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ABSTRACT

Computational visualization allows scientists and engineers to better understand sim-
ulation data and gain insights into the studied natural processes. Particularly in the
field of computational fluid dynamics, interactive visual presentation is essential in the
investigation of physical phenomena related to gases and liquids. To ensure effective
analysis, flow visualization techniques must adapt to the advancements in the field of
fluid dynamics that benefits substantially from the growing computational power of
both commodity desktops and supercomputers on the one hand, and steadily expanding
knowledge about fluid physics on the other. A prominent example of these advances
can be found in the research of two-phase flow with liquid droplets and jets, where high
performance computation and sophisticated algorithms for phase tracking enable well
resolved and physically accurate simulations of liquid dynamics.

Yet, the field of two-phase flow has remained largely unexplored in visualization
research so far, leaving the scientists and engineers with a number of challenges when
analyzing the data. These include the difficulty in tracking and investigating topological
events in large droplet groups, high complexity of droplet dynamics due to the involved
interfaces, and a limited choice of high quality interactive methods for the analysis
of related transport phenomena. It is therefore the aim of this thesis to address these
challenges by providing a multi-scale approach for the visual investigation of two-phase
flow, with the focus on the analysis of droplet interaction, fluid interfaces, and material
transport.

To address the problem of analyzing highly complex two-phase flow simulations
with droplet groups and jets, a linked-view approach with three-dimensional and ab-
stract space-time graph representation of droplet dynamics is proposed. The interactive
brushing and linking allows for general exploration of topological events as well as de-
tailed inspection of dynamics in terms of oscillations and rotations of droplets. Another
approach further examines the separation of liquid phases by segmenting liquid vol-
umes according to their topological changes in future time. For visualization, boundary
surfaces of these volume segments are extracted that reveal intricate details of droplet
topology dynamics. Additionally, within this framework, visualization of advected par-
ticles corresponding to arbitrarily selected segment provides useful insights into the
spatio-temporal evolution of the segment.

The analysis of interfaces is necessary to understand the interplay of interface dy-
namics and the dynamics of droplet interactions. A commonly used technique for inter-
face tracking in the volume of fluid-based simulations is the piecewise linear approxima-
tion which, although accurate, can affect the quality of the simulation results. To study
the influence of the interface reconstruction on the phase tracking procedure, a visual-
ization method is presented that extracts the interfaces by means of the first-order Taylor
approximation, and provides several derived quantities that help assess the simulation
results in relation to the interface reconstruction quality. The liquid interface is further
investigated from the physical standpoint with an approach based on quantities derived
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viii Abstract

from velocity and surface tension gradients. The developed method supports examina-
tion of surface tension forces and their impact on the interface instability, as well as
detailed analysis of interface deformation characteristics. A line of research important
for engineering applications is the analysis of electric fields on droplet interfaces. It is,
however, complicated by higher-order elements used in the simulations to preserve field
discontinuities. A visualization method has been developed that correctly visualizes
these discontinuities at material boundaries. Additionally, the employed space-time rep-
resentation of the droplet-insulator contact line reveals characteristics of electric field
dynamics.

The dynamics of droplets are often examined assuming single-phase flow, for in-
stance when the internal material transport is of interest. From the visualization perspec-
tive, this allows for adaption of traditional vector field visualization techniques to the
investigation of the studied phenomena. As one such concept, dye based visualization
is proposed that extends the transport analysis to advection-diffusion problems, there-
fore revealing true transport behavior. The employed high quality advection preserves
fine details of the dye, while the implementation on graphics processing units ensures
interactive visualization. Several streamline-based concepts are applied in space-time
representation of 2D unsteady flow. By interpreting time as the third spatial dimension,
many 3D streamline-based visualization techniques can be applied to investigate 2D un-
steady flow. The introduced vortex core ribbons support the examination of vortical flow
behavior by revealing rotation near the core lines. For the study of topological structures,
a method has been developed that extracts separatrices implicitly as boundaries of re-
gions with different flow behavior, and therefore avoids potentially complicated explicit
extraction of various topological structures.

All proposed techniques constitute a novel multi-scale approach for visual analysis
of two-phase flow. The analysis of droplet interactions is addressed with visualiza-
tion of the phenomena leading to breakups and with detailed visual inspection of these
breakups. On the interface level, techniques for the interface analysis give insights into
the simulation quality, mechanisms behind topology changes, as well as the behavior
of electrically charged droplets. Further down the scale, the dye-based visualization,
streamline-based concepts for space-time analysis, and the implicit extraction of flow
topology allow for the investigation of droplet internal transport as well as general
single-phase flow scenarios. The applicability of the proposed methods extends, in a
varying degree, beyond the use in two-phase flow. Their usability is demonstrated on
data from simulations based on Navier-Stokes equations that exemplify practical prob-
lems in the research of fluid dynamics.



GERMAN ABSTRACT

- ZUSAMMENFASSUNG

Die numerische Visualisierung ermöglicht Wissenschaftlern und Ingenieuren, Simulati-
onsergebnisse besser zu verstehen und Einblicke in Naturprozesse zu gewinnen. Insbe-
sondere ist die visuelle Darstellung von Ergebnissen numerischer Strömungsmechanik
für die Untersuchung physikalischer Phänomene bei Gasen und Flüssigkeiten äußerst
wichtig. Die numerische Strömungsmechanik profitiert einerseits von wachsender Re-
chenleistung handelsüblicher Desktops und Supercomputer, andererseits von den neuen
Entwicklungen in der Strömungsforschung. Um eine effektive Analyse von Strömun-
gen zu gewährleisten, müssen sich die Visualisierungstechniken kontinuierlich den Fort-
schritten in der Strömungsmechanik anpassen. Ein bemerkenswertes Beispiel hierfür ist
die Forschung in der Zweiphasenströmung, in der Hochleistungsrechner und effiziente
Algorithmen zur Phasenverfolgung hochaufgelöste und physikalisch genaue Simulatio-
nen der Flüssigkeitsdynamik ermöglichen.

Dennoch ist die Zweiphasenströmung seitens der Visualisierung weitgehend uner-
forscht geblieben. Insbesondere sehen sich Wissenschaftler und Ingenieure mit verschie-
denen Problemen konfrontiert, die mit angepassten Visualisierungstechniken vermieden
werden können. Zu den Problemen zählen beispielweise die Verfolgung und Untersu-
chung der topologischen Ereignisse in Tropfengruppen, hohe Komplexität der Tropfen-
dynamik und die begrenzte Auswahl an interaktiven Methoden zur Untersuchung der
Transportphänomene. Demzufolge ist das Ziel dieser Dissertation, die Entwicklung ei-
nes Ansatzes zur visuellen Analyse von Zweiphasenströmung auf mehreren Skalen mit
dem Fokus auf Interaktionen zwischen den Tropfen, Dynamik der Oberfläche und Ma-
terialtransport.

Um die Analyse hochkomplexer Simulationsdaten der Zweiphasenströmung zu be-
handeln, wird eine auf Linked-View-Verfahren basierte Visualisierungstechnik präsen-
tiert, in der die Tropfen sowohl in einer 3D Darstellung als auch in einer abstrakten
Graph-Repräsentation visualisiert werden. Der interaktive Brushing-and-Linking-An-
satz ermöglicht eine globale Exploration der topologischen Ereignisse sowie eine detail-
lierte Inspektion der Dynamik im Hinblick auf die Oszillation und Rotation der Tropfen.
Eine andere Technik zeigt die Aufteilung des Tropfenvolumens im zeitlichen Verlauf.
Somit ermöglicht diese Methode eine ausführliche Untersuchung der Topologiedyna-
mik mit Hilfe einer statischen Visualisierung. Dafür werden Grenzflächen erzeugt, die
das ursprüngliche Volumen des Tropfens hinsichtlich der sich entwickelnden Zerfalls-
komponenten aufzeigen. Zusätzlich werden die zur Verfolgung der Tropfen benutzten
Partikel visualisiert, um Einblicke in die Dynamik der Separation zu gewähren.

Die Analyse der Oberfläche ist notwendig, um die Wechselwirkung zwischen der
Oberflächendynamik und der Dynamik der Tropfeninteraktion besser zu verstehen. Ei-
ne häufig angewendete Technik zur Verfolgung der Phasengrenzen im Volume-of-Fluid-
Verfahren ist die zellenweise planare Approximation. Obwohl diese einen guten Kom-
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x Zusammenfassung

promiss zwischen Genauigkeit und Performanz bietet, kann die Approximation die Qua-
lität der Simulationsergebnisse erheblich beeinflussen. Es wird deshalb eine Visualisie-
rungsmethode präsentiert, die die Oberfläche mit Hilfe der Taylor-Approximation erster
Ordnung extrahiert und unter anderem darauf basierte Größen bereitstellt, die die Relati-
on zwischen der Simulationsapproximation und Qualität der Ergebnisse zeigt. Die Trop-
fenoberfläche wird weiterhin mit einer Visualisierungsmethode analysiert, die von den
Geschwindigkeits- und Oberflächenspannungsgradienten abgeleitete Größen verwendet.
Die entwickelte Methode unterstützt die Untersuchung der Deformation der Oberfläche
sowie die Untersuchung der Oberflächenspannung und deren Auswirkung auf die Ober-
flächenstabilität. Eine wichtige Forschungsrichtung in der Zweiphasenströmung ist die
Analyse elektrischer Felder auf der Tropfenoberfläche. Die in der Simulation angewen-
deten Elemente höherer Ordnung ermöglichen physikalische Diskontinuitäten, die für
die visuelle Analyse eine gesonderte Behandlung benötigen. Im Zuge dessen wird eine
Methode präsentiert, welche die Diskontinuitäten visuell korrekt darstellt und zusätzlich
eine Raum-Zeit-Darstellung anwendet, um Einblicke in die Phänomene an der Kontakt-
linie zwischen den Tropfen und dem untersuchten Isolator zu gewähren.

Die Tropfendynamik wird oft mit der Annahme einer Einphasenströmung analy-
siert, beispielsweise für die Untersuchung der internen Strömung des Tropfens. Dies er-
möglicht eine Anpassung und Verwendung traditioneller Visualisierungsmethoden für
Vektorfelder. Eine solche Technik ist die „Dye-Advection”, die in dieser Dissertation
nicht nur zur Analyse der Advektion, sondern auch zur Untersuchung der Diffusion ver-
wendet wird. Die eingesetzte hochqualitative Rekonstruktion des virtuellen Pigments
bewahrt feine Details, während die Implementierung auf der Grafikkarte eine interakti-
ve Visualisierung ermöglicht. Überdies werden einige auf Stromlinien basierende Kon-
zepte in Raum-Zeit-Darstellung angewendet, in der die Zeit als die dritte Raumachse
interpretiert wird. Demzufolge können diese Methoden zur Analyse der zeitabhängigen
zweidimensionalen Strömung verwendet werden. Die eingeführten „Vortex Core Ribb-
ons” unterstützen die Analyse der rotierenden Strömung um die Wirbelkernlinien. Für
die Analyse der topologischen Strukturen wurde eine Methode entwickelt, die die Se-
paratrizen implizit als Ränder einer Segmentierung des Vektorfeldes extrahiert. Damit
wird eine möglicherweise komplexe direkte Extraktion der Separatrizen vermieden.

Die präsentierten Visualisierungsmethoden bilden ein neuartiges Multiskalen-Ver-
fahren zur visuellen Analyse von Zweiphasenströmungen. Die Tropfeninteraktionen
werden mit Hilfe einer Visualisierung dargestellt, die sich auf die Ursache des Trop-
fenzerfalls und deren Ablauf konzentriert. Für die Untersuchung der Oberfläche zeigen
die vorgeschlagenen Techniken die Qualität der Ergebnisse hinsichtlich der Oberflä-
chenrekonstruktion, die Mechanismen hinter den topologischen Ereignissen, als auch
die Dynamik der elektrisch geladenen Tropfen auf. Andererseits werden unter Annah-
me der Einphasenströmung neue Techniken basierend auf Dye-Advection, Stromlinien-
basierte Konzepte, sowie Verfahren zur Extraktion der Topologie untersucht, um einen
besseren Einblick in den Materialtransport zu gewinnen. Die Anwendung dieser Metho-
den wird in dieser Dissertation auf Daten demonstriert, die durch Simulation, basierend
auf Navier-Stokes-Gleichungen, erzeugt wurden.







1INTRODUCTION

Computational fluid dynamics (CFD) is a branch of fluid mechanics that focuses on
the analysis and development of numerical methods for solving fluid dynamic prob-
lems [65, 66, 201]. Typically, these methods find solutions to the Navier-Stokes equa-
tions that describe the motion of fluids. Initially, during the 1950s and 1960s, CFD

was employed to problems of general importance. These included weather modeling
and material transport in ocean currents as well as the related natural convection phe-
nomena. The spectrum of CFD applications has since then grown significantly, mainly
due to the development of new numerical solvers as well as a rapid increase in computa-
tional power of supercomputers and commodity desktop computers. The applications of
CFD now range from analysis of vehicle aerodynamics, through investigation of droplet
splashing in combustion engines, to food processing technology.

Advancements in the field of fluid dynamics would not be possible without flow
visualization that allows scientists and engineers to understand the simulated processes
and consequently gain new insights into the observed phenomena [27]. There are many
challenges related to the visual investigation of flow phenomena—such as handling
large data or extraction of relevant information from complex flow simulations—and
flow visualization has been a subject of intense research since the mid-1980s [28, 68,
99]. These challenges include the extraction of important flow features from the ever-
increasing data volumes and adjusting to advancements in the algorithms used in CFD.
Therefore, research in both flow simulation and flow visualization go hand in hand since
effective evaluation of computational fluid dynamics simulations depends on suitable vi-
sualization techniques, and conversely, flow visualization needs to constantly adapt to
the improvements on the simulation side in order to deliver analysis tools that can sup-
port the progress in flow simulation. Yet, flow visualization has so far focused on aspects
mainly related to single-phase fluid dynamics, although in the CFD field, two-phase flow
has already become an established research area. Two-phase flow is a simultaneous
flow of gas and liquid, where one phase is typically dispersed in the other and separated
from the surrounding phase by an interface. While there exist methods that provide ac-
curate interface reconstruction for the visualization of two-phase simulation data, there
are many aspects still not investigated in the scientific visualization community, such as
dynamic behavior of liquid droplets, which is the focus of this thesis.



2 Chapter 1 • Introduction

1.1 Motivation and Research Goal

Due to their ubiquity, droplets are the subject of intense research effort that encompasses
various aspects of natural processes and engineering design. The dynamics of droplets
are investigated, for instance, to better understand cloud formations, or to improve the
effectiveness in various applications such as inkjet printers and combustion engines.

The visual analysis of droplets and two-phase flow dynamics in general poses many
challenges. The presence of surface tension force leads to complex interface dynam-
ics and frequent droplet breakups and merges. This dependency between small scale
physics and large scale events means that different scales and therefore different pro-
cesses must be considered. However, not only physical processes, but also complex
simulation data is problematic. Direct visualization of interfaces in two-phase flow
results in visual clutter, and therefore droplet merges and splits as well as intricate inter-
face deformations are difficult to follow. Moreover, droplet simulations require a high
spatial resolution to capture fine details of phase dynamics. As a result, large amounts
of data are produced that must be effectively handled for constructive visual analysis.

In view of these challenges, the goal of this thesis was to develop visualization tech-
niques that support effective analysis of droplet-related phenomena occurring at differ-
ent scales. Together, the presented novel techniques constitute a powerful visualization
approach that gives insights into complex droplet processes that could not be explored
with previous techniques. The visualization methods allow for constructive analysis of
the involved complex flow dynamics, droplet-specific phenomena as well as large data.

1.2 Contribution and Thesis Structure

This thesis is the outcome of the visualization research done within project Collabo-
rative Research Center Transregio 75 (SFB-TRR 75) [166] whose focus is the inves-
tigation of droplets dynamics under extreme ambient conditions. Within this project,
scientists from the University of Stuttgart, the Technical University of Darmstadt, and
the German Aerospace Center collaborate in the investigation of droplet phenomena
through modeling, experiments, and simulations. Due to the difficulties related to the
visual exploration of dynamic processes in two-phase flow, and the deficiency of appro-
priate visual analysis techniques, visualization has been recognized as an integral part
of the SFB-TRR 75. The scope of the challenges faced within this project requires a
comprehensive visualization approach. In this thesis, three aspects have been identi-
fied as crucial in the analysis of two-phase flow dynamics: inter-droplet interactions,
dynamics of droplet interfaces, and material transport in droplets (see Figure 1.1 for
an illustration). The proposed visualization techniques address the specific problems
at these scales and reveal relevant information to support a multi-scale analysis of two-
phase flow dynamics. The following paragraphs outline the structure and contributions
of this thesis.
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(a)

(b)

(c) (d) (e)

Figure 1.1: Visualization of two-phase flow. (a) In the simulation, two droplets collide. (b) After
collision, a multitude of droplets are formed that undergo various topological changes. (c) The

whole simulation can be analyzed with a space-time graph representation that shows various
droplet interactions. (d) The liquid-gas interface is approximated with planar patches that may
have some impact on the simulation quality. (e) There are a number of phenomena related

to droplet dynamics for which the presence of interfaces does not have to be considered and
hence, single-phase flow is assumed. This can be, for instance, droplet internal flow.

Fundamentals (Chapter 2) In Chapter 2, some basic concepts in flow simulation are
provided that are utilized in later chapters. Additionally, fundamental flow visualization
techniques are briefly described. These techniques are the building blocks for the visu-
alization methods developed in this thesis. Finally, the state of the art techniques for
interface visualization and feature tracking are discussed.



4 Chapter 1 • Introduction

Droplet Interactions (Chapter 3) Droplet interactions are an essential part in the re-
search of natural phenomena and in engineering design processes. For instance, the
droplet surface area in combustion engines affects the combustion effectiveness and
therefore, origins and characteristics of droplet breakup and splashing on walls are im-
portant research questions. In Chapter 3, two novel visualization techniques are pre-
sented that facilitate the investigation of droplet groups and jets, that is, fast flowing
streams of liquid that typically disperse into a large number of droplets.

The first visualization technique, presented in Section 3.1, employs an abstract hi-
erarchical graph representation of a simulation [83]. In this graph, nodes at a given
layer represent droplets for the corresponding time step, whereas edges correspond to
topological changes, that is, breakup and merging of drops. This abstract view is tightly
coupled with a 3D domain representation in a linked-view approach. Droplet rotation
and oscillation are visualized using several novel methods based on principal compo-
nent analysis that support investigation of topological changes the droplets undergo.
The visualization method has been developed under the supervision of Filip Sadlo.

The breakup dynamics of droplets and jets is further scrutinized using the visual-
ization approach described in Section 3.2. Here, droplet volumes are segmented into
regions that correspond to separate droplets resulting from a breakup. To reveal the
temporal characteristics of the breakup, the separation areas are extracted and visual-
ized together with the information on the separation time. Additionally, particles that
are employed for tracking the droplets in time can be used for close examination of the
breakup process.

Dynamics of Interfaces (Chapter 4) The dynamics of droplet interactions and the
characteristics of phase interfaces are interrelated. Hence, it is important to visually
inspect the interface to gain insights into the dynamics of droplets. A prerequisite for a
better understanding of interface dynamics is the analysis of the interface reconstruction
used in CFD solvers. A typically used reconstruction method in scientific applications is
based on planar approximation of the interface [146]. While providing a good trade-off
between accuracy and efficiency, it can influence the quality of the simulation results.

Therefore, in the approach presented in Section 4.1, solver interface reconstruction
is analyzed using several measures, such as the size of gaps between neighboring pla-
nar patches and the curvature of the interface [85]. With the novel interpretation of
the planar interface as a Taylor approximation problem, it is possible to generalize the
interface to higher-order approximations. This in turn allows for more precise visual
investigation of the approximation error. The visualization method has been developed
under the supervision of Filip Sadlo.

The analysis of the interface deformation can help to better understand the relations
between micro-scale and macro-scale phenomena in two-phase flow. For this purpose,
the visualization method presented in Section 4.2 employs a metric tensor to describe
interface dynamics in terms of stretching, while a novel shape-tensor-based analysis al-
lows for detailed investigation of surface bending. To inspect the influence of the surface
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tension on the interface deformation, a velocity field is derived from the solver-based
curvature computation. This velocity field is then used with the presented visualization
of deformation. This visualization of interface stretching is partially based on the Master
Thesis of Alexander Straub [168] who also implemented the visualization of interface
bending.

Additionally, complex physics resulting from the presence of an electric field are
investigated to help in the analysis of static discharges on wet insulators [86]. Specifi-
cally, in Section 4.3, the electric field on the contact line between droplet and insulator
is visualized in a novel space-time approach, where the contact line from consecutive
simulation time steps is transformed into stripes and then stacked onto each other. For
visualization, volume rendering and isocontouring is used. Parts of this visualization
method have been implemented by Harald Songoro who also provided the formulation
for the interpolation of higher-order finite elements.

Material Transport (Chapter 5) A multitude of phenomena related to droplet dy-
namics processes can be examined with single-phase flow simulations. This is the case
either when only internal flow is considered or when explicitly considering interfaces is
not necessary to investigate the problem at hand. In those cases, traditional flow visual-
ization techniques can be employed for visual analysis. However, in single-phase flow
simulation, the dynamics of vector fields pose various challenges in the exploration of
the flow physics, which are addressed from different angles in this thesis.

In Section 5.1, a novel interactive visualization using dye advection is presented
that accounts for both the advection and diffusion of quantities, such as evaporating
droplets [90, 89]. The finite volume approach allows for parallelization of the computa-
tion and hence interactive frame rates. The employed polynomial reconstruction of the
dye substantially reduces the artificial smearing caused by repeated interpolation. This
approach preserves fine details of the dye advection and thus provides accurate visual
description of flow dynamics. The visualization method has been developed under the
supervision of Filip Sadlo and Claus-Dieter Munz who also provided the reconstruction
algorithm.

To account for the complexity of 2D unsteady flow, a space-time visualization is
proposed in Section 5.2, where time is treated as the third dimension, therefore allowing
for the utilization of visualization techniques based on streamlines for time-dependent
flow [87, 88]. Specifically, in this representation, vortex core line extraction is employed
that provides continuous representation of these features, whereas the applied vortex
criteria reveal the vortical structure in the whole domain. Additionally, rotational flow
around the core lines is visualized using novel streamline-based ribbons whose twist
conveys the spinning motion.

The complex behavior of vector fields can be concisely described with vector field
topology. To avoid potentially cumbersome extraction of the involved separatrices, a
novel approach is introduced in Section 5.3 that reveals the separatrices implicitly as
boundaries in the vector field segmentation [91]. This segmentation is achieved by
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adaptive streamline integration that captures fine topological details. Both methods pre-
sented in Section 5.2 and 5.3 have been developed under the supervision of Filip Sadlo.

Conclusion (Chapter 6) The contributions of the presented visualization techniques
are recapitulated in Chapter 6. Additionally, this chapter summarizes how the the pre-
sented methods address the challenges in the visualization of two-phase flow. Finally,
concluding remarks and discussion on possible future research directions are given.

Challenges in the Visualization of Two-Phase Flow

Together, the presented visualization methods enable comprehensive analysis of the
droplet dynamics processes. The challenges related to the analysis of complex dynam-
ics, droplet-specific phenomena, and large data have been approached in this thesis
using various techniques, depending on the research problem and investigated data.

Complex Dynamics The existence of interfaces and the resulting surface tension
force hinder the visual investigation of two-phase flow dynamics in several ways. The
presence of interfaces incurs visual clutter, and highly complex drop dynamics lead to
frequent and often abrupt topology changes that are problematic to follow. Therefore,
in the analysis of interface reconstruction, liquid advection is visually scrutinized with
the direct representation of the transported volumes. Furthermore, in the analysis of
interface dynamics, the deformation is captured statically with eigenpairs of tensors de-
scribing stretching and bending. Flow dynamics is also considered in other ways: in
the form of a space-time graph representation of droplets, a 3D space-time description
of 2D unsteady flow, as well as using geometrical representation of temporal separation
of droplets. Topology extraction is also employed to significantly reduce the data to
features relevant for the analysis.

Droplet-Specific Phenomena To gain insight into the droplet related processes, spe-
cially tailored visualization techniques are often required due to the specific characteris-
tics of the two-phase flow phenomena and the applied solvers. For detailed investigation
of droplet dynamics, dimensionless quantities are adapted and new quantities based on
droplet rotation and oscillation are introduced. The surface tension force causes highly
nonlinear flow characteristics that are difficult to track numerically. To improve the
particle-based tracking necessary for visualization of droplet topology changes, a spe-
cially designed trajectory corrector scheme has been developed. Reimplementation of
solver curvature computation method allows for reliable estimation of the surface ten-
sion effects on interface deformation and breakups. For the simulation of droplets in the
presence of electric fields, higher-order edge-based elements are necessary to preserve
field discontinuities. These elements are efficiently handled in the visualization using
specialized sampling.
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Large Data The ever-increasing computational power enables higher resolutions in
the physical domains, thus allowing for more accurate computations. The high resolu-
tion is a prerequisite for reliable simulation of flow physics, however, the resulting large
amounts of data incur additional effort during visual investigation. In this thesis, dif-
ferent approaches are presented to handle this problem. Level-of-detail and clustering
are used to allow for constructive analysis of a vast number of droplets occurring in jet
simulations. The analysis of large data is also managed at programming level. Domain
parallelization across computing nodes is employed to allow processing of large datasets
that would be impossible to achieve on a single workstation. On the other hand, for ef-
fective and interactive visualization of dynamic data, a graphics processing unit (GPU)
implementation is employed.

Overall, this thesis provides scientists and engineers with visualization techniques
for the analysis of complex droplet dynamics. This is achieved using a multi-scale ap-
proach for the visualization of droplet interactions, interfaces, and material transport.
The thesis addresses the problems of complex flow dynamics and droplet specific phe-
nomena with specially tailored techniques. For effective visualization of large data,
different variants of visualization techniques and parallelism are exploited.





2FUNDAMENTALS AND

STATE OF THE ART

This chapter is intended as an introduction to some basic concepts that are later em-
ployed in the description of the developed visualization techniques. All visualization
techniques described in this thesis are related to the category of flow visualization.
While some of these techniques provide the visualization for the underlying vector field
directly, the majority of the proposed methods combine the vector field and a scalar field
representing the fluid phase to provide meaningful visualizations of two-phase flow. The
mathematical description of vector fields and flow characteristics is given in Section 2.1.
Section 2.1.1 briefly introduces selected discretization approaches used for the numer-
ical solution of the Navier-Stokes equations, including the volume of fluid method for
two-phase flow. Later, in Section 2.2, essential visualization techniques, such as integral
lines, are introduced, and a state of the art in interface reconstruction and feature track-
ing is provided—both visualization concepts are relevant to the techniques presented in
Chapter 3 and 4.

2.1 Fluid Flow

In this section, selected concepts in fluid dynamics and simulation are provided to give
necessary background for the visualization methods presented in later chapters. For a
comprehensive description of the fundamental concepts in fluid dynamics, the reader is
referred to the books by Anderson [7] and Kundu [94].

In this thesis, most of the presented visualization techniques have been devised for
the analysis of time-dependent three-dimensional fluid flow. In the simulation data, the
vector field u represents the fluid velocity at a given point x and instant of time t:

u(x, t) =





u(x,y,z, t)
v(x,y,z, t)
w(x,y,z, t)



 . (2.1)
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The Jacobian matrix Ju = ∇u describes the local characteristics of the vector field and
is essential in the computation and identification of many vector field properties:

Ju =







∂u
∂x

∂u
∂y

∂u
∂ z

∂v
∂x

∂v
∂y

∂v
∂ z

∂w
∂x

∂w
∂y

∂w
∂ z






. (2.2)

Vorticity is a vector defining the axis and the magnitude of local rotation of the fluid:

∇×u =

(

∂w

∂y
− ∂v

∂ z
,
∂u

∂ z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)

. (2.3)

Divergence, on the other hand, is a scalar quantity that quantifies the local volume ex-
pansion of a fluid element as induced by the underlying velocity:

∇ ·u =
∂u

∂x
+

∂v

∂y
+

∂w

∂ z
. (2.4)

In this work, the analyzed two-phase flow problems are divergence free (i.e., ∇ ·u = 0),
whereas some of the single phase problems in Chapter 5 involve buoyant flow and hence
are divergent.

Flow Description

Fluid flow problems are commonly approached by numerically solving the Navier-
Stokes equations, a set of partial differential equations (PDEs). The incompressible fluid
flow can be described by the momentum equation:

∂u

∂ t
+u ·∇u =− 1

ρ
∇p+ν∇ ·∇u+g , (2.5)

and the continuity equation:
∂ρ

∂ t
+u ·∇ρ = 0 , (2.6)

with fluid density ρ , pressure p, kinematic viscosity ν , and external force g which typi-
cally represents the gravitational acceleration. In general, the description of the density
in fluid flow is given by the substantial derivative:

Dq

Dt
=

∂ρ

∂ t
+u ·∇ρ . (2.7)

The term on the left side is the temporal change of density as the mass is transported by
the flow. The first term on the right side is the temporal change of ρ at a fixed position
while the second term is the change in ρ caused by advection. Therefore, the substan-
tial derivative relates the Lagrangian and Eulerian reference frames. For incompress-
ible flows, Dρ/Dt = 0 and the substantial derivative reproduces the continuity equation
(Equation 2.6).
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vi,j+1

pi,j

(c)

Figure 2.1: Spatial discretization of a simulation domain. Examples of uniform (a) and rectilin-

ear (b) grids. The latter allows for better accuracy at regions of interest, e.g., at the jet core.
(c) Marker and cell data representation with velocity components stored on the cell faces and
scalar quantities located in the cell centers.

2.1.1 Flow Simulation

All the example datasets investigated with the presented visualization techniques were
produced by CFD simulations that numerically solve the Navier-Stokes equations. While
there are many CFD solvers that model turbulence to allow for computation of complex
flow configurations, a popular class of solvers employed in scientific applications is the
direct numerical simulation (DNS) that resolves all temporal and spatial scales [42]. This
approach, however, entails substantial computational costs and therefore the simulations
are typically run on supercomputers.

The investigated datasets are discretized either on uniform or rectilinear grids. A
uniform grid is a type of structured grid with constant cell size defined over the whole
simulation domain, as illustrated in Figure 2.1(a). A rectilinear grid represents a more
flexible structured grid type, which is still simple to implement. It employs varying cell
size along each dimension and therefore provides better accuracy in regions of interest,
see Figure 2.1(b). It is important to note that both grid types lend themselves well for
parallelization on GPUs and distributed systems, since they allow coherent memory map-
ping on GPU, as well as domain partitioning that can be readily achieved by determining
data intervals on each spatial axis.

The computed vector and scalar data are most commonly associated with either grid
nodes or grid cells. For node-based data, the data between sample points is typically
reconstructed using bilinear (in 2D) or trilinear (in 3D) interpolation. In cell-based data
representation, it is assumed that the data value is constant over the whole cell volume.
Another data representation is the marker and cell (MAC) grid [66] where the scalar
quantities (such as pressure and volume fraction) are stored on the cell centers, while the
components of vector quantities are associated with cell faces whose normal is parallel
to the respective component, as illustrated in Figure 2.1(c). Such representation allows
for more accurate computation of the central differences used for pressure gradients and
divergence [26]. For the simulation output, however, the vector quantities are usually
averaged at cell centers to facilitate post-processing. This was also the case for the
datasets investigated in this work.
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Simulation of Two-Phase Flow

The main focus of this work is the visual analysis of phenomena related to two-phase
flow where gas and liquid phases occur simultaneously. Investigation of droplets is an
active area of research [49, 177, 207], and so is the analysis of liquid jets [43, 56, 104].
The reader is referred to the work by Fuster et al. [55] for a detailed introduction to
multiphase flow simulation and to Lefebvre [100] for a thorough description of liquid
atomization and sprays. Two-phase flow is characterized by large density and viscosity
ratios, topologically complex interfaces, and presence of surface tension force. The
surface tension is explicitly expressed in the momentum equation by an additional term
fγ that acts on the liquid interface:

∂u

∂ t
+u ·∇u =− 1

ρ
∇p+ν∇ ·∇u+g+ fγ . (2.8)

In the simulation context, an open research problem is to capture the complex inter-
face topology and, at the same time, accurately compute surface tension forces. There
are basically two approaches to the computation of fluid interfaces. In Lagrangian
schemes, the interface is represented explicitly by the moving mesh that divides the
domain into regions of different phases [31]. In this case, the cells function as con-
trol volumes that move with the flow. In the Eulerian schemes, in contrast, the fluid
configuration is discretized on a fixed grid, on which the interface must be tracked. In
tracking based on level-set method [171], the distance to the interface is computed for
each cell. To avoid smearing due to repeated advection and to ensure mass conserva-
tion, the interface must be regularly reinitialized. On the other hand, in the volume of
fluid (VOF) method, which was applied in the example datasets, the fluid is represented
by a volume fraction defined for each cell [70]. The advantage of the VOF method over
the Lagrangian schemes is that it can handle arbitrarily complex flow structures and
changes in topology, since no explicit representation of the fluid interface is needed.

In the VOF method, an additional volume fraction field f (x, t) is maintained for each
cell:

f (x, t) =











0 in the gas phase,

]0,1[ at the interface,

1 in the liquid phase,

(2.9)

and it is advected by solving the advection equation

∂ f

∂ t
+u ·∇ f = 0 . (2.10)

Please see Figure 2.2(a) for an illustration.

Interface Reconstruction in Two-Phase Flow

Since the volume fraction used to numerically solve the Equation 2.10 is discretized
on a grid, the information on the exact interface position is lost. Therefore, for the
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Figure 2.2: Volume tracking in two-phase flow. (a) The volume fractions of the liquid phase are
defined per cell. (b) For accurate flux computation, the liquid interface is defined as a planar
patch that encloses a volume fraction equal to f . (c) The interface plane is defined by its normal

nγ and distance from the attachment point a. (d) The amount of volume advected to the neighbor
cell is equal to the volume cut by the cell face translated with the velocity −u over time ∆t.

computation of the advection and the surface tension forces, it is approximated from
the cell-constant values of f and from the information on the neighborhood. Several
schemes have been proposed for the reconstruction of the interface, with piecewise
constant [70, 124], stair-stepped [70], piecewise linear [208, 146] approximation, and
second-order reconstruction where the fluid surface is constructed with freely arrange-
able planes within a cell [9, 138]. The most widely used reconstruction in the scientific
applications is the piecewise linear interface calculation (PLIC).

In the PLIC reconstruction, the interface is approximated by a plane whose normal
nγ is parallel to the gradient of f :

nγ :=−∇ f/||∇ f || , (2.11)

as demonstrated in Figure 2.2(b). The translation τ of the plane along nγ (Figure 2.2(c))
is chosen such that the volume enclosed between the cell’s boundaries and the plane
equals f . For computational simplicity, this step is typically implemented by an iter-
ative optimization. For advection in a 3D domain, dimensional splitting is employed,
where the advection is performed subsequently in x-, y-, and z-direction. To determine
the actual amount of f advected across the cell boundaries, the interface is cut by the
downwind cell face at distance x = δ tu from the face (Figure 2.2(d)). It is apparent that
a piecewise linear reconstruction is subject to C0 and even C−1 discontinuities at the
cell boundaries, i.e., between the PLIC patches.

The two-phase flow datasets investigated in this thesis were generated using the Free
Surface 3D (FS3D) solver [60, 42] which employs the PLIC reconstruction for interface
tracking and is parallelized using MPI [50] and OpenMP [129].

2.2 Flow Visualization

In this section, some visualization techniques are described that are directly related to
the visualization methods presented in this work. Additionally, since the research in
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Figure 2.3: Integral lines with seed point marked red. (a) Pathline integrated over a given time
interval (time for a given position color-coded as shown on the left). (b) A few streamlines
seeded at different instants of time within the same time interval. (c) Snapshots of a single

streakline at corresponding time instances.

interface reconstruction and feature tracking is closely related to this thesis, the state of
the art is presented in Section 2.2.3 and 2.2.4, respectively. For general information on
flow visualization, the reader is referred to extensive surveys on this topic [97, 117, 106].

2.2.1 Integral Lines

Integral lines are fundamental in the analysis of vector fields and are the basis for a large
number of more complex flow visualization techniques. They are obtained by solving an
initial value problem of an ordinary differential equation. There are three basic types of
integral lines: pathlines, streamlines, and streaklines. Pathlines represent trajectories of
massless particles advected by the flow. The differential and integral form of a pathline
read as

dx(t)

dt
= u(x(t), t) , and x(t) = x0+

∫ t

t0

u(x(τ),τ)dτ , (2.12)

respectively, with initial condition x(t0) = x0. Streamlines are curves which are tangent
to an instantaneous vector field at every x and are obtained by integrating a particle path
at a fixed time t0:

dx(t)

dt
= u(x(t), t0) , and x(t) = x0+

∫ t

t0

u(x(τ), t0)dτ . (2.13)

Streaklines are curves formed by a set of particles continuously released into a (time-
dependent) vector field for a given time interval τ ∈ [t0, t] from a fixed position x0.
Evaluating the positions at time t provides a snapshot of the streakline parametrized by
τ [8]:

x = x(ξξξ (x0,τ), t) , (2.14)

with ξξξ (x0,τ) representing the initial position of a particle that is located at position x at
time t. A counterpart of a streakline in experimental visualization is a marker released
into air or water from a seeding probe. It should be noted that there is a more generic
definition of streaklines, the so-called generalized streaklines [196], where the seed
is allowed to move over time. This concept accounts for a moving seeding probe in
experimental visualization. Another useful integral line is the material line, or timeline,
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i.e., a curve formed by particles that were seeded at the same instant of time and move
with the flow. It is worth noting that in steady vector fields, pathlines, streamlines and
streaklines coincide. Please see Figure 2.3 for an illustration of these integral lines.

