
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis Nr. MCS-0002

Adding Value to Object Storage:
Integrating Analytics with Cloud

Storage Back ends

Hoda Noori

Course of Study: Computer Science

Examiner: PD Dr. rer. nat. habil. Holger Schwarz

Supervisor: Dipl.-Inf. Tim Waizenegger

Commenced: 1. Nov 2015

Completed: 2. May 2016

CR-Classification: E.1, E.2, H.2.4

Abstract

With the vast interest of customers in using the cloud infrastructure, cloud providers
are going beyond limits to offer advanced functionalities. They try their utmost best to
present the services in a way that makes the customers highly attracted and convince
them about value and benefits of using such services. For this purpose, cloud providers
need to have an access to customers’ data, hence customer-sensitive data stored in
repositories should be transferred to the cloud. Object storages are one of the possible
solutions for the implementation of repositories in cloud environments. However, due
to the data being confidential and fragile, security and encryption mechanisms are
required. The application of Enterprise Content Management (ECM) system highly
relies on metadata, thus there is a need to keep metadata unencrypted while encrypting
data itself. Therefore, cloud providers that are hosting ECM systems are forced to keep
metadata unencrypted in order to satisfy the main functionalities of ECM systems on
the cloud. Although other cloud providers can offer data encryption and unencrypted
metadata as an option to their customers. This leads to the conclusion that enhancing
object storages with analysis capabilities in ECM systems is more beneficial if it is done
on top of unencrypted metadata. In this thesis I investigate how value can be added to
such cloud storage services by only using access the metadata. I specifically focus on
providing analytics functionality on metadata.

This Master’s thesis aims at providing the means to efficiently analyze the metadata
inside a cloud-based ECM system (OSECM) which uses Swift Object Store as its back
end repository. I extended the OSECM system with required components by providing
new modules that enable the retrieval of metadata from the object storage and the
insertion of this metadata into a metadata warehouse. The importance of metadata
replication in a distinct data warehouse offers the possibility of benefiting from SQL
query capabilities for analysis purposes. Furthermore, an existing tool was integrated as
the analysis component to offer the means for interaction with the underlying metadata
warehouse and the user interface. Finally, after applying analysis queries, the results
are presented on the user interface using the predefined set of visualization interfaces.
The supported data structure for the visualization of the result are also defined in this
work.

3

Contents

1 Introduction 9
1.1 Motivation . 10
1.2 Background . 11
1.3 Related Work . 24

2 System Architecture and Components 31
2.1 Swift Object Store . 34
2.2 Content Identifier . 35
2.3 Metadata Extractor . 36
2.4 Metadata Replicator . 36

3 Analysis Concepts 39
3.1 Visualization . 41
3.2 Candidate Use cases . 46

4 Technology and Implementation 49
4.1 How does Swift work? . 49
4.2 Content Identifier . 51
4.3 Metadata Extractor . 51
4.4 Metadata Replicator . 51
4.5 DataModel . 52
4.6 Bluebox UI . 54
4.7 Analytics Diagrams . 55
4.8 SQLite Database . 69

5 Summary and Future Work 71

Bibliography 73

5

List of Figures

1.1 Data Science Metromap [Cha13] . 12
1.2 Data Science Pipeline [Oje14] . 13
1.3 Data Wrangling using TRIFACTA [TRIFACTA]. 15
1.4 A modern Data Architecture with Apache Hadoop integrated with existing

data systems [Hor14] . 21
1.5 Enterprise Hadoop Components [Hor14] 22
1.6 Potential Use Cases for Big Data Analysis 25
1.7 Alfresco Repo Architecture . 26
1.8 Alfresco Analysis Architecture . 27
1.9 Alfresco Analytics Flow of Data . 28
1.10 Nuxeo Rep Arch . 30

2.1 The OSECM Architecture [OSECM] . 32
2.2 The process of extracting metadata from objects 33
2.3 Swift Data Model; includes Accounts, Containers and Objects plus their

attached metadata . 35
2.4 The Metadata Replication Workflow . 38

3.1 The required components and architecture to create the analysis layer;
Considering that object store and Bluebox UI is existed 40

3.2 The analysis scenarios inside Node-RED Server; providing an Endpoint
for outside access . 41

3.3 Different part of the Bluebox UI . 42
3.4 The Component Overview of Bluebox User Interface [OSECM] 43
3.5 The BB-Insights User Interface inside Bluebox 44
3.6 The supported data structure for the visualization 45

4.1 The Metadata Extractor Diagram . 52
4.2 The Metadata Replicator Class Diagram 53
4.3 The Metadata warehouse schema in SQLite database 54
4.4 The Analytics Component Interactions 56
4.5 The Content Type Numbers and Size Query 57
4.6 The Content Type Distribution Bar Graph 59

6

4.7 The Line Graph of the Object Distributions based on their Size; The query
is mentioned in figure ?? . 61

4.8 The Area Graph of the Content length Distribution 62
4.9 The Stacked Bar Graph of the Content Type Size and Number Distribution;

It uses the same dataset as figure ?? which is the result of query in the
figure ??. 63

4.10 The Group Bar Graph of the Content Type Size and Number Distribution;
It uses the same dataset as figure ?? which is the result of query in the
figure ??. 64

4.11 The Box Plot of the Size and Number Distribution grouped by the Object
Content Type; It is the result of query in the figure ??. 65

4.12 The Donut Chart of the dataset in figure 4.3 67
4.13 The Bar Chart to show the result set for the query in figure ?? 68

List of Tables

4.1 The content type distribution data set . 58
4.2 The data set of the object distributions based on their size. It is the result

for the query of figure ??. 60
4.3 The data set for the distribution of medals in various countries 66

List of Listings

4.1 The Content Type Distribution Query . 57
4.2 The query to expose the object distribution based on their size 58
4.3 The Content Type Numbers and Size Query 59
4.4 The query to fetch the distribution of size and number of documents for

each content type. 61
4.5 The query to fetch the email addresses of people who has sent the largest

amount of email. The top 20 senders is queried to have a better visual-
ization in the bar graph. 66

7

4.6 The query to fetch the list of people who are communicating with each
other via email. 67

List of Algorithms

8

1 Introduction

Many companies use Enterprise Content Management (ECM) systems to organize and
archive their various kinds of data. Usually the stored data inside ECM systems are huge
as they are including several documents for companies like invoices, contracts, project
documentations, reports, scanned letters, emails and other documents. These documents
are usually stored in the ECM systems for archiving, categorizing and managing the
company data with considering security aspects as well. As Waizenegger et al. is
mentioned, in order to benefit from diverse advantages of cloud-based systems like
improving the quality of the service and reducing the cost, many enterprises have a
desire to migrate their legacy applications including the Enterprise Content Management
system to the cloud environment [OSECM].

One major advantage of cloud services is that the providers can continuously improve
their available services and also offer additional services to customers; like analytics
on data that is already stored on the cloud. Cloud applications are usually built as
combination of multiple small components which are independent and loosely coupled,
thus in order to migrate the legacy systems into the cloud, it is better to split the whole
system to the small parts and use the best practices to move these specific parts to
the cloud. Data repository is one of the main parts for each application and becomes
more important for those systems which deal with a large amount of data. Therefore,
moving the repository to the cloud environment can bring more benefit for organizations
including the cost reduction of providing enough storage for the system at each time.
Object storage is one of the best cloud-based storage solutions because of its scalability
and elasticity which allow companies to store as much data as they need during the time.
Furthermore, object storage provides a convenient way to access data via HTTP APIs.

Object storages have another use case besides cloud storage which is being used in the
content management systems as well. Therefore here I focus to provide an analysis layer
for an existed ECM system (OSECM) which is using an object storage as its repository.
This analysis layer brings the ability of finding out more hidden insights about the
structured big data which is stored in the object storage.

First I investigate data science various domains, tools and technology and present some
of the existed solutions and frameworks for big data analysis. Then, I introduce a way
to provide the analysis layer via employing some open source applications and engines

9

1 Introduction

that can be reused and easily integrated with the existed ECM solutions. In addition,
some new components should be designed and developed in order to integrate this
layer with the existed ECM system. These new components perform fetching the desired
data, storing it in specific storage, applying analysis queries and visualizing the results.
Nevertheless this existed ECM system itself is based on a framework that provides main
required components prototype and details on how they should be realized to form a
cloud native ECM system.

1.1 Motivation

Since companies are dealing with a large collection of data in their different applications
that they have, including Enterprise Content Management system, they prefer to out-
source their data storages to the cloud providers to reduce their cost and benefit from
scalability and elasticity of cloud services. Using the cloud infrastructure enables the
cloud providers who keep the data, to offer extra services like data analysis. Usually
ECM systems utilize object storages as their cloud-based repository when they want
to migrate to the cloud environment. Particularly in ECM systems, since we need to
store and utilize both binary data and metadata, object storages are one of the good
choices to be used as a repository in cloud-based ECM systems. With the possibility
to keep a considerable amount of metadata using object storages, searching, mining,
data protection and analytics can be done more efficiently within the cloud-based ECM
system.

In fact, since the ECM systems use the metadata for managing and organizing their
contents, metadata (e.g. object name, object size and others) is a key element in these
systems to find and have an access to object. In addition, having these structured and
relational metadata fields for objects in ECM system, enables cloud providers to analyze
this metadata information rather than using unstructured and more complicated object
content data. Here, in the OSECM system, the metadata is also organized and structured
through defining all document classes and content type categories which exist in the
system. The other reason that in this work, the system uses metadata for analysis is
because of the fact that data needs to be encrypted in the cloud infrastructure. Normally
when organizations want to store their data in the cloud environment, they prefer to
have enough security for their information thus they request cloud providers to provide
the encryption facilities for their data. However, many cloud providers do not offer the
encryption services or they only support a restricted encryption services to be able to
sell other services to their customers with using their actual data.

In the OSECM system, the offered compromise is that the encryption is only applied
for the data itself and not for the metadata. Therefore, this is another reason that why

10

1.2 Background

here I provide analysis feature for the metadata and not the object data itself. Although
user can still restrict the metadata fields to fulfill enough security level because without
having some metadata unencrypted the system becomes almost unusable. For instance,
if the name of the object is encrypted then the object can not be found anymore. In this
case, user can ask for the object through giving the name of object to the cloud provider
and get the object, decrypt it and then actually read and use it. Here, I also attempt
to make the required new components for analysis targets, in a way that they can be
simply integrated with the existed ECM system. Since other components inside this ECM
system are designed in a loosely coupled architectural style, I prepare separated small
modules with specific functionalities defined for analyzing the data too. In this way
there is enough flexibility to replace most of these components with existed solutions
that bring the same functionality.

Here, the OSECM system uses Swift Object Store from OpenStack1 project as its reposi-
tory which brings several advantages including data protection, cost and scalability.

Object storages are providing enough metadata to ease security, optimization and data
resiliency processes, while offering an indexed file structure that’s ideal for unstructured
data and allows files to be distributed over wide geographic areas with a minimized
effect on performance.

1.2 Background

Generally Big Data is a generic term to address the large volume amounts of structured
and unstructured data that is collected from multiple sources and continuously flows
through and around organizations. This data can provide answers to questions they
may not have even thought to ask but extracting the useful data from big data is a main
challenge which cause the emerge of data science.

