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Abstract

Current methods for computing optical flow are based on a four-step pipeline. The goal of
the first step is finding point correspondences between two consecutive images. The aim of
the second step is filtering problematic or even false correspondences. The purpose of the
third step—inpainting, is filling in the missing information from the neighborhood. The
final step refines the obtained dense flow field using a variational approach. Up to now,
there was little research that deals with the inpainting step and no work if a variational
approach could improve the inpainting step. A common technique for the final step of the
optical flow pipeline is minimizing an energy functional. In contrast, this thesis uses the
minimization of an energy function for the inpainting step, which is also, the focus of this
thesis. The inpainting energy functional consists of a similarity term and a smoothness
term. For the smoothness term several possible extensions are proposed, that incorporate
image information and enable an anisotropic smoothing behavior. Finally, all extensions
are compared with each other and with the results from EpicFlow [RWHS15].
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1 Introduction

1.1 Application

In the field of object tracking, optical flow has a primary role for helping to estimate
object velocity and position in the next frame. In the world of visual effects, besides object
tracking, it is used in 3D reconstruction, motion blur etc.

A good algorithm yields important information about apparent motion of objects, like
information about the velocities and the directions of objects. Apart from object tracking,
computing optical flow can also be applied for industrial automation purposes, for example
driver assistance systems. To increase its autonomy, a vehicle needs a way to perceive its
environment and adapt its actions using sensors for that purpose.

Even though computing optical flow was originally developed for computer and robot
vision application, it has found its way in physics, especially the physics of fluids. Liu and
Shen [LS08] showed the quantitative connection between optical flow and fluid flow for
typical flow visualizations. Another usage of optical flow is in military applications, like
moving target detection in noisy infrared image sequences [CBS00].

1.2 Motivation

Calculating optical flow is an important problem in computer vision. The goal is estimating
the motion field between two consecutive images (see Figure 1.1). The visual similarity
between two regions is the most important clue for finding the optical flow, however, due
to illumination changes, occlusions, blur etc., it is often unreliable [BTS17]. For correct
estimation of dense flow fields, other limiting constraints have to be added, like local
smoothness assumptions [HS81]. Incorporating a smoothness assumption with a linearised
data term into a variational energy function, usually relies on having to use image pyramids
for large displacements. In cases where the determined motion on a coarse scale is not
close to the correct motion, this approach will fail.

Other methods include sparse descriptor matching techniques, like SIFT [Low04]. The
sparse descriptor matching techniques are fast and reliable approaches, which can find
a global match, but they contain only matches that are determined for points with high
confidence [BTS17]. Therefore, they leave gaps in the motion field and since a motion for
which no match is found cannot be considered, this does not represent an optimal approach
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1 Introduction

(a) (b)

(c)

Figure 1.1: Computing the correspondence points. (a) Top Left: Image frame at time
t. (b) Top Right: Image frame at time t+1. (c) Bottom: Optical flow: pixel
motion field for frames a and b. Figure from [RN95].

by itself. However, using the sparse descriptor matching technique as the initial step of
optical flow algorithms mostly leads to improving the final flow computation.

Current methods for estimating the optical flow rely on a four-step pipeline, in further text
denoted as the optic flow pipeline. The four steps are:

• matching - finding point correspondences with descriptors, like SIFT,

• outlier filtering - removing problematic or false correspondences,

• inpainting - filling in the missing information from the neighbours,
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1.3 The Goal of the Thesis

• variational refinement - refining the inpainted dense flow field with a variational
method.

For the first step of the optic flow pipeline new techniques have been proposed, like in Bailer
et al. [BTS17], who obtains good results for the EpicFlow method [RWHS15], by using
patch matching techniques. The second step was improved by e.g. the forward-backward
check [XCS+06]. For the final step a few improvements have been proposed (see e.g.
[MSB17a]).

1.3 The Goal of the Thesis

The main focus of this thesis is the third step, namely the inpainting step. Until now, there
was little research in this area. An important question remains unanswered—if improving
the inpainting step will improve the final optical flow. The goal of the work presented
here is to develop a new inpainting method, based on a variational approach. Further, the
developed inpainting method shall be improved by using more advanced smoothness terms
and proposing new smoothness term, which rely on the smoothness terms presented by
Maurer et al. [MSV+17]. The final results will be compared with the inpainting step of the
EpicFlow [RWHS15] algorithm.

1.4 Outline of the Thesis

The application and motivation for the thesis are provided in Sections 1.1 and 1.2. The
thesis goal is described in Section 1.3. The final Section 1.4 of this chapter gives a general
overview of this thesis.

The remaining chapters are organized as follows:

• Chapter 2 contains the introduction of the optical flow concept, aperture problem
and how to solve a simple, global case computation of the optic flow presented by
Horn and Schunck [HS81]. After showing the biggest constraints of the model of
Horn and Schunck, some more advanced data terms, based on higher order constancy
assumptions, color extension and more robust penalisers are described. The final
section in this chapter introduces the backbone for the rest of the thesis, namely the
optic flow pipeline with a short overview of every step.

• Chapter 3 presents more advanced smoothness terms, including concepts like
anisotropy and non-quadratic regularisers. Besides first other smoothness terms,
also second order smoothness terms are presented, which are later used for a possible
improvements.

• Chapter 4 reviews the related work and background theories in inpainting. A
particular focus is placed on the techniques that has been chosen for comparing the
final results within this thesis.

9



1 Introduction

• Chapter 5 contains the main work done in this thesis. The sections are divided similar
like the optic flow pipeline. Hence, first the deep matching algorithm is introduced,
then new extensions of the smoothness terms from Chapter 3, but with the aim of
improving the inpainting step and finally, the energy functional for the variational
refinement is presented.

• Chapter 6 gives an overview of the datasets used, the error calculation techniques,
and the parameter settings. Finally, the experimental results are presented with a
comparison to the EpicFlow.

• Chapter 7 summarizes the work done in this thesis and gives some insights into the
limitations and advantages of the work.

10



2 Background

This chapter contains the basics regarding the computations of the optical flow with
some of its challenges, like the aperture problem. The most common example of optical
flow estimation is presented—the method of Horn and Schunck [HS81] and an adequate
minimization. Furthermore, novel advanced data terms are presented with modified
constraints for a more accurate estimation of the optical flow. The last section gives a short
overview of a commonly used pipeline for optical flow estimation.

Most of the concepts and examples used in the following, can be found in [Bru16] and
[Bru15].

2.1 Problem Formulation

Given two consecutive image frames I1 and I2, interpreted as a set of pixels, where I1
i,j

is the grey value of image I1 at pixel (i, j) and I2
i,j is the grey value of image I2 at pixel

(i, j), the goal is to compute the motion field (u, v) between both frames, see Figure 2.1.

Optical flow is presented as a 2D velocity field and results from moving objects in the scene
or camera motion. It can also be described as tracking pixels from one frame to next, which
results in a series of vectors for every pixel. Assuming that certain features of a pixel do not
change between frames, the grey value constancy assumption can be considered

I1
i,j − I2

i+u,j+v = 0. (2.1)

In case that multiple pixels have the same grey value, or no pixel with the same grey value,
the solution of the equation above may be non-unique or non-existing for some pixels. The
defined problem is restricted to integer displacements, making it unsuitable for real world
image sequences.

Provided that I1 and I2 are sampled instances from a continuous sequence I0(x, y, t) with
(x, y)⊤ ∈ Ω denoting the location within the image domain Ω ⊂ R2 and t ∈ R0

+ denoting
the time, it is possible to switch from integer to continuous modelling.
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2 Background

(x, y)

(x + u, y + v)

t t + 1

Figure 2.1: Two consecutive image frames at times t and t + 1. (a) Left: At time t the
object is at position (x, y). (b) Right: At the next time frame, the object is at
position (x + u, y + v). Figure adapted from [BT05].

2.1.1 Gaussian Presmoothing

In order to reduce the influence of noise and outliers, while preserving the mean value,
each image of the image sequence I0 can be convolved with a 2D Gaussian Kσ of mean
µ = 0 and standard deviation σ:

I(x, y, t) = Kσ ∗ I0(x, y, t), (2.2)

where Kσ(x, y) := 1
2πσ2 exp

(
−x2+y2

2σ2

)
.

After the convolution with a Gaussian, the image sequence becomes infinitely many times
differentiable, i.e. I ∈ C∞, which is important for computing image derivatives for some
differential methods.

2.1.2 The Grey Value Constancy Assumption

In case that u(x, y, t) and v(x, y, t) denote the displacements in x− and y−direction, re-
spectively, the continuous grey value constancy assumption reads

I(x, y, t)− I(x + u, y + v, t + 1) = 0, (2.3)

where I(x, y, t) and I(x, y, t + 1) are two consecutive frames for fixed t.

If the displacement is very small, the left hand side of the equation can be linearised via
first order Taylor expansion around the point (x, y, t)⊤:

0 = I(x, y, t)− I(x + u, y + v, t + 1)
= Ix(x, y, t)u + Iy(x, y, t)v + It(x, y, t),

(2.4)
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2.2 Aperture Problem

n

t

motion

Figure 2.2: Aperture problem. Vector n (red) represents the flow normal to the image
edge. Vector t (blue) represents the flow tangential to the image edge. Only
component n , which is in the direction of the spatial gradient, can be measured.
Figure adapted from [Fis17].

where subscripts denote partial derivatives.

This yields the brightness constancy constraint equation (BCCE)

Ixu + Iyv + It = 0. (2.5)

2.2 Aperture Problem

One of the reasons for losing much of the structural information of the original scene during
the imaging process is having a 3D scene and trying to project it to a 2D image, therefore
estimating the correct projected motion is ill-posed and requires additional constraints.

Given a single equation with two unknowns u and v, the Equation (2.5) is ill-posed and
thus cannot be computed uniquely. Only the flow component parallel to the spatial gradient
∇I = (Ix, Iy)⊤ can be computed via BCCE (as illustrated in Figure 2.2):

0 = Ixu + Iyv + It =
(

u

v

)⊤

∇I + It. (2.6)

The BCCE will not be violated by adding arbitrary flow components orthogonal to ∇I. This
is called aperture problem.
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2 Background

Figure 2.3: Aperture problem. (a) Left: Aperture problem when |∇I| ≠ 0. Single image
pixel corresponds to a line. (b) Right: Nothing can be said about the flow
when |∇I| = 0. Figure from [Bru06].

The flow vector (u, v)⊤ can be expressed via the basis vectors n = ∇I
|∇I| and t = ∇I

|∇I|
⊥

,
which represent the flow normal and tangential to the image edge respectively:

(
u

v

)
=
[(

u

v

)⊤ ∇I

|∇I|

]
∇I

|∇I|
+
[(

u

v

)⊤ ∇I

|∇I|

⊥
]
∇I

|∇I|

⊥

=
(

un

vn

)
+
(

ut

vt

)
.