For visual representation, the ordinary differential equations (ODEs) of the integral
lines must be solved numerically. The simplest but also the least accurate integration
method is the forward Euler method which takes into account the velocity at the current
position pi and instance of time ti, where ti = ti−1 +∆t, to find the new position pi+1

after time step ∆t:
pi+1 = pi +u(pi, ti) ·∆t , (2.15)

The standard method used in flow visualization is the fourth order Runge-Kutta method.
It considers the changes in velocity as the particle moves with the flow using four inter-
mediate steps:

k1 = u(pi, ti) , k2 = u(pi +
1
2
k1 ·∆t, ti +

1
2
·∆t) ,

k3 = u(pi +
1
2
k2 ·∆t, ti +

1
2
·∆t) , k4 = u(pi + k3 ·∆t, ti +∆t) ,

(2.16)

and the particle position is updated according to:

pi+1 = pi +
1

6
(k1+2k2+2k3+ k4) ·∆t . (2.17)

2.2.2 Features in Vector Fields

Features in vector fields are objects—usually in the form of points, lines or surfaces—
that provide an abstract and meaningful representation of the flow [58]. They represent
the flow behavior in a concise form that reveals the global flow structure and therefore,
allow for efficient analysis of vector fields.

In the following, critical points and vortex core lines are described in detail. Other
important flow features are separatrices (discussed in Section 5.3), vortex rings [135],
bifurcation lines [111] and Lagrangian coherent structures [64].

Critical Points

For steady vector fields, critical points are important in the analysis of flow behavior,
since the type of critical points provide general characteristics of the flow.

Critical points are isolated locations in the vector field where the velocity vanishes.
The type of a critical point can be determined from the Jacobian of the vector field at
that point. In 2D flow, given the Jacobian Ju in the form

Ju =

(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

, (2.18)

a critical point is of one of the following types, depending on the sign of the eigenvalues
λ1 and λ2 as well as their real and imaginary parts:
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(a) (b) (c) (d)

Figure 2.4: Critical points (red dots) with streamlines showing vector fields around them. Critical
point types: (a) node (source or sink), (b) saddle, (c) focus (source or sink), and (d) center.

Figure 2.5: Vortex core line (blue) by Levy
at al.’s criterion in a 3D steady flow. Stream-
line (green) started at the core line follows

it for some time but then deviates from it.
Streamlines (gray) started around core line

(red points) go along the green one in a spi-
ral motion as long as the green streamline
follows the core line.

• Node source: λ1 , λ2 > 0 and Im(λ1) , Im(λ2) = 0

• Node sink: λ1 , λ2 < 0 and Im(λ1) , Im(λ2) = 0

• Saddle: λ1λ2 < 0 and Im(λ1) , Im(λ2) = 0

• Focus source: Re(λ1) , Re(λ2)> 0 and Im(λ1) , Im(λ2) 6= 0

• Focus sink: Re(λ1) , Re(λ2)< 0 and Im(λ1) , Im(λ2) 6= 0

• Center: Re(λ1) , Re(λ2) = 0 and Im(λ1) , Im(λ2) 6= 0

See Figure 2.4 for an illustration. It is worth noting that in case of incompressible fluid,
only critical points of type center and saddle exist. In three-dimensional vector fields,
there are eight types of critical point [58], however, they are not discussed further in this
thesis.

Extraction of Vortices

In the analysis of 3D flow, important features are vortices, i.e., regions in fluid charac-
terized by swirling motion of particles around an abstract curve called vortex core line.
Vortices transport material at relatively long distances, and they usually exist for a long
time. Additionally, they directly indicate the extent of turbulence in flow.

Since there is no general definition of a vortex, there exists a multitude of descrip-
tions for vortex regions and vortex core lines. In steady flow, although a vortex core line
must be tangent to streamlines, it is a common circumstance that it does not represent
single streamlines. Instead, vortex core lines are composed of many streamline sections
that successively pass through the core line [154]. In Figure 2.5 the green streamline



2.2 • Flow Visualization 17

passes through a vortex core line (blue), while the gray streamlines reveal the spin-
ning motion around the core line. In steady flow, vortex core lines can be defined to
consist locally of those streamline parts that exhibit minimum curvature (with the addi-
tional requirement of complex eigenvalues of the Jacobian). Accordingly, Sujudi and
Haimes [170] defined vortex core lines to consist of those points where ∇u exhibits a
pair of complex eigenvalues and a real eigenvalue λR, and where u is parallel to its real
eigenvector

(∇u)u = λRu . (2.19)

This requirement is identical to a = λRu, i.e., the acceleration a := (∇u)u being parallel
to velocity, which requires the streamline passing through the respective point of the
core line to be locally straight. A widely used vortex core line criterion is based on nor-
malized helicity [38]. Normalized helicity h is a scalar field defined as the normalized
dot product of velocity and vorticity, i.e.,

h :=
u · (∇×u)

(‖u‖‖∇×u‖) . (2.20)

Vortex regions exhibit large |h|, whereas in non-vortical regions, e.g., in shear flow,
|h| is small. As described in the thesis of Roth [150], this directly leads to a vortex
core line criterion defining those points as part of a core line where u is parallel to
(∇×u). Another related vortex criterion is λ2 [78]. It represents the medium eigenvalue
of S2 +ΩΩΩ2, with S := (∇u+(∇u)⊤)/2 being the symmetric part of the Jacobian and
ΩΩΩ := (∇u− (∇u)⊤)/2 its antisymmetric part. Vortex regions are indicated by negative
values of λ2. A further approach for obtaining vortex core line criteria is the extraction
of valley lines or ridge lines from scalar vortex indicators. Sahner et al. [155] directly
extracted valley lines from λ2, while Schafhitzel et al. [160] employed isosurfaces for
their topological definition.

2.2.3 Interface Reconstruction for Visualization

In this work, fluid interfaces are typically visualized using the standard marching cubes
algorithm [109] that extracts an isocontour of the VOF-field. The approach is motivated
by the fact that this surface extraction algorithm is commonly employed in the applica-
tion domain.

Since the marching cubes algorithm operates on the node-based data, the cell-based
VOF-grid must be converted to this representation before the extraction of the interface.
This is done by defining each cell center xci, j,k

= (xci
,yc j

,zck
) as a node of a new node-

based grid:

xci
=

1

2
(xi + xi+1) , yc j

=
1

2
(y j + y j+1) , zck

=
1

2
(zk + zk+1) , (2.21)

where xi, y j and zk are the cell coordinates along each axis of the rectilinear grid. See
Figure 2.6 for an illustration.
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xci,j

∆xi

∆yj

(a)

∆xi

∆yj

(b)

Figure 2.6: Conversion of data representation in rectilinear grids. (a) In a cell-based representa-
tion, data values are constant per cell. For conversion to a node-based representation, the data
is associated with cell centers ci, j (blue dots). (b) In a node-based representation, data values

are stored at grid nodes, and the grid is smaller than the cell-based configuration by half of the
cell size on each grid side.

(a) (b)

Figure 2.7: Interface reconstruction in two-phase flow. (a) Isocontour extraction with marching
cubes algorithm. The algorithm gives smooth closed interfaces, but occasionally, as in this

figure, it falsely separates the liquid volumes. (b) Although PLIC reconstruction is not smooth,
the parts are connected, better reflecting the reconstruction used in the solver.

The isocontour extracted with the marching cubes algorithm does not necessarily
have the same topology as the interface in the underlying solver (Figure 2.7). Therefore,
in visualization methods introduced in this thesis for which the topology of phase com-
ponents is important for the analysis, extraction of the PLIC patches for the visualization
is used instead. For the generation of the PLIC patches for rendering, a custom algorithm
based on marching cubes is employed. In this algorithm, the patches are extracted per
cell such that the resulting planar isocontour has a normal parallel to nγ and the volume
enclosed by it corresponds to the f value in the cell (cf. Figure 2.2(c)). The details of
this algorithm, which is also a contribution of this thesis, are given in Section 4.1.

Material interface reconstruction is a challenging topic in visualization, especially
with respect to volume preservation in multi-material configurations, e.g., in multiphase
flow, where more liquid components are considered. Bonnell et al. [20] described an
algorithm that can reconstruct arbitrarily many interfaces within a single cell. However,
the volume fractions enclosed within the reconstructed interfaces can deviate from the
original ones. Meredith and Childs [118] developed a more accurate and smooth repre-
sentation of interfaces with correct connectivity. The smoothness was also addressed by
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Figure 2.8: Interpolation of inclusion in Eulerian (top) and Lagrangian (bottom) frame. Five

consecutive time steps shown.

Anderson et al. [6] where smoothing and volumetric forces are applied to obtain high
quality surfaces. In another work [5] they produced continuous interfaces across cell
boundaries for time-varying and static data in arbitrary dimension with bounded error.
Obermaier et al. [125] analyzed the stability of reconstructed interfaces by comparing
with time surfaces. For algebraic surfaces, Mann [114] improved the convergence of
A-patches that are used to accurately tessellate surface representation using triangle
meshes. This method, however, is only suitable for implicit surfaces (of polynomial
form). On the other hand, Wojtan et al. [204] developed a mesh-based surface tracking
that preserves thin liquid layers. They use convex hulls of liquid in cells with complex
surfaces to ensure consistent topology. As in the case of marching cubes, this approach
does not preserve the fluid volume.

Interfaces are crucial for the analysis of two-phase flow. However, it is the interfaces’
inherent influence on the fluid dynamics, and not its visual representation that is the
focus of this thesis. Therefore, development of smooth interface reconstruction as well
as reconstruction that can handle multiple fluids are not the main goals of this work, and
are not pursued in the presented techniques.

The presented visualization methods related to two-phase flow are applicable to sim-
ulations of liquid dispersed in gas phase (i.e., droplets), and liquid phase dispersed in
another liquid phase. Therefore, for brevity, the dispersed phases are interchangeably
referred to as inclusions or phase components.

2.2.4 Inclusion Tracking

The visualization techniques presented in Chapter 3 need to track time-dependent evo-
lution of droplets, either to detect and visualize droplet splits and merges or to provide
detailed segmentation of the droplet volumes into regions that separate in the course of
time. This necessitates finding correspondences between the inclusions at consecutive
time steps, and in scientific visualization, the correspondence problem is approached
using feature tracking methods. Different techniques have been proposed so far that
track features in single-phase flow. Reinders et. al [144] employed attribute correspon-
dence using different criteria to match features, e.g., turbulent vortex structures. Sauer
et al. [159] utilized particle and volume data from the simulation runs to track features
over longer time intervals. The correspondence problem has also been addressed for ap-
plications in computer graphics. Stam [167] proposed a method for the computation of
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Figure 2.9: Particle advection in two-phase flow. In case of low temporal resolution of the
discretized velocity field, higher-order integration schemes can lead to erroneous results when
tracking inclusions (black lines), since they interpolate the vector field in time (at green dot). This

can cause interpolation between, e.g., fast liquid and slow air, and result in inconsistent tracking
(red dot). Explicit Euler integration gives consistent result in this case (blue dot).

interface velocities to properly translate surfaces. Bojsen-Hansen et al. [18] developed
a method for tracking surfaces undergoing topology changes, without prior informa-
tion on the underlying physics. While these methods operate on surfaces, others find
correspondences in general cases, such as image processing and material reflections
properties. In the work by Bonneel et al. [19], Lagrangian transport was used to cor-
rectly interpolate the displacement between two known corresponding states. Solomon
et al. [165] optimized the transportation in terms of Wasserstein distances, which al-
lows for efficient shape transformation. Please see Section 3.1.1 and 3.2.1 for works on
feature tracking more closely related to the presented visualization methods.

A problem inherent to the Eulerian representation of phases in two-phase flow sim-
ulations is that temporal interpolation does not provide physically correct results. This
is illustrated in Figure 2.8, where on the top, temporal interpolation on a Eulerian grid
is applied to obtain the transition between consecutive time steps. As can be seen,
the initial left inclusion fades out while the one from the next simulation step fades
in. However, there should be a movement between these two states, as shown in the
bottom. Therefore, temporal interpolation of the f -field would not be an appropriate
method for tracking. This problem implies that the correspondence should be found
using a Lagrangian approach, which is in fact the method used in this thesis. While
the details are given in the respective sections, it should be mentioned here that in the
presented methods, particle advection is employed to find inclusion correspondence. In
the first method, which requires the identification of features at consecutive time steps
as well as possible events, explicit Euler integration provides a good trade-off between
accuracy and computational complexity. Due to low temporal resolution in the investi-
gated datasets, higher-order methods involved temporal interpolation and hence did not
provide better results. This is because the involved temporal interpolation can result in
incorrectly sampling the velocity in the gas phase, as illustrated in Figure 2.9. In the
second method, which requires more accurate determination of correspondence (i.e.,
volumetric contributions), 4-th order Runge-Kutta provided better results due to better
temporal resolution of the data used.



3VISUALIZATION OF INTERACTIONS

IN DROPLET GROUPS

Visual analysis of large groups of droplets and jets is a challenging task due to con-
stant topology changes and visual clutter caused by fluid interfaces. Moreover, for large
datasets, the extraction of important information is hindered by the substantial amount
of data. In this chapter, two visualization techniques are presented that enable the ana-
lysis of such data, both in terms of the dynamic processes leading to topology changes
and detailed investigation of the spatio-temporal evolution of these changes. Together,
these two methods provide a novel approach for the investigation of droplet interactions
that leads to better understanding of droplet groups and their dynamics.

The first method enables the investigation of complex two-phase flow phenomena
that lead to coalescence and breakup of droplets [83]. It adapts dimensionless quanti-
ties for a localized investigation of phase instability and breakup. Additionally, with
the employed principal component analysis of droplets, the method provides detailed
inspection of breakup dynamics with emphasis on oscillation and its interplay with ro-
tational motion. For an effective interactive representation of the overall dynamics, a
space-time graph representation of droplets is combined with traditional 3D visualiza-
tion in a highly interactive linked-view approach.

While the first method mainly concentrates on the analysis of the processes that
induce topology changes, the second method focuses on the topology changes them-
selves by providing a spatio-temporal visualization of liquid separation. In this method,
liquid volumes at some reference time step are segmented into regions that separate
into distinct components in later time steps. It employs particle-based tracking to find
volumetric correspondences between inclusions at two different instants of time. The
segmentation is visualized by mesh boundaries generated around each volume segment
of an inclusion at the initial time that correspond to the separated inclusions at the later
time. The approach is complemented with spatio-temporal separation surfaces that con-
vey the temporal evolution of the partitioning. For phase-consistent particle trajectories,
a multi-stage corrector method is introduced.



22 Chapter 3 • Visualization of Interactions in Droplet Groups

3.1 Visual Analysis of Inclusion Dynamics in Two-Phase

Flow

A research question central to two-phase flow problems is how and why topological
changes of the phase components occur. The dynamics of breakup and coalescence
are subject to several physical mechanisms, most important flow instability, centrifugal
forces, oscillation, and surface tension.

In the presented technique, these mechanisms are visualized with specially tailored
techniques that focus on the deformation and rotating motion of inclusions, topological
changes of the interfaces, as well as the interplay of these different dynamics. Flow insta-
bilities are visualized with a derived droplet-localized version of the Reynolds number.
The analysis of angular momentum conveys rotational motion which is an important fac-
tor in the dynamics of droplets and the ligaments they typically originate from. Since
rotation is often superimposed with oscillation and translation, a visual representation
of combined rotation and oscillation based on principal component analysis (PCA) is
provided in the form of ribbons. The related co-rotating frames of reference visualize
droplets temporally, irrespective of their rotation and translation. Both the ribbons and
the co-rotating camera allow for a detailed analysis of the oscillation of rotating phase
components. Furthermore, analysis of inclusion oscillations by means of the Fourier
transform is introduced, and a three-dimensional representation of their spectra is pro-
vided, which conveys both the frequency components and phases of oscillation. To
enable effective interaction and integrative analysis, the techniques are integrated in a
linked view approach, consisting of a 3D view and a 2D graph view. 1

3.1.1 Related Work

A closely related field of research is feature tracking. Post et al. [141] provided a survey
on this topic. Different approaches have been proposed so far. Reinders et al. [144]
introduced a method where feature correspondence in successive frames is detected to
analyze the evolution of features. Sauer et al. [159] combined particle and volume data
to track features. These, however, operate in single-phase flow where interpolation in
time and thus advanced particle tracing can be employed. The presented two-phase
flow configuration, however, necessitates development of a special variant for tracking
inclusions, as discussed in the Fundamentals (Chapter 2). Further research on feature
tracking concentrates on clustering methods, including the work by Ozer et al. [130],
where user-defined feature characteristics are used to determine feature groups.

A related work is the visual analytics of streamlines and pathlines using a graph
representation that clusters field lines for better visual exploration [110]. Also related
is the visualization of mixing processes and instabilities by Laney et al. [96]. However,
both methods address single-phase flow, and thus do not need to consider the interface
between phases. Similarly, merge trees on space-time isovolumes and adaptive thresh-

1 Parts of this section have been published in: [83]
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olds to track features in combustion simulations were proposed [195]. However, neither
temporal interpolation (as discussed below) nor parameter thresholding can be applied
in two-phase flow.

Brushing and linking is commonly used to enable abstraction of scientific data.
Doleisch and Hauser [40] used brushing, based on non-discrete degree of interest func-
tions in parametric views to select regions of interest in 3D simulation domains. Bremer
et al. [24] proposed a hierarchy-based approach that alleviates the dependency on pre-
defined thresholds. This approach was later extended and embedded into a tool with
interactively linked views [25]. Gu and Wang [63] computed time-dependent state tran-
sition probabilities for volumetric data and visualized a 3D view of the volume together
with a 2D graph representation of the transitions. They also used brushing and linking
to connect the two views. Similarly, Jänicke and Scheuermann [82] constructed finite-
state machines encoding the evolution of flow, and depicted these along with the main
flow visualization. Grottel et al. [62] visualized the evolution of molecular clusters on
a timeline as an addition to a 3D representation of the molecules to monitor the quality
of the clustering. Preston et al. [142] developed an interactive visualization system for
cosmology data based on the linked view approach.

Topological methods for vector field visualization [68, 139] do not overlap with this
work, since here the focus is on the analysis of two-phase flow in terms of the geometric

topology of interfaces.
In the presented technique, space-time connectivity is presented as a graph and vi-

sualized as a node-link diagram to convey changes in geometric topology of interfaces.
Graph representation is a commonly employed approach to convey temporal evolution
of features, e.g., in the analysis of combustion simulations [195] or combustion exper-
iments [148], and the features can be abstracted by glyphs [144]. For graph layouting,
a specialized variant of a hierarchical graph layout—the Sugiyama layout [169]—was
employed. In general, branching (and merging) link structures that encode the flow or
transition of quantities are known as flow maps [137] or Sankey diagrams [147]; these
general concepts, however, do neither include layers nor encode time-dependent data.
An overview of time-oriented data visualization is given by Aigner et al. [3], whereas a
survey on graph-based visualization of scientific data is provided by Wang [184].

3.1.2 Phase Tracking in Two-Phase Flow

To visualize topology changes of phase components, they must be tracked over time.
First, volumetric connected components of one of the phases (here the liquid phase)
are determined by region growing, separately in each time step. Face connectivity is
considered for fi > 0∧ f j > 0 ( fi being the f -value of cell ci). To track the resulting
components Ck over time, a volumetric approach is followed based on particle advection,
similar to the one proposed by Sauer et al. [159]. Here, however, temporal interpolation
of the vector field should be avoided due to the two-phase property of the flow and
relatively low temporal resolution of the simulation output, as discussed in Chapter 2.
Specifically, higher-order integration schemes (such as 4th-order Runge-Kutta) involve
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Figure 3.1: Centric Collision dataset consisting of two colliding droplets, with time increasing

downward. (a) Spatial representation of the interface, at selected time steps. (b) Corresponding
space-time graph G. Selected time steps marked with red lines. (c), (e) Tracked phase compo-
nents before and after merge, and (d), (f) before and after split, using (c), (d) single isosurfaces,

and (e), (f) additional isosurface for conveying connectivity. © 2017 IEEE.

interpolation in time and hence, intermediate integration steps might sample the velocity
field outside the inclusion (i.e., in the gas phase), leading to incorrect advection. There-
fore, a particle seeded at simulation time step tl at the center xi of each cell ci in Ck is
advected to the next time step tl+1 by an explicit Euler step

x(tl+1) = xi +∆tu(xi, tl) , (3.1)

with ∆t = tl+1− tl , and tested if cell c j that contains x(tl+1) exhibits f j > 0. If not, the
particle does not contribute correspondence information. If, on the other hand, f j > 0,
then the correspondence is verified in reverse direction, i.e.,

x(tl) = x(tl+1)−∆tu(x(tl+1), tl+1) (3.2)

is computed and it is tested if x(tl) is located in a cell cm where fm > 0. If this is the
case and cm ∈Ck, the respective correspondence is stored, otherwise it is rejected. For
symmetry, the process of Equations 3.1 and 3.2 is carried out also in reverse direction,
with particles started from the cell centers. Due to the limited accuracy of the explicit
Euler integration scheme, some of the small components typically cannot be tracked.
This is caused by the fact that in such cases, a significant number of particles lies in
the interface cells, where the velocity of the gas and liquid phases is interpolated. In
practice, however, those droplets are negligible due to their limited influence on the
overall simulation.

3.1.3 Linked-View Visualization

Visualization of two-phase flow dynamics is a complex problem, since the involved
interface poses an additional challenge in the identification of flow characteristics. The
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introduced set of tightly interrelated building blocks is aimed at tackling this problem
by extracting and visualizing each of the potential flow processes.

The core of the visualization technique is a linked 3D spatial view and a 2D graph
view. Figure 3.1 presents this basic approach. In Figure 3.1(a), 3D views at chosen
simulation time steps are stacked, with time increasing downward. In Figure 3.1(b),
corresponding time steps are marked in the inclusion connectivity graph, denoted G.

Several quantities are visualized to enable comprehensive analysis of inclusion dy-
namics. An important factor in droplet dynamics is rotation because of the centrifugal
force involved, which can eventually lead to breakup and increased momentum during
collision. The rotation is visualized by PCA-based ribbons, whose twist reveals rotation,
and by mapping drop momentum to the drop interface. PCA is also used for spectral
analysis of deformation. Namely, the deformation frequencies can be mapped on the
edges of the space-time graph, and the amplitude of the strongest frequency in the spec-
trum can be color-coded on the interface of the respective phase component. For a
detailed inspection of the spectrum of a phase component, oscillation glyphs visualize
each frequency in the spectrum by time-varying ellipsoids. Since it is particularly diffi-
cult to observe deformation when it is superimposed by rotation, a virtual camera that
“rotates with the phase component” is achieved with the help of the eigenvectors of the
PCA which determine its frame of reference. Additionally, a localized version of the
Reynolds number for the analysis of phase instabilities, as well as an approach for de-
termining splash/non-splash characteristics of inclusions are presented. To provide a
space-time overview of the topological changes, and as a basis for visualizing derived
quantities, the connectivity graph is displayed as a node-link diagram, with each time
instance of a phase component represented by a node, and each correspondence over
time by a link. For the analysis of large datasets, node clustering is employed in the
graph view. The following sections describe these approaches in detail.

Phase Interface Visualization

Visualization of the interface in two-phase flow is typically accomplished in the appli-
cation domains by isosurface extraction at isolevel c f = 0.5 (Figure 3.1(a)). This has
the advantage that continuous surfaces are obtained, but it involves severe shortcomings
regarding volume determination and interface topology: an isolevel c≪ 1 would con-
vey the correct topology in terms of the discretization of the f -field, but would give a
too large volume. To account for the somewhat contradicting requirements, a twofold
approach is followed where isosurfaces at c f = 0.5 support interpretation methodology
from the application domains (Figure 3.1(c) and (d)), and auxiliary transparent isosur-
faces at isolevel c f ≪ 1 (here, c f = 10−6) convey the connected components defined by
the f -field (Figure 3.1(e) and (f)). This approach provides a good approximation of the
bounds the phase interface lies within.

A straightforward approach for analyzing the events between adjacent time steps is
to assign each space-time component an individual color and visualize them using the
isosurface of the f -field (Figure 3.1(c)–(e) and (d)–(f)). This gives a direct picture of the
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Figure 3.2: PCA ribbon (green: front,

orange: back) for a droplet displayed
at different time steps (increasing
opacity). The PCA ribbon reveals ini-

tial oscillation (left) and rotation (right),
shown with angular momentum vector
L by red arrow glyphs. © 2017 IEEE.

split/merge processes. Regions that cannot be tracked, i.e., where the advected particles
are located in regions with f = 0, are colored gray on the isosurface.

Visualization of Rotation

The problem of visualizing rotation of inclusions in two-phase flow is approached by
several means. To support traditional physics-based reasoning, the angular momentum
L is evaluated for each component Ck as

LCk
= ∑

ci∈Ck

f (xi) · (xi−xCk
)× (u(xi)−uCk

), (3.3)

with xCk
= ∑ci∈Ck

f (xi) ·xi the centroid of Ck, uCk
= ∑ci∈Ck

f (xi) ·u(xi)/∑ci∈Ck
f (xi) the

velocity of xCk
, and xi the center of cell ci. For visualizing rotation (and deformation,

described below) the phase component Ck must not include splits or mergers. Hence,
G is split at these events and the remaining component sequences, which do not ex-
hibit splits or mergers, represent phase components Ck for the respective time intervals.
Figure 3.9(a) shows phase components at an instant of time, color-coded with the magni-
tude of angular momentum. This provides direct notion on how much rotational motion
is comprised by the individual components. To provide the rotation axis and a more
quantitative representation in general, an arrow glyph representing L, centered at xCk

(Figure 3.2) can be displayed.
To convey dynamics of phase components, a PCA-based abstraction, termed PCA rib-

bons, is introduced. As compared to traditional arrow glyphs, the PCA ribbons avoid
visual clutter and therefore allow for easier interpretation. The PCA ribbons are con-
structed as follows. For each time step, a principal component analysis is performed
for a phase component Ck of the distribution f (xi) · (xi− xCk

), with ci ∈Ck. From the
resulting PCA eigenvectors εεεk, j and corresponding eigenvalues λk, j, with j ∈ {1,2,3},
frames of reference aligned with the shapes are derived which rotate with the phase com-
ponents. From the three eigenvectors, one that ensures consistency between simulation
time steps is chosen. To this end, the most different PCA eigenvector is determined from
the others, i.e., assuming λk,1 ≥ λk,2 ≥ λk,3, the main PCA axis (or axis of “rotational
symmetry”) is the eigenvector εεεk,m corresponding to λk,m with

m =

{

1 if λ1−λ2 > λ2−λ3 ,

3 otherwise.
(3.4)
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Thus, in the time-dependent context, εεεk,m typically is the direction of strongest oscilla-
tion of a phase component. By simply visualizing λk,m ·εεεk,m with a straight line segment
centered at xCk

for all time steps and connecting them by a ribbon (i.e., meshing tem-
porally adjacent line segments into minimum-twisted quads, with different front and
back color), a concise representation of oscillation and rotation is obtained (Figure 3.2).
Please note that, for brevity, the subscript m for εεεk,m is dropped in the remaining text.

One remaining issue is that in cases where two or more PCA eigenvalues are similar,
the respective eigenvector directions become unstable (and even undefined, if λ1 = λ2

and/or λ2 = λ3). To avoid such outliers in εεεk, and hence in the PCA ribbon representation,
these unstable cases must be suppressed. This is achieved by obtaining more certain
information from neighboring time steps in such configurations. To this end, first, for
each εεεk(tl) at time tl a quality measure ql = max(λ1(tl)−λ2(tl),λ2(tl)−λ3(tl))/λ1(tl)
is derived, and then employed to obtain εεεk, the stabilized equivalent to εεεk:

εεεk(tl) = ql · εεεk(tl)+(1−ql)
l+1

∑
i=l−1

qiεεεk(ti)/
l+1

∑
i=l−1

qi . (3.5)

Thus, εεεk is used to construct the PCA ribbons, instead of εεεk. One limitation of the
approach is that for very fast rotating droplets it can happen that the droplet rotation
between two consecutive time steps is larger than a quarter of revolution, leading to
an underestimation of the rotation. As with tracking issues, this problem stems from
insufficient time resolution of a dataset. One could, for instance, examine the vector
field to infer the rotation direction. However, the limited temporal resolution would not
ensure that the actual rotation would be captured. Favorably, in cases where the method
assumes incorrect rotation, it is discernible as a discontinuity in the ribbon. Another
limitation is that for slowly moving rotating inclusions the resulting ribbon is short
and therefore self-occlusion can arise. Such cases, however, are relatively seldom, since
they can occur only under certain conditions (e.g., when two droplets with similar linear
momentum collide off-center).

Visualization of Deformation

To isolate the deformation from rotation, the co-rotating camera is applied which is
transformed according to the rotation of the inclusion. Specifically, for a tracked com-
ponent Ck, εεεk(tl) and εεεk(tl+1) are taken from adjacent time steps tl and tl+1, and the
rotation that transforms εεεk(tl) into εεεk(tl+1) is computed. This transformation is ob-
tained from the cross product of these eigenvectors which is interpreted as a rotation
vector r. A rotation matrix is constructed that rotates in the opposite direction by the
determined angle. Finally, this matrix is multiplied with the model-view matrix to com-
pensate that rotation, i.e., to obtain a co-rotating camera. In this mode, the camera can
be navigated as usual, with the only difference that the phase component is not rotat-
ing in the resulting time-dependent exploration. Figure 3.3(a)–(e) and (f)–(j) gives a
comparison between a standard view and a co-rotating view of a rotating droplet over
time.
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Figure 3.3: Selected phase component of Peripheral Collision dataset, time steps from Fig-
ure 3.2. (a)–(e) Droplet in standard view. (f)–(j) Co-rotating camera reveals droplet oscillation.

(k)–(o) Respective oscillation glyphs show oscillation spectrum, including amplitude and phase.
Gray thin axis shows PCA eigenvector εεεk. © 2017 IEEE.

Since deformation of phase components typically exhibits complex dynamics, ad-
vanced methods are necessary to extract meaningful information. Therefore, oscillation
is analyzed primarily in terms of PCA, i.e., in direction of the PCA vector εεεk which is the
direction in which droplets typically oscillate with the largest amplitude. To separate
oscillation from other types of deformation, spectra of deformation in direction of εεεk

are considered.
Since λk represents the “oscillating” half axis of the approximating PCA ellipsoid,

spectral analysis of the oscillation can give more insight into the droplet deformation.
Hence, λk(tl) with l = m, . . . ,n is transformed from the time domain to the frequency
domain using the discrete Fourier transform (DFT) [53], resulting in a discrete spec-
trum Λk(νa) with frequencies νa with a = m, . . . ,n. Visualization of Λk(νa) is achieved
by mapping frequency bands of Λk(νa) to vertical bands on the edges of the graph G,
with frequency increasing to the right. This is demonstrated in Figure 3.8(b)–(d). For
overview, the amplitude Λk(νmax) of the strongest frequency νmax in the spectrum is
mapped to color on the interface of the respective phase component (Figure 3.9(b)). For
a detailed inspection of deformation dynamics, an oscillation glyph is introduced, which
consists of one ellipsoid for each frequency νa in the spectrum of a phase component.
The lengths of the ellipsoid axes are scaled by Λk(νa) and the aspect ratio of the two
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Algorithm 1 Construction of oscillation glyphs.

Input: Ck, eigenvectors λk(tl), l = m, . . . ,n
Output: Oscillation glyph at time step ti for Ck

tm, tn← first and last occurrence of Ck

for each frequency νa ∈DFT(λk(tl)) do

a← (1,0,0) ·Λk(νa)
s← cos(φ i

k(νa))+1+σ
b← (0,1,0) ·Λk(νa) · s
c← (0,0,1) ·Λk(νa)/s

r← (1,0,0)× εεεk(tm)/‖εεεk(tm)‖
Rεεε ← rotation matrix about r by angle α =−arcsin(‖r‖)
a← Rεεε a, b← Rεεε b, c← Rεεε c

draw half-ellipsoid with semi-principal axes a, b, c

end for

Figure 3.4: Example oscillation glyph with
four ellipsoids corresponding to four fre-

quencies νa. For each ellipsoid, the axis
aligned with its depth is scaled by the oscil-
lation amplitude, and the lengths of the two

other axes are determined from the cosine
of the oscillation phase.

smaller axes is determined from the cosine of phase φ i
k(νa) = φk(νa)+ 2πνa(ti− tm),

with m≤ i≤ n.
Algorithm 1 shows the construction of the oscillation glyph for a given Ck at a given

time step ti. To ensure that the scaling of axes a and b is always positive (and hence
the axes do not change directions), the scaling factor s is offset by 1+σ where σ ≪ 1.
Additionally, the ellipsoids are transformed with a rotation matrix Rεεε that rotates the
axes by angle α = −arcsin(‖r‖) around a vector r = (1,0,0)× εεεk(tm)/‖εεεk(tm)‖ such
that a is aligned with the initial eigenvector εεεk(tm) to ensure consistency with the co-
rotating camera. The resulting time-dependent glyph, demonstrated in Figure 3.3(k)–
(o), can be continuously investigated at sub-time step resolution with the co-rotating
camera. See also Figure 3.4 for a more detailed illustration of the oscillation glyph.

Derived Quantities

Droplet-Localized Reynolds Number The Reynolds number is generally defined as
Re = ‖u‖ ·d/ν , with diameter d of the structure under investigation and kinematic vis-
cosity ν of the fluid. It is widely used to judge the overall characteristics of a flow,
e.g., whether the flow is rather laminar or turbulent. In two-phase flow, the Reynolds
number characterizes flow instability, e.g., the Reynolds number of the gaseous sur-
rounding is used to determine whether a given droplet will disintegrate. In such con-
figurations, d represents the diameter of the droplet. Therefore, to determine Re, the
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Figure 3.5: Investigation of proper stream velocity for flow with an inclusion. (a) Example con-

figuration for the analysis of velocity around a component (hatched). (b) Velocity profile for the
dashed line in (a). Taking the velocity at distance 1.5dk from xCk

(outer vertical lines), where dk

is the diameter of a sphere with equal volume, provides a good approximation to stream velocity.

© 2017 IEEE.

diameter of a sphere with droplet equivalent volume is computed. That is, for the vol-
ume Vk = ∑ci∈Ck

fiVi of the liquid phase component Ck (with Vi being the volume of cell

ci), the diameter equals dk = 2
3
√

3Vk/(4π). The kinematic viscosity of the liquid phase
is used to compute Re with dk.

One open problem is, however, how ‖u‖ should be obtained. In traditional fluid
mechanics problems, ‖u‖ is taken to be the velocity of the free stream. The conducted
studies on different two-phase flow configurations with mutual interference led to a
conclusion that ‖u‖ should be evaluated on a plane normal to uCk

at distance 1.5dk

from xCk
. Figure 3.5(a) shows the simulation setup for the test on the influence of the

liquid phase on the gas velocity, and Figure 3.5(b) shows the resulting velocity profile
at the dashed line. Therefore, u is evaluated on a circle centered at xCk

with normal uCk
,

employing n = max(16,π d̂k) samples, with

d̂k = dk/max
ci∈Ck

3
√

Vi (3.6)

and averaging the samples, providing the droplet-localized Reynolds number

ReCk
= ∑

x∈circle

‖u(x)−uCk
‖ ·dk/(nν) . (3.7)

Splash/Non-Splash Criterion Regarding a droplet impacting onto a surface, its dy-
namics can be described in relation to the splashing boundary which predicts whether
the droplet will completely deposit on the surface or splash. The splashing boundary
is typically shown in regime maps [183] as a function of the Reynolds number and the
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Ohnesorge number defined as Oh = µ/
√

ρσd, where ρ is the liquid density, and σ
is the surface tension. Up to now, a splashing boundary can only be obtained from
experiments where free velocity for a single droplet is available for Reynolds number
computation. Splashing phenomena are hard to predict numerically even with highly-
resolved droplets. The resolution of the droplets resulting from a large jet breakup
simulation, as examined below, is not yet able to provide necessary accuracy. Hence,
it is reasonable to calculate the dimensionless numbers and to apply the predictive cor-
relations to the droplets from jet breakup simulations in order to gain insights into the
development of the droplets after primary breakup. Following the splash/non-splash cri-
terion determined by Vander Wal et al. [183], the Ohnesorge number is computed with
density ρ and surface tension σ provided with the simulation run, and the diameter dk

of the droplet. Droplets with the corresponding point (ReCk
,Oh) lying above the curve

Oh = 63/ReCk

1.17 belong to the splash regime and are color-coded green, whereas
those below the curve are in non-splash regime and hence black, as demonstrated in
Figure 3.14(a).

