0.28 3.15 

Table 18: Three types of Fermi electrons for niobium, their Fermi velocities and densities of states. 
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6.2.1 Calculation of Force Constants 

As for the fcc structure of aluminium, the three directions [100], [110], and [111] are used as 

the main directions for the bcc structure. To calculate the force constants, the amount of each 

force constant calculated with the potential theory from Ref. [32] is required. The results are 

shown in table 19. 

 

Force constant [N/m] 
k��� 13.330  

k���,Y and k���,[ 2.505 

k���,Y[ 1.241 

k���,Y[ 9.951 

k���,Y, k���,[ and k���,\ 13.182 

Table 19: Force constants for niobium [32].  
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Like aluminium, the projections of the force constants k���,Y and k���,[ in the [110] direction 

are needed. The two new projections are connected in series with each other which results in a 

new force constant k���∗ , connected in parallel to k���,Y[. Then, the total force constant k��� is 

calculated using the following equations: 

 

k���,Y projected in [110] direction  → √2k���,Y2   , ( 6.16) 

k���,[ projected in [110] direction  → √2k���,[2   , ( 6.17) 

k���∗ = ´r√2k���,Y2 u�� +  r√2k���,[2 u��µ��  , ( 6.18) 

k��� = k���∗ + k���,Y[  . ( 6.19) 

 

For the [111] direction, after the projection of each force constant k���,Y, k���,[ in [110] 

direction, the two new projections are connected in series to each other. The new force constant k���,Y[∗ , which is coming from these two force constant projections, is parallel to the force 

constant k���,Y[. Therefore, the sum of the force constants k���,Y[ and k���,Y[∗  is required and 

its result is called k���,Y[,�5�. To have the projection of the force constant k���,Y[,�5� in the [111] 

direction, its values must be multiplied by √2/√3. Now, this projected force constant is 

connected in series to the projection of the force constant k���,\ in the [111] direction. Below, 

the total force constant k��� in [111] direction is calculated as described above. The calculated 

force constants for each direction for niobium are given in table 20. 

k���,Y projected in [110] direction  → √2k���,Y2   , ( 6.20) 

k���,[ projected in [110] direction  → √2k���,[2   , ( 6.21) 

k���,Y[∗ = ´r√2k���,Y2 u�� +  r√2k���,[2 u��µ��  , ( 6.22) 

k���,Y[,�5� = k���,Y[∗ + k���,Y[  , ( 6.23) 
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k���,Y[,�5� projected in [111] direction → 
√2k���,Y[,�5�√3   , ( 6.24) 

k���,\ projected in [111] direction  → √2k���,\2   , ( 6.25) 

k��� = √2k���,\2 + √2k���,Y[,�5�√3   . ( 6.26) 

 

Force constant [N/m] 
k��� 13.330  

k��� 2.127 

k��� 4.647 

Table 20: The calculated force constants for each direction in the unit cell of niobium. 
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6.2.2 Calculation of Coulomb Forces 

As for aluminium, the three equivalent directions [100], [010] and [001] for the movement of 

the electron have been considered to calculate the Coulomb forces on each ion in the unit cell 

(figure 26). As explained in the previous chapter, there are two electrons in the unit cell of 

niobium. In order to have two electrons in the unit cell moving in the [100] direction, one 

electron must move in each of the (001), (010), (002) and (020) planes (only 1/2 of each electron 

in the planes belongs to the unit cell; therefore, there is a total of two electrons in the unit cell). 

The coordinate ¶·,º�t� of electron j calculated in a similar manner to aluminium, resulting in 

table 21.  

 

   

Figure 26: Path of the electron moving in the (100) plane in the unit cell of niobium. 

 

¶·,º�t� Coordinate 
Moving plane  

Moving direction 

¶·,¸�t� �30a − tv# , a2 , 0� 
(001)  
 [100] 

¶·,¹�t� �30a − tv# , a2 , a� 
(002)  
 [100] 

¶·,»�t� �30a − tv# , 0 , a2� 
(010)  
 [100] 

¶·,¼�t� �30a − tv# , a , a2� 
(020)  
 [100] 

Table 21: Coordinates of the electrons in the different planes and directions of niobium. 

 

a 
e� 
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Now, since the distance between the Fermi electron and each ion (equation 6.11) depends on 

the Fermi velocity, so do the Coulomb forces as well. In table 18, there are three Fermi 

velocities for the three types of Fermi electrons and there is an average Fermi velocity for the 

Fermi electrons in table 17. The Coulomb force can be calculated like aluminium. However, 

equation 6.13 must be rewritten for four electrons, because the total Coulomb force between 

each ion in the unit cell and the four electrons must be calculated as follows:  

 

F��t� = � F�,	
�

	��   . ( 6.27) 

 

6.2.3 Simulation of the Attractive Potential Energy V0 and the Binding 

Energy Δ 

As described for aluminium, the amount of each ion belonging to the unit cell is required in 

order to calculate the total attractive potential energy V�. There are 8 ions on the corners and an 

ion in the middle of the unit cell. 1/8 of each ion located on the corner belongs to the unit cell. 

The attractive potential energy of each ion V�,� is given by equation 6.14; for the total attractive 

potential energy equation 6.15 must be rewritten for eight ions on the corners and an ion in the 

middle of the unit cell which results equation 6.28. As described for aluminium in chapter 6.1.3 

it must be noted that the total attractive energy V� must be divided by four because it should be 

calculated only for one electron. 

 

V� = � a�V�,� Å
���                  a� = 18  or 1  . ( 6.28) 

 

The simulation has been carried out for each of the three types of Fermi electrons to find its 

corresponding potential energy (table 22). The attractive potential energy V�,¡£Æ belonging to 

the OCT type is very low due to its high Fermi velocity (there is no enough time for the ions to 

feel the Coulomb forces because of its high Fermi velocity). Therefore, the electron pairing can 

only occur among the two other types of Fermi electrons (ELL and Jung) due to their higher 

attractive potential energies V�,ÇÈÈ and V�,É6�Ê. The total binding energy ∆� and the total 

superconducting constant c� are given in table 23 and are calculated by equation 2.58 and 2.59 

respectively. The value of 0.632 for the total superconducting constant c� is much smaller than 

the given value of 3.8 given in Ref. [8]. Therefore, the simulation was performed once again 
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for the average Fermi velocity and density of states from the Ref. [20] which is given in table 

17. The results are given in table 24. The calculated value for the superconducting constant c 

coming from the electron properties of Ref. [20] is 2.36 which is not far from 3.8. However, it 

must be noted that these values for the Fermi velocity and the density of states are only 

theoretically calculated. It’s not expected for them to correspond exactly to reality, which can 

account for the difference between the calculated values (∆ and c) and 3.8.  