In fact, in the area of data science, it is discussed that in each and every matured
organization how can understand it’s business and generate some results to optimize the
business. In order to reach this goal, there are lots of various tools, technologies, articles
and domains which are used to collect data, clean and integrate it, apply various analysis
and modeling techniques and finally represents the results to exploit the generated
profitable data for fulfilling the desired business targets [Cor15a].

Statistics, Machine Learning, Big Data Analytics, Text Mining and Natural Language
Processing, Data Storage Mechanisms, Visualization techniques are some of the main

1http://docs.openstack.org/developer/swift/

11

http://docs.openstack.org/developer/swift/

1 Introduction

debated domains in Data Science. Chandrasekaran in his work perfectly pictured almost
all the skills, technologies, tools, programming languages and libraries, databases and
storage systems which are needed to be learned to become a data scientist [Cha13].

Figure 1.1: Data Science Metromap [Cha13]

Generally in order to analyze data, some functions and operations should be performed
which are categorized in various steps that are referred as Data Science Pipeline in
literatures. These information is presented in the figure 1.1 as well. Although this
pipeline does not have the same steps for each and every use cases and some of them
might be skipped in different cases. Mainly Data Science pipeline consists of the
following groups of steps which is also presented in the figure 1.2.

1. Data ingestion; Data acquisition and recording.

2. Data munging and wrangling; information extraction and cleaning [Oje14].

12

1.2 Background

3. Data integration, aggregation, and representation.

4. Query processing, data modeling, and analysis [DE+12].

5. Interpretation; Reporting and visualizing.

Figure 1.2: Data Science Pipeline [Oje14]

1.2.1 Data Ingestion

Big data comes from various data generating sources. Integrating these various sets of
data is an essential requirement for making sense of available big data and putting it to
the productive use. So the process of accessing, importing, and processing data, storing
it in a database or in a storage system for later usage is called Data Ingestion.

As Swami Chandrasekaran also has mentioned in his Data Science Clock, there are a
couple of challenges which should be considered in this step [Cha14]. Since a large
number of conducted data might not be useful, the first challenge is to define some filters
such that the useful information would not be discarded. Hence we need a smart process
to reduce the size of original data without missing the significant parts. Moreover in
some cases there should be some online analysis techniques to process the streaming
data lively because for these cases like embedded sensor data, it is not possible to save
all information and process it afterwards [DE+12].

The second challenge is to generate the correct metadata automatically to define which
data is stored and how it is archived and sized. Meta data acquisition system can

13

1 Introduction

decrease the amount of effort to keep metadata. The other considerable point is to
extract the origin of the data and keep this information through data analysis pipeline.
For example in the case that we have an error during one step the processing phase, it
might cause some following analysis faults that are linked to this step. Hence generating
convenient metadata and having a data system to carry the root of data and its metadata
along the data analysis pipeline should be taken to the account in this step of data
science pipeline.

IBM2 is one of the sources that introduced two functional categories for Data Ingestion
phases: batch and streaming. Ingesting batch data includes fetching data in distinct
blocks, like transactions dumps of a day. Streaming ingestion, also named real time
ingestion, means every data record is ingested distinctively as it is evolved by the source,
like sensor monitoring systems or social network messages. Gobblin, Amazon Kinesis,
Apache Samza, Cloudera Morphlines, White Elephant, Apache Chukwa, Heka, Databus,
Apache Sqoop, Apache Flume, Scribe and Fluented are some of the data ingestion tools
without any specific order3.

1.2.2 Data Munging and Wrangling

Most often all the collected information is not relevant to the addressed problem, in
addition, it might not be in the desired format ready to be analyzed. Thus, we need an
information extraction process to select the right information from the primary resources
and represent it in the structured format which is appropriate for analysis [Cor15a].
Furthermore, sometimes data extractions for images and videos are depended to the
related application. For instance, data extraction requirements of a MRI is obviously
different than a map or a supervision photo [DE+12].

Thus, cleaning and formatting data known as “Data Munging and Wrangling” are the
most time-consuming steps in the data science pipeline. In real world analysis, data
wrangling can consume up to 80% of project time. The Extract/ Transform/ Load
(ETL) process can be used by professional data scientists to clean and prepare data
sets for analysis. In fact, data wrangling is referred to transforming and converting
the data from a primary format into a target format which consists of extra munging,
data visualization, data aggregation, providing a statistical model and other possible
applications. To employ data munging4, the next general steps should be fulfilled: first
the primary format of data should be fetched form the data source, then applying the

2IBM Big Data and Analytics Hub : http://www.ibmbigdatahub.com/blog/ingesting-data-data-value-
chain

312 Data Ingestion Tools: http://www.predictiveanalyticstoday.com/data-ingestion-tools/
4https://en.wikipedia.org/wiki/Data_wrangling

14

http://www.ibmbigdatahub.com/blog/ingesting-data-data-value-chain
http://www.ibmbigdatahub.com/blog/ingesting-data-data-value-chain
http://www.predictiveanalyticstoday.com/data-ingestion-tools/
https://en.wikipedia.org/wiki/Data_wrangling

1.2 Background

required algorithms like sorting the data and transforming it into the specified format
and lastly keep the result data set inside a data sink for future applications.

The importance of data munging in the data science domain is crucial. The data quality
determines the level of complexity in order to fulfill data munging process.

DataWrangler

Stanford-Berkeley research project provided an interactive tool for purifying and re-
constructing the data [DataWrangle]. Particularly, this tool is designed to improve the
process of fetching data to be analyzed and visualized and decreasing the required time
to read the data. It allows the user to find out more information about data along with
the interactive it is possible to intract utilizing this tool, Using such a tool allows you to
spend more time to learn about data as well as interactive manipulation of unstructured
and dirty data to prepare it for the analysis usages.

The DataWrangler research project is finished and currently the software is not supported.
Instead, Trifacta Wrangler is other commercial tool which efficiently prepares various
data to be used in analytics or visualization tools such as Tableau [TRIFACTA].
The figure 1.3 presents the data wrangling using Trifacta.

The main Trifacta Wrangler benefits are the followings:

• Improving the analysis process.

• Easing of data preparation process.

• Supporting more diverse and complex set of data to be analyzed.

Figure 1.3: Data Wrangling using TRIFACTA [TRIFACTA].

15

1 Introduction

1.2.3 Data integration, aggregation, and representation

Normally it is not a good approach to put a bunch of raw data directly into repositories
because in this case finding the desired information and reusing it will be hard. Keeping
metadata along with the data can slightly help but still there are some challenges related
to the practical details and structure of data records.

Analysis of data is profoundly more challenging than only locating, recognizing, realiza-
tion and observing data [DE+12]. In fact, all of these steps should be performed in a
fully automated manner in order to analyze data efficiently. Therefore, data structure
needs to be translated in order to be systematically understandable for computer. Data
integration can be one of the useful solutions although it requires extra effort to make
differences clear in an automated error-free way.

Furthermore, for the easy analysis cases, it is vital to design database appropriately.
Most often there are different alternatives to how information can be recorded. Specific
design have some benefits for predefined targets and probably some disadvantages for
others. Hence, now a days, database design is a vital skill in the enterprise context that
is done by special experts. There are some creative tools which help other nonspecialist
experts, like domain scientists, to design databases effectively [DE+12].

1.2.4 Query Processing, Data Modeling, and Analysis

Custom statistical analysis on small data instances are essentially different from querying
and general Big Data analysis approaches. Most often Big Data is dirty, unreliable,
heterogeneous, correlative and unsafe. Even though messy Big Data could be more
worthwhile than small samples since typical statistics achieved from repeated patterns
and interrelation analysis usually overcome specific variations and often reveal more
trustworthy hidden models and observations. Moreover, missing data can be inspected
with information redundancy that existed in the Big Data and large incoherent infor-
mation structures. In addition, investigating inconsistent cases, approving reliable inter
connections, displaying substantial clusters, and detecting invisible relationships and
models are possible as well.

In order to apply data mining, it is required to have organized, trustable and efficient
data set along with descriptive query and appropriate mining interfaces and algorithms
as well as required computing environment. Moreover, data mining can improve the
quality of the data and supply more complicate querying functionalities. The real-time
analysis is the next group of interactive data analysis for Big Data. On the long run,
queries can be systematically generated on the insertion of a new content in a website,

16

1.2 Background

produce recommendations and offer specific analysis to make a decision on top of a data
set to either store or discard it.

Currently, Big Data analysis has a problem in the lack of communication between data
storage systems which keeps the data and generate SQL with analysis applications which
require non-SQL operations, for example, data mining or statistical analyses [DE+12].

General Analytical Tools and Technologies

There are several well-known tools and technologies which are used for analysis purposes
in industry. Some of them are open source and for the others there are commercial
licenses which specifies the level of provided features.

R Language: R is a system for statistical computation and graphics. It consists of
a language plus a run-time environment with graphics, a debugger, access to certain
system functions, and the ability to run programs stored in script files [R C16].

RapidMiner: RapidMiner (formerly known as YALE), offers advanced analytics through
template-based frameworks. It has a profound advantage that users rarely have to
write any code. It is offered as a service, rather than a piece of local software and is
one top rated data mining tools. Moreovre, RapidMiner also provides functionality
like data preprocessing and visualization, predictive analytics and statistical modeling,
evaluation, and deployment5. What makes it even more powerful is that it provides
learning schemes, models and algorithms from WEKA and R scripts.

WEKA: WEKA6 originally was developed for analyzing data from the agricultural
domain. With the Java-based version, it is very sophisticated and used in many different
applications including visualization and algorithms for data analysis and predictive
modeling. It is free under the GNU General Public License, which is a big advantage
compared to RapidMiner, because users can customize it however they prefer. WEKA
supports several standard data mining tasks, including data preprocessing, clustering,
classification, regression, visualization and feature selection.

5https://rapidminer.com
6https://weka.wikispaces.com/

17

https://rapidminer.com
https://weka.wikispaces.com/

1 Introduction

KNIME: KNIME supports all data preprocessing steps which are reading, transforma-
tion, analyzing and deploying. It provides a graphical user interface to assemble nodes
for data processing. It is an open source data analytics, reporting and integration plat-
form. In addition, KNIME integrates various components for machine learning and data
mining through its modular data pipelining concept and supports business intelligence
and financial data analysis as well.

Statistical Analysis System (SAS): SAS is a software suite developed by SAS Institute
which is the leader in analytics. It provides innovative analytics, business intelligence,
data management software and predictive analytics7. In fact, it is a software system for
data inspection and report writing. Statistical Analysis System is a batch of programs
that work together to reclaim them and to reserve data values, reform data, evaluate
complex and single exponential analyses and generate reports8.

IBM Watson Explorer: IBM Watson Explorer is a perceivable investigation solution that
integrates search and content analytics which helps users to discover and comprehend
the required in order to work more thoroughly and produce more precise result to make
decisions [Cor15b].

1.2.5 Interpretation; Reporting and Visualizing

After getting the raw data from various data sources and manipulation it, it is important
to understand the data so that later we can interpret that data through visualization. We
should transform the data into the format which can be leveraged by visualization tools.
knowing the best way to take the data and visualize it in different possible diagrams
like tree maps, link graphs and parallel coordinates, is the other issue which should be
considered. Visualization theory, dashboards, Visualization tools (e.g. Gephi, Mandrian,
Afterglow, twopi) and libraries have to be considered as well.