Interface Curvature Surface tension participates in stabilizing phase components,
but also in causing breakup once they have sufficiently deformed. Surface tension is
computed in two-phase flow solvers from the curvature of the interface. The mean
curvature is evaluated directly from the f -field by the following expression:

κ =
1

2

(

λa(A)+λb(A)
)

, (3.8)

with λa(A) and λb(A) being the eigenvalues corresponding to the eigenvectors tangent
to the interface, and A = ∇(∇ f/‖∇ f‖), using central differences. These eigenvalues
are found by excluding the third eigenvalue whose corresponding eigenvector is most
parallel to ∇ f . Figure 3.9(c) gives an example for κ color-coded on the interface. Such
visualization supports the interpretation of the role of surface tension in breakup and
coalescence of two-phase flow.

Area to Volume Ratio The area to volume ratio provides a notion of compactness,
and is particularly useful for visually identifying ligaments (long liquid structures that
typically break up rapidly into droplets). For each phase component Ck, it is computed
as

sk =
Ak

Vk

rk

3
, (3.9)

where Ak is the area computed from the mesh extracted with the marching cubes algo-
rithm. The scaling rk/3, where rk is the radius of a sphere with volume Vk, is used to
eliminate the dependency on the volume of the phase component. Thus, for spherical
components, sk = 1.
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3.1.4 Space-Time Graph Representation

The space-time graph visualization employs a layered graph layout, where consecutive
layers represent successive time steps. By default, the graph is oriented with time in-
creasing from top to bottom, as shown in Figure 3.6(a), with a horizontal red indicator
of the currently chosen time step.

In simulations with confined containers, the total volume of both phases stays con-
stant, i.e., all inclusions typically represent a partition of unity. This motivates the uti-
lization of Sankey diagrams [147] for the representation of inclusion volumes in the
layered graphs, i.e., by mapping the volume of the phase components to edge width.
Figure 3.6(b) shows an example of the basic graph layout. Furthermore, a close integra-
tion of the 3D and space-time graph views is achieved by integrating the 3D inclusion
interface at each respective node of the 2D graph (Figure 3.6(c)).

The developed graph layout is inspired by the Sugiyama layout [169]. Specifically,
the barycentric method is applied to reduce edge crossings between consecutive layers.
The computation of the final horizontal positions, however, has been modified. That is,
the spacing between nodes is determined from the already computed nodes to the left
and volume of the currently evaluated node. Hence, the horizontal space consumed by
a component scales linearly with its volume. This, together with edge width adjustment,
greatly enhances the visualization of volumetric structure. Figure 3.6(a) and (b) shows
the impact of volume consideration.

Droplets that cross the domain boundary are indicated by attaching a violet circle
glyph at the respective node of the layered graph (Figure 3.6(c)). Birth events, on the
other hand, are marked with a yellow circle glyph. Components that appear and vanish
in the same time step are indicated with an orange death glyph. Both, contact with
domain boundaries and events of birth and death, are also visualized in the 3D view by
mapping these colors to the interface.

The problem with the volume-based approach is that in case of a death event, all
nodes to the right of the corresponding node shift to the left, resulting in skewed edges
and therefore less readable layout. To remedy this problem, ghost nodes are inserted for
disappearing components, with volume corresponding to those nodes. This ensures that
the total volume is preserved and the edges in subsequent time steps remain straight if
the topology does not change.

Node Clustering in Parametric Visualization

For the analysis of large datasets, such as jet simulations (Section 3.1.5), node clus-
tering is employed in the graph view. Here, agglomerative complete-link clustering is
used, as described in [149], where initially each node constitutes a cluster and two clus-
ters are grouped if the distance of all pairs of elements from both clusters is smaller
than a predefined threshold. The threshold is a global quantity and is defined as the
median of the quantity for which the distance is computed. The clustering is performed
for each time step separately. Figure 3.6(d) demonstrates the approach. To differenti-
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(a) (b) (c) (d)

Figure 3.6: Space-time graph representation. (a) Basic graph layout with the selected time

step marked with a red stripe. (b) Edge width and spacing determined from droplet volume.
(c) Interactive 3D phase components as graph nodes. Death and birth events, and boundary
components are marked with orange, yellow, and purple circles, respectively. (d) Node clus-

tering (red edges) for large datasets, with edges split according to volume contribution of each
droplet within the cluster. © 2017 IEEE.

(b)

(c)

(d)

(a) (b) (c) (d)

Figure 3.7: Overview of the visualization tool. (a) A screenshot of the visualization of gas-liquid

dynamics. Branches undergoing merge or split events are highlighted (dark gray) to facilitate
comparison. (b)–(d) Selected droplets from the parametric view for closer examination. © 2017

IEEE.

ate between nodes representing clusters from single droplets, the clusters are indicated
with red spheres. For consistent cluster representation, edges that have a common start
node and end at a cluster node are additionally clustered. Volume distribution among
droplets represented by the cluster is shown on the cluster edges by vertical separating
lines, where the edges are divided according to the volume contributions of the clustered
droplets. For detailed investigation, the visualization supports a level-of detail approach
by allowing the user to unfold (and fold back) single clusters, such that all nodes repre-
sented by a given cluster are visible, together with their connectivity (Figure 3.12).
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Brushing and Linking

All components of the presented technique are tightly coupled. In Figure 3.7(a), the
overall visualization is shown. It is split into the 3D view on the left and the space-time
graph view on the right. The user can select the quantities and visualization compo-
nents described in this section in the toolbox on the left. For comparative visualization,
it is possible to highlight graph nodes that satisfy a user-selected condition. For in-
stance, in the same figure, branches that undergo split or merge events are gray, whereas
other branches are faded. Additionally, the user can specify, e.g., the minimum num-
ber of branches for these events, or select other conditions, such as any combination of
merge/split, drop velocity magnitude, or volume.

The brushing and linking methodology employed in the presented visualization
framework is tailored toward the analysis of droplet dynamics and their connectivity
changes. It provides several modes of interaction to facilitate both the exploration of the
space-time domain as well as the analysis of individual drops and their history.

The fluid interface geometry in the graph representation (Figure 3.6(c)) is interactive,
i.e., when the dataset is rotated in the 3D view, all instances rotate simultaneously also
in the 2D graph around their respective centroid. The analysis of connectivity changes is
facilitated by color-coding the droplet surfaces according to their relation to drops from
adjacent time steps. As illustrated in Figures 3.1(c)-(f), different colors are assigned to
each drop after split (before merge) events. Each vertex on the surface of a drop before
split (after merge) obtains the color of the corresponding drop found during tracking.

Users can also select droplets with a mouse click on the graph to display them in
the 3D view. Moving to different time steps allows them to analyze the drop history.
This provides a detailed analysis of the selected drop in the 3D view in the context of
the space-time representation of the whole simulation. The visualization also supports
brushing, i.e., the interactive selection of droplets in the 2D and 3D views which leads to
the construction of a new graph with individual layouting, where all children and ances-
tors of the selected drop are included. For instance, Figure 3.10(b) and (h) was achieved
by selecting a drop in the Peripheral Collision dataset. In the 2D and 3D representa-
tions, the user can select the number i of previous and the number j of subsequent time
steps to visualize, i.e., for each selected drop k that resides at time step tk, the temporal
history is visualized within the time step interval [tk− i, tk+ j]. This is achieved by color
coding the geometries (and transparency in 3D). For example, in Figure 3.10(h) and (g),
the geometry of the past time steps is colored purple, while in Figure 3.10(a) and (b),
future time steps are selected (i.e., j > 0), with drops color transitioning to yellow.

3.1.5 Results

The utility of the presented approach is demonstrated using three CFD datasets. Two
datasets are collision simulations of well-resolved liquid inclusions in gaseous surround-
ing, and one is a jet simulation where single droplets are not well resolved. However, as
will be shown, the visualization approach still provides useful insights in such cases.
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Figure 3.8: (a), (b) Centric Collision dataset. (a) Three selected time steps of the collision
with (b) frequency spectrum visualized on the graph. The frequency spectrum forms an arch-

like pattern. (c) Corresponding visualization for the Peripheral Collision dataset with the initial
collision and (d) selected droplet from Figure 3.3. © 2017 IEEE.

(i) (Fig. 3.7(b))

(a) Angular momentum ‖L‖

(iii) (Fig. 3.3) (iii) (Fig. 3.3)

(ii) (Fig. 3.7(c))

(b) Strongest freq. ampl. νmax

(iv) (Fig. 3.7(d))

(c) Interface curvature κ

Figure 3.9: Peripheral Collision dataset (time step 23) with different quantities mapped on phase

interface. (a) Angular momentum ‖L‖ [g cm2/s] reveals droplets subject to rotation. (b) Oscilla-
tion of droplets is indicated by strongest frequency amplitude νmax [cm]. (c) Interface curvature
κ [1/cm] reveals causes for oscillation and potential breakup. © 2017 IEEE.

Centric Collision Dataset This dataset is a CFD simulation of two equally-sized col-
liding droplets, on a regular grid with 128×64×64 cells resolution and 101 time steps.
Figure 3.1(a) gives an overview on the overall dynamics. The collision leads to the for-
mation of three droplets—two droplets that oscillate as they move away from the center,
and one in the middle that remains at its position throughout the simulation.

The collision is investigated in Figure 3.8(a) and (b) by means of its 3D represen-
tation and its frequency spectrum visualized on the space-time graph. The spectrum in
Figure 3.8(b) reveals an interesting arch-like pattern, with all frequencies at peak just
before the breakup. This pattern was found to be typical for major changes in inclusion
shape, characterized by an orderly deformation, that leads to breakup.
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(a) (b) νmax (c) (d) νmax (e) νmax

(f) ‖L‖ (g) (h) ‖L‖ (i) ‖L‖

Figure 3.10: Selected components in Peripheral Collision dataset. (a) PCA ribbon for an oscillat-
ing droplet before breakup and (b) corresponding graph with color-coded strongest frequency
amplitude (color legend in (e)). The oscillation decreases after breakup. (d) For the droplets

in (c), the strongest frequency amplitude also decreases after initial breakup and increases
again after coalescence. (c) PCA ribbons for a droplet after collision and (g) after breakup. (f),

(h) Corresponding graphs with angular momentum color-coded on the edges (color legend in (i)).
In (c), the angular momenta of the colliding droplets annihilate, whereas in (g), breakup leads
to increased rotational motion. © 2017 IEEE.

Peripheral Collision The second dataset is a CFD simulation of two peripherally col-
liding droplets, on a regular grid with 256×256×256 cells and 79 time steps.

The visualization session starts with the general overview of the dataset (Figure 3.7),
where the data is displayed in the 3D view and in the 2D graph view. In the latter, with
the help of the phase components on the graph nodes, the topology of drop dynamics
can be readily seen—the peripheral collision of two equally-sized droplets leads to the
formation of a disk-shaped droplet that breaks into many smaller droplets. In this view,
several intriguing configurations were observed. Namely, in Figure 3.7(b), a drop splits
into two after a considerable amount of time. There is also a case exhibiting symmetry
where two droplets split simultaneously and then two of the new drops merge into one
in Figure 3.7(c). A drop split in Figure 3.7(d) with a resulting ligament indicates high
influence of surface tension and the continuous split of secondary droplets.

To gain knowledge on the mechanisms behind these processes, several physical
quantities at earlier simulation step (time step 23, also selected in Figure 3.7(a)) are
analyzed. These quantities are mapped on the drop surfaces in the 3D view, as shown
in Figure 3.9, where the selected drops from Figure 3.7 are marked with red boxes. In
Figure 3.9(a), the angular momentum amplitude ‖LCk

‖ is high for strongly deformed
droplets that break up in the following time steps. Particularly, the droplet in the box
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Figure 3.11: Space-time graph view for the Peripheral Collision dataset with angular momentum
[g cm2/s] color-coded on edges, downscaled to enhance values on the lower part. For many

droplets, the angular momentum increases after breakup. © 2017 IEEE.

(i) has a high value. The strongest frequency amplitude in Figure 3.9(b) is high for the
droplets that do not break up immediately but rather start to rotate. Therefore, these
droplets—the drops in the box (ii) as well as the two droplets with the maximum value
in boxes (iii)—are further investigated with suitable visualization techniques. The mean
curvature of the interface (Figure 3.9(c)) reveals potential breakup points on the surface
of the droplets. If the breakup occurs, these points are pulled by the surface tension
force, which in turn can result in oscillation. As can be seen, the droplet in the box (iv)
has high curvature in the middle.

To further inspect the origins of the particular droplet behavior, in Figure 3.10(a)–(h),
the angular momentum and strongest frequency amplitude are analyzed thoroughly for
the selected droplets. The droplet from Figure 3.7(b) (before breakup) is shown in Fig-
ure 3.10(a) with transparent yellow surface for future time steps, and the corresponding
graph with strongest frequency amplitude in Figure 3.10(b). The frequency amplitude
decreases substantially after the breakup, which indicates that both separated parts con-
tributed opposing energy to the oscillation before. Amplitude decrease can be also seen
after the breakup shown in Figure 3.10(d) (case (c) in Figure 3.7), however, it increases
again after the merge of the two resulting droplets. Therefore, the dynamics of the
merged droplets are analyzed in Figure 3.10(c) by means of a PCA ribbon to see the re-
sulting oscillation. The droplet in blue is shown just after the merge from Figure 3.10(d)
of two droplets that in turn broke up from strongly rotating drops, as shown with the
transparent purple (past) time projection. Interestingly, the PCA ribbon reveals initial
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oscillation of the droplet, followed by rotation. In Figure 3.10(f), the magnitude of the
angular momentum is mapped on the graph for the selected droplets. As can be seen,
the angular momenta of the two rotating droplets cancel out due to the merge. However,
the ribbon in Figure 3.10(c) indicates rotational motion in later time steps. This can be
explained by Figure 3.10(d), where the strongest frequency amplitude increases consid-
erably after the collision. This oscillation is in turn transformed into rotational motion
of the droplet in Figure 3.10(c). A similar behavior can be observed for the droplet in
Figure 3.10(g), where the separation of the droplets causes initial oscillation which then
transforms into rotation.

In Figure 3.9(b), the two droplets with the largest amplitude value (boxes) deserve
more attention, and therefore their spectral characteristics were analyzed with oscilla-
tion glyphs, as demonstrated in Figure 3.3(k)–(o). It can be seen in figure (k) that there
are two rather strong frequency components in direction of the PCA eigenvector εεεk (gray
axis), but all other components are perpendicular to it, which reflects that the droplet is
at its maximum contraction. In the time step in Figure 3.3(l), the distribution is similar,
but more components are now pointing in direction of εεεk. During the time steps shown
in Figure 3.3(m)–(n), the oscillation components get stronger in direction of εεεk, until
almost all are aligned in εεεk (figure (o)), indicating maximum elongation and alignment
of these oscillation components in εεεk-direction. The spectral analysis for the droplet,
shown in Figure 3.8(d), shows no correlation between frequencies (as opposed, e.g.,
to 3.8(c)). This results in a damping effect of the frequencies and could explain why
this droplet does not split further, as would be expected due to centrifugal forces.

The cases with increasing angular momentum for some droplets after split or merge
events warranted some closer investigation as to whether this phenomenon occurs more
often in the dataset. In fact, the graph shown in Figure 3.11 shows that this behavior
can be observed with almost all rotating phase components. This can also be seen, for
example, by the temporally increasing length of the angular momentum arrow glyphs in
Figure 3.2. This seemed to violate preservation of energy, i.e., preservation of angular
momentum. However, when analyzing the PCA ribbon, it was found that, right before the
split, the droplet is not oscillating anymore and is strongly elongated. This observation
led to the conclusion that angular momentum is increasing over time for droplets that
oscillate and rotate at the same time, because the initial oscillatory energy is transformed
into angular momentum, i.e., the oscillating component in radial direction competes
with centrifugal forces and thus is transformed to angular momentum.

Jet Dataset The last analyzed dataset is a CFD simulation of a polymer-water solution
injected into air with a pressure of 30 bar with a dual nozzle (with higher stream velocity
in the outer ring), discretized on a regular grid with 1024×512×512 cells and 61 time
steps. In this dataset, the focus is on the general characteristics due to the immense
number of droplets and topological changes. The goal is to find general processes and
features of the flow. For this purpose, the graph representation with clustered quantities
should provide insights. Here, the spatio-temporal distribution of droplets, as well as
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(i) (ii) (iii) (iv) (v) (vi)

Figure 3.13: For selected clusters at the last time step in Figure 3.12, drops are color-coded
with the number of breakups in their history. © 2017 IEEE.

(a) (b) (c)

Figure 3.14: Jet dataset with (a) splash/non-splash criterion (green/black) color-coded on phase
interface, and (b) droplet-localized Reynolds number ReCK

(color legend in (c)). © 2017 IEEE.

instabilities that possibly lead to further breakup are analyzed.
Figure 3.12 provides the respective visualization. In the top, the jet development is

shown from left to right, with the front of the stream spreading outward and disintegrat-
ing into a multitude of droplets. The jet core is colored purple and the droplets that sepa-
rated from it are marked blue. Using the clustering of the droplets by the area-to-volume
ratio s shown in the graph in the bottom of the figure, the evolution and distribution of
droplets of different forms can be inspected. In the graph, clusters with high average
values, i.e., consisting of more elongated drops, are indicated by a more saturated red
color. Interestingly, such clusters occur throughout the simulation time. As can be seen
in the zoomed parts, the ligaments are highly deformed, and—as indicated by complex
connectivity—undergo many breakup and merge events, the latter possibly due to the
high density of the droplets.

Three characteristic stages were observed in this dataset, as indicated on the left side
of Figure 3.12. In the first stage (I), only a small number of droplets detach from the
jet tip. In the second stage (II), the jet becomes unstable and starts to atomize. This
is reflected in the increase of clusters in the graph, particularly with high deformation,
indicating elongated ligaments breaking off the jet core. In the next stage (III), these
ligaments in turn break up into smaller droplets. This can be again observed in the
graph, where the number of clusters with high deformation is decreasing again, while
the total number of clusters stays about the same.

To further investigate the formation and distribution of droplets, at the last time
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step, each cluster in the graph was selected and the number of breakups each drop
within a cluster underwent was color-coded (dark red to bright green), as shown in
Figure 3.13. Such a decomposition gives some insight into drop evolution. Small drops
are distributed uniformly, whereas ligaments are situated mostly at the front of the jet.
The number of breakups is larger directly behind the jet front, both for spherical and
slightly elongated droplets. For ligaments, however, such regularity cannot be observed.
For instance, in the clusters (iv) and (v) in Figure 3.13, ligaments with different number
of breakups are mixed.

In Figure 3.14(b), the droplet-localized Reynolds number ReC is visualized on the
jet interface. As can be seen, long ligaments exhibit higher values, indicating their in-
stability and therefore possible breakup. The drops further away from the disintegrating
front, on the contrary, have smaller Reynolds number. An explanation is that the free
stream velocity is reduced in this region. As described in Section 3.1.3, with the droplet-
localized dimensionless numbers Re and Oh, the splashing behavior of the droplets can
also be investigated, as demonstrated in Figure 3.14(a). The distribution of non-splash
droplets roughly correlates with low Reynolds number (especially for the drops at the
back), although a prevailing number of droplets in the splashing regime can be clearly
seen. This visualization provides valuable information on droplet dynamics in jet simu-
lations, where the splashing characteristic is often desired for efficiency of combustion
engines. The opposite case, i.e., the deposition of droplets forming a thin liquid film
on combustion walls, reduces the effective fuel combustion rate and could be likewise
analyzed in the presented framework.

Performance

To analyze the tracking performance of the explicit Euler scheme, it has been compared
with 4th-order Runge-Kutta integration. The results in Table 3.1 show that both meth-
ods perform similarly, except for the Jet dataset, where the explicit Euler method can
track more droplets. Overall, the table shows that, as compared to the total number of
drops (i.e., accumulated over all time steps), the number of the erroneous events is rela-
tively small, except for the Jet, where the number of the untracked drops is considerable.
However, as mentioned earlier, these are very small droplets that have little influence on
the observed phenomena.

Table 3.1: Tracking results for 4th-order Runge-Kutta (with 10 substeps) and explicit Euler inte-
gration scheme. Sum of births and deaths, number of untracked drops (where birth is immedi-
ately followed by death event), and total number of drops (summed over all simulation steps).

Births + Deaths Untracked Total #Drops
Dataset RK4 Euler RK4 Euler

Centric 3 3 0 0 243

Peripheral 10 11 6 6 1989

Jet 2219 2202 8476 8299 76821
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Table 3.2 provides computation times for the components of the visualization ap-
proach, as well as rendering performance. The computation time largely depends on
the complexity of the dataset—a larger number of components increases tracking time,
as the advected particles must be tested against more components. However, since the
analyzed quantities do not require any parametrization, they can be precomputed offline,
stored to disk, and loaded on demand for immediate analysis. Rendering performance
mainly depends on the geometric complexity of the extracted surfaces, as well as the
number of components, since all of them are visualized on the graph at the same time.
The visualization of the Jet dataset runs with relatively low frame rate, however, it did
not hinder the analysis of the dataset. Component tracking takes also considerable com-
putation time due to costly particle advection, but it can be also precomputed offline.

Table 3.2: Computation times (in seconds) for graph layouting, tracking, quantities, and render-
ing performance (in frames per second) for the analyzed datasets. Measurements taken on

Intel i7 3.6 GHz (single process).

Dataset Graph [s] Tracking [s] Quantities [s] Render [fps]

Centric < 0.01 0.43 1.45 20

Peripheral 0.02 13.5 60 19

Jet 0.03 16464 1645 8.3
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3.2 Visualization of Droplet Separation

In the visualization context, droplets and ligaments in two-phase flow can be interpreted
as features. This allows for application of feature-based visualization methods where vi-
sual data representation is reduced to important characteristics, typically physical quan-
tities, flow topology, and quantities derived from generic scalar fields [141]. While
such visualization reveals the overall feature topology dynamics (e.g., split and merge
events), detailed spatial information on volumetric partitioning of features is difficult
to obtain with existing techniques. Thus, a visualization approach is proposed that can
reveal the separation dynamics within the inclusions in two-phase flow. It is based on
the extraction of boundaries around regions within an inclusion that correspond to inclu-
sions developing from the original one in the course of time. Additionally, the temporal
information of the separation is conveyed by means of separation surfaces that encode
the time at which the separation occurred.

The visualization technique expands upon traditional feature visualization in several
ways. First, it allows for static visualization of dynamic processes, and therefore reduces
visual clutter. Second, it combines advantages of standard feature tracking methods and
finite-time Lyapunov exponent (FTLE)-based methods, as it allows for a detailed inspec-
tion of the separation of inclusions. Third, it is applicable to a broad class of multiphase
flow, including two-phase flow (liquid in gas surrounding) and multi-component flow
(liquid-liquid or multi-component liquid in gaseous surrounding).

Typically, only a fraction of the simulation time steps is stored for post-processing,
and therefore, a corrector scheme for particle integration is proposed to ensure phase-
consistent particle trajectories within the available data. 2

3.2.1 Related Work

The field of research which is closely related to this technique is feature tracking, already
discussed in Section 3.1.1. The presented method differs from these approaches, in that
it focuses on the spatio-temporal aspect of feature representation, where the topology
is directly conveyed in the feature volume. In Chapter 2, challenges related to tracking
volumes in two-phase flow are considered.

For the analysis of the combustion process in engine simulation, Garth et al. [57]
proposed a set of visualization methods that operate on time-varying unstructured grids.
A recent work by Sauer et al. [159] utilized particle and volume data from the simula-
tion runs to track features over longer time intervals. Here, particles are inserted after
the simulation run, which gives a better control over the particle density and therefore
the detail level, however, necessitates some corrector schemes for phase-consistent ad-
vection in two-phase flow.

Delocalized quantities are employed in unsteady flows to statically investigate the
dynamics of scalar fields [164], where quantities are averaged over time along integral

2 Parts of this section have been published in: [84]
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curves. The presented concept can be viewed as a special case of this, where only
the values at trajectory end points are stored at the seed point. The visualization of
delocalized quantities can be improved using uncertainty information from the FTLE

field [152]. For the topological analysis in general unsteady flow, FTLE has become a
standard visualization method [64]. Sanderson [157] proposed an alternative inspired
by Lyapunov exponents that is based on traveled particle distance instead of particle
divergence.

The dynamics of fluid flow is often represented by surfaces or volumes. In the work
by van Wijk [197], stream surfaces were obtained by extracting isosurfaces from a scalar
field. These are generated by advecting streamlines backward up to the boundary with
predefined scalar values and resampling those values along the streamlines. Becker et
al. [14] used flow volumes in unsteady flow to reveal the flow dynamics around regions
of interest. An implicit version of the flow volumes by Xue et al. [205] allows for more
detailed inspection of the flow.

3.2.2 Visualization Method

The technique employs particle advection to determine the volumetric correlation of in-
clusions between a reference time step t0 and the target time step tF . Usually, only a
certain fraction of time steps of a simulation are stored for later analysis. Using these
data with reduced time resolution can lead to errors in the estimation of trajectories, es-
pecially in multiphase flow, where particles potentially leave the initially assigned phase
for this reason. This problem could be avoided if particles were advected during the
simulation, which is increasingly popular, as reported by Sauer et al. [159]. Addition-
ally, particles could be densely populated using the method proposed by Agranovsky
et al. [2] to capture more details of the topology of droplet dynamics. In the investi-
gated simulation datasets, however, particle data was not provided. Nevertheless, to
still ensure robust particle advection in terms of phase consistency in multiphase flows,
a three-stage corrector method is introduced which utilizes the f -field in a corrector
step during particle advection to ensure that particles remain in the respective phase
throughout integration.

For the purpose of the following discussion, an inclusion M is defined as a region
with the volume fraction f exceeding a threshold τ: M = {x : f (x, t) > τ}. Here, τ is
set to 0. Inclusion separation is illustrated in Figure 3.15(a), where an initial inclusion
M1(t0) splits within the time interval ]t0, tF [, resulting in three inclusions M1(tF), M2(tF),
and M3(tF).

3.2.3 Separation-Based Inclusion Segmentation

The aim of the visualization technique is to capture how phase components develop
topologically in the course of time. For instance, if an inclusion splits into two new
ones, it is of interest how the volume of the initial inclusion is divided among them, or,
in other words, what the volumetric contributions of the new inclusions in the initial one
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Figure 3.15: Illustration of the separation boundaries for a simple case with one inclusion at time

t0, and three inclusions at tF = t2. (a) Particles are seeded at time step t0 inside the inclusion
and advected to tF , resulting in a flow map φ tF

t0
(black arrows). At tF , the inclusions have been

labeled red, green, and yellow. (b) Inclusion labels are assigned to the particles that are inside

a given inclusion. These labels are then transferred to the seed points (arrows). (c) For each
label, the corresponding volume V is identified (red, green, and yellow areas), and the boundary
B is extracted (corresponding darker curves).

are. To accomplish this goal, the spatio-temporal correspondence between the inclusion
Mi(t0) at time t0, and inclusions M j(tF) at some other time tF are determined. That is,
for each M j(tF), its volumetric contribution within Mi(t0) is defined as

V
tF
t0
(i, j) = {x : x ∈Mi(t0)∧φ tF

t0
(x) ∈M j(tF)}, (3.10)

where φ tF
t0
(x) maps the initial position x at time t0 to its position at time tF , as it is

advected by the flow. The quantity ∆t = tF− t0 represents the computation time interval.
For the visualization, the closed boundary of the volume V is extracted:

B
tF
t0
(i, j) = ∂V

tF
t0
(i, j). (3.11)

The method allows tF to be earlier in time than t0, in which case ∆t < 0. In Figure 3.15,
the technique is illustrated for a simple case where an inclusion splits into three.

Volumetric contributions V
tF
t0
(i, j) can be composed of disconnected segments, either

due to a merge followed by a split of the initial inclusions, or due to disjoined volume
segments inside the initial inclusion that together form a separate inclusion. As it will
be shown in Section 3.2.5, the visualization allows one to readily identify and analyze
these cases.

3.2.4 Temporal Separation Surfaces

To support temporal analysis of inclusion separation, the technique is complemented
with the extraction of temporal separation surfaces, denoted S. While the above method
finds the volumetric correspondences in the initial time t0 to the inclusions at target
time tF , here, the separation surfaces are constructed within the whole interval ]t0, tF ] to
reveal the temporal information on successive separations. They divide the volumetric
contributions in the initial inclusion as the corresponding inclusions split into new ones.
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Figure 3.16: Visualization of separation surfaces. (a) There is one phase component at time
t0, which splits into the red and the orange phase components at the intermediate time step

t1, and the orange one splits again at t2 = tF into the green and yellow inclusions. (b) Tem-
poral separation surfaces S

t1
t0

and S
t2
t1

partition the initial inclusion according to the volumetric

correspondences of the newly created inclusions at time t1 and t2, respectively.

This is illustrated in Figure 3.16(a), where the initial inclusion M1(t0) has split into
two at time t1, and the resulting inclusion M2(t1) has further separated into new phase
components M2(t2) and M3(t2) at time t2. In Figure 3.16(b), both split events are il-
lustrated by the separation surfaces S

t1
t0

and S
t2
t1

that divide the volume according to the
volumetric contributions of the inclusion resulting from the separation.

To create the separation surfaces and determine the time at which they occur, changes
in contributions are detected within small time intervals. Specifically, for each time in-
crement δ t = t2− t1, where δ t≪ ∆t, contributions V

t2
t0
(i,k) in each inclusion Mi(t0) are

computed and compared with the previous contributions V
t1
t0
(i, j). If the number of con-

tributions V
t2
t0
(i,k) for which V

t1
t0
(i, j)∩V

t2
t0
(i,k) 6= /0 is greater than one, a separation has

occurred in the given interval inside the volume contribution V
t1
t0
(i, j), and the separation

surface is generated for this time interval in Mi(t0) where different V
t2
t0
(i,k) adjoin.

Theoretically, the temporal evolution of inclusion separation could be accomplished
by repeatedly extracting the closed boundaries B

tk
t0
(i, j) for varying k. This would, how-

ever, lead to repeated construction of overlapping boundaries that would be difficult
to analyze. The separation surfaces S provide an open structure that complements the
extracted closed boundaries B.

3.2.5 Numerical Approach

The method operates on both the Eulerian frame, in which the simulation data is defined,
and the Lagrangian frame, where the inserted particles represent the inclusion volume
and are used to determine the volumetric correspondences.

The visualization framework works as follows. The input to the approach are a time
series of a vector field u for particle advection and a scalar field f for inclusion defini-
tion. The initial time t0 is chosen, at which particles are seeded within Mi(t0). These
particles are then advected up to time tF , whereby integration is performed between
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Figure 3.17: Overview diagram of
the numerical approach. The up-

per loop represents advection per-
formed between consecutive simula-
tion time steps and includes storage

of advected particles used for visu-
alization. Separation surfaces S re-
veal temporal changes in inclusion

segmentation and therefore are com-
puted between consecutive simula-
tion steps. The lower loop is per-

formed to obtain boundary B for each
label, i.e., for each inclusion at target

time tF .

consecutive simulation steps, and so is the construction of separation surfaces. At time
tF , the connected components that define the inclusions M j(tF) are determined, and for
each advected particle, the surrounding inclusion is found. The inclusion labels are then
mapped to the seed points, and finally, boundaries are extracted for each label within
Mi(t0). In Figure 3.17, the algorithm is presented as a diagram. In the following sections,
each step is described in detail.

Particle Seeding and Advection

At time t0, particles are seeded at sp if f (sp, t0) > τ . This is illustrated in Figure 3.18,
where τ is represented by the PLIC interface that divides the cell into liquid and gaseous
phase, and seed points are located only at positions sp enclosed by the PLIC patch. The
seed position sp and the maximum number of seeds per cell nc are controlled by a global
refinement parameter r in the form nc = (2d)r, where d = 3 is the data dimension. For
r = 0, the seeds are positioned at the centers of the simulation cells. For r > 0, the
cells are recursively divided r times into equally sized subcells, and the particles are
positioned at the centers of these subcells.

To determine if sp lies within the phase of interest, the seed position relative to the
PLIC patch is computed. To this end, the patch orientation and position are determined.
To find the PLIC normal n, the gradient of the f -field at the cell center xc is calculated
and normalized. Next, the attachment point a—defined as the most distant cell node
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Figure 3.18: Particle seeding with PLIC interface reconstruction. Seed

positions sp are determined in each cell with f > 0 by the refinement
parameter r. Here r = 1, and s1–s4 are at the centers of four subcells.
For each s, the n-projected distance d to the attachment point a is

compared with the PLIC patch translation l to determine if particle p is
seeded at sp. s4 will not be seeded in this case.

from the PLIC patch in the direction of n—is determined. The PLIC patch position l,
i.e., its distance from a, is obtained iteratively by ensuring that the volume enclosed by
the patch equals the value f in the given cell. Then, l is compared with the distance d

from s projected onto the normal. If d < l, a particle is positioned at sp. In the figure,
the distance d > l for sm+3 implies wrong phase, and hence, no particle will be seeded
there.

To compute the flow map φ tF
t0
(sp), the particles p are set at the seed points and

advected up to time tF (Figure 3.15(a)) using the standard fourth-order Runge-Kutta
scheme performed between consecutive simulation time steps in the interval [t0, tF ],
whereby linear interpolation in time is used. The seed points sp are stored for later
processing to determine the correspondence between inclusions at times t0 and tF .

Inclusion Labeling

To extract the inclusions at time tF , a grid with the same structure as the input simula-
tion grid is created, where cells c with f (xc, t)> τ are set to 1 and the others to 0. With
this bit mask, connected components that correspond to the inclusions M j(tF) can be
found by region growing, whereby two cells cm and cn are considered connected if they
are face neighbors. Each inclusion is then identified by a label j ∈ N. The connected
components are stored in a label field, which again structurally corresponds to the simu-
lation grid. This greatly simplifies particle assignment, as described in the next section.
All grid cells without connected components are marked with an invalid label (i.e., −1).
In Figure 3.15(a), the labeled inclusions are marked red, green, and yellow. Inclusion
labeling can be performed independently of the advection step, since determination of
inclusion labels only requires the scalar field f (x, tF).

Particle Label Assignment

In the next step, for each advected particle p at time tF , the surrounding inclusion M j is
found (Figure 3.15(b)) and its label j assigned to the particle. If the particle does not lie
inside any inclusion, a non-valid label (i.e., −1) is assigned to it. On rectilinear grids,
the bounding cell can be easily found by iterating over the node coordinates xi of the
grid until xi < xp < xi+1, with xi ∈ {x,y,z}. The inclusion label j is also mapped to the
stored seed points sp corresponding to the advected particles (shown by dashed arrows in
Figure 3.15(b)). Additionally, to visualize the temporal evolution of the inclusions, the
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intermediate particle positions (i.e., for t0 < ti < tF ) are stored during the computation
of the visualization, and the computed labels are assigned to them at this stage.

Boundary Extraction

The labeled seed points allow the extraction of the volume boundaries B
tF
t0

within the
inclusion Mi(t0) that correspond to the inclusions M j(tF), according to Equation 3.11.
For this purpose, a bounding box is computed around all seed points sp with the given
label j and a rectilinear grid is generated within the bounding box such that the seed
points coincide with the grid nodes. At each grid node, value 1 is set if a seed point is
actually located at this position, and 0 otherwise. This way, the boundaries B can be ex-
tracted using the standard marching cubes algorithm. Since the grid node positions must
correspond with the seed points, the size and number of cells is implicitly controlled by
the refinement parameter r. In Figure 3.15(c), the boundaries B are marked by darker
curves that bound the volumes V .

The disconnected inclusion segments (Section 3.2.2) can be visually detected either
directly from the color of the boundaries (each inclusion maps to a different color label
of the volume regions, and disconnected volume regions belonging to the same inclusion
have the same color) or using the particles from intermediate time steps that also carry
the inclusion label information.

Extraction of Separation Surfaces

To extract the separation surfaces S described in Section 3.2.4, inclusion labeling and
particle label assignment are performed after each advection step to obtain the current
inclusion segmentation. The resulting seed labels are stored for two subsequent time
steps tk and tk+1. For each label at tk, the corresponding seeds and their labels at tk+1

are analyzed. More than one unique label at tk+1 indicates that the segment has split in
the current time interval, and therefore, separation surfaces are extracted by performing
a modified marching cubes algorithm for each 2-combination of the labels. In the al-
gorithm, node values are set to “+” and “−” which correspond to either of the labels,
and the surface passes through the edge centers between “+” and “−” nodes. To ensure
open surfaces, the outer nodes (i.e., not belonging to any of the two labels) are marked
with an invalid negative value. In the final step of marching cubes, the edges of each
triangle are tested for whether they lie on edge with the outer node, and discarded in
this case. Finally, the surfaces and the corresponding time stamps tk+1 are stored for
visualization.