According to the results obtained from the simulation of the two conventional superconductors 

Al and Nb, the finite element method can also be used to calculate the binding energy ∆ and the 

superconducting constant c for other superconductors to investigate whether these 

superconductors can be explained by the BSC theory. 

 

type v# °ms ± /10� D�E��[ 1eV] V�[eV] ∆ [meV] c 

ELL 0.35 2.5 0.056 0.000016 0.00004 

OCT 0.81 1.09 0.011 9.49×10-74 2.38×10-73 

Jung 0.28 3.15 0.091 0.02 0.05 

Table 22: Attractive potential energy V0, binding energy Δ and superconducting constant c for the three types of 

Fermi electrons with electrical properties according to [31]. 

 

� D�E��V� ∆� [meV] c� 
0.438 0.25 0.632 

Table 23: Total binding energy Δt and total superconducting constant ct for Fermi electrons. 

 

v# °ms ± /10� D�E��[ 1eV] V�[eV] ∆ [meV] c 

0.273 6.62 0.09 0.94 2.36 

Table 24: Attractive potential energy V0, binding energy Δ and superconducting constant c for Fermi electrons 

with average electrical properties according to [20]. 
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6.3 Sr2RuO4 

Sr2RuO4 exhibits spin-triplet superconductivity (spin-triplet: two electrons in an electron pair 

have the same spin +1/2 and +1/2 and so the total electron spin number is 1. The degeneracy 

equals 2S+1, where S is the total spin number. The degeneracy of this pair is 3 and, therefore, 

it is called spin triplet. Unconventional superconductors indicate spin-triplet pairing) and 

consequently, it is an unconventional superconductor with the critical temperature T
= 1.5 K 

[33]. It has a tetragonal structure with I4/mmm symmetry and lattice parameters a, b = 3.87 Å 

and c = 12.7 Å [14]. There are two chemical formulas in the unit cell of Sr2RuO4. An 

undistorted octahedral RuO6 can be found in its middle (figure 18). It seems that the RuO2 

planes play an important role regarding superconductivity [34]. Its Debye temperature is about 

312 K [13]. The electronic band structure of Sr2RuO4 is quasi-two-dimensional because of its 

layered structure, which prevents the overlap of the orbitals along the c-axis [35]. Its Fermi 

surface consists of three sheets corresponding to three different types of Fermi electrons: α, β 

and γ (figure 27). It is believed that the γ electrons are responsible for the superconductivity 

[36, 37]. The β electrons are also relevant. Ref. [38] gives binding energies of ΔÌ= 0.045 meV 

and ΔÍ= 0.15 meV for the β and γ electrons. According to Ref. [39], the binding energy of ΔÍ 

is 0.14 meV, which corresponds to the BCS theory. A range for the superconducting constant c between 6.2 and 8 has been measured, whereby the superconductivity of Sr2RuO4 exhibits an 

anisotropic behaviour (with the average superconducting constant being c��= 5.5) [40]. 

 

 

 

Figure 27: The Fermi surface of Sr2RuO4 with three different sheets α, β and γ. kx and ky are the wave vectors in 

x and y direction. 

 

 

ky 

kx 
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Sr2RuO4 k��Å��� m#��/m# v# °ms ± /10� D+I�E��[ 1eV] 
α-type 0.302 1.1 0.318 0.69 

β-type 0.621 2.0 0.359 1.24 

γ-type 0.750 2.9 0.299 1.80 

Table 25: The three types of the Fermi electrons α, β and γ and their electrical properties in Sr2RuO4 [26]. 

 

6.3.1 Calculation of Force constants 

The force constants for some ionic pairs in the unit cell of Sr2RuO4 have been calculated from 

Raman spectroscopy in Ref. [41]. To get other force constants in the unit cell, a calculation with 

the potential theory (chapter 2.4.1) is required. To do that, the potential parameters, the charge 

of each component and spring constant between the shell and the core of an ion are needed, as 

which are given in table 26 and 27. OI stands for the oxygen ion located in the RuO2 plane 

whereas the OII is the apical oxygen ion in the unit cell (figure 18). 

 

Pair A[eV] ρ[Å] A[eV/Å�] 
Sr-OI 1825 0.318  

Sr-OII 2250 0.318  

Ru-OI 2999 0.260  

Ru-OII 3874 0.260  

OI-OI 2000 0.284 -100 

OI-OII 2000 0.284 -100 

OII-OII 2000 0.284 -100 

Table 26: The potential parameters for each ionic pair [42]. 

 

Ion Z q�)#** k[N/m] 
Ru 2.58 0.47 8000/2000 

Sr 2 5.86 3600 

OI -1.52 -3.25 1800 

OII -1.77 -2.77 1800 

Table 27: The charge of the shell qshell and the total ion charge Z and the inner spring constant for each ion [42]. 
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Due to the fact that only the value of the equilibrium distance between the whole ions of each 

ionic pair is available, only the Coulomb interaction between the whole ions can be considered 

instead of the Coulomb interactions between all components of ions (shells and cores). 

Therefore, equations 2.60, 2.61 and 2.62 must be rewritten only for two whole ions as follows: 

 

V
56* = Z�Z	4πε�r�	  , ( 6.29) 

V
9 = −Cr�	��  , ( 6.30) 

V�)58� = A exp L− r�	ρ O  , ( 6.31) 

 

where Z� and Z	 are the total charges of the ions. The total potential interaction is calculated as 

the sum of these interactions. Since two whole ions are assumed for the calculation (instead of 

shells and cores), no polarization can be considered, and the term V75* disappears. Due to the 

consideration of whole ions (i = 1 and j = 2) instead of shells and cores, there is only an 

equilibrium distance r#, between the ions of an ionic pair. Using the equilibrium distance r#, 

in the second derivative of the total potential interaction with respect to r�	 (equation 6.32), the 

force constants can be calculated with equation 6.33. The results are given in table 28. 