Visualization Tools and Technologies

Visualizing data is important regardless of the size of the data because it translates
information into insight and action. The approach to visualizing Big Data is specially
important because the cost of storing, preparing and querying data is much higher. Thus,

7http://www.sas.com/
8https://intellipaat.com/tutorial/statistical-analysis-system-sas-tutorial/

18

http://www.sas.com/
https://intellipaat.com/tutorial/statistical-analysis-system-sas-tutorial/

1.2 Background

there are many tools and technologies available, each with their different strengths. to
visualize the data in order to reveal more hidden insights and information. Tableau,
Excel Chart Animation, Data Exploration in R, Ggplot2, Apache Zeppelin9, ZoomData10,
D3.js, InfoVis, IBM ManyEyes, QlikView, Plotly11.

1.2.6 Data Storage and Management Technologies

It is one of the main challenges in the Big Data area is that how can we securely store a
large amount of data like capture log files and even contexts.

Relational Databases

Data with the following characteristics might be better suited for a traditional RDBMS:
1.OLTP required (On-Line Transaction Processing) 2.ACID requirements (atomicity,
consistency, isolation, durability) 3.Complex data relationship 4.Complex query require-
ments [DataModel].

NOSQL Databases

Data with the following characteristics is well-suited for a NoSQL system: 1.Data volume
growing rapidly 2.Columnar growth of data 3. Document and tuple data 4.Hierarchical
and graph data [DataModel].

File System and Data lakes

The term data lake comes from the big data community and starts appearing in the
security field more often. A data lake (or a data hub) is a central location where all
security data is collected and stored. Sounds like log management or security information
and event management (management or security information and event management:
SIEM) [Mar16]. A data lake is a large storage repository and processing engine, they
provide "massive storage for any kind of data, enormous processing power and the
ability to handle virtually limitless concurrent tasks or jobs" [Wik].

9https://zeppelin.incubator.apache.org/
10http://www.zoomdata.com/
11https://plot.ly/python/overview/

19

https://zeppelin.incubator.apache.org/
http://www.zoomdata.com/
https://plot.ly/python/overview/

1 Introduction

1.2.7 Technologies for Big Data

There are couple of tools and technologies which are used in the area of data science.
MS Excel with Analysis Toolpack, Java, Python, JavaScript, R, R Studio, Rattle, Weka,
Knime, RapidMiner, Hadoop Dist of Choice and Apache Spark are some of well-known
tools in this area.

Apache Hadoop

Apache Hadoop is a one of the well known frameworks in the Big Data area. It is
a scalable error prone and distributed system for repository and processing of large
collection of data sets. Hadoop can be used to keep large of unstructured and semi-
structured data safely on several clustered servers while scaling performance considering
being cost effective by slightly inserting cheep nodes to the cluster [Vik14]. Elastic
search and log stash and know how to make useful visual representation of your data.

The following areas are various capabilities of Enterprise Hadoop which are a main
requirement for each platform and technology:

Data Management Supply and process large collection of data in a scalable repository
layer.

Data Access Read and communicate with the stored data in multiple ways.

Data Administration and Integration Rapidly and simply load data, and manage based
on policies.

Security Fulfill the need of Authentication, Authorization, Accounting and Data Protec-
tion.

Operations Provision, manage, monitor and operate Hadoop clusters at scale [Hor14].

The detail of Apache projects is presented in the figure 1.5 which satisfy all the mentioned
functionalities.

Data Management: Hadoop Distributed File System (HDFS) is the main technology
for the efficient scale out storage layer, and is designed to run across low-cost commodity
hardware. Apache Hadoop YARN is the pre-requisite for Enterprise Hadoop as it provides
the resource management and pluggable architecture for enabling a wide variety of data
access methods to operate on data stored in Hadoop with predictable performance and
service levels.

20

1.2 Background

Figure 1.4: A modern Data Architecture with Apache Hadoop integrated with existing
data systems [Hor14]

Data Access: Apache Hive is the most accepted data access technology, although there
are multiple specific engines. For example, Apache Pig offers scripting functionalities,
Apache Storm provides real-time operations, Apache HBase creates columnar NoSQL
storage and Apache Accumulo provides cell-level access control. All of these parts can
employ on one set of resources. Moreover, YARN offers flexibility for advanced methods
of programming frameworks.

Data Governance and Integration: Apache Falcon offers policy-based workflows for
governance, while Apache Flume and Sqoop offers plain data ingestion same as the NFS
and WebHDFS interfaces to HDFS.

Security: Security is offered for all layers in Enterprise Hadoop.

21

1 Introduction

Figure 1.5: Enterprise Hadoop Components [Hor14]

Operations: Apache Ambari provides the necessary interface and APIs to supply,
organize and control Hadoop clusters and merge with other management software
[Hor14].

1.2.8 Object Storages

Object storages are used as a file server for cloud-based applications. They provide
extended features for companies in the case that they have an application which should
be run on the cloud. For instance, some web based applications like content management
system, usually have a relational database to store metadata related to the contents. In
the past, the content file itself were stored in the local file server which needs server
configuration to replicate the file server. Since the accessibility of file servers is hard
on the cloud, they are not anymore used on the cloud environment. In this case, the
object store is a replacement for file server, for example, if there is an ECM application
as a cloud-based application which is run on the cloud and includes a set of image data
set, thus, the images in this system should be stored inside a object storage. Due to the
fact that object storages have a REST based API and all the programming languages can

22

1.2 Background

be connected to them, they are good choices to be used a data storage on the cloud.
Therefore, if local file servers are replaced by large object storages, the target application
is ready to be run in the cloud environment. Moreover, object storages could be used as
a cloud-based back end storages for Enterprise Content Management systems as well.
There is a possibility to use an object storage as a general purpose data store specifically
for analysis targets similar to Hadoop Distributed File System (HDFS)12 which is mostly
used to store the data for analysis purposes.

Migration Reasons to Object Storages

Traditionally many companies have big servers with file servers installed on it which
are very hard to maintain. Because they have all these folders which different people
access to it and both structured and unstructured data are always stored together. Since
object storages are technically easy to manage, many companies which have a large
installation, want to migrate to the object storage. In case of having a large installation,
companies have to install all the servers, although with the object storages usage, it is
easy to maintain and operate these servers beside having a good user interface.

Object Store Advantages

Totally using object storages has some advantages and disadvantages which are listed in
the followings.

• Scalable capacity

• Scalable performance

• Persistent

• Low cost

• Simple management

• Single access point

• No volumes to manage and change the size13.

12https://hadoop.apache.org/
13Online Resource: http://blog.rackspace.com/introduction-to-object-storage/

23

https://hadoop.apache.org/
http://blog.rackspace.com/introduction-to-object-storage/

1 Introduction

Object Store Disadvantages

• POSIX utilities do not work directly with object-storage since it is not a file system

• Integration may need changing of application and work flow logic

• Usually, lower performance on a per-object basis than block storage14.

Data and Object Storage Scenarios

Generally there are various potential use cases for Big Data analysis that are mentioned
in the figure 1.6. For some of these scenarios, due to the some reasons, it is a good idea
to use the object store to keep the Big Data on the cloud.

There are couple of various use cases which object store is appropriate with their
requirement as a storage rather than file systems. In general different areas can be
targeted to apply analysis methods in order to gain the target output which could be
generated in various kinds of formats. In the following there is a list of different data
types that can be stored inside object store with the list of possible metadata that they
can have. Email Archiving is one good example to implement.

Enterprise Content Management (ECM) is another good use case of using object stores.
Business records, invoices, contracts and other company specific data are stored in ECM
systems. like that. Other examples are cloud applications, websites, online applications
and similar applications that contain various types to store objects. Object storages are
more used as back end in cloud-based applications and due to extensive support of
metadata, they are a goof choice for a repository of the ECM systems on the cloud.

1.3 Related Work

There are different solutions and technologies that provide a possibility to merge analyt-
ics features with the existed data management system running on the cloud and then
visualize the result in a convenient way. many companies use the Enterprise Content
Management System (ECM) to maintain and manage all their documents, datum, busi-
ness application contents or multimedia assets and most of them prefer to use the open
source solutions. Since most often, there is a huge amount of data in an ECM system, it
is preferable to apply some analytics scenarios on top of the data to find more details

14Online Resource: http://blog.rackspace.com/introduction-to-object-storage/

24

http://blog.rackspace.com/introduction-to-object-storage/

1.3 Related Work

Figure 1.6: Potential Use Cases for Big Data Analysis
15

via visualizing the result or providing reports. For this purpose, there are some open
source ECM platforms that support analysis features as well. Alfresco16 and Nuxeo17

are two sample platforms which both are built in a Fine-grained and modular approach
of architecture just like the OSECM system therefore it is easy to extend, customize
and integrate them with the existing applications and processes. However, Alfresco
Enterprise version is closed source, its Community version is open source. Nuxeo is a
real open source model because code is available for the Enterprise version too [DB13].
Alfresco is leading the combination of ECM and Business Process management (BPM)

16https://www.alfresco.com/
17http://www.nuxeo.com/

25

https://www.alfresco.com/
http://www.nuxeo.com/

1 Introduction

to make efficient connected processes which present content in context. Moreover, "it
provides easy mobile access to content, delivers a simple but rich collaboration user
experience and helps customers maximize the value of their content18". Since Alfresco
has an integrated analytics component, it is easily possible to access and composite data
from Alfresco in order to obtain beneficial insights, and make information-driven deci-
sions19. The integrated analytics extends exploration by finding content and interactions
besides detecting old assets to archive. Alfresco provides customizable filters to refine
searches by document metadata in sort of property, format, content author, site, tag
and more automatic extraction and indexing of metadata and in this case it is similar
to the OSECM system. As it is clear in the figure 1.7, similar to the OSECM system,
Alfresco stores metadata in a database and content in a file system. Content is kept in
the file system to provide for very large content, random access, streaming and options
for different storage devices.

Figure 1.7: The Alfresco Repository Architecture20

18https://www.alfresco.com/products/enterprise-content-management
19http://docs.alfresco.com/analytics/concepts/analytics-overview.html

26

https://www.alfresco.com/products/enterprise-content-management
http://docs.alfresco.com/analytics/concepts/analytics-overview.html

1.3 Related Work

The Alfresco architecture provides a good flexibility to substitute the components with
others that can meet the same functionality.

Alfresco analytics provides more visibility over Alfresco sites, user and contents via
providing reports. It mines the information of user activities and new contents in order
to produce these reports. The provided reports are either pre-defined or custom reports.
A collection of interactive reports based on users and content creators are offered as
pre-defined reports, for example, the most active users. The business requirements can
be fulfilled through producing custom reports specifically for that business purpose.
These reports have different level of securities. They can be published publicly into the
Alfresco websites or maintained privately.

Figure 1.8: The Alfresco Analytics Architecture21

20https://wiki.alfresco.com/wiki/Alfresco_Repository_Architecture
21http://docs.alfresco.com/analytics/concepts/analytics-architecture.html

27

https://wiki.alfresco.com/wiki/Alfresco_Repository_Architecture
http://docs.alfresco.com/analytics/concepts/analytics-architecture.html

1 Introduction

As it is shown in figure 1.8, the Alfresco Analytics consists of a set of components. The
business analysts can access to the reports through "Alfresco Share" component. These
reports are generated based on the events that are caught and stored in the database.
When an event happens, a flow of events take place in order to provide the data that
can be queried by a Business Analyst to make reports. The figure 1.9 shows the flow of
data that occurs in Alfresco Analytics when an event happens. For instance, when a user
uploads a new document through Alfresco Share, the document is stored in Alfresco
repository. This event is captured by ActiveMQ queue as an message and is kept in the
Data Integration (DI) database. Through ETL (Extract, Transform and Load) process,
the data inside Alfresco database is transformed and sent to the DI database which
communicated with the Business Analytics (BA) server. The report definitions are saved
in the BA database. Finally, a business analyst can produce and edit reports through
Alfresco Share component.