Phase-Consistent Trajectories in Multiphase Flow

Since typically only a fraction of simulation time steps is saved for analysis and visu-
alization (due to potentially high storage demands of large simulations), and because
two-phase flow is highly nonlinear (due to, among others, surface tension forces), there
is usually not enough information to ensure phase consistency of particles advected with
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Figure 3.19: Particle corrector method in multiphase flows with PLIC interface reconstruction.
(a) After each advection step, it is checked whether some particles left the original phase ( f > 0),

and if so, the position is computed with the displacement vector of the nearest phase-consistent
particle. (b) (Dotted rectangle from (a)) If it is still not in cell with f > 0, the particle is moved in
the direction of the nearest such cell up to its boundary. (c) Afterwards, the particles outside the

volume enclosed by PLIC patch are projected onto the PLIC plane in the direction of a.

the standard integration methods, i.e., the particles may stray off to the other phase dur-
ing advection. However, assuming that physically-based phase transitions do not occur
in the simulation, the particles must stay in the same phase throughout advection. To
meet this requirement, and to provide plausible results with the available information, a
three-stage approach is introduced that utilizes the scalar field f to correct positions of
stray particles during advection.

Particle Corrector

After each integration step between tk and tk+1, a three-stage procedure is applied to
each particle that left the assigned phase in order to translate it back to its original
phase. In the first stage, the neighborhood of the particle is searched for valid particles
(i.e., particles that remain in the assigned phase at tk+1). That is, in the 3× 3× 3 cell
neighborhood at time tk (i.e., before the current advection step) the nearest neighbor xp

(if any) is chosen. Its displacement vector dxp = xp(tk+1)−xp(tk) is applied to the stray
particle, i.e., x′(tk+1) = x(tk)+dxp (Figure 3.19(a)). Since this does not guarantee that
the particle will be back in the original phase, in the second stage, the nearest cell with
f > 0 is searched (using a loop over neighboring cells), and the particle is translated to
the boundary of this cell along the line connecting the particle with the cell center, as
shown in Figure 3.19(b), where the new particle positions are denoted xp

′′. Afterwards,
in the third stage, for each particle in the interface cell, the position of the PLIC patch is
calculated at the current simulation time step. Then, it is tested if the particle position
lies within the volume enclosed by the PLIC patch. If not, the particle is translated along
the line xp−a to the patch (Figure 3.19(c)).
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3.2.6 Implementation

The visualization method has been implemented as a plugin in the ParaView visualiza-
tion framework [10]. To improve the visual representation of the boundaries B and sep-
aration surfaces S, a smoothing filter is applied to the meshes extracted by the marching
cubes algorithm. Although some fine details might be lost in the process, a smoothed
representation improves perception, and hence provides a reasonable trade-off. For the
visualization of the labeled inclusions in multiphase flow datasets, the labels were resam-
pled on the geometric representation of the PLIC interfaces [85]. To visualize temporal
evolution of the inclusions, the intermediate particle positions are stored after every n-th
simulation time step (n = 8 in the datasets), see Figure 3.20. For the second stage of
the particle corrector scheme (translation to a cell boundary), the line-box intersection
algorithm proposed by Kay and Kajiya [92] was adopted.

Parallelization

For large datasets, parallelization is necessary due to large memory requirements of the
simulation data. For instance, in the Non-Newtonian Jet simulation (Section 3.2.7), each
simulation time step consists of over 20GiB, which could not be processed on a regular
desktop computer. Hence, in this method, data parallelism (i.e., the approach adopted
by ParaView) is employed, where the domain is split among several processes (possibly
running on different machines), and each process works on a preassigned subdomain.
In this approach, explicit communication is necessary for data exchange.

Due to the global nature of particle advection, those particles that leave a subdomain
must be sent to the processes managing the subdomains the particles have entered. To
avoid cases where the Runge-Kutta substeps are computed across neighboring subdo-
mains, ghost cells around each subdomain are stored. Another global algorithm em-
ployed in this work is connected component labeling. The current implementation is
based on the method proposed by Harrison et al. [67]. Additionally, the transfer of
particle labels to their respective seed points must be handled explicitly. That is, for
each particle, its ID within the original subdomain as well as the process ID responsible
for that subdomain is stored. This information is then used to transfer the labels to the
correct processes and to save the label at the correct position in the label array.

In addition to the process-level parallelization, thread-level parallelism provided by
the OpenMP [129] parallel for-loops is also employed for particle advection to speed up
iteration over particles.

3.2.7 Results

The utility of the presented method is demonstrated on two datasets from direct numer-
ical simulations of incompressible two-phase flow, where liquid and gas phases occur
simultaneously. For the first dataset (Peripheral Collision), the refinement parameter is
set to r = 2, whereas for the second (Non-Newtonian Jet), r = 0.
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(a) tF = 2.660ms (b) tF = 2.660ms

(c) tF = 1.925ms (d) tF = 2.431ms

Figure 3.21: Visualization of droplet separation in Peripheral Collision dataset. (a) The section
cutout (marked with white curve) of the boundaries B from Figure 3.20 exposes the inner topol-

ogy structure—almost all developed drops radially expand from the collision center. (b) The
separation surfaces reveal segmentation in the temporal context. Dark blue surfaces indicate
the early separation of disk shaped and ring shaped droplets. Afterwards, both parts separate in

similar time further, as indicated by turquoise color. (c), (d) Visualization of separation surfaces
for the earlier time steps shows the evolution of the separation.

Peripheral Collision In the first dataset, two water droplets collide peripherally. This
dataset consists of 256

3 cells, which cover a domain size of 1cm3, and 461 time steps.
In the top row of Figure 3.20, selected simulation time steps (from t0 to tF ) are shown.
The inclusions are investigated from time t0 = 0.478ms (i.e., 60th time step, just before
the collision) up to time tF = 2.85ms (i.e., 461st time step, with small droplets resulting
from the collision). The two merged drops form a flat shape that splits into an inner disk
and an outer ring. Finally, both structures separate into small droplets.

The visualization in the bottom row reveals the volumetric correspondences between
the volumes of the two initial drops and the drops at the final time step. Many small
droplets are formed from narrow sections that extend radially from the collision center.
These small drops, however, form only on the sides, whereas the volume sections at the
bottom and top contribute to relatively large drops.

In Figure 3.21(a), a section of the right drop from Figure 3.20 has been cut out to
reveal the inner structure of the volume contributions. Interestingly, almost all droplets
that develop after the collision are formed from volumes that are close to the collision
center and propagate outward to the back side. This structure bears some similarity to
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(a)

(b) (c)

Figure 3.22: Separation of droplets computed backward in time for the Peripheral Collision

dataset. (a) Drops at tF are labeled (blue and red). (c) The volumetric contributions are visu-

alized at t0. (b) For the selected rotating drop (marked with box in (c)), the technique reveals
S-shaped structure within the drop volume.

cracks in a solid material that propagate from the impact point. In Figure 3.21(b)–(d),
separation surfaces S are shown. Here, the breakup of the inner disk and outer ring is
apparent in the form of cone-like structures in both droplets. The surfaces within the
cones have similar colors, indicating simultaneous separation of multiple droplets.

For this dataset, the method has been additionally applied in reverse time direction
(i.e., by setting t0 = 2.85ms and tF = 0.478ms) to reveal how exactly the initial two
droplets contributed to the later smaller droplets. The result is shown in Figure 3.22.
In Figure 3.22(a), the two droplets at time tF = 0.478ms are visualized by the PLIC

interface. They are colored by the connected component labels, and their contributions
in the droplets at time t0 are visualized in Figure 3.22(c). As can be seen, the volume
from the red drop dominates on the upper right part of the droplets at later physical time.
Figure 3.22(b) shows a selected droplet that rotates after separation from the disk-shaped
drop. The boundary from the blue droplet is transparent to reveal the inner structure of
the drop. The interface between the two boundaries B forms an S-shape, and there is
distinguishable symmetry of the two volumes—it clearly shows the interplay between
distribution of volumes originating from different inclusions and rotational motion of
the resulting inclusion.

Non-Newtonian Jet The second dataset is a simulation of the injection of a jet made
up of a non-Newtonian shear thinning aqueous solution of Praestol 2500 (0.3% weight)
into air at patm = 1bar. The jet is introduced into a rectangular computational domain
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Figure 3.23: Selected time steps in the Jet

dataset. On the bottom, the jet at time step
t0 = 1.60ms is about to break up into a mul-

titude of droplets and ligaments. On the top,
a moderately developed jet at tF = 3.97ms is

shown.

Figure 3.24: Separation boundaries B (top) and temporal separation surfaces S (bottom) in

the Non-Newtonian Jet dataset, with front part cut out to reveal the inner structure. The jet
disintegrates mostly in the rear part and at the very front, which bends back. Small dark blue
separation surfaces indicate that small droplets disintegrate early.

with a diameter of D = 1.2cm and with the velocity profile from a short nozzle with
a mean velocity of u = 75m/s, and therefore, a Reynolds number Re = 19000. The
domain has a size of 42D in the direction of the injection and of 10D in each of the
directions of the injection plane. The domain is discretized over 2688×512×512 cells.
The temporal development of the jet is shown in Figure 3.23. At t0 = 1.60ms, the jet has
started to interact with the surrounding gas, resulting in bending back of the jet tip and
the development of surface waves. Due to the high Reynolds number, the jet becomes
unstable very quickly, and at tF = 3.97ms, the core has disintegrated substantially and
has mostly broken up into ligaments and droplets—the atomization has begun.

Figure 3.24 shows the boundaries B and separation surfaces S at t0. Small polygons
have been removed for clear overview. Apparently, in the investigated time interval, the
front of the jet does not undergo strong disintegration (except for the tip), whereas in
the rear, many segments imply the origins of elongated droplets that develop later. The
separation surfaces at the bottom of the figure are uniformly distributed, although small
droplets detach earlier, as indicated by small dark blue surfaces.

In Figure 3.25, the temporal evolution of one selected ligament (colored) is shown
with the entire jet (gray) in the background, from t0 at the top to tF at the bottom. The
liquid mass, which will later form the ligament, is initially distributed over one third of
the jet length. As the liquid mass starts to surface, it is decelerated due to the interaction
with the surrounding atmosphere. In the meantime, the rest of the mass, which origi-
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Figure 3.25: Selected volumetric contributions (green) in the Non-Newtonian Jet dataset at t0
in the top figure and the corresponding ligament at tF in the bottom figure. In the middle figures,
the temporal evolution of particles (blue) for the selected contribution is shown at intermediate
time steps. The volumetric contribution curls into the final ligament as it is pushed away from

the jet core by the surrounding air.

nated in the central part of the jet, has approached the surfaced part, and by the third
time step, the bulk of the liquid mass is located within the first surface wave, while a
few parts are located in the next wave. From the underlying jet, one can see that the
waves are already starting to deform strongly from the shape of a periodic wave. At
the next time step, almost the whole liquid mass has merged and moved even closer
toward the surface, where it has reached its most compact form. In the next time step,
the surface wave has disintegrated and the liquid mass has become a complex branching
ligament. With time, the ligament moves further away from the core axis, interacting
more strongly with the atmosphere. Finally, the first droplet breaking off the ligament
in the final time step can be observed.

The proposed visualization method allows to make interesting observations about
the jet simulation. Contrary to the seemingly radial expansion in Figure 3.23, the
flow field inside the core is creating the analyzed inclusion from liquid mass scattered
throughout the core, as revealed in Figure 3.25. Furthermore, this figure is an excellent
representation of the different steps of the primary jet break-up showing the formation of
surface waves, the deformation of the waves, the rupturing of the waves into ligaments,
and the stretching and break-up of the ligaments into droplets.
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(a)

(b)

Figure 3.26: Visualization of the accumulated displacement for the investigated multiphase flow
datasets. Cross-sections are shown as white lines. The displacement values εp of the integrated

particles are mapped on the corresponding seed points. Both in the Peripheral Collision (a) and
Non-Newtonian Jet (b) datasets, larger values correspond to the boundary regions, which are
most unstable.

The presented method allows for a simple and intuitive way to analyze the spatial
and temporal development of the primary break-up of liquid jets. With this method, an
insight into the movement patterns of selected inclusions of the break-up process could
be gained which would otherwise have been hard and unlikely to obtain.

Analysis of the Corrector in Multiphase Flow

To quantify the amount of applied correction that is necessary to keep the particles
within the initial phase in multiphase flow (Section 3.2.5), the introduced displacement
is accumulated for each particle over all time steps i:

εp = ∑
i∈I

(|x′p,i−xp,i|+ |x′′p,i−x′p,i|+ |x′′′p,i−x′′p,i|) , (3.12)

where the first term is the translation with the displacement vector of the nearest phase-
consistent particle (Figure 3.19(a)), the second term in the sum corresponds to the trans-
lation to the nearest cell with f > 0 (Figure 3.19(b)), and the third term is the translation
to the PLIC patch in the interface cells (Figure 3.19(c)). For the analysis, the value εp

is displayed at the seed positions sp for the Peripheral Collision and Non-Newtonian

Jet datasets in Figures 3.26(a), and (b), respectively. The particles that were translated
most correspond with the boundary positions. This is easy to interpret, since the parti-
cles that most probably leave the liquid phase are close to the phase interface at unstable
regions. Although the maximum value of the accumulated correction is relatively large
(0.07 of the domain size for Peripheral Collision and 0.06 of the domain size for the
Non-Newtonian Jet), it occurs only for small number of particles, and the correction for
most of the particles is considerably smaller (as indicated by dark orange color in the
figures).

Robustness

In Figure 3.27, the sensitivity of the particle advection to the temporal resolution of
the data and different variants of the particle corrector are investigated. The selected
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(a) 50 steps; no correction. (b) 50 steps; no displ. vec. (c) 50 steps; full correction.

(d) 400 steps; no correction. (e) 400 steps; no displ. vec. (f) 400 steps; full correction.

Figure 3.27: Analysis of corrector robustness for 50 (top) and 400 (bottom) time steps. (a), (d) No
correction applied, with many stray particles (corresponding blue surfaces). (b), (e) Only second

and third stage. (c), (f) full correction. Incorrectly assigned particles at the collision region in (b)
are corrected either with (e) better temporal resolution or with (c) full correction.

droplet region from the Peripheral Collision dataset is particularly prone to error due to
the collision, which is difficult to capture during integration. For the analysis, 50 (top
row) and 400 (bottom row) simulation time steps were used, spanning the same time
interval. The left column shows the resulting boundary reconstruction for particles with
no correction applied, in the middle column, the particles were moved to the closest cell
and consequently to the PLIC patch without the adjustment by the displacement vector.
In the right column, full correction was applied. With no correction, even with high
temporal resolution, there are regions containing particles that left the initial phase, as
indicated by dark blue surfaces. Interestingly, for two-stage correction, the stray parti-
cles are gone, but in Figure 3.27(b), some particles at the front are incorrectly assigned.
With full correction, little difference can be seen between both resolutions. This shows
that the correction method can provide reliable results also for lower temporal resolu-
tion, although in the presented experiments, a higher temporal resolution was used to
further increase the reliability of the results.

Performance

The computation of the visualization for the Peripheral Collision dataset was performed
on a commodity desktop with Intel i7 3.6 GHz processor (4 cores) and 32GiB RAM. For
the Non-Newtonian Jet dataset, a Cray XC40 System was used with 64 nodes, each
with two Intel Xeon E5 processors and 128GiB of memory, and one process running
per node. Table 3.3 shows the configurations (i.e., number of simulation time steps
and the number of seeded particles) and timings (i.e., total time, average time for one
advection step and extraction of S, and time for extraction of B) for the three datasets.
Although both datasets have comparable numbers of particles, the computation of the
Non-Newtonian Jet dataset is not much faster, despite the parallelization. This is due
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to the fact that with the data parallelism in a distributed system, the particles are not
evenly distributed among the processes. Moreover, the exchange of particles across
the subdomains introduces some overhead after each integration step. However, since
the computation is done off-line, this performance cost is acceptable considering clear
implementation design in the data-parallel approach.

Table 3.3: Computation times for the three datasets. For Peripheral Collision (Drops), the

measurement was performed on a desktop computer, and on the Cray system for the Non-

Newtonian Jet (Jet) dataset. “Time” is the total computation time, “Adv. Step+S” is the time
for one step (done for each simulation step) of advection and extraction of S. “B” is time for

extraction of boundaries (done once).

Dataset #Steps #Particles Adv. Step+S B Total

Drops 400 1.1e6 54.7s 5.8s 6.8h
Jet 237 1.7e6 29.5s 6.1s 3.9h

The performance dependency on parameter r has been also investigated. As Ta-
ble 3.4 shows, in case of Peripheral Collision, the difference between r = 0 and r = 1 is
relatively small arguably due to better usage of thread-level parallelism. For r = 2, on
the other hand, the number of particles increases the computation time substantially. For
the Non-Newtonian Jet, with 8-fold increase in particle number, there is 8-fold increase
in time for the advection step and the total time increases about 5 times, suggesting that
the interprocess communication constitutes considerable time, and is less dependent on
the number of particles.

Table 3.4: Computation times for different values of parameter r for Peripheral Collision and

Non-Newtonian Jet datasets. Same notation as in Table 3.3.

Dataset r #Particles Adv. Step+S B Total

Drops 0 1.8e4 2.1s 0.3s 0.9h
Drops 1 1.4e5 7.9s 0.9s 1.5h
Drops 2 1.1e6 54.7s 5.8s 6.8h
Jet 0 1.7e6 29.5s 6.1s 3.9h
Jet 1 13.6e6 234.0s 46.2s 18.9h

For the visualization, a commodity desktop computer for all datasets could be used,
since the data produced by the technique (i.e., the particle data and mesh for boundaries
B) does not exceed 1GiB, even for the Non-Newtonian Jet dataset.





4VISUALIZATION OF LIQUID

INTERFACE DYNAMICS

In the previous chapter, visualization techniques for droplet groups and jets were pre-
sented, where the focus was on the analysis of phenomena leading to breakup and merge
events as well as on detailed investigation of liquid separation dynamics. Equally im-
portant in the analysis of two-phase flow is the study of liquid interfaces, and in this
chapter, several visualization techniques are presented for this purpose that focus on
various aspects of liquid interfaces and the related processes.

In scientific two-phase flow simulations, the volume of fluid method is typically
used for interface tracking. Furthermore, for reconstruction, piecewise linear interface
calculation is usually employed, since it provides a reasonable trade-off between accu-
racy and computational effort. However, since the reconstruction influences the quality
of a simulation, and therefore the observed phenomena, such as droplet breakups, it is
judicious to investigate the reconstruction properties visually. Consequently, a frame-
work is presented for the visual analysis of the piecewise linear interface calculation
together with its implications on the overall simulation [85]. In this framework, PLIC

reconstruction is interpreted as an isosurface extraction problem from the first-order
Taylor approximation of the underlying volume of fluid field. This enables error analy-
sis and geometric representation of the reconstruction, including the fluxes involved in
the simulation. At the same time, it allows for generalization of PLIC to higher-order
approximation.

The observed two-phase flow dynamics and related topological changes are strongly
influenced by the interplay of fluid dynamic and surface tension forces. Surface tension
force has a particular importance in the small-scale phenomena, where it dominates
the deformation dynamics due to the large curvature values. Combined with fluid dy-
namic forces, it leads to the generation of intricate interface formations and potential
phase disintegration. The analysis of these processes can provide better understanding
of interface instability and potential breakups. To this end, a solver-based approach for
curvature computation is implemented, and from this, the surface tension together with
the respective velocity field are derived to investigate the effect of surface tension on
interface dynamics. For the analysis of interface deformation, induced by both the sur-
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face tension-derived and the simulation-based velocity fields, an approach is presented
to compute interface stretching and bending based on metric and shape tensors, respec-
tively. For the visual investigation, the eigenpairs of these tensors are used that define
the direction and strength of the respective deformation type.

In two-phase flow, an important research direction is the investigation of water
droplets on the surface of a high voltage insulator. These droplets can lead to static
discharges that have detrimental effect on insulators. For the numerical analysis of
the resulting electric field problems, finite element-based electric field simulations are
commonly used, where the employed edge-conforming representations of the electric
field ensure the desired field discontinuity at material boundaries. However, a major
drawback so far has been the lack of appropriate visualization techniques, necessitat-
ing a resampling step with all the involved drawbacks, including artifacts in the form
of imposed continuity across material boundaries. Here, a visualization framework is
presented for the discrete field data resulting from such simulations on quadratic tetra-
hedral grids [86]. It evaluates edge-conforming data by means of vector basis functions
and provides different visualization approaches for the investigation of the electric field
at material boundaries.
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4.1 Visualization of Solver Interface Reconstruction

In this section, a technique is presented that allows for a detailed visual analysis of two-
phase flow simulations in terms of interface modeling. As indicated in the Fundamentals
(Chapter 2), in CFD, two-phase flow simulation is achieved by advecting an additional
scalar field that represents cell-wise material distribution. A widely used approach for
tracking phase interfaces is PLIC due to Youngs [208, 209] which balances tracking
accuracy and algorithmic simplicity (and therefore computational cost). However, since
the tracking step must be repeated in each simulation step, and PLIC produces a linear
approximation of the interface, it is important to investigate the influence of the interface
reconstruction on the simulation outcome.

The primary focus of the visualization technique presented in this section is there-
fore to provide a set of simulation-oriented visual analysis tools that allow scientists to
evaluate and assess the quality of simulation runs and to gain better understanding of the
numerical processes that affect the results. Specifically, by identifying PLIC reconstruc-
tion as an isosurface extraction problem from the first-order Taylor approximation of the
VOF field, a versatile framework is obtained. On the one hand, it allows to derive error
bounds on the implicit approximation of the VOF-field, on the other hand, it provides
several geometry-based error measures with respect to the shape of the reconstruction
and the discontinuities at cell boundaries. It also provides geometric representations of
the volume enclosed by PLIC as well as the flux of the VOF field. Finally, it general-
izes PLIC reconstruction to higher-order approximation which allows for more rigorous
investigation of the interface reconstruction. 1

4.1.1 Related Work

Many visualization methods have been proposed for material interface reconstruction.
The related work in this topic can be found in the Fundamentals (Chapter 2). Some
of these works visualize 3D PLIC patches for comparison with their smooth interface
reconstruction techniques, they do not, however, concentrate on the PLIC interface re-
construction quality.

Interface reconstruction for multiple materials was analyzed by Prilepov et al. [143]
who constructed volume fraction function and employed isovalue fields to represent the
material interfaces. Li et al. [105] proposed a technique for multiphase interface track-
ing which combines implicit and explicit contouring schemes and can track complex
topology changes. The interface reconstruction was also investigated for the boundary
extraction in computed tomography (CT) volumes with multiple materials [128]. How-
ever, while these works concentrate on appropriate visualization and extraction of the
resulting features, here, the focus is on visualization of interface reconstruction with
respect to the simulation process. Hence, the presented technique does not aim at pro-
viding a smooth representation.

1 Parts of this section have been published in: [85]
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∇f(xc)‖nγ

∇f̃ 1 = ∇f(xc)

τ σ

µ(Pτ ) = fc

µ(Pσ) = fc

(a) (b) (c)

Figure 4.1: (a) PLIC as isosurface extraction problem in f̃ 1. First-order approximation f̃ 1 exhibits
planar isosurfaces (dashed lines) perpendicular to ∇ f (xc) (red), and so does PLIC by construc-

tion (green). Hence, instead of adjusting τ such that the volume µ(Pτ) of the enclosed polyhe-
dron Pτ equals fc, one can adjust isolevel σ accordingly. (b) and (c) Discretization (gray nodes)
of f̃ k for k > 1 within a simulation cell (bold grid). (b) An isosurface (red polygon) representing

the PLIC polyhedron P is obtained by setting all boundary nodes (blue) of the supersampling grid
to -FLT_MAX. (c) Cells are split at “reversely advected” cell face to generate flux volume (pale
red), f̃ k is interpolated at the new (gray) nodes. Nodes below the face are set to -FLT_MAX to

obtain the respective isosurface representation (red). © 2013 IEEE.

Only few visualization methods have been developed that investigate the behavior
of solvers with interfaces. Obermaier et al. [125] analyzed the stability of reconstructed
interfaces by comparison with time surfaces. More recently, Fernandes et al. [47] ex-
amined the interrelation of coupled fluid and structure solvers in an in-situ visualization
framework.

As the reconstruction of PLIC patches involves gradient estimation, a related work
is by Hossain et al. [75] who presented gradient estimation methods for field data on
regular lattices. These methods were further improved by Alim et. al [4] where storage
overhead was reduced.

4.1.2 PLIC Reconstruction for Visualization

The PLIC patches are planar and perpendicular to the gradient of f (x), and in the simu-
lation, their position is defined by distance τ from a cell node a that would be swept last
if the patch were translated along the gradient direction (Figure 2.2(c)). This distance
is chosen to ensure that the volume VP of a polyhedron P enclosing the cell’s liquid
side equals fc. Central to the presented visualization technique is the observation that
the properties of PLIC planarity and perpendicularity to ∇ f (x) can also be realized by
isosurfaces extraction of the first-order Taylor approximation of f centered around the
cell center xc, with f (xc) = fc:

f̃ 1(xc +h) := f (xc)+(∇ f (xc)) ·h , (4.1)

where xc = (x1,x2,x3)
⊤, h = (h1,h2,h3)

⊤ ∈ R
3. Hence, the PLIC patches can be repre-

sented and obtained by marching cubes isosurface extraction from f̃ 1, separately within
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each cell. In this formulation, instead of finding τ such that the corresponding polyhe-
dron volume V (Pτ) equals fc, an isolevel σ of f̃ 1 is selected that ensures V (Pσ ) = fc,
as illustrated in Figure 4.1(a). In other words, the polyhedron P, and consequently its
volume VP, is parameterized by isosurface σ , instead of translation τ .

The above formulation allows to obtain higher-order approximations of the interface
by isosurface extraction from higher-order Taylor approximations f̃ k of f . This requires
f̃ k, which in the form of multivariate Taylor approximation of f , centered at the cell
center xc reads

f̃ k(xc +h) := ∑
|ααα|≤k

∂ ααα f (xc)

ααα!
hααα

with ααα ∈ N
3
0, using multi-index notation. For k = 2 this results in the second-order

Taylor approximation

f̃ 2(x+h) = f (x)

+
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with the respective zeroth, first, and second-order terms. The investigations in this sec-
tion are constrained to a maximum of order two, although any order is straightforward
to use within the framework.

4.1.3 Discretization

To extract the PLIC patches as isosurfaces of f̃ k for k = 1 (i.e., up to 1st-order terms in
Equation 4.2), the computation of ∇ f in each cell is required. To ensure consistency
with the simulation process, the respective gradient estimation process is employed.
The gradient of cell-centered quantities such as fc is obtained by computing the partial
derivatives using finite differencing at the centers of the cell faces between the respective
cells, e.g., the partial derivative in x-direction is computed at the center of the yz-face.
Then, the partial derivatives at the centers of 2×2 co-planar faces (in this case yz-faces)
are averaged and stored at the node that is shared between those faces. Repeating this
procedure in y- and z-direction provides the node-based gradient. Finally, it is inter-
polated to the cell center. After computing f̃ k at cell nodes, the isosurface extraction
algorithm is applied, which readily produces the PLIC patches.

One remaining step in the computation of PLIC patches is finding the isovalue σ
which produces the right offset along ∇ f (xc) (Figure 4.1(a)). To this end, the volume
V (Pσ ) of the PLIC polyhedron (Section 4.1.2) must be determined. Since the approach
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should address generic cases with k ≥ 1, a possible procedure would be to apply trian-
gulation to close the isosurface along the respective face parts of the original cell. This
would be, however, a demanding task with respect to computational cost and implemen-
tation complexity, particularly for k > 1. Instead, the marching cubes algorithm is also
applied for this task. An auxiliary uniform grid Gc of 33 cells is constructed, with the
original cell as the inner cell whose node values were obtained from f̃ k. The values on
the outer nodes Nout, on the other hand, are set to a very large negative value γ (e.g.,
γ = -FLT_MAX). This way, any isosurface is tightly closed along the face regions
of the original cell, providing the triangulated representation of Pσ corresponding to
isolevel σ . The inaccuracy introduced by the additional volume corresponding to the
faces external to the original cell is negligible (in the order of numerical accuracy), be-
cause, as γ dominates the f̃ k-values, the additional parts of the isosurface are located
very close to the faces of the original cell. However, since this is only the case if the
partial derivatives of f are reasonably bounded, i.e., below the order of γ , the modulus
of each of the values within Gc is tested if it exceeds −γ · 10−3 and the user is warned
in such a case (this, however, never occurred in the investigated datasets). The volume
can be obtained from the resulting triangulation as V (Pσ ) = ∑t∈Pσ

v1 · (v2×v3)/6, with
v1, v2, and v3 being the three vertices of triangle t.

With the developed method for the volume computation from the polyhedron en-
closed by the PLIC interface, it is now possible to determine the isolevel σ such that
V (Pσ ) = fc. The problem is addressed by iterative optimization, i.e., the bisection
method is applied to find σ . Please see the original paper [85] for the details on the
algorithm.

Higher-Order Interface Approximation The above method for the generation of the
first-order PLIC interface already provides a basis for the analysis of the reconstruction,
as discussed in Section 4.1.4. However, for higher-order interface approximation, which
is used for comparison and visualization of the approximation error with respect to
the curvature of the interface, additional steps are necessary to obtain the geometry
representing the higher-order approximation.

For k = 2, beyond the gradient, second-order partial derivatives must be computed.
To ensure consistency with the simulation code also with this respect, a finite difference
scheme based on the simulation of surface tension is employed. However, the curvature
estimation code in the solver computes ∇(∇ f/‖∇ f‖) and hence, cannot be directly
utilized. Instead, the Hessian ∇(∇ f ) using the same scheme was implemented for the
visualization. Specifically, it is computed from the node-based gradient by evaluating
the finite differences between neighboring nodes along the cell edges. This provides
a partial x-derivative at the center of each x-edge. To obtain the cell-centered Hessian,
these partial derivatives (in fact its columns) at the four x-edges of a cell are averaged.
Repeating this process in y- and z-direction yields the full Hessian.

To compute the polyhedron volume V (Pσ ) of higher-order approximations, it is nec-
essary to subdivide each simulation cell by a factor n > 1 into n3 subcells and resample
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Figure 4.2: Sphere dataset with interface extracted using
standard marching cubes algorithm. PLIC interface recon-
struction and visualization measures are demonstrated

for this dataset in Figure 4.3.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Visualization measures applied to the Sphere dataset. Measures: (a) bound B

on approximation error with respect to f , (b) second-order PLIC patches colored with surface
curvature κmax, and (c) cell-wise maximum κ̂max of (b) colored on the PLIC patches. The radius
of the sphere according to the PLIC reconstruction is 0.0505m (initialized as 0.05m), hence the

curvature should be ideally 20m
−1. (d) Minimum discontinuity δmin, (e) maximum discontinuity

δmax on PLIC and (f) on second-order patches. While (d), (e), and (f) account for the displacement
of the patches along ∇ f (x), (a), (b), and (c) consider only partial derivatives of f and are hence

not directly dependent on the displacement. © 2013 IEEE.

f̃ k at the resulting nodes. Similarly to the case k = 1, an auxiliary subgrid Gc is con-
structed, with n+2 subcells in each dimension, and with the (now subdivided) original
cell occupying the inner part, as shown in Figure 4.1(b). By setting the values on outer
nodes to γ and applying the marching cubes algorithm, the triangulation of P is obtained,
which is used in the bisection method (with k = 2) for the estimation of σ .

4.1.4 Measures for Visual Analysis of Interface Reconstruction

In this section, several visualization quantities are introduced that measure the error of
the interface reconstruction.
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Bound on Approximation Error The first error measure of PLIC reconstruction is
the bound on the approximation error of f̃ k which is calculated as follows. According
to the multivariate version of Taylor’s theorem, since f is k + 1 times continuously
differentiable (Section 4.1.2) within the cell volume C, there is Rβββ :R3→R with βββ ∈N3

0

such that

f (xc +h) = ∑
|ααα|≤k

∂ ααα f (xc)

ααα!
hααα + ∑

|βββ |=k+1

Rβββ (x)h
βββ .

From this follows

|Rβββ (x)| ≤
|βββ |
βββ !

max
|γγγ|=|βββ |

max
y∈C
|∂ γγγ f (y)|=: M , (4.3)

with x ∈C, leading to the uniform estimate that bounds the approximation error of the
kth-order Taylor approximation

f (x)− f̃ k(x)≤Mck+1 (4.4)

within C, with c being the maximum of x-, y-, and z-extent of the cell. Hence, the upper
bound B for the approximation error of f with respect to PLIC reconstruction is obtained
by k = 1 in Equation 4.4 and inserting Equation 4.3:

B :=
2

2
max
|γγγ|=2

max
y∈C
|∂ γγγ f (y)| · c2 = max

y∈C
‖∇(∇ f (y))‖max · c2 , (4.5)

with the maximum norm ‖A‖max = max{|ai j|}. Thus, to obtain B, the largest modulus
of the elements of the Hessian of f within C must be determined and then multiplied by
the square of the largest cell extent.

As detailed in Section 4.1.3, the columns of the Hessian are bilinearly interpolated
at the cell center from those at the cell edges. Hence, the absolute maximum of the
elements of the Hessian within the cell is the absolute maximum of the elements of the
Hessian columns determined at the cell edges, which is easily evaluated and gives the
error bound B on the first-order approximation of f .

Since PLIC reconstruction corresponds to first-order approximation of f , B not only
provides a conservative bound on possible inaccuracies due to the advection of the f -
field, but also indicates more general discretization problems of f , e.g., aliasing with
respect to resolution and orientation of the simulation grid, as observed in Figure 4.3(a)
and, in particular, in Figure 4.4. B bounds the approximation error of f with respect to
the PLIC reconstruction (including the offset of the PLIC patch along ∇ f (xc)) and can
be multiplied by c to provide an estimate how far the isosurface moves along ∇ f̃ k if
the isovalue is varied by the value B (Figure 4.4). B is, however, not able to directly
provide insight into the deviation of the planar PLIC patch from the shape of the curved
isosurface of f̃ k. To this end, the curvature of these isosurfaces and the discontinuities
between the PLIC patches are visualized, as described below.
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Measurement of Isosurface Curvature Here, a measure is derived for the PLIC ap-
proximation error with respect to the shape of the interface. In compliance with the
derivation of B, the PLIC reconstruction is analyzed in terms of its deviation from the
second-order interface approximation. That is, the isosurface of f̃ 1 at isolevel σ1 is
compared with the corresponding (curved) isosurface of f̃ 2 at isolevel σ2, with σ1 and
σ2 obtained according to Section 4.1.3, i.e., such that V (P1) =V (P2) = fc.

The principal curvatures of an isosurface of f̃ k at point x are given by two nonzero
eigenvalues λ1 and λ2 of ∇(∇ f̃ k(x)/‖∇ f̃ k(x)‖). The isosurface of f̃ 2 at isolevel σ2 is
extracted, followed by the evaluation of κmax := max(|λ1|, |λ2|) at all its vertices. These
values are either directly visualized on the surface (see, e.g., Figure 4.3(b)), or the max-
imum κ̂max over the isosurface within the original cell is determined and visualized by
a uniform color on the corresponding PLIC surface patch (see, e.g., Figure 4.3(c)). The
former enables detailed inspection of this second-order surface approximation, while
the latter provides the maximum deviation of the PLIC patch from the second-order in-
terface approximation in terms of curvature. If the absolute distance between the two
isosurfaces is of interest, as in mesh resolution analysis (see, e.g., Figure 4.6), κ̂max · c2

provides a conservative bound with respect to the cell extent c.

Measurement of C−1 Discontinuities While the measurement of isosurface curvature
captures the deviation of the PLIC patch shape from that of a second-order approxima-
tion, it is not capable of measuring discontinuities between the patches. Regarding flux
computation (see below), C≥0 continuity is of lower impact than C−1 discontinuity be-
cause these represent gaps in the reconstructed interface. Therefore, a technique for the
analysis of the discontinuities is provided.

The cell-wise discontinuity value is obtained by extracting the boundary curves of
the isosurface(s) within each original cell (note that multiple isosurface parts can result
in case of k > 1) and by measuring the minimum Euclidean distance between these
boundary curves and all other boundary curves of the other cells. These distances are
measured by sampling each edge of the current cell’s mesh boundary polygons with r

samples (in the analyzed datasets, r = 9) and determining for each sample the shortest
distance to all boundary curves residing in other cells. These other boundary curves
do not need to be supersampled because the involved point-to-segment distance can
be determined exactly. From the resulting minimum distances along the current cell’s
boundary polygons, both their minimum δmin and their maximum δmax are taken. Both
measures can be mapped to the isosurface(s) of the current cell using uniform color. The
measure δmin provides a lower bound on the discontinuity of the current cell (i.e., the
“best case”), while δmax indicates the upper bound (i.e., the “worst case”). Please see
Figure 4.3(d)–(f).