 

∂+V�5�∂+r�	 = Z�Z	r�	2πε�r�	y − 42Cr�	�Î + Aρ+ exp L− r�	ρ O  , ( 6.32) 

i = 1 and j = 2  ,    

k�+�r#,� = Z�Z+r#,2πε�r#,y − 42Cr#,�Î + Aρ+ exp L− r#,ρ O  . ( 6.33) 
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Pair r#,[Å] Force constant [N/m] Ref./Calculated 

Sr-OI 2.687 64 Ref. [41] 

Sr-OII 2.736 21 Ref. [41] 

Ru-OI a 173 calculated 

Ru-OII aÏ 90 calculated 

OI-OI √2aÏ 57 calculated 

OI-OII ÐaÏ+ + aÏÏ+ 67 calculated 

OII-OII a 21 calculated 

Table 28: Equilibrium distance req[Å] for each ionic pair and its force constant as calculated with the potential 

theory as well as taken from Ref. [41]. aI=1.93 Å, aII=2.06 Å and a is the lattice parameter. 

 

6.3.2 Calculation of Coulomb Forces 

Because the RuO2 planes play an important role for the superconductivity, it is assumed that 

the charge carriers move in this plane. As shown in figure 28, the path of the movement of the 

electron goes between the O1 and O2 atoms. So, by calculating the distance between the moving 

electron and each ion in the unit cell, the Coulomb force can be calculated for each ion in the 

same manner as for Al and Nb in the previous chapters.  

 

 

Figure 28: Path of the moving electron in the RuO2 plane. 
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6.3.3 Simulation of the Attractive Potential Energy V0 and the Binding 

Energy Δ 

The simulation is performed for the three different types of Fermi electrons α, β and γ. The 

results for the attractive potential energies are given in table 29. The fractional volume Vol�8�
 

corresponding to each type in the unit cell is also given in table 29. The amount of each type of 

Fermi electrons can be considered according to Vol�8�
. Multiplying Vol�8�
 with the attractive 

potential energy caused by each type of Fermi electrons, the amount of the attractive potential 

energy for each type is determined, which allows the calculation of the binding energy and the 

superconducting constant for each type. Considering the results for the superconducting 

constants in table 29, it becomes obvious that the γ type plays the main role regarding 

superconductivity, since its binding energy and superconducting constant are the greatest. Due 

to the very small binding energies of the two other types, it can be assumed that the total binding 

energy and the total superconducting constant are equal to those of the γ electrons. This result 

coincides with those of Ref. [43] and [44], which state that the γ electrons should be responsible 

for superconductivity. The binding energy ΔÍ = 0.16 meV is close to the measured values of 

Ref. [45] and [39] (table 30). There are two reasons why the binding energy ΔÍ is larger than 

the other two in the simulations are the following. Firstly, the Fermi velocity of the γ electrons 

is lower than that of the α and β electrons, therefore, the acting time of the Coulomb force due 

to the γ electrons on each ion in the unit cell is larger than for the others, which leads to a larger 

attractive potential energy V�. Secondly, the density of states of the γ electrons is larger, 

increasing the binding energy Δ due to its exponential dependence on the value of D�E��V� 

(equation 2.57). 

 

Sr2RuO4 v# °ms ± /10� D+I�E��[ 1eV] Vol�8�
 V�[eV] Vol�8�
V�[eV] ∆ [meV] c 

α-type 0.318 0.69 0.108 0.03 0.003 1.13×10-40 0≈  

β-type 0.359 1.24 0.457 0.1 0.046 2.08×10-6 4×10-5 

γ-type 0.299 1.80 0.667 0.22 0.147 0.16 2.43 

Table 29: Electrical properties, volume fraction Volfrac, simulated attractive potential energy V0, binding energy 

Δ0 and superconducting constant c for each type of Fermi electrons α, β and γ [26]. 
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calculated ∆Í= 0.16 meV 

Ref. [38]  ∆Í= 0.15 meV 

Ref. [46] ∆ = 0.14 meV 

Table 30: Comparison between the calculated and measured binding energy Δ. 

 

6.4 La1.85Sr0.15CuO4 (LSCO) 

La1.85Sr0.15CuO4 is one of the high temperature superconductor cuprates, with the critical 

temperature T
 = 38 K, a tetragonal structure with I4/mmm symmetry (figure 19) and lattice 

parameters a, b = 3.78 Å and c = 13.2 Å [15]. Its Debye temperature lies around 360 [8]. The 

unit cell consists of two chemical formulas. La2CuO4 is the parent compound that is 

antiferromagnetic and a semiconductor at low temperatures (to about 30 K) [47]. Its 

semiconductor properties can be due to the phase transition of the crystal structure to the 

monoclinic structure that gives rise to an energy gap [47, 48]. To see the superconductivity in 

La2CuO4, this parent compound must be doped by Ba or Sr atoms which bring charged holes 

into the crystal structure. The critical temperature T
 of the doped structure increases with 

increasing doping up to an optimal doping amount x = 0.15, at which the maximal critical 

temperature T
 = 38 K is reached. By overdoping, the superconductivity disappears. In contrast 

to Sr2RuO4, the octahedral CuO6 of La2CuO4 located in the middle of the unit is distorted. In 

cuprates, it has been established that the superconductivity is induced by the CuO2 planes. The 

physical properties of the cuprates change depending on the number of charge carriers on this 

plane [34]. It has been found that the doped holes are located in the oxygen-2p orbital in hole-

doped cuprates whereas the doped carriers in electron-doped cuprates sit at the cupper-3d 

orbitals [49]. The calculated values for the density of states D�E�� and the Fermi velocity v# for 

La1.85Sr0.15CuO4 are given in table 3. The different measured superconducting constants, 

binding energies and critical temperatures are listed in table 31.  

 

T
[K] ∆ [meV] c Ref.  

33  8.9±0.2 [50] BCS-like 

38 2.45 to 4.9 3 to 6 [51]  

38 4 5.2 [52] BCS-like 

Table 31: Critical temperature, superconducting constant and binding energy. 
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6.4.1 Force Constants 

The force constants in the unit cell of La1.85Sr0.15CuO4 have been measured by Raman 

spectroscopy [28] and are given in table 32. 

 

Pair Force constant [N/m] 
Cu-OI 85 

Cu-OII 20 

La-OI 160 

La-OII * 105 

La-OII 50 

La-La 30 

La-Cu 10 

OI-OI 20 

OI-OII 4 

OII-OII 7 

Table 32: Force constants for each ionic pair in La1.85Sr0.15CuO4 [28]. *: shifted by (a/2, a/2, c/2). 
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6.4.2 Calculation of Coulomb Forces 

Hole carriers jump from an oxygen 2p orbital to a neighbour orbital in a CuO2 plane. This 

displacement of a hole in the plane is equivalent to the movement of an electron in the same 

plane but in opposite direction. Therefore, an electron has been used instead of a hole to 

calculate the Coulomb forces. In figure 17, the path for the movement of the electron is shown. 