(2.7)

From Equation (2.6) follows −It =
(

u

v

)⊤

∇I, thus the normal flow becomes:

(
un

vn

)
=
[(

u

v

)⊤ ∇I

|∇I|

]
= − It

|∇I|
∇I

|∇I|
= −I

I2
x + I2

y

(
IxIt

IyIt

)
. (2.8)

Only the normal flow can be computed from the BCCE without additional constraints. In
case where |∇I| = 0 no image information is available, therefore, nothing can be said
about the flow and not even the normal flow can be calculated (see Figure 2.3).

Finding an additional constraint that yields a second equation in the same unknowns can
help to overcome the aperture problem. It is most commonly assumed that the flow field is
smooth. This approach was developed by Horn and Schunck [HS81] and will be discussed
in detail in next section.

2.3 Variational Methods

The most widely used techniques for optic flow computation are differential methods.
Differential methods employ additional constraints to the estimation of the optical flow.

14



2.3 Variational Methods

Depending on whether the constraints are applied to neighboring pixels, or to all pixels,
differential methods are divided into local methods and global methods. Local methods are
more robust under noise, but do not yield very dense flow fields, whereas global methods
produce dense flow fields. Even a combination of local and global methods has been
proposed by Bruhn et al. [BWS05].

Two basic approaches for estimating the optical flow are developed by Horn and Schunck
[HS81] and Lucas and Kanade [LK+81]. Lucas and Kanade proposed a local method under
the assumption that small regions of pixels have the same flow, meaning that the flow
is constant in a local neighbourhood. The optical flow is computed based on the least
squares criterion for all pixels in the neighbourhood. Compared to point-wise methods it
is less sensitive to noise and often resolves the ambiguity problem of the BCCE (Equation
(2.5)). The model of Horn and Schunck is based on global optimization and will be briefly
discussed in this section. In this thesis the main focus will be on global methods.

2.3.1 Horn and Schunck

To overcome the aperture problem an additional smoothness constraint is needed. The
additional constraint and the BCCE, are combined to form an energy functional

E(u, v) =
∫

Ω
ED(u, v) + λES(u, v)dxdy. (2.9)

ED(u, v) represents the data term and it models constancy assumptions on image features
and ES is the smoothness term, which penalises variations in the flow field. The parameter
λ, also called the smoothness weight, represents a balance between the two terms. A bigger
λ means more influence of the smoothness term and more information will be provided
from the neighbouring pixels.

Under the assumption that the flow field is globally smooth, the method of Horn and
Schunck overcomes the aperture problem by penalising large spatial flow gradients ∇u and
∇v:

ES(u, v) = |∇u|2 + |∇v|2. (2.10)

Combining the BCCE from Equation as the data term ED and the additional smoothness
constraint, the following energy functional is obtained

E(u, v) =
∫

Ω
(Ixu + Iyv + It)2︸ ︷︷ ︸

data term

+λ (|∇u|2 + |∇v|2)︸ ︷︷ ︸
smoothness term

dxdy. (2.11)

Besides penalising deviations from smoothness of the flow field, the smoothness constraint
has an additional advantage, namely the so-called filling-in-effect. If |∇I| ≈ 0, no data
information is available and the only contribution for the estimation will be from the
smoothness constraint. The solution for u and v will be propagated from the neighbours.
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2 Background

2.3.2 Minimisation

Horn and Schunck propose to compute the optical flow as the minimizer of the energy
functional (2.11). Deriving the minimizer for the proposed energy functional means
deriving minimising functions u and v, that fits best to all model assumptions, which can
be contradictory. The energy functional is convex and thus has a unique solution, which
can be found by any globally convergent algorithm [Bru06].

The energy functional (2.11) is of the following form

E(u, v) =
∫

Ω
F (x, y, u, v, ux, uy, vx, vy)dxdy. (2.12)

Minimising a function, like the one above, can be done in three steps:

1. Euler-Lagrange equations

2. Discretisation

3. Iterative solution

Every step will be presented in detail. The minimisation is an adaptation from [Bru16].

1. Euler-Lagrange equations

The necessary conditions to minimize E are the Euler-Lagrange equations

Fu −
∂

∂x
Fux −

∂

∂y
Fuy = 0,

Fv −
∂

∂x
Fvx −

∂

∂y
Fvy = 0,

(2.13)

with Neumann boundary conditions

n⊤
[
Fux

Fuy

]
= 0 and n⊤

[
Fvx

Fvy

]
= 0, (2.14)

where n is the unit normal vector.

The integrand has the following form

F = (Ixu + Iyv + It)2 + λ(u2
x + u2

y) + λ(v2
x + v2

y), (2.15)

with partial derivatives
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2.3 Variational Methods

Fu = 2Ix(Ixu + Iyv + It),
Fux = 2λux,

Fuy = 2λuy,

Fv = 2Iy(Ixu + Iyv + It),
Fvx = 2λvx,

Fvy = 2λvy.

(2.16)

After inserting all the above terms in the Euler-Lagrange equations, the following
equations are derived

0 = 2I2
xu + 2IxIyv + 2IxIt − 2λuxx − 2λuyy,

0 = 2I2
y v + 2IxIyu + 2IyIt − 2λvxx − 2λvyy.

(2.17)

If taken into consideration that the Laplacian operator has the following form ∆u =
uxx + uyy, the above equations are equal to those below

λ∆u = (Ixu + Iyv + It)Ix,

λ∆v = (Ixu + Iyv + It)Iy,
(2.18)

with Neumann boundary conditions: n⊤∇u = 0 and n⊤∇v = 0.

2. Discretisation

For solving the Euler-Lagrange equations numerically, discretisation is necessary. The
image is sampled on a rectangular grid at regular intervals (hx is the spacing in x

direction, hy is the spacing in y direction and ht is the distance between both frames
and in general ht is assumed to be 1) with indices i, j representing the intersection
of the ith row and jth column. To fully discretize the Euler-Lagrange equation three
steps are required:

a) Discretisation of the flow functions u and v:

ui,j = u(i · hx, j · hy) vi,j = v(i · hx, j · hy), (2.19)

for i = 1, ..., N and j = 1, ..., M .

17



2 Background

b) The entries I2
x, I2

y , I2
t , IxIy, IxIt and IyIt should also be discretised, which

requires the discretisation of Ix, Iy and It and also I

Ii,j,t = I(i · hx, j · hy, t), (2.20)

for i = 1, ..., N , j = 1, ..., M and t = 1, 2.

Ix and Iy can be discretised via average central differences, whereas It via
forward differences

[Ix]i,j = 1
2

(
Ii+1,j,t+1 − Ii−1,j,t+1

2hx
+ Ii+1,j,t − Ii−1,j,t

2hx

)
,

[Iy]i,j = 1
2

(
Ii,j+1,t+1 − Ii,j−1,t+1

2hy
+ Ii,j+1,t − Ii,j−1,t

2hy

)
,

[It]i,j = Ii,j,t+1 − Ii,j,t

ht
.

(2.21)

c) Discretisation of ∆u = uxx + uyy and ∆v = vxx + vyy can be based on nested
central differences with half the grid sizes 1

2hx and 1
2hy, respectively.

∆u = uxx + uyy reads

∆u = (ux)x + (uy)y

≈
(ux)i+ 1

2 ,j − (ux)i− 1
2 ,j

2(1
2hx)

+
(uy)i,j+ 1

2
− (uy)i,j− 1

2

2(1
2hy)

≈
ui+1,j−ui,j

2( 1
2 hx) − ui,j−ui−1,j

2( 1
2 hx)

2(1
2hx)

+
ui,j+1−ui,j

2( 1
2 hy) − ui,j−ui,j−1

2( 1
2 hy)

2(1
2hy)

= ui+1,j − ui,j

h2
x

− ui,j − ui−1,j

h2
x

+ ui,j+1 − ui,j

h2
y

− ui,j − ui,j−1
h2

y

.

(2.22)

Following the same procedure for ∆v

∆v = (vx)x + (vy)y

≈
(vx)i+ 1

2 ,j − (vx)i− 1
2 ,j

2(1
2hx)

+
(vy)i,j+ 1

2
− (vy)i,j− 1

2

2(1
2hy)

≈
vi+1,j−vi,j

2( 1
2 hx) − vi,j−vi−1,j

2( 1
2 hx)

2(1
2hx)

+
vi,j+1−vi,j

2( 1
2 hy) − vi,j−vi,j−1

2( 1
2 hy)

2(1
2hy)

= vi+1,j − vi,j

h2
x

− vi,j − vi−1,j

h2
x

+ vi,j+1 − vi,j

h2
y

− vi,j − vi,j−1
h2

y

.

(2.23)
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2.3 Variational Methods

Combining all the above derivations yields the following two equations

0 = [Ix]2i,jui,j + [Ix]i,j [Iy]i,jvi,j + [Ix]i,j [It]i,j − λ
∑

l∈(x,y)

∑
(̃i,̃j)∈Nl(i,j)

ũ
i,̃j
− ui,j

h2
l

,

0 = [Ix]i,j [Iy]i,jui,j + [Iy]2i,jvi,j + [Iy]i,j [It]i,j − λ
∑

l∈(x,y)

∑
(̃i,̃j)∈Nl(i,j)

ṽ
i,̃j
− vi,j

h2
l

,

(2.24)

for i = 1, ..., N and j = 1, ..., M , where Nl(i, j) denotes the set of neighbours of pixel
i, j in direction of axis l.

3. Iterative solution

To compute the optical flow, it is necessary to solve a system of two equations for
every point in an image, or 2(N ·M) unknowns in total. Solving those equations with
a standard method, like the Gauß-Jordan elimination would be very costly. Horn and
Schunck used iterative solvers, like the Gauß-Seidel method (see Algorithm 2.1).