Figure 1.9: The Alfresco Analytics Flow of Data22

22http://docs.alfresco.com/analytics/concepts/analytics-detailed-architecture.html

28

http://docs.alfresco.com/analytics/concepts/analytics-detailed-architecture.html

1.3 Related Work

In compare with both Alfresco and Nuxeo platforms, in the this work, the system provides
a facility for user to easily define the analysis queries and change them through using
NODE-RED server which is an interactive tool. This facility enables user to write SQL
queries with various range of complexity and even use JavaScript functions to further
processing data within JavaScript code to restructure the data to make it compatible
with the supported visualization interfaces in the Bluebox UI system.

The Nuxeo Platform is a developed platform for building modern content applications.
It is extremely modular and has more than 150 modules to support all its capabilities23.
Similar to Alfresco and OSECM system, the Nuxeo Platform has the repository for storing
content and associated metadata. It stores metadata in a SQL database structure while
the content binaries are usually on a file system24. As it is shown in the figure 1.10,
these parts in the Nuxeo repository are communicating with Document Store and Blob
Store respectively.

The document store is implemented by the visible content store (VCS) and any SQL
database. While PostgreSQL is preferred for performance reasons, any SQL database
can be plugged if user prefers. All metadata is stored in the VCS and a Document is
referred to a collection of metadata which the binary or blob is only one field of a Nuxeo
document. The blob store is normally based in a file system and a simple structure where
binary content is renamed with a unique ID. This is the only reference to the VCS. Since
it has a flat and simple architecture, it does not need complex file system operations
and allows switching to other blob managers such as Amazon S3. Nuxeo provides a
flexible and extensible REST API for complex interactions and can integrate with many
cloud service to create, query and manage content using the well-known applications.
For instance, Nuxeo Vision26 is one of its services which provides an integration with
Google Cloud Vision image detection service27 to derive insight from images with the
powerful Cloud Vision API.

Generally, as I discussed in the background chapter, there are various open source
data analysis tools and frameworks that some of them could be used for the analysis
component in this work as well.

23https://doc.nuxeo.com/display/NXDOC58/Architecture
24http://www.nuxeo.com/blog/nuxeo-architecture/
2524
26http://www.nuxeo.com/nuxeo-vision/
27https://cloud.google.com/vision/

29

https://doc.nuxeo.com/display/NXDOC58/Architecture
http://www.nuxeo.com/blog/nuxeo-architecture/
http://www.nuxeo.com/nuxeo-vision/
https://cloud.google.com/vision/

1 Introduction

Figure 1.10: The Nuxeo repository architecture25

30

2 System Architecture and Components

This work focuses on creating an analysis layer for an ECM system which is running
on the cloud and is using object storages as its back end repository. I started with a
cloud-based Enterprise Content Management (ECM) system which is using Swift Object
Store from the OpenStack project1 as its main storage. Swift is one of the cloud-based
object storages.
The existed Enterprise Content Management system itself is based on a framework
which targets creating a prototype to support both creating new cloud native ECM
components and help to migrate the existed ECM systems to the cloud environment
[OSECM]. However, in this work, I attempt to enhance the OSECM system with analysis
capabilities. For this purpose, new components are designed in a way that can be
integrated with the existed system easily and can be applied to existed ECM systems or
other applications which are relied on cloud object storages as well. The architecture of
the OSECM system is pictured in the following:

As it is shown in the above picture, in OSECM system all features has been divided
to a group of small components with specific functionalities. There are three data
management systems in the whole OSECM system which are used for different purposes:
Message Persistence, Swift Object Store and Metadata Warehouse. The Swift Object
Store and Relational Metadata Warehouse are involved to create an analysis layer, that I
will describe the flow of their usage in details later in this chapter. In order to benefit
the advantages of object storage features, specially for cloud-based applications, Swift
Object Store is used in the OSECM system. Typically it is used for storing large binary
objects and wide amounts of objects and in OSECM system, it is considered as a file
system for this cloud-based application.
In the OSECM system, I focused to create an analysis layer for all objects that have
been stored inside the Swift Object Store in order to distinguish the hidden insights
and knowledge about them through using their associated metadata. Generally every
object inside ECM systems has the actual object data plus metadata which describes the
information about the object. In Swift, there are metadata for all the different types of
entities that it has and all of them are stored as key-value pairs. In OSECM system also
metadata provides the possibility to classify, advanced search and analysis objects.

1http://docs.openstack.org/developer/swift/

31

http://docs.openstack.org/developer/swift/

2 System Architecture and Components

Figure 2.1: The OSECM Architecture [OSECM]

Although Swift supports both data and metadata natively and keeps some information
like name, size and creation date of the object as a default set of metadata list for
each object, sometimes more metadata can be extracted from each object to be used
later on for advanced search and analysis. For this purpose, I create three compo-
nents that are used to automatically create and fetch some metadata from objects, and
store them inside Swift Object Store as well as replicate them to the metadata ware-
house for further usage. The general extraction process is shown in the following picture:

In fact, in order to support more complicate and precise analysis scenarios, I fetch more
metadata from each object based on its content type and store them inside Swift before
retrieving for analytics. This way, Swift is kept as the central and main repository for
both data and metadata and all changes have to be submitted inside Swift Object Store

32

Figure 2.2: The process of extracting metadata from objects

to be used later on for analysis. Since Swift lacks advanced queries features as well as
fetching and listing, in this work, I used a relational database as a replicated metadata
warehouse to keep all the useful metadata inside one place. Furthermore, in this way,
there is a unique metadata warehouse that is used as a single source for analytics and
since it is based on SQL, all the SQL queries powers can be used to fetch the desired
candidate data set for analysis use cases. Metadata replication in this system is only
unidirectional and all changes of data and metadata occurs directly on the swift object
store. This architecture helps to have only one main storage which should be taken into
the account for all modifications and migration activities [OSECM].
Metadata which is the base for the analysis and could be used to support searching
capabilities should be classified in a way that we can extract the desired information
(e.g. fetching subject of an email or title of a PDF file) from them and replicate the
extracted metadata into a metadata warehouse. For this purpose, as it is shown in the
figure 2.2 as well, the following modules has been designed and implemented: Content
Identifier, Metadata Extractor and Metadata Replicator. My contribution in the OSECM
system is :

1. Providing the Metadata Extractor for email.

2. Designing and implementing the Metadata Replicator.

3. Designing the metadata warehouse schema.

4. Producing SQL queries for analysis use cases.

5. Defining the supported data structure for the visualization.

33

2 System Architecture and Components

6. Preparing the appropriate set of visualization graphs using Bokeh library.

After metadata extraction process, we have a data management system which has a
replica of metadata and can be used for queries and visualize the result. For instance,
for email dataset, some metadata can be extracted in this way and then to be used for
presenting a graph of people who communicate with each other. For this purpose, we
need an analysis component that user can create its queries and apply them on metadata
warehouse to get the result. Then I show the result to the user as plotted into the frame
of different graphs based. As it is shown in the OSECM architecture picture, Bluebox UI
is the user interface of this whole ECM system. Therefore I decided to show the result of
analysis as a part of the Bluebox UI web application.

2.1 Swift Object Store

The Swift Object Store from the OpenStack project is an open source engine to store a big
data (big in both contexts of number and size of the data) for cloud-based applications.
It drives a major and large scale cloud service providers right now including companies
like Rackspace, HP, Red Hat, IBM and some other famous enterprises. It is also used in
quite a few private cloud deployment in order to store large amount of static contents
that can grow without bounds. Swift is suitable for the data which is large scale, can
require extremely high availability and demands high concurrency across the entire data
set.

2.1.1 Swift Data Model

Swift has three types of entities that can be used for building the desired data model.
These entities are from the type account, container and object. Basically an account is a
user or an organization, who is the owner of the data. Each account can have multiple
containers inside and each container can have several objects. Here in our system we
have a flat data model for Swift object store hence we do not have sub-containers. To be
able to implement a hierarchical file system structure with Swift, it is recommended to
use the context of pseudo-paths2 which means using the whole path to a file as the name
for the swift object. This way the folder hierarchies are actually implemented in their
names. Tracking objects can be done by prefix filtering which is supported by Swift.

2http://docs.openstack.org/user-guide/cli_swift_pseudo_hierarchical_folders_directories.

html

34

http://docs.openstack.org/user-guide/cli_swift_pseudo_hierarchical_folders_directories.html
http://docs.openstack.org/user-guide/cli_swift_pseudo_hierarchical_folders_directories.html

2.2 Content Identifier

Figure 2.3: Swift Data Model; includes Accounts, Containers and Objects plus their
attached metadata

2.1.2 Swift Metadata

Swift stores metadata for all its three various entities. These metadata are in a form of
key-value pairs. These metadata are the information that Swift knows about the entity
like name, size, date and etc. Besides, Swift can stores some extra defined metadata
which are stored in entity itself and add them to the list of metadata for that entity. In
this way we are using Swift as a central storage for our Enterprise Content Management
system because we can store both data and metadata inside it. In our design this
functionality is done by Metadata Extractor in our system.

2.2 Content Identifier

The content identifier distinguishes the type of an object through analyzing its content.
Then it fills the "content-type" metadata field it with the determined type. The user also
can set a content type for an object when uploads it into the Swift. But it has a problem
that most of the users check file extension from the file system when uploading them
as objects which are not reliable. Hence content identifier uses a specific programming
library to distinguish the correct content type [OSECM].

35

2 System Architecture and Components

2.3 Metadata Extractor

Since metadata is a critical part of each Enterprise Content Management system to find,
categorize and organize data, having a larger and more precise collection of metadata
can facilitate the ECM system profoundly. For this purpose, more metadata should be
fetched from each object and this is done by Metadata Extractor in the OSECM system.
After distinguishing the correct content type of objects, Metadata Extractor can use this
information about the object structures and fetch more useful metadata fields from their
structures.

2.4 Metadata Replicator

Swift Object Store lacks sophisticated querying capabilities for metadata as well as not
being efficient for reading and listing of them. Therefore we decided first to replicate
all the desired metadata to a relational metadata warehouse and then use this data
management system to run queries.
The Metadata Replicator fetches the metadata from the Swift object store and put it into
the database. The metadata comes from various sources:

1. Swift Object Store internal metadata,

2. Metadata retrieved by content type filters,

3. Metadata defined by user which belongs to a document class

Currently, the third group of the metadata is not implemented fully in our system but
there is a possibility to add it to the system for future works. The replicator creates
a table for each content type filter of metadata inside the database. These tables are
joined together by referencing object and container name.

2.4.1 Internal Metadata

Swift creates some basic and default information as internal metadata for all different
types of entities that it has. These information are usually name, size, type, access
and the last-modified date and others. The replicator put all these information inside
one table which is called "MetaDataTable_SwiftInternal" with the primary key of the
combination of container name and object name.