By calculating the distance between the moving electron and each ion in the unit cell, the 

Coulomb forces acting on each ion are determined.  

 

6.4.3 Simulation of the Attractive Potential Energy V0 and the Binding 

Energy Δ 

The simulation has been performed and the simulated value of V� has been used to calculate the 

binding energy Δ. The calculated values for the binding energy Δ and the superconducting 

constant c are smaller than the values in table 31. This can be due to the Fermi velocity, the 

density of states, or the force constants. A small change in the first two of these properties has 

a strong influence on the results of the simulation. Furthermore, the values used correspond to 

theoretical calculations [21] instead of measurements. An inaccuracy in the results is, therefore, 

expected. 

Since the potential energy of a simple harmonic oscillator depends on the spring constant, the 

deformation energy of the unit cell depends on the force constants in the unit cell, too. This 

means that if the force constants used don’t agree with their real values, the deformation energy 

could differ as well. This could be a reason why the calculated superconducting constant does 

not coincide with the values from the different references in table 31. Another reason could just 

as well be that the BCS theory doesn’t apply in this case and, if our result for the calculation of 

the superconducting constant c were correct, there would have to be a second pairing 

mechanism to overcome the thermal fluctuation energy. 

 

Superconductor v# °ms ± /10� D�E��[ 1eV] V�[eV] ∆ [meV] c 

La1.85Sr0.15CuO4 0.314 2.09 0.31 1.5 0.91 

Table 33: Electrical properties, simulated attractive potential energy V0, binding energy Δ and the 

superconducting constant c for La1.85Sr0.15CuO4. 
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6.5 Bi2Sr2CaCu2O8+δ (Bi2212) 

Bi2Sr2CaCu2O8+δ is one of the high temperature superconductor cuprates, with a critical 

temperature T
 of about 93 K. It is doped with oxygen atoms. The oxygen atoms are placed in 

interstitial positions in the crystal structure. The unit cell used for the simulation has a tetragonal 

structure with lattice parameters a, b = 3.817 Å and c = 30.5 Å, and two chemical formulas 

with four CuO2 planes in the unit cell [16]. However, according to different references, an 

orthorhombic unit cell with four chemical formulas has been also found [23]. The Fermi 

velocity v#, the Fermi wave number k� and the effective mass m#�� from two different references 

are given in table 34 for optimally doped Bi2212 crystals. The density of states has been 

calculated from the Fermi wave number and the effective mass is given in table 34 with equation 

6.34, where V is the volume of the unit cell [5]: 

 

D�E�� = m#��k�ℏ+π+ V  . ( 6.34) 

 

The binding energy ∆ for underdoped, optimally doped and overdoped Bi2212 at 4.2 K has 

been found by use of tunneling current-voltage in Ref. [53]. In this reference, the critical 

temperature for the overdoped and underdoped probes lies at 83 K whereas for the optimally 

doped it lies at 95 K. The measured values of the binding energy ∆ for the overdoped, optimally 

doped and underdoped crystal are 26, 37.5 and 45 meV respectively. The corresponding 

superconducting constants are 7.3, 9.2 and 12.6.  

In Ref. [54], four different values of 44, 41.5, 34 and 28 meV for the binding energy ∆ have 

been found for four different doping oxygen amounts from underdoping to overdoping (41.5 

corresponding to the optimum). The corresponding critical temperatures are 83, 92, 74.3 and 

56 K. In this reference, the values for the superconducting constants 12.3±1 and 8.7±1 are 

reported for underdoped and overdoped crystal respectively. This reference concludes that 

superconductivity in Bi2212 does not exhibit BCS-like behaviour.  

In Ref. [55], tunneling spectroscopy measurements have been performed on optimally doped 

and overdoped crystals of Bi2212. The binding energy ∆ for the overdoped crystal with          T
 = 89 K is about 25.8 meV, whereas its average value for the optimally doped crystal with 

the average critical temperature T
 = 93.2 K is about 32.52 meV [55]. The two superconducting 

constants for overdoped and optimally doped crystal are 7.2 and 8.1 respectively. In general the 

superconducting constant for overdoped, optimally doped and underdoped crystal lies between 

7.0 and 13.0. 
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Bi2Sr2CaCu2O8 T
 [K] k� v# °ms ± /10� m#��/m# D�E��[ 1eV] 
Ref. [22] 89 0.71 0.274 3.00 12.57 

Ref. [24] 87 0.74 0.250 3.43 14.97 

Table 34: Critical temperature Tc, Fermi wave number kf, Fermi velocity ve, effective mass meff and density of 

states D(Ef) of Bi2212 for optimally doping. 

 

6.5.1 Force Constants 

In Ref. [29] the force constants for Bi2212 are calculated from Raman and infrared phonon 

spectra which are in good agreement with experimental data. In table 35, the force constants 

for each ionic pair are given. 

 

Pair Force constant [N/m] 
Ca-OI 30 

Cu-OI 85 

Cu-OII 20 

Sr-OI 50 

Sr-OII 50 

Sr-OIII 80 

Bi-OII 105 

Bi-OIII 160 

Bi-OIII (a) 105 

OI-OI 20 

OI-OII 10 

OII-OIII 35 

OIII-OIII (a) 35 

Ca-Cu 15 

Cu-Sr 15 

Sr-Bi 13 

Bi-Bi (a) 10 
Table 35: Force constants for each ionic pair in Bi2212 [29]. (a) for OIII and Bi in adjacent planes. OI, OII, OIII 

are for oxygen ions located in CuO2, SrO and BiO planes respectively. 



72 

6.5.2 Calculation of Coulomb Forces 

To calculate Coulomb forces, the tetragonal structure of Bi2212 has been considered. There are 

four CuO2 planes in the unit cell of Bi2212, and none of them lie in the middle of the unit cell 

(figure 19). To calculate the Coulomb forces, one of the CuO2 planes closer to the center of the 

unit cell has been considered as the plane in which the electron moves. Because of its off-center 

location, the deformation of the unit cell due to the movement of an electron in this plane is not 

symmetric. The path used for the movement of the electron is the same as for La1.85Sr0.15CuO4. 

The Coulomb forces between the electron and the ions in the unit cell have been determined as 

described previously. 

 

6.5.3 Simulation of the Attractive Potential Energy V0 and the Binding 

Energy Δ 

To simulate the attractive potential energy V�, the two Fermi velocities from table 34 have been 

used. Due to the difference in the Fermi velocities, the time in which Coulomb forces act on 

each ion is different. Therefore, two different values for the attractive potential energy V� and 

binding energy ∆ have been simulated, as seen in table 36.  