Algorithm 2.1 Gauß Seidel

1: procedure GAUSS-SEIDEL ITERATIVE METHOD

2: Nl(i, j)− ← set of neighbours of pixel (i, j) in direction of axis l

3: that have already been computed in the current iteration.
4: Nl(i, j)+ ← set of neighbours of pixel (i, j) in direction of axis l

5: that still have to be computed in the current iteration.
6: Initialize starting values for all pixels (i, j) of the optical flow(ui,j , vi,j).
7: k ← solver iteration index of the current processed image.
8: loop:

9: uk+1
i,j =

(−[Ix]i,j [It]i,j−([Ix]i,j [Iy ]i,jvk
i,j−λ

∑
l∈x,y

∑
(̃i,̃j)∈N−

l
(i,j)

uk+1
ĩ,̃j

h2
l

−λ
∑

l∈x,y

∑
(̃i,̃j)∈N+

l
(i,j)

uk

ĩ,̃j

h2
l

))

[Ix]2i,j+λ
∑

l∈x,y

∑
(̃i,̃j)∈Nl(i,j)

1
h2

l

10: vk+1
i,j =

(−[Iy ]i,j [It]i,j−([Ix]i,j [Iy ]i,juk+1
i,j −λ

∑
l∈x,y

∑
(̃i,̃j)∈N−

l
(i,j)

vk+1
ĩ,̃j

h2
l

−λ
∑

l∈x,y

∑
(̃i,̃j)∈N+

l
(i,j)

vk

ĩ,̃j

h2
l

))

[Iy ]2i,j+λ
∑

l∈x,y

∑
(̃i,̃j)∈Nl(i,j)

1
h2

l

11: goto loop to process all images in sequence.
12: end procedure

One shortcoming of this numerical solver is that it depends on the initial guess. If the
initial guess is bad, the solver may require thousands of iterations per time-step.
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2.4 Challenges

As mentioned in [LZS13] the difficulties in estimating the optic flow, for the method of
Horn and Schunck, arise because:

1. Computing dense flow fields is expensive.

2. Occluded regions and motion discontinuities are hard to model—fast methods usually
assume that all pixels move in the same direction, this leads to bad estimations at
occlusion boundaries.

3. Displacements which are larger than the object structure lead to more difficult
matching.

4. Optical flow does not represent the true motion field, because illumination changes
are also reflected in calculating the optical flow.

Other challenges related to the application field are accuracy and robustness. For real-
time applications, computational speed and real-time capability are also crucial issues
[WC11].

2.5 Advanced Data Terms

The data term models constancy assumptions on image features. The most common used
data term is the one based on the linearised grey value constancy assumption. Unfortunately,
it is constrained only in one direction (see Section 2.2), making the aperture problem
always present. This section will mainly contains more advanced data terms.

To make more advanced data terms, four improvements should be considered:

1. Multiple constraints - not only one constraint, like the grey value constancy assump-
tion can be considered, but multiple constraints, including higher order constancy
assumptions.

2. Color extension - extension of all constraints to the RGB model.

3. Robust data terms - for a more robust version of the data term, other non-quadratic
penalisers should be used.

4. Refraining from Taylor linearisation - for big displacements, the Taylor linearisation
will not be valid anymore.
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2.5 Advanced Data Terms

2.5.1 Higher Order Constancy Assumptions

Previously, only the grey value constancy assumption was used as a data term

ED(u, v) = (Ixu + Iyv + It)2. (2.25)

In comparison to the grey value constancy assumption, other possible constancy assump-
tions have certain advantages.

The main drawback of the above data term is its susceptibility to slight changes in bright-
ness, which often appear in natural scenes [BBPW04], thus it can not cope with additive
illumination changes. A solution to this problem was proposed by Uras et al. [UGVT88]
and it is called the gradient constancy assumption

Ix(x, y, t)− Ix(x + u, y + v, t + 1) = 0,

Iy(x, y, t)− Iy(x + u, y + v, t + 1) = 0.
(2.26)

After linearising the above equations, the following two equations will be derived

Ixxu + Ixyv + Ixt = 0,

Iyxu + Iyyv + Iyt = 0.
(2.27)

Having these two equations, it is enough to provide a unique solution for u and v, thus the
aperture problem is not always present.

The gradient constancy assumption, which is invariant to the changes in brightness, allows
some small variations in the grey value and penalises illumination changes less severely.

The constancy assumptions can be of higher order, like the second order spatial image

Hessian HI =
(

Ixx Ixy

Ixy Iyy

)
, proposed by Papenberg et al. [PBB+06]:

Ixx(x, y, t)− Ixx(x + u, y + v, t + 1) = 0,

Ixy(x, y, t)− Ixy(x + u, y + v, t + 1) = 0,

Ixy(x, y, t)− Ixy(x + u, y + v, t + 1) = 0,

Iyy(x, y, t)− Iyy(x + u, y + v, t + 1) = 0.

(2.28)

The linearisation reads
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Ixxxu + Ixxyv + Ixxt = 0,

Ixyxu + Ixyyv + Ixyt = 0,

Ixyxu + Ixyyv + Ixyt = 0,

Iyyxu + Iyyyv + Iyyt = 0.

(2.29)

For the second order constancy assumption four equations are derived, but the second
and third equations are identical. Having three unique equations and only two unknowns,
makes the aperture problem not always present, like in the case of gradient constancy
assumption.

Gradient and the Hessian are well suited for translational and divergent motions, however
they contain directional information, making it not optimal in cases where objects rotate.
To discard the directional information, the constancy of the magnitude of the spatial image
gradient was proposed [PBB+06]

|∇2I(x, y, t)|ϵ − |∇2I(x + u, y + v, t + 1)|ϵ = 0, (2.30)

where |x|ϵ =
√

x2 + ϵ is the regularised magnitude, required to guarantee differentiability.
The following linearisation holds

[|∇2I|ϵ]xu + [|∇2I|ϵ]yv + [|∇2I|ϵ]t = 0. (2.31)

Another example for assuring rotation invariance is the constancy of the trace of the
Hessian, which comes down to the Laplacian

|∆I(x, y, t)−∆I(x + u, y + v, t + 1)| = 0, (2.32)

or the constancy of the determinant of the Hessian

det(HI(x, y, t))− det(HI(x + u, y + v, t + 1)) = 0. (2.33)

2.5.2 Color Extension

Previous assumptions have only been made on grey value images. Additional information
can be obtained from color images. Regarding the data term, extensions can be made using
the RGB colour sequence Ii = (I1, I2, I3)⊤, where (I1, I2, I3)⊤ are all three (R, G, B)⊤

color channels

I1(x, y, t)− I1(x + u, y + v, t + 1) = 0,

I2(x, y, t)− I2(x + u, y + v, t + 1) = 0,

I3(x, y, t)− I3(x + u, y + v, t + 1) = 0.

(2.34)
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2.5 Advanced Data Terms

Coupling the above equations yields

ED−color(u, v) =
3∑

c=1
(Ic(x, y, t)− Ic(x + u, y + v, t + 1))2dxdy. (2.35)

After linearising the data term, the above equation reads

ED−color(u, v) =
3∑

c=1
(Ic

xu + Ic
yv + Ic

t)2dxdy. (2.36)

For a unique solution all three constraints should be fulfilled jointly by one displacement
field.

2.5.3 Robust Data Terms

For a good optical flow algorithm, it is necessary to overcome many challenges. One
of them is robustness to outliers, which include occlusions. Outliers caused by noise or
occlusions had a big influence in the energy function of Horn and Schunck, mostly due to
the quadratic penaliser. For reducing influence of the outliers non-quadratic penalisers can
be used. Changing the energy function 2.11 to

E(u, v) =
∫

Ω
Ψ
(
(Ixu + Iyv + It)2)+ λ(|∇u|2 + |∇v|2)dxdy, (2.37)

where Ψ(s2) is the sub-quadratic penaliser (described below), can reduce the influence of
outliers.

Sub-Quadratic Penaliser

To reduce the influence of outliers caused by noise or occlusions, the robust sub-quadratic
penaliser is used

ΨSQ(s2) =
√

s2 + ϵ2, (2.38)

where ϵ is a small positive constant. The function is illustrated in Figure 2.4.

For the energy functional (2.37) with ΨSQ(s2) being the sub-quadratic penaliser, computing
the Euler-Lagrange equation will give the following two equations (c.f. [Bru16])

0 = Ψ′
SQ

(
(Ixu + Iyv + It)2)(Ix

2u + IxIyv + IxIt
)
− λ∆u,

0 = Ψ′
SQ

(
(Ixu + Iyv + It)2)(IxIyu + Iy

2v + IyIt
)
− λ∆v,

(2.39)

with reflecting Neumann boundary conditions n⊤∇u = 0 and n⊤∇v = 0.
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x

f(x)

√
x2 + ϵ2

x2

Figure 2.4: In the case of data terms with linearised constancy assumptions, ΨSQ(s2)
should be positive, increasing, sub-quadratic and strictly convex. Figure
adapted from [Bru16].

Due to the factor Ψ′
SQ

(
(Ixu + Iyv + It)2), with

Ψ′
SQ(s2) = 1

2
√

s2 + ϵ2
, (2.40)

these equations are nonlinear in u and v.

2.5.4 The Warping Strategy

In Section 2.1 the brightness constancy assumption was linearised under the assumption
that the displacement is very small. For large displacements, this constraint might be
violated.

Without the linearisation, the Horn and Schunck energy functional is given by

E(u, v) =
∫

Ω
(I(x + u, y + v, t + 1)− I(x, y, t))2︸ ︷︷ ︸

data term

+λ (|∇u|2 + |∇v|2)︸ ︷︷ ︸
smoothness term

dxdy. (2.41)

The next step for minimizing this energy functional is computing Euler-Lagrange equations,
which yields

Ix(x + u, y + v, t + 1)(I(x + u, y + v, t + 1)− I(x, y, t))− λ∇u = 0,

Iy(x + u, y + v, t + 1)(I(x + u, y + v, t + 1)− I(x, y, t))− λ∇v = 0, (2.42)

with n⊤∇u = 0 and n⊤∇v = 0.
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2.5 Advanced Data Terms

Figure 2.5: Non-convex functions with multiple local minimas. (a) Left: Initialisation
leads to finding the global minima. (b) Right: Initialisation leads to finding a
good enough local minima. Figure from [Bru06].

The equations are now implicit in u and v due to the use of the constancy assumption
without linearisation. A direct discretisation is thus not possible. Another challenge is the
non-convexity. Non-convex functions can have multiple local minimas (see Figure 2.5),
which all satisfy the Euler-Lagrange equations. A minimisation concept has to be developed
for finding the global minimum, or a good enough local minimum [Bru06].

To deal with both challenges an incremental coarse-to-fine fixed point iteration is introduced
with the following steps:

1. Fixed point iteration

For faster convergence and better stability in [Bru06] an approach is used that is
semi-implicit in the data term related contributions (expressions from k and k + 1)
and fully implicit in the smoothness term related contributions (expressions only
from k + 1), where k denotes the iteration number.

The iteration step k + 1 is given by

Ix(x + uk, y + vk, t + 1)(I(x + uk+1, y + vk+1, t + 1)− I(x, y, t))− λ∆uk+1 = 0,

Iy(x + uk, y + vk, t + 1)(I(x + uk+1, y + vk+1, t + 1)− I(x, y, t))− λ∆vk+1 = 0.