36

2.4 Metadata Replicator

2.4.2 Filter Metadata

Since the replicator has the same filter plug-in interface as the extractor, it can pick up
metadata fields from the filter plug-ins. The replicator creates a table for each content
type filter and choose the desired set of metadata fields from the object itself. It is very
important to use the same version of the plug-in for both extractor and replicator in
order to fetch and store the correct set of metadata.

2.4.3 Document Class Metadata

This group of metadata helps to categorize each types of entities to different classes as
user defines them. It is managed similar to filter metadata. The replicator creates a
table for each document class with the required columns based on its definition. The
document class definition should be extracted from the Swift. At the moment, document
class is only applied on the containers which means every object inside this container
refers to that document class. Therefore, all the specified metadata fields from that
document class can be read from the replicator and stored into the database. Users can
define some other types of metadata that are not belong to any of the filter, document or
internal metadata groups and as Waizenegger et al. mentioned, they are called "free"
metadata [OSECM]. Currently our system ignores the free metadata since the relevant
schema is not known for them.

37

2 System Architecture and Components

Figure 2.4: The Metadata Replication Workflow

38

3 Analysis Concepts

Analysis refers to breaking a whole into its separate components for individual exami-
nation. In fact, data analysis is a process of fetching raw data and transforming it into
information useful for further usages like supporting decision making systems and offer-
ing sophisticated . Data is collected and analyzed to answer questions, test hypotheses or
disprove theories. Here, in order to provide analysis features for the OSECM system, all
the available data has to be collected, cleaned and then fetched to the data management
system to be ready for analysis queries. The analysis application runs analysis queries
and send its results to the visualization system Which is Blebox UI system for the whole
OSECM system. Then, the visualization system should use a set of standard graphs and
diagrams to serve the result for the user in order to be able to find out more about the
hidden insights of the data. Generally, the figure 3.1 shows the required components
and architecture that such an analysis layer should have using the Swift object store as
the back end repository.
The analysis application connects to the metadata warehouse which contains all the

available and useful metadata which are extracted from Swift object store. This ap-
plication should provide a possibility for users to define analysis queries in a flexible
manner. The possibility to define queries should be in a way that the implementation
of the analysis application has not been changed to add a new query or modifying the
existed ones. In this architecture, a relational data management system is used in order
to provide a comprehensive support of SQL queries and the possibility to actually run the
queries inside the database to return the proper result. Since the provided results have
various structures, the visualization system has to support a collection of defined result
data sets. Finally a suitable graph also should be chosen to present the final result.

To support the presented architecture for this analysis layer, different options are possi-
ble:
First option would be having a completely new analysis component, consists of the target
queries that should connect to the metadata warehouse and get the result back for the
visualization. But in this case, for designing each new analysis use case, the application
should be changed and new queries should be added to the system which does not bring
much flexibility to the system. Furthermore in this case, the new component should be
created from the scratch and in the case that we would be restricted to use a specific
database or data warehouse as our metadata warehouse, this application also should be

39

3 Analysis Concepts

Data Importer

Swift Object Storage

Analysis Application

Visualization System (Bluebox UI System)

Data Management System

Figure 3.1: The required components and architecture to create the analysis layer;
Considering that object store and Bluebox UI is existed

changed in order to support both connection to the new database and the new syntax
of the used database to write the queries which could be supported by this database.
Another option is using an existed analysis open source tool and integrate it with the OS-
ECM system. Here we decided to use Node-RED1 tool which is basically a visual tool to
make Internet of things applications. It provides a browser-based flow editor that makes
it easy to wire together flows using the wide range nodes in the palette. Hence, user can
define all the required steps including get the request, fetch the data from the metadata
warehouse, write desired queries, run them inside the database, get the result back,
and create an endpoint to make the result available for the external usages like plotting
data for visualization purposes. Moreover, the additional processing of the result is pos-
sible through defining JavaScript functions and retrieve data from other external sources.

1http://nodered.org/

40

http://nodered.org/

3.1 Visualization

Figure 3.2: The analysis scenarios inside Node-RED Server; providing an Endpoint for
outside access

In this system, I design the flows inside Node-RED server in a way that each of them
should have an HTTP input node to get the HTTP request coming from the end user
side and an HTTP output node to create an endpoint for presenting the result for the
visualization application. In this work, in order to make provide the analytics feature
accessibility by the end user, we create a new part in the Bluebox UI system which allows
the user to open Node-RED environment to define a new analysis flow that could be
reused, choose the newly created or existed HTTP endpoints inside the Node-RED server
to get the desire analysis result set and choose the proper visualization graph to see the
result.

3.1 Visualization

Data visualization mainly deals with the techniques used to communicate data or
information by transforming it as visual objects (e.g., points, lines or bars) existed in
graphics. The target is to communicate information apparently and accurately to users.
As I mentioned in the background chapter, the visualization is one of the main steps in
data analysis or data science. According to Friedman the "main goal of data visualization
is to communicate information clearly and effectively through graphical means [Fri08].
The data visualization does not have to be looked tedious to be functional or highly
complex to look pretty. In order to exchange ideas and information efficiently, both
inventive form and good functionality need to be taken to the account. In this way,
insights can be delivered into a rather sparse and complex data set by communicating

41

3 Analysis Concepts

Figure 3.3: Different part of the Bluebox UI

its main aspects in a more perceptual way.
Here, in order to meet both the main targets of visualization including being aesthetic
enough and conveying useful information too, to create analytics diagrams, I have used
Bokeh2 which is a Python interactive visualization library that targets modern web
browsers for presentation. Moreover, for some of the implemented analytics use cases,
Numpy3 and Pandas4 besides Bokeh to provide other aspects like managing the data
frame.

3.1.1 Bluebox UI

End user can access to the analysis feature of our ECM system through Bluebox UI.
Generally communication with the whole OSECM system is possible both through
Bluebox UI and Swift API.
In order to perform different functionalities of the existed version of OSECM system,
currently Blubox UI has 4 parts as it is shown in the figure below. These parts are
designed as different tabs in one page application using AngularJS framework and
Bootsrap library to be integrated with the Bluebox UI.

2http://bokeh.pydata.org/en/latest/docs/dev_guide/
3http://www.numpy.org/
4http://pandas.pydata.org/

42

http://bokeh.pydata.org/en/latest/docs/dev_guide/
http://www.numpy.org/
http://pandas.pydata.org/

3.1 Visualization

Figure 3.4: The Component Overview of Bluebox User Interface [OSECM]

In fact Bluebox UI has exactly three functional components that are linked to the three
internal APIs which are used:

As it is shown in the figure 3.4 , in the following, I describe the different parts of the
Bluebox UI system based on the OSECM paper [OSECM].

• Tasks and Scheduling

• BB Insights

• Content Management

Tasks and Scheduling is connected to the internal Apache ActiveMQ messaging service.
Users can perform tasks triggering, scheduling besides getting responses from the tasks.
At this moment these tasks are used for executing content identification, metadata
extraction, and metadata replication.
BB Insights includes the analytics and statistics component. It works with a Node-RED5

instance that is connected to the metadata warehouse. This way, user can create SQL
queries and connect to the external data sources which is in this work SQLite database
file. Then user can proceed with using JavaScript functions to analyze the desired data
and prepare it for the visualization. Entirely it accomplishes the following operations:
First, it presents the available schemas and data in the metadata warehouse for the
user. Then, it allows accessing a Node-RED instance which has a SQL connection to
the metadata warehouse. Currently in this prototype, for this purpose SQLite database

5http://nodered.org/

43

http://nodered.org/

3 Analysis Concepts

Figure 3.5: The BB-Insights User Interface inside Bluebox

file is put in the Node-RED server. Hence user can access to all data that replicated
to the metadata warehouse and create SQL queries for the targeted analysis scenarios.
Similarly user can graphically link all the SQL queries together with JavaScript functions
inside Node-RED. Finally, it provides endpoints for Node-RED to output the analysis
results. This data is then delivered to the client application by the API wrapper on the
server side. The server application then locally renders the data into graphs in the clients
web browser.

44

3.1 Visualization

Content Management is the other UI component in Bluebox. User can communicate
with the Swift object store to insert and fetch the data. A file browser is provided like
interface to the object store with capabilities to manage metadata, containers and the
SDOS functions.

3.1.2 Analytics Diagrams

In order to support a collection of result data structure that can be visualized in this
system, I defined a group of data structure that can be plotted by a specific set of graph
types as well. As it is shown in the figure 3.6, I define three types of data structure that
the result should be looked like.

Figure 3.6: The supported data structure for the visualization

For each instance of data structure, there is a set of defined graph types, that the result
can be shown with them. I describe the list of suitable graph that can be used for each
of the data structure types:

45

3 Analysis Concepts

Instance One The data structure has exactly one numerical column and multiple rows.
The rows are identified by an id column. For this type, in our system I support Bar Graph.

Instance Two The data structure has exactly two numerical columns and multiple
rows. Each row is identified by an id column. The numerical columns are plotted against
each other through using Line Graph and Area Graph.

Instance Three The data structure has two or more numerical columns beside multi-
ple rows. Each row is identified by an id column. For this type, currently this system
supports stacked bar graph, box plot and donut chart.

In the Section 4.7, the definition of available graphs and some examples from the OSECM
system are presented.

3.2 Candidate Use cases

1. Showing the number of objects for different types of containers.

2. How many containers/objects does each owner have.

3. How many containers/objects are expired.

4. List of objects which are recently modified (Within 0-10 last days).

5. Ranking containers based on their number of objects.

6. Recognizing objects as an image and put them inside image container.

7. Recognizing the network of people who are interacting with each other through
Emails.

8. Identifying which period of time has the large amount of sent Emails

9. Using text analysis and natural language processing to search some specific clause
in the email.

10. response time

11. grouping people, who postpone whom? is it depend on their position in the
organization structure (Are they closed colleagues or not.)

46

3.2 Candidate Use cases

12. Formal or informal sent email based on group of people like working group or age
group.

13. Which subjects are the main subjects

14. Email frequency or volume of emails between different group of people

15. Each person has some properties like department, experience years, etc.

16. How effective emails are in working subjects.

17. How much of people in cc and bcc have any reflection in order to response to their
emails. For instance recognizing manager who has not had any reflection to their
emails.

18. Calculating the Response time for each email.

19. Tagging people based on organization structure.

20. The influence of position, age, type of work, ... on the response time.

21. The influence of people position on the read or unread emails.

22. How much people in different positions are in cc and bcc groups.

23. To find out what the position of the people is by looking at the data. For instance
based on some structure that there existed inside emails you can find out who is
this person? Is he developer or HR employee or boss or whom? Based on the way
that they communicate and so on.

47

4 Technology and Implementation

For all components that are described in the architecture chapter and involved in the
analysis layer, different technologies has been employed to create new components and
integrate them with the OSECM system. For some of the used technologies, I tried other
alternatives (e.g. to make visualization) as well but at the end I tried to choose the most
appropriate ones to make the whole prototype flexible enough. For instance, for the
visualization part, to make the graphs for final result, using D3.js also is tried but since
making interactive graphs with D3.js need more coding and it is more complicated, we
decided to use Bokeh1 library in cooperation with other open source libraries like numpy
2 and pandas 3 to make the appropriate graphs.