4.1.5 Flux Volumes

Although the measures introduced in Section 4.1.4 already give insight into the implica-
tions of PLIC reconstruction in simulation codes, they do not provide a direct approach
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to the impact on the simulation result. Therefore, a visualization of fluxes involved in
the solver advection step has been developed that completes the presented visualization
framework. Here, the approach for the computation of volume fluxes used in the sim-
ulation is adopted, and it is the only part of the framework that takes into account the
progress in time, however, only in the sense that the duration of the time step ∆t is re-
quired. As discussed in Section 2, the advection step is performed separately in u-, v-,
and w-direction, and the amount of concentration that moves to the neighboring cell is
determined by computing the volume resulting from “cutting” the PLIC polyhedron P at
the distance −u∆t from the respective cell face (Figure 2.2(d)).

To obtain a geometric representation of this volume for visualization, the marching
cubes approach that is used for obtaining the triangulation of P (Section 4.1.3) is uti-
lized also in this case. The only difference is that the cells of Gc are split (by inserting
new nodes) at the cut distance, i.e., where the respective cell face intersects Gc if the
face is advected in reverse direction, see Figure 4.1(c). The approximation f̃ k is resam-
pled at the inserted nodes and all nodes of Gc that are located on the other side of the
advected face are set to γ , with the effect that the resulting isosurface (taken at isolevel
σ determined according to Section 4.1.3 for the original polyhedron) represents the flux
volume, i.e., the amount of f that is advected through the respective cell face.

As flux computation is accomplished using operator splitting, the visualization of
the fluxes in u-direction is straightforward. For those in v-direction, one needs to first
compute the flux volumes in u-direction, update the fc-field therefrom accordingly, re-
peat PLIC reconstruction on the updated fc-field, and compute the flux volumes then in
v-direction. For the flux volumes in w-direction, one needs to repeat this process once
more in w-direction. Note that typically only every mth step is output during simula-
tion and hence, the spacing between simulation results is larger than the simulation step.
Therefore, either every time step must be output for analysis by the technique or the step
size must be provided with the simulation.

4.1.6 Results

This section demonstrates the utility of the presented visualization framework for the
assessment of interface reconstruction quality. The framework was applied to several
two-phase flow simulation datasets in the context of droplet dynamics. Table 4.1 pro-
vides timings of the implementation measured on a commodity desktop with Intel i7
3.6 GHz processor and 32GiB RAM. The computation of the discontinuities δmin and
δmax is clearly the most expensive step. This is mainly due to the employed basic search
structure for the distance test, and this step would lend itself well to GPU acceleration.

Performance is significantly reduced for second-order patches as the number of tri-
angles per patch increases quadratically due to the involved supersampling. However,
the current implementation still allows for productive operation.

Sphere Dataset A dataset with stationary sphere (Figure 4.2) of known curvature
κ = 20m

−1, with 64
3 cells, provides a reference configuration with a wide spectrum
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(a) (b) (c)

Figure 4.4: Zalesak dataset at time step 25 (time 0.0375s) and simulation grid (a) 32
2 × 16,

(b) 64
2× 32, and (c) 128

2× 64, visualized by PLIC patches. The coloring by B (left halves) and
c ·B (right halves) conveys approximation problems regarding the f -field, including aliasing. The
gray box depicts the region analyzed in Figure 4.5, however for the onset of the simulation.

© 2013 IEEE.

of normal directions. This dataset serves for evaluation and illustration of the frame-
work, and gives insight into the dependency of reconstruction quality on the sampling
grid. All visualizations of the framework were applied to this dataset, except for the
flow volumes as these require velocity data. Figure 4.3(a)–(f) provide the respective
results. Interestingly, each measure captures different discretization properties of PLIC.
While the discontinuity measures δmin and δmax exhibit low values on sphere where
(x = 0)∨ (y = 0)∨ (z = 0), the approximation-based measures exhibit high (in case of
B) or low (in case of κmax) values at xmin∨xmax∨ymin∨ymax∨ zmin∨ zmax of the sphere.
This complies with the flattened (low κmax) parts visible in Figure 4.2 and the involved
aliasing in general (large B). Hence, discontinuities are typically small at axis-aligned
patches, while aliasing (B) is typically large in these cases, however, with the potential
benefit of flattened interfaces and thus better approximation by PLIC. This behavior is
expected in CFD simulations with PLIC-based reconstruction.

Zalesak Dataset A 3D variant of Zalesak disc is initialized in Couette flow u(x) =
(ay,0,0)⊤, a = 5s−1, with the lower domain boundary at rest and the upper one moving
at a velocity of 1m/s. The simulation was carried out at different grid resolutions and
the data consists of 109 time steps which were output at the frequency of a single sim-

Table 4.1: Timings (in seconds) for the datasets from Figure 4.6 (C1: 32
3, C2: 64

3, C3: 128
3)

and from Figure 4.8 (M), QUAD: second-order surface, Flux: flux volumes. Total execution time
in brackets.

Data PLIC QUAD Curvature δmax PLIC Flux PLIC Flux QUAD

C1 0.33 (0.35) 2.13 (2.16) 0.28 (0.62) 2.51 (2.85) 0.88 (1.34) 5.19 (7.53)
C2 1.26 (1.37) 10.5 (10.7) 1.22 (2.67) 18.4 (19.8) 2.93 (4.32) 27.9 (39.2)
C3 5.28 (5.74) 48.7 (49.4) 5.33 (11.4) 89.4 (95.1) 13.6 (19.8) 118 (171)
M 10.5 (12.6) 95.0 (98.0) 10.9 (24.3) 155 (167) 23.6 (35.9) 227 (327)
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(a) (b) (c)

Figure 4.5: Visualization of fluid interface deterioration for the initial time evolution of Zalesak

dataset. Interface cells shown as boxes, flux volumes as gray polyhedra, and Zalesak outline

by transparent isosurface in (a). In (b), the PLIC normal in cell 2 points to the right, which is not
consistent with the gas distribution in the surrounding cells. (c) This influences liquid distribution
and results in the deterioration of the Zalesak pattern. © 2013 IEEE.

ulation time step δ t = 0.0015s. The Zalesak shape is traditionally used to investigate
the influence of numerical diffusion and reconstruction properties in general since it fea-
tures surfaces of greatly varying curvature, questions that lend themselves to analysis
based on B. Figure 4.4 visualizes the dataset using PLIC patches colored with B. It is ap-
parent that both B and the robustness c ·B (Section 4.1.4) of the PLIC patch with respect
to the isovalue σ are larger on the front face of the disc in (b) than in (a), although (b)
was simulated at higher resolution. This is due to aliasing with respect to the resolution
of the simulation grid, which is also visible as periodic pattern at the cutout in (c). It is
apparent especially in (c) that the sharp edges at the top deteriorate during advection.

Figure 4.5 demonstrates how the framework can be used to investigate the deterio-
ration resulting from the interface reconstruction and the involved fluxes. It illustrates
a reconstruction error, and the arising flux calculation error, due to the normal vector
calculation. In the initial state (a), cell 2 is filled and cell 3 is empty. The gradient in
cell 3 does not point straight to the right but has an upward component due to finite
differencing. Hence, the resulting PLIC patch degenerates to the red strip visible at the
upper left edge of cell 3. Updating the concentrations with the flux volumes produces
the interface reconstruction by the PLIC patches in (b). In this state, since fc is now
larger in cell 3, one can see the respective patch and its inclination. In the third state (c),
a PLIC patch appears in cell 2 due to fc < 1. However, steeper gradients in cell 3 cause
a slight inclination of its PLIC normal to the right and shifting of the gas phase in the
same direction inside the cell. Over time, cell 3 obtains more fluid and the overall fc-
distribution causes further inclination of the patch in cell 3, further deteriorating the
Zalesak pattern. Additionally, a reconstruction problem, which can lead to “multiple
fronts”, has been identified using the technique in this context (Figure 4.5(c)).

Peripheral Collision Dataset This dataset is a simulation of a peripheral droplet-
droplet collision. Figure 4.6 (top row) provides an overview of the temporal evolution.
After initial collision, the liquid phase forms a disk which then splits into outer ring and
an inner smaller disk. Both structures break up into multiple smaller droplets afterward.
The simulation has been conducted at different resolutions to investigate the impact of
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(a) (b) (c)

Figure 4.6: Peripheral Collision dataset. Visualization by PLIC patches with κ̂max (left halves)
and κ̂max · c (right halves), for same time step at resolution (a) 32

3, (b) 64
3, and (c) 128

3. κ̂max · c
provides good estimate of approximation quality. Top: Time evolution by PLIC colored with κ̂max.
© 2013 IEEE.

Figure 4.7: Time sequence of Merging Drops dataset. Visualization by PLIC patches colored by
δmax, in frame of reference moving with the drops. © 2013 IEEE.

grid resolution on the overall quality. It turned out that κmax ·c2 provides a good estimate
of approximation error. It is subject to future work to investigate this approach further,
e.g., for adaptive mesh refinement during simulation. It is apparent that resolutions (a)
and (b) are insufficient while (c) starts to exhibit physically correct behavior, consistent
with the estimation κmax · c2. This can be explained by the fact that disintegration is
closely related to surface tension and hence, to the curvature of the interface.

Merging Drops Dataset This case models the peripheral collision of two drops of dif-
ferent size discretized on a grid of 512×256×256 cells, see Figure 4.7 for an overview
of the time evolution. This represents a rather complex case due to droplet disintegra-
tion and formation of small ligaments that are resolved with only few cells and there-
fore exhibit large discontinuities in PLIC reconstruction. As visualized in Figure 4.8, the
physically important breakup of the ligaments is essentially dominated by the f -fluxes.
The visualization in Figure 4.8(c) indicates that the instabilities leading to breakup of
sheets are suppressed by the PLIC reconstruction, i.e., that the flux out of the breakup cell
would be larger if second-order interface reconstruction 4.8(d) would be used (visible
at the larger flux volume at the lower side of the breakup cell).
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(a) (b) (c) (d)

Figure 4.8: Merging Drops dataset. PLIC patches colored (a) by discontinuity δmax, (b) by curva-

ture κmax on second-order surface reconstruction, and (c) a closeup thereof visualized using sur-
face reconstruction and flux volumes based on first-order (PLIC) approximation, and (d) second-
order approximation. As shown in (d), disconnection should occur due to larger flux volume in

the lower region. In (c) PLIC, suppresses the breakup. © 2013 IEEE.



4.2 • Visual Analysis of Interface Deformation 75

4.2 Visual Analysis of Interface Deformation

The deformation of the interface in two-phase flow is caused by the interplay of surface
tension and fluid dynamic forces. Whereas the former has a stabilizing effect on the
phases as it leads to a spherical shape, the latter tends to deform the phases and can
cause interface breakup. Additionally, depending on the materials, the surface tension
and fluid dynamic forces have different influence on the overall interface dynamics and
therefore, the dynamics of phase breakups can vary significantly. Thus, the analysis of
these forces is of particular importance for the study of two-phase flow phenomena, and
visualization lends itself well for the investigation of their interdependence.

Visual analysis of interface deformation requires an approach that can capture its
important characteristics and present them in an effective manner. To this end, a visual-
ization technique based on metric and shape tensor analysis has been developed in this
thesis that allows for efficient investigation. The metric tensor provides information
on surface stretching and contraction, whereas the shape tensor indicates shape defor-
mation in terms of bending direction and strength. The shape tensor is computed on a
paraboloid that locally approximates the interface. For visualization, the shape tensor of
the difference between the undeformed and the deformed interface is used to determine
the bending characteristics. Both the metric tensor and the shape tensor are based on the
local interface deformation induced by a velocity field. Applying the tensors on the sim-
ulation velocity field reveals the effective deformation. However, to gain more insight
into the surface tension effect on the interface deformation, the tensors are additionally
employed on a velocity field derived from the surface tension force. This allows for the
analysis of the interplay of the fluid dynamic and surface tension forces.

For visualization, cylindrical glyphs represent the orientation of the eigenvectors for
the metric and shape tensors, while the glyph color reveals respective stretching and
bending strength.

4.2.1 Related Work

Surfaces and volumes have been frequently used in flow visualization for the analysis
of deformations. Obermaier et al. [126] employed glyphs and stream volumes to visu-
alize deformations induced by vector fields. A work closely related to the presented
technique is the analysis of stretching and shearing by Obermaier and Joy [127] who
utilized metric tensors for glyph-based visualization of deformation and to enhance in-
tegral surfaces. For the visualization of integral surfaces in divergence-free vector fields,
Bartoň et al. [13] used the stretching information to adaptively find stretch-minimizing
stream surfaces. Brambilla et al. [23] employed metric deformation analysis to param-
eterize and visually compare time surfaces from different simulation time steps. These
works address single phase flow, where the surfaces can be arbitrarily placed in the vec-
tor field. In this thesis, however, the analyzed surfaces represent the fluid interfaces that
undergo deformation not only caused by advection, but also by phase dynamics and
surface tension. Therefore, they require a different approach for constructive analysis.
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The notions of surface parameterization and related metric and shape tensors are
utilized in this work for the description of deformation. A relevant introduction to the
topic can be found in the work by Floater and Hormann [48]. The concept of curvature
difference was utilized by Grinspun et al. [61] for the computation of discrete shells
used in computer graphics and animation for modeling deforming thin objects. In her
dissertation, Berres [15] provided an extensive description of surface deformation and
visualization.

A problem inherent to VOF-based techniques is the generation of large surface ten-
sion forces due to artificially high curvature values resulting from the discretization on
grids. Several approaches have been proposed to decrease this effect [22, 36] and the
one presented by Popinet [140] offers an accurate and robust curvature approximation
that combines height function computation and paraboloid-fitting. This method is used
here for the visualization of the surface tension effect on interface deformation.

Curvature computation is an important topic in computer graphics and computer
aided manufacturing. Rusinkiewicz [151] developed an algorithm for the estimation
of curvature and its derivatives, such as curvature change along the surface, on trian-
gle meshes. For volume rendering, Kindlmann et al. [93] proposed multi-dimensional
transfer functions based on the principal curvatures to provide enhanced visualization
of scalar volumetric data. Goldfeather and Interrante [59] provided a robust method
for the estimation of principal directions on triangular meshes that achieves third-order
approximation. A review of various curvature estimation methods can be found in the
work by Mesmoudi et al. [119].

4.2.2 Measures for Visualization of Deformation

In two-phase flow, various forces act on the fluid phases that cause changes in the in-
terface shape and potentially lead to breakups. Phase deformation typically results in
a change of the interface area, which can be locally interpreted as interface stretching.
Therefore, for the analysis of two-phase flow in this work, the metric tensor I f is uti-
lized. Obermaier and Joy [127] employed this tensor to analyze flow characteristics in
single-phase configuration, where a virtual surface can be placed in the velocity field
to investigate stretching at arbitrary regions. In this thesis, the metric tensor is em-
ployed in two-phase flow, where the surface of interest is naturally defined by the fluid
interface. This poses some challenges that need to be addressed in the computation
of the related flow characteristics, such as velocity gradients. The visualization of the
metric tensor gives valuable insights into the local variations of the surface area for a
given time interval. However, with this method, different types of interface deformation
cannot be discriminated, and hence, potential breakup regions are not clearly visible.
To gain a more complete picture of the interface deformation and its influence on the
phase breakups, the bending characteristics of the interface are considered, which are
expressed by a shape tensor.

For a smooth surface, the eigenvalues and eigenvectors of the shape tensor repre-
sent the principal curvatures and principal directions of the surface, respectively. If the
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surface deforms, its principal curvatures and directions change, resulting in a different
shape tensor. To extract the bending characteristics, the tensor of the original surface
is subtracted from the tensor corresponding to the deformed surface. The eigenvalues
and eigenvectors of the resulting shape change tensor ∆S provide the information on
the bending direction and strength.

To better understand the influence of the surface tension on the deformation, a ve-
locity field, denoted uγ , is derived from the surface tension force. This is the velocity
the interface would assume to minimize the potential energy, and thus, to minimize the
surface area. Therefore, a visualization thereof can provide important information on
the local interface deformation and the related breakup dynamics, e.g., to what extent
uγ stabilizes the fluid structures. To extract the surface-tension-derived velocity, a state-
of-the-art curvature computation method is utilized which computes the curvature by
employing a height field approach and, in the case of poorly resolved phase compo-
nents, it resorts to a paraboloid-fitting method to ensure robustness [140].

For visualization of deformation, i.e., stretching and bending, the eigenpairs of the
tensors are represented by cylindrical glyphs whose orientation and color reveal the
respective direction and strength of deformation. For graphical representation of the
interface, the solver-based PLIC method has been employed. Although such reconstruc-
tion does not provide a smooth representation, it conveys the topology changes more
accurately than, e.g., the standard marching cubes algorithm. Moreover, the deforma-
tion tensors and their eigenpairs are evaluated at the interface position corresponding to
that computed by the solver. Therefore, it is reasonable to adhere to the solver-based
interface reconstruction for visualization.

4.2.3 Surface Tension and Derived Velocity

For the computation of the surface-tension-derived velocity uγ , the Navier-Stokes equa-
tion for momentum, extended by an additional surface tension term fγ (Equation 2.8 in
Section 2), is considered. In the VOF method this term can be estimated as [51]:

fγ = σκ∇ f , (4.6)

where σ is the surface tension coefficient that depends on the involved fluids, κ is the
mean curvature of the interface in the given cell, and ∇ f is the gradient of the volume
fraction field f . For visualization, the contribution of the surface tension force to the
total velocity at the interface can be expressed by:

uγ = fγ ·∆t/ρl , (4.7)

with simulation time step ∆t and density of the liquid ρl . Please note that this is only an
estimation, since the computed velocity relates to the next simulation time step and not
to the current one. Although one could consider the surface tension force in the previous
time step to compute the current uγ , it would require complex interface tracking and
possibly high temporal resolution of the simulation data in order to find corresponding
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(a) (b)

Figure 4.9: Interface approximation by paraboloid fitting. (a) Inclusion interface represented
by PLIC reconstruction (transparent). Here, the paraboloid is fitted for the cell with the arrow

representing the surface normal. The 3× 3× 3 cell neighborhood (red box) is considered for
approximation. (b) Paraboloid interface approximation, with blue dots corresponding to the PLIC

barycenters, where the central barycenter lies at the origin of the coordinate system. Surface
normal is aligned with the z-axis.

interface points at different time steps. In the presented framework, it is therefore not
possible to directly compare the total velocity with the surface tension component for
a given instant of time. Nevertheless, uγ already provides useful information about the
dynamics of the liquid phase with respect to the influence of surface tension.

Since the metric and shape tensors described below are applicable to both simulation
velocity u and the surface-tension-derived velocity uγ , the notation u′ is used to indicate
either of them. The discrimination of the two quantities is postponed to the results
section, where the usability of the overall approach is demonstrated.

The discrete nature of the volume fraction field causes spurious currents, i.e., artifi-
cially induced velocity on the interface caused by large curvature. This is particularly
evident for curvature computation based on the Hessian of the VOF-field [17] and much
effort has been put into improving the curvature computation. In this work, the method
introduced by Popinet [140] is implemented for the visual analysis of the surface tension,
as it considerably reduces spurious currents and has been also applied for the generation
of the simulation datasets. Popinet’s method combines two different approaches to pro-
vide accurate and robust curvature estimation. The first approach is based on height
function computation on the volume fraction field. If the height field cannot be com-
puted unambiguously, the algorithm falls back to the second method: paraboloid fitting.
Since the latter is also employed for the computation of the shape tensor ∆S, algorithm
details are provided in the next section. For a thorough description of the height field
method, please refer to the work by Popinet [140].
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Interface Approximation

In order to approximate the interface at a given cell C with a paraboloid, the barycenter
xC of the respective PLIC patch as well as the barycenters xi of the neighboring patches
in a 3×3×3 stencil are considered. To obtain the paraboloid function, the coordinates
of the barycenters are transformed such that xC lies at the origin of the new coordinate
system, and the corresponding interface normal points in the h-direction. The transfor-
mation to this coordinate system is thus achieved with (r,s,h,1)⊤= T−1 ·(xc,1)

⊤, using
the matrix

T =









xr xs xnγ xc

yr ys ynγ yc

zr zs znγ zc

0 0 0 1









, (4.8)

where (xnγ ,ynγ ,znγ ) is the interface normal, (xr,yr,zr) and (xs,ys,zs) form an orthonor-
mal basis with nγ , and (xc,yc,zc) are the components of the central barycenter. With
the positions in the new coordinate system, a paraboloid function can be computed that
approximates the barycenter heights:

f (r,s) = a0r2+a1s2+a2rs+a3r+a4s+a5 . (4.9)

The approximation is found by minimizing the following equation using linear least
squares:

F(a j) = ∑
1≤i≤n

[

hi− fa j
(r,s)

]2
, (4.10)

where hi is the i-th barycenter height, n is the number of interface barycenters used
for approximation, and fa j

(r,s) is the approximation function with coefficients a j, j =
1, . . . ,6. It is worth noting that the stationary point of the paraboloid f does not nec-
essarily coincide with the point xc and hence the coefficients a j 6= 0, for j = 3,4,5.
However, in the investigated datasets, these coefficients had marginal effect on the com-
puted quantities and only at interfaces whose least squares approximation was of low
quality (e.g., for very small droplets). Thus, dropping the coefficients a j, j = 3,4,5
does not incur noticeable error in the visualization, but it does considerably simplify the
following description and computation. Hence, the paraboloid function in Equation 4.9
can be simplified into the quadratic form:

h≈ f (r,s) = a0r2+a1s2+a2rs . (4.11)

Figure 4.9(b) illustrates the paraboloid approximation for a fragment of the interface
from a simulation, whose 3×3×3 stencil is marked in Figure 4.9(a).

4.2.4 Metric Tensor for Stretching Visualization

In two-phase flow, due to the incompressible nature of the investigated liquids, interface
stretching has no physical meaning as such. This is because whenever the surface area
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Figure 4.10: Illustration of the change in

displacement ∆d between two points P1

and P2 due to the velocity gradient.

increases due to deformation, some molecules that were originally located inside the
fluid move to the surface, thereby contributing to the additional interface area. Nev-
ertheless, the stretching formulation allows for an intuitive description of the interface
deformation and is suitable for the analysis on the macro-scale. Although the idea to
employ a metric tensor for flow visualization is not new (see [127]), it has not been
applied yet to two-phase flow where it can provide useful insights into the interface dy-
namics. Moreover, by applying the metric tensor on uγ , the velocity induced by surface
tension can be analyzed.

The interface stretching due to u′ can be described by a metric tensor that represents
the first fundamental form I f from differential geometry. The metric tensor can be
derived from the first order approximation of the volume deformation rate Ju′ , i.e., the
Jacobian of u′. It can be intuitively described as follows (see also Figure 4.10). Given
two points P1 and P2 in 3D space, their displacement vector is given by ∆x = P2−
P1. After time ∆t, the change of displacement between these points due to u′ is given
by ∆d = M ·∆x, where M = Ju′∆t. The new displacement vector is therefore ∆x′ =
∆x+∆d = (E+M)∆x, where E is an identity matrix and the matrix F = (E+M) is
known as a deformation gradient tensor. Subsequently, for the computation of I f , the
points P1 and P2 can be constrained to the tangent space of the PLIC interface such that
the displacement ∆x is perpendicular to the PLIC normal nγ . This is done by right-
multiplying F with a 3× 2 matrix N = (r |s), with orthonormal vectors r and s tangent
to the PLIC patch. The resulting matrix J f = FN is the Jacobian of the displacement,
and, as noted by Floater and Hormann [48], can be used to construct a 2× 2 matrix
representing the metric tensor I f as

I f = J⊤f J f . (4.12)

The square roots of its eigenvalues σl =
√

λl , where l ∈ {1,2}, indicate contraction
when σl < 1, and stretching when σl > 1. Consequently, for a displacement vector
∆x parallel to an eigenvector ε̂εε l , σl = ‖∆x′‖/‖∆x‖. The stretching directions εεε l in 3D
space can be obtained from the eigenvectors ε̂εε l of I f by εεε l = Nε̂εε l . Finally, εεε l and σl are
used for visualization of stretching direction and strength, respectively. Please note that,
since I f is a symmetric tensor, it does not capture deformation due to shearing.

One remaining problem is that the velocities u′ used to evaluate the Jacobian Ju′

are given at the barycenters xi of the PLIC patches within the 3× 3× 3 stencil (Fig-
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(a) (b) (c)
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Figure 4.11: Shape change tensor ∆S illustrated for two analytic functions representing unde-
formed and deformed interface: (a) f (x,y) = x2 + y2− xy and (b) f (x,y) = x2 + 2y2. Notice that
the resulting principal directions kl (blue lines, scaled by the corresponding curvature values)

are not aligned with any of the corresponding principal directions from the undeformed and
deformed interfaces.

ure 4.9(a)). To compute Ju′ , a regression-based method is therefore employed that ac-
counts for the scattered point positions and uses inverse distance weighting for improved
accuracy [35]. The gradient of each velocity component of u′ = (u′,v′,w′) defines an
over-constrained linear system of equations in the form

WX∇u′k = Wb , (4.13)

where u′k ∈ {u′,v′,w′} are the gradient components, X represents displacements from
the central barycenters, where i-th row is equal to (xi− xC)

⊤, i = 0, . . . ,n− 1, and b

is the corresponding difference in velocity components, i.e., bi = u′k(xi)− u′k(xC). The
matrix W = diag(wi) with wi = 1/‖xi−xc‖2 weighs the influence of points xi by their
distance from xc for which the Jacobian is computed. The system can be solved with
the linear least squares method.

4.2.5 Shape Tensor for Bending Visualization

While the eigenpairs of the metric tensor I f provide the information on the direction
and extent of interface stretching after some time interval ∆t, the eigenpairs of the shape
change tensor ∆S give analogous details on interface bending. The shape change tensor
is computed as

∆S = S(t +∆t)−S(t) . (4.14)

In this equation, S(t) represents the shape tensor of the interface approximation given by
Equation 4.11 and S(t +∆t) represents its counterpart deformed by u′ after time ∆t. It
is important to note that ∆S does not represent any transformation matrix in an operator
form, and in particular, it does not map the eigenvectors of S(t) to the eigenvectors of
S(t +∆t). Rather, ∆S describes how a surface with the shape tensor S(t) should be
bent in order to obtain the surface whose shape tensor is S(t +∆t). This is illustrated
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in Figure 4.11 for two analytic surfaces. Notice that the eigenvectors of the resulting
tensor do not align with any of those from the input shape tensors.

Since the elements of the tensor S exhibit rather complex dependency on the para-
boloid surface approximation, it is preferable to express the shape change tensor ∆S as
a finite difference using the tensors evaluated for the given time interval ∆t instead of es-
timating the approximation of its time derivative (which would result in a shape change
tensor defined as ∆S = St ·∆t). In the following, the computation of the shape tensor S

and the related eigenpairs is described in detail, as it also applies to the shape change
tensor ∆S.

A shape tensor is defined as S = I−1II, where the elements of the tensor I are dot
products of the partial derivatives of vector f = (r,s, f (r,s)), with f (r,s) obtained from
Equation 4.11:

I =

(

fr · fr fr · fs

fs · fr fs · fs

)

. (4.15)

Since the shape tensor is evaluated at the origin of the coordinate system where fr(0,0)=
fs(0,0) = 0, I reduces to an identity matrix. The elements of II are obtained from dot
products of the second-order partial derivatives of f and the interface normal n=(0,0,1):

II =

(

frr ·n frs ·n
frs ·n fss ·n

)

=

(

2a0 a2

a2 2a1

)

. (4.16)

To compute the shape tensor S(t + ∆t), particles representing the barycenters xi

are advected for the time interval ∆t. Afterwards, paraboloid fitting is applied on the
resulting positions that produces the paraboloid function f (r,s) at time t + ∆t. The
advection, however, can lead to two issues that must be handled before paraboloid fitting.
First, the central barycenter xc is typically no longer located at the frame origin after
the advection. Second, the interface positions represented by the barycenters within
the 3×3×3 stencil can rotate about an arbitrary axis during advection. To fix xc at the
origin of the reference frame, its velocity is subtracted from the velocities corresponding
to all barycenters:

û′i = u′i−u′0 , (4.17)

where u′0 is the velocity at the central barycenter x0. The rotation about the origin is
then removed in two steps. In the first step, the average angular velocity is computed:

ωωω =
1

n

n

∑
i=1

xi× û′i
‖xi‖2

, (4.18)

In the second step, the vortical component is subtracted from the velocities by

ũ′i = û′i−ωωω×xi . (4.19)

With the computed tensors S(t) and S(t +∆t), the shape change tensor ∆S is ob-
tained according to Equation 4.14 and the eigenpairs (κl,kl) used for visualization are
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calculated as follows. The principal curvatures representing the bending strength of ∆S

are obtained as
κ1 = H−

√

H2−K , κ2 = H +
√

H2−K , (4.20)

where K is the Gaussian curvature and H the mean curvature [133]:

K = det(II) = 4a0a1−a2
2 , H =

1

2
tr(II) = a0+a1 . (4.21)

The eigenvectors of ∆S representing the bending directions can be found by determining
the tangent of an angle that either of the eigenvectors kl forms with the r-axis. To
compute k1 corresponding to κ1, the tangent, denoted d, is determined according to the
following formula:

d =











− a2

2a1−κ1
if 2a1−κ1 6= 0

−2a0−κ1

a2
if a2 6= 0

0 otherwise .

(4.22)

Subsequently, the principal directions are computed:

k1 = (1,d) , k2 = (−d,1) . (4.23)

If the paraboloid is a paraboloid of revolution, the principal directions can be arbitrarily
chosen and hence d is set to zero. Finally, for visualization of the l-th eigenpair, kl is
used at each interface cell to orient a cylindrical glyph in the bending direction, whereas
κl is mapped to color reflecting the bending strength.

An example of the computation of ∆S is shown in Figure 4.12 for a small neighbor-
hood on the droplet interface, marked by the red box in Figure 4.12(a). Through both
the points defining the undeformed interface in Figure 4.12(b) and the points defined by
their advection in Figure 4.12(c), a paraboloid is fitted. These paraboloids are shown
in Figures 4.12(d) and 4.12(e), respectively. The difference of these quadratic forms,
as shown in Figure 4.12(f), now reveals the principal curvatures and their respective
directions.

4.2.6 Visual Representation of Deformation

For visualization, cylindrical glyphs are used to represent the orientation of the eigenvec-
tors for the metric and shape tensors, and glyph color is employed to represent respective
stretching and bending strength. The positive and negative values for bending can be
interpreted as increasing and decreasing convexity, respectively. As an additional indica-
tion of stretching, the PLIC interfaces are color-coded by surface area change ∆A=σ1σ2,
with blue indicating decreased area, and red increased area.

The visualization approach has been implemented as a set of ParaView [10] filters.
The simulation data is loaded as file series, separately for the volume fraction field f and
velocity field u. From f , the surface-tension-derived velocity field uγ can be generated,
which, together with u, can be used as input for the metric tensor and shape tensor
analysis.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Computation of the shape change tensor ∆S. (a) Selected interface fragment in the

red box. (b) In the close-up, the displacement vectors from the barycenters (green points) are
shown, and in (c) the advected barycenter positions (red). (d), (e) Reconstructed paraboloids
for the initial and advected barycenter positions (after elimination of the translation and rotation

component), with corresponding principal directions k1 and k2. (f) The computed difference
of the paraboloids in (e) and (d) reveals the bending direction as principal directions and their
strength as the principal curvatures of the resulting paraboloid (with blue indicating bending

downward and red upward).

4.2.7 Results

The utility of the visualization approach is demonstrated on two multiphase datasets.
The first one is the two-phase Peripheral Collision dataset consisting of a water droplet
collision in gaseous surrounding, and the second one, Oil Inclusions dataset, is a simula-
tion of two colliding oil inclusions immersed in water surrounding. These two datasets
exhibit considerably different flow characteristics due to diverse surface tension coeffi-
cients and viscosities of the surrounding phase.

Peripheral Collision Dataset The dataset consists of 256
3 cells, covering a domain

size of 1cm3, and 401 time steps corresponding to the simulation time between 0.48ms
and 2.85ms. The average time step is therefore ∆t = 6µs. The density of water droplets
is equal to ρ = 0.9982g/cm3, and the surface tension coefficient is σ = 72.75mN/m.

In Figure 4.13, selected simulation time steps are shown. The two merged drops
form a flat shape that splits into an inner disk and an outer ring. Finally, both structures
separate into small droplets. To get insight into the dynamics of the phase deformation,
the interface dynamics have been analyzed with glyphs, for both the metric tensor I f

and shape change tensor ∆S, as demonstrated in Figure 4.14. In case of stretching, the
orientation of red and blue glyphs in Figure 4.14(a) indicates elongation and thinning
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(a) 0.48 (b) 1.31 (c) 1.77 (d) 1.93 (e) 2.14 (f) 2.85

Figure 4.13: Extracted liquid interface for selected simulation time steps in case of the Periph-

eral Collision dataset (time in milliseconds). After collision, the drops initially form a disk that
disintegrates into many differently shaped droplets.

of the ligaments—the red glyphs represent stretching along the ligaments, whereas the
blue ones, oriented perpendicularly to the ligament axis, represent contraction. The
shape change tensor ∆S is shown in Figure 4.14(b) and (c). The glyphs representing
the eigenpair (κ1,k1) have large values where the ligaments join the rounder inclusion
segments (black boxes), indicating increasing convexity. This allows for clear identifi-
cation of unstable regions and potential interface breakups. Indeed, in the subsequent
time steps, the droplet breaks apart, as Figure 4.14(c) demonstrates.

In this dataset, the metric tensor of the deformation induced by surface tension has
also been investigated. In Figure 4.15, part of the disc-shaped drop is shown which
disintegrates after the collision (Figure (c)). In Figures 4.15(a) and (b), surface-tension-
derived velocity uγ and total simulation velocity u are shown, respectively. The flat
area is unaffected by the surface tension. However, in the region where breakup occurs,
surface tension attempts to minimize the interface area, and hence, it separates the outer
ring from the inner disk.

In Figure 4.16, the surface-tension-derived velocity uγ is compared with the total
simulation velocity u (respectively (a) and (d)) for a time step at which many liquid
segments undergo deformation and breakup. In regions where both quantities are con-
sistent, surface tension plays an important role in the interface deformation. This is the
case in the outer regions of the satellite droplets (Figure 4.16(b) and (e)), where surface
tension induces a spherical shape, as well as in the disintegrated part in the lower part of
the central structure (Figure 4.16(c) and (f)). It is interesting to note that in case of the
droplet in Figure 4.16(b) and (e), the deformation induced by the fluid dynamics (red
surfaces in 4.16(d)) interacts with the surface tension, and, as shown by the visualiza-
tion of rotation (cf. Figure 3.2), the droplet’s initial oscillating motion transitions into
rotation.

Oil Inclusions in Water The second dataset is a simulation of colliding oil inclusions
in a water surrounding. The simulation domain consists of 2563 cells covering 1cm3,
and 501 time steps that span the simulation time between 0ms and 12.5ms. In Fig-
ure 4.17, selected simulation time steps are shown. The presence of liquid surrounding
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(a) 2.07ms

(b) 2.07ms

(c) 2.19ms

Figure 4.14: Visualization of interface deformation in Peripheral Collision dataset at simulation
time corresponding to Figure 4.13. (a) Visualization of stretching by metric tensor, with eigen-
pairs (σ1,εεε1) on the left and (σ2,εεε2) on the right. Stretching along the ligaments and contraction

in the perpendicular direction, indicated by more intense red and blue colors, respectively, re-
veal thinning of the ligaments. (b), (c) Visualization of curvature change by shape change tensor,
with (κ1,k1) on the left and (κ2,k2) on the right. The visualization of the curvature change better

conveys the actual breakup as indicated in (c). Notice that the vertical ligaments highlighted by
the metric tensor in (a) remain connected.
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(a) (b) (c)

Figure 4.15: (a), (b) Interface area change ∆A in the Peripheral Collision dataset color-coded
on PLIC interface reconstruction (color legend on the right). (a) With the visualization of ∆A

computed from the surface-tension-derived velocity uγ , the region where the ring disintegrates

is apparent. (b) The visualization of ∆A induced by the simulation velocity uγ , on the other hand,
reveals thinning of the inner disk. (c) Detachment of the outer ring.

(b)

(c)

(a)

(b) (c)

(e)

(f)

(d)

(e) (f)

Figure 4.16: Interface area change ∆A in the Peripheral Collision dataset induced by (a) surface-
tension-derived velocity uγ and (d) simulation velocity u. Deformations where both quantities
have consistent values (shown respectively in (b), (e) and (c), (f)) are largely influenced by the

surface tension force. (Color map as in Figure 4.15.)

changes the surface tension and dynamic forces, as compared to the first dataset—even
before the collision, the initially spherical inclusions deform strongly and lose a consid-
erable amount of momentum due to friction. In the final time steps after the collision,
the inclusions quickly form spherical shapes and their velocity drops to almost zero.
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(a) 0 (b) 0.63 (c) 1.26 (d) 5.0 (e) 7.52 (f) 12.5

Figure 4.17: Extracted liquid interface for the simulation of Oil Inclusions. Time in milliseconds.
Even before collision, the inclusions deform strongly due to the high viscosity of the surrounding
phase that dampens the initial momentum due to friction. After the collision, the ring disinte-

grates and the resulting inclusions form into spherical shapes.