(2.43)

2. Incremental computation

In this step the unknown flow field uk+1 is split into two parts:

• already known displacement from old time step k: (uk, vk)⊤,

• the unknown displacement increment from new time step k + 1: (duk, dvk)⊤,
hence
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uk+1 = uk + duk,

vk+1 = vk + dvk.
(2.44)

Combining the equations above and linearising the data term related contribution via
first order Taylor expansion, with respect to duk and dvk, the following equation is
derived

I(x + uk+1, y + vk+1, t + 1) = I(x + uk + duk, y + vk + dvk, t + 1) ≈
I(x + uk, y + vk, t + 1) + Ix(x + uk, y + vk, t + 1)duk + Iy(x + uk, y + vk, t + 1)dvk.

(2.45)

This linearisation has been postponed for correct handling of large displacements
[Bru06]. The constancy assumption (2.3) is now approximated as a series of lin-
earised ones.

Inserting the Equation (2.45) in the Equation (2.43) yields

0 = Ix(x + uk, y + vk, t + 1)(Ix(x + uk, y + vk, t + 1)duk + Iy(x + uk, y + vk, t + 1)dvk

+ I(x + uk, y + vk, t + 1)− I(x, y, t)︸ ︷︷ ︸
≈It

)− λ∆(uk + duk),

0 = Iy(x + uk, y + vk, t + 1)(Ix(x + uk, y + vk, t + 1)duk + Iy(x + uk, y + vk, t + 1)dvk

+ I(x + uk, y + vk, t + 1)− I(x, y, t)︸ ︷︷ ︸
≈It

)− λ∆(vk + dvk).

(2.46)

3. Coarse-to-fine strategy

The final step is embedding the fixed point iteration into a coarse-to-fine strategy to
avoid local minima. Large local minima can be avoided by starting from a coarse
level and then successively refining the resolution. The coarse level can be derived by
convolving I with a Gaussian with a large standard deviation and then decreasing
the standard deviation to derive finer resolutions. At coarse grids, the small local
minimas will vanish, improving the initialisation, which is mostly responsible for
finding the global minimum or a good enough local minimum, as illustrated in Figure
2.5.

2.6 Optic Flow Pipeline

The previously described warping strategy solved problems on a coarser grid and then used
those solutions as an initialisation for finer grids. At coarser scales details would disappear,
including small objects [MSB17a]. Consequently large displacements still represent an
open problem in the optical flow estimation, especially for small objects that move fast.
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2.6 Optic Flow Pipeline

Another approach is starting with a good initialisation and using the variational approach
to refine this initialisation. For this purpose, current methods use the optic flow pipeline,
consisting of four steps:

matching → outlierfiltering → inpainting → variational refinement

Figure 2.6: Optic Flow Pipeline

The aim of this pipeline is to produce better results with a better initialisation.

2.6.1 Matching

Given two images I1 and I2 of the same scene, the matching problem is defined as finding
correspondences in I2 for N points located in I1. In order to find correspondences between
two images, measurable characteristics are required. These measurable characteristics,
including corners, edges and blobs, are called image features [Alh11].

Image matching is made of two steps, extraction of local descriptors and matching them.
The local descriptors are usually histograms of image measurements like in [Low04]. After
extraction of local descriptors, the matching step is done based on a similarity measure,
comparing each pair of features. Provided that a good matching operator is found, it should
be robust to large displacements and motion discontinuities. The matches should be rather
dense to obtain a good initialisation [MSB17a].

2.6.2 Filtering

Sparse features can be computed robustly and can capture long-range motions, but due to
outliers and uneven covering of the images, generic interpolators do not work well [WB15].
After the matching step it is often required to preprocess the matches or filter them. The
most significant reason for filtering is the removal of outliers, which can deteriorate the
estimation.

2.6.3 Inpainting

After filtering, very few matches will remain. However for the initialization of the final step,
a dense flow field is needed. For this goal, the remaining matches should be interpolated.
The third step and the main topic of this thesis is inpainting. Inpainting focuses on the
sparse-to-dense interpolation, like in EpicFlow [RWHS15], where the fill-in is done based
on the nearest neighbours. The main challenge remains finding the optimal sparse-to-dense
algorithm, which will provide a good initialisation for the next step.

27



2 Background

2.6.4 Variational Refinement

The variational refinement is the final step in the optical flow pipeline. Standard variational
energy minimization is computed on the inpainted flow field to obtain the final flow
estimation. The inpainted flow is used as an initialisation of an energy functional.
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3 Advanced Smoothness Terms

According to Wedel and Cremers [WC11] the three main purposes of the applied smoothness
assumptions are:

• The fill-in effect, or propagating information from the neighboring pixels into regions
with low texture.

• Respect image discontinuities, i.e. preserve edges.

• Robustness with respect to outliers.

The smoothness term penalises fluctuations in the flow field, but can not remove illumina-
tion artifacts. The simplest quadratic smoothness term, used in Chapter 2 reads

Es(u, v) = |∇u|2 + |∇v|2. (3.1)

Because the given regulariser enforces the same smoothness in every direction, it is called
the homogeneous (isotropic) smoothness term. The regulariser does not respect any flow
discontinuities, thus different image objects, which move in different directions, or with
different magnitudes, could not be tracked and semantically important edges may get
dislocated [Bru06] . To avoid the stated limitations more advanced smoothness terms are
presented in this chapter.

Those more advanced smoothness terms consider the following three concepts:

1. Non-quadratic regularisers - Instead of a quadratic penaliser in the smoothness
term, similar like for the data term, a different penaliser Ψ(s2) can be used. The
smoothness term looks like following

Es−robust(u, v) = Ψ(|∇u|2 + |∇v|2). (3.2)

2. Anisotropy - Integrating directional information in the smoothness term.

3. Higher order terms - In contrast to first order smoothness terms, second order
smoothness terms can capture the estimation of piecewise affine flows.
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3.1 Non-quadratic Regularisers

Apart from the sub-quadratic regulariser from Section 2.7 with the main purpose of
permitting piecewise smooth results, other non-quadratic regularisers are also used with
other properties:

• The edge-enhancing Perona-Malik (Lorentzian) regulariser [PM90]:

ΨP M (s2) = ϵ2 log
(

1 + s2

ϵ2

)
. (3.3)

• The edge preserving Charbonnier regulariser [CBAB94]:

ΨCH(s2) = 2ϵ2

√
1 + s2

ϵ2 , (3.4)

where ϵ is a small positive constant.

3.2 Anisotropy

After computing the Euler-Lagrange equations for the method of Horn and Schunck the
following equations are derived, as in Chapter 2:

λ∆u = (Ixu + Iyv + It)Ix,

λ∆v = (Ixu + Iyv + It)Iy,
(3.5)

where the left hand side can be rewritten as

λ(uxx + uyy) = λdiv

((
1 0
0 1

)
︸ ︷︷ ︸

D

(
ux

uy

)
︸ ︷︷ ︸

∇u

)
,

λ(vxx + vyy) = λdiv

((
1 0
0 1

)
︸ ︷︷ ︸

D

(
vx

vy

)
︸ ︷︷ ︸

∇v

)
,

(3.6)

with D = I being the so-called diffusion tensor.

For a more general case, the diffusion tensor can also be defined as

D =
(

d1 d12
d12 d2

)
. (3.7)
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Figure 3.1: The weighting function g(s2) should be positive and decreasing. Figure adapted
from [Bru16].

3.2.1 Isotropic Smoothness Terms

In case, where d12 = 0 and d1 = d2, the smoothness term is called isotropic. One example
is the flow-driven isotropic smoothness term, proposed by Schnörr [Sch94]:

ΨSQ(|∇u|2 + |∇v|2), (3.8)

where D = Ψ′
SQ(|∇u|2 + |∇v|2)I.

Another example for isotropic smoothness terms is the isotropic image-driven smoothness
term [ÁELS99] :

g(|∇I|2)(|∇u|2 + |∇v|2) (3.9)

where D = g(|∇I|2)I.

In this case the spatial image gradient |∇I|2 serves as a fuzzy edge detector. If the gradient
is large, the diffusion process should be inhibited [Bru06]. However, this means that at
noisy pixels, the diffusion will be very small. Since the use of directional information is not
integrated in the diffusion tensor and both eigenvalues are scaled with the same factor, the
diffusion will be reduced also orthogonal to the gradient.

This is possible using a positive and decreasing weighting function g(s2), like g(s2) =
1

2
√

s2+ϵ2 and ϵ > 0, as illustrated in Figure 3.1.

3.2.2 Anisotropic Smoothness Term

Anisotropic image-driven regularisers take into account directional information from image
structures. This information can be obtained by considering the structure tensor Jρ by
means of an eigenvalue decomposition, where Jρ reads
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Jρ = Kρ ∗ (∇I∇I⊤) =
(

Kρ ∗ I2
x Kρ ∗ IxIy

Kρ ∗ IxIy Kρ ∗ I2
y

)
. (3.10)

∇I = (Ix, Iy)⊤ is the spatial gradient and Kρ is the Gaussian kernel with standard deviation
ρ, with ∗ being the convolution operator. The directions r1 and r2 are calculated as the
normalised eigenvectors of the structure tensor Jρ

Jρ = (r1, r2)
(

λ1 0
0 λ2

)(
r⊤

1
r⊤

2

)
. (3.11)

The eigenvectors r1 and r2 represent directions with highest and lowest contrast respectively,
whereas λ1 and λ2 are the corresponding eigenvalues, representing the contrast [Bru06].
r1 and r2 form an orthonormal system, where the vector r1 points across image structures
and r2 along them. This allows to apply different kind of smoothings along and across
image structures [HSW15].

An example of the anisotropic first order smoothness term is the constraint adaptive
regulariser from Zimmer et al. [ZBW11]:

ES−con−adapt = ΨS1

((
r⊤

1 ∇u
)2

+
(
r⊤

1 ∇v
)2)

+ ΨS2

((
r⊤

2 ∇u
)2

+
(
r⊤

2 ∇v
)2)

, (3.12)

where ΨS1(s2) = ΨP M (s2) and ΨS2(s2) = s2.

The diffusion tensor reads:

Dcon−adapt = (r1, r2)
(

ΨS1 ’ 0
0 ΨS2 ’

)(
r⊤

1
r⊤

2

)
, (3.13)

where ΨS1 ’ = ΨS1 ’
((

r⊤
1 ∇u

)2
+
(
r⊤

1 ∇v
)2)

and ΨS2 ’ = ΨS2 ’
((

r⊤
2 ∇u

)2
+
(
r⊤

2 ∇v
)2)

.