Because the Fermi velocity in Ref. [22] is larger than that from Ref. [24], the corresponding 

Coulomb forces act over a smaller time interval and, therefore, their attractive potential energy V� is lower. This result signifies the importance of the Fermi velocity for the formation of 

Cooper pairs. It can be seen from table 36 that a decrease of 0.02×106 m/s in the Fermi velocity 

in Ref. [24] can change the superconducting constant c from 3.7 to 6.5. Furthermore, due to the 

exponential dependence of the binding energy ∆ on D�E��V�, the different values of the density 

of states (from both references) influence the calculated values of the superconducting     

constant c.  

According to Refs. [53], [54] and [55] the measured values of the binding energy ∆ for 

overdoped crystals are 26, 28 and 25.8 meV, with a critical temperature of 83 K for the first 

two and 89 K for the last. The calculated value of ∆ using the available data from Ref. [24] is 

24.4 meV (table 36). This lies close to the values for overdoping given in Refs. [53], [54] and 

[55] even though Ref. [24] states that the Fermi velocity and the density of states in table 34 

correspond to optimal doping. Due to the crystal structure of optimally doped Bi2212, the 

critical temperature determined by Ref. [24], in table 34, should be larger than those given in 

the other three references (92 to 95 K), which is not the case. This all hints to the possibility 
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that the assertion made in Ref. [24] is not correct and the measured probe may be actually 

overdoped. 

 

 
Bi2Sr2CaCu2O8 

T
 [K] v# °ms ± /10� D�E��[ 1eV] V� [eV] ∆ [meV] c 

Ref. [22] 89 0.274 12.57 0.17 14.2 3.7 

Ref. [24] 87 0.250 14.97 0.21 24.4 6.5 

Table 36: Simulated attractive potential energy V0, binding energy Δ and superconducting constant c for the 

Fermi velocity ve and density of states D(Ef) given by Ref. [22] and [24]. 
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6.6 HgBa2Ca2Cu3O8+δ (Hg1223) 

HgBa2Ca2Cu3O8+δ is another high temperature superconductor cuprate, with a critical 

temperature T
 = 134 K at its optimally doped oxygen amount and a tetragonal unit cell with 

lattice parameters a, b = 3.85 Å and c = 16.1 Å [8]. The unit cell contains one chemical formula 

and three CuO2 planes. As described in chapter 5.3, its Debye frequency has been calculated as 

well as measured from heat capacities. Like the Fermi surface of Sr2RuO4, the Fermi surface of 

Hg1223 consists of the three different sheets which correspond to three different types of Fermi 

electrons [27]. The Fermi velocity and the density of states for each type are calculated for the 

doped crystal from Ref. [27] and are given in table 37. 

The binding energy ∆ = 12 meV for Hg1223 with T
 = 133 K has been determined at 4.2 K 

from tunneling-conductance measurements with a scanning-tunneling microscope [56]. The 

binding energy ∆ ≈ 14 meV is also given in Ref. [4]. The corresponding superconducting 

constants for the two references are 2.44 and 2.51. 

 

HgBa2Ca2Cu3O8+δ v# °ms ± /10� D�E�� [ 1eV] 
1-type 0.198 0.75 

2-type 0.189 0.84 

3-type 0.177 1.75 

Table 37: The three types of the Fermi electrons in Hg1223 and their electrical properties [27]. 

 

Ref. T
 [K] ∆ [meV] c 

[56] 133 12 2.44 

[4] 133 14 2.51 

Table 38: The binding energy Δ and the superconducting constant c. 
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6.6.1 Calculation of Force Constants 

The force constants must be calculated according to the shell model described in chapter 2.4.1 

using the quantum mechanics program GULP [12]. For this, potential parameters are needed as 

given in table 39 and 40 [57]. The results for the force constants calculated by GULP can be 

seen in table 41. In order to validate the results for the force constants, the elastic constants and 

the dielectric constants, which are calculated as well with these potential parameters in GULP, 

must be compared with the components of the fourth-order stiffness tensor and dielectric 

constants reported in Ref. [57]. In table 42, a very good agreement between the results from 

GULP and Ref. [57] can be observed. Therefore, the calculated force constants can be used for 

the simulation of the attractive potential energy V�. 

 

Pair A[eV] ρ[Å] A[eV/Å�] 
Hg-O 648.5 0.3251 0 

Ba-O 2096.8 0.3522 8 

Ba-Ba 2663.7 0.3428 0 

Ca-O 1228.9 0.3372 0 

Cu-O 3860.6 0.2427 0 

O-O 22764 0.1490 43 

Table 39: Potential parameters of each ionic pair for Hg1223 [57]. 

 

Ion Z q�)#** k [N/m] 
Hg 2 1.50 598.0 

Ba 2 1.848 29.1 

Ca 2 1.26 34.0 

Cu 2 1.00 99999 

O -2 -2.389 3.88 

Table 40: Total charge of ions (Z) and shells (qshell) and shell model spring constant k for each ion in the unit 

cell of Hg1223 [57]. 
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Pair Force constant [N/m] Pair Force constant [N/m] 
Ba-Ca 37.81 CuI-CuII 28.00 

Ba-CuII 76.28 CuI-OI 111.59 

Ba-Hg 32.20 CuI-OII 1.93 

Ba-OII 18.77 CuII-OI 0.87 

BaI-OIII 8.78 CuII-OII 113.37 

Ca-Ca 44.14 CuII-OIII 3.35 

Ca-CuI 51.93 Hg-OIII 85.42 

Ca-CuII 66.19 OI-OII 241.54 

Ca-OI 17.30 OII-OII 214.06 

Ca-OII 20.15 OIII-OIII 1.18 

Table 41: Calculated force constants for each ionic pair in the unit cell of Hg1223. I: ions in the CuO2 plane in 

middle of the unit cell, II: ions in other CuO2 planes, III: apical O between Hg and Cu. 

 

Stiffness tensor 
components  

GULP [GPa] Ref. [57] [GPa] 
C11 289.7 290 

C12 119.5 119 

C13 42.5 42 

C33 199.5 199 

C44 14.0 14 

C66 124.3 124 

Dielectric constants GULP Ref. [57] 

ϵ� 10.17 10.18 

ϵB 5.56 5.80 

Table 42: Elastic and dielectric constants in Hg1223 from GULP as well as Ref. [57]. 