In this chapter, for each part of the system, I describe the tools and technologies that
are used as well as explaining the way that I implement the required components and
integrate them with the OSECM system.

4.1 How does Swift work?

Swift has two parts: a proxy server and storage nodes. On the front end there is a proxy
server which accepts all the requests from end users and is responsible to implement all
the APIs that swift provides. The proxy server controls all communications with back
end systems should be done correctly.4

This proxy server communicates with storage nodes and ensure that clients get their
responses back. All the swift APIs are standard HTTP based API. When for instance
client have a PUT request, the request goes to the proxy server and proxy communicates
with the proper storage node and ensure that data is getting written down inside storage
node. A storage node itself is responsible to durably store data inside disk and then
sending the response back to the proxy server. Swift is replicated based system which

1http://bokeh.pydata.org/en/latest/
2http://www.numpy.org/
3http://pandas.pydata.org/
4Swift Online Content: https://www.youtube.com/watch?v=z0jQFoW_QgM

49

http://bokeh.pydata.org/en/latest/
http://www.numpy.org/
http://pandas.pydata.org/
 https://www.youtube.com/watch?v=z0jQFoW_QgM

4 Technology and Implementation

means all the data inside it will be stored multiple times to ensure high availability and
durability. It is recommended to use 3 replicas by default which means use three storage
nodes. Storage nodes are communicating with each other to ensure that data is correct
and is in the right place.

How swift choose the place to store the data? Swift uses a concept that is called a
"Ring" to place the data. When request comes in, it first looks which appropriate storage
nodes is responsible to store this data. This nodes are getting choosed such that they are
in isolated value domains. It organizes places based on the following order of categories:
1- region , 2- zone, 3- server, 4- drive. Since swift supports global clustering, it is possible
to have globally distributed clusters which are treated as one logical swift point. It
means you can have deployments on east coast and west coast and swift treats it as one
point which manages by means of "Region" and gives you a good durability and support
of disaster recovery. This makes better availability as well because if you have users who
access the data from different locations, they can preferably goes to one of nodes which
is close to them. This makes higher throughput because you can have lower network
latency.

4.1.1 Swift REST API

We use Swift Rest API to communicate with Swift itself and for communication between
other modules as well. In addition, this API is used for user interface too. Since the
Swift API is universal and it is based on the Rest architecture, it can support all the main
functionalities to create, read, update and delete (CRUD) the entities. Furthermore in
our ECM system, we are using the same data model as Swift to manage the contents.
Therefore we develop our components based on Swift API since our data structure is
as same as Swift API. This way we can integrate any other applications (e.g. analysis
applications) that can work with Swift back end system, with our ECM system which
brings more flexibility to us. As it is mentioned in OSECM paper [OSECM], another
advantage of using tis API would be a possibility to create a swift client or a Swift object
store with a collection of components.

50

4.2 Content Identifier

4.2 Content Identifier

Content identifier uses the programming library magic from the well known Unix
file5 command. It includes a complete list of common content types and their binary
fingerprints. In fact, this component checks the binary content of the object to find
certain sequence of bytes that determines the content type.

4.3 Metadata Extractor

Metadata Extractor extracts more metadata for each object based on its content type. In
fact, it provides an execution environment and plug-in interface for content type filters.
The supported content types and list of desired metadata have to be specified for all filter
plug-ins. First the extractor, based on the content type field, distinguishes the related
plug-in for each object. Then it downloads the binary content of the object, and sends
this data object to the filter plug-in. The found data is returned as key/value pairs by
plug-ins and then the extractor updates object metadata inside object store with the new
extracted list. Currently there are different filters for the following object types which
are existed previously: Images with JPEG, PNG, BMP, ... formats, PDF documents and I
added an email filter during the course of this work. For example, the email filter may
provide metadata fields like "to", "from" , "subject", "date" and others or the PDF filter
may provide "author" or "title". In the OSECM system, to extract metadata for each of
the supported formats, specific libraries are used. Since the filter plug-ins defines a list
of metadata fields that they may produce and the related content type for this filter, this
information gets used in the replicator component later to generate a database schema
for each content type, in the analytics component to suggest fields for analysis, and in
the user interface to display column names to the user [OSECM]. In the figure 4.1, the
Metadata Extractor class diagram is pictured.

4.4 Metadata Replicator

As the course of this wrok, I implemented the Metadata Replicator in order to publish
the extracted metadata into the metadata warehouse. The Metadata Replicator uses
the same interface as Metadata Extractor for filter plug-ins. Therefore, the Metadata
Replicator first creates one table to keep all the general information of the objects namely

5https://github.com/file/file

51

https://github.com/file/file

4 Technology and Implementation

Figure 4.1: The Metadata Extractor Diagram

by object name, container name, content type, content size and others. Then, it creates
filter tables and for each filter table, it uses the list of metadata in the filter table as the
columns. After that, it gets the object list for this container. For each object, it fetches
both the internal and filter metadata and first insert the internal ones into the general
table and then insert the filter metadata into the appropriate filter table. To make a
relation between these tables, the combination of the object name and container name
is used as the primary key in the main table ("MetaDataTable_SwiftInternal") and as the
foreign key in the filter tables. The figure 4.2 shows the class diagram of the Metadata
Replicator.

4.5 DataModel

This system keeps the data for each object within two levels of tables. First, we have
a main table which is called "MetaDataTable_SwiftInternal" which keeps all the useful
internal metadata plus the date and time of metadata extraction from the object store
(that can be used to monitor how much the data inside this table is updated). This table
has a primary key which is the combination of container and object name. Then, for each
content type filter that now this system supports there is a table with the appropriate
collection of columns which are extracted from the metadata set of each object inside
object store. Currently the available filter types include: email format, pdf files and

52

4.5 DataModel

Figure 4.2: The Metadata Replicator Class Diagram

some image formats consist of tiff, png, jpeg, gif, bmp.
For each object first we extract a fixed set of metadata that are defined as the columns
for the main table ("MetaDataTable_SwiftInternal"). After that, based on the content-type
of the object , a related collection of metadata gets extracted to be put in the allocated
metadata filter table. For example, for each email object, first a record is filled inside
the main table, then to store further metadata (e.g. to whom this email is sent, who
was is the "cc" field for this email and others) which are specifically related to the email
objects, a row inside "MetaDataTable_email" should be created. With this data structure,
writing the analytics queries is easier. To keep the connection between these two level
of tables, the collection of object name and name of the container which this object is
stored there, is used as foreign key inside filter table to refer to the main table. In the
following the whole data model is shown:

53

4 Technology and Implementation

Figure 4.3: The Metadata warehouse schema in SQLite database

4.6 Bluebox UI

Bluebox UI has two layers. The first layer on top consists of the client side UI components
that run as an AngularJS6 application inside the client’s browser. The second layer on
bottom is on the server side which includes a static HTTP server that sends the client
application to the browser and a Python runtime that provides a back end for this
application. The back end side produces data in JSON format via a REST based API
for the client side using a group of small API wrappers to communicate with SQLite,
Swift and ActiveMQ (which is used for other parts of the ECM system no related to the
analysis) and Node-RED. This back end does not keep any application or session status
so that it can scale horizontally as well as HTTP server because it only provides static
content to the client [OSECM].

6https://angularjs.org/

54

https://angularjs.org/

4.7 Analytics Diagrams

4.7 Analytics Diagrams

To create the analytics diagrams, I used Bokeh7 python library that it brings some
advantages for the visualization in this analysis system as it is an interactive visualization
library for python. In fact, Bokeh is created to extend the novel graphics nature of D3.js8

(which is another powerful visualization framework to create modern web browsers)
capability with high-performance interactivity over very large or streaming datasets. It
is designed in a way that program does not have to be written in JavaScript and can be
implemented as a standalone or server-based web application.
In the OSECM system, in order to use the Analytics component, first user can open
the Node-RED environment to design a new analysis flow. In case that it wants to use
a result data set of the existed analysis flow, it can access to the list of current result
data set and select the desired one. Then it should select the visualization type which
distinguishes a convenient diagram to plot the result. These information is sent back
to the Bluebox analytics (BBInsights) server which will then get the respective data set
from the Node-RED and run through the Bokeh in order to provide a piece of JavaScript
code that it pushes back to the client.
The client, which already has the Bokeh library, needs the data and commands to draw
the result. Hence, the required data is given to the client by the JavaScript code which
is produced by the Bokeh inside the BB Insights server component. In fact, BB Insights
component of Bluebox UI system, has a small part on the server, which runs Bokeh. This
part provides the plot data for the user interface which will be integrated to the existed
Bluebox UI system.

For most use cases in this work, I used bokeh.charts9 and bokeh.plotting10 interfaces to
plot the data. Usually for stand alone bokeh applications like my system, when using
the bokeh.plotting or bokeh.charts interfaces, users call the function output-file() in
conjunction with show() or save() instead. Here, in order to be integrated with the
AngularJS framework which is used for the whole Bluebox UI system, we use function
components() which returns HTML components to embed a Bokeh plot. The data for
plotting in this case is stored directly in the returned HTML.The components()11 function
takes either a single Bokeh Model, a list/tuple of Models, or a dictionary of keys and
Models. In this way, in OSECM system, it can support creating both single or collection
of diagrams to present the plot data.

7http://bokeh.pydata.org/
8https://d3js.org/
9http://bokeh.pydata.org/en/0.11.0/docs/reference/charts.html#bokeh-charts

10http://bokeh.pydata.org/en/0.11.0/docs/reference/plotting.html#bokeh-plotting
11http://bokeh.pydata.org/en/0.11.0/docs/user_guide/embed.html

55

http://bokeh.pydata.org/
https://d3js.org/
http://bokeh.pydata.org/en/0.11.0/docs/reference/charts.html#bokeh-charts
 http://bokeh.pydata.org/en/0.11.0/docs/reference/plotting.html#bokeh-plotting
http://bokeh.pydata.org/en/0.11.0/docs/user_guide/embed.html

4 Technology and Implementation

Metadata Warehouse
(SQLite)

Node-RED Server

BB Insights
Python

Runtime

Bluebox
UI BB Insights

Task
Scheduling

Content
Management

Visualization Interfaces

HTTP Output Nodes

SQLite Storage Node
To create the SQLite Node,
 I put the db file on the Node-RED server

Task
Scheduling

Content
Management

Figure 4.4: The Analytics Component Interactions

• Single Graph For this case, currently our system supports Bar Graphs12 and Line
Graphs13. These graphs are used for the case that the target data set has one
quantitative column and the distribution of this column is considered to be plotted.
The graphs which are shown in figures ?? and 4.7, as a bar graph and line graph
respectively.

• Multiple Graphs When the analysis result set which is coming from an API endpoint
of the Node-RED server, has more than one quantitative column, the OSECM shows
all the possible graphs for this data set through making multiple graphs with the
appropriate graph type based on the data set structure. For instance, The OSECM

12https://en.wikipedia.org/wiki/Bar_chart
13https://en.wikipedia.org/wiki/Line_graph

56

https://en.wikipedia.org/wiki/Bar_chart
https://en.wikipedia.org/wiki/Line_graph

4.7 Analytics Diagrams

select MD_content_type, count(MD_content_type) as ’number of docs’,
sum(MD_content_length)/1024 as ’size of docs in KB’, sum(MD_content_length)

as ’size of docs in bytes’ from MetaDataTable_SwiftInternal GROUP BY
MD_content_type;"

Figure 4.5: The Content Type Numbers and Size Query

shows three graphs with the same types (e.g. all three are bar graphs or line
graphs) for the result set of the analysis query which is shown in figure 4.5. This
option is available through choosing Multiple Bar Graphs button in the Bluebox
UI, Analytics tab. However, such a data set with has more than one quantitative
column, can be plotted into some other types of graphs which even can compare
these columns with each other in one graph. In this work I support of these graph
types like stack or group bar graphs, box plot, donut chart and others. Later in this
chapter, I explain them in more details.