In case of the Zimmer et al. regulariser, the function ΨS1 performs a more robust penalisa-
tion in the r1-direction, meaning that it will be less smoothing in the direction across the
image edges for the purpose of preserving image edges. However, in the r2-direction there
is a quadratic penalisation with the function ΨS2(s2) = s2. Consequently, ΨS2 ’(s2) = 1 and

the second eigenvalue of the diffusion tensor is ΨS2 ’
((

r⊤
2 ∇u

)2
+
(
r⊤

2 ∇v
)2)

= 1.
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3.3 Higher Order Terms

All previously shown smoothness terms were first order smoothness terms and therefore
cannot capture the estimation of piecewise affine flows. Second order smoothness terms
penalise non-affine flow fields.

Second order strategies are divided into three classes:

• Direct approaches

• Indirect approaches (coupling models)

• Combined approaches

For every of those three classes of smoothness terms, one isotropic and two anisotropic
variants are presented and represent an adaptation from [MSV+17].

3.3.1 Direct Approaches

In the method of Horn and Schunck the first-order smoothness term directly penalises
the magnitude of the gradient (first order derivative). In contrast, direct second-order
smoothness term directly penalise second order derivatives of the flow.

Isotropic:

One possible way to design the smoothness term is by directly penalising the Hessian H
[DSV+14]

Es−iso(w) = Ψ
(
||Hu||2F + ||Hv||2F

)
, (3.14)

where the flow field is w = (u, v)⊤, ||H · ||F is the Frobenius norm of the Hessian and Ψ a
penaliser function that allows to preserve discontinuities in the flow field.

Using the structure of the image to regularise the flow can be beneficial, therefore using
anisotropic variants for different kinds of smoothing along and across image structures
will also be presented here. r1 and r2 are the eigenvectors of the structure tensor. Both
directional components are penalised differently to achieve an anisotropic behaviour.
Different penalisation functions Ψ1 and Ψ2 can be applied along and across image structures.
Depending on if the directions rk,(k=1,2) are penalised jointly or separately, two cases can
be distinguished:

Single anisotropic case:

Es−aniso−single(w) =
2∑

l=1
Ψl

( 2∑
k=1

(
r⊤

k Hurl

)2
+
(
r⊤

k Hvrl

)2
)

. (3.15)
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Double anisotropic case:

Es−aniso−double(w) =
2∑

l=1

2∑
k=1

Ψl,k

((
r⊤

k Hurl

)2
+
(
r⊤

k Hvrl

)2)
, (3.16)

where Ψl,k,(l=1,2;k=1,2) are penalisation functions that allow to preserve discontinuities in
the flow field.

Apart from the Hessian, the Laplacian can also be used, like the example from Chan et al.
[CMM00]. The direct second order approach penalises kinks. However, with the lack of
penalising first order derivatives, there is no possibility of modelling jumps.

3.3.2 Indirect Approaches

Another approach, which uses auxiliary functions, is the indirect approach. It approximates
first order derivatives and then enforces smoothness assumptions on the auxiliary func-
tions. Consequently, it is possible to model discontinuities in both first and second order
derivatives.

Isotropic:

Es−iso(w) = inf
a,b

{
Ψ
(
|∇u− a|2 + |∇v − b|2

)
+ βΨ

(
||J a||2F + ||J b||2F

)}
. (3.17)

The vector fields a = (a1, a2)⊤ and b = (b1, b2)⊤ are the auxiliary functions that approximate
the gradients ∇u and ∇v, respectively, whereas J a and J b are the Jacobians of these
vector fields. λ is used as the weighting parameter.

The first term couples ∇u with a and ∇v with b and is called the coupling term. However,
the aim of the second term is the smoothness of a and b, hence it is referred to as the
smoothness term. This approach does not require the explicit estimation of the second
order derivatives [HSW15]. Apart from the isotropic case, the two anisotropic variant are
the following:

Single anisotropic case:

Es−aniso−single(w) = inf
a,b

{ 2∑
l=1

Ψl

((
r⊤

l (∇u− a)
)2

+
(
r⊤

l (∇v − b)
)2)

+

β
2∑

l=1
Ψl

( 2∑
k=1

(
r⊤

k J arl

)2 +
(
r⊤

k J brl

)2)}
.

(3.18)

Similar to the previous case, the single anisotropic case can be extended:

Double anisotropic case:
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3.3 Higher Order Terms

Es−aniso−double(w) = inf
a,b

{ 2∑
l=1

Ψl

((
r⊤

l (∇u− a)
)2

+
(
r⊤

l (∇v − b)
)2)

+

β
2∑

l=1

2∑
k=1

Ψl,k

((
rT

k J arl

)2 +
(
r⊤

k J brl

)2)}
,

(3.19)

where r⊤
k J arl represents an approximation of r⊤

k Hurl and r⊤
k J brl represents an approx-

imation of r⊤
k Hvrl.

3.3.3 Combined Approaches

Another way to include both, first and second order derivatives, in the smoothness term is
the combined approach. As opposed to the indirect approach, the estimation of the second
order derivatives, is done explicitly, by penalising both first and second order derivatives
in one function. The trade off between both the first and second order term is done via a
weight λ with flow fields w1 = (u1, v1)⊤ and w2 = (u2, v2)⊤. The isotropic variant reads:

Isotropic:

Es−iso(w) = inf
w1+w2=w

{
Ψ
(
|∇u1|2 + |∇v1|2

)
+ λΨ

(
||Hu2||2F + ||Hv2||2F

)}
. (3.20)

As in the previous cases the single anisotropic and double anisotropic cases are:

Single anisotropic case:

Es−aniso−single(w) = inf
w1+w2=w

{ 2∑
l=1

Ψl

((
r⊤

l ∇u1
)2

+
(
r⊤

l ∇v1
)2)

+

λ
2∑

l=1
Ψl

( 2∑
k=1

(
r⊤

k Hu2rl

)2
+
(
r⊤

k Hv2rl

)2
)}

.

(3.21)

Double anisotropic case:

Es−aniso−double(w) = inf
w1+w2=w

{ 2∑
l=1

Ψl

((
r⊤

l ∇u1
)2

+
(
r⊤

l ∇v1
)2)

+

λ
2∑

l=1

2∑
k=1

Ψl,k

((
r⊤

k Hu2rl

)2
+
(
r⊤

k Hv2rl

)2)}
.

(3.22)
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4 Related Work

Dealing with long-range motion is still an unsolved task in computer vision. During
the coarse-to-fine estimation of the optical flow, most approaches get stuck in the local
minima due to bad initialization and consequently, may fail to estimate large displacements.
Furthermore, coarse-to-fine algorithms tend to remove small objects at coarser scales.

Brox et al. [BBM09] proposed an approach on how to handle large displacements by
extending the global energy functional with a similarity term, hereby integrating the
information of the region correspondence. The main idea is to create a hierarchy of regions
and a boundary map g(x) of the image. The correspondences between the regions are
computed by nearest neighbor matching and are integrated in the enegy functional:

E(w(x)) =
∫

ΨSQ

(
|I2
(
x + w(x)

)
− I1(x)|2

)
+ γΨSQ

(
|∇I2

(
x + w(x)

)
−∇I1(x)|2

)
︸ ︷︷ ︸

data term

dx

+ β

∫ 5∑
j=1

ρj(x)ΨSQ

(
(u(x)− uj(x))2 + (v(x)− vj(x))2

)
︸ ︷︷ ︸

similarity term

dx

+ λ

∫
ΨSQ

(
|∇u(x)|2 + |∇v(x)|2 + g(x)|2

)
︸ ︷︷ ︸

smoothness term

dx.

(4.1)

I1 and I2 are the two input images, w = (u, v) is the sought optical flow field, and x = (x, y)
is a point in the image. (uj , vj)(x) is the motion vector derived by region matching the
jth nearest neighbor (the indexing goes to 5), at position x. ρj is an indicator function.
If ρj = 0, then there is no correspondence at this position. Otherwise, ρj is equal to a
predefined distance based confidence. λ, β and γ are parameters, with predefined values
of 100, 25 and 5 respectively.

The boundary map g(x) is integrated in the smoothness term to avoid smoothing across
strong region boundaries.

Another similar approach is the one from Weinzaepfel et al. [WRHS13], on how to handle
large displacements and avoid error propagation in multi-scale schemes. The matches are
again integrated in the similarity term EM , which is a part of the energy functional

E(w) =
∫

Ω
ED + λES + βEM dxdy. (4.2)
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The similarity term relies on the deep matching algorithm, briefly described in the next
section. λ and β are parameters, also called smoothness weight and similarity weight,
respectively.

Including a matching term in the variational approach allows handling of large displace-
ments with the strengths of a variational approach. The main drawback of this approach is
that local descriptors are only reliable at sample points.

Current approaches are based on the four-step optic flow pipeline. Besides the matching,
filtering and variational refinement step, this pipeline contains the inpainting step, which
uses the matches for filling in the missing information from the neighbours and hence,
obtaining a dense flow. This step improves bad initialisation and makes approaches less
sensitive to non-reliable or even bad sample points.

In order to improve the bad initialization Revaud et al. [RWHS15] presented a novel
approach for estimating optical flow, focusing on large displacements with significant
occlusions. The approach is called Edge-Preserving Interpolation of Correspondences for
Optical Flow (EpicFlow).

The EpicFlow model uses matches, computed with a matching algorithm, as the input and
then filters non-reliable points. The last two steps are:

• Edge-preserving interpolation from a sparse set of matches. After removing the
outliers, the next step of the optical flow pipeline is the sparse-to-dense interpolation.
The interpolation is done by filling in the missing information from the neighbourhood.
Hence, the closest neighbours should be found. Motion boundaries often tend to
appear at image edges. Therefore, the sparse-to-dense interpolation is based on
an edge-aware geodesic distance for the computation of the closest neighbours.
Compared to the Euclidean distance, the edge-aware distance offers a natural way to
handle motion discontinuities. The cost map of the edge-aware geodesic distance is
based on the Structure Edge Detector (SED).

• Variational refinement, using the output of the interpolation step. The final step
of the optical flow pipeline for EpicFlow is rather simple. The data term ED−epic

combines the normalised gradient constancy assumption (2.27) with the BCCE (2.5),
briefly described in [MSB17a]. The smoothness term is a first order flow-driven
regulariser, with image-based weighing

ES−epic(w) = g(|∇I|) ·ΨSQ

(
|∇u|2 + |∇v|2

)
, (4.3)

where w = (u, v) is the sought optical flow and the additional weighting function
g(s2) is defined as follows

g(s2) = e
− s2

ϵg . (4.4)
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Figure 4.1: Deep matching is used to compute the sparse set of matches, SED [DZ13] is
used to compute edges of the first image. The output of SED and deep matching
is used as input for computing the dense correspondence field, which is again
used as the initialization for computing the variational energy minimization.
Figure from [RWHS15].

ϵg is a positive fixed constant. In the later text this additional weighting function is
referred to as geodesic penaliser and is used for the integration of the image gradient
information in the proposed smoothness terms.