(a) (b) (c) (d) (e)

Figure 4.18: (a) Interface area change ∆A in the Oil Inclusions dataset induced by surface-
tension-derived velocity uγ (top row) and simulation velocity u (bottom row). (b) Enlarged part

from (a). In the top image, the breakup region is revealed by dark blue color. (c), (d) Visualization
of stretching by (σ1,εεε1) and (σ2,εεε2). Inspection of the velocity-induced stretching reveals that
the upper part disintegrates due to the surface tension, whereas the lower part disintegrates

due to the fluid dynamics. (e) Subsequent time steps show the eventual breakup.

Figure 4.18 compares the influence of uγ (top row) and u (bottom row) in this dataset
at simulation time 4.26ms, which is before the time step in Figure 4.17(d). In the
overview in (a), where ∆A is visualized, regions with high surface tension can be iden-
tified on the outer ligaments of the ring-shaped inclusion, with the left one shown in
the close-up in (b). The ligament is further zoomed in Figures 4.18(c) and (d), where
glyphs representing stretching are visualized. The surface tension has the largest effect
in the direction orthogonal to the ligament axis, as indicated by dark blue color. Strong
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(a) (b) (c) (d)

(e)

Figure 4.19: Visualization of the curvature change in the Oil Inclusions dataset. (a), (c) Vi-

sualization by eigenpairs (κ1,k1) and (κ2,k2). Interestingly, the glyphs representing bending
direction are at an angle with the curvature directions of the interface (shown with black lines
in (b) and (d)), thereby indicating torsional deformation. (e) Top view of subsequent time steps

showing the rotation of the upper part of the phase.

stretching induced by the total simulation velocity in the bottom part of the ligament
axis is revealed by red glyphs in Figure 4.18(c) (bottom). This shows that—contrary
to the lower part that breaks up because of stretching caused by fluid dynamics—the
upper part of the ligament disintegrates due to surface tension (where stretching due to
u is comparably lower). In Figure 4.18(e) the deformation is shown in a subsequent
simulation time step.

The fragment of the ring-shaped inclusion in Figure 4.19 exhibits interesting be-
havior, as revealed by the visualization based on shape change tensor analysis. In Fig-
ure 4.19(e), subsequent time steps are shown, where a rotation of the upper protruding
part can be seen. The visualization in Figure 4.19(a) and (c) shows that the eigenvectors
of the shape change tensor representing deformation are not aligned with the principal
curvatures, but rather slightly oriented at a certain angle, as revealed in Figure 4.19(b)
and (d). From this structure, one can infer torsional deformation of the phase, which is
also indicated by the rotational movement of the upper part.
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4.3 Visualizing Edge-Conforming Field Quantities in

Electromagnetic Field Problems with Interfaces

The investigation of electromagnetic fields on material boundaries, such as insulator
surfaces in the presence of rainwater, is of special interest in the development of struc-
tures that are exposed to strong electromagnetic fields. While the electric field at the
interfaces is continuous tangential to the material surface, it commonly exhibits discon-
tinuities in normal direction. These discontinuities pose problems in numerical simu-
lation with finite element methods. In the traditional approach, node-based quantities
impose continuity at material boundaries due to involved interpolation, resulting in un-
desired smooth modeling of quantities across the interface. Therefore, an edge-based
representation of vector quantities was introduced where the simulated quantity is inter-
polated by means of vector shape functions that, among others, ensure discontinuities
at interfaces.

Current visualization frameworks do not allow for correct representation of the elec-
tric field resulting from edge-based elements—due to their component-wise interpola-
tion they do not provide accurate representation, and more important, they miss field
discontinuities across the interfaces. Thus, in this section, a framework is presented that
correctly visualizes the simulated field, also at material boundaries. The field is directly
evaluated from the vector shape functions, taking higher-order elements (quadratic tetra-
hedra) into account, thus providing visualizations consistent with the simulation model.
For the analysis of droplet-insulator contact line, a space-time visualization technique
has been developed that reveals the time-dependent electric field characteristics around
the droplet. The utility of the approach is exemplified using electro-hydrodynamic sim-
ulation of a water droplet on the surface of a high voltage insulator. 2

4.3.1 Related Work

Edge elements were introduced into the finite element method by Nedelec [122] and
Bossavit [21]. Bossavit [21] identified Whitney elements [194], which are widely used
in finite element simulations, as a natural discretization method for eddy currents. The
basis functions of edge elements were generalized to arbitrary order for the finite el-
ement method by Webb [186]. The characteristics of edge elements as well as their
applications were discussed by Webb [185] and Mur [121]. Isoparametric elements de-
scribed by Irons and Zienkiewicz [77] represent an alternative that allows for efficient
and accurate higher-order computations.

In the field of visualization, several techniques have been developed to address ap-
propriate representation of higher-order elements. Wiley et al. [200] developed a tech-
nique for direct ray casting of curved quadratic elements without prior tessellation into
linear elements. For cell-based polynomial fields, isosurface extraction from higher-
order finite elements was presented in Remacle et al. [145], where adaptive mesh refine-

2 Parts of this section have been published in: [86]
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ment was employed for accurate representation. A technique for isosurface extraction
providing a trade-off between rendering speed and quality was suggested by Pagot et
al. [132], based on a particle transport along the gradient field, and ray casting in the
neighborhood of the final location of the particles. Schroeder et al. [162] addressed
the complexity of higher-order basis functions from p- and hp-adaptive methods by
employing an automatic tessellation technique with recursive edge-based subdivision.
Direct visualization of discontinuous Galerkin simulations was presented by Üffinger
et al. [181], where an adaptive sampling technique was used for high quality volume
rendering, and utilization of a GPU cluster allows for interactivity. Feature extraction
from discontinuous Galerkin simulations based on the parallel vectors operator was pro-
posed by Pagot et al. [131]. A solution for the visualization of non-conforming meshes,
based on point-based rendering, was developed by Zhou and Garland [210]. Isosurfaces
from higher-order elements can be also visualized in a point-based manner, as proposed
by Meyer et al. [120], in which case the costly inverse mapping to evaluate the basis
functions is avoided. Most recent works in the field of higher-order finite element vi-
sualization include a ray casting method with pre-computation of world-element space
transformation by Bock et al. [16], as well as ray casting with depth peeling due to Liu
et al. [107].

For visualization of electromagnetic fields, examples include the visualization of the
field in Tokamak reactors by Sanderson et al. [156], visualization of the coronal field
by Machado et al. [113], and topological analysis of magnetic fields by Bachthaler et
al. [12].

4.3.2 Edge Elements in Finite Element Simulations

The vector shape functions that describe the vector field in edge elements have two char-
acteristics important for the analysis of fields exhibiting discontinuities. In the edge
based-representation, neighboring elements share tangential components on the edges,
and hence, the tangential field is continuous across those elements. On the other hand,
the shape functions cause the tangential component to vanish at the element faces op-
posite to an edge, thus allowing for discontinuities in the normal component, which in
turn enables correct representation of the electric field at interfaces.

In addition to the discontinuity preservation ensured by edge elements, the introduc-
tion of nonlinear elements, such as quadratic tetrahedra, enables a more accurate ap-
proximation of curved surfaces, which has particular importance for the computation of
the electric field, since sharp, piecewise linear representation would artificially amplify
the electric field magnitude. Consequently, the nonlinear elements significantly reduce
the required number of tetrahedra for the approximation of curved boundaries. In the
following, the nonlinear elements are described first to lay a basis for the description of
1st-order and 2nd-order edge-elements.
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(a) (b) (c) (d)

Figure 4.20: Data representation on tetrahedral elements. (a) Linear tetrahedron and
(b) quadratic tetrahedron with additional mid-edge points. (c) Node-based data representation,

(d) edge-based data representation.

Quadratic Tetrahedra

Quadratic tetrahedra are particularly suitable for finite element-based simulations in-
volving electromagnetic field problems with interfaces, since they allow for curved
edges and faces. Considering that the elements can adapt to relatively strong defor-
mations, mesh refinement can be avoided for many problems. This at the same time
allows for a significant reduction of the required number of elements—curved parts of
the simulation domain no longer require strong refinement for accurate computation of
the electric field. Quadratic tetrahedra, however, are more difficult to implement [46].
Since they have variable metric, i.e., the Jacobian determinant is not constant over a
tetrahedron, point location inside cells is further complicated.

A quadratic tetrahedron is illustrated in Figure 4.20(b) (cf. Figure 4.20(a) for com-
parison with a linear tetrahedron). The element is defined by 10 nodes, each carrying
three components of the vector field, resulting in 30 degrees of freedom. The shape
functions Nl corresponding to the nodes of quadratic tetrahedra are defined as:

Nl = Ll(2Ll−1) , for l = 1, ...,4

N5 = 4L1L2 , N6 = 4L2L3 , N7 = 4L1L3

N8 = 4L1L4 , N9 = 4L2L4 , N10 = 4L3L4 ,

where (L1,L2,L3,L4) are the barycentric coordinates. The world coordinates (x,y,z) of
a point inside a quadratic tetrahedron can then be obtained using:

xi =
10

∑
l=1

xi,lNl , (4.24)

where xi ∈ {x,y,z} represents the i-th world coordinate of the sought point, and xi,l

represent the i-th coordinate of the l-th node of the tetrahedron. Since the computation
of barycentric coordinates from world coordinates is nontrivial for quadratic tetrahedra,
iterative methods, such as Newton-Raphson iteration, are commonly used.
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(a) (b)

Figure 4.21: Vector basis functions

on tetrahedra. (a) First order ba-
sis function N1

1,2 on edge e1,2 and

(b) second-order basis function N13
1,2

on edge e1,2.

Edge-Conforming Data Representation

In the node-based finite element method, data is stored on the nodes of the elements.
As illustrated in Figure 4.20(c), for a linear tetrahedral element there are four nodes,
each carrying three components of the vector field. In the edge-based representation, on
the other hand, data is attached to the edges of an element, as shown in Figure 4.20(d).
Here, each edge stores two tangential components of the vector field. In both represen-
tations, there are in total twelve degrees of freedom for a linear tetrahedron. It is worth
noting, however, that incomplete degrees are widely used in simulations of the electro-
magnetic field with interfaces in order to handle discontinuities at material boundaries.
To model the electric field in the edge-based element, Whitney vector basis functions
are employed. The first-order incomplete Whitney shape functions are defined as

Nl
i, j = Li∇L j−L j∇Li , for l = 1, ...,6 , (4.25)

where i and j are the nodes defining edge (i, j), Li and L j are barycentric coordinates of
nodes i and j, and ∇Li and ∇L j are the constant gradients of the barycentric coordinates.
The basis functions are then used to interpolate the electric field E from the tangential
components c:

E =
6

∑
l=1

clN
l . (4.26)

To extend the element to the complete first order, additional edge functions are used:

Nl
i, j = Li∇L j +L j∇Li , for l = 7, ...,12 , (4.27)

The second-order incomplete basis functions are defined for edges:

Nl
i, j = L j(2Li−L j)∇Li−Li(Li−2L j)∇L j , for l = 13, ...,18 , (4.28)

and faces:

Nl
i, j = LiL j∇Lk−LiLk∇L j , for l = 19, ...,22 (4.29)

Nl
i, j = L jLk∇Li−L jLi∇Lk , for l = 23, ...,26 (4.30)

Nl
i, j = L jLk∇Li +LiLk∇L j +LiL j∇Lk , for l = 27, ...,30 . (4.31)
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(a) (b) (c) (d)

Figure 4.22: Stages for the visualization of the electric field on the contact line. (a) Simulation

domain with three materials: air (light blue), water drop (dark blue), and insulator (gray). (b) The
contact line (red) between drop and insulator is extracted. (c) The drop cells and insulator cells

adjacent to the contact line are extracted. (d) The extracted contact region is cut before the
“unrolling” stage illustrated in Figure 4.23.

(a) (b) (c) (d)

Figure 4.23: The process of Laplacian smoothing for the contact region. The cut points from
each side are positioned away from each other (a). Iterative smoothing applied to the rest of the

mesh points ((b) and (c)). Final rectification applied to the points, so that they lie on a plane (d).

In Figure 4.21 two edge functions are shown. Both basis functions have non-zero tan-
gential component along the edge (1,2), and zero tangential component on the faces
(1,3,4) and (2,3,4). The edge-conforming representation has a particularly useful char-
acteristics that the basis functions do not impose continuity more than required by the
physics of the given phenomena. This means they can model discontinuities of the
normal component at the interfaces while ensuring continuity of the tangential field
component.

4.3.3 Visualization

Two visualization methods have been developed to analyze the electric field at the
droplet interface. In the first one, the electric field on the material interface, i.e., on
the interface between air and the droplet in a strong electric field, is visualized (Fig-
ure 4.22(a)). In the second one, the time-dependent electric field is analyzed in a region
near the contact line between droplet and the insulator on which the droplet is located.
To facilitate the analysis of this region, the droplet interface and insulator surface near
the contact line are “unrolled” to create a rectangular strip. The strips from consecutive
time steps are stacked, and temporal interpolation is performed to obtain a space-time
representation which provides an appropriate visualization of the space-time dynamics.
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Figure 4.24: Visualization of a droplet on an insulator in the presence of a strong electric field.
The insulator and droplet are made partially transparent to reveal the electric field direction

(glyphs with size scaled according to the field strength). The electric field is strongest at the top
of the droplet (red) as well as at the interface.

Electric Field on the Interface

For the visualization of the electric field on the air-drop interface, the quadratic tetrahe-
dra adjacent to the interface between the two materials M1 (air) and M2 (water) must
be found from the material information provided with the simulation data. Each tetra-
hedron in M1 is checked if it faces M2, and if this is the case, indices of both cells are
stored in a list. Subsequently, a triangle mesh is constructed that represents the material
interface. Please note that for the visualization, the curved tetrahedral faces from the
simulation are approximated by linear triangles. Each triangle in the mesh is subdivided
into smaller coplanar triangles. The middle point of each sub-triangle is computed, to-
gether with its barycentric coordinates in the original triangle. Since the coordinates are
computed on tetrahedral faces, it is not necessary to employ computationally expensive
point location algorithms. The shape functions are then evaluated using Equations 4.25
and 4.27–4.29, and finally the electric field is evaluated using Equation 4.26 and stored
on the resulting mesh. See Figure 4.24 for a result.

Space-Time Visualization of Electric Field around Contact Line

To extract the contact line between air, water, and insulator (Figure 4.22(b)), first, two in-
terfaces are extracted: interface I1 between M1 (air) and M2 (water), and interface I2 be-
tween M1 and M3(insulator). From these interfaces, only those triangles are considered
that share at least one vertex with a triangle from the other interface. The resulting trian-
gular mesh is shown in Figure 4.22(c). In the next step, the mesh is cut (Figure 4.22(d)),
and the cut points are duplicated so that on each side of the cut the triangles are topo-
logically disconnected. The cut points from one side are then positioned away from
the other cut points (Figure 4.23(a)). An iterative Laplacian smoothing, illustrated in
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(a) (b)

Figure 4.25: Visualization of the time-dependent electric field tangent (a) and normal (b) to

the interface around the contact line, visualized with cross sections (horizontal sections) of the
space-time representation. Time evolution from bottom to top (T -axis, respective time steps on
the right). Air-insulator interface is at the front, drop-air interface in the back. The transparent

isosurface and the vertical plane show the spatial and temporal variation of the electric field,
respectively. Interestingly, the normal component varies stronger than the tangent one.

(a) (b)

Figure 4.26: Space-time visualization of the time-dependent electric field, as in Figure 4.25.
Volume rendering is shown instead of isosurfaces. The magnitude of the electric field is consid-

erably lower for the drop-air interface (back side of the planes).

the rest of Figure 4.23, is performed on the other points of the mesh strip, placing each
point on the average of direct neighbors at each iteration step. Only neighbors on the
perimeter are taken into account for the points laying on it, otherwise the whole mesh
would collapse into one line. After the last iteration, the strip is rectified, since the
smoothing does not converge to a perfect plane after reasonable amount of iterations.
The extracted contact region, shown in Figure 4.22(d), and the smoothed counterpart
(Figure 4.23(d)) are subdivided into fine triangular meshes, such that for each cell in the
original geometry there is a corresponding cell in the smoothed one. Finally, the data is
sampled on the original subdivided mesh, as described in the previous section, and the
resulting values are assigned to the corresponding points on the smoothed mesh.

To obtain a space-time representation, a 3D rectilinear grid is constructed, such that
the resolution in y direction corresponds to the number of simulation time steps, while
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the xz-plane is aligned with the “unrolled” contact line strips. For the presented dataset,
a 1024× 51× 25 grid was used (i.e., with 51 time steps and 1024× 25 samples per
strip). Each smoothed triangle strip, coplanar with the grid xz-plane, is sampled at the
nodes of the 3D grid at the respective (time step) position y. To reveal the temporal
variation of the electric field, isosurface extraction (based on marching cubes algorithm,
Figure 4.25) and volume rendering (Figure 4.26) are employed on the space-time stack.

4.3.4 Results

The visualization of electro-hydrodynamic simulations of a droplet in the presence of
strong electric fields is illustrated in Figure 4.24. The simulation was obtained by a cou-
pled fluid dynamics and electric field solver: the finite element method step determines
the electric field, which is then used to compute the dynamics of the droplet with the
finite volume method (FVM) according to the induced flow. The solution of the fluid
dynamics stage is fed back to find the electric field in the domain. The process is re-
peated for each simulation step. Figure 4.24 shows one time step from the simulation.
The droplet is positioned on an insulator, within a strong electric field. The electric field
lines in the air (not shown in the figure) are vertical. As can be seen, the electric field
is strongest at the top of the droplet. What is more interesting, however, is that the field
strength on the contact line is amplified due to the sharp corner formed by the droplet-
insulator contact region. Since this region is of special interest for the domain experts,
the space-time visualization technique facilitates the investigation of the time-dependent
electric field near the contact line.

In Figures 4.25 and 4.26, the space-time visualization of the electric field in the con-
tact region is provided. The images on the left show the electric field tangent to the drop
(insulator) surface, while the images on the right show the field normal to the interface.
Six selected simulation time steps are additionally displayed, and a vertical color-coded
cross section shows the time evolution of the field at one position of the contact region.
The air-insulator interface is oriented to the front. Figure 4.25 shows a transparent iso-
surface of the magnitude of the tangent (normal) field component, while Figure 4.26
displays the magnitude by volume rendering. The visualization shows interesting char-
acteristics of the time-dependent vector field. It exhibits periodic intervals, as indicated
by the isosurface: the high magnitude regions disappear before time step 36 to appear
again after time step 44. Volume rendering reveals that the tangential field has uniform
distribution along the contact line, while the normal field is characterized by stronger
spatial variation. It is also evident that the electric magnitude is considerably weaker on
the drop boundary. The static representation of the temporal process enables insights
into the overall behavior of the electric field along the drop-insulator contact region.

The most demanding part of the visualization framework, which has been imple-
mented as a ParaView plugin [10], is the computation of tangential components from
the node-based representation, which took more than 7 minutes for about 11000 simu-
lation cells. The computation of the droplet interface took 19 seconds, while one time
step of the space-time representation took about 7 seconds.





5VISUALIZATION APPROACHES FOR

MATERIAL TRANSPORT

Visualization of single-phase flow can be beneficial in the analysis of two-phase flow as
it allows for clearer interpretation of the observed physical processes, since no interfaces
are present. On the one hand, flow inside liquid inclusions can be treated as single-phase,
whereby fluid interfaces and therefore surface tension forces are absent. On the other
hand, in the analysis of certain phenomena, the interface does not have to be taken
explicitly into account. In both cases, the visualization focuses on the vector field data
and concepts from the traditional flow visualization can be employed. Accordingly, in
this chapter, visualization techniques for the analysis of single-phase flow are presented.

The first method presented in this chapter is dye-based visualization of advection-
diffusion [90, 89]. The technique allows for interactive 3D visualization of both ad-
vection and diffusion in unsteady fluid flow by extending advection-oriented texture-
based flow visualization to diffusion. The employed finite volume approach based on
weighted essentially non-oscillatory (WENO) reconstruction is well parallelizable on a
GPU and features low numerical diffusion at interactive frame rates. The scheme con-
tributes to three different applications: high-quality dye advection at low numerical dif-
fusion, physically-based dye advection accounting for diffusivity of virtual media, and
visualization of advection-diffusion fluxes in physical media where the velocity field is
accompanied by a concentration field.

In the dye-based visualization, the advected dye is updated in real time. An alter-
native approach for visualization of time-dependent flow is taken in the second method
that utilizes streamline-based concepts in space-time representation [88]. Treating time
as the third dimension of 2D unsteady flow enables the application of a wide variety
of visualization techniques for 3D stationary vector fields. In the resulting space-time
representation, 3D streamlines represent 2D pathlines of the original field. The advan-
tages of the overall approach are demonstrated for vortex analysis and the analysis of
the dynamics of material lines. The concept is applied to the extraction of vortex centers,
vortex core regions, and the visualization of material line dynamics using streamsurface
integration and line integral convolution in the space-time field.

Topological flow structure reveals the qualitative flow behavior using concise rep-
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resentation that allows for effective analysis of complex flows. The third presented
visualization technique extracts vector field topology implicitly by means of adaptive
sampling by streamlines and determination if the streamlines sufficiently approach a
critical point [91]. It reveals regions of different flow behavior by assigning to each
seed point the ID of the critical point reached by the respective streamline. The inte-
gration performed forward and backward in time provides an implicit representation of
the topological skeleton as the boundaries of the obtained regions. Hence, the poten-
tially complicated extraction of various topological structures, such as periodic orbits or
boundary switch points, is avoided.
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5.1 Dye-Based Visualization of Advection-Diffusion in

Unsteady Flow

For the study of advective processes in experimental fluid dynamics, a commonly em-
ployed approach is the visualization of flows by markers injected into the flow stream.
Typically, smoke and ink are used in the analysis of gases and liquids, respectively. Due
to the visual appeal of this approach and its relatively simple interpretation, the devel-
opment of a virtual counterpart has drawn much attention in the field of computational
flow visualization, where it is called dye advection.

Both in simulation and visualization, major effort has been spent to avoid the in-
volved numerical diffusion, i.e., artificial blurring of the quantity due to repeated interpo-
lation during advection in discrete grids. Although intricate details tend to be removed
in the effect of numerical diffusion, dye advection has the advantage that no geometric
representation of dye needs to be maintained, allowing for visualization of arbitrarily
complex flows.

This work contributes to the flow visualization in a multitude of ways. Since in many
physical processes an important part of transport is diffusion, an approach has been de-
veloped that solves the advection-diffusion equation and hence allows for visualization
of transport for quantities that undergo both advection and diffusion, as opposed to tra-
ditional dye advection which only accounts for advective transport. Additionally, to
reduce the numerical diffusion, the finite volume method with WENO reconstruction
scheme has been adopted. Finally, for high quality visualization at interactive frame
rates, the method has been implemented on a GPU. 1

5.1.1 Related Work

In scientific visualization, one line of research adopts a Lagrangian view on texture-
based flow visualization—with line integral convolution (LIC) being the most prominent
example [30]. The other area of research, which is relevant to this work, performs tex-
ture advection from frame to frame. Most of previous work in this field is based on
semi-Lagrangian advection or similar schemes. For example, texture advection tech-
niques address 2D visualization [80, 198, 192], 3D visualization [173, 193], and vi-
sualization on surfaces [98, 199, 103]. It is also possible to combine dye advection
techniques with LIC, as described by Shen et al. [163]. An overview of texture-based
flow visualization techniques in general, including further references to prior work, is
provided by Laramee et al. [97]. A serious problem of semi-Lagrangian advection is the
high level of numerical diffusion introduced by repeated resampling of the transported
texture. In particular, resampling with bilinear or trilinear interpolation leads to strong
blurring, which can be understood from a signal-processing perspective [191]. There-
fore, higher-order reconstruction filters can reduce blurring [1]. An alternative approach
adopts the concept of level-set advection to avoid blurring for advected dye [37, 190].

1 Parts of this section have been published in: [89] and [90]
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In this approach, the boundary between dye and background is modeled as an interface
transported without blur.

However, none of the above methods from scientific visualization modeled diffu-
sion explicitly. In fact, there is previous work that uses diffusion for flow visualization.
For example, Sanderson et al. [158] employed reaction-diffusion for flow visualization,
adapting reaction-diffusion methods for generic texture synthesis in computer graph-
ics [178, 203]. Similarly, Markov random field texture synthesis can be adopted for
flow visualization [172]. Also, anisotropic (non-physical) diffusion, known from image
filtering, can be applied to flow visualization [39]. An extension to unsteady flow was
provided by Bürkle et al. [29], by adapting the diffusion tensor and blending the trans-
port diffusion evolution results started at successively incremented times. Finally, there
is a large body of research on diffusion tensor visualization, mostly in medical imag-
ing and visualization [182]. It is important to note that none of these diffusion-related
papers use physical diffusion in combination with physical advection.

The most closely related work is the physically-based dye advection by Li et al. [102].
They applied the piecewise parabolic method [34] for visualization by dye advection in
time-dependent 2D flow fields, providing a technique exhibiting low numerical diffu-
sion. The technique allows for comparably large time steps by advecting each cell
backward in time and sampling a parabolic reconstruction of the dye inside the result-
ing polygon. In the present work, several reasons motivated the choice for the weighted
essentially non-oscillatory scheme [108] (WENO) instead: it represents a generalization
to arbitrary order of accuracy, is based on a clear mathematical foundation, lends it-
self better to parallelization, and allows for the incorporation of diffusion using a finite
volume formulation.

The approach is based on the WENO scheme as described by Dumbser and Käser [41],
where dimensional splitting, i.e., application of the 1D scheme subsequently in the three
spatial dimensions, reduces computation complexity and lends itself well for paralleliza-
tion on GPUs. The implementation of active diffusion follows the method by Chou and
Shu [33], with the exception that linear instead of WENO weights are used for computing
the concentration gradient.

5.1.2 Dye Advection and Diffusion

For the visualization of dye in the simulation data, a one-way coupling is assumed, i.e.,
the advection of virtual dye has no effect on the underlying velocity field. Hence, in
fluid dynamics, such simulation of transport of quantities due to prescribed velocity is
called passive advection. It leads to a linear problem that contrasts active advection, the
advection of velocity itself during flow simulation, resulting in a nonlinear problem that
is harder to solve. This is one of the reasons why visualization by dye advection tends
to be faster than the flow simulation itself. Nevertheless, numerical diffusion is a major
problem also with passive advection, and substantial effort has been taken to reduce it,
as, for example, in the dye advection method by Li et al. [102], typically at the cost of
reduced performance.
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The traditional (passive) advection equation reads

∂φ

∂ t
+(∇φ)u = 0 , (5.1)

with the concentration φ = φ(x, t) and velocity u = u(x, t). This is the continuity equa-
tion (cf. Equation 2.6) and it states that the temporal change of dye concentration in the
Eulerian frame (i.e., observed at fixed position) is only due to the movement of the dye
caused by the flow.

If physical diffusion is included in the advection problem, it typically leads to the
advection-diffusion equation. While only passive advection is addressed here, diffusion

traditionally plays an active role in science and engineering, i.e., it is the concentration
variation of the quantity itself that governs its diffusion. If the virtual dye takes the role
of the quantity, we obtain physical dye advection accounting for diffusion of solubles
in typical flow media. This approach is called here active diffusion to contrast it from
the second variant—passive diffusion. Passive diffusion is introduced as a means of
visualizing the mechanisms behind concentration changes due to diffusion. In this case,
the flow field needs to be accompanied by a (time-dependent) concentration field for
analysis by the presented technique.

Dye Active Diffusion

The active diffusion of dye follows Fick’s second law, and the concentration change is
dictated by the Laplacian of φ :

∂φ

∂ t
= Dφ ∆φ , (5.2)

with the constant of diffusivity Dφ , and Laplacian ∆. By combining the diffusion term
with the advection term, the advection-active diffusion equation is obtained:

∂φ

∂ t
+(∇φ)u = Dφ ∆φ . (5.3)

In general flow visualization, the diffusivity Dφ can be chosen, e.g., from physics text-
books, to achieve physically correct interaction of the fluid and tracers used in experi-
ments, such as smoke in the analysis of automotive design (Figure 5.2). If the velocity
field resulted from a flow simulation that included diffusion, i.e., an advection-diffusion
problem, and if the used diffusivity is known, it can be used as Dφ to obtain corre-
sponding dye behavior. Although only isotropic diffusion is considered in this work,
it is worth noticing that the finite volume approach also allows for, e.g., data-driven
anisotropic diffusion. Due to the low numerical diffusion of the WENO scheme (Sec-
tion 5.1.3) and its ability to provide interactive dye advection in 3D, this reduced mode
already provides a useful visualization technique that mimics dye diffusion in experi-
ments.
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Dye Passive Diffusion

A large number of processes simulated with computational fluid dynamics involve diffu-
sion, where some physical quantity, such as heat or solubles, is distributed from regions
with higher concentration to regions with lower concentrations by particle collisions at
the molecular level. This type of transport, i.e., the passive diffusion, follows Fick’s first
law, where the resulting concentration change of quantity is dictated by the gradient of
the concentration field ψ:

j = Dψ∇ψ , (5.4)

where j is the diffusion flux and Dψ is the constant of diffusivity for a given quantity ψ .
Hence, the visualization of transport of quantities due to diffusion requires an accom-
panying concentration field ψ together with its constant of diffusivity Dψ . If passive
diffusion is not combined with active diffusion (Dφ = 0), as in the presented results, the
equation for advection-passive diffusion is formed:

∂φ

∂ t
+(∇φ)u− (∇φ)Dψ∇ψ = 0 . (5.5)

The advection-passive diffusion model can be incorporated into the traditional passive
advection scheme (Equation 5.1) by combining advection flux and diffusion flux:

∂φ

∂ t
+(∇φ)(u−Dψ∇ψ) = 0 . (5.6)

Section 5.1.3 provides more details on how the approach is formulated in terms of the
finite volume scheme. Interestingly, the passive diffusion term is implemented similarly
to the active diffusion term there, not the advection term. Whereas the active diffusion
variant builds only on the velocity field, the passive diffusion is based on the gradient
of the concentration field that governs the diffusive transport. Please note that with the
formulation in Equation 5.5 and 5.6, density and thermal conductivity are treated as
constant values.

5.1.3 Finite Volume Method

As described in the previous section, the three different schemes (traditional dye ad-
vection, active diffusion, and passive diffusion) can be accomplished by solving the
respective partial differential equations. A common approach in solving these equa-
tions numerically is by the finite volume method [69] where the temporal change of the
quantity within a cell is modeled by its fluxes over the boundaries of the cell and the
quantity itself is represented in a per-cell manner. The main advantage of this numerical
scheme is that it is conservative, as the transported quantities are explicitly subtracted
from the upstream and added to the downstream cell. This is especially important for the
computation of diffusive transport which requires comparably small time steps. Finally,
the method lends itself well for parallelization on GPUs, since the three-dimensional
transport can be split into three consecutive one-dimensional integration steps.
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Figure 5.1: Finite volume method with (a), (b) advective flux depending on the direction of the

velocity at cell faces and (c) diffusion flux depending on the gradient sign.

The finite volume approach (including WENO reconstruction) can be formulated
as one-dimensional problem using dimensional splitting. Since on uniform (or recti-
linear) grids cell face normals coincide with coordinate axes, one can apply the one-
dimensional procedure sequentially in x-, y-, and z-direction to accomplish a time step
of the 3D dye advection (see [79]). Hence, the 1D finite volume approach described be-
low together with the 1D reconstruction described in Section 5.1.3 are applied for each
direction, denoted here as x with respective velocity component u.

Advection Let φ(t,xi) be the amount of dye inside cell xi at time t, and φ(xi, t + δ t)
the amount after time step δ t. The concentration change δφ(xi) = φ(xi, t+δ t)−φ(xi, t)
according to Equation 5.1 is computed in the finite volume scheme as

δφ(xi) = ( f i− 1

2

− f i+ 1

2

)δ t , (5.7)

i.e., the balance over time δ t between flux f i− 1

2

on the left cell face and flux f i+ 1

2

on

the right cell face:

f i− 1

2

= u(xi− 1

2

)φ(xi− 1

2

) , f i+ 1

2

= u(xi+ 1

2

)φ(xi+ 1

2

) . (5.8)

According to Figure 5.1, the Riemann solution of f i− 1

2

and f i+ 1

2

depends on the direc-

tion of u (u is interpolated in space and time from the simulation data). That is, the
concentration is taken from the cell either on the left or on the right side of the cell faces
xi− 1

2

and xi+ 1

2

(see Figure 5.1):

φ(xi− 1

2

) =

{

φi−1 if u(xi− 1

2

)≥ 0 ,

φi if u(xi− 1

2

)< 0 ,
(5.9)

φ(xi+ 1

2

) =

{

φi if u(xi+ 1

2

)≥ 0 ,

φi+1 if u(xi+ 1

2

)< 0.
(5.10)
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Figure 5.2: Flow over a “blunt body” (front to back). Advection of dye without diffusion model
(left, with a streak line for comparison). Active diffusion (right) mimics diffusion of smoke in

experimental analysis. Resolution 600×125×121.

For convergence, δ t has to be chosen sufficiently small to avoid transport of quantities
larger than the available value in the upstream cell. This is usually done by prescribing
a Courant-Friedrichs-Lewy (CFL) condition value. CFL relates to the maximum velocity
umax in the field and cell size h by C = umaxδ t/h, where C is called the Courant number
and C < 1 for convergence.

Active Diffusion Next, the active diffusion is included to obtain the finite volume
formulation of Equation 5.3. Applying the vector identity ∆ = ∇ ·∇ to its right hand
side one obtains Dφ ∆φ = Dφ ∇ ·∇φ . Assuming uniform Dφ and applying the Gauss
theorem:

Dφ

∫

V
∇ ·∇φ dV = Dφ

∫

S=∂V
∇φ ·ndS ,

the diffusion flux Dφ ∇φ of the virtual dye through the cell face with normal n is ob-
tained. In a 1D scheme this gives rise to diffusion fluxes

di− 1

2

= Dφ

∂φ(xi− 1

2

)

∂x
, di+ 1

2

= Dφ

∂φ(xi+ 1

2

)

∂x
. (5.11)

Hence, including active diffusion, the concentration change in cell xi becomes

δφ(xi) = ( f i− 1

2

− f i+ 1

2

−di− 1

2

+di+ 1

2

)δ t . (5.12)

The CFL condition must be satisfied also for the active diffusion such that CD < 1 with
CD = Dφ ∇φmaxδ t/h.

Passive Diffusion Finally, passive diffusion is included in the dye transport equation
(Equation 5.1) by deriving a velocity field u = −Dψ∂ψ/∂x for passive diffusion only,
and u= usim−Dψ∂ψ/∂x for advection with passive diffusion, where usim is the simula-
tion velocity field. For the computation of fluxes, Equation 5.8 is applied on the derived
velocity field.

The evaluation of the necessary fluxes at the cell boundaries requires reconstruction
of the cell-centered quantities. As demonstrated in Figure 5.3, the first-order scheme,
which assumes uniform concentration in the donor side, leads to excessive blur. This
phenomenon is known as the numerical diffusion problem and much effort has been
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(a) Initial state (b) 1st-order FV (c) WENO

Figure 5.3: Zalesak’s disk test. The WENO-based approach exhibits substantially lower numeri-
cal diffusion than the first-order upwind scheme.

put into reducing this effect. One of the developed techniques, which has been exten-
sively used in fluid simulations, is the WENO reconstruction [41]. Since it substantially
improves the quality of dye transport, and lends itself well for parallelization on GPUs,
achieved by the dimensional splitting, it has also been employed in the presented tech-
nique. In the following sections, details are provided on the characteristics of numerical
diffusion, as well as on the WENO procedure.

Numerical Diffusion

One disadvantage of the finite volume method—both in simulation and visualization—
is that its quality highly depends on the grid resolution. The cell size effectively limits
the detail level that can be captured with the finite volume approach. For instance, in
flow exhibiting foliation, i.e., repeated thinning and folding of the fluid, preserving the
resulting intricate details of arbitrarily many and arbitrarily finely folded sheets would
require extremely fine resolution. Moreover, due to the repeated interpolation at the
cell faces, a quantity undergoes numerical diffusion whose propagation speed highly
depends on the cell size, and hence, finer resolution is required to minimize the effect.
Undersampling and numerical diffusion are therefore omnipresent problems, typically
leading to results that deviate substantially from the true physical behavior.

All three dye transport scenarios are subject to numerical diffusion. Numerical dif-
fusion of the dye φ is, however, kept comparably low due to WENO reconstruction (de-
scribed below). In the scenario of dye advection with active diffusion (Equation 5.3),
the dye φ is subject to both active diffusion due to diffusivity Dφ > 0 and numerical dif-
fusion. Hence, the effective diffusion of φ tends to exceed that prescribed by Dφ . Since
numerical diffusion is not quantified, one approach to judge its influence is to compare
the result with dye advection using Dφ = 0. The results are compared visually: small
difference indicates that numerical diffusion affects (is in the order of) the one modeled
by Dφ . Finally, in the scenario of passive diffusion (Equation 5.5), one can make use of
the concentration field ψ from simulation data if there are identifiable sources therein.
For the example of the Buoyant Flow dataset, one can obtain the region where the room
is heated by applying a threshold filter to the ψ field. By continuously seeding dye in
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(a) (b) (c)

Figure 5.4: Diffusivity adjustment in the Buoyant Flow dataset (vertical cross section, low tem-
perature - blue, high temperature - red). Virtual dye (green, mixed with color from temperature)
seeded at hot plate at lower image border. Using (a) Dφ = 1.11 ·10

−5, (b) Dφ = 1.65 ·10
−5, and

(c) (theoretical) diffusivity from simulation Dφ = 2.19 · 10
−5. In (a) the dye region is too small,

in (c) too large, and in (b) the reduced diffusivity compensates numerical diffusion well.