 

 

 

 



77 

6.6.2 Calculation of Coulomb Forces 

For the calculation of the Coulomb forces, the electron is assumed to move in the CuO2 plane 

located in the middle of the unit cell. Its moving path in this CuO2 plane is the same as for 

La1.85Sr0.15CuO4. The Coulomb forces have been calculated as explained previously. 

 

6.6.3 Simulation of the Attractive Potential Energy V0 and the Binding 

Energy Δ 

The simulation has been performed after constructing the unit cell and loading the Coulomb 

forces on each of its ions. The results for the attractive potential energy V�, the binding energy ∆ and the superconducting constant c for each type are given in table 43. The Fermi velocity of 

type 3 is lower than that of the two others, consequently, its attractive potential energy is larger. 

Furthermore, the density of states of type 3 is the largest. Hence its value of D�E��V� is the 

largest and, due to the exponential dependence of ∆ on D�E��V�, so is its binding energy ∆ as 

can be observed in table 43. 

To calculate the total binding energy and the total superconducting constant, equation 2.58 has 

been used. From table 44 it can be seen that their values for doped crystals are in very good 

agreement with the results from Refs. [56] and [4] in table 38.  

 

Table 43: Electrical properties, simulated attractive potential energy V0, binding energy Δ and superconducting 

constant c for each type. 

 

� D�E��V� ∆ [meV] c 

1.237 13.978 2.42 

Table 44: Total binding energy Δ and total superconducting constant c for Hg1223. 

 

HgBa2Ca2Cu3O8+δ v# °ms ± /10� D�E�� [ 1eV] V�[eV] ∆ [meV] c 

1-type 0.198 0.75 0.337 0.04 0.0036 

2-type 0.189 0.84 0.346 0.11 0.0099 

3-type 0.177 1.75 0.397 6.71 0.5813 
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6.7 YBa2Cu3O7-δ (YBCO) 

YBa2Cu3O7-δ is one of the most important high temperature superconductor cuprates. It has an 

orthorhombic unit cell with two CuO2 planes and one CuO chain and lattice parameters                 a = 3.83 Å, b = 3.88 Å and c = 11.68 Å [8]. Its phase diagram (critical temperature T
 vs. doping 

amount δ) shows two maxima, one of them at δ = 0.55 with T
 = 57 K, and the other at δ = 0.96 

with T
 = 93 K [58]. Below δ = 0.4, superconductivity vanishes and the material becomes an 

insulator [58].  

According to theoretical work from Ref. [59], two superconducting gaps should be present for 

YBCO: a large one due to electron pairing in the CuO2 planes and a small one due to the CuO 

chains. Actual measurements show either two or three band gaps.  

Tunneling measurements show three superconducting gaps for two different doped YBCO-

samples with T
 = 89 and 91 K (two large gaps for the CuO2 planes and a small gap for the CuO 

chains) [60]. The corresponding binding energies are ∆7*��#,� = 9.5-10, ∆7*��#,+ = 15-18 and 

∆
)��� = 2.25-2.75 meV.  

According to Ref. [61], two superconducting gaps have been found in optimally doped 

YBa2Cu3O7-δ which correspond to the CuO chain and the CuO2 plane. In this reference, the 

observation of the two superconducting gaps is related to the BCS-like density of states. Values 

for the binding energies of ∆
)��� = 0.25-0.75 and ∆7*��# = 12-14 meV are reported in this 

reference. A value of about 1.9 for the superconducting constant c is reported in Ref. [62] for 

doped YBCO with T
 = 90 K. The different binding energies determined by different references 

are given in table 46. 

In Ref. [63], a mean Fermi velocity of v# = 0.35×106 m/s for the charge carriers moving along 

the chain and in the plane has been calculated for YBa2Cu3O7. A mean Fermi velocity of        v# = 0.25×106 [m/s] in the a-axis (no chain contribution) is also calculated for YBa2Cu3O6.9 in 

Ref. [24], in which a mean binding energy of ∆ = 10 meV has been also reported.  

The different values of the densities of states at the Fermi level for different doping amounts 

have been determined in Ref. [64] and are given in table 45. A density of states of                    D�E�� = 5.58 [1/meV] and a Fermi velocity of v# = 0.34×106 [m/s] are calculated from the 

electronic band structure in Ref. [21]. 
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δ v# °ms ± /10� D�E��[ 1eV] 
0 0.35 5.54 

0.1 0.25 4.19 

0.2 unkn. 3.59 

0.3 unkn. 3.23 

Table 45: Density of states D(Ef) for different doping amounts δ in YBa2Cu3O7-δ [64]. Fermi velocities are taken 

from Refs. [24] and [63]. 

 

Ref. ∆7*��#,� [meV]  ∆7*��#,+ [meV] ∆
)��� [meV] 
[24] 10*   

[60] 9.5-10 15-18 2.5-2.75 

[61] 12-14**  0.25-0.75 

Table 46: The different binding energies of YBa2Cu3O7-δ by Ref. [60] and [61]. * Only a value of the binding 

energy has been found by Ref. [24].** Only a superconducting gap related to the CuO2 has been found by Ref. 

[61]. 

 

6.7.1 Force Constants 

The force constants for each ionic pair to construct the unit cell have been determined from 

Raman spectroscopy data in Ref. [65]. They are given in table 47.  

 

Pair Force constant [N/m] Pair Force constant [N/m] 
CuI-OI 152 Ba-OIII 54 

CuI-OII 176 Ba-OIIII 54 

CuII-OIII 155 Y-OIII 77 

CuII-OIIII 149 Y-OIIII 79 

CuII-OII 103 CuII-CuII 51 

Ba-OI 55 Ba-Ba* 40 

Ba-OII 58   
Table 47: Measured force constants for each ionic pair in the unit cell of YBa2Cu3O7 [65].*: Force constant for a 

Ba-Ba pair in YBa2Cu3O6. I for ions in the CuO chain, OII is the apical oxygen and CuII, OIII and OIIII are 

located in the CuO2 plane (figure 19). 
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6.7.2 Calculation of Coulomb Forces 

To calculate the two binding energies ∆
)��� and ∆7*��#, two paths for the movement of the 

electron, one along the CuO chain and the other in the CuO2 plane, must be considered. The 

path in the CuO2 plane is the same as the one described in previous chapters. But for the electron 

moving along the CuO chain, the CuO plane on the top or bottom of the unit cell has been used. 

This path is located between the two chains in the CuO plane (figure 29). The Coulomb forces 

have been calculated for the two paths, like before.  