In the following I show some examples of visualization graphs which can be support a
set of data set with the defined characteristics. The BB Insights component then exposes
the plot data, using either a simple or a complex Bokeh diagram which is compatible
with the desired data set to be shown.

4.7.1 Bar Graph

Bar graph can normally be used to show the relative sizes of many attributes. In this
case, the data set to be plotted has to have at least one numerical column and can have
arbitrary number of rows. The data set can have one descriptive or id column as well.
For instance, in the following the sample data set, the query to fetch the data set and
plot data into the Bar graph is shown.

Listing 4.1 The Content Type Distribution Query
select MD_content_type, count(MD_content_type) as ’number of docs’ from

MetaDataTable_SwiftInternal GROUP BY MD_content_type

4.7.2 Line Graph

Line graphs are another basic charts that is supported by Bokeh library. The data set
that can be plotted by line graph has to have two numerical and quantitative columns.
One of these columns should be defined as an index column. It has to have unique and

57

4 Technology and Implementation

Table 4.1: The content type distribution data set

MD_content_type number of docs

application/CDFV2 2
application/CDFV2-encrypted 1
application/gzip 4
application/octet-stream 255
application/pdf 3537
application/vnd.ms-fontobject 1
application/vnd.ms-opentype 43
application/x-bzip2 1
... ...

continuous values which can be ordered if needed. In the following, I show an example
of the object distributions based on their size.

Listing 4.2 The query to expose the object distribution based on their size
SELECT ROUND(MD_content_length/100000, 0) as "100KBs", count(MD_content_length) as

"number of objects" FROM MetaDataTable_SwiftInternal GROUP BY

ROUND(MD_content_length/100000, 0) ORDER BY ROUND(MD_content_length/100000, 0)

4.7.3 Area Graph

Area graph is a line graph with the area below the line filled in with a certain color
or texture. Similar to line graphs, area graphs are used to display the development of
quantitative values over an interval or time period. They are most commonly used to
show trends and relationships, rather then convey specific values14. To support this
diagram in this system, the data set should have at least two numerical and order able
columns that can be plot against each other, same as a line graph. The first column is
used as an index for x_axis which should have a continuous value and the second one
would be plot against this one. In case that there are more than two numerical columns,
stack area graph will expose the result set. The query in figure ?? is one sample query to
use the data sets inside the OSECM system.

14http://www.datavizcatalogue.com/methods/area_graph.html

58

http://www.datavizcatalogue.com/methods/area_graph.html

4.7 Analytics Diagrams

Figure 4.6: The Content Type Distribution Bar Graph

Listing 4.3 The Content Type Numbers and Size Query
SELECT ROUND(MD_content_length/100000, 0) as ’100KBs’, count(MD_content_length) as

’number of objects’, count(MD_content_length)+100 as ’number of objects2’ FROM

MetaDataTable_SwiftInternal GROUP BY ROUND(MD_content_length/100000, 0) ORDER BY

ROUND(MD_content_length/100000, 0);

4.7.4 Stacked Bar Graph

Stacked bar graph depicts items stacked one on top (column) of the other or side-by-side
(bar), differentiated by colored bars or strips. It integrates different data sets to create
a richer picture of (the sum of) changes. A stacked Bar graph is useful for looking
at changes in, for example, in this work the number of objects per its content type,
comparing with the size of those objects in megabytes15. In the figure 4.9, the result
stacked bar chart of this example is shown.

15http://peltiertech.com/stacked-bar-chart-alternatives/

59

http://peltiertech.com/stacked-bar-chart-alternatives/

4 Technology and Implementation

Table 4.2: The data set of the object distributions based on their size. It is the result for
the query of figure ??.

100KBs number of objects

0 42889
1 520
2 441
3 489
4 360
5 270
6 254
7 205
8 171
9 123
10 97
11 91
12 69
13 61
14 47
15 41
16 28
17 35
18 29
... ...

There is a possibility to visualize the groups in the data into Group Bar Graph using the
group parameter in the implementation. In the figure 4.10 , the result of the mentioned
example is shown in the group bar graph.

4.7.5 Box Plot

Box Plots can be used to summarize the statistical properties of different groups of
data. It is a convenient way of graphically depicting groups of numerical data through
their quartiles16. The label specifies a column in the data to group by, and a box plot is
generated for each group. In the OSECM system, the data structure which be plotted

16http://stat.ethz.ch/R-manual/R-devel/library/grDevices/html/boxplot.stats.html

60

http://stat.ethz.ch/R-manual/R-devel/library/grDevices/html/boxplot.stats.html

4.7 Analytics Diagrams

into a box plot has to have at least one numerical column to show its distribution for
each group. This column defines the value set for each group. There can be some
descriptive columns to define a group based of them. Here, as an example I pictured the
result set that has two numerical columns. The query is mentioned in the figure ?? into
a box plot.

Listing 4.4 The query to fetch the distribution of size and number of documents for
each content type.
select MD_content_type, count(MD_content_type) as ’number of docs’,

sum(MD_content_length)/1024 as ’size of docs in KB’ from MetaDataTable_SwiftInternal

GROUP BY MD_content_type order by ’size of docs in KB’ desc limit 20 offset 15;

Figure 4.7: The Line Graph of the Object Distributions based on their Size; The query is
mentioned in figure ??

61

4 Technology and Implementation

Figure 4.8: The Area Graph of the Content length Distribution
62

4.7 Analytics Diagrams

Figure 4.9: The Stacked Bar Graph of the Content Type Size and Number Distribution;
It uses the same dataset as figure ?? which is the result of query in the figure
??.

4.7.6 Donut Chart

Donut charts are like pie charts with a hole in the center. It is possible to define hole
radius to any size is needed, both in percent or pixels. Similar to a pie chart, a donut
chart shows the relationship of parts to a whole, but a donut chart can contain more
than one data series. Each data series that you plot in a donut chart adds a ring to the
chart. The first data series is displayed in the center of the chart. In fact, the primary use
case for the donut chart is to show relative amount each category, within a categorical
array or multiple categorical arrays, makes up of the whole for some array of values17.
Although displaying values or percentages in data labels is very useful in a donut chart,
but if you want to compare the data points side by side, you should use a stacked bar

17http://bokeh.pydata.org/en/0.11.0/docs/reference/charts.html#donut

63

http://bokeh.pydata.org/en/0.11.0/docs/reference/charts.html#donut

4 Technology and Implementation

Figure 4.10: The Group Bar Graph of the Content Type Size and Number Distribution;
It uses the same dataset as figure ?? which is the result of query in the
figure ??.

chart instead18. In the figures 4.3 and 4.12, a part of a sample data set and the resulted
donut chart is shown.
In the OSECM system, if a part to whole relationship wants to be shown, in the
structure of the data set, for each part there has to be a numerical value. There can be a
descriptive column as well, but it is not necessary, since it is possible to define a suitable
label for each of these columns as an attribute in the Bokeh functions. In Bokeh, it is
possible to define that which columns should be shown in the circles. Moreover, it is
possible to define a variable out of some columns to be plotted in one circle. This can be
done in Bokeh visualization using melt()19 function from Pandas. In the figure 4.3, an
external sample data set which can be plotted in donut chart is shown.

18https://support.office.com/en-us/article/Present-your-data-in-a-doughnut-chart-0ac0efde-

34e2-4dc6-9b7f-ac93d1783353
19http://pandas.pydata.org/pandas-docs/stable/generated/pandas.melt.html

64

https://support.office.com/en-us/article/Present-your-data-in-a-doughnut-chart-0ac0efde-34e2-4dc6-9b7f-ac93d1783353
https://support.office.com/en-us/article/Present-your-data-in-a-doughnut-chart-0ac0efde-34e2-4dc6-9b7f-ac93d1783353
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.melt.html

4.7 Analytics Diagrams

Figure 4.11: The Box Plot of the Size and Number Distribution grouped by the Object
Content Type; It is the result of query in the figure ??.

4.7.7 Use cases

Here I show some extra use cases using the sample data sets which are imported into the
OSECM system. Since for analysis purpose, the data has been imported to the metadata
warehouse, to construct the tables, data importer creates a row for each object and a
new column for each attribute. Based on this table structure, for each of the examples,
I will describe the data format and the query which extracts it. Then the visualization
with a proper graph type, exposes the result data set in order to interpret the result more
suitably.

Example 1: Currently, as one of the OSECM sample datasets, there are some objects
imported from Enron Email Dataset20 which is publicly published as a source for

20https://www.cs.cmu.edu/~./enron/

65

https://www.cs.cmu.edu/~./enron/

4 Technology and Implementation

Table 4.3: The data set for the distribution of medals in various countries

name abbr medals/silver medals/bronze medals/gold medals/total

Albania ALB 0 0 0 0
Andorra AND 0 0 0 0
Argentina ARG 0 0 0 0
Armenia ARM 0 0 0 0
Australia AUS 2 1 0 3
Austria AUT 6 1 2 9
Azerbaijan AZE 0 0 0 0
Belarus BLR 0 1 5 6
Belgium BEL 0 0 0 0
Bermuda BMU 0 0 0 0
...

researchers. generally each email has some attributes like "to", "from", "cc", "date" and
others. In the OSECM system, a set of these metadata which are useful, has been
imported to the metadata warehouse. Here, using the imported email metadata into the
database, I want to show who has written the longest email. For this purpose, the query
to fetch the result for this example is shown in the figure ??.

Listing 4.5 The query to fetch the email addresses of people who has sent the largest
amount of email. The top 20 senders is queried to have a better visualization in the bar
graph.
select email.MD_from as ’Sender’, sum(MD_content_length) as ’email total length’ from

MetaDataTable_email as email, MetaDataTable_SwiftInternal as swift where

email.MD_from is not null and email.MD_containerName = swift.MD_containerName and

email.MD_name = swift.MD_name group by email.MD_from order by sum(MD_content_length)

desc limit 20

Example 2: Here, the communication among people in the email dataset is the main
target. To expose who exactly emailed whom, the combination of email addresses in
both from and to metadata fields for each email object should be extracted. To visualize
these relations between people, using a Graph with a set of email addresses as the
vertexes(V) set and the combination of sender and receiver email addresses as the edge
list(E) is appropriate. Therefore for this example the extracted data set should have two
columns each for MD_from and MD_to fields of each email. The query to extract this
data set is presented in the figure ?? .