Figure 4.1 illustrates an overview of EpicFLow.

The main drawback of the EpicFlow algorithm is the lack of robustness with respect to input
matching noise. The robustness of EpicFlow relies on an intuitive treshold to remove some
noisy matches. Hu et al. [HLS17] proposed a new technique to overcome this weakness,
called Robust Interpolation Method of Correspondences (RicFlow).

Under the assumption that most scenes of interest consist of regions with a constant
motion pattern, the input image I is segmented in K dis-joint superpixels sk, where the
segmentation S reads

S =
{

sk|
K⋃

k=1
sk = I and ∀k ̸= m, sk

⋂
sm = ∅

}
. (4.5)

For each superpixel sk one superpixel flow is generated. For the superpixels without
any matches, the superpixel flow is set according to the nearest valid superpixel, like
illustrated in Figure 4.2. Each of the superpixels sk meets a constant affine model Ak, due
to the constant motion patter. To escape the vulnerability of the input matching noise, the
model for each of the superpixels is estimated via a RANSAC-like method from its support
neighbors based on a graph constructed on superpixels. The refinement step is similar like
for EpicFlow.

Another way to compute the sparse-to-dense interpolation is the one presented by Wulff
and Black [WB15], using a learned set of full-frame basis flow fields. To learn the principal
components of natural flow fields, four Hollywood movies are used. Flow fields are then
represented as a weighted sum of the basis flow fields bn, n = 1...N , with weights wn:
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Figure 4.2: Two examples of support neighbours (n = 100). The support neighbours are
represented by color with blue meaning they are closer and red meaning they
are farther away from the white superpixel seed. The distance is calculated via
a geodesic approximation, as in EpicFlow. Figure from [HLS17].

w ≈
N∑

n=1
wnbn, (4.6)

where w = (u, v)⊤ is the flow field. For the basis flow fields bn, separate basis vectors
are assumed for the horizontal and vertical flow components. The horizontal motion is
spanned by {bn}n=1,..., N

2
, and the vertical by {bn}n= N

2 +1,...,N .

An interpolant is learned from training optical flow fields using a robust principal component
analysis (PCA) to deal with noise in the training flow. Since PCA-Flow does not contain
high-frequency spatial information, flow at motion boundaries will be over-smoothed. To
escape over-smoothing at motion boundaries Wulff and Black proposed a layered flow
model where each layer is a PCA-Flow field estimated from a subset of the sparse matches.
The final dense flow field is computed combining the flow fields from each layer using
Markov Random Field (MRF).
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5 Extensions

The backbone for building this chapter and presenting the work done in this thesis, was
the optic flow pipeline. As previously described, the first step is matching, hence, the first
section contains the matching algorithm, termed deep matching, and the description of its
main features. In the second section the inpainting energy functional is presented, which
will be used for the evaluation part. For the energy functional more advanced smoothness
terms are proposed, as an upgrade of some of the previously presented smoothness terms in
the Chapter 3. The last section presents some insides in the final refinement of the optical
flow.

5.1 Deep Matching

For finding correspondence points, the SIFT [Low04] descriptor matching approach can be
used. SIFT can be computed as a set of orientation histograms on 4 · 4 pixel neighbours.
Each descriptor contains an array of 4 histograms around the pixel and each histogram
contains 8 bins like shown in Figure 5.1. The SIFT feature vector has 4 ·4 ·8 = 128 elements.
Having used only simple, local, rectangular patches, it is constrained to finding only rigid
matches.

Figure 5.1: (a) Left: Image gradients. (a) Right: Keypoint descriptor. Figure from
[Low04].
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Figure 5.2: Each sub-quadrant has an additional extra degree to internally re-optimize
its position. (a) Left: Reference image. (b) Center: Position of a patch with
optimal SIFT matching. (a) Right: The SIFT patch is split into 4 x 4 sub-
quadrants with re-optimized positions. Figure from [WRHS13].

Descriptor matching approaches, like HOG and SIFT, rely on rigid patches and are successful
for rigid motion, but are not so precise for non-rigid motion, nor for weak or repetitive
textures. To overcome this drawback Weinzaepfel et al. [WRHS13] introduced a novel
approach called deep matching.

Splitting the SIFT patch into 4 sub-quadrants and later optimizing the position of each of
those sub-quadrants, yields a coarse non-rigid matching, as shown in Figure 5.2. Applying
this algorithm recursively, a non-rigid matching with explicit pixel-wise correspondences
can be achieved.

The next problem was of weak or repetitive textures. Weinzapefel et al. [WRHS13]
presented the matching algorithm as a multi-layer architecture. Deep matching considers
patches at several scales. At each scale, local, rigid matches are computed. Local matches
are propagated up the hierarchy, leading to a bottom-up approach. Patches are broken into
sub-patches, making a quadtree-like subdivision approach (see Figure 5.3).

To deal with the problem of rigid matches, every sub-patch on each level has an extra
degree of freedom to locally re-optimize the positions of each quadrant.

Advantages:

• Having a quadtree-like subdivision with easier matching problems on coarser grids
yields to correctly matching repetitive patterns.

• Even in weakly textured areas, the method retrieves dense correspondences from
every matched patch.

• Dealing with various sources of image deformations.

All the above named advantages are the reason for using this algorithm as the matching
step for the work done in this thesis. After computing the matches with deep matching
a sparse set of matches will remain. According to [RWHS15] one match per 90 pixels
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Figure 5.3: Each patch is broken into sub-patches, leading to a quadtree-like subdivision.
Every sub-patch can optimize its position. Figure from [WRHS13].

is obtained, however for the final step of the optic flow pipeline every pixel should be
initialised.

Apart from the deep matching algorithm, the CPM method [LHS+17] is also going to be
used in the evaluation part of this thesis. The CPM algorithm, like the deep matching
algorithm, makes use of the SIFT features to measure the similarities of matches. However,
compared to deep matching, CPM has higher density of the input matches (see Figure
5.4).

5.2 Inpainting

The output of the previous step is a sparse set of matches M =
{
(xt, yt), (xt+1, yt+1)

}
,

where each match defines correspondence between a pixel (xt, yt) in the first frame t, and
a pixel (xt+1, yt+1) in the second frame t + 1, thus (uM , vM ) = (xt+1 − xt, yt+1 − yt).

The next step is the sparse-to-dense interpolation from the already computed matches. For
the inpainting functional, a functional of a form like following is used:

Einpaint(u, v) =
∫

Ω
c · EM (u, v) + (1− c) · αinpaintES(u, v)dxdy (5.1)

where EM is the similarity term, αinpaint the smoothness parameter and c is an indicator
function, defined as

c(x, y) =

1 if there is a match at pixel (x, y),
0 otherwise.

(5.2)
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(a)

(b)

(c)

(d)

Figure 5.4: Training sequence #15 of the KITTI 2015 benchmark [MG15]: (a) Top:
Image frame at time t. (b) Upper Middle: Image frame at time t+1
(c) Lower Middle: Matches computed with the deep matching algorithm be-
tween frames t and t+1. For an image of size 1242 x 375 pixels, in total
6802 matches are computed. (d) Bottom: Matches computed with the CPM
algorithm, in total 44634 matches are computed.
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The similarity term is defined as

EM = Ψ
(
(u− uM )2 + (v − vM )2

)
. (5.3)

At positions with a match (c = 1), the only contribution comes from the similarity term
EM . However, for positions without matches (c = 0), the information regarding the optical
flow is filled in from the neighbours.

During the design of the energy functional, the similarity term is fixed and the main
challenge remains to design a good smoothness term.

5.2.1 Inpainting Smoothness Term

The smoothness terms described in Chapter 3 had one main drawback, namely, the mo-
tion boundaries would be smoothed. Consequently, the smoothness terms should be
improved.

A possible extension is to integrate the image gradient information in the smoothness
term, by adding an additional weighting function g(s2). This weighing function depends
on the magnitude of the spatial image gradient |∇I|. Multiplying the smoothness term
with g(|∇I|2) scales the eigenvalues of the diffusion tensor, hence smoothing is reduced
at image edges. The function g should be chosen as described in Chapter 3. In this case,
both eigenvalues will be scaled with the same factor. A further possible extension is scaling
the eigenvalues with the gradient projection g(|∇I⊤ri|2), i = {1, 2}, where ri are the
eigenvectors of either the structure tensor, or the regularisation tensor [ZBW11].

This section proposes image driven first and second order smoothness terms, build on the
anisotropic first order regularisation (see Equation (3.12)) and direct single anisotropic
second order regularisation (see Equation (3.15)) from Chapter 3.

Extensions of the First Order Smoothness Terms

The previously described constraint adaptive regulariser (see Equation (3.12)) relates to
the following diffusion tensor

Dcon−adapt = (r1, r2)
(

d1 0
0 d2

)(
r⊤

1
r⊤

2

)
, (5.4)

where d1 = ΨS1 ’
((

r⊤
1 ∇u

)2
+
(
r⊤

1 ∇v
)2)

and d2 = ΨS2 ’
((

r⊤
2 ∇u

)2
+
(
r⊤

2 ∇v
)2)

.

Based on this smoothness term and the weighing functions, two other smoothness terms
are proposed:
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• Firstly

Egrad-con =
2∑

i=1
g

(
|∇I|2

)
·Ψi

(
|∇u⊤ri|2 + |∇v⊤ri|2

)
, (5.5)

which will be referred to as the gradient constraint adaptive smoothness term. The
related diffusion tensor reads

Dgrad-con = (r1, r2)

g

(
|∇I|2

)
· d1 0

0 g

(
|∇I|2

)
· d2


(

r⊤
1

r⊤
2

)
. (5.6)

• Secondly

Eproj-con =
2∑

i=1
g

(
|∇I⊤ri|2

)
·Ψi

(
|∇u⊤ri|2 + |∇v⊤ri|2

)
, (5.7)

which will be referred to as the projection constraint adaptive smoothness term.

The related diffusion tensor reads

Dproj-con = (r1, r2)

g

(
|∇I⊤r1|2

)
· d1 0

0 g

(
|∇I⊤r2|2

)
· d2


(

r⊤
1

r⊤
2

)
, (5.8)

where d1 = ΨS1 ’
((

r⊤
1 ∇u

)2
+
(
r⊤

1 ∇v
)2)

and d2 = ΨS2 ’
((

r⊤
2 ∇u

)2
+
(
r⊤

2 ∇v
)2)

, as

before.

Extensions of the Second Order Smoothness Terms

In the Chapter 3 direct second order regularisation strategies are presented. The focus will
be on the single anisotropic. Most of the concepts in this section, regarding the diffusion
process and second order regularisation can be found more extensive in [MSV+17].