 

 

 

Figure 29: Path for the movement of the electron along the CuO chain in the CuO plane. The red ions are copper 

and the blue ions are oxygen. 
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6.7.3 Simulation of the Attractive Potential Energy V0 and the Binding 

Energy Δ 

YBa2Cu3O7-δ has been simulated to see if the results for a superconductor with two 

superconducting gaps correspond to the values from the different references. To find the two 

binding energies ∆
)��� and ∆7*��#, two paths for the movement of the electron have been 

selected, one along the CuO chain and the other in the CuO2 plane, for the simulation. The 

Fermi velocities and the density of states have been taken from Refs. [21], [24] and [63]. The 

simulation has been done for the two different doping amounts δ = 0 and 0.1 and the results are 

listed in table 48 and 49. The calculated binding energies ∆7*��# = 12.3 meV for δ = 0.1 are in 

good agreement with the reported values of ∆7*��#,� = 9.5-10 (Ref. [60]), ∆7*��# = 12-14 (Ref. 

[61]) and ∆ = 10 meV (Ref. [24]), hinting at BCS-like superconductivity. For the two doping 

amounts, the values of 4.8 and 11 meV for ∆
)��� are far from the measured values from Refs. 

[24], [60] and [61]. This is most probably because the same Fermi velocity for both paths (in 

the CuO2 plane and along CuO chain) is assumed in the simulation due to the shortage of more 

specific data. Nevertheless, the superconducting constant c
)��� of 1.22 for δ = 0 is relatively 

close to 1.9 from Ref. [62]. The comparison between the results of the calculation and different 

references are given in table 50 and 51. 

For δ = 0, the Fermi velocity is larger, leading to a smaller attractive potential energy V� than 

for δ = 0.1. As a result, the binding energies are also lower for δ = 0 and so is the critical 

temperature. This can be proven by the results of the simulation in table 48 and 49 for both 

superconducting gaps (∆7*��# and ∆
)���). It was not possible to simulate the binding energies 

for other doping amounts since no values for the corresponding Fermi velocities are published.  

The simulation results show that superconductivity in YBCO can behave as the same way in 

the conventional BCS-superconductors. 

 

δ T
[K] v# °ms ± /10� D�E��[ 1eV] TI[K] V�,
)���[eV] ∆
)��� [meV] c
)��� 

0 90 0.35 5.54 437 0.165 4.8 1.22 

0.1 93.6 0.25 4.19 437 0.32 11 2.71 

Table 48: Electrical properties, simulated attractive potential energy V0, binding energy Δ and superconducting 

constant c for the movement of the electron along the CuO chain in the unit cell of YBa2Cu3O7-δ. 
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δ T
[K] v# °ms ± /10� D�E��[ 1eV] TI[K] V�,7*��#[eV] ∆7*��# [meV] c7*��# 

0 90 0.35 5.54 437 0.17 5.1 1.31 

0.1 93.6 0.25 4.19 437 0.34 12.3 3.04 

Table 49: Electrical properties, simulated attractive potential energy V0, binding energy Δ and superconducting 

constant c for the movement of the electron in the CuO2 plane in the unit cell of YBa2Cu3O7-δ. 

 

δ = 0.1 ∆7*��# [meV] 
calculated 12.3 

Ref. [24] 10 

Ref. [60] 9.5-10 

Ref. [61] 12-14 

Table 50: Comparison between the binding energy from calculation and references for YBa2Cu3O7-δ with           

δ = 0.1. 

 

δ = 0 c
)��� 

calculated 1.2 

Ref. [62] 1.9 

Table 51: Comparison between the superconducting constant from calculation and Ref. [62] for YBa2Cu3O7-δ 

with δ = 0. 

 

6.8 Results and Discussion 

According to the results from the simulation, the Fermi velocity v# of the superconductors plays 

an important role regarding the appearance of superconductivity. The lower the Fermi velocity 

is, the larger the attractive potential energy V�, because the time during which the Coulomb 

forces act on each ion in the unit cell reduces. A larger V� leads to a larger binding energy ∆. 

On the other hand, the density of states D�E�� decreases with a reduction in the Fermi velocity, 

and decreasing D�E�� yields to lower binding energies. The overall effect of a decrease in the 

Fermi velocity can be either an increase or a decrease of the binding energy, depending on the 

values of V� and D�E��. 
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Superconductivity in HTSCs only occurs in the so-called superconductivity dome in their phase 

diagram (critical temperature T
 vs. doping amount δ). In this region, there is always an optimal 

doping amount δ57� for which the critical temperature T
 is a maximum. The Fermi velocity v# 

is directly proportional to the doping amount. This means that the responses of the attractive 

potential energy V� and the density of states D�E�� to a change in the doping amount δ, are 

qualitatively the same as a change in the Fermi velocity v#. According to the simulation results, V� and D�E�� exhibit opposite responses to a changing Fermi velocity or doping amount δ. Due 

to these responses and to the fact that the binding energy is directly related to both (being 

dependent on the product V�D�E��), it is then clear that an optimal doping amount must exist at 

which the binding energy is maximum. At the maximum value of the binding energy the critical 

temperature reaches its maximum value. The critical temperature decreases for δ smaller or 

larger than δ57�. Therefore, a dome with a maximum must be found in the phase diagram (T
 

vs. δ).  

In Ref [4] a linear relationship, which is described by the BCS theory, between the width of the 

superconducting gap 2∆ and the critical temperature T
 has been found for high temperature 

superconductor cuprates. This relationship (shown in figure 30) can be expressed as                     

2∆ = 2.214T
. It was not possible to conduct simulations of the attractive potential energy V� 

for all superconductors covered in the reference because the required force constants, Fermi 

velocities, densities of states and Debye temperatures could not be found in the available 

literatures. Therefore, the most important superconductors have been taken. The simulation 

results for the width of the superconducting gap 2∆ vs. the critical temperature T
 are shown in 

figure 31. The difference between this and figure 30 is that the latter only shows results for 

HTCS-cuprates, whereas in figure 31, the results are for conventional, unconventional 

superconductors and HTCS-cuprates. In figure 30 the binding energy ∆ for the optimally doped 

Bi2212 is about 15 meV, which does not correspond to the results of Refs. [53], [54] and [55]. 

According to the simulation results for Bi2Sr2CaCu2O8+δ in table 36, a binding energy ∆ of 14.2 

meV has been calculated for the Fermi velocity v# = 0.25×106 as well. This shows once again 

the importance of the Fermi velocity for calculating the exact value of the binding energy, 

because for Bi2Sr2CaCu2O8+δ a decrease of 9.6% for the Fermi velocity yields a large increase 

of 41% for the binding energy.  