(a) (b) (c)

Figure 5.5: Dye advection in Buoyant Flow dataset. Advected dye (green, without diffusion

model) seeded at center (black box). Finite volume method using WENO reconstruction at both
dye resolutions (a) 244×124×244 and (b) 122×62×122 exhibits much lower numerical diffusion
than first-order reconstruction at 244×124×244 in (c).

this region and using the active diffusion model (Equation 5.3), one can adjust Dφ until
φ matches the (time-dependent) ψ field, see Figure 5.4. This can compensate for inap-
propriate Dψ due to both numerical diffusion in the simulation and dye advection. The
obtained Dφ can then also be used as Dψ in the passive diffusion model.

WENO Reconstruction

As stated in the previous section, the finite volume formulation requires the evaluation
of fluxes at the cells faces, necessitating the reconstruction of φ between neighboring
cells. As opposed to the first-order upwind scheme described in the previous section,
the WENO reconstruction is a higher-order method based on polynomial reconstruction
that eliminates undesired oscillations of the reconstructed polynomial and provides high
quality solution to the advection problem. Because of these characteristics and also
due to relatively easy parallelization, this method has been widely used in simulations.
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i

(x)

Figure 5.6: Example of 1D WENO

reconstruction with quadratic poly-
nomials. Cell centers x with cell-
averaged values φ and reconstruc-

tion polynomials φ(x). Resulting re-
construction φ WENO(x) for cells i− 1

and i (bold).

u

i j

(a)

u

i j

(b)

∂φi/∂x

∂φij/∂x
∂φj/∂x

i j

(c)

Figure 5.7: (a), (b) Riemann solu-

tion for fluxes. WENO reconstruc-
tion (bold) exhibits discontinuities at
cell faces. Flux (transparent rect-

angle) is determined from advection
direction u, choosing “donor” side.
(c) For diffusion, gradient at faces

is computed from central reconstruc-
tion polynomial (green, blue) and av-
eraged (black) (cf. Figure 5.6).

The WENO reconstruction is described in this section in 1D, as it is applied in the dye
advection technique.

Similarly to the upwind scheme (Equations 5.9 and 5.10), the flux is determined
explicitly from the velocity direction at the cell face. However, the actual values φ(xi± 1

2

)

are computed at the cell faces from the reconstructed polynomials φ WENO.

φ WENO(xi− 1

2

) =

{

φ WENO
i−1 (xi− 1

2

) if u(xi− 1

2

)≥ 0 ,

φ WENO
i (xi− 1

2

) if u(xi− 1

2

)< 0 ,
(5.13)

φ WENO(xi+ 1

2

) =

{

φ WENO
i (xi+ 1

2

) if u(xi+ 1

2

)≥ 0 ,

φ WENO
i+1 (xi+ 1

2

) if u(xi+ 1

2

)< 0 .
(5.14)

Below, the computation of the polynomial φ WENO is described for the example of third-
order accurate reconstruction (i.e., using second-order polynomials). In the experiments
demonstrated in Section 5.1.5, a good trade-off was obtained between efficiency and ac-
curacy using fourth-order accurate WENO, i.e., cubic polynomials. The reader is referred
to [41] for a thorough introduction to the topic and further details, also regarding the ex-
tension to higher degrees.
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Consider a second-order reconstruction polynomial

φk(x) =
2

∑
j=0

ŵk
jx

j , (5.15)

with k being the index of their central cell, and coefficients ŵk
j (see Figure 5.6). The

coefficients are chosen such that the integrals of φk over the cells are conservative, i.e.,
they are identical to the cell-centered values φ i:

∫ x
i− 1

2

x
i− 3

2

φk dx = φ i−1 ,
∫ x

i+ 1
2

x
i− 1

2

φk dx = φ i ,
∫ x

i+ 3
2

x
i+ 1

2

φk dx = φ i+1 . (5.16)

Solving the integrals, polynomials with coefficients ŵk
j are obtained

ŵk
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(5.17)

that can be formulated as a matrix-vector product:

Lk





ŵk
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with Lk representing the stencil matrix:
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During dye advection, the coefficients ŵk
j are determined by





ŵk
0

ŵk
1

ŵk
2



= L−1
k





φ i−1

φ i

φ i+1



 .

Since the stencil matrix only depends on polynomial degree and the cell index k relative
to the central cell i, its inverse L−1

k can be precomputed. The reconstruction φ WENO
i (x)

of the concentration inside cell i is a linear combination of the polynomials φk(x):

φ WENO
i (x) =

i+1

∑
k=i−1

ωkφk(x)
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with weights ωk = ω̃k/∑i+1
j=i−1 ω̃ j using ω̃ j = λ j/(ε +σ j)

r. As reported in [41], values

ε = 10
−5 and r = 4 are used, and λ j is chosen such that the polynomial of the central

cell is favored:

λ j =

{

103 if j = i,

1 otherwise.

The oscillation indicators σ j assign high values to less smooth polynomials and can be
obtained from σ j = ŵ jΣŵ j, where the elements of matrix Σ in the third-order WENO

example are given by

Σmn =
2

∑
r=1

∫

V

∂ rxm

∂xr

∂ rxn

∂xr
dx.

The matrix Σ can also be precomputed, e.g., using a computer algebra system, since,
after transformation to a reference space, it neither depends on the mesh nor on the
problem. In Figure 5.6, the resulting WENO reconstruction polynomials for the two
cells in the center are marked with bold lines.

For the computation of the diffusion fluxes di+ 1

2

and di− 1

2

, the concentration gradi-

ent at position xi− 1

2

(and respectively xi+ 1

2

) is computed by averaging the gradients of

the central polynomials of cells i−1 and i (i and i+1, respectively):
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In the example with the second-order polynomial, this results in
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)

,

on the left and right cell face, respectively. See Figure 5.7(c) for an illustration.
To simplify implementation, the computation of φ WENO(x± 1

2
) is done in a reference

space, where δx = 2 and x = 0. Thus, the evaluation of the polynomial at the cell faces
where x =±1 reduces to φk(x) = ∑k wk · (±1)k.

Prediction Steps

With the computed concentration φ WENO(xi+ 1

2

), the advective flux on the right cell
face could be obtained by Equation 5.8, with time-averaged uavg = [usim(xi+ 1

2

, t) +

usim(xi+ 1

2

, t + δ t)]/2. Including passive diffusion would yield the velocity u = uavg−
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(a) (b) (c) (d)

Figure 5.8: (a)–(c) Dimensional splitting applied in the finite volume method reduces the dye
transport to 1D problem, subsequently in x-, y-, and z-direction. (d) Blocks that do not fit into
GPU shared memory are divided (dark blue line, for x-direction), and ghost cells (light red) are

stored for the computation of the reconstruction polynomials.

Dψ [∂ψ(xi+ 1

2

, t)/∂x+∂ψ(xi+ 1

2

, t + δ t)/∂x]/2. An analogous procedure could be done

for the left cell face. However, to further improve the accuracy of the finite volume
scheme, prediction steps are employed instead that account for changing concentration
and the resulting polynomial reconstruction within the time interval δ t. The underlying
idea is to obtain a better accuracy for the fluxes f and d within ]t, t + δ t] by generat-

ing predictions using integration. For this purpose, an approximation φ̃ t for ∂φ/∂ t is
obtained from Equation 5.3 by moving the advection term to the right side [41]:

φ̃ t := ∂φ/∂ t = Dφ ∆φ − (∇φ)u .

To compute the temporal change of concentration, φ̃ i(τ +δ t/n) = φ̃ i(τ)+ φ̃ tδ t/n is

evaluated in parallel for all cells. In the 1D case, φ̃ t = Dφ ∂ 2φ̃i/∂x2− ∂ φ̃i/∂xu. The
procedure is repeated n times (n = 1 in the experiments demonstrated in Section 5.1.5)

and each time WENO reconstruction is applied to φ̃ i(τ) to obtain φ̃ WENO
i (τ). In each

step, f i+ 1

2

(τ) and f i− 1

2

(τ) as well as di+ 1

2

(τ) and di− 1

2

(τ) are computed from φ̃ WENO
i (τ).

During prediction steps, these fluxes are accumulated and finally used in Equation 5.12
to obtain φ i(t +δ t) = φ i(t)+δφ i.

5.1.4 Implementation

The finite volume method with WENO reconstruction scheme greatly benefits from the
GPU parallelization due to spatial and temporal locality of the algorithm. Moreover,
the dimensional splitting reduces the dye transport computation to a much simpler 1D
problem, while data streaming ensures memory efficiency.

In the implementation, the CUDA API has been employed to compute advection-
diffusion (with single precision arithmetic). Each GPU thread block loads an array
of data from the device memory into its shared memory along the current axis of
dimensional splitting (Figure 5.8(a)–(c)). The number of thread blocks equals bd =
r((d + 1)mod3)× r((d + 2)mod3)×⌈r(d)/s⌉, where r(d) is the resolution in dimen-
sion d, and s is the size of a thread block, limited by GPU shared memory size. If the
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Figure 5.9: Advection-diffusion procedure. Operations in blue blocks are performed on CPU,
OpenGL is used in orange blocks, green blocks are done in CUDA on GPU.

WENO Reconstruction 1st Step

WENO Reconstruction 2nd Step

WENO Reconstruction 3rd Step

Output from kernel

Figure 5.10: Domain splitting for dimensions of the dye grid exceeding GPU shared memory.
Number of prediction steps and order of WENO reconstruction define the number of ghost cells.

resolution r(d) is too large, the arrays must be divided into overlapping subsets (Fig-
ure 5.8(d)) which are processed separately. The overlaps (ghost cells) are necessary to
perform WENO reconstruction, and their size depends on the WENO order and the num-
ber of prediction steps. In Figure 5.10, an example array is shown for three prediction
steps and second-order polynomial. For optimization, processing of a thread block is
skipped if no dye is present in the processed cells. This is determined using parallel
reduction (i.e., summation of array elements). Please refer to the Appendix for details
on the GPU architecture relevant to the implementation.

Figure 5.9 describes the overall procedure. There are several input parameters that
are defined before the interactive advection, such as the order of the WENO polynomials,
and the resolution of the advection grid. Additional geometry objects can be loaded
and rendered together with the ray-casted volume. Device (GPU) memory is allocated
for the dye, the two consecutive time steps of simulation data, and the OpenGL buffers.
The input data (i.e., vector field for advection and scalar field for passive advection
and/or visualization) are streamed in each loop. The WENO reconstruction is carried out,
and the advection and diffusion fluxes are computed. Finally, the dye concentration is
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(a) (b) (c)

Figure 5.11: Buoyant unsteady flow example (with clipping) by green dye seeded at the hot
(red) plate. Pure advection (a), only diffusion flux (b) (passive diffusion), and both advective and
diffusion flux (c) (passive advection-diffusion). In (b), diffusion flux transports the dye outward

hot air (red) and toward cold air (blue). In (c), the dye reveals the true transport of heat: it is
diffusing toward the cold plume and partially leaving at the cold (blue) plate before it is advected
downward by the cold plume.

updated in device memory. To avoid fluctuations in physical time during interaction,
respective corrections are applied to the dye advection time step δ t.

For volume rendering of dye and simulation scalar fields, ray casting based on the
example in the NVIDIA’s CUDA SDK [123] is utilized, with additional support for vol-
ume lighting, ray-casted isosurfaces [101] of the ψ field, and geometric objects.

5.1.5 Results

In this section, three CFD examples are shown that demonstrate the quality and useful-
ness of the advection-diffusion visualization. Additionally, performance with respect to
numerical diffusion, mass conservation, and speed is evaluated. All examples were run
on a GeForce GTX 960 (4GiB) and were obtained with fourth-order WENO, i.e., using
third-order polynomials.

Figure 5.3 demonstrates the quality of the visualization technique with WENO recon-
struction on the Zalesak dataset. As can be seen, numerical diffusion is substantially
reduced. For performance details, please refer to the Table 5.1.

Buoyant Flow Dataset The first CFD dataset, a buoyant flow inside a closed container,
was simulated on a uniform grid with 61×31×61 cells and 2000 time steps, spanning
50 seconds. Heat takes in this case the role of the diffusing quantity. In Figure 5.5, the
dataset is shown. The heating plate at bottom (red, 75◦C) and cooling one at the top
(blue, 5◦C) induce a time-dependent circular flow behavior. For context, two tempera-
ture isosurfaces, one at 38

◦
C (blue) and one at 42

◦
C (red), are rendered. No diffusion

model was used for the dye in this figure, it therefore reveals the mixing behavior, i.e.,
the stretching of the fluid into sheets, leading to foliation.

The presented visualization technique is particularly useful for the buoyant flow
driven by a heat gradient because such flow exhibits both advection and diffusion of
heat. The dye advection in Figure 5.11(a) shows advection only (Equation 5.1): the dye
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(a) (b)

Figure 5.12: Heating Coil dataset. Air flow from bottom to top, dye (green) seeded at two points

at lower side of coil, and isosurfaces of temperature (red). (a) Dye advection by advection only
vs. (b) dye advection by advection-diffusion of heat. It is apparent that heat is repelling the dye

from the coil and transporting it to the cooled walls in (b).

follows the hot plume upward and thereafter it is advected downward by the cold plume.
Figure 5.11(b) shows only passive diffusion (Equation 5.5 with u = 0): in this case the
dye, representing heat, follows the heat gradient and therefore flows from the hot plate
through the cold plume into the cold plate at the top of the container. Figure 5.11(c)
shows the superposition of the two, the true advection-diffusion of heat: similarly to
Figure 5.11(a), the dye is advected upward, part of it, however, is caught by the cold
plate instead of being advected downward again by the cold plume.

Heating Coil Dataset The second example, a flow around a heating coil, is quasi-
stationary and was simulated on an unstructured tetrahedral grid comprising 93227 cells.
The dataset was converted to a uniform grid, where interpolation weights for each node

Table 5.1: Performance for Buoyant Flow dataset at different configurations (no lighting and
no isosurfaces). 1) Single dye at resolution 122× 62× 122 with early rejection (worst case in

brackets), and 2) without. 3) Two independent dyes, and 4) one dye at 244×124×244.

Config. Avg. FPS Render [ms] Dye comp. [ms]

Conf.1) 55.3 (45.9) 6.67 10.5 (15.9)

Conf.2) 34.1 (33.9) 4.96 23.2 (23.4)

Conf.3) 37.0 (26.4) 7.04 20.2 (30.3)

Conf.4) 17.0 (13.1) 5.96 53.4 (69.6)
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(a) (b)

Figure 5.13: Evaporating Drop dataset. (a) Transport outward the drop is revealed by passive
diffusion only. (b) However, due to the high drop speed, advection dominates the transport

behavior.

were precomputed and used for interpolating the simulation data (u, ψ) before transfer-
ring to the GPU, avoiding expensive point location at each time step.

Also in this dataset, heat is the diffusive quantity for which the visualization of
advection-diffusion has been employed. The coil is located between two cylindrical
walls: an inner and an outer one, both cooled. Air flows from bottom to top and is
heated by the coil on its way up. The visualization of advection only (Equation 5.1)
and advection and passive diffusion (Equation 5.5) reveal different transport behavior,
shown in Figure 5.12. One can easily see how heat is transported by advection-diffusion
to the cooled walls.

Evaporating Drop Dataset The last CFD example is the quasi-stationary simulation
of an evaporating drop, conducted on a uniform grid with resolution 192× 128× 128

cells, using a finite volume-based direct numerical simulation employing the volume-
of-fluid method for tracking of different phases [161]. In this case, vapor takes the role
of the diffusing quantity, therefore the advection-diffusion of vapor is analyzed. In Fig-
ure 5.13, the main air flow direction is from the left to the right. Isosurfaces show vapor
concentration 0.0001 and 0.005 (blue), and the drop is located to the left. Figure 5.13(b)
(where u= usim+uΨ) shows advection-diffusion, with dye (green) seeded continuously
at the drop. In this case, advection dominates diffusion—the passive advection-diffusion
visualization (Equation 5.5) is indistinguishable from that of advection only. Neverthe-
less, passive diffusion only in Figure 5.13(a) (where u = uΨ, and dye is seeded once)
reveals that diffusion is strongest at the upstream front of the drop.
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5.2 Streamline-Based Concepts for Analysis of 2D Flow

in Space-Time

In flow visualization, an important and well-established approach is to operate in the
Lagrangian reference frame where techniques based on integral curves are used. This is
complementary to the Eulerian-based techniques, an example of which is the FVM-based
dye visualization presented in the previous section.

Regarding feature-based flow visualization, streamlines are the basis for many visu-
alization techniques, however only for steady flow. Therefore, there is a shift away from
streamline-related concepts to those that take time dependence explicitly into account,
and the concepts in space-time representation bridge these two classes of flow visual-
ization. Particularly in the case of 2D unsteady flow, time can be treated as the third
dimension, making it possible to apply a wide variety of visualization techniques for
3D stationary vector fields. In the resulting space-time representation, 3D streamlines
represent 2D pathlines of the original field. Therefore, concepts based on space-time
streamlines are Galilean-invariant and time-aware. Galilean invariance is a beneficial
property of visualization techniques, and it is crucial for the analysis of time-dependent
flow and when analyzing flow in configurations where no natural frame of reference is
given. Considering these characteristics of space-time streamlines, the application of
several 3D streamline-based concepts for the analysis of 2D unsteady flow is investi-
gated in this section, resulting in techniques for visualization and feature extraction that
are Galilean-invariant and explicitly take time dependence into account. 2

5.2.1 Related Work

Computational visualization of time-dependent flow by means of integral curves is an
established research area. Recent strategies in this field concentrate on accurate inter-
active placement of individual curves [73] and adaptive interactive placement of small
sets of curves [116]. Research in the field of static sets of trajectories focuses on the
efficient computation of their end points or quantities along them [72], and placement
strategies for sets of whole trajectories. Research in placement of integral curves was
initiated by the image-guided streamline placement due to Turk and Banks [179] and
by evenly-spaced streamlines of arbitrary density due to Jobard and Lefer [81]. Af-
ter several works on the placement of streamlines which, e.g., extended the concept to
3D [115] or took into account vector field topology for improved placement [206, 32],
there have been works on the placement of streamsurfaces [45] in 3D and placement of
streaklines and pathlines in 2D flow to avoid intersections and cusps by limiting their
length [189], and on the placement of pathlines that avoids intersections of the curves
by decoupling integration and visualization scales [71].

In dense flow visualization, where the curves fill the entire domain, texture-based
methods give insight into the flow behavior by manipulating texture color according

2 Parts of this section have been published in: [90] and [89]
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to the flow characteristics. One of the early works in this field is LIC [30]. Here, this
technique is employed in the 3D space-time field on surface representations to depict
space-time flow behavior.

Vortex core line criteria provide a compact, topological visualization of complex
fluid behavior. An overview of standard methods for vortex extraction can be found
in the Fundamentals (Section 2.2.2). Weinkauf et al. [187] extended the instantaneous
approach to 2D and 3D time-dependent flow by applying it to the respective 3D space-
time and the 4D space-time representation. This way, they require vortex core lines in
time-dependent flow to be tangent to pathlines instead of streamlines. Note that in the
case of 2D flow, the vortex core lines in space-time represent the vortex centers of the
2D flow over time. Fuchs et al. [54] followed a similar approach by replacing acceler-
ation with its time-dependent version in the formulation by Sujudi and Haimes [170].
Methods that use the parallel vectors operator, such as the core line definition by Su-
judi and Haimes, provide accurate results when the core lines are straight, but they are
rather inaccurate in regions where the core lines are curved [150]. A recent work [112]
on the extraction of bifurcation lines according to Perry and Chong [136] employed a
refinement of the resulting feature line to avoid this error, but a respective approach for
refining vortex core lines is not yet available.

The space-time representation of 2D data was successfully employed in a wide range
of time-dependent applications in computational visualization. Examples range from
the tracking of critical points in vector fields [174, 176] to the analysis of eye tracking
data from video streams [95]. The work most closely related is the vortex core line
concept by Weinkauf et al. [187] that considered the time dependence of fields to define
features. Weinkauf et al. compare their results to the standard vortex center extraction
approach for 2D flow fields, i.e., they also extracted critical points of type focus and
center [136]. Whereas they use the Sujudi-Haimes criterion for the space-time core
line extraction, in this work Levy et al.’s criterion is employed which, although less
accurate, provides a clearer structure of time-dependent vortical flow, because it results,
at least in the presented experiments, in core lines that are less disrupted. Another
example of the application of space-time representation is the work by Machado et
al. [111], where hyperbolic trajectories in 2D unsteady vector field were extracted as
space-time bifurcation lines, which allowed for efficient computation of Lagrangian
coherent structures.

5.2.2 Space-Time Visualization

A useful property of the space-time representation is that 2D time-dependent vector
fields can be transformed into steady 3D ones by treating time as additional dimension.
In this representation, pathlines in the 2D time-dependent flow represent streamlines in
the 3D space-time field. As discussed below, streamsurfaces in this 3D field represent
streaklines or material lines in the original flow, providing an overall framework and
facilitating their extraction.
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Treating time as the third dimension is analogous to making an n-dimensional sys-
tem of ordinary differential equations autonomous by lifting its dimension to n+1. The
time-dependent 2D vector field is given by

u(x, t) :=

(

u(x,y, t)
v(x,y, t)

)

, (5.18)

with x := (x,y)⊤ and time t. Its 3D space-time representation is obtained by treating the
time domain as the third spatial axis:

u′(x′) :=





u(x,y, t)
v(x,y, t)

1



 , (5.19)

with x′ := (x,y, t)⊤. Setting the third vector component to one ensures correct progress
along the time axis when stepping according to the vector field u′. This way, one obtains
a stationary 3D vector field that encodes the dynamics of the original time-dependent
2D vector field and is invariant under Galilean transformations—adding constant ve-
locity to u′ changes the orientation of the vector field and hence skews the space-time
streamlines, the effect is, however, compensated by the resulting skew of the space-time
domain [111]. Please note that trilinear interpolation of u′ is employed in the imple-
mentation, i.e., spatial bilinear interpolation is combined with linear interpolation in
time.

Characteristic Curves

Streamlines of the original (time-dependent) field u represent instantaneous integral
curves. In the space-time framework, they could be obtained by solving initial value
problems in the modified representation (u(x,y, t),v(x,y, t),0)⊤. Pathlines, in contrast,
represent the true time-dependent trajectories in flow fields. Since u′ represents a sta-
tionary 3D vector field of the original time-dependent 2D vector field u, 3D streamlines
in u′ represent pathlines in u, i.e., when projecting the 3D streamline along the time
axis, one obtains the respective pathline in u.

A streamsurface is obtained by densely seeding streamlines along a seeding curve.
Since each particle of a material line moves along a pathline and because all particles
move for the same time duration, one can obtain material lines by means of stream-
surface integration in u′. All constant-time sections (i.e., t = const.) of these stream-
surfaces represent the material line at the respective time t. Since material lines are
seeded only at one instant of time along a curve, the seeding curve of the streamsurface
needs to be located in the domain of u′ within an xy-plane, i.e., it has no extent in time.
Figures 5.14(a)–5.14(d) demonstrate material lines at selected instants of time, which
represent sections of the corresponding space-time streamsurface (obtained using the
algorithm by Hultquist [76]) shown in Figure 5.14(e).
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(a) t = 0.05s (b) t = 1s

(c) t = 1.5s (d) t = 2.5s (e) t ∈ [0,3]s

Figure 5.14: Material lines and space-time representation. (a) A material line (purple) is seeded
as a vertical line at the center of the spatial domain. (b)–(d) The material line folds and stretches

continuously in the unsteady flow. (e) Time sections of the streamsurface of u′ represent the
material lines from (a)–(d).

Streamribbons [180] can be seen as a special case between streamlines and stream-
surfaces. They represent narrow constant-width strips which show twist near stream-
lines. Streamribbons are usually constructed by integrating a streamline and during in-
tegration, an initially randomly chosen orientation vector is propagated along the stream-
line. During this propagation, the direction vector is kept orthogonal to the streamline
tangent and rotated based on the velocity gradient, i.e., rotated the way a particle in the
vicinity of the streamline would locally rotate around the streamline. From this informa-
tion, a narrow band is constructed by generating a triangulated surface strip along the
streamline that approximates the streamribbon. While in true 3D vector fields stream-
ribbons typically represent an appropriate approximation of swirling flow behavior, ro-
tation in u′ takes place in the xy-plane only. Hence, streamribbons whose streamline
is not aligned with the t-axis would be subject to inappropriate representation, i.e., the
edges of the ribbons could point reverse in time, which would be misleading. Therefore,
a dedicated construction algorithm for the space-time vortex core ribbons is proposed
which is a modified concept for visualizing vortical flow in 3D space-time.

Space-Time Line Integral Convolution

In the presented approach, 3D LIC [30] is employed to the space-time vector field u′.
Thus, the output texture is a 3D scalar field containing the smeared LIC noise, denoted
here as space-time LIC. This space-time LIC is mapped to surfaces to visualize the space-
time dynamics of the vector field at these surfaces, similar to Bachthaler et al. [11].
In cases where a surface region is aligned with u′, i.e., locally a streamsurface of u′,
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the resulting pattern on the surface exhibits the shape of the streamlines used for LIC

computation. In cases where the surface region is perpendicular to u′, the resulting
pattern exhibits rather a dotted structure, since the surface is a cross section of LIC.

Space-Time Vortex Core Lines

As described in Section 2.2.2, there are several vortex extraction criteria that operate in
3D steady flow. It has been noted there that, although a vortex core line has to be tangent
to streamlines, it is a common circumstance that vortex core lines do not represent single
streamlines but rather consecutive short streamline segments [154]. Since u′ is a 3D
steady representation of 2D time-dependent flow, the streamlines in u′ can be utilized
for the analysis and definition of vortices in 2D unsteady flow, whereby the vortex core
lines in u′ are a space-time representation of the vortex centers of the 2D flow over time.

In this work, vortex core line criteria according to Levy et al. [38] and Sahner et
al. [155] are applied to u′ to obtain time-dependent definitions for vortex centers in
unsteady 2D flow fields. The results are compared to those from the Sujudi-Haimes
criterion in space-time [187] in Section 5.2.3. There, it turns out that while the Sujudi-
Haimes approach tends to be more accurate, it strongly suffers from disrupted core
lines in our applications, even for very large angle criteria. In contrast, Levy et al.’s
and Sahner et al.’s criteria in u′ provide core lines that are more coherent, however, at
the cost that they are less accurate than those from the Sujudi-Haimes criterion, but still
substantially more accurate than vortex center extraction by means of critical points
(which is not Galilean-invariant).

The parallel vectors operator [134] is commonly used for the definition and extrac-
tion of line-type features: it identifies points where two vector fields are parallel or
antiparallel. In this framework, the angle between the feature tangent, here the tangent
to the vortex core line, and the two parallel vectors serves as a quality measure, which
is denoted here as angle criterion. The smaller this angle, the more distinguished the
vortex core line is. Nevertheless, in typical cases, one needs to allow quite large, e.g., 45

degrees, angles to avoid disrupted core lines, with the result that there will be parts with
flux through the vortex core line. The presented vortex core line extraction employs the
parallel vectors algorithm described by Peikert and Roth [134], where each quad face of
a grid cell is split in two triangles to detect the intersection points of the core line with
the cell faces. To suppress spurious solutions, those parts of the core lines violating the
angle criterion or leading to too short core lines are rejected.

Vortex Core Streamsurfaces

One of the advantages of vortex core lines is that they provide a concise picture of flows
with respect to vortical motion, i.e., they clearly indicate the location and longitudinal
extent of vortices, and avoid visual clutter and occlusion. However, this advantage at
the same time involves the drawback that they do neither convey the transversal extent
of vortices nor the strength or direction of rotation. Using color coding to map scalar
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vortex criteria on the core lines can give a notion of the strength of vortices, but it cannot
provide insight into their dynamics.

A common approach to address these issues is to augment the vortex core lines by
selected streamlines or pathlines, either seeded interactively in the vicinity of the core
lines, or by automatic seeding, e.g., on circles centered and oriented perpendicular to the
core lines [154]. However, this approach likely leads to visual clutter due to overlapping
lines. Hence, alternative approaches based on streamsurfaces of u′ are investigated.

Since, depending on the quality of their extraction, vortex core lines in practice do
not represent streamlines, seeding a single streamsurface at the upstream end of each
vortex core line and integrating it until it reaches the length of the core line would in
general not be useful—the streamsurface would likely deviate from the core line. Hence,
one approach is to use regular time intervals and seed a streamsurface at the beginning
of each interval and stop it at its end. This approach was investigated for straight or
circular seeding curves, both aligned in the xy-plane of u′, as shown in Figure 5.21.
To support the perception of rotational dynamics and stretching of the surfaces, “candy
stripe” texture was added to the streamsurfaces. It can be seen that this approach visu-
alizes both the flow in the vicinity of the core lines as well as the transport away from
the core lines. While the straight seeding strategy emphasizes the overall transport, the
circular seeding gives better insight with respect to rotation. Note that these approaches
are, with minor modification (e.g., replacing streamsurfaces with pathsurfaces), also
applicable to true 3D flow fields.

There remains, however, a major issue with this approach, i.e., the difficulty to find
an appropriate restart interval. Too frequent restarts lead to visual clutter, whereas too
few restarts produce streamsurfaces that deviate too far from the core line and hence
do not provide visualization of the vortical flow. These difficulties motivated the devel-
opment of vortex core ribbons (Section 5.2.2), which are inspired by setting the restart
interval to an infinitesimal value.

Vortex Core Ribbons

An approach inspired by streamribbons is derived in this section. Streamribbons are
originally constructed along streamlines and show both the shape of the streamline to-
gether with twist. Since vortex core lines are close to streamlines in 3D flow fields
(assuming small angle criteria, as discussed above), or to streamlines in u′, ribbons
along vortex core lines can be constructed to visualize swirling flow. This approach can
be applied to any 3D flow field by constructing streamribbons along core lines. Since
rotation takes place in u′ only in the xy-plane, a modified ribbon construction scheme is
introduced, as illustrated in Figure 5.15.

Instead of initializing a random direction vector and propagating it along the stream-
line (or core line), as would be done for traditional streamribbons, two streamlines in u′

are simultaneously seeded at the ‘earlier’ end of the space-time core line. Both stream-
lines are integrated for a small step using the fourth-order Runge-Kutta scheme in u′ to
obtain the new position of the two particles. Since after each integration step the parti-
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Figure 5.15: Construction of space-time vortex core ribbons. (a) Two particles pi
1

and pi
2

(red
dots) are seeded at time ti and integrated forward to ti+1. In (b) the same as in (a) is shown,

with the time axis pointing out of the page. (c) At t = ti+1, the particles are translated so that
their center of gravity (blue) lies on the vortex core line (green) and the distance between them
is equal to the ribbon width (points p̃i+1

· ). (d) Between the points pi
· and p̃i+1

· , a triangle mesh is

generated.

cles can deviate from the core line, an xy-translation is needed such that their midpoint
is located on the vortex core line. Subsequently, the distance between each of the two
points and the closest point on the core line is adjusted to half of the prescribed ribbon
width. Finally, using the resulting two points, a triangulated surface patch is constructed
that connects to the previous front of the ribbon.

There are two main differences between the space-time approach and the original
streamribbon construction [180], irrespective if carried out along streamlines, as in the
original definition, or along vortex core lines. First, in the traditional approach, the front
of the ribbon is kept perpendicular to the streamline (or core line), while in the space-
time approach, the front is kept aligned in the xy-plane, because all streamlines advance
at the same pace in time (note the 1-component in Equation 5.19). Hence, the width of
the space-time vortex core ribbon is not constant in space-time. Instead, its intersection
with planes at t = const. has constant length. This has the benefit that the tangents of the
ribbon cannot point reverse in time. Second, while the twist of traditional ribbons would
express differential rotation at the central streamline (or vortex core line), the twist of the
space-time vortex ribbons expresses the combined twist of the two streamlines, locally
positioned at both sides of the ribbon. This is less misleading, in particular for wide
ribbons, because ribbon-based visualization implies that the shape of the ribbon not
only shows flow at its medial axis but along its overall extent.

5.2.3 Results

The utility of the space-time visualization concepts is demonstrated using a 2D time-
dependent CFD simulation of a buoyant flow.

2D Buoyant Flow The dataset represents a 2D CFD simulation of air flow in a square
container with the bottom wall heated at 75

◦
C and the upper cooled to 5

◦
C. This drives
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(a) (b)

(c) (d)

Figure 5.16: 2D Buoyant Flow dataset in space-time representation (x: red, y: green, t: blue),
with time increasing to the left. (a) The isosurface of normalized helicity of u′ at isolevel 0.6
provides rather cluttered visualization. (b) Same as (a), but isolevel 0.95 nicely reveals individ-
ual vortices over time. Regions marked in red are visualized in Figures 5.19(a) and 5.19(b).
(c) Isosurface of λ2 of u′ at isolevel −0.0001 results in clutter, similar to (a). (d) Same as (c), but,

compared to (b), isolevel −70.0 fails to reveal dynamics of the vortices.

a buoyant convection flow. The side walls exhibit adiabatic boundary conditions and
all walls are no-slip boundaries. There are two obstacles to induce the development
of unsteady flow. The data is given on a structured grid with an overall resolution of
101×101 nodes and 401 time steps.

In Figure 5.16, visualizations by means of isosurfaces of vortex criteria are demon-
strated. Figures 5.16(a) and (b) show isosurfaces of normalized helicity of u′, at isolevels
0.6 and 0.95, respectively. The isosurface was clipped at the front left (x-max) face of
the domain to provide view to the inside. In Figure 5.16(b), one can see how two vortices
originate at the bottom square obstacle and start to rise (two red parts on the right-hand
side of the figure). Normalized helicity provides results superior to λ2 (Figures 5.16(c)
and (d)) in this dataset.

Next, different vortex core line definitions are investigated in Figure 5.17. Criti-
cal points, Sujudi-Haimes core lines, and Levy core lines provide comparable results,
whereas valley lines of λ2 somewhat deviate. It is apparent that the Sujudi-Haimes core
lines are severely disrupted and it is difficult to discern the vortical structure. In contrast,
the space-time Levy criterion clearly reveals the vortex structure in the unsteady flow.

Projections along the time axis of vortex core lines according to Levy and Sujudi-
Haimes’ criterion are shown in Figure 5.18(a) and 5.18(b). The arrows show the velocity
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(a) (b)

(c) (d)

Figure 5.17: Space-time vortex core lines in the 2D Buoyant Flow dataset (time increases from

right to left): (a) curves of critical points of type focus and center in u, (b) Sujudi-Haimes vortex
core lines in u′, (c) λ2 valley lines in u′, and (d) Levy vortex core lines in u′. Sujudi-Haimes vortex
core lines are severely disrupted.

(a) (b) (c)

Figure 5.18: Projection of (a) Sujudi-Haimes and (b) Levy space-time vortex core lines along
the time axis (color legend for time). Black obstacles and gray velocity arrows at time t = 10.0s

are displayed for context. Core lines according to Levy’s criterion are longer and thus easier to

analyze. (c) Time projection of Levy vortex core ribbons.

field at the last simulation time step and reveal highly vortical flow. The vortex core lines
in both figures give insight into the evolution of vortex centers over time. Some of the
core lines remain in one region (e.g., in the center of the lower right quarter), others
move across the domain (e.g., the core line starting to the left of the lower obstacle).
Although Sujudi-Haimes vortex core lines (Figure 5.18(a)) are more accurate in this
dataset, Levy core lines (Figure 5.18(b)) are easier to follow in the 2D projection, since
they are less fragmented.

Figure 5.19 provides a more detailed comparison of the vortex core lines obtained
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(a) (b)

Figure 5.19: Selected vortex regions in the 2D Buoyant Flow dataset. Vortex core lines shown
with high-saturated thick tubes (colors from Figure 5.17), and pathlines with low-saturated thin

tubes, seeded at the orange spheres at the respective core line. The isosurface of normalized
helicity is displayed for context. Visualization of the regions depicted in red in Figure 5.16(b):
(a) the front right region, and (b) the region back left.

by the different definitions. In Figure 5.19(a), pathlines seeded at Sujudi-Haimes core
lines (yellow) exhibit least swirl, i.e., they follow the yellow core line tightly, whereas
pathlines started at Levy core lines (blue) exhibit more swirl. Pathlines started at critical
points (red) exhibit even more swirl, whereas pathlines seeded at λ2 valley cores (green)
exhibit the largest swirl radius and are therefore most inaccurate. Hence, Sujudi-Haimes
core lines are most accurate in this dataset, however, with the drawback that they are
strongly disrupted. This affects perception and can hinder derived visualization, e.g.,
the construction of our vortex core ribbons (Figure 5.23(b)). In Figure 5.19(b), one can
see that pathlines seeded at the Sujudi-Haimes core line at the upper curved vortex are
again closest to the vortex center. However, all definitions provide similar results at the
vortex at the bottom of Figure 5.19(b), because this vortex is straight in u′ and oriented
along the t-axis, i.e., the vortex does not move within the examined time interval. All
in all, best results were obtained with the space-time Levy criterion, because it provides
a good tradeoff between accuracy and readability—although it deviates from the true
vortex core more than the Sujudi-Haimes criterion in the experiments, it provides more
continuous structures and it is more accurate than vortex visualization by means of
critical points or valley lines of λ2 in u′.