Compared to the first order regularisers, which lead to a second order diffusion process,
the direct second order regularisers leads to a fourth order diffusion process.

For the single anisotropic regularisation (see Equation (3.15)) the related diffusion tensor
reads

Daniso-single =


Ψ1’ 0 0 0
0 Ψ2’ 0 0
0 0 Ψ1’ 0
0 0 0 Ψ2’

 , (5.9)
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where Ψ1’ = Ψ1’(|Hur1|2 + |Hvr1|2) and Ψ2’ = Ψ2’(|Hur2|2 + |Hvr2|2)

In addition to the single anisotropic regularisation, two other smoothness terms are pro-
posed:

• Firstly

Egrad-aniso-single(w) =
2∑

l=1
g

(
|∇I|2

)
·Ψl

( 2∑
k=1

(
rk

⊤Hurl

)2
+
(
r⊤

k Hvrl

)2
)

, (5.10)

where w = (u, v)⊤ is the flow field and the related diffusion tensor reads

Dgrad-aniso-single =


g ·Ψ1’ 0 0 0

0 g ·Ψ2’ 0 0
0 0 g ·Ψ1’ 0
0 0 0 g ·Ψ2’

 , (5.11)

where g = g

(
|∇I|2

)
. This smoothness term will be referred to as the gradient single

anisotropic smoothness term.

• Secondly

Eproj−aniso−single = (w) =
2∑

l=1
g

(
|∇I⊤rl|2

)
·Ψl

( 2∑
k=1

(
rk

⊤Hurl

)2
+
(
r⊤

k Hvrl

)2
)

,

(5.12)
In the following text this will be denoted as projection single anisotropic smoothness
term. The related diffusion tensor reads

Dproj-aniso-single =


g1 ·Ψ1’ 0 0 0

0 g2 ·Ψ2’ 0 0
0 0 g1 ·Ψ1’ 0
0 0 0 g2 ·Ψ2’

 , (5.13)

where g1 = g

(
|∇I⊤r1|2

)
and g2 = g

(
|∇I⊤r2|2

)
.
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5.3 Variational Refinement

For the final step of the optic flow pipeline—variational refinement, the energy functional
is of the form like (2.9). For the data term both the brightness (2.3) and gradient (2.26)
constancy assumption are used and for the smoothness term the single anisotropic term
from the indirect approach (3.18). Combined together the following energy functional is
derived:

Evar(w) =
∫

Ω
ΨCH

((
I1(x + w)− I0(x)

)2)
+ γ ·ΨCH

(
|∇I1(x + w)−∇I0(x)|2

)
︸ ︷︷ ︸

data term

dx

+ α

∫
Ω

inf
a,b

{ 2∑
l=1

Ψl

((
r⊤

l (∇u− a)
)2

+
(
r⊤

l (∇v − b)
)2)

︸ ︷︷ ︸
coupling term

+ β
2∑

l=1
Ψl

( 2∑
k=1

(
r⊤

k J arl

)2 +
(
r⊤

k J brl

)2)}
︸ ︷︷ ︸

smoothness term

dx,

(5.14)

where I1 = I(t + 1) and I0 = I(t). Ψ1 and Ψ2 are the Perona-Malik and Charbonnier
penaliser, respectively, with ϵ = 0.01.

This functional is further used for the evaluation step of the thesis. Since the goal of this
thesis is not optimizing this functional, the parameters γ, α and β are fixed at 69.3, 186.2
and 9.83 respectively.
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Using an benchmark with known camera motion and scene structure, it is possible to
compute optical flow for a real image sequence, which will represent the ground truth of
the optical flow [BE96]. The evaluation of the optical flow can be done either quantitatively
and/or qualitatively. Qualitative flow evaluation is useful for a general judgment [BT05]
and it is usually done if no ground truth exists.

Given the ground truth flow ut, it is possible to measure the quality of the computed,
estimated flow field ue. The quality metrics are defined as follows [Fle92]:

• Average Endpoint Error:

AEE(ut, ue) = 1
NM

N∑
i=1

M∑
j=1

√
(ut

i,j − ue
i,j)2 + (vt

i,j − ve
i,j)2. (6.1)

• Bad Pixel Error:

BP (ut, ue) = 100
NM

N∑
i=1

M∑
j=1

1(
√

(ut
i,j−ue

i,j)2+(vt
i,j−ve

i,j)2>T ). (6.2)

The evaluation and experiment error will be displayed using the colour plot, where di-
rections are visualized as colour and magnitude as brightness [Bru16]. An illustration is
shown in Figure 6.1. Given the vector field u = (u⊤

1,1, ..., u⊤
N,M )⊤ with ui,j = (ui,j , vi,j)⊤,

polar coordinates are used for ui,j with radius ri,j and angle ϕi,j .

Figure 6.1: (a) Left: Colour code. (b) Center: Vector representation of the flow field.
(c) Right: Corresponding colour representation. Figure from [Bru06].
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The last missing thing to quantitatively evaluate the optical flow are the test datasets.
Because of the complex test scenes, the following two are used:

• MPI-Sintel dataset [BWSB12] is a large and difficult dataset. It includes large
displacements and significant occlusion.

• Kitti 2015 dataset [MG15] is composed of real-world images captured from a moving
vehicle (see Figure 6.2). Main challenges of the Kitti 2015 dataset are speculari-
ties, dominant non-fronto-parallel surfaces, variable displacement magnitudes and
changes in the illumination [BDB13].

During the evaluation, only the training sequences are used from both datasets, since the
ground truth is provided. For the Kitti 2015 dataset, both the occ and noc training sets are
used and compared separately.

6.1 Comparison of the Smoothness Term

One of the core contributions of this thesis is to introduce smoothness terms, which
respect motion boundaries. In Section 5.2.1 possible transformations are presented. In the
following, four of them are evaluated, together with the constraint adaptive regulariser
and additionally the single anisotropic regularisation.

For this part of the evaluation only the inpainting step is considered with the energy
functional (5.1). For the evaluation both deep matches and CPM are used as the input.

Evaluation Setup. To implement the similarity term (5.3) of the inpainting energy func-
tional the Charbonnier penaliser (3.4) is used with ϵ fixed at 0.01.

For the experiments, the complete KITTI 2015 occ and noc training data sets and MPI Sintel
training clean data set are used to evaluate the performance of all regularisers from Section
5.2.1. Therefore, first ϵg from the geodesic penaliser (4.4) is optimized w.r.t the percentage
of erroneous pixels (BP) using downhill simplex on a small subset of the training data. For
the optimization of the αinpaint, the complete training data sets are used for the evaluation
of common metrics - AEE and BP in case of KITTI 2015 and AEE in case of MPI Sintel.

6.1.1 Minimisation of the Inpainting Functional

The energy functional (5.1) is non-convex and non-linear. To solve it, the framework of
Brox et al. [BBPW04] is used with an incremental reduced coarse-to-fine scheme [MSB17a],
using 5 resolution levels. The downsampling factor is fixed at η = 0.95. The remaining
equations are still non-linear due to the robust penalisers. Therefore, 20 inner fixed point
iterations are applied and 5 outer iterations.
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6.1 Comparison of the Smoothness Term

Figure 6.2: Training sequence #63 of the KITTI 2015 benchmark [MG15]. (a) Top:
Image frame at time t. (b) Upper Middle: Image frame at time t+1.
(c) Lower Middle: Ground truth for noc training sequence. (d) Bottom:
Ground truth for occ training sequence.
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6 Evaluation and Experiments

Figure 6.3: Training sequence #15 of the KITTI 2015 benchmark [MG15]. Deep matches
are used as the input for the inpainting step with different first order smooth-
ness terms. (a) Top Ground truth. (b) Upper Middle: Constraint adap-
tive regulariser. (c) Lower Middle: Gradient constraint adaptive regulariser.
(d) Bottom: Projection constraint adaptive regulariser.
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6.1 Comparison of the Smoothness Term

Figure 6.4: Training sequence #15 of the KITTI 2015 benchmark [MG15]. Deep matches
are used as the input for the inpainting step with different second or-
der smoothness terms. (a) Top: Ground truth. (b) Upper Middle: Single
anisotropic regulariser. (c) Lower Middle: Gradient single anisotropic regu-
lariser. (d) Bottom: Projection single anisotropic regulariser.
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6 Evaluation and Experiments

6.1.2 Results

After the first optimization ϵg ≈ 155. For this value, the geodesic penaliser gets close to
1, making the difference between the constraint adaptive regulariser, and the gradient-
and projection- constraint adaptive regulariser, almost non-existent. The same goes for the
second order terms. In Figures 6.3, 6.4, 6.5 and 6.6 the datasets are used to compare the
different types of regularisers.

• Constraint Adaptive Regulariser. Using the first order regularisers (Figure 6.3 and
Figure 6.5), obvious sharper edges are achieved compared to the second order
regularisers (Figure 6.4 and 6.6).

• Gradient Constraint Adaptive regulariser and Projection Constraint Adaptive regulariser.
Using the gradient- and projection- constraint adaptive regulariser does not show
a noticeable visual improvement in this sequence, mostly due to the very large ϵg,
making the whole function g(s2) close to one.

• Single Anisotropic regulariser. One can clearly see that all of the second order regu-
larisers (Figure 6.4 and Figure 6.6) give oversegmented results and they also have a
problem with not respecting motion discontinuities.

• Gradient Single Anisotropic regulariser and Projection Single Anisotropic regulariser.
The gradient- and projection- single anisotropic regularisers show improvement w.r.t.
motion discontinuities, compared to the single anisotropic case, but still not as good
as the first order regularisers.

The Function (5.1) is very sensitive to outliers, which is mostly visible during the comparison
between the inpainting, which uses deep matches as input and inpainting, which uses
CPM as input. CPM has higher density of the input matches, compared to deep matches,
therefore, it is more sensitive to having more outliers. In case of an outlier, the indicator
function c has the value 1 and hence, there will be no smoothing. The associated metrics
are listed in Tables 6.1 and 6.2.

6.2 Comparison with EpicFlow

In the Chapter 4 the last two steps of EpicFlow are shortly explained. In this Section, the
comparison is twofold. Firstly, the results of the EpicFlow inpainting step are compared
with the results of the inpainting function (5.1) with the proposed smoothness terms,
as explained previously. Secondly, the results of the EpicFlow with the refinement are
compared to the results derived after the variational refinement step.
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6.2 Comparison with EpicFlow

Order Regularisation Type Kitti 2015 Sintel
noc occ clean

AEE BP (%) AEE BP (%) AEE

1st

Con. adaptive 4.899 21.335 10.823 30.167 3.036
Gradient con. adaptive 4.889 21.249 10.823 30.165 3.053

Projection con. adaptive 4.882 21.179 11.234 29.982 3.054

2nd

Single aniso. 5.037 21.875 9.819 30.484 3.442
Gradient single aniso. 5.034 21.797 10.136 30.002 3.439

Projection single aniso. 5.086 21.766 9.818 30.329 3.442
EpicFlow1 5.12 24.74 9.37 31.96 2.68

Table 6.1: Inpainting results using deep matches, optimized on average endpoint error
(AEE), percentage of erroneous pixels (BP), where endpoint error > 3px, for
the different regularisers on the KITTI 2015 [MG15] for both, OCC-training
sets and NOC-training sets and on the MPI Sintel clean training set.