Figure 31 shows the results from the simulation for the superconductors considered in this work. 

The two values of the binding energy for Bi2Sr2CaCu2O8+δ (table 36) have been considered in 

this figure. The two solid lines (1) and (2) are fitted to the simulation results to compare their 

equations with the relationship 2∆ = 2.214T
 given in Ref. [4]. For line (1) the Fermi velocity 
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of Bi2Sr2CaCu2O8+δ is 0.274×106, whereas it is 0.25×106 for line (2). Line (1) has a slope of 

2.865, which is close to the slope of 2.214 in Ref. [4].  

 

 

Figure 30: Superconducting gap 2Δ vs. critical temperature Tc. The solid line is for the relationship 2Δ=2.214Tc 

from Ref [4]. kb is the Boltzmann constant.  

 

Figure 31: Calculated superconducting gap 2Δ vs. critical temperature Tc for some high temperature, 

conventional and unconventional superconductors. The solid lines (1) and (2) are fitted lines on data. The Fermi 

velocity of Bi2Sr2CaCu2O8+δ considered for the line (1) is 0.274×106 and 0.25×106 for the line (2). kb is the 

Boltzmann constant. 
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The simulations for the two superconductors Sr2RuO4 and La1.85Sr0.15CuO4 were of particular  

interest since they have the same crystal structure. However, their electronic band structures are 

not similar, therefore, their Fermi velocities and densities of states are different. Other 

differences lie in the charges and masses of the ions in the unit cell, which influence the 

attractive potential energy V�. The simulation then leads to different attractive potential energies 

for the unit cells, different binding energies ∆ and different critical temperatures T
. For 

example, in Sr2RuO4, it has been assumed that the electron or the charge carriers move in the 

RuO2 plane, in which there are one ruthenium ion with charge 4+ and two oxygen ions each 

with 2-. On the other hand, there is a copper ion with charge 2+ in the CuO2 plane of 

La1.85Sr0.15CuO4. As a result, the Coulomb force acting on the ruthenium ion is twice larger than 

that on the copper ion. Furthermore, the mass of the two ions must be considered to calculate 

their displacement. 

From table 1, it can be observed that the Debye temperatures of these two superconductors are 

different. Due to the dependence between the Debye temperature and the force constants, a 

difference in the force constants is expected, which can be seen from the comparison between 

the force constants from table 28 and 32. This difference causes different values for the 

attractive potential energy of both superconductors.  

The results for the superconducting constants in the bottom table point out that the 

superconductivity in Sr2RuO4 exhibit BCS-like behaviour. In case of La1.85Sr0.15CuO4, 

superconductivity could also correspond to the BCS theory, but it might be possible that it arises 

through another, as yet unknown second pairing mechanism. 

 

Superconductors c 

Sr2RuO4 2.43 

La1.85Sr0.15CuO4 0.91 

Table 52: Calculated superconducting constant c in Sr2RuO4 and La1.85Sr0.15CuO4. 
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7 Summary 

Using the BCS theory, superconductivity in conventional superconductors can be explained. 

According to it, the phenomenon appears below the critical temperature T
 when two electrons 

form a so-called Cooper pair, for which an attractive potential interaction V� is required. In this 

work, this attractive potential energy is calculated analytically and also simulated using the 

finite element method. With the results for the attractive potential energy, the binding energy ∆ 

for Cooper pairs can be calculated.  

Two conventional superconductors Al and Nb, four high temperature superconductor cuprates 

(La1.85Sr0.15CuO4, Bi2Sr2CaCu2O8+δ, HgBa2Ca2Cu3O8+δ and YBa2Cu3O7-δ) and one 

unconventional superconductor Sr2RuO4 have been investigated. For comparison and 

ultimately motivation, the attractive potential energy of each superconductor has been 

calculated analytically by a simplified model. The calculation of the attractive potential energy 

of Al and Nb is relatively simple due to their simple unit cell. Due to the complex unit cell of 

cuprates and Sr2RuO4, only the attractive potential energy of the CuO2 and RuO2 planes was 

calculated. The attractive potential energy determines the binding energy according to the BCS 

theory. Hence, the obtained values are far from the corresponding experimental measurement 

as a result of the simplifications necessary for an analytical calculation. Nevertheless, the 

expected, increasing trend for the critical temperature vs. the calculated binding energy was 

found. Therefore, the finite element method has been used to obtain more exact values of the 

attractive potential energy.  

The attractive potential energy of each superconductor has been simulated to calculate the 

corresponding binding energy. For Al and Nb, the [100] direction has been taken as the 

direction of movement for the Fermi electrons. For cuprates it is assumed that the electrons 

move on the CuO2 plane (or also along CuO chains in the case of YBa2Cu3O7-δ) in the [100] 

direction, since it has been found that the charge carriers are doped into this plane. For Sr2CuO4, 

the RuO2 plane in the middle of the unit cell has been chosen in an analogous way.  

The simulation results show that the Fermi velocity v# is one of the most important electrical 

properties regarding superconductivity. The Fermi velocity influences the binding energy 

through the density of states D�E�� and the attractive potential energy V�.  

According to the simulation results, the attractive potential energy V� varies inversely on the 

Fermi velocity whereas the density of states D�E�� is proportional to the Fermi velocity. 

Because of this and the dependence of the binding energy on the product D�E��V�, a maximum  

for the binding energy at an optimal Fermi velocity must be mathematically found at which the 

critical temperature is maximum. In high temperature superconductor cuprates, the critical 
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temperature T
 changes with the doping amount δ. Due to the direct proportionality of the Fermi 

velocity on the doping amount, the critical temperature is proportional to the Fermi velocity as 

well. This dependence of the critical temperature on the Fermi velocity or the doping amount 

was proven by the simulation results for two values of the doping amount in YBa2Cu3O7-δ.  

A linear relationship between the width of the superconducting gap 2∆ and the critical 

temperature (2∆ = 2.865T
) was found, which corresponds to the experimentally determined 

relationship 2∆ = 2.214T
 [4].  

It was interesting to perform the simulations for the two superconductors Sr2RuO4 and 

La1.85Sr0.15CuO4, since they have the same crystal structure. It was found that the difference in 

the electrical properties, the charges and masses of the ion in the unit cell and the force constants 

can be a reason for the different critical temperatures in both superconductors. The results for 

their superconducting constants point out that the superconductivity in Sr2RuO4 could be BCS-

like whereas the superconductivity in La1.85Sr0.15CuO4 could also correspond to the BCS theory 

or perhaps to an as yet unknown second pairing mechanism. 
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