66

4.7 Analytics Diagrams

Figure 4.12: The Donut Chart of the dataset in figure 4.3

Listing 4.6 The query to fetch the list of people who are communicating with each other
via email.
select MD_from as ’sender’ , MD_to as ’receiver’ from MetaDataTable_email where MD_from

is not null and MD_to is not null

Example 3: Now, in the OSECM system, there are some image sample data sets with
different image types which currently the OSECM system supports bmp, jpg, gif, png and
tiff formats to extract metadata from them. In this use case, I want to show the relation
between an image size and its resolution. Since for all of the supported image data
formats, there is a metadata field which is called MD_image_size to keep x-resolution
and y-resolution of the images, multiplying these two numbers produces a scalable
number(the number of pixels) for each image object. Having the actual file size for each
of the image objects, gives us another numerical property for each image. Then the
system can use these two numerical properties these to plot them against each other.
There is a possibility to even group these data with the different image types. Therefore

67

4 Technology and Implementation

Figure 4.13: The Bar Chart to show the result set for the query in figure ??

you can see how this distribution is for each group. For example for some of them it can
be small and for the others it could be bigger. Since, currently

Example 4: Assume that there are some audio and video sample data sets. In this
case, each of these objects can have some numerical properties like the length of video,
file size, resolution and others. If storing these data for backing up the YouTube videos
would be the main use case, then there are some other metadata fields like how many
views, likes, dislikes that it has. Therefore, in this case, it is absolutely possible to plot
query these metadata and plot the numerical attributes against each other using line
graph, area graph or any other suitable graph.

68

4.8 SQLite Database

4.8 SQLite Database

In this work, I use SQLite database as the metadata warehouse because it is relational
database which supports SQL queries and it is powerful enough to support the sample
analysis scenarios for this work. In fact, using a database immediately brings in the
benefits of databases that have been developed over many years such as transaction
support, scaling and administration capabilities. For this prototype, since I use SQLite
and every thing is stored inside one database file at the end, there are not complex
administration both options and difficulties. Moreover, the Node-RED server also can
be conveniently connected to it. For this purpose, we have put the SQLite database file
consists of the whole database system, on the Node-RED server and we added a new
node type that supports the connection to the SQLite database to the list of nodes in
storage category of Node-RED server.

69

5 Summary and Future Work

The usage of object storage instead of file systems in cloud applications is a vital approach
for continuous improvement in regards to efficiency. Since object storages are supporting
the metadata extensively, they are more than a plain data storage. Specially in Enterprise
Content management (ECM) systems due to the fact that they rely on metadata to fulfill
their main functionalities, object stores are good choices for them as a data management
system on the cloud. In this thesis, I enhanced the Swift Object Store with the possibility
to apply analysis scenarios specifically on top of the metadata. Often customers that
want to move their applications to the cloud, require a proper level of security for their
data. For this purpose, most cloud providers apply security mechanisms on both data
and metadata in order to keep the system secure. The OSECM system, as an ECM
system, requires an access to the metadata for content classification and organization,
the security mechanisms is applied for the data. Therefore, I focus to offer the analysis
features for the metadata rather than data itself.
Here, first in the Section 1.2, I investigated over different data science phases and
various technologies that have been used in each phase of the data science area. As
there are many tools and technologies in the industrial area for data gathering, cleaning,
transforming, analysis and visualization, I discussed about some well known technologies
and frameworks like Apache Hadoop, Statistical Analysis System (SAS) and others. Then
in the chapter 2, first I showed the architecture of the OSECM system and describe
different functionalities that it has. In the rest of the chapter, I described my contribution
towards the OSECM system to provide the analysis functionalities over the available
metadata. The extensive support of metadata by object stores is also highlighted
through describing the possibility to add custom metadata and document classes for
categorization besides the default internal metadata. Since in the OSECM system, we
use a metadata warehouse as the basis for analysis functionalities, the process of fetching
additional metadata and replicate them into the metadata warehouse is also discussed
in this chapter. In chapter 3, the plain analysis architecture model is discussed which
was the basis for the design, development and integration of the new modules with
the existing OSECM system to create analysis layer. In this chapter, I discussed about
different alternatives that exist to use as an analysis application component in the
architecture of analysis layer. Then, I discussed that, we used Node-RED server as the
analysis application which provides a high-level of flexibility to provide the possibility
to define analysis queries with connecting to our metadata warehouse and any other

71

5 Summary and Future Work

external sources. In this way, queries are executed inside the metadata warehouse
and the result is returned back to the Node-RED. In addition, it is possible to further
analyze the returned result back from the database with defining the JavaScript functions
to further manipulate the result inside Node-RED server. Then, in the Section 3.1, I
discussed about Bluebox UI system and its components to visualize the analysis result.
Afterwards, I talked about different data structures of the result data set that can be
plotted into available graph types in OSECM system. In the chapter 4, I discussed about
the implementation of different module that I used to provide analysis layer for the
OSECM system. These modules are Content Identifier, Metadata Extractor, Metadata
Replicator, Node-RED server and Visualization Diagrams. For the metadata warehouse,
I used relational database which enables the system to benefit from the advantages of
SQL queries to write the analysis scenarios.

Based on this master’s thesis, further enhancement of the object store can be considered
through expanding analysis capabilities and providing advanced searching functionalities.
For this purpose, applying more precise and complicated analysis over the metadata can
be done. For instance, textual analysis, over textual datasets like emails, PDF documents
and others. Furthermore, for the visualization aspects, more data structure can be
defined for plotting of more complex diagrams. According to Waizenegger et al., it is
also possible to investigate how the security can be provided for the metadata as well as
data and provide the analysis capabilities for the non-relational data model of metadata
[OSECM].

72

Bibliography

[Cha13] S. Chandrasekaran. “Becoming a Data Scientist - Curriculum via Metromap.”
In: (2013). URL: http://nirvacana.com/thoughts/becoming- a- data-

scientist/ (cit. on p. 12).

[Cha14] S. Chandrasekaran. “Data Science.” In: (2014). URL: www.exploringdatascience.
com/the-data-science-clock/ (cit. on p. 13).

[Cor15a] E. Corporation. Data Lake for Data Science. EMC White Paper H14214. EMC
Corporation, May 2015. URL: http://www.emc.com/collateral/white-

papers/h14214-wp-emc-isilon-data-lakes-for-data-science.pdf (cit.
on pp. 11, 14).

[Cor15b] I. Corporation. IBM Watson Explorer. IBM White Paper H14214. Software
Group, Oct. 2015. URL: http://public.dhe.ibm.com/common/ssi/ecm/im/
en/imb14165usen/IMB14165USEN.PDF (cit. on p. 18).

[DB13] S. Dhouib and R. Ben Halima. “Surveying Collaborative and Content Man-
agement Platforms for Enterprise.” In: (2013), pp. 299–304 (cit. on p. 25).

[DE+12] A. Divyakant, B. Elisa, et al. “Challenges and opportunities with Big
Data.” In: 2012, a community white paper developed by leading researchers
across the United States.[Online]. Available: http://cra. org/ccc/docs/init/big-
datawhitepaper. pdf (2012) (cit. on pp. 13, 14, 16, 17).

[Fri08] V. Friedman. “Data visualization and infographics.” In: Graphics, Monday
Inspiration 14 (2008), p. 2008 (cit. on p. 41).

[Hor14] Hortonworks. “A Modern Data Architecture with ApacheTM Hadoop.” In: A
Hortonworks White Paper (March 2014). URL: http://info.hortonworks.
com/rs/h2source/images/Hadoop-Data-Lake-white-paper.pdf (cit. on
pp. 20–22).

[Mar16] R. Marty. “Big Data Lake – Leveraging Big Data Technologies To Build a
Common Data Repository For Security.” In: Published by O’Reilly Media,
Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472 (2015.02.16).
URL: http://raffy.ch/blog/2015/02/16/big-data-lake-leveraging-
big- data- technologies- to- build- a- common- data- repository- for-

security/ (cit. on p. 19).

73

http://nirvacana.com/thoughts/becoming-a-data-scientist/
http://nirvacana.com/thoughts/becoming-a-data-scientist/
www.exploringdatascience.com/the-data-science-clock/
www.exploringdatascience.com/the-data-science-clock/
http://www.emc.com/collateral/white-papers/h14214-wp-emc-isilon-data-lakes-for-data-science.pdf
http://www.emc.com/collateral/white-papers/h14214-wp-emc-isilon-data-lakes-for-data-science.pdf
http://public.dhe.ibm.com/common/ssi/ecm/im/en/imb14165usen/IMB14165USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/im/en/imb14165usen/IMB14165USEN.PDF
http://info.hortonworks.com/rs/h2source/images/Hadoop-Data-Lake-white-paper.pdf
http://info.hortonworks.com/rs/h2source/images/Hadoop-Data-Lake-white-paper.pdf
http://raffy.ch/blog/2015/02/16/big-data-lake-leveraging-big-data-technologies-to-build-a-common-data-repository-for-security/
http://raffy.ch/blog/2015/02/16/big-data-lake-leveraging-big-data-technologies-to-build-a-common-data-repository-for-security/
http://raffy.ch/blog/2015/02/16/big-data-lake-leveraging-big-data-technologies-to-build-a-common-data-repository-for-security/

[Oje14] T. Ojeda. Practical Data Science Cookbook. EBL-Schweitzer. Packt Publishing,
2014. URL: https://books.google.de/books?id=Mh2uoQEACAAJ (cit. on
pp. 12, 13).

[R C16] R Core Team. “R: A Language and Environment for Statistical Computing.”
In: (2016). URL: https://www.R-project.org (cit. on p. 17).

[Vik14] S. M. .-.-. I. D. S. Vikram Andem. “Big data analysis concepts and references.”
In: ISRM and IT GRC Conference Big Data Analysis (2014). URL: http://
www.slideshare.net/natemiller67/big-data-analysis-concepts-and-

references?qid=c96439d8- a400- 4aae- bc0a- b848ac6f8b35&v=qf1&b=

&from_search=6 (cit. on p. 20).

[Wik] Wikipedia. “Data Lake.” In: Wikipedia (). URL: https://en.wikipedia.org/
wiki/Data_lake (cit. on p. 19).

All links were last followed on March 17, 2008.

https://books.google.de/books?id=Mh2uoQEACAAJ
https://www.R-project.org
http://www.slideshare.net/natemiller67/big-data-analysis-concepts-and-references?qid=c96439d8-a400-4aae-bc0a-b848ac6f8b35&v=qf1&b=&from_search=6
http://www.slideshare.net/natemiller67/big-data-analysis-concepts-and-references?qid=c96439d8-a400-4aae-bc0a-b848ac6f8b35&v=qf1&b=&from_search=6
http://www.slideshare.net/natemiller67/big-data-analysis-concepts-and-references?qid=c96439d8-a400-4aae-bc0a-b848ac6f8b35&v=qf1&b=&from_search=6
http://www.slideshare.net/natemiller67/big-data-analysis-concepts-and-references?qid=c96439d8-a400-4aae-bc0a-b848ac6f8b35&v=qf1&b=&from_search=6
https://en.wikipedia.org/wiki/Data_lake
https://en.wikipedia.org/wiki/Data_lake

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Related Work

	2 System Architecture and Components
	2.1 Swift Object Store
	2.2 Content Identifier
	2.3 Metadata Extractor
	2.4 Metadata Replicator

	3 Analysis Concepts
	3.1 Visualization
	3.2 Candidate Use cases

	4 Technology and Implementation
	4.1 How does Swift work?
	4.2 Content Identifier
	4.3 Metadata Extractor
	4.4 Metadata Replicator
	4.5 DataModel
	4.6 Bluebox UI
	4.7 Analytics Diagrams
	4.8 SQLite Database

	5 Summary and Future Work
	Bibliography