1 Data taken from [MSB17a]

Order Regularisation Type Kitti 2015 Sintel
noc occ clean

AEE BP (%) AEE BP (%) AEE

1st

Con. adaptive 5.008 25.298 11.069 33.114 3.064
Gradient con. adaptive 5.016 25.014 11.161 32.885 3.063

Projection con. adaptive 4.987 25.037 11.025 32.906 3.086

2nd

Single aniso. 4.802 24.886 9.407 30.387 3.442
Gradient single aniso. 4.802 24.887 9.268 30.360 3.442

Projection single aniso. 4.802 24.885 9.267 30.360 3.438
EpicFlow1 3.66 16.43 7.77 23.36 2.19

Table 6.2: Inpainting results for CPM, optimized on average endpoint error (AEE),
percentage of erroneous pixels (BP), where endpoint error > 3px, for the
different regularisers on the KITTI 2015 [MG15] for both, OCC-training
sets and NOC-training sets and on the MPI Sintel clean training set.

1 Data taken from [MSB17a]
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6 Evaluation and Experiments

Figure 6.5: Training sequence #15 of the KITTI 2015 benchmark [MG15]. CPM are used
as the input for the inpainting step with different first order smoothness terms.
(a) Top Ground truth. (b) Upper Middle: Constraint adaptive regulariser.
(c) Lower Middle: Gradient constraint adaptive regulariser. (d) Bottom: Pro-
jection constraint adaptive regulariser.
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6.2 Comparison with EpicFlow

Figure 6.6: Training sequence #15 of the KITTI 2015 benchmark [MG15]. CPM are used as
the input for the inpainting step with different second order smoothness terms.
(a) Top: Ground truth. (b) Upper Middle: Single anisotropic regulariser.
(c) Lower Middle: Gradient single anisotropic regulariser. (d) Bottom: Pro-
jection single anisotropic regulariser.
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6 Evaluation and Experiments

6.2.1 Minimisation

To minimise the non-convex energy functional (5.14) the associated Euler Lagrange equa-
tions are derived and solved by means of an reduced incremental coarse-to-fine fixed
point iteration with a downsampling factor of η = 0.95, using 5 resolution levels. On
each resolution level a flow increment du and dv and the increments da and db of the
auxiliary functions are computed [MSB17b]. The resulting non-linear system of equations
are solved as a series of linear systems by keeping the non-linear expressions from the data
and smoothness term fixed. The optical flow is not estimated from scratch, instead, the
flow provided by the preceding inpainting step is refined.

6.2.2 Results

Again, the results are computed for both deep matching and CPM. The results are provided
in the Tables 6.1, 6.2, 6.3 and 6.4.

Inpainting step with deep matching. Table 6.1 shows results for the inpainting step of
both EpicFlow and inpainting with the energy functional (5.14). Because deep matches do
not contain enough matches to extrapolate the needed information of motion boundaries,
the proposed inpainting step outperforms EpicFlow inpainting on the Kitti 2015 benchmark
for all, but the AEE of the occ data set. EpicFlow gives better results on the Sintel benchmark.
The best results for the inpainting functional are derived using the projection constraint
adaptive regulariser. Figure 6.7 illustrates the difference between the two EpicFlow method
and the proposed method with the projection constraint adaptive smoothness term.

Inpainting step with CPM. The CPM matches are denser than deep matches and thus may
contain more information about motion boundaries. EpicFlow outperforms the proposed
inpainting method on all benchmarks. The results are visible in Table 6.3. The best results
are obtained using the projection single anisotropic smoothness term and therefore, this
smoothness term is used for the comparison with the inpainting step of the EpicFlow
method in Figure 6.8.

Variational refinement. Since the EpicFlow method relies on simple models for refinement
(see Equation (4.3)), the refinement cannot keep up with the preceding pipeline [MSB17a].
Therefore, there is not much room for improvement. Figures 6.9 and 6.10 illustrate the
difference between the variational refinement of the EpicFlow and the proposed method,
using both CPM and deep matches as the input of the inpainting step. The best results are
derived using the gradient constraint adaptive smoothness term and the projection single
anisotropic smoothness term for deep matches and CPM respectively.
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6.2 Comparison with EpicFlow

Figure 6.7: Training sequence #52 of the KITTI 2015 benchmark [MG15]. Results ob-
tained for the inpainting step and using deep matches as the input (a) Top:
Ground truth. (b) Middle: Inpainting with the projection constraint adaptive
smoothness term. (c) Bottom: EpicFlow inpainting step.
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6 Evaluation and Experiments

Figure 6.8: Training sequence #52 of the KITTI 2015 benchmark [MG15]. Results obtained
for the inpainting step and using CPM as the input. (a) Top: Ground truth.
(b) Middle: Inpainting with the projection single anisotropic smoothness term.
(c) Bottom: EpicFlow inpainting step.
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6.2 Comparison with EpicFlow

Order Regularisation Type Kitti 2015
noc occ

AEE BP (%) AEE BP (%)

1st

Con. adaptive 4.176 16.006 9.596 23.458
Gradient con. adaptive 4.175 16.005 9.573 23.440

Projection con. adaptive 4.178 16.007 9.552 23.453

2nd

Single aniso. 4.262 16.245 9.106 23.576
Gradient single aniso. 4.289 16.312 9.061 23.566

Projection single aniso. 4.226 16.250 9.016 23.617
EpicFlow 1 4.71 20.06 9.18 28.38

Table 6.3: Results of the reduced variational refinement with deep matches
initialization for the different regularisers, optimized on average
endpoint error (AEE), percentage of erroneous pixels (BP), where
endpoint error > 3px, on the KITTI Flow 2015 [MG15] for both,
OCC-training set and NOC-training set.

1 Data taken from [MSB17a]

Order Regularisation Type Kitti 2015
noc occ

AEE BP (%) AEE BP (%)

1st

Con. adaptive 3.960 15.789 9.741 23.210
Gradient con. adaptive 3.959 15.791 9.672 23.227

Projection con. adaptive 3.983 15.806 9.711 23.207

2nd

Single aniso. 3.650 14.798 8.004 21.512
Gradient single aniso. 3.656 14.873 8.251 21.626

Projection single aniso. 3.642 14.790 7.978 21.594
EpicFlow 1 3.43 14.58 7.78 22.86

Table 6.4: Results of the reduced variational refinement with CPM initializa-
tion for the different regularisers, optimized on average endpoint
error (AEE), percentage of erroneous pixels (BP), where endpoint
error > 3px, on the KITTI Flow 2015 [MG15] for both, OCC-
training set and NOC-training set.

1 Data taken from [MSB17a]
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6 Evaluation and Experiments

Figure 6.9: Training sequence #52 of the KITTI 2015 benchmark [MG15]. Results obtained
for the variational refinement and using deep matches as the input for the
inpainting step. (a) Top: Ground truth. (b) Middle: Inpainting with the
gradient constraint adaptive smoothness term. (c) Bottom: EpicFlow with
deep matches.
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6.2 Comparison with EpicFlow

Figure 6.10: Training sequence #52 of the KITTI 2015 benchmark [MG15]. Results
obtained for the variational refinement and using CPM as the input for the
inpainting step. (a) Top: Ground truth. (b) Middle: Inpainting with the
projection single anisotropic smoothness term. (c) Bottom: EpicFlow with
CPM initialisation.

63





7 Conclusion

This thesis is build upon the optic flow pipeline. The focus is on improving the inpainting
step for a better initialisation of the final step, namely, variational refinement. Similar
to the final step, for this approach an energy functional has to be minimized. Inspired
by the large displacement optical flow of Brox et al. [BBM09], this approach integrates
a similarity term within a variational approach for optical flow. The inpainting energy
functional consists of a similarity term and a smoothness term.

In this thesis new smoothness terms are presented for a possible improvement of the
inpainting step. The proposed second order smoothness terms are an upgrade of the second
order smoothness terms of Maurer et al. [MSV+17]. Furthermore, the proposed first
order smoothness terms are build on the constraint adaptive regulariser from Zimmer et
al. [ZBW11]. In addition to that, the final results of both, the inpainting step and the
variational refinement, are compared with the corresponding steps of the existing EpicFlow
method [RWHS15].

In Chapter 2 the basic concepts have been introduced. Advanced smoothness terms are then
presented in the Chapter 3. Chapter 4 gives a view into the recent work done regarding this
topic, with a particular focus on the EpicFlow method. In Chapter 5 several smoothness
term extensions were presented, where the information of the image edges was embedded
in the anisotropic smoothing behaviour. Finally, for comparing all extension with each other,
in Chapter 6 an evaluation methodology and test datasets were presented. In addition, a
comparison with the EpicFlow method was performed.

The evaluation shows that the constraint adaptive and the proposed projection constraint
adaptive and gradient constraint adaptive regularisation give very similar results for both
benchmarks and using both deep matches and CPM. This is the result of getting a large
ϵg = 155 after the optimisation process and therefore making the additional weighting
function close to 1. However, the proposed second order regularisations qualitatively
respect better motion boundaries compared to the direct single anisotropic regularisator,
when using deep matches.

The inpainting step of EpicFlow outperforms the proposed model on the Sintel dataset on
all tests using both deep matches and CPM. In case of the Kitti 2015 dataset, the proposed
method outperforms the inpainting step of EpicFlow using deep matches. However, using
CPM EpicFlow gets more information about motion boundaries and therefore gives better
results for both the inpainting step and the variational refinement.

The inpainting energy functional contains only the similarity term and the smoothness
term. At pixels with a match, the indicator function c(x, y) has the value 1, hence, there
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7 Conclusion

will be no smoothing, making this functional very sensitive to outliers and occlusions. This
energy functional could be further improved, e.g. by integrating a matching score ρ for the
reliability of the matches, like in [BM11]. The isotropic and single anisotropic variants of
the the direct approach were upgraded, however, the indirect approach and the combined
approach were not improved, hence, this could be a starting point for new improvements.

In conclusion, the inpainting energy functional with the proposed smoothness terms shows
improvements to the EpicFlow model only in cases where not enough information about
motion boundaries can be obtained from the matches. However, in case of dense matching
input, the EpicFlow model outperforms the proposed model.
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