Figure 5.20 demonstrates the use of space-time LIC on streamsurfaces of u′, i.e., on
material lines in space-time representation. Due to LIC, one can easily interpret the dy-
namics within the material line. The ridges in a slice of the FTLE field [64] exhibit high
correlation with the material line because the material line is attracted by the ridges,
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(a) (b) (c)

Figure 5.20: Space-time material line in the 2D Buoyant Flow dataset, seeded at purple curve,

with space-time LIC visualizing stretching and folding of material line (a). Time increasing along
the blue axis to the back. Material line stretching is apparent, e.g., from the LIC at the top left
region. (b) Green intersection curve represents a material line. (c) The FTLE field located at the

respective instant in time exhibits high correlation with this material line.

(a) (b)

Figure 5.21: Vortex core surfaces in u′ with (a) line seeding and (b) circular seeding along each
Levy core line and reset every 0.375s (the time domain of the simulation is 10s). Stripes on the
surfaces additionally reveal rotation and stretching.

which represent attracting Lagrangian coherent structures (LCS). The FTLE field is com-
puted from trajectories started at the slice in space-time and integrated in reverse time
until the start of the dataset. Since in the presented experiment, a material line was
seeded at the arbitrarily-chosen purple curve instead, there are some deviations between
the FTLE ridges and the material line. The space-time material lines give insight into
topology-related flow behavior, without costly computations as would be required to
obtain the FTLE field.

In Figure 5.21, vortex core streamsurfaces are visualized. For each core line, a
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(a) (b)

Figure 5.22: Space-time vortex core ribbons textured with space-time LIC in the 2D Buoyant

Flow dataset, with focus on the region from Figure 5.19(a). Time increases to the right along
the blue axis. (a) Narrow vortex core ribbons along Levy core lines in u′ nicely visualize twist

along core line, i.e., the rotational dynamics of the vortices. However, the bands are too narrow
to visualize the LIC texture well. (b) Same as (a), but with wider ribbons to better show the
space-time LIC texture.

(a) (b)

Figure 5.23: (a) Top view of vortex core ribbons from Figure 5.22(b). Time increases to the left

along the blue axis. (b) Same as 5.22(a), but applied to Sujudi-Haimes core lines, suffers from
their disrupted geometry, resulting in visual clutter.

vortex core streamsurface is generated at its starting point and reseeded every 0.375s.
The advection is stopped at the time at which the core line ends. Line seeding and
circular seeding are used in Figures 5.21(a) and 5.21(b), respectively. While the former
better reveals the overall transport along and from the core line, the latter emphasizes
rotation.

Finally, Figures 5.22 and 5.23 demonstrate the utility of the vortex core ribbons.
While narrow ribbons reduce occlusion and better visualize twist along the core lines,
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they are often too narrow to appropriately visualize the LIC texture. Increased ribbon
width shows the LIC texture well (Figure 5.22(b)). One can identify regions where the
LIC patterns cross the core line or where the patterns are more point-like than line-like.
These are locations where the flow is not tangent to the core line, i.e., where its quality
is rather poor with respect to the angle criterion. Even the purely spatial (2D) time pro-
jection of vortex core ribbons (Figure 5.18(c)) reveals the vortical flow around the core
lines. The swirling motion is clearly visible for the core lines starting near the lower
obstacle, as well as for the core lines in the lower right and upper left corners. Finally,
although the Sujudi-Haimes criterion provides more accurate results, the frequent dis-
ruption of core lines leads to disintegrated and inferior vortex core ribbons that are very
hard to interpret (Figure 5.23(b)). This motivates the use of our proposed space-time
Levy core line criterion also for vortex ribbons in this dataset.
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5.3 Implicit Vector Field Topology

Vector field topology is concerned with the identification and extraction of regions of
qualitatively different streamline behavior within the domain of a steady vector field.
The behavior is determined with respect to spatial convergence as time reaches ±∞.
The structures that the streamlines converge to include critical points (isolated zeros of
the vector field) and periodic orbits (isolated closed streamlines) which can be classified
in terms of their attraction/repulsion behavior. Critical points exhibiting both attracting
and repelling behavior are classified as hyperbolic or saddle-type. Please see Chapter 2
for a detailed description of different types of topological features in 2D vector fields.

In traditional vector field topology, the topological flow structure, i.e., topological

skeleton, is visualized explicitly by means of graphical representation [68] of the criti-
cal points, periodic orbits, and their manifolds, i.e., so-called separatrices, consisting of
streamlines that converge to saddle-type critical points in forward or reverse time direc-
tion. Although this approach is very successful, it involves several difficulties. First, it
depicts the boundaries of the different regions by means of separatrices, but does not de-
pict the regions themselves, hence complicating interpretation. Second, it may require
the extraction of further topological structures together with the respective separatrices
that converge to those structures in forward or reverse time direction. Extraction of each
of these structures must be handled individually and the respective implementation is
usually non-trivial. Beyond that, the approach may require explicit treatment of more
intricate structures such as strange attractors.

These challenges motivated the development of implicit visualization of vector topol-
ogy where, instead of extracting the boundaries of the regions, the focus is on the visu-
alization of the regions directly. This is accomplished by extracting all critical points
of a vector field, densely seeding streamlines, and assigning to each seed the ID of
the critical point that the streamline converges to. Since it would take infinite time for
a streamline to reach a critical point, a sphere with radius ε is defined for each criti-
cal point and it is tested if the streamline enters such a sphere. To reduce the costly
streamline integration, a refinement scheme is presented that increases the sampling at
the region boundaries, i.e., at the implicitly visualized separatrices. The approach is
demonstrated on 2D vector fields, it can be, however, readily extended to 3D. 3

5.3.1 Related Work

The concept of vector field topology was introduced in the context of visualization by
Helman and Hesselink [68] who provided a space-time representation of vector field
topology. For visualization of 3D vector field topology, Weinkauf et al. [188] extended
the concept of saddle connectors to boundary switch connectors that represent sepa-
ration surfaces emanating from boundary switch curves. Closed streamlines were in-
vestigated by Wischgoll and Scheuermann [202] who analyzed grid cells reentered by

3 Parts of this section have been published in: [91]
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(a) (b) (c)

Figure 5.24: Grid refinement. The red curve represents the separatrix to be captured, with

streamlines seeded on both of its sides reaching different critical points. (a) After initial stream-
line integration from the grid nodes, the ID of the respective critical point is stored at the node
(blue/green). (b) If two nodes with different labels share an edge, all edges sharing those nodes

are subdivided by inserting a new node at the edge midpoint. These new nodes are incorpo-
rated into the grid using Delaunay triangulation. (c) The process is repeated until the minimum

edge length threshold is reached.

streamlines to detect periodic orbits. Theisel et al. [175] extracted the closed stream-
lines in 2D vector fields by detecting intersection curves of streamsurfaces advected
forward and backward in extruded 3D space-time vector field representation. Visualiza-
tion of another topological feature was proposed by Machado et al. [112] who locally
extracted bifurcation lines and their manifolds using a modified method for vortex core
line extraction. Friederici et al. [52] presented an approach for segmentation of 2D vec-
tor fields using finite time separation characteristics along separatrices. Their method
avoided costly computation of flow maps.

5.3.2 Visualization

The input to the visualization technique is the vector field sampled on a 2D uniform
grid with cell size δ , a refinement threshold σ , the positions of its critical points, and
the radius ε of the spheres around the critical points. The radius ε > δ/2 is chosen to
make sure that there is at least one node of the sampling grid within each sphere. The
algorithm consists of two phases.

In the initial phase, each critical point is given a unique non-negative ID, and a
streamline is seeded at each node of the sampling grid and integrated over the predeter-
mined time with the fourth-order Runge-Kutta scheme. After integration, each stream-
line p consists of Np vertices such that xp,0 is the seed and xp,Np−1 is the last vertex
of the streamline. Subsequently, the first vertex along the streamline is found that is
contained in one of the spheres centered at the critical points, and the respective ID of
that critical point is stored at the seed node of the sampling grid. The first encountered
critical point is determined by subsequently computing the distance s = ‖xp,i−xc j

‖ for
points xi, i = 0, . . . ,Np−1 on the streamline p to the critical points c j until s < ε for any
c j. If no vertex could be found in any of the spheres, the ID at the respective node is set
to −1. After this phase, IDs are assigned to all grid points.

In the second phase, the sampling grid is iteratively refined to capture the details of
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(a) (b)

Figure 5.25: Periodic Orbit dataset. (a) LIC [30] representation of the vector field with attracting-

focus critical point at its center (red dot), and color legend for the vector field magnitude on the
left. (b) Implicit visualization reveals topological region (red) where streamlines are attracted
toward the critical point. The boundary of this region implicitly depicts the periodic orbit.

the topology of the vector field. First, Delaunay triangulation of the sampling nodes is
employed to obtain a triangular mesh. From the mesh, all edges are extracted, and for
each edge with edge length≥ σ , IDs at both ends are compared. If the IDs are different,
sample nodes are added at midpoints of all edges sharing either of these grid points
(see Figure 5.24). Afterwards, streamlines are seeded at the new sample positions and
their IDs are determined as described above. This process is repeated, i.e., the Delaunay
triangulation step is performed for the whole grid, including the sample nodes generated
in the last iteration. Since the edges with different IDs are halved in each step, this
procedure converges to a sampling of the vector field topology at resolution σ .

The whole algorithm is performed forward and backward in time in order to capture
the regions of different behavior, e.g., with respect to convergence to sinks and sources.
The visualization is implemented as a ParaView plugin [10], where the vector field and
critical points are given as input.

5.3.3 Results

Periodic Orbit The first data set is a synthetic vector field with a repelling periodic
orbit around a critical point of type attracting focus (see Figure 5.25(a)). The presented
technique extracts in forward time the topological region connected to the critical point
(Figure 5.25(b), i.e., the region within the periodic orbit. The disk boundary implicitly
reveals the periodic orbit, since the streamlines started outside the periodic orbit reach
the domain boundary, resulting in an assignment of invalid ID (−1) at the seed points.

2D Buoyant Flow and Rotated Flow The 2D Buoyant Flow dataset is a single time
step from a computational fluid dynamics simulation of buoyant flow in a closed con-
tainer with resolution of 102×102 nodes (see Figure 5.26(a)). This dataset exhibits criti-
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(a) (b)

Figure 5.26: (a) LIC representation of the 2D 2D Buoyant Flow dataset, with color indicating

velocity magnitude (color legend on the left). Critical points by red dots. (b) Rotated Flow

dataset.

(a) (b) (c) (d)

Figure 5.27: 2D Buoyant Flow dataset (forward integration, as in Figure 5.28(a)), with region
marked with green box in (a) enlarged for (b) σ = 2.4× 10

−4, (c) σ = 1.2× 10
−4, and (d) σ =

0.6×10
−4. Smaller values of σ provide improved accuracy but cannot reveal additional regions.

cal points of type focus (very close to the center type, i.e., very small outflow/inflow) and
saddle. The Rotated Flow dataset was obtained by rotating the vectors of the 2D Buoy-

ant Flow dataset by 90 degrees counterclockwise (Figure 5.26(b)). This way, sources
and sinks were obtained from centers with clockwise and counterclockwise rotation,
respectively, while saddles have retained their type.

For both datasets, the threshold σ for the minimum edge length was set to 1.2×10−4,
which corresponds to 0.12d, where d is the diagonal of a cell from the dataset. For
the Rotated Flow dataset, the refinement resulting from different values of σ is shown
in Figure 5.27, where already with the chosen σ (Figure 5.27(c)) the details are well
captured.

The critical point radius ε was set to ε = 7.071×10−4 for the Rotated Flow dataset.
As will be shown below, this value was insufficient to capture the whole topological
structure in the 2D Buoyant Flow dataset, in which case ε = 14.142×10

−4 was used.
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(a) (b) (c)

Figure 5.28: Rotated Flow dataset. Implicit visualization with (a) forward and (b) backward
integration. (c) Overlay of (a) and (b) reveals the topological structure of the vector field.

In the Rotated Flow dataset, Figure 5.28(a) and (b) shows topological regions for
forward and backward streamline integration. The critical points, representing sources
and sinks, are the colored dots which have been captured by the refinement. The color
of the regions indicates the respective critical point ID. The overlay of the results from
both integration directions (see Figure 5.28(c)) reveals the topological structure of the
vector field, with region boundaries representing separatrices. Interestingly, a partially
developed region corresponding to the saddle point in the green box in Figure 5.28(b)
can bee seen. The backward integration captures the diagonal region (top left to bot-
tom right) corresponding to a separatrix, since streamlines do not diverge strongly from
the separatrix, and hence more remote streamlines reach this critical point. In case of
forward integration, however, the streamlines diverge faster from the separatrix (bot-
tom left to top right) and hence the separatrix is not captured at the given maximum
resolution σ . Interestingly, in the 2D Buoyant Flow dataset, the regions correspond-
ing to the separatrices emerging from that critical point are captured as fully developed
closed curves (see green box in Figure 5.29(c)). It is worth noting that, as can be seen
in Figure 5.29(a) and (b), the smaller critical point radius ε = 7.071× 10−4 leads to
disconnected separatrices corresponding to the saddle point (green box), since, due to
relatively high streamline divergence around the separatrices, few of them reach the crit-
ical point. Only after doubling the radius to ε = 14.142×10

−4, do the streamlines reach
the saddle point, therefore closing the separatrix.

Performance Analysis

To analyze the characteristics of the refinement procedure, the number of seed points
generated per iteration has been recorded for the 2D Buoyant Flow and Rotated Flow

datasets. The results are shown in Figure 5.30, where the 0th iteration corresponds to
initial grid node positions. For both datasets and in both integration directions, the first
iterations are very similar—the first refinement produces less points than in the original
grid, but in the next few iterations, the number of inserted seed points increases consid-



5.3 • Implicit Vector Field Topology 135

(a) (b)

(c) (d)

Figure 5.29: 2D Buoyant Flow dataset. With tolerance ε = 7.071× 10
−4, the blue thin lines

representing separatrices are disconnected for (a) forward and (b) backward integration due
to limited sampling. With tolerance ε = 14.142× 10

−4, the lines are closed for both integration

directions ((c) and (d)), and therefore clearly show the topological region constrained by the
separatices.

erably. This is followed by steady overall decrease in the number of new seed points for
all configurations. The interesting refinement characteristics in the first iterations can be
explained by the fact that the initial node positions have no correspondence to the topo-
logical region boundaries, which leads to the initial low-quality refinement. After the
first refinement, however, the method starts to capture the fine details as the new seed
points are inserted at positions that now correspond to the potential region boundaries.

Regarding the performance characteristics, shown in Figure 5.30(b), streamline in-
tegration time is proportional to the number of new seed points inserted and hence it
uses most computation in the first iterations. For the Delaunay triangulation (dashed
line), the computation time is dependent on the total number of points, and therefore it
increases considerably in the first iterations, due to the large number of new seed points,
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Figure 5.30: (a) Number of inserted seed points after each iteration and (b) computation times
per iteration for streamline integration (continuous line) and Delaunay triangulation (dashed line).
The low number of inserted seed points in the first iteration is due to uniform node positions that

do not correspond to the topological region boundaries.

but remains roughly constant for the following refinement steps, where the number of
new seed points decreases with each iteration.



6CONCLUSION

In this thesis, visualization techniques have been proposed for the analysis of two-phase
flow dynamics with the focus on droplet-related processes. The great complexity and
large variety of the simulated physical phenomena necessitate a comprehensive visu-
alization approach that ensures effective analysis of the involved droplet interactions,
dynamics of interfaces, and material transport in the related single-phase flow. These
aspects reflect three scales that have been identified as crucial for better understanding
of two-phase flow dynamics. Accordingly, the proposed visualization methods provide
a multi-scale approach designed to effectively support visual investigation of process at
these three different scales. Moreover, this thesis addresses many challenges inherent
to flow visualization, such as dealing with high dynamics of flow, especially in two-
phase flow with interfaces, providing innovative solutions for specific requirements of
investigated phenomena, as well as efficiently processing large data produced by CFD

simulations. In the following, the presented techniques are summarized. That is, details
are provided on how they accomplish the research goals outlined in the Introduction in
Chapter 1 and how they handle the related challenges.

6.1 Summary

This thesis provides visualization techniques designed for the analysis of different, yet
interdependent problems in two-phase flow dynamics. To handle the complexity of
the two-phase flow phenomena, the proposed visualizations were designed to support
the analysis of three important aspects: droplet interactions, interface dynamics, and
material transport in single-phase flow configuration.

Interactions in Droplet Groups The vast amount of interacting inclusions and fre-
quent topology changes resulting from splits and merges require visualization methods
that can manage large amounts of data to extract the important flow characteristics. As
has been demonstrated in Chapter 3, static representation of inclusion dynamics has
proven to be a powerful instrument for this purpose. In the visualization of inclusion
dynamics presented in Section 3.1, visualization of highly complex two-phase flow, in-
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(a) (b)

Figure 6.1: Visualization of droplet dynamics in the Peripheral Collision dataset. (a) This droplet

detached from a larger ring-shaped component. Its initial oscillation transforms into rotational
motion. (b) The graph representation reveals the overall droplet motion until it leaves the domain
(purple rings).

cluding droplet collisions and scattering of jets, has been accomplished with a novel
tightly-coupled 3D spatial and 2D space-time representations of simulation data (Fig-
ure 6.1). In the latter, an abstract graph visualization of droplet breakups and merges
is employed that provides an overall static view of the whole simulation. Geometrical
representation of segmentation in the visualization of inclusion separation (Section 3.2)
provides a detailed view on the volumetric contributions of droplets. In the presented
method, the extracted segmentation boundaries determine the volumes of inclusions
that will eventually break up, while the separation surfaces reveal the information on
the time point at which a given separation has occurred.

The two visualization techniques presented in Chapter 3 allow for a detailed and
effective analysis of droplet interactions, a task particularly difficult due to the over-
whelming complexity of the involved processes. This has been achieved by focusing on
the different droplet deformation mechanisms, as well as on relevant physical charac-
teristics whose visualization could give new insights into the investigated phenomena.
With the visualization of inclusion dynamics, it is possible to better understand the tran-
sitions between oscillation and rotation, and how these two types of motion influence the
droplet breakup, as has been shown in the demonstrated datasets. It has been achieved
by introducing novel visualization techniques based on principal component analysis,
frequency analysis, and derived physical measures, and integrating them into both 2D
and 3D views. This approach proved to be a powerful solution, since in the former it
allows to detect interesting droplets in the whole dataset, while in the latter it enables
close examination of the dynamics of the investigated droplet. Furthermore, the sec-
ond method reveals how the inclusions and the segments inside them evolve until the
breakup. For instance, it revealed that the ligaments detaching from the jet core origi-
nate from elongated core sections that, due to folding enforced by gas resistance, later
form more compact shapes. For direct representation of the inclusion separation, the par-
ticles stored during advection can be additionally used to show the temporal evolution
of inclusion segments. To ensure that the particles do not stray from the original phase,
a corrector scheme has been introduced which results in a clearer visual representation
of the segmentation. The visualization method has been successfully applied in the in-
vestigation of jets [44] where some of the flow characteristics would be very difficult to
discern without a proper visualization approach. The usability of this method has been
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further extended by tracking inclusions backward in time. In this case, the segmenta-
tion within an inclusion shows the contributions of merged inclusions. Such an approach
could be particularly useful in the analysis of multi-component flow simulations where
droplets with different chemical components collide. As has been demonstrated in this
thesis, the two methods complement each other in the goal of providing a better under-
standing of droplet interactions: the first one analyses the reasons of particular inclusion
breakups and merges, while the second one supports close investigation of these events
by showing the contributions of inclusion volumes.

The analyzed phenomena at this scale often necessitate high spatial resolution to
accurately resolve small droplets and their interactions. The resulting large datasets in-
cur additional burden during visualization. To deal with large data, in the static graph
visualization, edge clustering according to a predefined measure has been employed to
reduce visual clutter. Additionally, the level-of-detail approach enables folding and un-
folding of clustered edges, and therefore allows for exhaustive analysis of large datasets.
In the visualization of inclusion separation, domain parallelization is used to permit the
processing of large datasets. To reduce the storage requirements of simulation data, the
datasets have typically substantially reduced temporal resolution. This poses a partic-
ular problem in this visualization method, since it requires reliable particle tracking in
order to expose fine details of the separation. Hence, to account for low temporal resolu-
tion, a novel corrector scheme has been introduced that exploits the VOF-field to ensure
phase-consistent particle trajectories.

Liquid Interface Dynamics In Chapter 4, the dynamics of fluid interfaces were scru-
tinized. Fluid interfaces have a great impact on the behavior of two-phase flow on larger
scales due to the interplay of surface tension and fluid dynamic forces. They typically
lead to intricate interface formations and potential breakups. On the other hand, in the
presence of an electric field, static discharges at the droplet-insulator contact line can
inflict damage on the insulators. Therefore, it is important to visually analyze the in-
terfaces and the related processes to gain more insight into the overall two-phase flow.
To help with the investigation of interface dynamics, several visualization approaches
have been developed that address diverse, yet equally important aspects related to phase
interfaces. This chapter also showed that in order to develop relevant and effective visu-
alization techniques, close collaboration with simulation experts is vital.

In two-phase flow simulation, the PLIC interface reconstruction method strikes a
good balance between the reconstruction accuracy and computational efficiency. How-
ever, because of this trade-off, it is reasonable to expose the intricacies of phase tracking
in the simulation to visually assess the simulation quality. The presented visualization
in Section 4.1 is based on a novel interpretation of PLIC reconstruction as the first-order
Taylor approximation of the VOF field. With the Taylor approximation, it is possible
to generalize the PLIC reconstruction to higher-order approximations. This allows for a
derivation of error bounds on the implicit approximation of this field and, additionally,
it provides several geometry-based error measures with respect to the shape of the re-
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Figure 6.2: Same droplet as in Figure 6.1, analyzed

in terms of interface reconstruction in the simulation.
Here, discontinuities between interface patches are
color-coded. Large discontinuities in the top of the

droplet, revealed by intense red color, indicate possible
loss of accuracy in the simulation advection step.

construction and the discontinuities at cell boundaries (Figure 6.2). To handle highly
dynamic processes and to gain insight into advection processes, the visualization pro-
vides geometric representations of the volume fluxes used in the solver to track phases.
As has been demonstrated on the example datasets, the volume visualization can help
understand how the reconstruction can sometimes lead to the deterioration of the inter-
face, or how it artificially enforces division of liquid inclusions.

A problem inherent to two-phase flow is that the interface instability and the poten-
tial breakups are difficult to follow visually due to the clutter introduced by the presence
of interfaces. A suitable approach is therefore required to convey the interface defor-
mation and at the same time visualize the interface itself in order to indicate unstable
regions. The visualization of interface deformation in Section 4.2 focused on the defor-
mation characteristics and how these deformations transform into inclusion breakups.
The method employs a metric tensor based on the Jacobian of the local interface dis-
placement that shows the directions of stretching and the corresponding magnitudes. It
therefore provides useful insights into interface instabilities. Since the metric tensor
does not capture the actual shape change, a novel technique for the analysis of the cur-
vature change has been introduced. It utilizes the difference of shape tensors of the
geometric interfaces to reveal the bending strength and direction and hence provides a
direct and descriptive measure for interface deformation. The dynamics of interfaces is
represented by glyphs whose orientation and color indicate deformation direction and
strength, respectively. At the same time, the glyphs outline the phase interface, and
therefore provided the context for the analysis of interface dynamics. This in turn facil-
itates the analysis of highly dynamic processes.

Simulations of water droplets in the presence of electric fields are carried out to
help understand static discharges on wetted insulators. Consequently, the visualization
presented in Section 4.3 has been developed to help in the analysis of such coupled fluid
dynamic and electric field problems. The method transforms the circular contact line
of each simulation time step into a stripe, and stacks them together to form a space-
time representation of the time-dependent electric field. This novel approach avoids
the occlusion of the time-dependent process and provides a static representation of the
time-dependent process.

All techniques presented in this chapter utilize the solver proximity to various ex-
tents in order to provide useful information on the simulation behavior and to support
the analysis of droplet-specific phenomena. The PLIC visualization method exposes the
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solver-based interface reconstruction to help in the assessment of simulation quality. In
the visualization of interface deformation, on the other hand, the reimplementation of
the algorithm for curvature computation allowed to gain better understanding of the role
of the surface tension on inclusion instabilities. Finally, in the visualization of electric
field on interfaces, special handling of edge-based data representation conveyed field
discontinuities at material boundaries. These techniques show that in order to effec-
tively visualize various phenomena at phase interfaces, specially tailored solver-aware
approaches are advantageous, although the inherent disadvantage of such techniques is
their relatively limited application.

Material Transport A number of physical phenomena related to droplet dynamics
can be investigated using single-phase flow simulations. This is possible either when
the droplet internal flow is considered, or when the presence of interfaces is not relevant
for the analysis. Although visualization of single-phase flow is an established research
field, the flow dynamics still poses problems during the visual analysis. Therefore, in
Chapter 5, several visualization methods have been presented that substantially improve
the investigation of single-phase flows, either by effectively conveying the analyzed
physical phenomena, or by reducing the flow complexity and extracting relevant flow
features.

The transport of diffusive quantities simulated with CFD cannot be captured with tra-
ditional flow visualization techniques that only take into account the advective transport.
To address this issue, a dye-based visualization for advection-diffusion processes was
presented in Section 5.1. In this method, the concept of passive diffusion to visualize
diffusion fluxes was introduced that reveals the transport of diffusive quantities due to
both advection and diffusion (Figure 6.3). The employed finite volume scheme with
a WENO reconstruction technique ensures high-quality interactive dye advection with
substantially reduced numerical diffusion. For smooth and interactive visualization of
datasets with high temporal resolution, the method exploits parallelization and mem-
ory hierarchies on a GPU to efficiently process and render the streamed simulation time
steps.

This chapter showed the advantage of extracting relevant features in flow fields. It
has been employed to overcome high dynamics of fluid flow by reducing the analyzed
data to relevant information. To handle complex flow dynamics, the method presented
in Section 5.2 uses space-time representation of 2D time-dependent data, where time is
represented by the z-axis of a three-dimensional domain in a Cartesian frame. With the
third vector component corresponding to time, the 3D streamlines represent pathlines
from the original 2D time-dependent flow field. Since these pathlines are Galilean-
invariant, so are the concepts derived in the space-time representation. In this space-
time domain, several 3D streamline-based techniques were investigated for the analysis
of 2D time-dependent flow. The employed vortex core line extraction criteria provide
a good balance between accuracy and readability. For the visualization of vortical flow
in the 3D space-time field, vortex cores are augmented by the introduced vortex core
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Figure 6.3: Dye-based visualization of advection-
diffusion in the simulation of an evaporating droplet.
Blue transparent surfaces represent vapor isocontours.

Dye released at the droplet interface is advected down-
stream. Advection transport dominates the transport
mechanism.

ribbons which clearly visualize the twist around vortices. By mapping the space-time
LIC texture on the ribbons, they also provide a notion of vortex core line quality. Ad-
ditionally, space-time LIC was applied on streamsurfaces to visualize both the extrinsic
and intrinsic dynamics of material lines. This visualization also supports the argument
that the space-time can be useful also in the analysis of single-phase flow.

In the last presented method (Section 5.3), feature extraction has been applied to gain
a concise representation of complex flows. In this method, a novel, implicit topology
extraction method has been proposed that, instead of providing the topology skeleton,
directly reveals regions of different flow behavior. This is achieved by revealing the
asymptotic behavior of streamlines seeded in the whole domain. Hence, separatrices
and periodic orbits are displayed implicitly as the boundaries of these regions. Addi-
tionally, the presented grid refinement method improves the quality of the extracted
regions.

The visualization techniques presented in Chapter 5 can provide better understand-
ing of physical processes and additionally support effective analysis of highly dynamic
data. A clear strength of the visualization techniques presented in this chapter is that
their application range extends beyond the analysis of droplet dynamics to all types
of phenomena investigated in single-phase configuration. The advantage of proposed
advection-diffusion analysis is that, depending on the application problems, various vi-
sualization techniques can reveal the advection-diffusion transport. In fact, a recent
publication by Sadlo et al. [153] shows that advection-diffusion can be employed for
topology extraction in simulations with both advective and diffusive transport. Addi-
tionally, as proposed in the work by Hochstetter et al. [74], the advection-diffusion visu-
alization can be extended to simulations of solvents by decomposing the concentration
transport into the advective and diffusive components using the mean and maximum
diffusion velocity.

A Multi-Scale Approach for Visualization of Two-Phase Flow Dynamics

The range of phenomena related to two-phase flow dynamics and their interplay is a
challenging topic. As the visualization of two-phase flow has so far gained only mod-
erate attention, it was the goal of this thesis to propose visualization techniques that
provide knowledge on the dynamics of droplets as well as general two-phase flow dy-
namics. Consequently, the presented visualization techniques provide a comprehensive
analysis for the investigation of multitude aspects of two-phase flow with the focus on
droplet dynamic processes. In this thesis, droplet interactions, interface dynamics, as
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well as material transport in single-phase configuration have been identified as impor-
tant problems. Accordingly, the developed visualization techniques complement each
other to form a comprehensive approach for visual analysis of two-phase flow dynamics.
The introduced visualization of droplet interactions enables a detailed investigation of
the dynamics of breakups and merges and reveals the origins and characteristics of these
processes. The interactions are greatly influenced by the interface dynamics. Thus, var-
ious aspects of interface characteristics have been scrutinized in this thesis to provide
better understanding of both the simulation behavior and physical phenomena at the
interface. Additionally, in the investigation of droplet dynamics, there are simulation
scenarios where phase interface does not have to be explicitly considered. For these
cases, the introduced single-phase visualization methods allow for investigation of the
highly complex flows. With such a wide spectrum of visualization techniques, this the-
sis addresses many aspects related to the investigation of two-phase flow dynamics and
can thus help the scientists and engineers in the study of natural phenomena and in
engineering applications.

6.2 Outlook

The presented methods were designed to comprise an exhaustive visualization approach
for the analysis of multiple aspects in two-phase flow. Regarding implementation, these
methods could be integrated into a single framework, possibly by exploiting existing vi-
sualization frameworks, such as ParaView. In fact some of the presented methods have
already been implemented as ParaView plugins. Although this thesis concentrated on
liquid-gas flows, the presented techniques that take the interface explicitely into account
are readily applicable to multiphase flows, specifically, flows with two immiscible liq-
uids of different chemical components. This has been demonstrated in the visualization
of interface deformation, where oil-water configuration has been investigated. For visu-
alization of droplet interactions, identification of inclusions across multiple time steps
leads to a correspondence problem, which involves many challenges. The particle track-
ing is particularly difficult in two-phase flow which is highly nonlinear. The involved
collisions, as well as surface tension force are difficult to capture and require high tem-
poral resolution for accurate tracking. It is anticipated that for detailed analysis of such
data, the in-solver particle advection will be necessary, at least to provide a ground-truth
solution to the particle tracking problem. In case of interface visualization, the existing
techniques are somewhat limited to the VOF-based simulations. As has been discussed,
interface analysis techniques benefit from the proximity to the fluid solver and it would
be beneficial to extend these visualization techniques to other solver types and interface
reconstruction methods. In the analysis of droplet internal flow, a very interesting yet
challenging direction would be to consider the deformations of the droplets when ana-
lyzing the internal flow. This is in fact outlined in an ongoing research project at the
University of Stuttgart. In this thesis, droplets in the presence of an electric field have
been investigated. There are, however, many other processes—such as icing, evapo-
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ration, or mixing—that demand specialized visualization techniques that could handle
these complex multi-physics problems.

Since many aspects of two-phase flow have been so far rather unexplored in the
scientific visualization, it it the author’s hope that this thesis will shed some light on
the phenomena related to the two-phase flow dynamics with the focus on droplets. As
two-phase flow is a complex and intriguing research topic, it is also the author’s hope
that it will get more attention and therefore spur more fascinating research in flow visu-
alization.







APPENDIX

Parallelization

As stated in the Introduction (Chapter 1), the constantly growing computational power
of both personal desktops and computing clusters allows for flow simulations with in-
creasing spatial and temporal resolutions. This poses a particular challenge in the visu-
alization of the resulting data, and in this thesis two approaches have been adopted to
ensure effective flow visualization: utilization of the GPUs and distributed systems. The
former enables interactive visualization and rendering of dye advection (Section 5.1),
while the latter allows for processing of large datasets that do not fit into memory of stan-
dard desktops (Section 3.2). What follows is a brief description of the characteristics of
both solutions that were taken into account in the visualization techniques presented in
this thesis.

GPU Architecture

GPUs allow for considerable acceleration of data processing for algorithms that can ben-
efit from parallelization. Since the GPU architecture differs greatly from the CPUs, care
must be taken to properly design the algorithm implementation so that the full potential
of a graphics card can be exploited. Below, several aspects are briefly described that
must be considered when developing GPU code. Please note that the description—by no
means exhaustive—is based on the terminology used in NVIDIA CUDA [123].

Thread Organization In the GPU programming model, the code that runs on the
graphics card is called kernel, and one kernel is executed by one core processor. Modern
graphics cards contain more than thousand computing cores that on a hardware level
are organized in a hierarchy that is reflected in the programming model. From a pro-
gramming point of view, at the lowest level, threads, i.e., execution units, are grouped
into warps of typically 32 threads. At the warp level, instruction branching should be
avoided on the current GPU architecture, since otherwise the execution of the branches
is serialized. The thread warps are further grouped into thread blocks with shared mem-
ory accessible to all threads within a given block. Additionally, thread execution can
be synchronized to allow for coordinated data exchange within a block. At the high-
est level, thread blocks are organized in a grid where a number of thread blocks can
execute simultaneously, depending on the block size, resources required per block, and
resources available on the device. It is important to note that currently, synchronization
is not possible across thread blocks.

Memory Design In the graphics cards there are several memory types visible to a
programmer that differ in access speed and latency, as well as size. The device memory
is a global memory type accessible to all GPU threads. This memory is also the only
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GPU memory type visible to the host (i.e., code running on the CPU), and is used to
transfer data between CPU and GPU. The size of the device memory is of the order of
few gigabytes but it offers the slowest access. Hence, data transfers and accesses should
be reduced as much as possible. The shared memory is available for each thread block
separately, such that threads within one block can exchange data through this memory. It
is much faster than the device memory, however, its size is orders of magnitude smaller
(typically, 48KB). The fastest and at the same time most sparse memory resource are the
registers, i.e., small memory blocks assigned for storage of temporary variables during
kernel execution.

Memory Access Optimization There are some nuances that must be attended to
when developing GPU code. The thread warps mentioned earlier require some num-
ber of cycles to fetch data before they can execute the next instruction. This latency
may range from a few tens of cycles for registers to hundreds of cycles for global mem-
ory access. It is therefore essential to hide this warp inactivity by other warps that are
ready to execute their code. To increase the number of active warps (i.e., warps that
reside on the GPU multiprocessors), one should decrease the number of registers used
per thread. To further reduce the impact of global memory transactions, some memory
access patterns should be considered. Memory coalescence ensures that consecutive
threads read from or write to successive memory addresses. Memory alignment of data
types means that their addresses are multiples of their size. Both solutions reduce the
number of transactions needed and therefore speed up memory transfer.

Distributed Architecture

While parallelization on a GPU allows for considerable acceleration of visualization tech-
niques, some simulation data are too large to fit into graphics cards memory and require
parallelization on distributed systems. Moreover, the simulation data can sometimes be
too large for transfers from clusters/supercomputers to commodity desktops, and hence
require processing on the computing nodes, which usually are not equipped with GPUs.

Message Passing Interface For parallel computation on clusters and supercomput-
ers, the Message Passing Interface (MPI) protocol is typically used [50]. MPI is an
architecture-independent API that provides a set of functions for data transfers across
computing nodes. For visualization, either the tasks or the simulation data are dis-
tributed on the nodes. A task is a program module responsible for processing data
required for visualization. For example, in the particle advection, the task is the inte-
gration of the particle position in a given time interval. In the case of data parallelism,
which has been employed in the presented visualization of inclusion separation (Sec-
tion 3.2), the simulation domain is split into blocks that reside on separate computing
nodes. In the employed particle tracking, particles that leave the assigned block are
transferred to the process responsible for the block they enter. This approach is rela-
tively simple to implement, and allows for processing large datasets. A disadvantage
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of data parallelism is that for particles that follow similar paths, computational load is
poorly distributed, since the computed particle positions are concentrated in relatively
few subdomains.
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